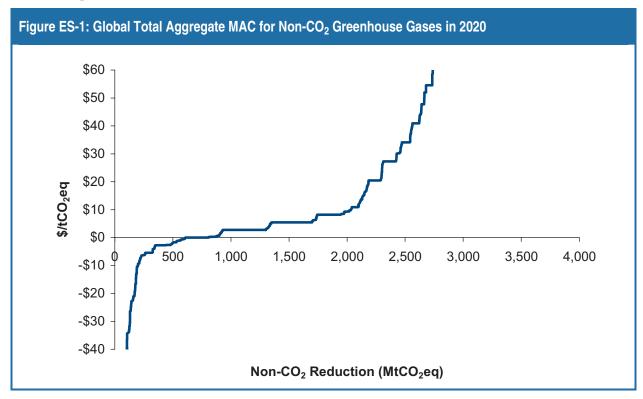
Executive Summary

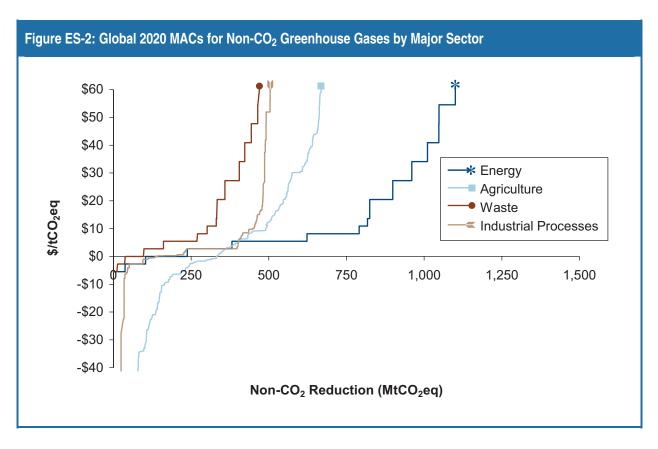
he mitigation of noncarbon dioxide (non-CO₂) greenhouse gas emissions can be a relatively inexpensive supplement to CO₂-only mitigation strategies. The non-CO₂ gases include methane (CH₄), nitrous oxide (N₂O), and a number of high global warming potential (high-GWP) or fluorinated gases. These gases trap more heat within the atmosphere than CO₂ per unit weight. Approximately 30 percent of the anthropogenic greenhouse effect since preindustrial times can be attributed to these non-CO₂ greenhouse gases (Intergovernmental Panel for Climate Change [IPCC], 2001b); approximately 24 percent of GWP-weighted greenhouse gas emissions in the year 2000 are comprised of the non-CO₂ greenhouse gases (de la Chesnaye et al., in press; U.S. Environmental Protection Agency [USEPA], 2006).

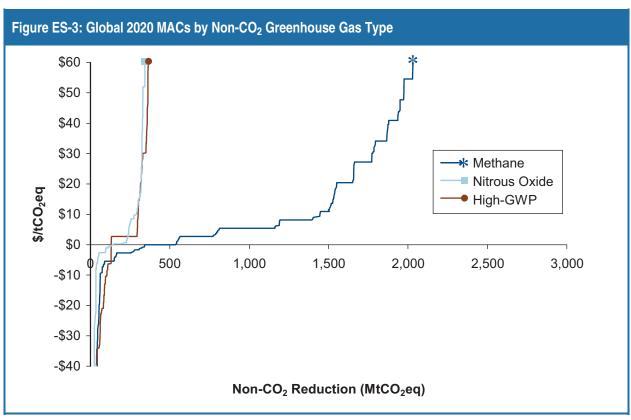
Given the important role that mitigation of non-CO₂ greenhouse gases can play in climate strategies, there is a clear need for an improved understanding of the mitigation potential for non-CO₂ sources, as well as for the incorporation of non-CO₂ greenhouse gas mitigation in climate economic analyses. This report provides a comprehensive global analysis and resulting data set of marginal abatement curves (MACs) that illustrate the abatement potential of non-CO₂ greenhouse gases by sector and by region. This assessment of mitigation potential is unique because it is comprehensive across all non-CO₂ gases, across all emitting sectors of the economy, and across all regions of the world.

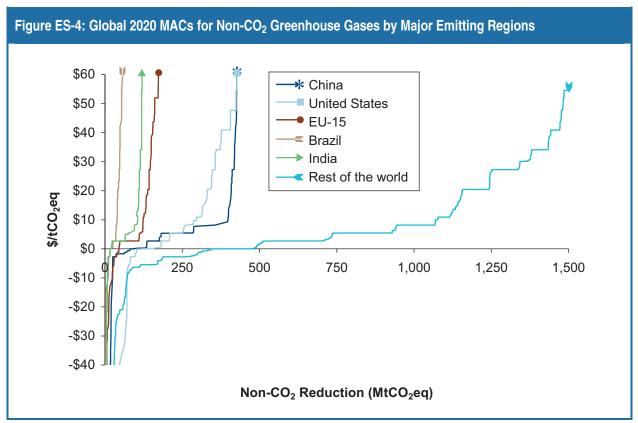

The analysis in this report is the latest refinement of the methodology on mitigation of various non-CO₂ gases, which has been underway since 1999. A significant contribution to the climate change mitigation literature is Stanford University's Energy Modeling Forum Working Group 21 (EMF-21), which focused on mitigation of multiple greenhouse gases and resulted in the publication of a special issue of the *Energy Journal* (see Weyant and de la Chesnaye, in press). The specific non-CO₂ mitigation papers in the EMF-21 study include energy- and industry-related CH₄ and N₂O (Delhotal et al., in press); agricultural-related CH₄ and N₂O (DeAngelo et al., in press); and industry-related fluorinated gases (Ottinger et al., in press). Much of the original work comes from three previous USEPA studies for the United States (2006, 2001, 1999) and a study conducted by the European Commission (EC) (2001) that evaluated technologies and costs of CH₄ abatement for European Union (EU) members from 1990 to 2010. These studies provided estimates of potential CH₄ and N₂O emissions reductions from major emitting sectors and quantified costs and benefits of these reductions.

Building on the baseline non-CO₂ emissions projections from the USEPA's *Global Anthropogenic Non-CO₂ Greenhouse Gas Emissions*: 1990–2020 (2006), this analysis applies mitigation options to the emissions baseline in each sector. Across all the emitting greenhouse gas sectors, for each mitigation option, the technical abatement potential and cost are calculated. The MACs are determined by the series of breakeven price calculations for the suite of available options for each sector and region. Each point along the curve indicates the abatement potential given the economically feasible mitigation technologies at a given breakeven price. This report makes no explicit assumption about policies that would be required to facilitate and generate adoption of mitigation options. Therefore, this report provides estimates of technical mitigation potential.

The result of these efforts is a set of MACs that allow for improved understanding of the mitigation potential for non-CO₂ sources, as well as inclusion of non-CO₂ greenhouse gas mitigation in economic modeling. The MAC data sets can be downloaded in spreadsheet format from the USEPA Web site at http://www.epa.gov/nonco2/econ-inv/international.html>.


Highlights of this analysis include the following:


Mitigation of Non-CO₂ Gases Can Play an Important Role in Climate Strategies. Worldwide, the potential for "no-regret" non-CO₂ greenhouse gas abatement is significant. Figure ES-1 shows the global total aggregate MAC for the year 2020. Without a price signal (i.e., at \$0/tCO₂eq), the global mitigation potential is greater than 600 million metric tons of CO₂ equivalent (MtCO₂eq), or 5 percent of the baseline emissions (refer to Section I.3.3 of this report for a more detailed explanation of unrealized mitigation potential in the MACs). As the breakeven price rises, the mitigation potential grows. Significant mitigation opportunities could be realized in the lower range of breakeven prices. The global mitigation potential at a price of \$10/tCO₂eq is greater than 2,000 MtCO₂eq, or 15 percent of the baseline emissions, and greater than 2,185 MtCO₂eq or 17 percent of the baseline emissions at \$20/tCO₂eq. In the higher range of breakeven prices, the MAC becomes steeper, and less mitigation potential exists for each additional increase in price.


Globally, the Sectors with the Greatest Potential for Mitigation of Non-CO₂ Greenhouse Gases are the Energy and Agriculture Sectors. Figure ES-2 shows the global MACs by economic sector in 2020. At a breakeven price of \$30/tCO₂eq, the potential for reduction of non-CO₂ greenhouse gases is nearly 1,000 MtCO₂eq in the energy sector, and approximately 600 MtCO₂eq in the agriculture sector. While less than that of the energy and agriculture sectors, mitigation potential in the waste and industrial processes sectors can play an important role, particularly in the absence of a carbon price incentive.

Methane Mitigation has the Largest Potential across All the Non-CO₂ Greenhouse Gases. Figure ES-3 shows the global MACs by greenhouse gas type for 2020. At or below $$0/tCO_2eq$, the potential for CH₄ mitigation is approximately 500 MtCO₂eq. The potential for reducing CH₄ emissions grows to nearly 1,800 MtCO₂eq as the breakeven price rises from \$0 to \$30/tCO₂eq. While less than that of CH₄, N₂O and high-GWP gases exhibit significant mitigation potential at or below $$0/tCO_2eq$.

Major Emitting Regions of the World Offer Large Potential Mitigation Opportunities. Figure ES-4 shows the global MACs by region for 2020. China, the United States, EU, India, and Brazil are the countries or regions that emit the most non-CO₂ greenhouse gases. As the largest emitters, they also offer important mitigation opportunities. These regions show significant mitigation potential in the lower range of breakeven prices, with the MACs getting steeper in the higher range of breakeven prices as each additional ton of emissions becomes more expensive to reduce.

The aggregate MACs by economic sector, greenhouse gas type, and region highlight the importance of including non-CO₂ greenhouse gases in the analysis of multigas climate strategies. The MACs illustrate that a significant portion of this emissions reduction potential can be realized at zero or low carbon prices. The mitigation potential in each economic sector is examined in greater detail in this report.