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Summary 
 
In the finite element method, a standard approach to mesh tying is to apply Lagrange 
multipliers. If the interface is curved, though, discretization generally gives rise to adjoining 
surfaces that do not coincide spatially. In this case, standard Lagrange multiplier methods 
have difficulty passing even a first-order patch test. We developed a new mesh-tying method 
that uses least-squares minimization ideas to joint the subdomains. A unique feature of the 
new method, that is not present in any other mesh-tying approaches, is that it passes a patch 
test of the order of the finite element space by construction.  
 
Mesh tying, or domain bridging methods are 
the opposite of domain decomposition (DD). 
A DD method solves a boundary value 
problem using subdomains formed by 
clustering finite elements from a given 
discretization of a domain Ω. A mesh tying 
method solves the same problem by using a 
discretization of Ω, composed of 
subdomains that were meshed completely 
independently. This computational setting 
arises in modeling and simulation of 
complex engineering structures in which the 
bottleneck, as measured in calendar time, is 
mesh generation. One example is 
certification of aerospace structures where 
creating a monolithic mesh is hugely 
impractical and time consuming. In such 
cases, for practical and efficiency reasons, 
grid generation on Ω is replaced by 
independent meshing of its subdomains; see 
Fig.1. Other examples that lead to mesh 
tying settings include transmission, contact, 
and domain-bridging problems.  

A major difficulty in mesh-tying problems 
arises when independent meshing of a single  

Fig. 1. A typical mesh-tying setting. 
curved interface gives rise to two discrete 
non-matching surfaces.   
Typically, mesh-tying methods rely on 
Lagrange multipliers to join together the 
subdomains. However, this approach is 
prone to difficulties when independent 
meshing of a single curved interface gives 
rise to two non-matching discrete surfaces. 
In this case, the multipliers can only be 
defined on one of the surfaces and the 
matching condition requires a projection 
operator, or additional meshing between the 
non-coincident interfaces. Besides being 



 

 

 
Fig.2. Interface perturbations give subdomains 
with no gaps between them. The solid line is the 
interface σ. The domain Ω = [−1,1] 2 has two 
overlapping subdomains. Only the interface 
nodes on the right domain are perturbed. The 
original interface node locations are marked 
with circles. 
computationally challenging, this approach 
is not guaranteed to pass even a first-order 
patch test, which is considered to be a 
minimal requirement for such methods. 
Our approach for dealing with non-matching 
interfaces utilizes least-squares principles 
and extends a least squares finite element 
method to mesh-tying configurations with 
non-matching interfaces. A least squares 
functional is defined as the sum of the 
residuals of the differential equations 
measured in Sobolev space norms. As a 
result, such a functional always vanishes at 
the exact solution. By exploiting this 
property, we formulated a least squares 
method for mesh tying that automatically 
passes a patch test of the same order as the 
finite element space employed in its 
definition. We start by perturbing the 
discrete interfaces until there are no void 
regions between the subdomains; see Fig.2. 
Then, least-squares principles for each 
subdomain are joined together by 
generalized jump terms defined on the 
overlap region between the subdomains. 
This resembles the approach used in the 

Arelquin method, however, by measuring 
residual energy and not physical energy, a 
least squares functional may measure energy 
redundantly in subdomain intersections. 
This fact greatly simplifies our algorithm. In 
contrast, methods that minimize physical 
energy, subject to appropriate constraints on 
the interfaces, require special efforts to 
avoid counting energy twice in the overlap 
regions.  

Figure 3 shows an example finite element 
solution computed with the new mesh-tying 
method, using the region from Fig.2. 
Besides being able to pass a patch test of an 
arbitrary order, our new method does not 
require interface projection operators or 
additional meshing between the non-
coincident interfaces. 

 

 
 
Fig.3 Finite element approximation of 
φ(x,y)=cos(πx/2) cos(πy/2) by the least squares 
mesh-tying method using the overlapping 
subdomains from Figure 2. 
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