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Summary 
 
The eigensolver step is the computational bottleneck in many approaches for computation of 
the electronic structure of materials and molecules. We are pursuing replacements for the 
eigensolver using density matrix-based approaches. Our recent work has focused on density 
matrix purification in a Lanczos subspace, and shows great promise for accelerating this step 
in the computation.   
 
Electronic structure theory is a group of 
methods for investigating the chemical 
bonding of molecules and materials, and can 
predict a host of important properties such 
as chemical reactivity and stability, 
electronic properties, optical absorption and 
spectroscopic properties, and many other. 
Most techniques in these methods have to 
solve an eigenproblem arising from the 
time-independent Schrodinger equation for 
the electronic wave function. The 
eigenproblem can be isolated, in tight-
binding and extended Huckel techniques, or 
part of a self-consistent field sequence of 
iterations, in Hartree-Fock and density 
functional theory techniques. The last 20 
years has seen great amounts of success in 
accelerating other parts of electronic 
structure theory calculations, but has had 
little success accelerating the eigensolver, 
and this step is now the computational 
bottleneck in the majority of problems. 
 
One attractive alternative comes from 
realizing that the eigenvectors themselves 
are often not required as much as the density 
matrix, which is a projection operator for the 
space spanned by the occupied electrons, 
made by multiplying the occupied 

eigenvectors with themselves. Density 
matrix methods are approaches that can form 
the density matrix directly without requiring 
an eigensolver step. These approaches 
typically require an iterative sequence of 
matrix-matrix multiplies. From a practical 
perspective, these approaches are interesting 
techniques because the matrix multiply 
operation is typically easier to parallelize 
and take advantage of sparsity than the 
eigensolve operation. From a theoretical 
perspective, they are interesting because of 
the obvious parallels between these 
techniques and subspace iteration techniques 
in linear algebra, and investigation of these 
parallels may lead to superior convergence 
and performance of the techniques.  
 
Our work to date has focused on density 
matrix purification, which uses the facts that 
a proper density matrix is idempotent (it is a 
projector for the subspace spanned by the 
occupied eigenvectors), has a trace equal to 
the number of electrons, and commutes with 
the total energy operator, to purify an initial 
guess to the density matrix until it is correct. 
Not only is density matrix purification 
significantly faster than other density matrix 
approaches, they are also mathematically 
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much simpler. Purification techniques seek 
to build the projector operator by an iterative 
sequence of matrix squares and shifts that 
ultimately converges on a projector that has 
the proper trace (corresponding to the 
number of electrons). 

Our current work attempts to develop 
density matrix purification techniques within 
a Lanczos subspace. 

 

Figure 1: Density matrix purification in a 
subspace. 

Figure 1 shows a schematic of our current 
approach. The arrow on the left maps the 
initial density matrix to the final matrix 
using the standard density matrix 
purification approaches. In our current 
approach (the 3 arrows on the right) we first 
use a length Lanczos transformation to 
convert the current density matrix D to the 
Lanczos subspace representation T. We then 
apply the density matrix purification 
iterations to this matrix, and then use the 
matrix Q to transform the final subspace 
density matrix Tf to the density matrix Df. 

Our preliminary results are promising but 
uneven. In several test cases we see great 
acceleration of the subspace purification 
approach over the standard density matrix 
purification approach. However, we also see 
other test cases where loss of orthogonality 

occurs among the Lanczos vectors. We are 
currently investigating selective 
orthogonalization schemes to determine 
whether such an approach can stabilize the 
convergence and still preserve the speed 
gains. 
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