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Summary 
 
Large scale Monte-Carlo simulation of colossal magnetoresistance effect (CMR) using spin-
fermion models is often hampered by the high computational cost associated with computation 
of all eigenvalues of the Hamiltonian matrix. Consequently, current spin-fermion model 
simulations contain no more than 63 sites in three dimensions. This imposes severe limitations 
on the kind of physical systems or phenomenon that can be studied. This effort developed an 
algorithm to directly update the spectrum of successive Hamiltonian matrices based on the 
spectrum of previous matrices. The updating algorithm significantly reduces the 
computational cost in re-computing the spectrum of the Hamiltonian matrices each time a 
local configurational change is accepted. The serial version is an order of magnitude faster 
than the approaches based on direct diagonalization. 
 
 
The study of certain manganese oxides 
exhibiting the “colossal” magnetoresistance 
effect (CMR) is an important area of research in 
the theory of strongly correlated electrons. 
CMR, similar to “gigantic” magnetoresistance 
(GMR), is a magnetic material property that 
enables certain materials to be used in data 
storage applications. For example, GMR 
technology has been used in hard drives and 
CMR is two to three orders of magnitude 
stronger than GMR. Consequently, 
understanding of CMR has enormous 
technological implications in terms of 
developing innovative applications.  One of the 
most commonly used approaches to model CMR 
manganites is the so-called double-exchange 
spin-fermion model. The simulation proceeds by 
visiting each location of the lattice and 
proposing a local change or event. The 
probability that the change is accepted is a 
function of all the eigenvalues of the 
Hamiltonian. Each time a local change is 
accepted, the Hamiltonian matrix undergoes a 

low-rank modification. The simulation proceeds 
through proposing a new local change, which 
requires the re-computation of all the 
eigenvalues of the updated Hamiltonian matrix 
in the subsequent configuration. This 
progression of simulation through local changes 
proceeds for many steps until the observables 
converge to the desired accuracy of the Monte 
Carlo procedure. A direct diagonalization 
method (DDM) that repetitively computes all the 
eigenvalues of the successive Hamiltonian 
matrices becomes prohibitively expensive. 
Consequently, large-scale numerical simulations 
using this model have often been hampered. In 
addition, since the frequency that these local 
events are accepted increases with increasing 
system sizes, numerical simulation of large 
systems becomes even more expensive. The 
computation would scale as O(N4), where N is 
the matrix size. Consequently,  the largest lattice 
that can be accessed is limited to at most 63 sites 
in three dimensions or about 142 in two 
dimensions. This imposes limitations on the 



 

 

kind of physical systems that can be studied. 
Furthermore, ensemble averaging of numerical 
results is necessary to obtain a realistic 
representation of system response, which further 
increases the computational  cost associated with 
modeling CMR using Monte Carlo models.  
 
This study presents an algorithm that directly 
updates the spectrum of a successive  
Hamiltonian matrix based on the spectrum of 
previous Hamiltonian matrix.  The updating of 
eigenvalues is similar to a key step in the 
“divide-and-conqueror” algorithm for computing 
all eigenvalues of real symmetric matrices.   Let 
A =Y * D*Y '  be the eigen-decomposition of 
matrix A and B = A + ρzz'  be the updated 
matrix under a rank-one modification. Then the 
new eigenvalues of B ( γ j) are obtained as the 
roots of the secular function 
g(γ) =1+ ρ zi∑ zi

' /(di − γ).  An orthogonal 
matrix of new eigenvectors U can be generated 
from the eigenvalues ( γ j) and vector z.  The j-th 
column of matrix U is the normalized 
eigenvector u j that is parallel to (D− γ j I)

−1z. 
The update algorithm proceeds by first 
computing an initial eigen-decomposition. At 
each step,  low-rank updates are transformed by 
multiplication of  the orthogonal U matrices that 
contain the eigenvectors. The new eigenvalues 
are computed by finding the roots of the secular 
function.  The low rank updates (z vectors) are 
saved so that the next set of new eigenvectors 
(matrix U) can be reconstructed.  A new 
complete eigen-decomposition is performed 
occasionally when the cost for saving the 
updates (z vectors) is too high. Figures 1 show 
the new algorithm is robust and accurate even 
for large systems. Table 1 shows the new 
algorithm with incremental update that is an 
order of magnitude faster than DDM. 

Table 1: Time for 10 steps of simulation 

 
Figure 1: Magnetization in low and high 
temperature systems 
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Matrix size 
Time of 

update 
algorithm 

Time of 
LAPACK 

zheev(‘N’)
288  0.34s 1.6s
800 2.5s 18.5s

1152 9.7s 64s
2048 32s 365s


