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Summary 
 
Numerous engineering problems can be formulated as nonlinear optimization problems. 
Recent applications of these instances, which are usually of very large scale or involve highly 
structured degeneracies, impose challenges to existing solution approaches. In this project we 
developed an interior-point piecewise linear penalty algorithm for general nonlinear 
programming (NLP) problems and an active set algorithm for mathematical programs with 
equilibrium constraints (MPECs). These algorithms are robust in the sense that they possess 
strong convergence properties. Our numerical tests indicate that these algorithms are 
competitive with start-of-the-art solvers. 
   
 
NLP problems have numerous applications 
ranging from traditional problems, such as 
production and distribution planning in the 
oil and gas industries, power dispatch in 
electric networks, plant design in process 
engineering and optimal control for dynamic 
systems, to emerging areas, such as 
integrated circuit design and partial 
differential equations for inverse problems. 
These applications, especially recent ones, 
often require the solution of large scale non-
convex NLP problems. The non-convexities 
involved may include non-convex objective 
functions, nonlinear equality constraints and 
equilibrium constraints. Along with these 
non-convexities, various degeneracies may 
arise that are difficult for traditional NLP 
algorithms to handle. 
 
To overcome these difficulties and enable 
large scale applications, we developed an 
interior-point penalty function method for 
non-convex NLP, where the penalty 

function is defined by the constraint 
violation measured in the Euclidean norm. 
We showed that this penalty function 
provides a perfect regularization to the 
Newton system that is solved at every 
interior-point method iteration. This enabled 
us to establish strong global convergence 
results for our method without assuming that 
the constraint gradients are non-degenerate. 
In particular, the linear independence 
constraint qualification, which is widely 
used in previous work, is relaxed to the 
more practical Mangasarian-Fromovitz 
constraint qualification. To the best of our 
knowledge, our method is one of the first 
that enjoys this feature. In addition, we also 
proved that our method enjoys fast local 
convergence at a superlinear rate. 
 
On the practical side, in order to force 
convergence more efficiently, we recently 
adapted a piecewise linear penalty function 
(PLPF) approach to our interior point 



 

 

framework. The PLPF approach generalizes 
the traditional penalty approach while 
eliminating the need to predict a good 
penalty parameter in advance, and is closely 
related to the filter method proposed by 
Fletcher and Leyffer. Working with Andreas 
Wächter (IBM), we have implemented our 
method within the open source software 
package IPOPT for NLP. Extensive 
numerical tests show that our method is 
efficient and robust in solving large scale 
and ill-posed difficult problems. In 
particular, our algorithm is very competitive 
with state-of-the-art interior-point codes. 
 
MPECs have received increasing attention 
in recent years for their numerous 
engineering and economics applications. For 
instance, MPECs have been used to model 
Stackelberg (leader-follower) games for 
analyzing electric power markets and traffic 
equilibrium problems. 
 
MPECs are highly degenerate problems 
since their feasible region does not contain 
any interior point. This prevents the direct 
use of NLP algorithms, especially interior-
point algorithms. The main bottleneck of 
current algorithms for MEPCs is that they 
are not able to guarantee convergence to 
first-order solutions of MPECs. To 
overcome this difficulty, we developed an 
active-set method for MPECs for which the 
complementarity constraints are linear and 
the objective function is allowed to be 
nonlinear and non-convex. Our method is a 
primal-dual active set projected Newton 
method. The projection space is defined by 
the active set. The algorithm is easily 
implementable: the major cost of each 
iteration involves only one matrix 
factorization and is comparable to that of an 
interior-point iteration. Our method has 
guaranteed convergence to first-order 
solutions of MPECs. To our knowledge, this 
is the first method that enjoys this property. 

Moreover, under additional second-order 
sufficient conditions and strict 
complementarity, the asymptotic rate of 
convergence of our method is quadratic. 
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