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Summary 
 
We are pursuing the use of the finite element method for density functional theory 
calculations. Our current method augments the FEM basis with local atomic orbitals that are 
known to reproduce the physics well to reduce the size of the FEM basis. The resulting method 
will give converged basis set accuracy with manageable matrix sizes.  Moreover, the matrices 
will have a very high degree of sparsity, making the design of sparse eigensolvers much 
simpler than with local basis sets. We are nearly finished with the paper Dynamical Systems 
and Non-Hermitian Iterative Eigensolvers. This paper draws an isomorphism between 
dynamical systems and a class of preconditioned iterations for large-scale eigenvalue 
problems, including non-linear eigenvalue problems. 
 

Overview 

Density functional theory encompases a 
group of methods for investigating the 
chemical bonding of molecules and 
materials, and can predict a host of 
important properties such as chemical 
reactivity and stability, electronic properties, 
optical absorption and spectroscopic 
properties, and many other. Most techniques 
in these methods have to solve an 
eigenproblem arising from the time-
independent Schrodinger equation for the 
electronic wave function.  

Our work under the ASCR program has 
focused on finding faster eigensolvers, or 
eigensolver replacements, for density 
functional theory. To date we have looked at 
DFT methods that use local atomic-orbital-
like basis set expansions to describe the 

eigenvectors. This expansion results is 
relatively small basis set sizes, but without 
much overall sparsity in the resulting 
matrices. 

Finite Elements in DFT 

We have begun exploration of finite element 
methods (FEMs) to augment local basis sets. 
FEMs, of course, have a long history in 
continuum mechanics. Their use in quantum 
DFTs has been limited because typically 
extremely large numbers of elements have 
been required to describe the core electrons. 
Our current approach is significantly 
different: In collaboration with John Pask 
(LLNL), we are developing a technique that 
uses the classic methods from atomic and 
molecular physics to solve atomic wave 
functions on radial grids, and then only uses 
the finite element basis to augment these 
solutions in the bonding region. Several 



 

 

things recommend this hybrid approach. 
Although larger than a purely local orbial 
calculation, the overall basis set size is much 
smaller than for a pure FEM approach. 
Moreover, there is significantly more 
sparsity than found in either local basis set 
approaches or in plane wave approaches. 
Our aims are to (1) develop high-quality 
atomic solvers for all-electron atoms and 
atoms with pseudopotentials, and (2) 
develop fast generalized eigensolvers that 
can take advantage of the sparsity in this 
new basis set. We are well on the way to our 
first goal, having developed a suite of 
techniques including shooting methods, 
pseudospectal, and finite element methods to 
solve the one-dimensional spherical atomic 
Schrodinger equation on a variety of 
different radial grids.   

Dynamical Systems and Iterative 
Eigenproblems 
 
We have also identified an equivalence 
between some discrete dynamical systems 
and a class of preconditioned iterations for 
the non-Hermitian eigenvalue problem. This 
connection provides a framework for 
investigating the convergence and stability 
of certain existing eigensolvers and suggests 
new algorithms. Although not developed as 
an algorithm for the algebraic eigenvalue 
problem, the Car–Parrinello method from 
quantum molecular dynamics determines the 
Kohn–Sham eigenstates from a second order 
ordinary differential equation (Newton’s 
equations of motion): the Car-Parrinello 
method allows the solution of the iterative 
eigenvalue problem in a single step by 
taking advantage of the isomorphism to the 
equations of motion. However, achievement 
of this solution involves a certain amount of 
trial and error determination of 
preconditioning factors in the form of a 
“fictitious mass” for propagating the 
electronic wave function. In exploring the 

isomorphism with the iterative eigenvalue 
methods, we may suggest more rigorous 
methods for preconditioning the associated 
equations, allowing significant 
improvements in the speed and stability of 
the solutions to quantum DFTs. 
 

 

Figure 1: Bonding orbital between an 
organopalladium catalyst and molecular 
oxygen. The bonding orbital is one of the 
eigenvectors we seek solutions for, and the 
nature of this solution determines the 
strength and shape of the chemical bond. 
 
 
 
For further information on this subject 
contact: 
 
Dr. Anil Deane 
Applied Mathematics Research Program 
Office of Advanced Scientific Computing 
Phone: 301-903-1465 
deane@ascr.doe.gov 


