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Summary 
 
Stochastic models describe the evolution of dynamical systems influenced by noise or 
uncertainty.  Stochastic differential equations are particularly helpful idealizations of random 
systems, just as ordinary differential equations help model systems not subject to random 
noise.  Over the past 50 years, computational scientists have developed sophisticated 
computational methods for solving ordinary differential equations.  These are far more 
accurate, efficient, and versatile than naïve methods.  Theory has not yet had much impact on 
computational practice in solving stochastic differential equations.  Our work explores 
alternative theoretical frameworks that already have led to alternative simulation methods. 
   
 
There is a large body of knowledge on how 
to solve ordinary and partial differential 
equations.  Much of that grew out of 
mathematical analysis of issues related to 
accuracy and stability.  By contrast, the 
theory of simulation of stochastic 
differential equations is less successful.  It 
has had less influence on computational 
practice.   
 
The first ingredient in a theoretical study of 
a computational method is a measure of 
accuracy.  In a non-random problem, this 
seems straightforward (but often is not).  
You are trying to compute X  and you 
actually get Y .  The error is X −Y .  In a 
random system, the value of X  is not 
uniquely determined, nor is Y .  It may not 
make sense to ask that X  be close to Y .  
What matters is that the probability 
distribution describing the frequencies of 
different possible values of X  should be 

close to that of Y .  This is called weak 
accuracy.   
 
This seems straightforward when X  is a 
simple random variable, but is problematic 
when X(t) is a whole random path.  The 
solution of a differential equation, stochastic 
or non-random, is not a single number but a 
path, with X(t) representing the state of the 
system at each time t .  For this reason, 
much of the theory has focused on strong 
accuracy, which roughly asks that the 
approximate path, Y(t), should be close to 
the corresponding exact path X(t) for every 
value of the time variable t .  After decades 
of study, improving on the most rudimentary 
methods in the strong sense requires very 
elaborate and time-consuming algorithms. 
 
Several years ago, a group of three 
researchers began a search for less rigid 
error measures that allow for a greater 



 

 

variety of approximation methods.  Besides 
Goodman, the group consisted of Peter 
Glynn, Professor Management Science and 
Engineering at Stanford, and Jose Antonio 
Perez, then a graduate student in 
Mathematics at the Courant Institute.  The 
error measure they devised, which they call 
the Microscopic Total Variation (MTV) 
measure, captures fine details of random 
paths, but only in a statistical sense.  If a 
simulation method is accurate in the MTV 
sense, a single approximate path Y(t) may 
not be close to a given exact path X(t).  But 
if you generate a large number of 
approximate paths, the collection will 
accurately reproduce even fine statistical 
properties of the exact path distribution. 
 
The MTV definition (or any other) is useful 
for theory only if it is possible to make a 
theoretical analysis of the accuracy of 
approximation methods.  The Goodman 
group found general methods that allowed 
them to evaluate the MTV accuracy of 
commonly used approximation methods.  
Their analysis allowed them to devise new 
approximation methods that have statistical 
properties similar to those of more 
complicated methods that are accurate in the 
strong sense.  These new methods have far 
less computational complexity.  What made 
this possible is the extra freedom that comes 
from not having to compare a specific 
approximate path to a specific exact path, 
but only the statistical properties of 
approximate and exact paths. 
 
This work is developing in several 
directions.  Goodman is collaborating with 
scientists at Lawrence Berkeley Laboratory 
to analyze and improve computational 
methods for a class of partial differential 
equations subject to noise.  In particular, 
they are studying simulations of 
compressible gas on length scales small 
enough that thermal noise is important but 

large enough that atomistic simulation is 
impossible.  There are several challenging 
features of this application, one being that 
the model of thermal noise leads to a very 
rough source term in the equation that grows 
as the length scales get smaller.  Another is 
that this noise term affects the gas velocity 
directly but the density only indirectly. 
 
Goodman also will begin working with a 
new Courant gradate student, Sang-Min Lee, 
on finding even more accurate 
approximation methods within the MTV 
framework.  Preliminary analysis showed 
that straightforward generalization of the 
methods of Goodman, Glynn and Perez 
would be difficult.  However, a new idea, an 
extra degree of randomization, should 
provide the extra flexibility to it possible.  
This would lead to considerable 
improvements in the efficiency of 
approximation methods for stochastic 
differential equations.  
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