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Summary 
 
The goal of this project is to develop parallel multigrid methods for solving the large linear 
systems of equations that arise in many DOE scientific simulation codes.  These methods have 
the potential to reduce simulation times dramatically (by as much as a factor of 10 or more), 
enabling new advancements in science. 
 
At the core of many DOE simulation codes 
is the need to solve huge linear systems on 
thousands of processors.  Multigrid methods 
are so-called scalable or optimal methods 
because they can solve a linear system with 
N unknowns with only O(N) work.  This 
property makes it possible to solve ever 
larger problems on proportionally larger 
parallel machines in constant time. 
 
Multigrid methods achieve this optimality 
by employing two complementary processes 
smoothing and coarse-grid correction.  In 
the classical setting, the smoother is a simple 
iterative method like Gauss-Seidel that is 
effective at reducing high-frequency error.  
The remaining low-frequency error is then 
accurately represented and efficiently 
eliminated on coarser grids via the coarse-
grid correction step.  Applying this simple 
multigrid idea to get a scalable method often 
involves considerable algorithmic research, 
however.  One has to decide which method 
to use as a smoother, how to coarsen the 
problem, and how to transfer information 
between the grids.  When designed properly, 
a multigrid solver will be scalable. 
 

In general, multigrid methods must exploit 
the character of the near null space of the 
operator.  A near null space vector x is 
nearly invisible under the action of the 
operator A, that is Ax ≈ 0.  In the classical 
setting, these vectors are geometrically 
smooth (low-frequency), but for applications 
such as electromagnetics, the near null space 
is huge (O(N)) and geometrically oscillatory.  
In addition, these problems are often posed 
on unstructured grids (see figure below).  
The algebraic multigrid (AMG) approach is 
well suited for addressing these challenges, 
and is the focus of our research. 
 

 
 



The majority of the AMG algorithms we 
develop are implemented in hypre, a library 
of parallel preconditioners.  Through hypre, 
we have moved much of our earlier 
multigrid methods research into parallel 
application codes, impacting such diverse 
areas as heterogeneous porous-media flow, 
radiation hydrodynamics, laser plasma 
interaction, and structural mechanics.   
 
Our main accomplishment this past year 
concerns the scalable solution of the definite 
Maxwell’s equations.  The major difficulty 
with developing scalable solvers for these 
equations is the oscillatory, huge near null 
space.  Previous attempts to construct AMG 
methods have had only partial success.     
 
Our new auxiliary-space Maxwell solver 
(AMS) is based on our work developing so-
called auxiliary mesh preconditioners.  The 
latter is a technique to solve problems on 
unstructured meshes that exploits available 
geometric multigrid methods for structured 
meshes (see Figure 1).  One disadvantage of 
the auxiliary mesh approach is that it 
requires a re-discretization of the problem 
on a related uniform mesh. 
 

Figure 1. A uniform auxiliary mesh (red) for a 
trianglular domain (white).  The unstructured 
original mesh for the domain is not shown. 
 
A computationally more attractive approach 
was recently announced by Ralph Hiptmair 
and Jinchao Xu.  Their method borrows the 
main tool from the auxiliary mesh method, 

namely, an interpolation operator that maps 
functions from a standard conforming finite 
element space into the respective Nédélec 
finite element space.  The approach does not 
require re-meshing the domain, but does 
require explicit knowledge of the curl-free 
components of the Nédélec space (these are 
just gradients of an H1-conforming scalar 
finite element space).  
 
Based on our experience with the auxiliary 
mesh method, our new AMS solver is an 
improved version of the Hiptmair/Xu solver.  
AMS is the first provably scalable solver for 
the definite Maxwell's equations on quasi-
uniform unstructured meshes that requires 
minimal additional information from the 
user.  An illustration of its performance is 
shown in Figure 2. 
 

Figure 2. Weak scaling results (105K unknowns 
per processor) for the AMS preconditioner and 
diagonally-scaled conjugate gradient (DS-PCG).  
 
Our research was in close collaboration with 
Tzanio Kolev at LLNL and researchers at 
Texas A&M and Penn State Universities.  
See our publications at 
http://www.llnl.gov/CASC/linear_solvers/. 
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