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ABSTRACT

A merged land–air–sea surface temperature reconstruction analysis is developed for monthly anomalies.
The reconstruction is global and spatially complete. Reconstructed anomalies damp toward zero in regions
with insufficient sampling. Error estimates account for the damping associated with sparse sampling, and
also for bias uncertainty in both the land and sea observations. Averages of the reconstruction are similar
to simple averages of the unanalyzed data for most of the analysis period. For the nineteenth century, when
sampling is most sparse and the error estimates are largest, the differences between the averaged recon-
struction and the simple averages are largest. Sampling is always sparse poleward of 60° latitude, and
historic reconstructions for the polar regions should be used with caution.

1. Introduction

Analysis of past climate variations is an important
part of understanding climate change, and an important
indicator of climate is the surface temperature. Long
analyses of the surface temperature are used for moni-
toring the present climate and for comparison between
the present and past climatic variations. Here an analy-
sis of the merged surface temperature is produced. The
analysis uses a sea surface temperature (SST) analysis
over the ocean and a separate land surface air tempera-
ture (LST) analysis over the land. Surface marine air
temperatures are not used because of biases in the day-
time temperatures (Rayner et al. 2003). The two analy-
ses are merged to form a monthly merged analysis,
from 1880 to 1997.

In recent years a number of groups have developed
surface temperature analyses. For example, SSTs have
been analyzed by Bottomley et al. (1990), Smith et al.

(1996), Kaplan et al. (1998), and Rayner et al. (2003).
More recently, Smith and Reynolds (2003, 2004) ap-
plied improved reconstruction methods to the historical
SST data, and produced an extended global reconstruc-
tion of SST anomalies. These methods remove almost
all noise by fitting the data to a set of covariance modes,
based on a densely sampled period. However, they
damp the anomalies when and where data are too
sparse for a reliable reconstruction. Uncertainty esti-
mates reflect that damping, as well as uncertainty, is
caused by possible biases in the observed data.

LSTs have been analyzed by Jones et al. (1990),
Peterson and Vose (1997), Hansen et al. (1999), Jones
et al. (2001), and Jones and Moberg (2003). Some de-
tails of updated LSTs and what they show about climate
change are given by Parker et al. (2004). Averages of
these LST analyses are often used to indicate climate
change. In addition, merged LST and SST anomaly
datasets have been produced (e.g., Parker et al. 1994;
Jones et al. 2001; Jones and Moberg 2003). All of these
studies help to better explain historical temperature
variations.

In this study we use the improved analysis and error-
estimation methods of Smith and Reynolds (2004) to
analyze both SST and LST anomalies, and to then
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merge them to form a global analysis. The merged
analysis is spatially complete, although anomalies are
damped in regions with sparse sampling. For example,
at very high latitudes there is little sampling and
anomalies are usually damped in the Arctic and Ant-
arctic regions. However, when sufficient data are avail-
able they are analyzed in those regions, and the analysis
is formally global (90°S–90°N). In addition, the uncer-
tainty estimates for the reconstruction are produced.

This merged reconstruction contains a number of im-
provements over many earlier studies, including the fol-
lowing. 1) The merged analysis is globally complete.
Spatial covariance modes are used to interpolate
anomalies in undersampled regions. Covariance modes
are computed using the relatively dense modern sam-
pling. However, we limit our covariance functions to be
either entirely over land or entirely over water, and we
also limit their spatial size, to minimize overinterpola-
tion of anomalies. 2) The analysis incorporates the lat-
est updates in the International Comprehensive
Ocean–Atmosphere Data Set (ICOADS; Woodruff et
al. 1998) and the Global Historical Climate Network
(GHCN) data. 3) The analysis variance is found to have
less dependence on sampling compared to some earlier
analyses. This is because the covariance modes incor-
porated in the analysis only need to be partially
sampled at any time in order to contribute to the analy-
sis. 4) Uncertainty estimates indicate when and where
the analysis is most reliable. The uncertainty estimates
can also be computed for spatial and/or temporal aver-
ages of the analysis, to indicate how the averaging af-
fects uncertainty.

This merged analysis provides another tool to help
define long-term temperature variations over the twen-
tieth century, and to indicate when and where the ana-
lyzed temperature variations are significant. This analy-
sis is also being operationally extended at the National
Climatic Data Center, so that future variations may be
compared to historical variations. For some applica-
tions there may be advantages to having a spatially
complete analysis such as this. For example, modeling
studies using surface conditions as a boundary may be
easier to conduct. In addition, the uncertainty estimates
help to better define the possible range of climate
change over the twentieth century, as discussed below.

2. Data

The primary SST data used for this study are the
ICOADS SST observations release 2, with updates
through 1997 (Slutz et al. 1985: Woodruff et al. 1998).
The individual observations are screened using a qual-
ity control test, and those that pass are averaged to

monthly and 2° spatial superobservations. Screening is
done by comparing individual anomalies to a spatial–
temporal local analysis of anomalies. Values close to
the local analysis value are retained [see Smith and
Reynolds (2003, 2004) for details about the quality-
control methods]. Superobservations are defined as the
average of all input data over a given grid box for a
given month. For SSTs prior to 1942, the bias correc-
tions of Smith and Reynolds (2002) are applied to cor-
rect for changes in measurement techniques.

Before 1942 most SST measurements were from
ships that used buckets to bring samples of seawater
onto the deck, where temperature measurements were
made. Afterward it became more common to measure
the temperature of the engine-intake seawater. Adjust-
ments to the pre-1942 SSTs were developed by Folland
and Parker (1995), and by Smith and Reynolds (2002).
However, further analysis of the ICOADS release 2
SST by C. K. Folland (2003, personal communication)
indicates that for 1939–41, the release 2 data are biased
warm relative to the data used by Folland and Parker
(1995). The release 2 data contain additional data, from
different sources and with different bias characteristics
compared to the Folland and Parker (1995) SST data.
Those differences are minimized if the bias correction is
reduced linearly to zero beginning in January 1939 (no
adjustment to the bias correction) and ending in De-
cember 1941 (zero bias correction). Because we use the
release 2 data, we apply this linear reduction to the
Smith and Reynolds (2002) bias adjustment from 1939
to 1941.

Anomalies of the SST superobservations are formed
by subtracting off the monthly Smith and Reynolds
(1998) 1961–90 SST climatology. Because of our desire
to eliminate noise from the reconstruction, those
anomalies were subjected to a second quality-control
screening to remove extreme anomalies (Smith and
Reynolds 2004). In addition to ICOADS, we use the
combined satellite and in situ SST analysis of Reynolds
et al. (2002) to compute analysis statistics. The SST and
their analysis are more fully described by Smith and
Reynolds (2003, 2004).

The LST data used for reconstruction are the GHCN
temperatures (Peterson and Vose 1997). To develop
the gridded GHCN, the anomalies of individual GHCN
stations are formed with respect to 1961–90. Those
anomalies are then averaged to monthly and 5° spatial
superobservations. The GHCN data are homogeneity
adjusted to minimize artificial variations, such as from
moving the location of a station (Peterson et al. 1998).
These LST data are sufficient for defining large-scale
temperature variations, although many details can be
lost because of the relatively coarse grid. The LST
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analysis was performed on this 5° grid, and the 2° SST
analysis was averaged to this same 5° grid. In addition,
the unanalyzed 2° superobservation anomalies were av-
eraged to the 5° GHCN grid for comparisons, as dis-
cussed below. The unanalyzed data are the monthly
superobservations that are used as input for the recon-
structions.

Sampling of SST tends to increase over the analysis
period, although there are dips in the sampling associ-
ated with the two world wars (Fig. 1). The SST sam-
pling is consistently best after 1950. For LST, the sam-
pling increase with time is monotonic up to about 1980,
when it begins to decrease slightly. That recent de-
crease in LST sampling results from a time lag for the
inclusion of some data into the GHCN and station
dropouts. For the same reasons a similar but smaller
decrease is evident in the ICOADS SST sampling. The
LST percent of in situ sampling is often lower than for
SST and even in recent years is not much over 60%
because of persistent undersampled land regions, nota-
bly Antarctica, central Africa, and central South
America.

3. Reconstruction

The historical SST reconstruction method used in
this study is described in detail by Smith and Reynolds
(2004). Reconstruction methods are also described in
some detail in appendix A, and they are briefly re-
viewed here.

The reconstruction is separated into separate low-
and high-frequency components, which are added for

the total reconstruction. First the low frequency is re-
constructed using spatial and temporal filtering of the
available data. The time filter of 15 yr defines the low
frequency as approximately decadal scale or longer.
That low-frequency component is subtracted from the
data before reconstruction of the high-frequency com-
ponent using spatial covariance modes, which includes
interannual and shorter-period variations. The covari-
ance modes are spatially complete. However, dense
enough data for computing spatially complete modes is
limited to the recent period. Interannual or shorter-
period variations, such as ENSO, can be represented
using data from the recent densely sampled period.
Lower-frequency variations may not be well repre-
sented by data from the most recent period. This led us
to develop a method that separately reconstructs the
low- and high-frequency anomaly.

Our SST anomaly base period data are the 1982–2002
Reynolds et al. (2002) in situ and satellite SST analysis.
There are 130 spatial modes used for the SST high-
frequency analysis. Sea ice information from Rayner et
al. (2003) is merged with the SST reconstruction to ad-
just the high-latitude temperatures. The low- and high-
frequency variations are separately reconstructed. Lo-
calized spatial covariance modes are computed from
the recent base-period anomalies, and are used for the
high-frequency reconstruction. Simple methods, de-
scribed below, are used to reconstruct the low-
frequency variations.

Because SST observations are often sparse, we in-
clude SST anomalies for three consecutive months, cen-
tered on the analysis month, in our high-frequency

FIG. 1. Percent of the global reconstruction region sampled for SST (dashed) and LST
(solid). Annual averages are given.
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analysis. When there is a superobservation for a 2°
square for the analysis month, we use that anomaly.
When there is no superobservation available, we use
the average of the anomalies from the previous and
following month. This is justified because SST anoma-
lies on the scales we are resolving typically persist for
more than a month, as discussed below.

The historical LST reconstruction uses essentially the
same methods, outlined in appendix A. The base-
period data used to compute the high-frequency modes
over land are the GHCN data for 1982–91. That period
overlaps the SST base period and has good overall sam-
pling (Fig. 1). After 1991 there are slightly fewer
GHCN data, as discussed above. To make the modes
continuous over all land regions, we use optimum in-
terpolation (OI; e.g., Reynolds and Smith 1994) to fill in
land regions without data. The LST spatial covariance
modes are based on these OI-filled fields of GHCN
data. In the future, we hope to have an improved mod-
ern-period LST analysis that blends in situ and satellite
data. We considered using the National Centers for En-
vironmental Prediction–National Center for Atmo-
spheric Prediction (NCEP–NCAR) reanalysis data to
define the LST modes. Those data are blended and
assimilated into an atmospheric model, and anomalies
based on those data are generally consistent with ob-
served anomalies. However, because the filled recent-
period LST anomalies adequately span the subdecadal
variance, and also because we plan to update the LST
analysis using blended in situ and satellite LST data, we
decided against introducing an additional dataset at this
time.

Because LST observations are fixed and not moving
(in contrast to most SST observation platforms), there
is little need for using 3 months of pooled data, as we
did with the SST reconstruction. In addition, the LST
anomalies are less persistent than the SST anomalies,
discussed below (see Table 1). Therefore, for the LST
high-frequency reconstruction we only use the LST
anomalies for the analysis month.

The SST base period is both longer and better
sampled than the LST base period because of the avail-
ability of more than 20 yr of satellite SST retrievals. In
the future we hope to improve the LST database by
incorporating more observations, including satellite-
based LST estimates. However, we are able to compute

60 LST modes using the available data, and it is unlikely
that additional base-period data will change our major
results.

Anomaly persistence is stronger in SST anomalies
than in LST anomalies, as shown by the autocorrelation
of the covariance modes. The 1-month autocorrelation
for each mode is computed from the time series of
weights for each mode, reconstructed using the data
since 1950 when all modes are defined most of the time.
Table 1 shows that the SST modes typically have an
autocorrelation between 0.5 and 0.75 (corresponding to
e-folding times of 1.5–3.5 months), while for LST the
autocorrelation is typically below 0.25 (corresponding
to e-folding times less than a month). Thus, the LST
analysis can make little use of persistence when a sta-
tion disappears.

The global ocean area is roughly twice as large as the
global land area, and there are roughly twice as many
possible SST modes compared to LST modes. Land
variations are often more complicated than sea surface
variations because of different elevations and land
types. However, this reconstruction has a coarse spatial
resolution, and many variations associated with
changes in land types have smaller scales. Thus, an LST
reconstruction with finer resolution may require more
spatial modes to resolve variations associated with
changes in elevation or land type. For each month,
modes that have 25% or more of their variance
sampled (as defined in Smith et al. 1998 and Smith and
Reynolds 2003) are selected for the high-frequency re-
construction. Using modes with less of their variance
sampled could introduce noise into the analysis. When
a mode is adequately sampled, it will filter out random
noise because random noise will not fit the spatial pat-
tern of any physically based mode. However, if a mode
is undersampled then noise could influence the weight
computed for that mode. By using testing we found that
25% sampling is adequate for filtering out nearly all of
the data noise.

For the 1880–1997 period, the number of LST modes
selected increases gradually until about 1950 (Fig. 2).
After 1950 near the maximum number of LST modes
are selected for most of the remaining period, with a
slight decrease in the 1990s. For SST modes, nearly all
modes are selected for most of twentieth century, ex-
cept during the two world wars when sampling was in-
terrupted.

The separate historical SST and LST anomaly recon-
structions are merged to form the global-anomaly re-
construction. Over most regions, the two are merged by
weighting the SST and LST reconstruction by the per-
centage of ocean and land area in the 5° region. How-

TABLE 1. The numbers of 1-month lag autocorrelations in the
given range for SST and for LST modes.

(0.00, 0.25] (0.25, 0.50] (0.50, 0.75] (0.75, 1.00] Total

SST 0 2 122 6 130
LST 52 7 1 0 60
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ever, since we are most interested in surface air tem-
perature anomalies, it is not appropriate to use SST
anomalies in regions covered by ice. Therefore, the his-
torical fractional ice cover developed by Rayner et al.
(2003) is used to further adjust the SST anomalies be-
fore merging with LST anomalies. If there is no ice then
no further adjustment is done (Smith and Reynolds
2004). As the fraction of ice cover increases from 0 to 1,
the merged SST anomaly is linearly damped toward 0.
This treats ice-covered ocean regions the same as land
regions with no sampling. In practice, there is usually
little or no sampling in regions with ice, so those regions
have reconstructed anomalies near zero to begin with.
Thus, this adjustment has little effect on the merged
temperature anomaly.

The method for estimating errors in the merged
analysis is described in Smith and Reynolds (2004), and
summarized in appendix B. Errors account for histori-
cal gaps in sampling and for bias uncertainties in the
data. For the first half of the analysis period, the largest
component of the reconstruction error is from the sam-
pling error of the low-frequency component. This is
because there is not enough sampling in that period to
resolve a trend over much of the globe. Comparisons
between averages of our merged analysis and simple
averages of the data, discussed below, show that our
error estimates generally bracket the range of compari-
son estimates.

As an example of the input anomalies and the recon-
struction, we show the merged input data and the
merged reconstruction averaged for 1900–09 (Fig. 3).
For the unanalyzed anomalies, we require that at least

24 months be sampled over the decade. With less sam-
pling the region is left blank in the unanalyzed average.
The average reconstruction is broadly consistent with
the average of the input data, but the pattern is
smoother and the anomalies tend to be damped in the
reconstruction. Over regions with little or no input data
the reconstruction anomaly is near zero. Note that the
analysis uses interpolation to smoothly fill those data-
sparse regions. Modest size data-void regions sur-
rounded by relatively large anomalies, such as the
North Pacific midlatitudes and over Greenland, are
filled with relatively strong anomalies, by interpolation
using the spatial-covariance modes.

The unanalyzed anomalies are sometimes stronger
than the analyzed anomalies. For example, in the 1900–
09 average of unanalyzed anomalies, there are strong
local anomalies off the east coast of Asia and North
America. Averaging the analyzed anomalies damps the
magnitude of those anomalies. One reason for stronger
unanalyzed anomalies is that when data are sparse, the
analyzed anomaly will damp toward zero. Thus, iso-
lated anomalies inconsistent with neighboring anoma-
lies are damped in the analysis. Of course, one purpose
of the analysis is to reduce noise on monthly scales.
Thus, there is a balance between reducing monthly
noise and producing a smoothed analysis.

Averaging the damped anomalies weakens the dec-
adal average. However, even with complete sampling
the analysis filters the data. Since part of the analysis is
performed by fitting data to a set of large-scale modes
(generally covering spatial regions of 20° or larger),
variations on smaller scales tend to be filtered. In ad-

FIG. 2. Number of reconstruction modes selected for SST (dashed, maximum � 130) and
LST (solid, maximum � 60). The annual-average number is given.
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dition, variations not represented by the modes will
also be filtered.

4. Results

To illustrate historical temperature variations in the
reconstructions along with their uncertainty, time series
of averages with 95% confidence intervals are shown.
Annual and 60°S–60°N averages are computed for the
SST anomalies, the LST anomalies, and the merged
anomalies. In addition, simple averages are computed
of the unanalyzed data used for the reconstructions,
and of comparable merged data produced by the Met

Office Hadley Centre and at the Climate Research Unit
(CRU) of the University of East Anglia (Jones and
Moberg 2003). The Hadley Centre–CRU temperature
(HadCRUT, version 2) simple averages (as updated by
Jones and Moberg 2003) are displayed for comparison
with the reconstruction averages.

The simple averages are area-weighted averages of
the 5° superobservations. Since the superobservations
are only defined where there is sampling, which is most
dense in the Northern Hemisphere, area-weighted av-
erages for the Northern and Southern Hemispheres are
first computed separately, and then they are then aver-
aged. Each hemispheric average is weighted by the to-

FIG. 3. Average surface temperature anomaly for 1900–09 (top) for the input data (with
shading to indicate sampling) and (bottom) for the merged reconstruction.
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tal area in each hemisphere (of land or sea or merged).
Averaging the hemispheres separately first and then
area weighting the results keeps the better-sampled
Northern Hemisphere from artificially dominating the
averages.

The average reconstruction of SST anomalies from
60°S–60°N (Fig. 4) indicates warming through most of
the twentieth century. The SST warming occurs in two
parts, the first before 1940 and the second after 1970,
with a roughly stationary period between 1940 and
1970. The uncertainty estimates indicate that the nine-
teenth-century anomalies should be used with caution.
Part of the nineteenth-century uncertainty is due to bias
uncertainty, which could be reduced using future bias
corrections that incorporate a better understanding of
the historical bias. However, much of the nineteenth-
century uncertainty is due to the effect of sparse sam-
pling on the low-frequency error estimate. In any case,
the twentieth-century warming is significant. Simple av-
erages of the ICOADS SST anomalies are consistent
with the reconstruction, although the reconstruction
anomaly is sometimes slightly weaker due to damping.
The Hadley Centre SST anomaly simple average is also
generally consistent with the reconstruction. Hadley

Centre SSTs are slightly warmer than ICOADS in the
1990s. Most 1990s differences are in western boundary
currents off the east coasts of North and South
America, between about 30° and 60° latitude, with the
largest differences off South America. Differences in
data quality control and screening of suspect observa-
tions in those regions could account for much of the
difference. For most of the period the simple averages
are within the reconstruction 95% confidence interval.
The 60°S–60°N average SST anomaly and error esti-
mates are similar to those computed by Smith and
Reynolds (2003). For the recent period, the uncertainty
is similar to the ship–buoy SST bias computed by Reyn-
olds et al. (2002).

The average reconstruction of LST anomalies (Fig.
5) also indicates warming through the twentieth cen-
tury. There is gradual LST warming until about 1940,
when the trend flattens out, and a second strong warm-
ing trend begins about 1970. These LST trends are con-
sistent with the SST trends, and this similarity was also
noted by Folland et al. (2001b). However, there is more
uncertainty in the LST average, especially before 1940
when much of the land areas are undersampled. Since
we analyzed LST and SST anomalies separately, the

FIG. 4. Reconstructed SST anomaly averaged annually and between 60°S and 60°N (solid),
with its 95% confidence intervals (dashed). Also shown is the simple average of the compa-
rable SST anomalies produced by the Hadley Centre.
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similarity between the two is derived from the data, and
is not an artifact of the analysis method. Variations in
the LST simple averages in the nineteenth and early
twentieth century indicate that these large uncertainty
estimates are justified. The Jones–CRU LST anomalies
are cooler than the reconstruction early in the record,
when sampling is sparse and our reconstruction is more
damped. After 1930, those simple averages are more
consistent with the reconstruction.

The merged reconstructed anomalies (Fig. 6) indi-
cate a blend of the SST and LST anomalies, weighted
heavily toward the SST. Note that here the 60°S–60°N
average is displayed. This is similar to the full global
mean, both because this includes most of the earth and
because there are few data outside this region. Includ-
ing the polar regions would, however, increase the un-
certainty estimates. As with the SST, the simple aver-
ages are generally consistent with the reconstruction
average. The twentieth-century warming is about 0.6°C.
Because of the uncertainty estimates, the warming can
only be confidently established between 0.3° and 0.9°C.
Compared to the global average of Folland et al. (2001,
2001b), our average is similar over most of the analysis
period. However, our nineteenth-century negative
anomalies are slightly weaker than theirs, because their

analysis is not damped when sampling is sparse. Both
this study and Folland et al. (2001, 2001b) indicate
warming of about 0.6°C over the twentieth century.
However, our uncertainty estimate for the warming is
�0.3°C, slightly large than their estimate of �0.2°C.

Our uncertainty estimates are larger than the Folland
et al. (2001) estimates because of our large low-
frequency error estimate. In their estimate, large-scale
spatial modes are used to estimate both the high- and
low-frequency spatial covariance, making their low-
frequency sampling error much smaller than for our
more conservative method of estimating the low-
frequency analysis. The global error estimates of Jones
et al. (1997) are also larger than the Folland et al.
(2001) estimates, but smaller than the estimates of this
study.

Some idea of where the reconstruction is most and
least reliable for different periods can be obtained by
correlations with comparable analyses. Here we corre-
late reconstruction anomalies with those from the Had-
ley Centre Sea Ice and SST (HadISST) analysis over
the oceans (Rayner et al. 2003) and Jones and Moberg
(2003) over land. The HadISST analysis is spatially
complete, as is the reconstruction, but the Jones land
data have gaps where there are no stations. Thus, there

FIG. 5. Reconstructed LST anomaly averaged annually and between 60°S and 60°N (solid),
with its 95% confidence intervals (dashed). Also shown is the simple average of the compa-
rable data produced by the CRU (Jones and Moberg 2003).
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are some gaps in the land correlations. Correlations are
computed using anomalies from all months for approxi-
mately 30-yr periods: 1880–1909, 1910–39, 1940–69, and
1970–97. Although not a direct estimate of error in ei-
ther analysis, these correlations indicate where and
when sampling is sufficient for the different analyses to
converge. Such convergence may increase user confi-
dence in the reliability of the reconstruction.

As expected, correlations generally increase with
sampling from the earliest to the most recent period
(Fig. 7). In all periods the correlations are high over the
eastern tropical Pacific and tropical Atlantic, and over
North America and Europe. In the earliest period there
is low correlation over the western tropical Pacific,
where variance is always much lower than in the east-
ern tropical Pacific. For most of the reconstruction pe-
riod the correlation is also low south of 40°S, where
dense SST sampling has only become available in re-
cent decades from drifting buoys and satellites (Reyn-
olds et al. 2002). Correlations also tend to be low or
absent in all periods for most of Africa, northern South
America, and Greenland, which have persistently
sparse sampling. For the 1910–39 period, most of the
Northern Hemisphere land area has a high correlation,
and oceanic correlations are slightly larger compared to

1880–1909. Larger increases over oceans are evident
when going from 1910–39 to 1940–69, due to increased
SST sampling after about 1950. The change in correla-
tions from one period to another is broadly consistent
with changes in error for the averages (see Figs. 4–6).
Both are heavily influenced by the available sampling.

To better identify a few climate signals, the correla-
tion is computed between the reconstruction and a one-
predictor linear model based on the reconstruction. We
construct a one-predictor linear regression model for
surface temperature anomalies. The given climate-
signal index is used as the predictor in this statistical
model. Correlations between the predicted tempera-
ture anomalies and the reconstruction are similar to
linear correlations between the climate index and the
reconstruction.

For these comparisons only boreal winter (Decem-
ber–March) averaged anomalies are used. Comparisons
are over the 1900–97 period (the nominal year is the
year of January). Climate indices used are the Southern
Oscillation index (SOI) provided by the NCEP/CPC
(Chelliah 1990); the North Atlantic Oscillation (NAO)
as defined by Hurrell (1995); and the Pacific decadal
oscillation as defined by Mantua et al. (1997). For these
indices, climate signals are strongest in boreal winter, so

FIG. 6. Merged SST and LST reconstructed anomaly averaged annually and between 60°S
and 60°N (solid), with its 95% confidence intervals (dashed). Also shown is the simple average
of the comparable HadCRUT (Jones and Moberg 2003) data.
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FIG. 7. Correlation between the reconstruction anomaly and the merged HadISST–CRU
anomaly, for the periods 1880–1909, 1910–39, 1940–69, and 1970–97, as indicated. Values of
0.3, 0.7, and 0.9 are contoured. Light shading indicates correlations less than 0.3, and dark
shading indicates correlations greater than 0.7.
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these seasonal averages should emphasize the correla-
tions.

Among the three (Fig. 8), correlations with the SOI
are strongest. The NAO is related to Eurasian winter
temperatures. Over the North Pacific the PDO corre-
lations are somewhat similar to the SOI correlations.
However, the PDO has a strong low-frequency compo-
nent.

5. Summary and conclusions

A merged land and sea surface temperature recon-
struction is developed. The reconstruction produces
globally complete monthly surface temperature anoma-
lies. These fields can be averaged spatially or tempo-

rally as desired. In addition, methods of estimating er-
rors in the surface temperature reconstruction are pro-
duced, and examples are given.

For the near-global average, the average of the re-
construction is similar to that produced by other studies
for most of the analysis period. In the nineteenth-
century averages of the analyzed anomalies are weaker
than in some other studies because of damping in the
reconstruction when data are sparse.

Several possible improvements may be made to the
merged reconstruction. Improvements in the SST bias
corrections applied to data before 1942 could decrease
uncertainty in that period. More data for anytime be-
fore 1950 could decrease sampling errors for both the
land and sea analysis. In addition, an improved satellite

FIG. 8. Correlation of the full merged anomalies with the linear regression model using the
given climate index as the predictor, and using data averaged for the Dec–Mar season, from
1900 to 1997.
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and in situ analysis of land surface air temperatures for
the recent period could improve the statistics used for
the land analysis.

Error estimates for the merged analysis are larger
than those estimated by others. For example, Folland et
al. (2001) estimate that the sampling error for the global
average is less than in this study. The larger errors in
this study are due to the simple methods used for the
low-frequency analysis. Here the low-frequency analy-
sis is only resolved if there are sufficient local data for
a large-scale (10° or 15° spatial) average and enough
data for low-frequency (15 yr) filtering. Otherwise the
low-frequency analysis damps to zero anomaly. In Fol-
land et al. (2001), both the low and high frequencies are
analyzed together using a set of spatial modes with
much larger scales (spatial scales generally �15°), and
less sampling is needed to resolve their low-frequency
variation. It is not clear which approach is better. It may
be possible to span most low-frequency variations using
a set of modes based on 50 yr. However, there is no
guarantee that the more recent low-frequency varia-
tions are characteristic of the entire reconstruction pe-
riod. In addition, differences between simple averages
of the data and averages of the analysis are sometimes
about as large as our 95% uncertainty estimates, indi-
cating that the magnitude of the estimated errors may be
justified. (The merged reconstructed data are available
online at ftp://ftp.ncdc.noaa.gov/pub/data/er-ghch-sst/.)
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APPENDIX A

Reconstruction Methods

The reconstruction is done in two separate parts: a
low-frequency reconstruction and a high-frequency re-
construction. A low-frequency anomaly reconstruction
is first produced using simple methods. Those simple
methods do not depend on stationary statistics. This is
done because the base period that statistics are com-

puted from is relatively short compared to the analysis
period, and thus may not be long enough to span all
low-frequency variations. Simple methods may better
preserve the historical low-frequency variations. Sub-
tracting the low-frequency analysis from the data yields
the high-frequency residuals. Those residuals are ana-
lyzed separately by fitting them to a set of spatial
modes.

The high-frequency modes represent seasonal to in-
terannual variations. The statistical structures of the
interannual variations are assumed to be fully repre-
sented by the base-period data that the modes are com-
puted from. Here our base periods are 10–20 yr long.
The total reconstruction is the sum of the low- and
high-frequency analyses. Details of the reconstruction
methods are given in Smith and Reynolds (2003, 2004).
Here a description is given of how the methods are
applied in this study.

The low-frequency analysis is performed by averag-
ing and filtering the temperature anomalies. First, the
anomaly monthly superobservations are spatially aver-
aged. For SST anomalies the 2° monthly superobserva-
tions are averaged to a 10° grid, provided that there are
at least three 2° superobservations defined for the
month. For LST anomalies the 5° monthly superobser-
vations are averaged to a 15° grid. For each year,
monthly values are used to produce an annual average,
provided that there are at least 4 monthly averages de-
fined. These minimum data requirements are to ensure
that there are enough data to damp random noise and
resolve the average. The annual averages are then
smoothed and expanded slightly using spatial binomial
filters. The resulting smoothed annual values are fil-
tered using a 15-yr median filter. Where there are not
enough annual averages to compute a median, an
anomaly of zero is assigned. Spatial and temporal bi-
nomial filters are then applied to this to further smooth
the filled low-frequency estimate.

These procedures produce a low-frequency anomaly
analysis that retains large-scale variations supported by
the network of observations, without imposing any sta-
tionary structures on the variations. However, the low-
frequency analysis is limited by the available sampling,
which is sparse throughout the early part of the histori-
cal record. Because an anomaly of zero is assigned
where there are too few data, these procedures tend to
damp the low-frequency anomaly early in the record.

We do not interpolate the low-frequency analysis to
fill all unsampled regions because we cannot be certain
that the correlation scales are always large enough to
allow this. We chose not to impose a large-scale corre-
lation structure on the low-frequency variations. How-
ever, the low-frequency correlation structure may have
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very large scales, as indicated by studies using more
recent data to estimate them (e.g., Folland et al. 2001).

The high-frequency anomaly is defined as the differ-
ence between the full anomaly and the low-frequency
anomaly: R(x, t) � Anom(x, t) � LF(x, t). Those re-
siduals are fit to a set of spatial-covariance modes to
find a weight for each mode. For the SST analysis the
base-period data used to compute the modes are the in
situ and satellite OI analysis of Reynolds et al. (2002)
from 1982 to 2002. For LST the base-period data are
the GHCN data for 1982–91. Because the in situ GHCN
sampling becomes less dense in the 1990s, due to station
dropouts and delays in obtaining data, we use this
shorter period to keep the modes more spatially com-
plete. The weighted sum of those modes defines the
high-frequency analysis:

HF�x, t� � �
m�1

N

wm�t�Em�x�, �A1�

where Em(x) is the spatial mode, defined for m � 1, . . . ,
N modes, and wm(t) is the weight for the mode, com-
puted independently from the available data at each
time. To compute the set of weights for the modes, the
data are fit to the set of modes, to minimize the mean-
squared difference between the fit and the data at lo-
cations where there are observations. This is done by
solving the system of equations:

�
m�1

N

wm�t��
x�1

K

Em�x�En�x���x�a�x� �

�
x�1

K

R�x, t�En�x���x�a�x�, n � 1, . . . , N. �A2�

Here �(x) � 1 if there is an observation at spatial po-
sition x, and 0 otherwise, and a(x) is the area weight for
position x. There are K spatial positions over the re-
construction area.

Before computing the weights, sampling for each
mode is tested. If less than a critical percentage of the
variance associated with the mode is sampled, then that
mode is not used for the month’s reconstruction (see
Smith et al. 1998). Using a mode not adequately
sampled can cause instabilities because of data noise.
We find that rejecting modes with less than 25% of
their variance sampled produces a consistently stable
analysis for both SST and LST. For the set of ad-
equately sampled modes, a weight for each mode is
found by solving (A2), and the high-frequency analysis
is then computed using (A1).

Within periods when the low-frequency analysis is
greatly damped because of sparse data, the available
residuals may contain some low-frequency variance. To

the extent that the low-frequency variance can be pro-
jected onto the available modes, that low-frequency
variance in the residuals will be analyzed using the
modes.

Sampling may change over time, so a mode may be
adequately sampled one month and not the next. How-
ever, there is a certain amount of persistence associated
with each of these modes. Some modes have greater
persistence and some less, as indicated by their 1-month
lag autocorrelation (C1). We compute the autocorrela-
tion for each mode using the weights in the well-
sampled modern period. Those autocorrelations are
used to define the weights for modes in the months
when they are not adequately sampled.

For each mode, the weights for undersampled
months are computed by damping the weights from the
nearest adequately sampled months. The damping fac-
tor is Ck

1, where k is the number of months from the
undersampled month to the nearest adequately
sampled month. Table 1 indicates the magnitude of the
correlations for both SST and LST. Typical SST corre-
lations are about 0.7, while LST correlations are typi-
cally smaller, about 0.2. By looking for the nearest ad-
equately sampled month in both the forward and back-
ward directions, temporal covariance in both directions
is included. If the autocorrelation is large then that
mode’s weight can persist from months with good sam-
pling into months with poor sampling. Modes that are
not adequately sampled for a long time will have
weights that damp to zero. The directly computed
weights from adequately sampled months are combined
with the weights estimated from autocorrelation. Since
the LST modes have low autocorrelation, only the SST
weights were extended using their autocorrelation. This
set of weights is used to compute the high-frequency
analysis using (A1).

For both SST and LST high-frequency analyses, the
modes used are defined using empirical orthogonal
teleconnections (EOTs; Van den Dool et al. 2000). To
compute EOTs first a base point is found. The base
point is the point with the greatest spatial covariance
with all other points on the field. The covariance pat-
tern for that mode is computed and subtracted from the
data. The process is then repeated to find the next
mode. The EOTs are similar to rotated empirical or-
thogonal functions (EOFs). However, EOTs are easier
to modify and control. In particular, we are concerned
that there may be very large-scale teleconnections in
the base period that may not be common in all details
to all historical periods. Using larger-scale EOFs would
give a better reconstruction for the base period, but in
more remote decades there is a danger of over specifi-
cation from sparse data. Therefore, we localize the
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EOTs by damping the covariance pattern at distances
of more than 5000 km from the base point. At distances
of between 5000 and 8000 km, the pattern is damped
linearly from full strength to zero. Teleconnections are
not allowed at distances greater than 8000 km.

APPENDIX B

Reconstruction Error Estimates

Analysis errors can be separated into three indepen-
dent types of error (e.g., Kagan 1979): random error,
sampling error, and bias error. The total analysis error
variance may be written as their sum

�2 � �R
2 	 �S

2 	 �B
2 . �B1�

The subscripts R, S, and B indicate random, sam-
pling, and bias error variances, respectively. Random
error variance in an analysis, 
2

R, is from random errors
in the input data. In this analysis, those errors are al-
most entirely filtered out. Tests have shown that for this
analysis method, the signal-to-noise variance ratio for
SST is about 30 (see Smith and Reynolds 2003, 2004;
the ratios were computed over approximately 30-yr pe-
riods and averaged over 60°S–60°N). For monthly LST
analysis the ratio should be even larger. This is because
the continental LST signal tends to be larger than the
marine SST signal, and the monthly average LST
anomalies are constructed from averaging more indi-
vidual observation than is typical for SST. The rela-
tively small random error variance allows simplification
of the error estimate, as discussed below. Sampling er-
ror variance, 
2

S, reflects the density and distribution of
observations. Bias error variance, 
2

B, is due to system-
atic biases in the data or from the analysis method.

If we let T be the true anomaly and we let Ta be the
reconstruction anomaly, then we may express the error
variance as

�2 � ��T � Ta�2�

� �T
2 	 �Ta

2 � 2�T�Ta
rT,Ta

	 ��T� � �Ta��
2, �B2�

where the angle brackets denote averaging. Here the
reconstruction variance is 2

Ta
and the true anomaly

variance is 2
T. The correlation between the true

anomaly and the reconstruction anomaly is rT,Ta
. Fur-

thermore, we may express the reconstruction anomaly,
Ta, in terms of the true anomaly, T,

Ta � �T 	 � 	 R, �B3�

where � and � are constants, and R is the random noise.
Thus, the reconstruction variance can be expressed as

�Ta
2 � �2�T

2 	 �R
2 ,

which is the sum of the signal and noise variance. This
allows the correlation to be expressed as

rT,Ta �
��T

��2�T
2 	 �R

2
.

As discussed above, the noise error variance is much
smaller than the signal variance for this analysis. Thus,
the correlation is approximately 1 for this reconstruc-
tion technique. This allows us to simplify (B2) and ap-
proximate the error as

��T � Ta�2� � ��T � �Ta
�2 	 ��T� � �Ta��

2. �B4�

On the right-hand side of (B4), the first term is sam-
pling error variance, 
2

S � (T � Ta)2, and the last term
is bias error variance, 
2

B � (�T� � �Ta�)
2.

If we could estimate the true anomaly variance for
any time, then we could use (B4) to estimate the sam-
pling error variance. However, because of changing
low-frequency variations, the true variance may be dif-
ficult to estimate in all periods. The high-frequency
component of the true variance may be approximately
stationary. Therefore, we use the expression

��S
2�hf � ��T � �Ta

�hf
2 �B5�

to compute the high-frequency (hf) sampling error. The
true hf variance is estimated from the detrended base-
period data. The reconstruction hf variance is com-
puted directly from the hf analysis. The way that the hf
variations evolve is not important, so long as its vari-
ance is approximately stationary. However, there are
not dense enough data through the historical period to
know for certain that the hf variance is unchanged.

The low-frequency sampling error is computed by
estimating how well the available sampling resolves a
linear trend. A trend of 0.5°C (100 yr)�1 is assigned
everywhere on the globe. That is approximately the
magnitude of the global-average temperature trend
over the twentieth century. The actual temperature
trend is not constant either spatially or temporally, and
although the measured trend is usually positive, it is
negative in some regions at some times (e.g., Folland et
al. 2001b). However, for estimation of the error the
actual value of the trend is not important. The magni-
tude of the trend needs to about right, so that the sam-
pling error for a trend of that magnitude can be esti-
mated. In times when the typical trend is weaker than
the assumed value, as it may be before 1900 based on
the available data, this may overestimate the sampling
error. In periods when the trend is particularly strong
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the error could be underestimated. In addition, since
some parts of the low-frequency variance may fit the
large-scale modes developed for the high-frequency
analysis, some low-frequency variations missed by the
simple analysis could be picked up by the high-
frequency analysis. Thus, the error estimate for the low
frequency may be too large.

For the SST only, the low-frequency sampling error
computed using the method of this study was compared
to the comparable estimate of Smith and Reynolds
(2003). That estimate was based on how well the low-
frequency SST in a climate model would be sampled
using the historical network of SST observations. The
climate model has increasing greenhouse gases, and the
overall temperature change is similar to the observed
changes (see Smith and Reynolds 2003 for more de-
tails). For global SST, the simpler low-frequency error
estimate used here is nearly the same as the model-
based error estimate of Smith and Reynolds (2003).
This gives us confidence that our low-frequency error
estimates are reasonable.

The SST bias error variance is computed from differ-
ences between the Folland and Parker (1995) and the
Smith and Reynolds (2002) bias-correction estimates
for the pre-1942 period. From 1942 on, the SST bias is
given a minimum standard error of 0.015°C, based on
typical differences between all observations and ship-
intake temperatures in ICOADS data (Smith and
Reynolds 2003). In addition, to account for the 1939–41
adjustment, we increase the difference in that period by
a factor proportional to the magnitude of the adjust-
ment. With maximum adjustment the factor is 2 in De-
cember 1941.

For LST, bias errors may be caused by urbanization
over the twentieth century, and uncertainty due to the
use of nonstandard thermometer shelters before 1950
(Jones et al. 1990; Parker 1994; Folland et al. 2001).
Here we use the LST bias uncertainty estimates of Fol-
land et al. (2001). Peterson et al. (1999) and Peterson
(2003) suggests that the urbanization uncertainty may
be less than that estimate. Thus, we may be overesti-
mating that component of the error.

The SST error variance (E2
S) and LST error variance

(E2
L) components are computed separately. They are

merged using the relationship

Em
2 � AL

2 EL
2 	 AS

2ES
2 	 2ALASELESrLS, �B6�

where AL and AS are the fractional areas of land and
sea, respectively, and rLS is the correlation between the
land and sea errors. For both SST and LST, the sam-
pling errors are largest early in the period and smallest
late in the period, since sampling increases over the

period for both. Thus, we may assume that sampling
errors are correlated. Here we simplify the merged er-
ror variance estimate by assuming that the correlation
between sampling errors is 1. However, bias errors on
land and sea are caused by completely different pro-
cesses, so we assume that for bias errors the correlation
is 0. We use (B6) to merge the sampling and bias error
variance separately, and add them for the total merged
error variance.
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