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Summary: We have developed a new Generalized Discontinuous Galerkin (GDG) method for 
PDEs with large jump conditions  based on  a split distribution function and its unique integration 
by parts formula.  The GDG method can be used for accurate simulations of optical waveguides. 
 
   
 

In a paraxial approximation of optical wave 
propagations in optical fibers, the time harmonic 
Maxwell’s equations is reduced to Schrödinger 
equations where the propagation direction is 
identified as the time axis. Due to the mismatch 
of refractive indices between the core and 
cladding of the fiber, the electromagnetic fields 
are discontinuous solutions to the Schrödinger 
equations, a property not shared by the 
probability wave functions of quantum 
mechanics.   
 
In order to handle the discontinuous solutions 
for the Schrödinger equations, we reformulate 
the PDEs using distribution variables where 
Diracδ  functions are introduced as source terms 
to enforce the jump conditions. After 
introducing auxiliary distribution variables, 
discontinuous Galerkin projection of the 
distribution variables are used to obtain the 
numerical approximations. 
 
Consider a model Schrödinger equation 
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where the complex wave function ϕ  has jumps 
at τ , [ ] ,[ ]f gϕ ϕ′= = . 

 

First, we rewrite equations (Eq. 1) using Dirac 
δ  functions as follows 
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Next, introducing a distributional auxiliary 
variable 
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then, the Schrödinger equation (Eq. 1) becomes 
 

( ) ( )pic g t x
t x
ϕ δ τ∂ ∂
= − −

∂ ∂
.       (Eq. 3)            

 
To construct a Galerkin projection of the 
distributional equations (Eq. 2-3), we developed 
the following concept of split distribution and 
its unique integration by parts formula 
 
 
Split Distribution:  We define the evenly-split 
Dirac δ  function, for ]0,[)( aCxv ∞∈                         
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Integration by Parts for Split Distributions: 



 

 

For a piecewise continuous function )(xϕ with 
a jump at x=0, )0()0(][ −+ −= ϕϕϕ , the 
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x=0 has to be used (refer to [1] for details). 
 
Then, we multiply (Eq. 2-3) with a test function 

)(xv  and integrate over each closed finite 
element K  to obtain, after integration by part, 
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where the numerical fluxes are defined as  
for τ=kx ,                      
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The 2-D scalar Schrödinger equations with jump 
conditions can be similarly formulated as  
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where ),,( ** yxf ),( ** yxg are the jumps of 
the solution and the normal derivative at an 
interface location ),( ** yx , respectively. ),( ηξ  
are the local coordinates along the normal and 
tangential directions at location ),( ** yx .   
 
Figure 1 shows the exponential convergence of 
the GDG for a 2-D Schrödinger equation with a 
nonsmooth solution. 
            

 
Figure 1. (Left)  Exponential Convergence of 
GDG via  order of basis functions. (Right) GDG 
solution of 2-D Scalar Schrödinger eq. with  
jumps. 
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