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Summary 
 
While multiscale materials simulations are one of the fasting growing areas of computational 
research, commonly used rigid and periodic boundary conditions introduce additional and 
often times unrealistic constraints.  Minimal kinematic boundary conditions (MKBC) result in 
a unique solution for the linear elastic case, and simulations indicate that this representation 
is applicable to a representative volume element (RVE) of any shape.  Computed response 
behavior is superior to other BC's, in that they give more realistic overall behavior, reduce the 
required size of the RVE providing a natural multiscale linkage, and eliminate the superficial 
size dependent effects, ubiquitous in simulations with other boundary conditions.  
 

Multiscale modeling and simulations 
have been one of the fastest growing 
research areas during the last decade. 
Nanomaterials, microelectronics, and 
ultrathin films have brought to light the 
problems on scales that are too small to be 
modeled by traditional continua, yet too 
large to be efficiently treated by more 
accurate fine scale models.  When these 
models are invoked sequentially and 
information is passed from one scale to 
another, the key question related to 
simulation of the fine-scale cell becomes: 
How are the coarse-scale fields to be passed 
onto the fine scale?  

Mathematical conditions that address 
this question are called minimal boundary 
conditions (MBC). The attribute minimal 
signifies that such conditions impose no 
additional restrictions on the fine-scale 
computational cell (other then the desired 
coarse-scale field). Practitioners have 
usually bypassed this question with a series 

of clever manipulations, including the 
popular periodic boundary conditions. 
Consider the problem of the mechanical 
response of a granular material to an applied 
shear stress.  The drawbacks of periodic 
boundary conditions (Figure 1) are: 
• Introduction of superficial cell-size 

wavelengths, requiring large 
computational cells, 

• Localization on specific planes,  
• Preventing response with higher order 

gradients–commonly encountered in 
functionally graded materials. 
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Figure 1. Impossible solutions under periodic 
boundary conditions: finite size correlation effects 
(left), shear localization on an inclined plane 
(middle), and, strain gradient (e.g., in functionally 
graded material) (right). 



 

 

 Figure 2.  (left) A cluster of particles.  (right)  
Contact graph (blue, solid lines), complementary 
graph (red, dashed lines) and Delaunay (all lines). 
Graphs corresponding to the packing sample. 
 
An alternate and more efficient means to 
address this problem is to describe the 
topological evolution of a granular material 
using Delaunay and contact graphs for the 
geometric representation. The Delaunay 
graph is the set of lines that connects the 
centroids of the nearest neighbors. The 
contact graph consists of the lines between 
centroids of particles that are in contact, and 
are a subset of the Delaunay graph.  A small 
particle cluster and its Delaunay and contact 
graphs are shown in Figure 2. 

Minimal boundary conditions can then 
be imposed on a fine-scale computational 
cell as a constraint derived from a coarse-
scale model.  Recently, Mesarovic & 
Padbidri formulated minimal kinematic 
boundary conditions for equilibrium, 
continuum-continuum problems, and 
implemented them into a computational 
finite element (FE) framework.  The coarse 
scale strain can be expressed as the volume 
average of the microscopic strain field ε(x), 
by: 
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where ( )u x  is the displacement vector, and n  
is the unit normal to the surface.  The 
implementation for quasistatic discrete 
element methods with implicit integration is 
direct.  Kinematic and static continua 
defined by linear interpolation of the 
discrete model are formulated in a manner 
completely analogous to boundary 
conditions for constant strain finite 
elements.  These conditions are ‘minimal’- 

nothing but the desired coarse strain 
constraint is imposed.  To study more 
realistic 3D configurations, we have 
developed a parallelized implementation 
with Delaunay and boundary detection.  The 
resulting models provide greater accuracy 
with fewer numbers of elements allowing 
for greater ranges of dynamic simulations.   
 

 
Figure 3.  (left)  2D particle packing under isostatic 
pressure.  (middle) Velocity vector plot during 
deformation when vertical strain is imposed by 
means of top and bottom rigid plates.  Note the 
marked diagonal (X) shear bands. (right) Velocity 
vector plot during deformation when axial strain is 
imposed as minimal kinematic boundary condition.  
Note uniform lateral swelling and absence of shear 
bands. 
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