
*865-576-7925, dazevedoef@ornl.gov

 Advanced Scientific Computing Research
Applied Mathematics

FY 2007 Accomplishment

“Fast Diagonalization of Evolving Matrices: Application to Spin-Fermion
Models”

E. F. D’Azevedo*, P. K. Nukala, G. Alvarez
Oak Ridge National Laboratory

Summary

Large scale Monte-Carlo simulation of colossal magnetoresistance effect (CMR) using spin-
fermion models is often hampered by the high computational cost associated with computation
of all eigenvalues of the Hamiltonian matrix. Consequently, current spin-fermion model
simulations contain no more than 63 sites in three dimensions. This imposes severe limitations
on the kind of physical systems or phenomenon that can be studied. This effort developed an
algorithm to directly update the spectrum of successive Hamiltonian matrices based on the
spectrum of previous matrices. The updating algorithm significantly reduces the
computational cost in re-computing the spectrum of the Hamiltonian matrices each time a
local configurational change is accepted. The serial version is an order of magnitude faster
than the approaches based on direct diagonalization.

The study of certain manganese oxides
exhibiting the “colossal” magnetoresistance
effect (CMR) is an important area of research in
the theory of strongly correlated electrons.
CMR, similar to “gigantic” magnetoresistance
(GMR), is a magnetic material property that
enables certain materials to be used in data
storage applications. For example, GMR
technology has been used in hard drives and
CMR is two to three orders of magnitude
stronger than GMR. Consequently,
understanding of CMR has enormous
technological implications in terms of
developing innovative applications. One of the
most commonly used approaches to model CMR
manganites is the so-called double-exchange
spin-fermion model. The simulation proceeds by
visiting each location of the lattice and
proposing a local change or event. The
probability that the change is accepted is a
function of all the eigenvalues of the
Hamiltonian. Each time a local change is
accepted, the Hamiltonian matrix undergoes a

low-rank modification. The simulation proceeds
through proposing a new local change, which
requires the re-computation of all the
eigenvalues of the updated Hamiltonian matrix
in the subsequent configuration. This
progression of simulation through local changes
proceeds for many steps until the observables
converge to the desired accuracy of the Monte
Carlo procedure. A direct diagonalization
method (DDM) that repetitively computes all the
eigenvalues of the successive Hamiltonian
matrices becomes prohibitively expensive.
Consequently, large-scale numerical simulations
using this model have often been hampered. In
addition, since the frequency that these local
events are accepted increases with increasing
system sizes, numerical simulation of large
systems becomes even more expensive. The
computation would scale as O(N4), where N is
the matrix size. Consequently, the largest lattice
that can be accessed is limited to at most 63 sites
in three dimensions or about 142 in two
dimensions. This imposes limitations on the

kind of physical systems that can be studied.
Furthermore, ensemble averaging of numerical
results is necessary to obtain a realistic
representation of system response, which further
increases the computational cost associated with
modeling CMR using Monte Carlo models.

This study presents an algorithm that directly
updates the spectrum of a successive
Hamiltonian matrix based on the spectrum of
previous Hamiltonian matrix. The updating of
eigenvalues is similar to a key step in the
“divide-and-conqueror” algorithm for computing
all eigenvalues of real symmetric matrices. Let
A =Y * D*Y ' be the eigen-decomposition of
matrix A and B = A + ρzz' be the updated
matrix under a rank-one modification. Then the
new eigenvalues of B (γ j) are obtained as the
roots of the secular function
g(γ) =1+ ρ zi∑ zi

' /(di − γ). An orthogonal
matrix of new eigenvectors U can be generated
from the eigenvalues (γ j) and vector z. The j-th
column of matrix U is the normalized
eigenvector u j that is parallel to (D− γ j I)

−1z.
The update algorithm proceeds by first
computing an initial eigen-decomposition. At
each step, low-rank updates are transformed by
multiplication of the orthogonal U matrices that
contain the eigenvectors. The new eigenvalues
are computed by finding the roots of the secular
function. The low rank updates (z vectors) are
saved so that the next set of new eigenvectors
(matrix U) can be reconstructed. A new
complete eigen-decomposition is performed
occasionally when the cost for saving the
updates (z vectors) is too high. Figures 1 show
the new algorithm is robust and accurate even
for large systems. Table 1 shows the new
algorithm with incremental update that is an
order of magnitude faster than DDM.

Table 1: Time for 10 steps of simulation

Figure 1: Magnetization in low and high
temperature systems

Refereed Journal Publications
1. G. Alvarez, P.K. Nukala, and E. D’Azevedo,

Fast Diagonalization of Evolving Matrices:
Application to Spin-Fermion Systems,
Journal of Statistical Mechanics: Theory and
Experiment (JSTAT) (2007).

Invited Presentations
2. E. D’Azevedo, P.K. Nukala, and G. Alvarez,

An Eigensolver with Low-rank Updates for
Spin-Fermion Models, Math PI Meeting,
Lawrence Livermore National Laboratory,
Livermore, May, 2007.

3. P.K. Nukala, E. D’Azevedo, and G. Alvarez,
Low-rank Updates in Statistical Physics
Applications, XXIII StatPhys Conference,
Genoa, Italy (2007).

For further information on this subject
contact:

Dr. E. F. D’Azevedo
Oak Ridge National Laboratory
dazevedoef@ornl.gov
865-576-7925

Or

Dr. Anil Deane
Applied Mathematics Research Program
Office of Advanced Scientific Computing
Phone: 301-903-1465
deane@ascr.doe.gov

Matrix size
Time of

update
algorithm

Time of
LAPACK

zheev(‘N’)
288 0.34s 1.6s
800 2.5s 18.5s

1152 9.7s 64s
2048 32s 365s

