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Summary 
 
The goal of this research is to develop scalable multilevel methods for solving large linear systems 
of equations that arise from the discretization of partial differential equations with emphasis on 
electromagnetism. We are looking at multilevel solution strategies, as they are capable of scaling up 
to the very large problem sizes needed.  Our algorithms research is application-driven and is 
presently focused on the area of electromagnetism, and may also prove relevant in other problems 
such as flow problems (Navier-Stokes). The problems of interest are defined on a variety of grids, 
but we are mostly focusing on unstructured grids.  This research effort involves both programmatic 
partners and academic collaborators.  
 
   
 

The Scalable Linear Solvers team in CASC has 
proven record of developing parallel multigrid 
methods for solving the large linear systems of 
equations that arise from the discretization of 
partial differential equations. As we are 
interested in solving very large systems on 
massively parallel computers, it is important that 
our solvers be scalable, or very nearly so. For 
the most part, we are concerned with how the 
solver performs as both the size of the problem 
and the number of processors is increased.  In 
general, we would like the computational 
resources required to solve increasingly larger 
problems to grow only linearly with problem 
size (which is the optimal rate). In such a case, 
one could double both the size of the problem 
and the number of processors, while keeping the 
solution time constant. This gives one possible 
definition of scalability.  

In iterative methods for solving linear systems, 
solver scalability can be divided into two 
aspects. The first is algorithmic scalability, 
which requires that the computational work per 

iteration is a linear function of problem size and 
that the convergence factor per iteration is 
bounded independent of problem size. The 
second aspect is implementation scalability, 
which requires that a single iteration is scalable 
on the parallel computer.  Both algorithmic and 
implementation scalability are required for the 
iterative solver to be scalable. Many of the linear 
solvers used in today's simulation codes are 
based on standard simple iterative methods like 
Jacobi preconditioned conjugate gradient 
methods.  These methods are often unscalable in 
the algorithmic sense defined above (e.g., for 
elliptic model problems the convergence factor 
approaches one as the mesh is refined).  Our 
research has its focus on multigrid solvers 
because they can provide algorithmic scalability.  
AMG (algebraic multigrid) is a viable 
alternative to the more classical geometric 
multigrid for problems discretized on 
unstructured meshes. Previously, we have 
worked on more standard elliptic type of PDEs 
for which AMG (algebraic multigrid) still had 
challenges (in the non M-matrix case) but 



 

 

nevertheless the success of the research was for 
the most part guaranteed motivated by the fact 
that geometric multigrid is ideally suited (and 
originally designed) for elliptic PDEs.   

The focus of this effort is on long-term 
fundamental mathematics research aimed at the 
development of theory (mostly two-level) for 
AMG methods for unstructured-grid problems 
for definite time domain Maxwell problems 
discretized by the commonly used Nédélec finite 
elements, as well as for (moderately) indefinite 
Maxwell (time domain) problems. The 
functional space where the problem is posed is 
denoted by H(curl). Many of the multilevel 
algorithms developed here are and will be made 
available to computational scientists through 
hypre (http://www.llnl.gov/CASC/hypre/), a 
library of parallel high-performance 
preconditioners funded in part by the DOE’s 
SciDAC and ASC programs.   

We have begun exploring a number of new 
approaches for the development of optimal order 
multilevel methods for the time domain 
Maxwell equations. One approach is based on 
the so-called auxiliary mesh method that we 
have analyzed in collaboration with J. Pasciak 
from Texas A & M University. This method is 
not purely algebraic; it requires additional 
geometric information about the fine-grid 
problem. An auxiliary mesh is used that needs 
only approximate the original domain and does 
not have to completely match it. Because of the 
need for additional geometric information, 
however, the method may be not very appealing 
in practice since it requires the redisretization of 
the original H(curl) problem on an auxiliary 
mesh.  While not necessarily practical, our result 
is important since it can be viewed as an 
“existence” result; namely, it shows that there is 
a hierarchy of spaces that can be used to 
construct multilevel methods for definite H(curl) 
problems on general unstructured meshes.   

The second approach that we have also explored 
is based on the so-called auxiliary space 
technique. It relies on certain stable space 
decompositions of the lowest order Nédélec 
space into components from spaces that can 
successfully be handled by existing multilevel 
methods. The decomposition by Hiptmair and 

Xu (2006) offered such possibility. Using this 
method, we have developed and provided 
perhaps the first provably scalable definite 
Maxwell solver in our library hypre. Its parallel 
performance on a real application problem is 
illustrated in the Figure.  

A third approach that we have begun working 
on, is to construct a hierarchy of commuting de 
Rham complexes using element agglomeration. 
The assumption is that we are given an exact de 
Rham sequence of finite element spaces on the 
original fine unstructured mesh. This is a general 
approach for constructing element based AMG 
(or AMGe) methods, not only for H(curl) but 
also for H(div) (a space of functions with 
weakly defined divergence) as well as for 
elliptic problems, all on general unstructured 
meshes. The preliminary results are very 
encouraging since they seem to offer potential 
for constructing AMGe methods as well as 
providing powerful tools for upscaling a wide 
range of linear and nonlinear PDEs. 
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For further information on this subject 
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