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Summary 
Our goal is to enable new simulation capabilities by extending the applicability of scalable 
algebraic multigrid solvers.  This includes basic algorithm research and direct interaction with 
applications. FY2007 accomplishments center on a new algebraic multigrid method for 
compatible discretizations of the Maxwell’s equations.  
 
We recently developed a new reformulation 
of the eddy current equations. This new 
reformulation is consistent with compatible 
discretization philosophy and gives an 
identical discrete solution to a standard edge 
element formulation of the eddy current 
equations. The advantage is that the 
reformulated system is amenable to 
multigrid methods. A corresponding 
algebraic multigrid method was devised for 
the reformulated system which leverages 
standard algebraic multigrid software. The 
new method demonstrates mesh independent 
convergence rates and relative insensitivity 
to coefficient jumps. 
The eddy current equations are given below: 
 
 
 
 
 
 
where µ is magnetic permeability, σ is 
electric conductivity, and E is the unknown 
electric field. An edge element compatible 
discretization leads to a linear system of the 
form  
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where D1 is the curl operator, M1 is the 
edge mass matrix (using a σ weighted inner 
product), and M2 is the face element mass 
matrix (using a 1/µ weighted inner product). 
Standard algebraic multigrid methods 
typically fail due to the large null space of 
D1. To avoid this, we reformulate the 
equations to the entirely equivalent system 
given by  
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where D0 is the gradient operator,   
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an edge mass matrix (using an unweighted 
inner product) and M0 is a nodal mass 
matrix (using a 1/µ weighted inner product). 
The advantage of the above system is that 
the (2,2) block is a scalar Laplace operator 
and the (1,1) block is essentially a vector 
Laplace operator plus a mass matrix. In 
principle, a multigrid preconditioner can be 
developed for each of these blocks and then 
combined in a block-Jacobi fashion.  
The (2,2) block is easily handled using any 
standard algebraic or geometric multigrid 
method. While the (1,1) block is essentially 
a vector Laplacian, it still presents two 
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difficulties that must be overcome. The first 
is that the new compatible gauge term 
involving the D0’s has a significantly large 
number of non-zeros. The second is that 
edge element basis functions have 
directionality and orientation features which 
must be considered within the solver.  
To resolve these difficulties a special 
smoother and special grid transfer are used 
only on the finest level operator. The grid 
transfer is based on piecewise constant 
interpolation and properly addresses 
orientation features.  In addition to 
coarsening, it also transforms the (1,1) block 
on the fine grid from an edge element basis 
to a coarse level nodal basis. This means 
that a standard algebraic multigrid method 
can be used for all subsequent coarser levels. 
The finest level smoother is actually applied 
to the original eddy current formulation  

  

� 

(M
1

+ D
1

TM
2
D
1
)x = b. 

This is much less expensive as it avoids 
using the gauge term during the smoothing 
step and in fact avoids the need to form the 
gauge term on the finest level. The resulting 
algebraic multigrid method is inexpensive to 
setup and to apply within the V cycle.  
The table below illustrates the number of 
iterations required to reduce the residual by 
10 orders of magnitude for a 2 dimensional 
model problem corresponding to 2 materials 
 
 
 
 
 
 
Depicted below 
 
shown in Fig.1. The table correspond to 
using smoothed aggregation for the (2,2) 
block and the coarse levels of the (1,1) block 
in conjunction with 1 pre and 1 post 
smoothing sweep of Gauss-Seidel. ‘cmplx’. 
 

 
 
 
 
 
 

Figure 1.  Problem setup for varying σ. 

measures the costs of the V-cycle. It is the 
sum of matrix nonzeros on all levels divided 
by the matrix nonzeros on the finest level. 
The table illustrates relative insensitivity to 
variations in σ, and mesh independent 
convergence rates. 
We have observed similar behavior when 
the algorithm is run on problems arising 
from Z-pinch modeling. Figure 2 illustrates 
a simple model of a Z-pinch, containing 
conductivities ranging over six orders of 
magnitudes. This one million unknown 
problem was solved with 38 conjugate 
gradient iterations using the newly 
developed multigrid preconditioner. 
 

 
Figure 2. A protoype z-pinch geometry. 

Finally, the algorithm has been run on more 
than 2000 processors with efficiencies of 
about 70%. 
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