
*540-231-7540, ltw@cs.vt.edu

 Advanced Scientific Computing Research
Applied Mathematics

FY 2007 Accomplishment

“pVTDIRECT---A Massively Parallel Deterministic
 Global Optimization Algorithm”

Layne T. Watson
Virginia Polytechnic Institute and State University

Summary

Parallel stochastic global search algorithms readily scale, but they are also profligate wastrels
of CPU cycles, in the sense of total flops per percent improvement in the objective function.
Deterministic global optimization algorithms, in contrast, are very frugal users of CPU cycles,
but difficult to parallelize and exceedingly difficult to scale massively. This project concerns a
parallel deterministic global optimization algorithm, called pVTDIRECT, that has successfully
scaled to the terascale System X at VPI&SU, and is being used on large scale systems biology
problems here and solid state physics problems at Ames Laboratory..

Background. Global search algorithms
have been increasingly applied to large scale
optimization problems in many fields.
Compared to local methods, these global
approaches are more likely to discover the
global optimum instead of being trapped at
local minimum points for complex noncon-
vex or nonlinear problems with irregular
design domain. The DIRECT algorithm
(proposed by D. Jones in 1993) is one such
global optimization algorithm that has been
applied to large scale engineering design
problems such as aircraft design, pipeline
design, routing, surface optimization, wire-
less transmitter placement, molecular
genetic mapping, and cell cycle modeling.
The complexity of these applications ranges
from low dimensional with 3--20 variables
to high dimensional with up to 143
variables.

Compared to local methods, global optimi-
zation methods generally have higher com-

putational cost and memory requirement,
which often lead to solutions that involve
data-distributed parallel computing tech-
niques. In the past decade, the parallel
schemes of DIRECT evolved from a classi-
cal master-slave paradigm, to a fully distrib-
uted version with dynamic load balancing,
and recently to a multilevel scheme com-
bining global addressing and message pass-
ing models. To further improve program
portability, execution robustness, and
parallel performance, a massively parallel
version has been developed with several
dynamic features, which have been evalu-
ated on System X, a 2200-processor Apple
G5 cluster. Its performance has been ana-
lyzed in terms of data structure efficiency
and load balancing. The present work char-
acterizes its performance sensitivity to
problem dimension, task granularity, domain
partition, and computing environment. The
project goals are to (1) ensure the design
effectiveness of pVTDIRECT on a variety

of problems and systems, (2) guide the
proper choice of optimization parameter
inputs specified by users, and (3) describe
the design considerations and analysis tech-
niques that can be generalized to apply to
parallelizing other global optimization algo-
rithms challenged by large scale applications
on massively parallel systems.

Overview of DIRECT. DIRECT is a
deterministic global search algorithm for
solving optimization problems subject to
certain assumptions. The global conver-
gence is contingent on the properties of the
objective function and the nature of the con-
straints. When the objective function is
Lipschitz continuous around the global
optimum point, the global convergence is
guaranteed. The general optimization
problem considered here is to find the point
x ∈ D that minimizes the given objective
function f(x) defined in the N-dimensional
domain D = {x ∈ E N |l ≤ x ≤ u}, where l
and u are lower and upper bounds on x. The
computed solution may or may not
approximate a global minimum point
depending on the specified stopping condi-
tion---a budget of computational cost (i.e.,
the maximum number of iterations or
evaluations) or a semi-global optimization
goal (i.e., the relative function value
improvement between iterations or the
minimum diameter of the subregion
centered at x).

Before the DIRECT search satisfies the
stopping condition, it iterates through a few
steps to select ``potentially optimal'' subre-
gions (SELECTION), to sample candidate
points in these subregions (SAMPLING),
and to subdivide D accordingly
(DIVISION). If the objective function value
within a subregion is potentially smaller
than that in any other subregions for some
Lipschitz constant, the subregion is deemed
potentially optimal. This unique selection

strategy explores the design space intelli-
gently toward multiple promising
subregions, thus avoiding being trapped by
local minimum points.

Design of pVTDIRECT. The main high
level steps of DIRECT for each iteration are:

1. SELECTION identifies a set of ``poten-
tially optimal'' boxes that represent subre-
gions inside a normalized design domain. 2.
SAMPLING evaluates new points sampled
around the centers of all ``potentially opti-
mal'' boxes along their longest dimensions.
3. DIVISION subdivides ``potentially opti-
mal'' boxes according to the function values
at the newly sampled points.

Note that the original DIRECT starts with a
single domain, so there is only one center
point for SAMPLING and DIVISION at the
first iteration. Unavoidably, a load imbal-
ance occurs at the early stage. To mitigate
this problem, an optional step of domain
decomposition can be specified by the user
to create multiple staring points, one per
subdomain. The performance analysis and
results show that the multiple subdomain
approach not only improves the load bal-
ancing, but also converges faster for real
world applications.

From the second iteration, SELECTION
outputs multiple ``potentially optimal'' boxes
to SAMPLING, which in turn passes the
function values of new sample points to
DIVISION. The inherent concurrency gives
rise to a natural task parallelism. Unfortu-
nately, the same seemingly advantageous
step also comes with a disadvantage---data
dependency, since any step during an itera-
tion needs to wait for the results of all the
previous steps. This inherently sequential
nature favors a parallel scheme that
decouples SELECTION and SAMPLING

into two different roles---master and worker,
respectively.

On a master processor, SELECTION
involves convex hull computations because
the ``potentially optimal'' boxes are on the
convex hull of coordinate pairs containing
box center function values and box diame-
ters. When the amount of intermediate data
may potentially grow beyond the memory
capacity on a single machine, multiple mas-
ters should be used to share the data and
collaborate on SELECTION in parallel.
Also, the multiple masters update the inter-
mediate results at the end of each iteration
and check whether the stopping condition is
met. The present work recommends that
masters evaluate functions locally if the
objective function cost is lower than the
communication round trip cost between two
nodes on the parallel system. This forms the
horizontal 1-D scheme, in contrast with the
vertical 1-D scheme with a single master
distributing the function evaluation tasks to
remote workers. Stacking function evalua-
tions is another approach to reduce the
communication overhead for distributing
cheap objective function evaluations under
the vertical scheme.

The overall parallel scheme consists of user
configurable m subdomains (SDs), n
subdomain masters (SMs), and k globally
shared workers (Ws) that request tasks from
randomly selected SMs. The above design
is implemented purely in Fortran 95 to
support high accuracy computation and
dynamic data structures that expand at run
time for rapidly growing intermediate data.
It can be executed on either a single
processor or multiple processors depending
on the space and computation complexity of
the optimization problem. If multiple
processors are used, a small set of the MPI
library functions are called to establish the
interprocessor communication and

synchronization. In addition, practical
checkpointing methods were implemented to
enhance fault tolerance in case of system
failure. The key contributions of the
massively parallel design are the important
techniques developed to reduce the local
memory requirement, minimize the network
traffic, and balance the workload.

The figure shows the typical progression of
the algorithm in two dimensions. It has
already had an impact in systems biology,
having found the best known 143 parameters
for a budding yeast cell cycle model.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

after 10 iterationsafter 5 iterations

after 1 iterationintitial

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 3.0 -- 3.5
 3.5 -- 3.9
 3.9 -- 4.3
 4.3 -- 4.8
 4.8 -- 5.2
 5.2 -- 5.7
 5.7 -- 6.2
 6.2 -- 6.6
 6.6 -- 7.0
 7.0 -- 7.5
 Points

Progression of DIRECT sampling in two

dimensions.

For further information on this subject
contact:

Professor Layne T. Watson
Virginia Polytechnic Institute and State
University
ltw@cs.vt.edu
540-231-7540

Or

Dr. Anil Deane
Applied Mathematics Research Program
Office of Advanced Scientific Computing
Phone: 301-903-1465
deane@ascr.doe.gov

