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Summary 
 
Parallel stochastic global search algorithms readily scale, but they are also profligate wastrels 
of CPU cycles, in the sense of total flops per percent improvement in the objective function.  
Deterministic global optimization algorithms, in contrast, are very frugal users of CPU cycles, 
but difficult to parallelize and exceedingly difficult to scale massively. This project concerns a 
parallel deterministic global optimization algorithm, called pVTDIRECT, that has successfully 
scaled to the terascale System X at VPI&SU, and is being used on large scale systems biology 
problems here and solid state physics problems at Ames Laboratory..  
   
 
Background.  Global search algorithms 
have been increasingly applied to large scale 
optimization problems in many fields.  
Compared to local methods, these global 
approaches are more likely to discover the 
global optimum instead of being trapped at 
local minimum points for complex noncon-
vex or nonlinear problems with irregular 
design domain.  The DIRECT algorithm 
(proposed by D. Jones in 1993) is one such 
global optimization algorithm that has been 
applied to large scale engineering design 
problems such as aircraft design, pipeline 
design, routing, surface optimization, wire-
less transmitter placement, molecular 
genetic mapping, and cell cycle modeling.  
The complexity of these applications ranges 
from low dimensional with 3--20 variables 
to high dimensional with up to 143 
variables. 
 
Compared to local methods, global optimi-
zation methods generally have higher com-

putational cost and memory requirement, 
which often lead to solutions that involve 
data-distributed parallel computing tech-
niques.  In the past decade, the parallel 
schemes of DIRECT evolved from a classi-
cal master-slave paradigm, to a fully distrib-
uted version with dynamic load balancing, 
and recently to a multilevel scheme com-
bining global addressing and message pass-
ing models.  To further improve program 
portability, execution robustness, and 
parallel performance, a massively parallel 
version has been developed with several 
dynamic features, which have been evalu-
ated on System X, a 2200-processor Apple 
G5 cluster.  Its performance has been ana-
lyzed in terms of data structure efficiency 
and load balancing.  The present work char-
acterizes its performance sensitivity to 
problem dimension, task granularity, domain 
partition, and computing environment.  The 
project goals are to (1) ensure the design 
effectiveness of pVTDIRECT on a variety 



 

 

of problems and systems, (2) guide the 
proper choice of optimization parameter 
inputs specified by users, and (3) describe 
the design considerations and analysis tech-
niques that can be generalized to apply to 
parallelizing other global optimization algo-
rithms challenged by large scale applications 
on massively parallel systems.  
 
Overview of DIRECT.  DIRECT is a 
deterministic global search algorithm for 
solving optimization problems subject to 
certain assumptions.  The global conver-
gence is contingent on the properties of the 
objective function and the nature of the con-
straints.  When the objective function is 
Lipschitz continuous around the global 
optimum point, the global convergence is 
guaranteed.  The general optimization 
problem considered here is to find the point 
x ∈ D  that minimizes the given objective 
function f(x) defined in the N-dimensional 
domain   D = {x ∈ E N |l ≤ x ≤ u}, where  l  
and u  are lower and upper bounds on x. The 
computed solution may or may not 
approximate a global minimum point 
depending on the specified stopping condi-
tion---a budget of computational cost (i.e., 
the maximum number of iterations or 
evaluations) or a semi-global optimization 
goal (i.e., the relative function value 
improvement between iterations or the 
minimum diameter of the subregion 
centered at x ). 
 
Before the DIRECT search satisfies the 
stopping condition, it iterates through a few 
steps to select ``potentially optimal'' subre-
gions (SELECTION), to sample candidate 
points in these subregions (SAMPLING), 
and to subdivide $D$ accordingly 
(DIVISION). If the objective function value 
within a subregion is potentially smaller 
than that in any other subregions for some 
Lipschitz constant, the subregion is deemed 
potentially optimal. This unique selection 

strategy explores the design space intelli-
gently toward multiple promising 
subregions, thus avoiding being trapped by 
local minimum points. 
 
Design of pVTDIRECT.  The main high 
level steps of DIRECT for each iteration are: 
 
1.  SELECTION identifies a set of ``poten-
tially optimal'' boxes that represent subre-
gions inside a normalized design domain. 2.  
SAMPLING evaluates new points sampled 
around the centers of all ``potentially opti-
mal'' boxes along their longest dimensions. 
3. DIVISION subdivides ``potentially opti-
mal'' boxes according to the function values 
at the newly sampled points. 
 
Note that the original DIRECT starts with a 
single domain, so there is only one center 
point for SAMPLING and DIVISION at the 
first iteration. Unavoidably, a load imbal-
ance occurs at the early stage.  To mitigate 
this problem, an optional step of domain 
decomposition can be specified by the user 
to create multiple staring points, one per 
subdomain.  The performance analysis and 
results show that the multiple subdomain 
approach not only improves the load bal-
ancing, but also converges faster for real 
world applications. 
 
From the second iteration, SELECTION 
outputs multiple ``potentially optimal'' boxes 
to SAMPLING, which in turn passes the 
function values of new sample points to 
DIVISION.  The inherent concurrency gives 
rise to a natural task parallelism.  Unfortu-
nately, the same seemingly advantageous 
step also comes with a disadvantage---data 
dependency, since any step during an itera-
tion needs to wait for the results of all the 
previous steps. This inherently sequential 
nature favors a parallel scheme that 
decouples SELECTION and SAMPLING 



 

 

into two different roles---master and worker, 
respectively. 
 
On a master processor, SELECTION 
involves convex hull computations because 
the ``potentially optimal'' boxes are on the 
convex hull of coordinate pairs containing 
box center function values and box diame-
ters. When the amount of intermediate data 
may potentially grow beyond the memory 
capacity on a single machine, multiple mas-
ters should be used to share the data and 
collaborate on SELECTION in parallel.  
Also, the multiple masters update the inter-
mediate results at the end of each iteration 
and check whether the stopping condition is 
met. The present work recommends that 
masters evaluate functions locally if the 
objective function cost is lower than the 
communication round trip cost between two 
nodes on the parallel system.  This forms the 
horizontal 1-D scheme, in contrast with the 
vertical 1-D scheme with a single master 
distributing the function evaluation tasks to 
remote workers. Stacking function evalua-
tions is another approach to reduce the 
communication overhead for distributing 
cheap objective function evaluations under 
the vertical scheme. 
 
The overall parallel scheme consists of user 
configurable $m$ subdomains (SDs), $n$ 
subdomain masters (SMs), and $k$ globally 
shared workers (Ws) that request tasks from 
randomly selected SMs.  The above design 
is implemented purely in Fortran 95 to 
support high accuracy computation and 
dynamic data structures that expand at run 
time for rapidly growing intermediate data.  
It can be executed on either a single 
processor or multiple processors depending 
on the space and computation complexity of 
the optimization problem.  If multiple 
processors are used, a small set of the MPI 
library functions are called to establish the 
interprocessor communication and 

synchronization.  In addition, practical 
checkpointing methods were implemented to 
enhance fault tolerance in case of system 
failure.  The key contributions of the 
massively parallel design are the important 
techniques developed to reduce the local 
memory requirement, minimize the network 
traffic, and balance the workload. 
 
The figure shows the typical progression of 
the algorithm in two dimensions. It has 
already had an impact in systems biology, 
having found the best known 143 parameters 
for a budding yeast cell cycle model. 
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Progression of DIRECT sampling in two 

dimensions.  
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