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Summary: 
This work discusses our recent advances in adaptive multiscale simulations for flow and 
transport in highly heterogeneous porous media. Our aim is to develop adaptive multiscale 
methods which are flexible and can take into account various physics. We explore adaptive 
coarsening and efficient localization procedures.  
   
 
The high degree of variability and multiscale 
nature of formation properties such as 
permeability pose significant challenges for 
subsurface flow modeling. Geological 
characterizations that capture these effects 
are typically developed at scales that are too 
fine for direct flow simulation, so techniques 
are required to enable the solution of flow 
problems in practice. Upscaling or subgrid 
capturing procedures have been commonly 
applied for this purpose and are effective in 
many cases. A few of our recent 
accomplishments address the adaptivity 
issues in multiscale simulations. 
 
One of our accomplishments is to develop 
an adaptive multiscale simulation technique 
for multi-phase transport in highly 
heterogeneous porous media. The method is 
based on a finite volume methodology and 
resolves both coarse scale and fine scale 
flow patterns. The transport equation 
describing the dynamics of the phases is 
usually convection dominated. It is a 
challenging task to develop a multiscale 
method for convection dominated equations 
describing multi-phase flow dynamics, 
where the velocity field is heterogeneous 
and varies in time. In general, there is a 
strong need for multiscale methods which 
are not limited to convection dominated 
equations and can handle various physical 

processes (gravity, capillarity, and etc) 
without significant modifications. Our 
approach has some similarities with 
multiscale framework developed for 
nonlinear equations and can be easily 
coupled to multiscale methods for flow 
equations.  The main idea of the proposed 
approaches is to determine accurate and 
efficient multiscale basis functions and the 
global coarse-grid formulation of the 
problem. The multiscale basis functions are 
constructed as a function of average 
saturation in each coarse block, and then 
used in the global formulation of the 
problem.  An adaptive simulation is 
performed and the subgrid basis functions 
are used away from sharp interfaces. Our 
multiscale approach allows us to perform 
downscaling in the regions of interest and 
incorporate more functionality into the 
coarse-scale quantities. Using this adaptive 
technique, we solve 3-D SPE benchmark 
problem, and demonstrate accurate results. 
A representative numerical result for a five-
spot injection problem for two-phase flow 
and transport is presented in Fig. 1, where 
the resolved saturation field is compared to 
the one obtained with our adaptive 
multiscale approach for a cross section of  
3-D SPE benchmark permeability field (SPE 
10). 



 

 

 
Fig.1. Comparison of resolved (left) and 
adaptive multiscale (right) solutions. 
In multiscale simulations of flow and 
transport, coarse grids play an important 
role. By an appropriate choice of a coarse 
grid, one can significantly improve the 
accuracy of multiscale methods and reduce 
the computational cost. Recent studies on 
the use of limited global information in 
multiscale simulations allow us to make a 
judicial choice in setting up coarse grids.  
 
Coarsened grids obtained by upscaling are 
usually constrained to be on a specific grid 
format, e.g., corner-point grid format 
(logically hexahedral grids) or PEBI grid 
format (orthogonal Voronoi grids). In 
general, grid constraints put severe 
limitations on upscaling and make it very 
difficult to capture the important features in 
the underlying geomodels in an appropriate 
way. Indeed, upscaled subsurface flow 
models often fail to capture important 
subscale features, such as narrow high-flow 
channels or shale barriers (low permeable 
obstacles). However, because small scale 
structures of this kind may have a profound 
impact on the resulting flow regime, and 
therefore should be reflected in the upscaled 
model, it is common to spend significant 
effort on constructing simulation grids that 
are tuned to dominant features of the 
geomodel. Unfortunately, grid constraints 
make it hard to develop fully automated 
coarse grid generation procedures that 
capture adequately the impact of small scale 
structures. We present a generic, semi-
automated algorithm for generating non-
uniform coarse grids for modeling 

subsurface flow. The method is applicable to 
arbitrary grids and does not impose 
smoothness constraints on the coarse grid. 
One therefore avoids conventional 
smoothing procedures that are commonly 
used to ensure that the grids obtained with 
standard coarsening procedures are not too 
rough. The coarsening algorithm is very 
simple and essentially involves only two 
parameters that specify the level of 
coarsening. In the coarsening algorithm, 
single-phase flow information is used. 
Consequently the algorithm allows the user 
to specify the simulation grid dynamically to 
available computer resources, and, e.g., use 
the original geomodel as input for flow 
simulations. This is of great importance 
since coarse grid-generation is normally the 
most time-consuming part of an upscaling 
phase, and therefore the main obstacle that 
has prevented simulation workflows with 
user-dependent resolution. We apply the 
coarsening algorithm to a series of two-
phase flow problems on both structured 
(Cartesian) and unstructured grids. The 
numerical results demonstrate that one 
consistently obtains significantly more 
accurate results using the proposed non 
uniform coarsening strategy than with 
corresponding uniform coarse grids with 
roughly the same number of cells.  A 
representative numerical example is 
presented in Fig.2. 

 



 

 

Fig.2. The log of absolute value of velocity 
for the fine-scale (top), uniform coarse-scale 
(middle) and non-uniform coarse-scale 
(bottom) solutions on 20 times coarser grid.  
 
More information about ongoing research 
and other projects can be found at 
http://www.math.tamu.edu/~yalchin.efendie
v/doe_DE-FG02-05ER25669.html 


