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Summary 
 
Numerical solution of optimization problems governed by large-scale PDE models is evolving 
into a critical enabling technology within the DOE complex. Example applications include 
optimal design of semiconductor devices, optimal control of turbulent flows, and optimization-
based solution of a variety of coupled-physics problems. Regardless of the application, the 
solution of the governing PDEs introduces uncertainty, which comes in three basic flavors: 
model uncertainty, data uncertainty, and numerical uncertainty. The latter, defined as the 
combination of (1) the loss of information involved in translating the infinite-dimensional 
problem formulation into its algebraic form and (2) the inexactness in the iterative solution of 
the corresponding large-scale linear systems, significantly reduces the predictive capability of 
numerical techniques used in PDE-constrained optimization. Our goal is to develop advanced 
solution methods that will enable efficient control of both sources of numerical uncertainty.  
   
During this fiscal year we pursued two 
research directions. The first involved a 
study of the loss of information involved in 
the process of translating the infinite-
dimensional formulation of a PDE-
constrained optimization problem into its 
algebraic form. Our study was motivated by 
optimal design and parameter estimation 
problems arising in the modeling of 
semiconductor devices. 

We studied the impact of different state 
equation discretizations on optimization 
problems whose objective functionals 
involve flux terms. Galerkin methods, in 
which the flux is a derived quantity, were 
compared with mixed Galerkin methods, 
which approximate the flux directly. Our 
results show that the latter approach leads to 
more robust and accurate solutions of the 
optimization problem, especially for highly 
heterogeneous materials with large jumps in 
material properties. At the same time, both 

approaches yield equally good numerical 
solutions of the governing PDEs. 

Figure 1 shows that the two discretizations, 
each of which is well suited for the solution 
of the governing PDE, can give rise to 
entirely different solutions of the 
optimization problem. In this example, 
 
 

 
 
Figure 1. State solution of a flux-control 
optimization problem obtained using the mixed 
Galerkin discretization (left) and the standard 
Galerkin method (right). 
 
a close inspection of the final value of the 
objective functional reveals that the standard 



 

 

Galerkin approach generates solutions that 
are grossly inaccurate. Generally speaking, 
our study indicates that the compatibility of 
a discretization scheme with respect to a 
PDE need not imply its compatibility with 
respect to an optimization problem governed 
by that PDE. This is a first-of-its-kind 
numerical result; a detailed theoretical study 
is in progress. 
The second research direction focused on 
the control of inexactness due to the iterative 
solution of large-scale linear systems arising 
from the linearized constraint equations. In 
this context, we examined the global 
convergence of second-order schemes for 
nonlinear constrained optimization, in 
particular sequential quadratic programming 
(SQP). 

Each iteration within an SQP algorithm 
requires the solution of several linear 
systems involving the linearized constraints. 
For problems governed by PDEs, these 
systems are solved using iterative solvers, 
which are inherently inexact. In this case, 
the optimization algorithm must be 
responsible for dynamically managing the 
stopping tolerances for linear solvers, based 
on its progress toward a solution. This is a 
significant departure from the traditional 
viewpoint, in which the end user selects 
fixed linear solver tolerances in an ad-hoc 
manner, often resulting in either failing or 
very inefficient optimization runs. 
To this effect, we have extended the global 
convergence theory of composite-step trust-
region SQP methods to efficiently control 
inexactness in linear system solves. Our 
theory allows for very coarse linear solves, 
while still guaranteeing fast convergence of 
the SQP algorithm. Moreover, the stopping 
tolerances for linear solves are implemented 
efficiently, without the need to rely on 
Lipschitz constants or similar quantities that 
are difficult to estimate in practice. 

Figure 2 showcases the behavior of the 
developed inexactness-control mechanisms 
in a critical algorithmic module of our SQP 
method. We observe that when the SQP 
iterate is far from the optimum, the 
algorithm allows rather loose linear solver 
stopping tolerances. As the algorithm moves 
toward the optimum, linear solver tolerances 
are automatically tightened, enabling the 
 

 
Figure 2. Control of inexactness in linear system 
solves within a component of a composite-step 
trust-region SQP algorithm (boundary flow 
control problem with nonlinear constraints). 
 
satisfaction of the SQP convergence criteria. 

A series of numerical experiments, including 
boundary control of steady flows and 
optimal design of semiconductor devices, 
indicates that our approach not eliminates 
the need for ad-hoc tweaking of stopping 
tolerances for linear solves, but that it 
always outperforms the best fixed-tolerance 
guess in terms of the total number of linear 
solver iterations. The algorithm is currently 
being implemented in the “Aristos” large-
scale optimization library, developed within 
the Trilinos project. Aristos will enable the 
distributed solution of optimal design and 
control problems involving an 
unprecedented number (tens to hundreds of 
millions) of optimization variables. 
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