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Summary 
 
We give the first algorithm guaranteed to find a feasible solution to a large class of resource-
allocation problem represented as a set of linear and integrality constraints.  We improved the 
quality of the solutions returned by of one of the best general heuristics by 30%. 
 
Scheduling a telescope, placing computing 
jobs on the processors of a parallel 
computer, locating guards or cameras in a 
facility, managing data collection in a 
wireless sensor network:  all are examples of 
problems where one wishes to optimally 
allocate limited resources to accomplish a 
task. We have developed new algorithms for 
finding good approximate solutions for a 
broad class of problems that include all of 
the above as well as drug design, protein 
comparison, logistics, and environmental 
clean-up and monitoring, to name a few. 
We can formulate all of these example 
problems as mixed-integer programs 
(MIPs): maximizing or minimizing a linear 
objective function subject to linear and 
integrality constraints.  Binary (0/1) 
variables represent yes/no decisions. It is 
theoretically intractable to even find a 
feasible solution, one that satisfies all the 
constraints.  But in practice MIP solvers like 
our PICO code or other commercial or free 
codes, can find provably (near) optimal 
solutions for many problems using 
intelligent search.  

In the MIP search process we repeatedly 
partition the space of possible solutions into 

subproblems. For each subproblem we 
compute a bound, a value guaranteed to be 
better than any feasible solution for the 
subproblem.  If this bound is worse than the 
best solution found so far, we can ignore 
(prune) the subproblem. We compute a 
bound by relaxing the integrality constraints, 
which leaves an efficiently solvable linear 
program (LP). But there is no general way 
to find a good feasible MIP solution. 
Finding a good feasible solution early in the 
search enables pruning, so it is critical for 
good overall performance.  Furthermore, a 
good solver should return some feasible 
solution if the user stops the search early. 
The solution to the LP relaxation, x*, 
provides global structural information.  
There are theoretically good approximation 
algorithms for specific problems based upon 
transforming x* into an integer-feasible 
solution. We focused on LP-based 
techniques for finding feasible solutions for 
general MIPs. We improved feasibility 
pump, one of the best known LP-based 
heuristics for finding a feasible solution to a 
general MIP. We also designed the 
fractional decomposition tree (FDT) 



 

 

algorithm. This algorithm provably finds a 
feasible solution for a large class of MIPs. 
Fischetti et al. introduced the feasibility 
pump (FP) in 2005. FP rounds the LP 
solution to create an (infeasible) integer 
solution x. It then finds an LP-feasible 
solution 

� 

! x  that minimizes the distance to x 
and iterates (with 

� 

! x  as the starting point) 
until it finds an integral 

� 

! x  or gives up. 
We modified the basic FP algorithm to 
achieve approximately a 30% improvement 
in heuristic solution quality on standard 
benchmark problems. The new version, now 
available in PICO, runs in approximately the 
same time as the original on a moderately 
parallel machine. The modifications were 1) 
randomize the rounding for fractional binary 
variables near 0.5, 2) round multiple times, 
3) apply FP to subproblems; Fischetti et. al. 
only applied it to the full problem, and 4) 
apply FP to perturbations of good feasible 
solutions to find other nearby solutions. 

Many resource allocation problems (e.g. 
scheduling without deadlines) always have a 
feasible solution.  However, given only a 
matrix representation, it is difficult to infer 
this underlying combinatorial structure. 
Even the best commercial solvers can fail to 
find a feasible solution for large instances. 
The FDT algorithm is guaranteed to 
efficiently find a feasible solution for a 
broad class of MIPs.  Roughly, FDT works 
for non-negative objective functions if for 
all constraint bounds there is always an 
integer-feasible solution whenever there is 
an LP-feasible solution. 

FDT computes a convex decomposition. In 
Figure 1 the black box represents feasible 
variable assignments for the LP relaxation.  
Any integer point inside it is feasible for the 
MIP.  The blue object is the integer 
polytope, the smallest convex region that 
contains all integer solutions. The red box is 
the LP region scaled by a factor ρ.  This 
scaling brings the LP optimal point inside 

the integer polytope.  It is now an “average” 
or convex combination of feasible integer 
points (the 3 blue points in Figure 1).  One 
of these points is guaranteed to have a value 
at most ρ times optimal. The FDT algorithm 
expresses the LP relaxation solution x* as 
the average of two partial solutions, each 
closer to integral than x*.  It repeats this on 
these two partial solutions and so on.  When 
the number of partial solutions exceeds a 
threshold, FDT selects a subset of them that 
can still be resolved to a full decomposition 
and is small enough to guarantee a 
theoretically good running time.  In practice 
we expect FDT will be slower than 
feasibility pump, but it should succeed on a 
much larger class of problems. 
We designed a parallel heuristic 
management system to coordinate 
application of these methods with the 
heuristics already in PICO. 
 

 
Figure 1: Representing a scaled LP optimal 
point as an "average" of integer-feasible 
points. 
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