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Abstract— An intriguing perspective is developed on the assessment of stability robustness of systems 
with multiple independent and uncertain delays. It is based on a holographic mapping, which is 
implemented over the domain of the delays. This mapping considerably alleviates the problem, which is 
known to be N-P hard. It creates a dramatic reduction in the dimension of the problem from infinity to 
manageably small number. Ultimately the process is reduced to studying the problem within a finite 
dimensional cube with edges of length π2  in the new domain, what we name the building block. In 
essence, the mapping collapses the entire set of potential stability switching points onto a small 
(upperbounded) number of building hypersurfaces. We further demonstrate that these building 
hypersurfaces can be implicitly defined and they are completely isolated within the above mentioned 
cube. It is also shown that the exhaustive detection of these building hypersurfaces is necessary and 
sufficient in order to arrive at the complete stability robustness picture. As a consequence, this concept 
yields a very practical and efficient procedure for the stability assessment of such systems. This novel 
perspective serves very well for the preparatory steps of the authors’ earlier contribution in the area, 
Cluster Treatment of Characteristic Roots (CTCR). We elaborate on this combination, which forms 
the main contribution of the paper. Several experimental validation studies of this new concept have been 
reported in the recent archival literature. 
   
 
In this project, we consider linear time-invariant, 
multiple time-delayed systems (LTI-MTDS). 
The general state-space form of this class of 
systems is given as, 
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where , , ,  are all constant 
matrices in  and the vector of time delays 

 of which the elements are 
positive and rationally independent from each 
other.  
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The determination of the stability robustness 
against delay uncertainties of this system is our 
main objective. This problem has been studied 
for over four decades resulting in some 
respectable volume of literature. It is known to 
be of complexity class N-P hard. Our novel 
paradigm, Cluster Treatment of 
Characteristic Roots (CTCR), suggests a 
practical and numerically efficient procedure. 

Indeed, CTCR produces a complete stability 
robustness tableau within the domain of the 
delays, . The numerical efficiency of 
CTCR is tested for cases , 

+ℜ∈ pτ
3=n 2=p , and 

6=n , 3=p  very favorably. 
The key procedure that enables the CTCR 

paradigm is a holographic mapping of the delays 
(known as Rekasius substitution). This mapping 
successfully converts spectrally infinite 
dimensional problem into a finite dimensional 
one. We can metaphorically describe this 
operation as looking at the problem under 
special optics. To improve the process further 
we developed an additional perspective, which 
further confines the domain of analysis into a 
finite dimensional cube. This cube is called the 
“building block”.  
 
CTCR and two key propositions (which were 
unrecognized until our findings) 

 (i) The system in (1) is infinite dimensional. 
_______________________________ 
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Its characteristic equation is 
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and it has infinite spectra.  
 (ii) The continuous variations of such 

settings, in , are the only possible 
locations where the stability switching can take 
place: call them the “switching hypersurfaces”.  
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(iii) One must determine, exhaustively all 
those hypersurfaces in space, where an 
imaginary spectrum exists. 
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(iv) However, there are still countably infinite 
number of such hypersurfaces. 

(viii) Therefore, one must introduce a feature-
based discipline, what we call “the clustering” 
procedure, to those imaginary root crossings in 
order to bring the analysis to a manageable size.. 
CTCR procedure achieves precisely this 
objective.  

Definition 1: Kernel Hypersurface, . 
Those hypersurfaces which consist of points in 

complying with 

0℘

+ℜ∈ pτ 〉〈 ω,τ    correspondence 
with the constraint that 

ωπτ 20 << k ,                        (5) pk ,,1K=

are called the Kernel hypersurfaces.  
Proposition I. There is a small number of 

kernel hypersurfaces and the upperbound of 
this number is   .  2n

Definition 2: Offspring Hypersurfaces, ℘ . 
Those    hypersurfaces, which consist of the 
points with larger delays (than those of the 
kernel) but still resulting in the same imaginary 
spectrum as the kernel, are called the offspring 
hypersurfaces.  
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Definition 3. Root Tendency, RT. The root 
tendency indicates the direction of transition of 
the imaginary root (to C− or to C+) as we 
increase only one of the delays, jτ ,  by ε  (0 < ε 
<<1) while all the others remain fixed.  

Proposition II. Root tendency invariance 
property. Take an imaginary characteristic root, 

iω , of equation (2)  caused by any one of the 
infinitely many grid points in . The root 
tendency  
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 remains invariant (-1 for 

stablizing and +1 for destablizing) so long as 
the grid points on different ‘offspring 
hypersurfaces’ are obtained keeping all 1−p  
delays jτ , pkkj ,...,1,1,...,1 +−= , fixed.♦ 
Utilizing these two propositions the CTCR 
paradigm yields a unique stability robustness 
picture of the LTI-MTDS.  For an effective 
description we offer a case study. 

Example case study 
Take a system characteristic equation second 

order system with two delays: 
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Fig. 1 shows the kernel (red) and the offspring, 
and the complete stability picture. Fig. 2 
displays the same picture but in “building block 
form (in the ωτ  space). 

 
      Fig.  1.  The complete stability picture of the example system. 

 

 
                    Fig.  2.  Building block (thick) and its offspring. 
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