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Summary 
 
We consider the spectral approximation of a conservation law in the limit of small or 
vanishing viscosities. In this regime, the continuous solution of the problem is known to 
become chaotic (turbulence) or to develop sharp spatial and temporal gradients referred to as 
shocks. Also, the standard Fourier–Galerkin solution is known to break down if the mesh 
parameter is large. We have developed a new dynamic, multiscale viscosity method that 
enables the spectral solution of such systems with relatively coarse discretizations. The key 
features of this method are: (1) separate viscosities are applied to the coarse and the fine scale 
equations; (2) these viscosities are determined as a part of the calculation (dynamically) from 
a consistency condition which must be satisfied if the resulting numerical solution is optimal 
in a user-defined sense. We have applied the proposed method to Burgers equation and Navier 
Sotkes equations and found that it yields very accurate results.  
   
 
We have developed a numerical method for 
the spectral approximation of non-linear 
conservation laws. These laws describe a 
broad range of physical phenomena that 
includes the dynamics of gasses, the flow of 
traffic and the propagation of shallow water 
and non-linear acoustic waves. In all these 
systems we are interested in cases when the 
physical viscosity (or diffusivity) is small or 
zero. In the small viscosity case the solution 
to such systems becomes chaotic or 
develops local regions of large spatial and 
temporal gradients called shocks. The width 
of a shock reduces with reducing viscosity, 
and in the limit of zero viscosity the solution 
becomes discontinuous. In fact, in this limit 
in order to ensure unique solutions, the 
conservation law must be supplemented 
with an entropy production inequality and 

conditions that relate jumps in conserved 
quantities across the shock. 
 
For small viscosities, the standard Fourier 
Galerkin approximation to non-linear 
conservation laws becomes unstable if the 
shock width is smaller than the grid size. For 
a large class of problems the computational 
cost of employing a grid which is fine 
enough to resolve a shock is prohibitive and 
as a result this method finds limited 
application. Further, in the limit of zero 
viscosity, even with sufficient grid 
refinement, the Fourier–Galerkin solution 
does not converge to the unique ‘‘physical’’ 
solution that satisfies the entropy production 
inequality. To overcome these difficulties 
associated with the Fourier Galerkin 
method, several methods have been 
proposed. A large proportion of these 



 

 

methods involve appending to the Fourier–
Galerkin formulation a numerical viscosity 
term. 
 
In several popular methods, such as the 
vanishing viscosity method, that guarantee 
the convergence of the numerical solution to 
the unique entropy solution, the numerical 
viscosity is applied to both the coarse and 
the fine scale equations. On the other hand, 
in the vanishing spectral viscosity method 
proposed by Tadmor, the viscosity is applied 
only to the fine scale equations. As a result, 
this method retains the spectral accuracy of 
the coarse or the large scale modes while 
guaranteeing convergence to the entropy 
solution. Motivated by the class of methods 
where the viscosity appears only in the fine 
scale equations, we propose a method where 
different numerical viscosities appear in the 
large and the small scale equations. In 
addition, in contrast to the methods 
described above, these viscosities are not 
determined a-priori, instead they are 
calculated as part of the solution 
(dynamically). The equations that are used 
to determine the viscosities are derived from 
the condition that the resulting numerical 
method be optimal in a certain user-defined 
sense. We call this method the dynamic 
multiscale viscosity method. 
 
We remark that the equation used to 
dynamically determine the viscosities, is in 
effect the variational counterpart of the 
Germano identity. This identity has found 
widespread use in determining model 
parameters in the LES of turbulent flows. 
Recently, we have demonstrated how it may 
be used as a tool for determining unknown 
parameters in a numerical method aimed at 
solving an abstract partial differential 
equation. In Figure 1, we demonstrate the 
performance of this method (called 
Variational Dynamic) in predicting the 
turbulent energy spectrum of decaying of 

homogeneous isotropic turbulence. It is 
evident that is much more accurate than no 
model (called coarse DNS) the static and 
dynamic Smagorinsky methods (referred to 
as Static and Traditional Dynamic). In this 
figure DNS refers to the benchmark direct 
numerical simulation computed on a very 
fine grid.  
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Homogeneous isotropic turbulence.  
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