Ideal Gas Thermodynamic Properties of Eight Chloro- and Fluoromethanes

A. S. Rodgers, J. Chao, R. C. Wilhoit, and B. J. Zwolinski

Thermodynamics Research Center, Department of Chemistry, Texas A&M University, College Station, Texas 77843

The structural data, vibrational assignments, enthalpies of vaporization and formation for chloromethane, dichloromethane, trichloromethane, tetrachloromethane, fluoromethane, difluoromethane, trifluoromethane, and tetrafluoromethane were critically reviewed. Based on the selected best values, the thermodynamic properties for each of these eight chloro- and fluoromethanes were calculated by statistical thermodynamic methods using the rigid-rotor harmonic-oscillator approximations. The derived entropies and heat capacities are compared with the available third law entropies and vapor heat capacities. The calculated values of C_p^o , S^o , and ΔHf^o at 298.15 and 700 K are compared with those reported in the other major compilations.

Key words: Chloromethane; fluoromethane; ideal gas thermodynamic properties; critical evaluation of thermodynamic properties.

Contents

•		Cilis		
	Page			Page
List of Tables	117		methane	122
1. Introduction	118		omethane	124
1.1. Scope and Objectives	118		oromethane	126
1.2. Definitions of Properties and Symbols	118	6. Fluorom	ethane	130
1.3. Units and Physical Constants	119	7. Difluoro	methane	131
1.4. Uncertainties	119		methane	132
1.5. Calculation of Ideal Gas Thermodynamic			promethane	134
Properties	119		rison	137
1.6. Auxiliary Data	119	11. Acknov	vledgments	139
2. Chloromethane	121	12. Referen	nces	139
	List of	Tables		
	Page			Page
Table 1-1. Molecular and Thermochemical		Table 4–4.	Enthalpy of Formation Data for	
Constants for the Eight Chloro-			Trichloromethane	126
and Fluoromethanes	120	Table 4–5.	Ideal Gas Thermodynamic Prop-	
Table 1-2. Thermodynamic Properties of			erties for Trichloromethane	126
Elements	120	Table 5–1.	Structural Data for Tetrachloro-	
Table 2-1. Vibrational Assignments for Chloro-			methane	127
methane	121	Table 5–2.	Vibrational Assignments for Tet-	
Table 2-2. Enthalpy of Formation Data for		m	rachloromethane	127
Chloromethane	122	Table 5–3.	Enthalpy of Vaporization Data for	
Table 2-3. Ideal Gas Thermodynamic Prop-	100		Tetrachloromethane	127
erties for Chloromethane	122	Table 5–4.	Enthalpy of Formation Data for	
Table 3-1. Vibrational Assignments for Di-	700		Tetrachloromethane	128
chloromethane	123	Table 5–5.	Ideal Gas Thermodynamic Prop-	
Table 3-2. Enthalpy of Vaporization Data for	100	m 11 ~ .	erties for Tetrachloromethane	129
Dichloromethane	123	Table 5-6.	Comparison of Calculated and	
Table 3-3. Enthalpy of Formation Data for	104		Experimental Gas Phase Heat	
Dichloromethane	124	•	Capacity and Entropy Data for	
and a sub-	104	Table 6 1	Tetrachloromethane	129
erties for Dichloromethane	124	Table 6–1.	Vibrational Assignments for Fluo-	
101 ,11011010	105	Table 6.9	romethane	130
methane	125	Table 6–2.	Ideal Gas Thermodynamic Prop-	700
	105	Table 7-1.	erties for Fluoromethane	130
chloromethane	125	Table 1-1.	Vibrational Assignments for Di-	7.07
1	105	Table 7-2.	fluoromethane	131
Trichloromethane	125	1 apre 1-2.	Ideal Gas Thermodynamic Prop-	10-
Copyright © 1974 by the U.S. Secretary of Commerce on behalf of the United Sta		Table 8-1.	erties for Diffuoromethane	131
copyright will be assigned to the American Institute of Physics and the American		Table 0-1.	Structural Data for Trifluoro-	
Society, to whom all requests regarding reproduction should be addressed.		*	methane	132

Table 8-2. Vibrational Assignments for Tri-
fluoromethane
Table 8-3. Enthalpy of Formation Data for
Trifluoromethane
Table 8-4. Ideal Gas Thermodynamic Properties for Trifluoromethane
Table 8-5. Comparison of Calculated and Ex-
perimental Gas Phase Heat Ca-
pacity and Entropy Data for Tri-
fluoromethane
methane
Table 9-2. Vibrational Assignments for Tet-
rafluoromethane
Table 9-3. Enthalpy of Formation Data for
Tetrafluoromethane
Table 9-4. Ideal Gas Thermodynamic Prop-
erties for Tetrafluoromethane
Table 9-5. Comparison of Calculated and
Experimental Gas Phase Heat Ca-
pacity and Entropy Data for Tetra-
fluoromethane
Table 10-1. Comparison of the Ideal Gas
Thermodynamic Data at 1 Atm
and 298.15 K for Chloromethanes
Table 10-2. Comparison of the Ideal Gas
Thermodynamic Data at 1 Atm and
298.15 K for Fluoromethanes
Table 10-3. Comparison of the Ideal Gas
Thermodynamic Data at 1 Atm
and 700 K for Chloromethanes
Table 10-4. Comparison of the Ideal Gas
Thermodynamic Data at 1 Atm
and 700 K for Fluoromethanes
and took for r uoromethanes

1. Introduction

1.1. Scope and Objectives

This report is the first in a series on the critical review, evaluation, and calculation of the ideal gas thermodynamic properties of the fluorine and chlorine derivatives of methane and ethane. The properties tabulated are: heat capacity, C_p° ; entropy, S° ; relative enthalpy, $H^{\circ} - H_{0}^{\circ}$; the Gibbs energy function, $(G^{\circ} - H_{0}^{\circ})/$ T; enthalpy of formation, ΔHf° ; Gibbs energy of formation, $\Delta G f^{\circ}$; and logarithm of the equilibrium constant of formation, $\log K_f$. Values are given at temperatures from 0 to 1500 K. The first four properties have been calculated from the partition functions based on the usual rigid-rotor harmonicoscillator approximations. Enthalpies of formation have been derived from selected experimental data such as enthalpies of combustion and enthalpies of halogenation of an ethene, where available, or from correlation methods where there are no experimental data. Enthalpies of formation at various temperatures,

as well as Gibbs energies of formation and $\log K_f$, are calculated from the related data by the usual thermodynamic formulae. Properties of the elements used in these calculations are listed in section 1.6. In addition, certain other experimental data, such as vapor pressure, enthalpy of vaporization, and third law entropy, have been selected and listed as auxiliary information.

Except for hexachloroethane, the fluoro-, chloro-, and fluorochloro-substituted methanes and ethanes are either gases at room temperature and one atmosphere or low boiling liquids. Most of these compounds are thermally stable and many are used extensively in industry as solvents, refrigerants, and heat transfer fluids. The ideal gas properties are useful approximations to the real gas properties and serve as convenient starting points for the tabulation of properties of the real gases and the condensed states.

Each compound is discussed in a separate section which includes identification of sources of data and their references, selections of the "best" values, comparisons of observed and recommended values, estimates of uncertainties, and tables of the selected values of the molecular parameters and of the thermodynamic properties at selected temperatures. All selected values except the enthalpy of formation of fluoromethane are derived from experimental measurements reported in the literature.

1.2. Definitions of Properties and Symbols

The symbols recommended in "Manual of Symbols and Terminology for Physicochemical Quantities and Units," McGlashan, International Union of Pure and Applied Chemistry, Butterworths, London, 1970, are used throughout. Symbols used in this report, which include some additional specifications, are listed below.

Symbol	Description	Units
C_p	Heat capacity at constant pressure	cal K-1 mol-1
H	Enthalpy $(H = U + PV)$	cal mol-1
ΔHf	Enthalpy of formation of a compound from its elements	kcal mol-1
ΔH_c	Enthalpy of combustion of a compound with oxygen to yield $\mathrm{CO}_2(g), \mathrm{H}_2\mathrm{O}(l)$ and other products as specified	kcal mol-1
ΔH_v	Enthalpy of vaporization of a liquid to a gas at equilibrium vapor pressure	kcal mol-1
ΔH_s	Enthalpy of sublimation of a solid to a gas at equilibrium vapor pressure	kcal mol-1
ı	Moment of inertia of a molecule	g cm² or uŲ
K	Equilibrium constant for a chemical reaction	

	·	
Symbol	Description	Units
K _f	Equilibrium constant of formation of a compound from its elements	
$H-H_0$	Enthalpy at given temperature minus the enthalpy at zero K	cal mol-1
G	Gibbs energy $(G = H - TS)$	cal mol-1
ΔGf	Gibbs energy of formation of a compound from its elements	keal mol-1
$G-H_0$	Gibbs energy at given temperature minus the enthalpy at zero K	cal mol-1
ΔHr	Enthalpy change for a chemical reaction	kcal mol-1
P	Pressure	atm
s	Entropy	cal K-1mol-1
T	Temperature, Kelvin scale	K
U	Internal energy	cal mol-1
ΔUc	Change in internal energy for combustion of a compound in oxygen	kcal mol-1
M	Molecular weight	
v	Volume	$\mathrm{cm^3\ mol^{-1}}$
ν	Vibrational frequency (expressed in wavenumber equivalent)	cm ⁻¹

Physical states are indicated by the following abbreviations

	g	gas
	1	liquid
	c	crystal
. •	aq	aqueous solution

The superscript, °, written after any symbol indicates a property of the substance in its standard state. The standard state of liquids and crystals is the thermodynamically stable state at one atmosphere and at the temperature specified. The standard state of a gas is the hypothetical ideal gas at one atmosphere and at the temperature specified. When needed, additional descriptive information such as the formula of the compound, the state, the moles of water per mole of solute for an aqueous solution, and the temperature are placed in parentheses following the symbol of a property. The number "298" when written within parentheses represents the temperature 298.15 K, or 25°C. Other temperatures are written completely with the appropriate unit symbol, K, or °C, included.

1.3. Units and Physical Constants

This review employs SI units (Page and Vigoureaux, 1970), except for the specification of energy in calories (1 cal = 4.184 J, exactly). The currently accepted atomic weights (The Commission of Atomic Weights, 1970): carbon, 12.011; hydrogen, 1.008; chlorine, 35.453; and fluorine, 18.9984, were used in the calculations. The fundamental physical constants used in the calculations were adopted from Taylor, Parker, and Langenberg (1969). These values have been provisionally recommended by the National Bureau of Standards.

1.4. Uncertainties

The uncertainties associated with the various selected values in this report reflect the judgment of the authors about the accuracy of these values. Wherever possible, they include the effect of both systematic and random errors. When an observed property value is taken from a single source, only the uncertainty estimate of the original author is generally used. When a value is selected from among more than one source, the extent of agreement among the different sources is considered in assigning an uncertainty. Uncertainties in the calculated ideal gas thermodynamic properties are obtained by observing the effects of changing the molecular parametric data by amounts corresponding to their estimated uncertainties.

1.5. Calculation of Ideal Gas Thermodynamic Properties

The ideal gas values of C_p° , S° , $H^{\circ} - H_0^{\circ}$, $(H^{\circ} - H_0^{\circ})/T$, and $(G^{\circ} - H_0^{\circ})/T$ have been calculated from the molecular partition functions for the rigid-rotor harmonic-oscillator model as described by Mayer and Mayer (1940) and other textbooks on statistical thermodynamics. In this approximation, the partition function for the molecule is assumed to be a product of terms for translational, rotational, vibrational, and electronic degrees of freedom. Wherever possible, the calculated values of entropy and heat capacity are compared with experimental third law entropy and heat capacity for the gas phase. Vibrational frequencies selected by Shimanouchi (1972) were adopted for all the chloroand fluoromethanes except difluoromethane.

The selected molecular and thermochemical constants which were used for calculation of the ideal gas thermodynamic properties for the eight chloroand fluoromethanes are summarized in table 1–1.

1.6. Auxiliary Data

The following enthalpies of formation, as reported in National Bureau of Standards Technical Note 270-3 (Wagman et al., 1968), were used in converting

	CH₃Cl	CH ₂ Cl ₂	CHCl ₃	CCl ₄	CH₃F	CH ₂ F ₂	CHF ₃	CF ₄
Molecular weight	50.488	84.933	119.378	153.823	34.0334	52.0238	70.0142	88.0046
Point group	C _{3v}	C2v	C _{3v}	T_d	C _{3v}	C_{2v}	С3v	T_d
Symmetry number	3	2	3	12	3	2	3	12
Ground state configuration	'A ₁	¹A₁	¹A 1	¹ A 1	¹A 1	¹A 1	¹A 1	¹A 1
Product of the three principal moments of inertia, g ³ cm ⁶ × 10 ¹¹⁴	0.0211546	1.9306	32.8237	118.973	0.0059373	0.122690	0.968210	3.15975
Vibrational frequencies, cm ⁻¹	see	see	see	see	see	see	see	see
Enthalpy of formation at 298.15	Table 2-1	Table 3-1 -22.8	Table 4-2	Table 5-2 -22.90	Table 6-1 -56.8	Table 7-1	Table 8-2 -165.7	Table 9-2 -223.02
K, keal mol ⁻¹	± 0.16	± 0.2	± 0.2	± 0.14	± 2	± 0.2	± 1	± 0.2

TABLE 1-1. Molecular and thermochemical constants for the eight chloro- and fluoromethanes

experimental data to standard thermodynamic properties:

$$\Delta Hf^{\circ}(H_2O, l, 298) = -68.315 \text{ keal mol}^{-1},$$

 $\Delta Hf^{\circ}(CO_2, g, 298) = -94.051 \text{ keal mol}^{-1},$
 $\Delta Hf^{\circ}(HCl, aq, 298) = -39.952 \text{ keal mol}^{-1}.$

The enthalpy of formation of liquid and aqueous hydrogen fluoride is still unsettled at this time. Based on the available current information and on personal communications with Ward Hubbard and his coworkers of the Argonne National Laboratory, we have adopted the values,

$$\Delta Hf^{\circ}(HF, 1, 298) = -72.55 \text{ kcal mol}^{-1}, \text{ and}$$

$$\Delta Hf^{\circ}(HF, aq, 25 H_2O, 298) = -77.011 \text{ kcal mol}^{-1},$$

TABLE 1-2. Thermodynamic properties of elements

	Carbon, graphite, C		Hydrogen, gas, H ₂ *		Chlorine, gas, Cl ₂		Fluorine, gas, F2	
Т, К	H°-H ₀ ° cal mol ⁻¹	$\frac{(G^{\circ} - H_{0}^{\circ})/T}{\text{cal } \mathbf{K}^{-1} \text{ mol}^{-1}}$	H°-H ₀ ° cal mol ⁻¹	$(G^{\circ}-H_{0}^{\circ})/T$ cal K ⁻¹ mol ⁻¹	H°-H° cal mol-1	$(G^{\circ} - H_0^{\circ})/T$ cal K ⁻¹ mol ⁻¹	H°-H ₀ ° cal mol ⁻¹	$(G^{\circ}-H_{0}^{\circ})/T$ cal K ⁻¹ mol ⁻¹
100	14.7	-0.081	758.9	-16.798	696.0	-38.189	694.7	-33.746
150	43.5	-0.166	1046.0	-19.733	1051.4	-41.019	1043.2	-36.564
200	92.5	-0.276	1361.6	-21.712	1422.0	-43.048	1394.9	-38.567
273.15	202.8	-0.469	1853.3	-23.801	1992.7	-45.292	1923.8	-40.750
298.15	251.2	-0.530	2023.7	-24.418	2194.3	-45.933	2109.6	-41.638
300	255.0	-0.536	2036.4	-24.462	2209.3	-45.978	2123.5	-41.412
400	502.0	-0.837	2730.9	-26.422	3038.8	-48.130	2893.7	-43.469
500	821.0	-1.157	3429.4	-27.948	3892.5	-49.846	3699.4	-45.101
600	1198.0	-1.488	4129.4	-29.201	4761.0	-51.279	4531.5	-46.464
700	1622.0	-1.821	4831.5	-30.264	5638.8	-52.512	5382.9	-47.639
800	2082.0	-2.150	5537.1	-31.187	6523.5	-53.594	6248.7	-48.674
900	2569.0	-2.472	6248.1	-32.002	7413.2	-54.559	7125.9	-49.600
1000	3074.0	-2.790	6966.2	-32.734	8306.9	-55.431	8012.3	-50.439
1100	3595.0	-3.080	7692.5	-33.400	9203.9	-56.226	8906.6	-51.207
1200	4232.0	-3.380	8428.0	-34.010	10104.	56.956	9808.0	-51.915
1300	4682.0	-3.660	9173.7	-34.574	11007.	-57.632	10716.	-52.572
1400	5242.0	-3.940	9929.9	-35.099	11912.	-58.261	11630.	-53.185
1500	5810.0	-4.200	10696.9	-35.589	12819.	-58.849	12549.	-53.760

^{*}Normal.

The data for graphite were taken from National Bureau of Standards Report 6928, Table B-39, by William Evans, 1960, for the range 0 to 1200 K, and from West and Ishihara, "Advances in Thermophysical Properties at Extreme Temperatures and Pressures", American Society for Testing and Materials, Philadelphia, Pa., 1965. Data for hydrogen, chlorine, and fluorine were obtained from tables 2^-s , 2^-u , 9^-2^-s , 9^-2^-u , 10^-2^-s , and 10^-2^-u of the Thermodynamics Research Center Data Project, Texas A&M University (Zwolinski et al., TRCDP, 1972). The listed values of $H^o - H^o_0$ at 298.15 K for C (c), H_2 (g), and G_2 (g) are consistent with those reported and recommended by the CODATA Task Group as the final set of key values for thermodynamics – Part I (International Council of Scientific Unions, 1971).

for this report. The selected enthalpies of formation for CH_2F_2 and CHF_3 are dependent on the value of ΔHf for aqueous HF. A change in this value by an amount Δx will result in a corresponding change of $2\Delta x$ for the ΔHf of the CH_2F_2 and $3\Delta x$ for CHF_3 . The selected enthalpy of formation for CF_4 is not affected by the enthalpy of formation of HF.

The thermodynamic properties of the elements used in the calculation of ΔHf° , ΔGf° , and $\log K_f$ for the various compounds are listed in table 1-2.

2. Chloromethane

The values of rotational constants, A_e and B_e , for chloromethane (methyl chloride), CH₃35Cl, were calculated by Duncan (1970) from the best estimates of values of A_0 , the microwave values of B_0 , and the interaction terms, α_r^A and α_r^B . The corresponding moments of inertia for isotope CH₃³⁵Cl were derived as $I_A = 5.3576 \times 10^{-40} \text{ g cm}^2 (3.2264 \text{ uÅ}^2) \text{ and } I_B = I_C =$ $62.5967 \times 10^{-40} \text{ g cm}^2$ (37.6968 uÅ²). The moments of inertia for isotope $CH_3^{37}Cl$ were obtained as: $I_A =$ 5.3576×10^{-40} g cm² (3.2264 uÅ²) and $I_B = I_C = 63.5796 \times 10^{-40}$ g cm² (38.2887 uÅ²), where the value of I_A is the same as that for $CH_3^{35}Cl$, since the atomic mass of 35Cl and 37Cl is not involved. The value of I_B for $CH_3^{37}Cl$ was estimated by addition to the value of I_B (CH₃³⁵Cl) the difference in moments of inertia (I_B) between CH₃³⁷Cl and CH₃³⁵Cl, which were derived based on the molecular parameters obtained by Duncan (1970).

Based on the values of I_A , I_B , and I_C for CH₃³⁵Cl and CH₃³⁷Cl, the corresponding values for CH₃Cl isotopic mixture were calculated to be: $I_A = 5.3576 \times 10^{-40}$ g cm² and $I_B = I_C = 62.8372 \times 10^{-40}$ g cm². The moment of inertia for the isotopic mixture was evaluated as $I = W_{35}I_{35} + W_{37}I_{37}$, where W_{35} , W_{37} and I_{35} , I_{37} are the percent natural abundance and moment of inertia for CH₃³⁵Cl and CH₃³⁷Cl, respectively. The product of the three principal moments of inertia for CH₃Cl was obtained as 2.1155×10^{-116} g³ cm⁶ (4620.2 u³Å⁶), which was adopted.

TABLE 2-1. Vibrational assignments for chloromethane

		Reference
Mode No.	Symmetry class	Shimanouchi 1972
		Wavenumber in cm-1
$ u_1 $	a_1	2937
$ u_2$	a_1	1355
$ u_3$	a_1	732
ν_4	e	3039
$ u_5$	e e	1452
$ u_6$	e .	1017

Shimanouchi (1972) has critically reviewed the infrared and Raman data for CH₃Cl, and his assignments, given in table 2–1, are selected.

The enthalpy of formation of CH_0Cl was listed in NBS Circular 500 (Rossini et al., 1952) as: $\Delta H f^{\circ}(CH_3Cl, g, 298) = -19.6$ kcal mol⁻¹ and was based upon the very early results of Thomsen (1908). The more recent NBS compilation (Wagman et al., 1968) gives: $\Delta H f^{\circ}(CH_3Cl, g, 298) = -19.32$ kcal mol⁻¹.

The enthalpy of hydrogenation of CH₃Cl₂ (reaction 2–1) has been measured at 521 K in a flow calorimeter by Lacher and coworkers (1956a, b). They obtained for reaction 2–1: ΔHr° (521 K) = -19.67 \pm 0.5 kcal mol⁻¹

$$CH_3Cl(g) + H_2(g) \rightarrow CH_4(g) + HCl(g).$$
 (2-1)

The enthalpy change for this reaction has been corrected to 298.15 K using heat capacity data for CH₄(g) H₂(g) (Zwolinski et al., API44, 1972), HCl(g) (JANAF, 1971), and CH₀Cl(g) (this work) to yield:

$$\Delta Hr^{\circ}(298 \text{ K}) = -19.28 \pm 0.05 \text{ kcal mol}^{-1}$$
.

This data, combined with $\Delta Hf^{\circ}(CH_4, g, 298) = -19.88$ and $\Delta Hf^{\circ}(HCl, g, 298) = -22.20$ kcal mol⁻¹ (Wagman et al., 1968), yield:

$$\Delta Hf^{\circ}(CH_3Cl, g, 298) = -20.67 \pm 0.05 \text{ kcal mol}^{-1}.$$

Lacher and coworkers (1956a, b) noted difficulty in obtaining complete reaction with CH₃Cl and, using infrared analysis, estimated that hydrogenation was 99.5 percent complete.

Fletcher and Pilcher (1971) have measured the enthalpy of combustion of CH₃Cl(g) in a flame calorimeter using aqueous arsenious oxide to insure complete conversion of Cl₂ to HCl. They obtained

$$\Delta Hr^{\circ}(298 \text{ K}) = -182.6 \pm 0.12 \text{ kcal mol}^{-1}$$

for reaction (2-2),

$$CH_3Cl(g) + \frac{3}{2}O_2(g) \rightarrow$$

$$CO_2(g) + H_2O(l) + HCl \cdot 600 H_2O.$$
 (2-2)

From this,

$$\Delta Hf^{\circ}(CH_3Cl, g, 298) = -19.59 \pm 0.16 \text{ kcal mol}^{-1}$$

may be obtained by using auxiliary data of Wagman et al. (1968). This differs significantly from the result of Lacher et al. (1956a, b) and suggests that the extent of hydrogenation of CH₃Cl may have been overestimated by these researchers.

Fletcher and Pilcher (1971) have also studied the combustion of ethyl and isopropyl chlorides in the same

ΔHr° (obs) kcal mol ⁻¹	Conditions	Method	Δ <i>Hr</i> ° (298) kcal mol ⁻¹	Reference	ΔHf°(g, 298) kcal mol ⁻¹
-19.67 ± 0.05	Gas phase, 521 K	Hydrogenation	-19.28 ± 0.05	Lacher et al., 1956 (a, b)	-20.67 ± 0.05
				Wagman et al., 1968	-19.32
-182.6 ± 0.12	Gas phase, 298 K	Flame calorimeter	-182.6 ± 0.12	Fletcher and Pilcher, 1971	-19.59 ± 0.16
				Selected	-19.59 ± 0.16

TABLE 2-2. Enthalpy of formation data for chloromethane

TABLE 2-3. Ideal gas thermodynamic properties for chloromethane

T 12	C_p°	S°	$-(G^{\circ}-H_0^{\circ})/T$	$H^{\circ}\!\!-\!\!H^{\circ}_0$	ΔHf°	ΛGf°	T 120
<i>T</i> , K		cal K ⁻¹ mol-	1		kcal mol-1		Log Kf
		1	·				
0	0.0	0.0	0.0	0.0	-17.695	-17.696	infinite
100.00	7.955	46.795	38.846	0.795	-18.402	-17.143	37.465
150.00	8.060	50.034	42.070	1.195	-18.639	-16.465	23.989
200.00	8.401	52.393	44.368	1.605	-18.936	-15.696	17.151
273.15	9.335	55.138	46.898	2.251	-19.424	-14.440	11.554
298.15	9.737	55.973	47.624	2.489	-19.590	-13.969	10.239
300.00	9.767	56.033	47.675	2.507	-19.602	-13.933	10.150
400.00	11.514	59.080	50.154	3.571	-20.242	-11.943	6.525
500.00	13.188	61.833	52.218	4.807	-20.799	- 9.804	4.285
600.00	14.661	64.371	54.035	6.202	-21.267	- 7.560	2.754
700.00	15.937	66.729	55.682	7.733	-21.651	- 5.242	1.637
800.00	17.050	68.931	57.202	9.384	-21.961	- 2.876	0.786
900.00	18.022	70.997	58.621	11.138	-22.205	- 0.475	0.115
1000.00	18.873	72.941	59.957	12.984	-22.388	1.955	-0.427
1100.00	19.617	74.775	61.221	14.909	-22.522	4.383	-0.871
1200.00	20.266	76.510	62.424	16.904	-22.617	6.844	-1.246
1300.00	20.833	78.156	63.571	18.960	-22.681	9.300	-1.563
1400.00	21.329	79.718	64.669	21.068	-22.720	11.771	-1.838
1500.00	21.762	81.205	65.722	23.223	-22.737	14.231	-2.074
	·	J	L		L	L	

calorimeter and have obtained good agreement with ΔHf° obtained from equilibrium data on these compounds. For these reasons,

$$\Delta Hf^{\circ}(CH_3Cl, g, 298) = -19.59 \pm 0.16 \text{ kcal mol}^{-1}$$

has been adopted. These experimental results are summarized in table 2-2.

The rigid-rotor harmonic-oscillator approximation (Mayer and Mayer, 1940) has been used with the above selected data (see table 1–1) to calculate the ideal gas thermodynamic properties for CH₃Cl, as shown in table 2–3.

Messerly and Aston (1940) have measured the entropy of the real gas at its boiling point:

$$S^r(CH_3Cl, g, 248.96 \text{ K}) = 54.15 \pm 0.15 \text{ cal K}^{-1} \text{ mol}^{-1}$$
.

The correction to the ideal gas state which they obtained at this temperature from the Berthelot equation of state was: $S^{\circ}-S^{r}=0.12$ cal K^{-1} mol⁻¹. Thus, the entropy of the ideal gas was:

$$S^{\circ}(CH_3Cl, g, 248.96 \text{ K}) = 54.27 \pm 0.15 \text{ cal } \text{K}^{-1} \text{ mol}^{-1}.$$

The value calculated in this work is:

$$S^{\circ}(CH_{0}Cl, g, 248.96 \text{ K}) = 54.290 \text{ cal K-l mol}^{-1},$$

well within the experimental error. However, the entropy at this low temperature is not a sensitive test of the calculated functions as a 5 percent increase in the fundamental frequencies gave only a 0.1 percent decrease $(0.05 \text{ cal } \text{K}^{-1} \text{ mol}^{-1})$ in the calculated entropy.

3. Dichloromethane

From microwave study, Myers and Gwinn (1952) obtained the rotational constants, A_0 , B_0 , and C_0 , for dichloromethane (methylene chloride) isotopes, $\mathrm{CH_2^{35,35}Cl_2}$, $\mathrm{CH_2^{35,37}Cl_2}$ and $\mathrm{CH_2^{37,37}Cl_2}$. Based on their reported rotational constants, we calculated the three principal moments of inertia for $\mathrm{CH_2Cl_2}$ as:

$$I_A=2.6274 imes 10^{-39} ext{ g cm}^2 ext{ (15.826 uÅ}^2),$$

$$I_B=2.6509 imes 10^{-38} ext{ g cm}^2 ext{ (159.642 uÅ}^2),$$
 and
$$I_C=2.7719 imes 10^{-38} ext{ g cm}^2 ext{ (166.927 uÅ}^2).$$

TABLE 3-1. Vibrational assignments for dichloromethane

		Reference
Mode No.	Symmetry class	Shimanouchi, 1972
		Wavenumber in cm
v_1	a ₁	2999
v_2	a_1	1467
v_3	a_1	717
v_4	a_1	282
v_5	a_2	1153
v_6	b_1	3040
v_7	b_2	898
v_8	b_2	1268
v_9	b_2	758

The product $I_A I_B I_C$ was derived to be 1.9306×10^{-114} g³ cm⁶ (421650 u³Å⁶) and was adopted for calculation.

Shimanouchi (1972) has critically reviewed the infrared and Raman data on CH₂Cl₂, and his assignments, given in table 3-1, were selected.

The enthalpy of vaporization of CH_2Cl_2 is needed to determine the enthalpy of formation in the gas phase. Mathews (1926) measured ΔH_v calorimetrically at 313.65 K and obtained: $\Delta H_v(313.65 \text{ K}) = 6.68 \pm 0.02 \text{ kcal mol}^{-1}$. The correction to the ideal gas was made using Berthelot's equation of state and relevant critical data (Zwolinski et al., TRCDP, 1972) which gave:

$$\Delta H_{\nu}^{\circ}(313.65 \text{ K}) = 6.74 \pm 0.03 \text{ kcal mol}^{-1}$$
.

The liquid phase heat capacity data have been reviewed (Stull, Westrum, and Sinke, 1969) and below 320 K, $C_p(\mathrm{CH_2Cl_2}, 1) = 17.06 + 0.023$ T(K). The data, combined with the gas phase heat capacity calculated in this work, yield:

$$\Delta H_v^{\circ}(298 \text{ K}) = 6.93 \pm 0.03 \text{ kcal mol}^{-1}$$
.

The equilibrium vapor pressure data have been critically evaluated by the TRC Data Project (Zwolinski et al., TRCDP, 1972) and correlated to the Antoine equation for vapor pressure (P^e) . The enthalpy of vaporization may be calculated from the Antoine constants (B, C) using the Clapeyron equation:

$$\Delta H_v = T\Delta V \frac{dP^e}{dT} = T\Delta V \frac{2.3026 \ BP^e}{(t+C)^2},$$
 (3-1)

where $\Delta V = V(g) - V(l)$; T and t are temperatures in K and °C, respectively.

The change in volume on vaporization was calculated using the Berthelot equation of state with

$$P_c = 60.0 \text{ atm and } T_c = 510 \text{ K}$$

for the gas and $d_l^{25} = 1.316$ g cm⁻³ (Zwolinski et al., TRCDP, 1972) for the liquid. After correcting to the ideal gas, reaction 3–1 gave:

$$\Delta H_v^{\circ}(CH_2Cl_2, 298) = 6.94 \text{ kcal mol}^{-1}$$
.

These values are in excellent agreement and yield the selected value:

$$\Delta H_n^{\circ}(CH_2Cl_2, 298) = 6.94 \pm 0.02 \text{ kcal mol}^{-1}.$$

A summary of these data is given in table 3-2.

Eftring (1938) has measured the enthalpy of combustion of dichloromethane, and his data have been corrected by Smith et al. (1953). One of the corrections made by Smith (1953) was for the oxidation reaction of arsenious oxide to arsenic oxide (3-2).

$$A_{s_2}O_3(aq) + O_2(g) \rightarrow A_{s_2}O_5(aq).$$
 (3-2)

The value used by Eftring was 19.6 cal/milliequivalent $\text{Cl}_2(\Delta Hr^\circ(298\text{ K})=78.4\text{ kcal mol}^{-1})$, and Smith et al. corrected this to 18.6 cal/milliequivalent Cl_2 . Wagman et al. (1968) gave $\Delta Hr^\circ(298\text{ K})=-76.6\text{ kcal mol}^{-1}$, corresponding to 19.15 cal/milliequivalent Cl_2 for undissociated arsenic acid.

Thus to make the enthalpy of combustion given by Smith et al. compatible with the newest $\Delta Hr^{\circ}(298 \text{ K})$ for reaction 3–1, one must add 65 percent of the As₂O₃ correction to the "corrected" enthalpy of combustion. Thus for CH₂Cl₂, Smith et al. (1953) gave

$$\Delta U_c/M = -1701.4 \text{ cal g}^{-1}$$

and

$$\Delta U/M(A_{S_2}O_3) = 3.2 \text{ cal g}^{-1}.$$

TABLE 3-2. Enthalpy of vaporization data for dichloromethane

$\Delta H u$ (obs) kcal mol $^{-1}$	Conditions	Methods	Reference	Δ <i>Hν</i> ° (298) kcal mol ⁻¹
6.69	1 atm, 313.5 K	Calorimetric	Mathews, 1926	6.93
6.90	435.6 torr, 298.15 K	Vapor pressure, Antoine equation.	Zwolinski et al., TRCDP, 1972.	6.94
			Selected	6.94

Therefore, the best value is

$$\Delta U_c/M = -1701.4 + (0.65)(3.2) = -1699.3 \text{ cal g}^{-1}$$

$$CH_2Cl_2(l) + O_2(g) \rightarrow CO_2(g) + 2HCl \cdot 600 H_2O.$$
 (3-3)

Consequently, $\Delta Hr^{\circ}(298 \text{ K}) = -144.3 \text{ kcal mol}^{-1}$ for reaction 3-3, $\Delta Hf^{\circ}(\text{CH}_{2}\text{Cl}_{2}, \text{ l}, 298) = -29.40$, and $\Delta Hf^{\circ}(\text{CH}_{2}\text{Cl}_{2}, \text{ g}, 298) = -22.5 \pm 0.2 \text{ kcal mol}^{-1}$, using auxiliary data from Wagman et al. (1968) and $\Delta H_{p}^{\circ}(298 \text{ K})$ adopted here.

Hu and Sinke (1969) have measured the energy of combustion of liquid CH_2Cl_2 in a rotating bomb calorimeter with aqueous arsenious oxide. Their data, reduced in an analogous manner to that above, gave: $\Delta Hf^{\circ}(CH_2Cl_2, 1, 298) = -29.7 \pm 0.2$ kcal mol⁻¹. Lacher, Amador, and Park (1967) have measured the enthalpy change of reaction 3-4 at 523 K and have obtained: $\Delta Hr^{\circ}(523 \text{ K}) = -40.05 \pm 0.15$ kcal mol⁻¹

$$CH_{2}Cl_{2}(g) + 2H_{2}(g) \rightarrow CH_{4}(g) + 2HCl(g). \quad (3-4)$$

This result is corrected to 298 K using the heat capacity

data for $CH_4(g)$ and $H_2(g)$ from the API44 Tables (Zwolinski et al., API44, 1972), for HCl(g) from JANAF (1971), and for $CH_2Cl_2(g)$ from this work. This correction yields: $\Delta Hr^{\circ}(298 \text{ K}) = -39.1 \pm 0.2$ kcal mol^{-1} , for reaction 3–4. When this result is combined with $\Delta Hf^{\circ}(CH_4, g, 298) = -17.88$ and $\Delta Hf^{\circ}(HCl, g, 298) = -22.020$ kcal mol^{-1} (Wagman et al., 1968), one obtains $\Delta Hf^{\circ}(CH_2Cl_2, g, 298) = -22.8 \pm 0.2$ kcal mol^{-1} These experimental results and the selected value, $\Delta Hf^{\circ}(CH_2Cl_2, g, 298) = -22.8 \pm 0.2$ kcal mol^{-1} , are summarized in table 3–3.

The rigid-rotor harmonic-oscillator approximation (Mayer and Mayer, 1940) has been used with the above selected data to calculate the ideal gas thermodynamic functions for CH₂Cl₂. These calculations are presented in table 3-4. There are no experimental data for entropy or gas phase heat capacity with which these functions may be compared.

4. Trichloromethane

The structural parameters for trichloromethane (chloroform) deduced from microwave studies are sum-

ΔHr° (obs) keal mol ⁻¹	Conditions	Method	Δ <i>Hr</i> ° (298) keal mol ⁻¹	Reference	ΔHf°(g, 298) kcal mol ⁻¹
-40.07 ± 0.14	l atm, 523 K, gas phase.	Hydrogenation	-39.09	Lacher et al., 1967	-22.8 ± 0.2
- 144.38	liq at 298 K	Combustion	-144.38	Smith et al., 1953	-22.5 ± 0.2
-144.00 ± 0.2	lig at 298 K	Combustion	-144.00 ± 0.2	Hu and Sinke, 1969	-22.8 ± 0.2
				Selected	-22.8 ± 0.2

TABLE 3-3. Enthalpy of formation data for dichloromethane

TABLE 3-4. Ideal gas thermodynamic properties for dichloromethane

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					- · · · · · · · · · · · · · · · · · · ·			
0 0.0 0.0 0.0 0.0 -21.16 -21.16 infinite 100.00 8.547 53.813 45.721 0.809 -21.82 -20.23 44.204 150.00 9.268 57.412 49.051 1.254 -22.05 -19.38 28.238 200.00 10.126 60.192 51.500 1.738 -22.30 -18.45 20.165 273.15 11.627 63.565 54.292 2.533 -22.68 -16.99 13.594 298.15 12.164 64.606 55.114 2.830 -22.80 -16.46 12.066 300.00 12.204 64.682 55.172 2.853 -22.81 -16.42 11.962 400.00 14.237 68.477 58.035 4.177 -23.26 -14.22 7.769 500.00 15.934 71.843 60.466 5.689 -23.62 -11.92 5.210 600.00 17.296 74.873 66.619 7.353 -23.90 -9.55 <th>T V</th> <th>C_p°</th> <th>S°</th> <th>$-(G^{\circ}-H_{0}^{\circ})/T$</th> <th>$H^{\circ}-H_{0}^{\circ}$</th> <th>$\Delta H f^{\circ}$</th> <th>$\Delta G f^{\circ}$</th> <th>) W.C</th>	T V	C_p°	S°	$-(G^{\circ}-H_{0}^{\circ})/T$	$H^{\circ}-H_{0}^{\circ}$	$\Delta H f^{\circ}$	$\Delta G f^{\circ}$) W.C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1, K		cal K-1 mol-	1		kcal mol-1		log K f
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0.0	0.0	0.0	0.0	-21.16	-21.16	infinite
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100.00	8.547	53.813	45.721	0.809	-21.82	-20.23	i e
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	150.00	9.268	57.412	49.051	1.254	-22.05	-19.38	28.238
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200.00	10.126	60.192	51.500	1.738	-22.30	-18.45	20.165
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	273.15	11.627	63.565	54.292	2.533	-22.68	-16.99	13.594
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	298.15	12.164	64.606	55.114	2.830	-22.80	-16.46	12.066
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	300.00	12.204	64.682	55.172	2.853	-22.81	-16.42	11.962
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	400.00	14.237	68.477	58.035	4.177	-23.26	-14.22	7.769
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	500.00	15.934	71.843	60.466	5.689	-23.62	-11.92	5.210
800.00 19.321 80.144 66.361 11.027 -24.28 -4.71 1.286 900.00 20.095 82.466 68.023 12.999 -24.39 -2.25 0.547 1000.00 20.755 84.618 69.576 15.042 -24.47 0.22 -0.048 1100.00 21.322 86.624 71.036 17.147 -24.51 2.68 -0.532 1200.00 21.809 88.500 72.414 19.304 -24.52 5.16 -0.939 1300.00 22.231 90.263 73.920 21.506 -24.52 7.63 -1.283 1400.00 22.596 91.924 74.961 23.748 -24.50 10.11 -1.578	600.00	17.296	74.873	62.619	7.353	-23.90	-9.55	3.479
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	700.00	18.403	77.625	64.569	9.139	24.11	7.14	2.230
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	800.00	19.321	80.144	66.361	11.027	-24.28	-4.71	1.286
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	900.00	20.095	82.466	68.023	12.999	-24.39	-2.25	0.547
1200.00 21.809 88.500 72.414 19.304 -24.52 5.16 -0.939 1300.00 22.231 90.263 73.920 21.506 -24.52 7.63 -1.283 1400.00 22.596 91.924 74.961 23.748 -24.50 10.11 -1.578	1000.00	20.755	84.618	69.576	15.042	-24.47	0.22	-0.048
1300.00 22.231 90.263 73.920 21.506 -24.52 7.63 -1.283 1400.00 22.596 91.924 74.961 23.748 -24.50 10.11 -1.578	1100.00	21.322	86.624	71.036	17.147	-24.51	2.68	-0.532
1400.00 22.596 91.924 74.961 23.748 -24.50 10.11 -1.578	1200.00	21.809	88.500	72.414	19.304	-24.52	5.16	-0.939
2017	1300.00	22.231	90.263	73.920	21.506	-24.52	7.63	-1.283
1500.00 22.913 93.494 76.145 26.024 -24.46 12.58 -1.833	1400.00	22.596	91.924	74.961	23.748	-24.50	10.11	-1.578
	1500.00	22.913	93.494	76.145	26.024	-24.46	12.58	-1.833

Reference Structural Ghosh, Trambarulo, Wolfe Jen and Lide parameter Selected 1956 1962 and Gordy, 1952 1.073^b 1.100 ± 0.004 C-H 1.073 ± 0.02 1.100 ± 0.004 C - CI1.767 1.762 1.758 ± 0.001 1.758 ± 0.001 ∠ CICCI 110.40 110.92 111.3 ± 0.2 111.3 ± 0.2

TABLE 4-1. Structural data for trichloromethane

TABLE 4-2. Vibrational assignments for trichloromethane

		Reference
Mode No.	Symmetry class	Shimanouchi 1972
		Wavenumber in cm-1
ν_1	a_1	3034
$ u_2$	a_i	680
$ u_3$	a_1	363
ν_4	e	1220
$ u_5$	e	774
$ u_6$	e	261

marized in table 4-1. The more recent results of Jen and Lide (1962) are adopted, as their analysis included not only the data of Ghosh, Trambarulo, and Gordy (1952), but new results on ¹³CH³⁵Cl₃ also. The adopted parameters are consistent with earlier electron diffraction studies which are summarized in "Interatomic Distances" (1958).

Shimanouchi (1972) has critically reviewed the infrared and Raman data for trichloromethane, and his assignments, given in table 4-2, were selected.

Mathews (1926) has measured the enthalpy of vaporization calorimetrically at 333.3 K and has obtained

$$\Delta H_v(333.3 \text{ K}) = 7.02 \text{ kcal mol}^{-1}$$
.

The correction to ideal gas is made using the Berthelot equation of state and P_c = 54 atm, T_c = 536.5 K (Zwolinski et al., TRCDP, 1972) to yield

$$\Delta H_v^{\circ}(333.3 \text{ K}) = 7.08 \text{ kcal mol}^{-1}$$
.

Stull, Westrum, and Sinke (1969) reviewed the C_p° data for the liquid and so

$$C_p^{\circ}(CHCl_3, 1, T) = 21.86 + 0.018T$$
 (240 $\leq T \leq 330$ K),

thus

$$\Delta H_p^{\circ}(298 \text{ K}) = 7.49 \text{ kcal mol}^{-1}$$
.

Patton (1952) has measured ΔH_v calorimetrically at 298 K and has obtained

$$\Delta H_v(\text{CHCl}_3, 298) = 7.44 \text{ kcal mol}^{-1},$$

and $P_{eq} = 199.1$ torr, so that ΔH_v^o (CHCl₃, 298) = 7.46 kcal mol⁻¹, which is in good agreement with Mathews (1926). A mean of these data, summarized in table 4-3, is adopted. The data of Kolossowsky and Alimov (1934) appear too high.

Smith et al. (1953) have corrected the measurements of Eftring (1938) for the enthalpy change of reaction 4-1

$$CHCl_3(l) + H_2O(l) + \frac{1}{2}O_2(g) \rightarrow CO_2(g) + 3HCl \cdot 600 H_2O.$$
(4-1)

The measurements were made using quartz wool moistened with aqueous arsenious oxide to insure complete conversion of Cl₂ to HCl. When these data are corrected as explained in part 3, then for reaction 4-1

$$\Delta Hr^{\circ}$$
 (298 K) = -112.6 kcal mol⁻¹,

and $\Delta Hf^{\circ}(CHCl_3, 1, 298) = -32.61$, using auxiliary data

¹ TABLE 4-3. Enthalpy of formation data for trichloromethane

ΔHv (obs) kcal mol ⁻¹	Conditions	Methods	Reference	ΔHv° (298) kcal mol ⁻¹
7.02	1. atm, 333.3 K	Calorimetric	Mathews, 1926	7.49
7.44	199.1 torr, 298 K	Calorimetric	Patton, 1952	7.46
7.69	295 K	Calorimetric	Kolosovskii and Alimov, 1934	7.67
			Selected	7.48

^a Bond distances, 10⁻⁸ cm; bond angle, degrees.

b Assumed value.

ΔHr° (obs) kcal mol ⁻¹	Conditions	Method	ΔHr° (298) kcal mol ⁻¹	Reference	ΔHf° (g, 298) kcal mol ⁻¹
-112.6	liq, 293 K	Combustion	-112.6	Smith et al., 1953	-25.12
-113.1 ± 0.2	liq, 298 K	Combustion	-113.1 ± 0.2	Hu and Sinke, 1969	-24.62 ± 0.2
				Selected	-24.6 ± 0.2

TABLE 4-4. Enthalpy of formation data for trichloromethane

TABLE 4-5. Ideal gas thermodynamic properties for trichloromethane

	C_p°	S°.	$-(G^{\circ}-H_{0}^{\circ})/T$	$H^{\circ}-H_{0}^{\circ}$	ΔHf°	$\Delta G f^{\circ}$	
T, K		cal K-1 mol-	1		. kcal mol-1	L	Log Kf
0	0.0	0.0	0.0	0.0	-23.43	-23.43	infinite
100.00	9.637	57.180	48.816	0.836	-24.03	-21.73	47.498
150.00	11.414	61.432	52.340	1.364	-24.21	-20.54	29.934
200.00	12.978	64.934	55.062	1.974	-24.36	-19.30	21.090
273.15	15.007	69.287	58.305	3.000	-24.55	-17.42	13.936
298.15	15.627	70.628	59.282	3.383	-24.60	-16.76	12.288
300.00	15.671	70.725	59.353	3.412	-24.60	-16.71	12.176
400.00	17.747	75.532	62.813	5.088	-24.77	-14.96	7.680
500.00	19.266	79.664	65,780	6.942	-24.86	-11.37	4.969
600.00	20.378	83.280	68.401	8.927	-24.90	- 8.66	3.156
700.00	21.217	86.487	70.760	11.009	-24.92	- 5.96	1.859
800.00	21.872	89.365	72.909	13.165	24.90	- 3.25	0.887
900.00	22.398	91.973	74.885	15.379	-24.86	- 0.54	0.132
1000.00	22.831	94.356	76.714	17.641	-24.80	2.16	-0.473
1100.00	23.191	96.549	78.419	19.943	-24.73	4.84	-0.962
1200.00	23.494	98,580	80.016	22.277	-24.65	7.54	-1.372
1300.00	23.751	100.471	81.517	24.640	-24.57	10.21	-1.717
1400.00	23.971	102.239	82.935	27.026	-24.48	12.89	-2.013
1500.00	24.160	103.900	84.278	29.433	-24.38	15.56	-2.267

from Wagman et al. (1968). Therefore, ΔHf° (CHCl₃, g, 298)=-25.12 kcal mol⁻¹.

Hu and Sinke (1969) have measured the enthalpy of reaction 4–1 in a rotating bomb calorimeter, using aqueous arsenious oxide to assure complete conversion of Cl₂ to HCl. They obtained $\Delta Hr^{\circ}(298 \text{ K})=-113.1\pm0.2 \text{ kcal mol}^{-1}$ and, therefore,

$$\Delta Hf^{\circ}$$
 (CHCl₃, g, 298) = -24.62 ± 0.2 kcal mol⁻¹.

These two values are consistent with one another and are summarized in table 4-4. The more recent work of Hu and Sinke (1969) in a rotating bomb calorimeter has been adopted.

These selected data have been used to calculate the ideal gas thermodynamic properties in the rigid-rotor harmonic-oscillator approximation. The results are presented in table 4-5. There are no experimental heat capacity or entropy measurements with which to compare these calculations.

5. Tetrachloromethane

Electron diffraction studies of tetrachloromethane (carbon tetrachloride) made by Karle and Karle (1949)

and by Bartell, Brockway, and Schwendeman (1955) are in excellent agreement. The selected parameters and data are summarized in table 5-1.

Shimanouchi (1972) has critically reviewed the infrared and Raman data for tetrachloromethane, and his assignments, given in table 5-2, were selected.

Mathews (1926) measured the enthalpy of vaporization of tetrachloromethane calorimetrically at 348.6 K and obtained ΔH_v (348.6 K) = 7.16 kcal mol⁻¹. This value is corrected to the ideal gas state using the Berthelot equation of state and P_c =44.97, T_c =556.3, and $P_{\rm eq}$ =1 atm (nominal) (Zwolinski et al., TRCDP, 1972); thus, $\Delta H_v^{\rm o}$ (348.6 K) = 7.24 kcal mol⁻¹. Stull, Westrum, and Sinke (1969) have summarized the experimental data on liquid heat capacities and have found:

$$C_p^{\circ}(CCl_4, l, T) = 27.65 + 0.013 T$$
 (250 < T < 340 K).

These data are combined with $C_p^{\circ}(CCl_4, g, T)$ of this work to obtain $\Delta H_p^{\circ}(298) = 7.82 \text{ kcal mol}^{-1}$.

Kolossowsky and Alimov (1934) measured the enthalpy of vaporization at 295 and 295.5 K. Their data were corrected in a similar fashion ($P_{\rm eq}=0.13$ atm (Hildebrand and McDonald, 1959)) to that of Mathews

TABLE 5-1. Stuctural data for tetrachloromethane

TABLE 5-2. Vibrational assignments for tetrachloromethane

		Reference
Mode No.	Symmetry class	Shimanouchi, 1972
		Wavenumber in cm ⁻¹
ν_1	a_1	458
$ u_2$	e	217
ν_3	f_2	776
$ u_4$	f_2	314

(1926) to yield $\Delta H_v^{\circ}(295 \text{ K}) = 7.84$ and $\Delta H_v^{\circ}(295.5 \text{ K}) = 7.87 \text{ kcal mol}^{-1}$.

Pitzer (1941) measured the enthalpy of vaporization in a flow calorimeter at 349.8 K and obtained $\Delta H_v(349.8 \text{ K}) = 7.17 \pm 0.02 \text{ kcal mol}^{-1}$. This yields $\Delta H_v^{\circ}(298) = 7.83 \pm 0.03 \text{ kcal mol}^{-1}$.

Hildebrand and McDonald (1959) measured the enthalpy of vaporization calorimetrically at 298 K and obtained $\Delta H_v(298) = 7.746 \pm 0.005$ kcal mol⁻¹, which yields $\Delta H_v^{\circ}(298) = 7.762 \pm 0.01$ kcal mol⁻¹ ($P_{\rm eq} = 0.15$ atm). An error of ± 0.03 kcal mol⁻¹ was estimated for the data of Mathews (1926), and an average taken of this value, Pitzer's (1941), and Hildebrand and McDonald's (1959) weighted inversely to their errors. These data and the selected value are summarized in table 5–3.

Bodenstein, Gunter, and Hoffmeister (1926) measured the enthalpy change of reaction 5-1,

$$CCl_4(g) + 2H_2(g) \rightarrow C(s) + 4HCl(g)$$
 (5-1)

and obtained $\Delta Hr^{\circ}(293 \text{ K}) = -62.6 \pm 0.4 \text{ kcal mol}^{-1}$. Their calorimeter was calibrated with the formation reaction for HCl(g). A value of $\Delta Hf^{\circ}(\text{HCl}, \text{ g}, 298) = -22.0 \text{ kcal mol}^{-1}$ was used and is consistent with accepted values today (Wagman et al., 1968). Thus,

$$\Delta Hf^{\circ}(CCl_{4}, g, 298) - \Delta Hf^{\circ}(C, s, 298) = -25.6$$

 $\pm 0.4 \text{ kcal mol}^{-1}.$

Domalski and Armstrong (1967) summarized the available data on the observed enthalpy of formation of solid carbon (soot) and concluded that ΔHf° (C, s, 298) = 3 ± 1 kcal mol⁻¹ was reasonable in the absence of other data. This leads to ΔHf° (CCl₄, g, 298) = -22.6 ± 1 kcal mol⁻¹.

Smith et al. (1953) have measured the enthalpy of combustion of CCl₄ (reaction 5-2) using a static calorimeter and quartz wool moistened with aqueous arsenious oxide to assure complete conversion of Cl₂ to HCl

$$CCl_4(l) + 2H_2O(l) \rightarrow CO_2(g) + 4HCl \cdot 600H_2O.$$
 (5-2)

When their data were corrected as indicated in section 3 and combined with the necessary ΔHf° (Wagman et al., 1968), one obtains: ΔHf° (CCl₄, l, 298)= -30.4 ± 0.5 kcal mol⁻¹.

TABLE 5-3. Enthalpy of vaporization data for tetrachloromethane

ΔHv (obs) kcal mol ⁻¹	Conditions	Methods	Reference	ΔHv° (298) kcal mol ⁻¹
7.16	1 atm, 348.6 K	Calorimetric	Mathews, 1926	7.82
7.86	295 K	Calorimetric	Kolosovskii and Alimov, 1934	7.84
7.89	295.5 K	Calorimetric	Kolosovskii and Alimov, 1934	7.87
7.746 ± 0.005	0.15 atm, 298 K	Calorimetric	Hildebrand and McDonald, 1959	7.762 ± 0.01
7.170 ± 0.02	1 atm, 349.8 K	Calorimetric	Pitzer, 1941	7.83 ± 0.03
	-	·.	Selected	7.79 ± 0.03

^aBond distances, 10⁻⁸ cm; bond angle, degrees.

ΔHr° (obs) kcal mol ⁻¹	Conditions	Method	ΔHr° (298) kcal mol $^{-1}$	Reference	ΔHf° (g, 298) keal mol ⁻¹
-62.57 ± 0.35	gas, 293.2 K	Hydrogenation	-62.57	Bodenstein, Gunter and Hoffmeister, 1926	-22.6 ± 1
-86.35 ± 0.5	liquid, 295 K	Combustion	-86.35	Smith et al., 1953	-22.6 ± 0.5
-22.3 ± 2	solution, 298 K	Chlorination, CHCl ₃	-22.3	Kirkbride, 1956	-24.3 ± 2
	gas, 298 K	Explosion in $H_2 + O_2$		Baibuz, 1961	-24.6 ± 2
-86.02 ± 0.14	liquid, 298 K	Combustion	-86.02	Hu and Sinke, 1969	-22.90 ± 0.14
	gas, 630-720 K	Equilibrium with COCl ₂	-16.8 ± 0.3	Lord and Pritchard, 1969	-27.35 ± 0.3
				Selected	-22.90 ± 0.14

TABLE 5-4. Enthalpy of formation data for tetrachloromethane

Kirkbride (1956) measured the enthalpy change for reaction 5–3 and obtained $\Delta Hr^{\circ}(298) = -22.3 \pm 2$ kcal mol⁻¹

$$CHCl_3(l) + Cl_2(g) \rightarrow CCl_4(soln) + HCl(g)$$
. (5-3)

Wagman et al. (1968) gave the enthalpy of solution of tetrachloromethane in trichloromethane. It is small compared to the experimental error and can be neglected, so that $\Delta Hf^{\circ}(\text{CCl}_4, 1, 298) = -32.1 \pm 2 \text{ kcal mol}^{-1}$, using $\Delta Hf^{\circ}(\text{CHCl}_3, 1, 298)$ from this work and $\Delta Hf^{\circ}(\text{HCl}, g, 298)$ from Wagman et al. (1968).

Baibuz (1961) has determined the enthalpy of formation of tetrachloromethane from its effect on explosions of $H_2(g)$ and $O_2(g)$. They deduced: $\Delta Hf^{\circ}(CCl_4, g, 298) = -24.6 \pm 2 \text{ kcal mol}^{-1}$.

Hu and Sinke (1969) have measured the enthalpy change of reaction 5-2 in a rotating bomb calorimeter using aqueous arsenious oxide to assure complete conversion of Cl₂ to HCl. They obtained for reaction 5-2

$$\Delta Hr^{\circ}(298) = -86.02 \pm 0.14 \text{ kcal mol}^{-1}$$

from which one can obtain $\Delta Hf^{\circ}(\mathrm{CCl_4}, \mathrm{l}, 298) = -30.69 \pm 0.14 \ \mathrm{kcal \ mol^{-1}}$. These data are summarized in table 5–4 from which it is seen that the above values are all consistent, within their experimental error, with the very careful study of Hu and Sinke (1969). Consequently, we have adopted $\Delta Hf^{\circ}(\mathrm{CCl_4}, \mathrm{g}, 298) = -22.90 \pm 0.14 \ \mathrm{kcal \ mol^{-1}}$.

Lord and Pritchard (1969) have measured the equilibrium constant for reaction (5-4) over the range 630-720 K

$$CCl_4(g) + CO_2(g) \rightleftharpoons 2COCl_2(g).$$
 (5-4)

Their data were reduced using free energy functions (JANAF, 1971) in excellent agreement with those calculated here. They obtained: $\Delta Hr^{\circ}(298)=16.8\pm0.3$ kcal mol $^{-1}$ for reaction 5–4 which when combined with ΔHf° data from Wagman et al. (1968) yields $\Delta Hf^{\circ}(\text{CCl}_1,$ g, $298)=-27.4\pm0.3$ kcal mol $^{-1}$. This result is totally out of line with the other data summarized in table 5–4 and indicates that either Lord and Pritchard had not reached equilibrium in their system, which seems unlikely, or that $\Delta Hf^{\circ}(\text{COCl}_2,$ g, 298) ought to be -50.1 ± 0.4 kcal mol $^{-1}$ rather than -52.3 kcal mol $^{-1}$ (Wagman et al., 1968).

The rigid-rotor harmonic-oscillator approximation (Mayer and Mayer, 1940) has been used with the above selected data to calculate the ideal gas thermodynamic properties for CCl₄. These are presented in table 5-5.

Pitzer (1941) has measured the heat capacity of CCl₄ in a flow calorimeter at 1 atm and has obtained: $C_p(\text{CCl}_4, \text{g}, 380 \text{ K}) = 22.05 \pm 0.1 \text{ and } C_p(\text{CCl}_4, \text{g}, 426 \text{ K}) =$ 22.42 ± 0.1 cal K⁻¹ mol⁻¹. These data are corrected to the ideal gas state by means of the Berthelot equation of state and yield: $C_p^{\circ}(CCl_4, g, 380 \text{ K}) = 21.70 \pm 0.1$ and $C_p^{\circ}(CCl_4, g, 426 K) = 22.12 \pm 0.1 \text{ cal } K^{-1} \text{ mol}^{-1}$. Montgomery and DeVries (1942) similarly measured the heat capacity of CCl₄ and obtained $C_p(CCl_4, g, 380 \text{ K})=$ 21.81 ± 0.06 cal K⁻¹ mol⁻¹ which yields $C_n^{\circ}(CCl_4, g,$ 380 K)= 21.47 ± 0.08 cal K⁻¹ mol⁻¹. Our calculated values are 21.61 and 22.28 cal K-1 mol-1 at 380 and 426 K. respectively. This is only in fair agreement with the work of Pitzer (1941) and at odds with that of Montgomery and DeVries (1942). A uniform variation in the assigned fundamentals of 1 percent results in a variation of ± 0.06 cal K⁻¹ mol⁻¹ in C_p° at 380 and 426 K. Since this is a reasonable upper limit to the error in the fundamental assignment, one must conclude that there is an

TABLE 5-5.	Ideal gas ther	modynamic pro	operties for	tetrachloromethane

	C_p°	S°	$-(G^{\circ}-H_{0}^{\circ})/T$	$H^{\circ}-H_{0}^{\circ}$	ΔHf°	$\Delta G f^{\circ}$	
<i>T</i> , K							Log Kf
		cal K-1 mol-	-1		kcal mol-1		
0	0.0	0.0	0.0	0.0	-22.383	-22.383	infinite
100.00	11.303	57.075	48.238	0.884	-22.905	19.559	42.747
150.00	14.375	62.264	52.072	1.529	-22.999	-17.862	26.025
200.00	16.735	66.738	55.192	2.309	-23.009	- 16.146	17,643
273.15	19.266	72.352	59.057	3.632	-22.939	-13.642	10.915
298.15	19.936	74.069	60.245	4.122	22.900a	-12.796	9.380
300.00	19.982	74.192	60.330	4.159	-22.896	-12.733	9.276
400.00	21.920	80.230	64.575	6.262	- 22.699	- 9.373	5.121
500.00	23.089	85.258	68.223	8.517	-22.470	- 6.069	2.653
600.00	23.824	89.537	71.428	10.866	-22.236	- 2.810	1.023
700.00	24,307	93.248	74.286	13.274	-22.008	0.410	-0.128
800.00	24.638	96.517	76.865	15.722	-21.789	3.597	0.983
900.00	24.874	99.433	79.213	18.198	-21.579	6.759	-1.641
1000.00	25.048	102.064	81.369	20.695	-21.375	9.904	-2.164
1100.00	25.179	104.457	83.361	23.206	-21.178	13.007	-2.584
1200.00	25.280	106.653	85.211	25.729	-20.992	16.115	-2.935
1300.00	25.359	108.679	86.940	28.262	-20.815	19.198	-3.227
1400.00	25.423	110.561	88.560	30.801	-20.647	22.278	-3.478
1500.00	25.475	112.317	90.086	33.346	-20.484	25.339	-3.692

^aWhile this paper was in proof, Mendenhall, Golden, and Benson reported a value of -22.4 ± 0.4 kcal 'mol-1 for ΔHf° (CCl₄, g, 298). J. Phys. Chem. 77, 2707 (1973).

TABLE 5-6. Comparison of calculated and experimental gas phase heat capacity and entropy data for tetrachloromethane

<i>T</i> 17	C_p° , cal K^{-1} mol ⁻¹			S°, cal K ⁻¹ mol ⁻¹		
Т, К	obs	calc	Ref	obs	calc	Ref
380	21.47 ± 0.06	21.61	Montgomery and DeVries,			
380	21.70 ± 0.1	21.61	Pitzer, 1941			
426	22.16 ± 0.1	22.28	Pitzer, 1941			
298.15				74.59	74.07	Lord and Blanchard, 1936
298.15				74.75	74.07	Stull, 1937
298.15				73.61 ± 0.15	74.07	Hicks, Hooley, and Stephenson, 1944 ^a
298.15				77.03 ± 0.15	74.07	Hildebrand and McDonald, 1959 ^a

a Recalculated.

error in the work of Montgomery and DeVries, though its source is not at all clear.

The entropy of CCl₄ has been measured by Lord and Blanchard (1936), Stull (1937), Hicks, Hooley, and Stephenson (1944), and by Hildebrand and McDonald (1959). These latter two authors were in agreement with regard to the thermal data, but Hildebrand and McDonald (1959) preferred an extrapolation from 18 K to 0 K using three Debye functions with θ = 70 K and four Einstein functions with θ = 98 K. This procedure

fits the C_p data from 18 to 32 K while that of Hicks, Hooley, and Stephenson (1949) did not. The results were: $S^{\circ}(\text{CCl}_4, 1, 298) = 51.67 \pm 0.15$ (Hildebrand and McDonald, 1959) and 51.25 ± 0.05 cal K^{-1} mol⁻¹ (Hicks, Hooley, and Stephenson, 1949). Using the value for $\Delta H_{\nu}^{\circ}(298)$ adopted here and $P_{\text{eq}} = 0.15$ atm (Hildebrand and McDonald, 1959), one obtains $S^{\circ}(\text{CCl}_4, g, 298) = 74.03 \pm 0.15$ cal K^{-1} mol⁻¹. This is in excellent agreement with our calculated value of 74.07 cal K^{-1} mol⁻¹. Again, if the fundamental assignment is esti-

mated to be accurate to 1 percent, then an error of $\pm\,0.10$ cal K^{-1} mol $^{-1}$ is obtained for the calculated entropy. The entropy and heat capacity data are summarized in table 5–6.

6. Fluoromethane

The infrared absorption spectrum of CH₃F was studied by Andersen et al. (1956). Their analysis of the fine structure gave reliable rotational constants. Their evaluated value of $I_A = 5.492 \times 10^{-40} \ \mathrm{g\ cm^2\ } (3.3074\ \mathrm{u\ ^{^3}})$ for CH₃F was adopted. Based on the microwave investigation by Gilliam et al. (1949), they reported the moment of intertia I_B for ¹²CH₃F and ¹³CH₃F as 19.79488 and 20.33113 uÅ², respectively. From these I_B values, we evaluated the other two principal moments of inertia for CII₃F as $I_B = I_C = 3.2880 \times 10^{-39} \ \mathrm{g\ cm^2\ }$ (19.8008 uÅ²). The product $I_A I_B I_C$ was calculated to be 5.9373 \times 10⁻¹¹⁷ g³ cm⁶ (1296.7 u³Å⁶), which was used in this study.

The infrared and Raman spectral data have been critically evaluated by Shimanouchi (1972) and his assignments, given in table 6-1, were adopted.

The enthalpy of formation of CH₃F has not been measured. Simple estimates of enthalpies of formation for fluorohydrocarbons based upon bond additives are notoriously bad (Rodgers, 1967); however, corrections for near neighbor bond interactions taken two at a time (Zahn, 1934) or two and three at a time (Allen, 1959) lead to significantly better results (Bernstein, 1965; Rodgers, 1967). The enthalpy of formation of CH₃F, based on the treatment of Allen (1959), may be related to the enthalpies of formation of CH₄, CH₂F₂, CHF₃, and CF₄ by reaction 6–1

TABLE 6-1. Vibrational assignments for fluoromethane

	•	Reference		
Mode No.	Symmetry class	Shimanouchi 1972		
		Wavenumber in cm-1		
ν_1	a_1	2930		
ν_2	a_1	1464		
$ u_3$	a_1	1049		
ν_4	e	3006		
$ u_5$	e	1467		
ν_6	e	1182		

$$\Delta H f^{\circ}(CH_{3}F, g, 298) = 0.25 [\Delta H f^{\circ}(CF_{4}, g, 298)$$

$$+ \Delta H f^{\circ}(CH_{4}, g, 298)] + 1.5 [\Delta H f^{\circ}(CH_{2}F_{2}, g, 298)]$$

$$- \Delta H f^{\circ}(CHF_{3}, g, 298).$$
 (6-1)

Thus using $\Delta Hf^{\circ}(CH_4, g, 298) = -17.88$ (Wagman et al., 1968) and the values adopted in this work for the other compounds, one obtains $\Delta Hf^{\circ}(CH_3F, g, 298) = -56.8$ kcal mol⁻¹. We estimate the error at ± 2 kcal mol⁻¹. (Using this formula to "estimate" $\Delta Hf^{\circ}(CH_3Cl, g, 298)$ using our selected data yields -19.8 kcal mol⁻¹.)

The ideal gas thermodynamic properties have been calculated using these selected data and the rigid-rotor harmonic-oscillator approximation (Mayer and Mayer, 1940). These calculations are presented in table 6-2. There are no experimental data with which to compare these calculations.

TABLE 6-2. Ideal gas thermodynamic properties for fluoromethane

TO IZ	C_p°	S°	$-(G^{\circ}-H_{0}^{\circ})/T$	$H^{\circ}-H_{0}^{\circ}$	ΔHf°	ΔGf°	V f
<i>T</i> , K		cal K-1 mol-	1		kcal mol-1		Log Kf
0	0.0	0.0	0.0	0.0	-54.88	-54.88	infinite
100.00	7.949	44.356	36.407	0.795	-55.59	- 54.31	118.69
150.00	7.964	47.581	39.630	1.193	-55.82	-53.62	78.122
200.00	8.084	49.884	41.919	1.593	-56.12	-52.84	57.740
273.15	8.656	52.475	44.413	2.202	-56.62	-51.57	41.259
298.15	8.963	53.246	45.122	2.422	-56.80	51.09	37.449
300.00	8.987	53.302	45.172	2.439	- 56.81	-51.05	37.191
400.00	10.556	56.093	47.561	3.413	-57.51	-49.02	26.785
500.00	12.258	58.632	49.524	4.554	-58.14	-46.83	20.468
600.00	13.836	61.009	51.242	5.860	-58.68	-44.51	16.214
700.00	15.234	63.250	52.799	7.315	-59.13	-42.12	13.149
800.00	16.457	65.366	54.239	8.901	-59.49	-39.66	10.834
900.00	17.525	67.367	55.587	10.602	-59.78	-37.16	9.024
1000.00	18.454	69.263	56.861	12.402	-60.01	-34.63	7.569
1100.00	19.261	71.060	58.071	14.288	-60.18	-32.10	6.377
1200.00	19.963	72.767	59.225	16.250	-60.31	- 29.53	5.378
1300.00	20.572	74.389	60.330	18.278	60.40	- 26.96	4.532
1400.00	21.102	75.934	61.390	20.362	-60.47	-24.38	3.805
1500.00	21.564	77.406	62.409	22.496	-60.52	-21.80	3.176

7. Difluoromethane

Lide (1952) recorded and analyzed the K-band microwave spectrum of the slightly asymmetric rotor CH₂F₂. From the three lines of lowest J values, the rotational constants for difluoromethane (methylene fluoride) were determined. Based on his reported values of A_0 , B_0 , and C_0 for ¹² CH₂F₂ and ¹³ CH₂F₂, we derived the three principal moments of inertia for CH₂F₂ as I_A =1.7084×10⁻³⁹ g cm², I_B =7.9144×10⁻³⁹ g cm², and I_C =9.0740×10⁻³⁹ g cm² and the product $I_AI_BI_C$ =1.22690×10⁻¹¹⁵ g³ cm⁶ (26796 u³Å⁶), which was adopted in this work.

The infrared and Raman spectra of CH₂F₂ have been investigated by Stewart and Nielsen (1949), Rank, Shull, and Pace (1950), and by Plyler and Benedict (1951). These data are summarized in table 7-1. Aside from an

inverted assignment of ν_2 and ν_5 by Stewart and Nielsen (1949), the data are in excellent accord except for a minor discrepancy at ν_3 . Plyler and Benedict (1951) measured the spectra of 18 halogenated methanes, studied over the range $2-38\mu\mathrm{m}$ using a grating spectrometer. Purity of all samples was checked carefully, and assignments were determined by Raman polarization data and were checked with correlation diagrams. For these reasons, their assignments have been adopted.

Neugebauer and Margrave (1958) measured the enthalpy change of reaction 7-1

$$CH_2F_2(g) + O_2(g) \rightarrow CO_2(g) + 2HF \cdot 25 H_2O(aq),$$
 (7-1)

in a rotating bomb calorimeter. They made six determinations with apparently random errors to obtain $\Delta Hr^{\circ}(298) = -139.83 \pm 0.2$ kcal mol⁻¹. They also ob-

Mode Symmetry No. class			Reference					
	Stewart and Nielsen, 1949	Rank, Shull and Pace, 1950	Plyler and Benedict, 1951	Selected				
		Wavenumb	per in cm ⁻¹					
ν_1	1,	2949	2963	2949	2949			
ν_2		1262	1508	1508	1508			
ν_3		1116	1078	1116	1116			
ν_4		528.6	532	529	529			
ν_5	a_2	1510.6	1262	1262	1262			
ν_6	b_1	3015.2	3030	3012	3012			
ν_7		1176.1	1170	1176	1176			
ν_8	b_2	1435.4	1435	1435	1435			
ν_9		1089.7	1089	1090	1090			

TABLE 7-1. Vibrational assignments for difluoromethane

TABLE 7-2. Ideal gas thermodynamic properties for difluoromethane

Т, К	C_p°	S°.	$-(G^{\circ}-H_{0}^{\circ})/T$	$H^{\circ}-H_{0}^{\circ}$	ΔH f°	ΔGf°	$\log K f$	
1, K	cal K-1 mol-1				kcal mol-			
0	0.0	0.0	0.0	0.0	-106.37	- 106.37	infinite	
100.00	8.006	49.444	41.488	0.796	-107.04	-105.46	230.476	
150.00	8.290	52.736	44.723	1.202	-107.30	- 104.61	152.416	
200.00	8.768	55.182	47.044	1.628	- 107.59	-103.67	113.283	
273.15	9.808	58.059	49.621	2.305	-108.05	-102.16	81.743	
298.15	10.245	58.936	50.366	2.555	-108.20	- 101.62	74.486	
300.00	10.279	59.000	50.419	2.574	-108.21	-101.57	73.996	
400.00	12.218	62.219	52.974	3.698	-108.80	-99.27	54.238	
500.00	14.096	65.151	55.120	5.015	-109.30	-96.83	42.323	
600.00	15.719	67.869	57.021	6.508	- 109.72	-94.29	34.346	
700.00	17.079	70.397	58.754	8.150	110.06	-91.69	28.628	
800.00	18.216	72.754	60.358	9.917	-110.32	-89.05	24.327	
900.00	19.170	74.956	61.859	11.787	110.53	-86.38	20.975	
1000.00	19.976	77.019	63.273	13.746	-110.68	-83.68	18.288	
1100.00	20.659	78.956	64.612	15.779	-110.79	-80.99	16.091	
1200.00	21.242	80.779	65.884	17.874	-110.86	−78.27	14.254	
1300.00	21.741	82.499	67.096	20.024	-110.92	−75.5 5	12.701	
1400.00	22.169	84.127	68.255	22.220	-110.95	-72.82	11.367	
1500.00	22.539	85.669	69.365	24.456	-110.97	-70.10	10.213	

tained good agreement between the moles of $CO_2(g)$ and 0.5 times the moles of $HF \cdot 25 H_2O(aq)$. Settle, Greenberg, and Hubbard (1971) have recently determined ΔHf° (HF, 1, 298) = -72.55 ± 0.06 kcal mol⁻¹, and Johnson, Smith, and Hubbard (1971) have determined the enthalpy of solution of HF(l), so that ΔHf° (HF · 25 H₂O, aq, 298) = -77.011 kcal mol⁻¹. (Compare to ΔHf° (HF · 25 H₂O, aq, 298) = -76.292 kcal mol⁻¹ (Wagman et al., 1968)). This, combined with ΔHf° (CO₂, g, 298) (Wagman et al., 1968), leads to ΔHf° (CH₂F₂, g, 298) = -108.2 ± 0.2 kcal mol⁻¹ which was adopted.

The ideal gas thermodynamic properties have been calculated using the selected data given here and the rigid-rotor harmonic-oscillator approximation (Mayer and Mayer, 1940). These calculations are summarized in table 7–2. There are no experimental data on S° or C_{p}° of $\mathrm{CH}_{2}\mathrm{F}_{2}$ with which these calculations may be compared.

8. Trifluoromethane

Bernstein and Herzberg (1948) analyzed the high resolution infrared spectrum of trifluoromethane (fluoroform) in the 1 to 2.5 μ m region and obtained 48.8440 uÅ² for the moment of inertia perpendicular to the symmetry axis. They then assumed tetrahedral angles and a C-H distance of 1.09 Å to calculate the C-F distance given in table 8-1. Gilliam, Edwards, and Gordy (1949) measured the microwave spectrum of $^{12}\text{CHF}_3$ and deduced 48.8388 ± 0.0002 uÅ² for the perpendicular moment of inertia, in excellent agreement with Bernstein and Herzberg (1948). Later, Ghosh, Trambarulo, and Gordy (1952) measured the microwave spectra of ¹³CHF₃ and ¹²CDF₃ and were thus able to uniquely define all three structural parameters. These are the parameters adopted in this work, and, as can be seen in table 8-1, they are in excellent agreement with the electron diffraction work of Thornton (1954) and also consistent with earlier studies ("Interatomic Distances," 1958).

The infrared and Raman spectral data for CHF₃ have been critically evaluated by Shimanouchi (1972), and his assignments, summarized in table 8-2, were adopted.

Neugebauer and Margrave (1958) determined the enthalpy change of reaction 8-1

$$CHF_3(g) + \frac{1}{2}O_2(g) + H_2O(l) \rightarrow CO_2(g) + 3HF \cdot 25H_2O,$$

(8-1)

in a rotating bomb calorimeter. They made five determinations and noted that for each run the quantity, $y = \text{moles } CO_2 - \frac{1}{3}$ moles HF, was positive to varying degrees and that traces of $CF_4(g)$ were observed in the products roughly proportional to y. This led them to suggest the occurrence of the following side reaction, 8-2

$$CHF_3(g) + \frac{1}{2}O_2(g) \rightarrow \frac{1}{4}CO_2(g) + \frac{3}{4}CF_4(g) + \frac{1}{2}H_2O(l).$$
 (8-2)

If one assumes that the entire discrepancy, y, can be attributed to reaction 8–2, then $\Delta Hf^{\circ}(\mathrm{CHF_3}, \mathrm{g}, 298)$ may be calculated using $\Delta Hf^{\circ}(\mathrm{CF_4}, \mathrm{g}, 298) = -223.02$ kcal $\mathrm{mol^{-1}}$ (this work) and other auxiliary data in section 1.6. The average of the value so obtained is $\Delta Hf^{\circ}(\mathrm{CHF_3}, \mathrm{g}, 298) = -166.1 \pm 1.3$ kcal $\mathrm{mol^{-1}}$. However, there is a marked trend in the calculated values to be more negative with increasing values of "y" suggesting that this procedure overcorrects for the side reaction. It is also possible to ignore the presence of side reactions and calculate $\Delta Hf^{\circ}(\mathrm{CHF_3}, \mathrm{g}, 298)$ based on the $\mathrm{CO_2(g)}$ analyses. When this is done, no significant trend is observed, and $\Delta Hf^{\circ}(\mathrm{CHF_3}, \mathrm{g}, 298) = -165.14 \pm 0.5$ kcal $\mathrm{mol^{-1}}$ is obtained.

Table 8-2. Vibrational assignments for trifluoromethane

		Reference
Mode no.	Symmetry class	Shimanouchi, 1972
		Wavenumber in cm-1
$ u_1$	a_1	3036
$ u_2$	a_1	1117
ν_3	a_1	700
ν_4	e	1372
ν_5	e	1152
ν_6	e	507

TABLE 8-1. Structural data for trifluoromethane

Structural parameter ^a	Reference						
	Bernstein and Herzberg, 1948	Gilliam, Edwards, and Gordy, 1949	Thornton 1954	Ghosh, Trambarulo, and Gordy, 1952	Selected		
C—H C—F ∠ FCF ∠ HCF	1.09 ^b 1.329 109.47 ^b	1.111 ^b 1.326±0.013 110±3 ^b	1.334±0.005 108.47	$ \begin{array}{c} 1.098 \pm 0.02 \\ 1.332 \\ 108.80 \end{array} $	1.098 1.332 108.80 110.13		

^aBond distances, 10⁻⁸ cm; bond angle, degrees.

^b Assumed.

ΔHr° (obs) kcal mol ⁻¹	Conditions	Method .	ΔHr° (298) kcal mol ⁻¹	Reference	Δ <i>H f</i> ° (g, 298) kcal mol ⁻¹
-90.1 ± 1.3	298 K, 30 atm	Rotating bomb combustion with correction for CF ₄		Neugebauer and Margrave, 1958	-166.4 ± 1.3
-91.33 ± 0.5	298 K, 30 atm	Rotating bomb combustion without correction for CF4		Neugebauer and Margrave, 1958	-165.1±0.5
				Selected	-165.7 ± 1

TABLE 8-3. Enthalpy of formation data for trifluoromethane

TABLE 8-4. Ideal gas thermodynamic properties for trifluoromethane

	C_p°	S°	$-(G^{\circ}-H_{0}^{\circ})/T$	$H^{\circ}-H_{0}^{\circ}$	ΔHf°	$\Delta G f^{\circ}$	
<i>T</i> , K		cal K-1 mol	1		kcal mol-1		log Kf
0	0.0	0.0	0.0	0.0	-164.04	- 164.04	infinite
100.00	8.101	51.591	43.622	0.797	-164.68	-162.49	355.122
150.00	8.809	54.992	46.875	1.217	- 164.95	-161.34	235.069
200.00	9.863	57.666	49.248	1.683	-165.22	-160.09	174.939
273.15	11.609	60.995	51.959	2.468	-165.59	-158.16	126.542
298.15	12.222	62.038	52.761	2.766	-165.70	-157.47	115.429
300.00	12.267	62.114	52.819	2.789	- 165.71	-157.42	114.679
400.00	14.611	65.970	55.633	4.135	-166.11	154.59	84.464
500.00	16.591	69.451	58.054	5.698	-166.42	-151.67	66.296
600.00	18.159	72.620	60.222	7.439	-166.66	-148.70	54.164
700.00	19.386	75.516	62.203	9.319	-166.83	- 145.69	45.488
800.00	20.354	78.170	64.035	11.308	- 166.96	-142.66	38.974
900.00	21.129	80.614	65.744	13.383	- 167.04`	-139.62	33.905
1000,00	21.759	82.874	67.345	15.529	-167.09	-136.57	29.847
1100.00	22.277	84.973	68.853	17.731	-167.11	-133.53	26.530
1200.00	22.707	86.930	70.279	19.981	-167.12	-130.47	23.761
1300.00	23.068	88.762	71.631	22.270	-167.11	-127.41	21.420
1400.00	23.373	90.483	72.917	24.593	-167.10	- 124.35	19.412
1500.00	23.632	92.105	74.142	26.943	- 167.08	-121.30	17.674

Since the presence of $CF_4(g)$ clearly indicates some side reaction is taking place, but it appears "y" is not a quantitative measure of its extent, we shall adopt an unweighted average of these two calculations, namely, $\Delta Hf^{\circ}(CHF_3, g, 298) = -165.7 \pm 1 \text{ kcal mol}^{-1}$. These results are summarized in table 8-3.

The ideal gas thermodynamic properties have been calculated using the data selected here and the rigid-rotor harmonic-oscillator approximation (Mayer and Mayer, 1940). These calculations are summarized in table 8-4.

Vanderkooi and DeVries (1956) used the wire ribbon method to determine the heat capacity (constant volume) of CHF₃ at 298 K as a function of pressure (< 0.005 torr) and extrapolated their data to obtain

 $G_{\nu}^{\circ}({\rm CHF_3},~{\rm g},~298)=10.23\pm0.13~{\rm cal}~{\rm K^{-1}~mol^{-1}}.$ This leads to $G_{\nu}^{\circ}({\rm CHF_3},~{\rm g},~298)=12.22\pm0.13~{\rm cal}~{\rm K^{-1}}~{\rm mol^{-1}},$ in excellent agreement with our calculated value, 12.27 cal ${\rm K^{-1}~mol^{-1}}.$

Valentine, Brodale, and Giauque (1962) have obtained low temperature thermochemical data on CHF₃ solid and liquid from 15 K to its boiling point at 190.97 K, including $\Delta H_v(\text{CHF}_3, 190.97 \text{ K}) = 3.994 \pm 0.004 \text{ kcal mol}^{-1}$, to obtain $S^r(\text{CHF}_3, \text{g}, 1 \text{ atm}, 190.97 \text{ K}) = 57.01$. The Berthelot equation of state and $T_c = 298.89 \text{ K}$ and $P_c = 47.73 \text{ atm}$ (Zwolinski et al., TRCDP, 1972) are used to obtain $S^\circ - S^r = 0.13 \text{ cal K}^{-1} \text{ mol}^{-1}$, so that $S^\circ(\text{CHF}_3, \text{g}, 190.97 \text{ K}) = 57.14 \text{ cal K}^{-1} \text{ mol}^{-1}$, in excellent agreement with the calculated value, 57.22 cal K⁻¹ mol⁻¹. These data are summarized in table 8–5.

So, cal K-1 mol-1 Co, cal K-1 mol-1 T, KRef obs calc Ref obs calc Vanderkooi and DeVries, 12.22 ± 0.13 12.27 300 Valentine, Brodale and Giauque, 57.14 57.22 190.97

TABLE 8-5. Comparison of calculated and experimental gas phase heat capacity and entropy data for trifluoromethane

TABLE 9-1. Structural data for tetrafluoromethane

			Re	ference		
Structural parameter a	Alcock and Hurst, 1951	Bowen, 1954	Thornton, 1954	Hoffman and Livingston, 1953	Brockway, 1954	Selected
С-Б	1.33 ± 0.02	1.337 ± 0.022	1.322 ± 0.005	1.317 ± 0.005	1.323 ± 0.005	1.321 ± 0.003

^a Bond distances, 10⁻⁸ cm; bond angle, degrees.

9. Tetrafluoromethane

The structure of tetrafluoromethane (carbon tetrafluoride) has been studied by Alcock and Hurst (1951), using neutron diffraction; and by Bowen (1954), Thornton (1954), Hoffman and Livingston (1953), and Brockway (1954), using the electron diffraction technique. The last three authors have estimated errors of ± 0.005 Å, so that the selected value was obtained as an unweighted average of these yielding: C—F = 1.321 \pm 0.003 Å. References to earlier and less accurate work may be found in "Interatomic Distances" (1958). The structural data are summarized in table 9–1.

Shimanouchi (1972) has critically reviewed the infrared and Raman spectral data on CF₄ and his fundamental assignments, given in table 9-2, have been adopted.

Early calorimetric data on CF₄ was frequently obtained from reactions leading to poorly characterized products; as a result, values for ΔHf° (CF₄, g, 298) differing by 20 to 30 kcal mol⁻¹ were reported. Patrick (1961) has summarized this earlier work, and it shall not be dealt with in this report.

Scott, Good, and Waddington (1955) and Good, Scott, and Waddington (1956) used a rotating bomb calorimeter to determine $\Delta Hr^{\circ}(298) = -160.3 \pm 0.9$ kcal mol⁻¹ for reaction 9-1,

$$C_2F_4(poly) + O_2(g) + 2H_2O(l) \rightarrow 2CO_2(g) + 4HF \cdot 10H_2O$$
,

(9-1)

and $\Delta Hr^{\circ}(298) = -118.8 \pm 0.5 \text{ kcal mol}^{-1}$ for reaction 9-2.

$$C_2F_4(poly) + O_2(g) \rightarrow CF_4(g) + CO_2(g).$$
 (9-2)

TABLE 9-2- Vibrational assignments for tetrafluoromethane

		Reference	
Mode no.	Symmetry	Shimanouchi, 197	
	class	Wavenumber in cm ⁻¹	
ν_1	a_1	908	
ν_2	e	435	
ν_3	f_2	1283	
ν_4	f_2	632	

By combining these data with the appropriate auxiliary data from section 1.6 and $\Delta Hf^{\circ}(HF \cdot 10H_2O, aq, 298) = -76.968$ kcal mol⁻¹ (Settle, Greenberg, and Hubbard, 1971; Johnson, Smith, and Hubbard, 1971), one calculates $\Delta Hf^{\circ}(CF_4, g, 298) = -223.7 \pm 1$ kcal mol⁻¹.

Neugebauer and Margrave (1956) have studied the enthalpy changes of the gas phase explosions of C₂F₄ pure and mixed with hydrogen (reactions 9-3 and 9-4,

$$C_2F_4(g) \rightarrow C (amp) + CF_4(g)$$
 (9-3)

$$C_2F_4(g) + 2H_2(g) \rightarrow 2C (amp) + 4HF \cdot 15H_2O$$
 (9-4)

They obtained $\Delta Hr^{\circ}(298) = -63.57 \pm 0.4$ for reaction 9-3 and $\Delta Hr^{\circ}(298) = -147.8 \pm 1$ kcal mol⁻¹ for reaction 9-4.

In addition, they determined from combustion studies of the "soot" produced in their reactions that ΔHf (C,

amp, 298)=1.7 \pm 0.2 kcal mol⁻¹. These data, combined with ΔHf° (HF · 15H₂O, aq, 298)=-76.991 kcal mol⁻¹ (Settle, Greenberg, and Hubbard, 1971; Johnson, Smith, and Hubbard, 1971), yield ΔHf° (CF₄, g, 298)=-222.0 \pm 1 kcal mol⁻¹.

Cox, Gundry, and Head (1965) studied the enthalpy of combustion of $C_{12}F_{22}$ in a rotating bomb calorimeter with and without hydrogen-containing material added. From this, they deduced the enthalpy change of reaction 9-5, $\Delta Hr^{\circ}(298) = -41.38 \pm 0.3$ kcal mol⁻¹

$$CF_4(g) + 2H_2O(l) \rightarrow CO_2(g) + 4HF \cdot 20H_2O.$$
 (9-5)

Using the auxiliary data from Wagman et al. (1968) and $\Delta Hf^{\circ}(HF \cdot 20H_2O, aq, 298) = -77.004$ kcal mol⁻¹ (Settle, Greenberg, and Hubbard, 1971; Johnson, Smith, and Hubbard, 1971), one calculates $\Delta Hf^{\circ}(CF_4, g, 298) = -224.1 \pm 0.3$ kcal mol⁻¹.

Wood, Lagow, and Margrave (1967) obtained a sample of C_2F_4 polymer from Scott, Good, and Waddington (1955) and reacted it with 4 atm of fluorine in a nickellined calorimeter. Their data give for reaction 9-6, $\Delta Hr^{\circ}(298) = -246.84 \pm 0.07$ kcal mol⁻¹

$$C_2F_4(poly) + 2F_2(g) \rightarrow 2CF_4(g)$$
. (9-6)

From the enthalpy change for reaction 9-1 determined by Scott, Good, and Waddington (1955), one can calculate $\Delta Hf^{\circ}(C_2F_4)$, poly, 298)=-199.0±0.9 kcal mol⁻¹. Incorporating this value with $\Delta Hr^{\circ}(298)$ for reaction 9-6 yields $\Delta Hf^{\circ}(CF_4)$, g, 298)=-222.9±0.9 kcal mol⁻¹.

Domalski and Armstrong (1967) studied the same reaction (9–6) but with 15 atm fluorine which, they report, surpressed the formation of higher perfluoro-alkanes. They obtained $\Delta Hr^{\circ}(298) = -247.92 \pm 0.07$ kcal mol⁻¹ [compare to $\Delta Hr^{\circ}(298) = -246.84$ kcal mol⁻¹ of Wood, Lagow, and Margrave (1967)]. As above, this yields $\Delta Hf^{\circ}(CF_4, g, 298) = -223.5 \pm 0.9$ kcal mol⁻¹. These workers have also studied the enthalpy of formation of CF_4 (reaction 9–7) with 15–20 atm fluorine.

$$C(graphite) + 2F_2(g) \rightarrow CF_4(g)$$
 (9-7)

They obtained $\Delta Hf^{\circ}(CF_{1}, g, 298) = -222.87 \pm 0.4$ kcal mol⁻¹.

Greenberg and Hubbard (1968) also determined the enthalpy of formation of CF₄ (reaction 9–7) in a bomb calorimeter using 25 atm of fluorine. They obtained $\Delta Hf^{\circ}(\text{CF}_4, g, 298) = -223.05 \pm 0.18$ kcal mol^{-1} which is in excellent agreement with that reported by Domalski and Armstrong (1967). If one combines the enthalpy change of reaction 9–6 obtained by Domalski and Armstrong (1967) (the high fluorine pressure makes this the preferred datum) with that of reaction 9–2 measured by Scott, Good, and Waddington (1956), one has $\Delta Hr^{\circ}(298) = -129.1 \pm 0.5$ kcal mol^{-1} for reaction 9–8.

$$CO_2(g) + 2F_2 \rightarrow CF_4(g) + O_2(g),$$
 (9-8)

from which one may calculate $\Delta Hf^{\circ}(CF_4, g, 298) = -223.17 \pm 0.5 \text{ kcal mol}^{-1}$.

These last three determinations of $\Delta Hf^{\circ}(CF_4, g, 298)$ have all been independent of $\Delta Hf^{\circ}(HF \cdot nH_2O, aq, 298)$. The selected value has been obtained as an average of these three determinations weighted inversely to their experimental errors; thus $\Delta Hf^{\circ}(CF_4, g, 298) = -223.02 \pm 0.2$ kcal mol⁻¹. These data and our selected value are summarized in table 9–3.

It is interesting to note that the average of all the data of table 9–3, again weighted inversely to their errors, is ΔHf° (CF₄, g, 298)=-223.22 kcal mol⁻¹. The work of Cox, Gundry, and Head (1965) deviates from this average by 0.9 kcal mol⁻¹, essentially three times the experimental deviation. If we eliminate this value, the average then becomes ΔHf° (CF₄, g, 298) = -223.03 kcal mol⁻¹, indicating that the data for ΔHf° (CF₄, g, 298) are in excellent agreement with the new determinations of ΔHf° (HF, 1, 298) and ΔHf° (HF · nH₂O, aq, 298) of Settle, Greenberg, and Hubbard (1971) and Johnson, Smith, and Hubbard (1971). They have been adopted for use in this report.

The rigid-rotor harmonic-oscillator approximation (Mayer and Mayer, 1940) has been used with these selected data to calculate the ideal gas thermodynamic functions for CF₄. These calculations are summarized in table 9-4.

The entropy of CF₄ has been determined from low temperature thermal studies by Eucken and Schroder (1938) at 122 K and by Smith and Pace (1969) at 145.12 K (normal boiling point). Their data were corrected to the ideal gas state using the Berthelot equation of state and P_c =36.9 atm and T_c =227.5 K (Zwolinski et al., TRCDP, 1972). As can be seen in table 9-5, the agreement between the experimental data and our calculations is excellent. However, the vibrational contribution to the entropy at these temperatures is only of the order of 2 percent, so that this is not a sensitive test of the fundamental assignment or of the validity of the rigid-rotor harmonic-oscillator approximation.

Hwang and Martin (1964) have measured the constant volume heat capacity at 10 to 16 atm and from 300 to 470 K. The correction $C_v^{\circ} - C_v^r$ was determined from the Berthelot equation of state which gives:

$$C_v^{\circ} - C_v^{\tau} = -\frac{108 R T_c^3 P}{128 T^3 P_c} + \frac{1}{R} \left[\frac{108 R T_c^3 P}{128 T^3 P_c} \right]^2. \tag{9-9}$$

The authors' lowest pressure data were reduced to C_v° values using eq 9-9. The uncertainty in this correction is estimated at ± 0.1 cal K^{-1} mol⁻¹. The data, summarized in table 9-5, are in excellent accord with the calculated C_p° indicating no significant correction for anharmonicity is needed up to temperatures of 500 K for CF₄.

TABLE 9-3. Enthalpy of formation data for tetrafluoromethane

ΔHr° (obs) keal mol-1	Conditions	Method	ΔHr° (298) kcal mol ⁻¹	Reference	ΔHf° (g, 298) kcal mol ⁻¹
-118.8 ± 0.5	298 K and 30 atm O ₂	Rotating bomb calorimeter		Scott, Good and Waddington, 1955; Good, Scott and Waddington, 1956	$-223.7 \pm 1.$
-84.23 ± 1.0	298 K and 30 atm H ₂	Bomb calorimeter		Neugebauer and Margrave, 1956	$-222.0\pm1.$
-41.38 ± 0.3	298 K and 30 atm O ₂	Rotating bomb calorimeter		Cox, Gundry and Head, 1965	-224.1 ± 0.3
-246.84 ± 0.07	298 K and 4 atm F ₂	Bomb calorimeter		Wood, Lagow and Margrave, 1967	-222.9 ± 0.9
-247.92 ± 0.07	298 K and 15 atm F ₂	Bomb calorimeter		Domalski and Armstrong, 1967	-223.5 ± 0.9
-222.87 ± 0.4	298 K and 15 atm F ₂	Bomb calorimeter	-	Domalski and Armstrong, 1967	-222.87 ± 0.4
-223.09 ± 0.18	298 K and 15 atm F ₂	Bomb calorimeter		Greenberg and Hubbard, 1968	-223.04 ± 0.18
-129.1 ± 0.5	298 K and 15 atm F ₂	Combination of data		Scott, Good and Waddington, 1955; Good, Scott and Waddington, 1956; Domalski and Armstrong, 1967	-223.17 ± 0.5
	<u> </u>			Selected	-223.02 ± 0.2

TABLE 9-4. Ideal gas thermodynamic properties for tetrafluoromethane

	C_p°	s° ·	$-(G^{\circ}-H_{\theta}^{\circ})/T$	$H^{\circ}-H_{0}^{\circ}$	$\Delta H f^{\circ}$	$\Delta G f^{\circ}$	$\log Kf$	
<i>T</i> , K		cal K ⁻¹ mol ⁻¹			kcal mol-1		108*4)	
0 100.00	0.0 8.304	0.0 50.733	0.0 42.731	0.00	-221.591 -222.196	-221.591 -219.108 -217.501	infinite 478.858 316.898	
150.00 200.00	9.590 11.319	54.317 57.309 61.212	46.021 48.477 51.375	1.244 1.766 2.687	-222.477 -222.708 -222.955	-217.301 -215.805 -213.235	235.820 170.611	
273.15 298.15 300.00	13.811 14.589 14.645	62.456 62.546	52.252 52.315	3.042 3.069	-223.020 -223.025	-212.345 -212.278	155.653 154.644	
400.00 500.00	17.302 19.289	67.140 71.226	55.459 58.211 60.690	4.673 6.507 8.512	$\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-208.665 -205.017 -201.356	114.009 89.613 73.344	
600.00 700.00 800.00	20.740 21.798 22.579	74.878 78.159 81.123	62.955 65.044	10.642 12.863	-223.338 -223.308	-197.693 -194.029	61.722 53.006	
900.00 1000.00	23.165 23.612	83.818 86.283	66.983 68.791	15.152 17.491 19.871	-223.261 -223.199 -223.129	-190.372 -186.713 -183.085	46.228 40.806 36.376	
1100.00 1200.00 1300.00	23.959 24.233 24.453	88.550 90.647 92.596	70.486 72.080 73.584	22.281 24.716	$ \begin{array}{r} -223.129 \\ -223.059 \\ -222.990 \end{array} $	-179.438 -175.806	32.680 29.556	
1400.00 1500.00	24.631 24.777	94.415 96.119	75.007 76.359	27.170 29.641	$\begin{array}{c c} -222.923 \\ -222.860 \end{array}$	-172.171 -168.550	26.877 24.558	

THERMODYNAMIC PROPERTIES OF CHLORO- AND FLUOROMETHANES

TABLE 9-5. Comparison of calculated and experimental gas phase heat capacity and entropy data for tetrafluoromethane

	(Co, cal K-1 m	ol-1	S°, cal K ⁻¹ mol ⁻¹						
<i>T</i> , K	obs	calc	Ref	obs	calc	Ref				
122	A STATE OF THE STA			52.49 ± 0.3	52.43	Eucken and Schroder, 1938				
145.12				54.04 ± 0.13	54.00	Smith and Pace, 1969				
303	14.74 ± 0.15	14.74	Hwang and Martin, 1964							
323	15.31 ± 0.15	15.32	Hwang and Martin,							
373	16.63 ± 0.15	16.65	Hwang and Martin,							
423	17.85 ± 0.15	17.81	Hwang and Martin, 1964	2						
473	18.91 ± 0.15	18.81	Hwang and Martin,							

10. Comparison

The thermodynamic functions, C_p° , S° , and $\Delta H f^{\circ}$, recommended in this report are compared with those in several other major compilations at 298.15 and 700 K in tables 10-1 through 10-4. In general, the agreement is quite good at 298.15 K but scatter appreciably at 700 K. This undoubtedly reflects the fact that choices

in molecular parameters are more critical for the calculated functions at higher temperatures. Furthermore, it seems clear that some error was made in calculating the enthalpy of formation of the chloromethanes reported by Gurvich et al. (1962) at 700 K.

TABLE 10-1. Comparison of the ideal gas thermodynamic data at 1 atm and 298.15 K for chloromethanes

	CH₃Cl			CH ₂ Cl ₂				CHCl ₃		CCl ₄		
	C°	S°	-ΔHf°	$C_p^{}$	S^	- ΔHf°	C_p°	S°	- ΔIIf°	C_p°	. S°	-ΔHf°
	cal K-1 mol-1		kcal mol-1	cal K-1 mol-1		kcal mol-i	cal K-1 mol-1		kcal mol-1	cal K-1 mol-1		kcal mol-1
Landolt-Bornstein, 1961	9.73	55.81	19.6	12.21	64.58		15.70	70.65	24.0	19.93	74.02	25.5
Gurvich et al., 1962 (USSR)	-	55.86	20.6		64.60	22.4		70.72	24.9		74.11	24.6
Wagman et al., 1968 (NBS TN-270-3)	9.74	56.04	19.3	12.18	64.56	22.1	15.70	70.65	24.7	19.91	74.03	24.6
Stull, Westrum and Sinķe, 1969	9.74	56.04	20.6	12.22	64.59	22.8	15.71	70.66	24.2	20.02	74.12	24.0
JANAF, 1969	9.73	55.99	20.7	12.16	64.57	22.8	15.63	70.63	24.7	19.93	74.02	22.9
This work, 1972	9.74	55.97	19.6	12.16	64.61	22.8	15.63	70.63	24.6	19.94	74.07	22.9

Table 10-2. Comparison of the ideal gas thermodynamic data at 1 atm and 298.15 K for fluoromethanes

	CH₃F			CH ₂ F ₂				CHF ₃		CF ₄		
	C_p°	S°	$-\Delta H f^{\circ}$	C_p°	S°	$-\Delta H f^{\circ}$	C_p°	S°	$-\Delta H f^{\circ}$	C_p°	S°	$-\Delta H f^{\circ}$
	cal K ⁻¹ mol ⁻¹		kcal mol-1	cal K ⁻¹ mol ⁻¹		kcal mol-1	cal K ⁻¹ mol ⁻¹		kcal mol-1	cal K ⁻¹ mol ⁻¹		kcal mol-
Landolt-Bornstein, 1961	8.94	53.25	59.0	10.27	58.80	105.5	21.21	62.02	162.6	14.63	62.62	217.0
Gurvich et al., 1962 (USSR)		53.24	67.9		58.94	117.9		62.04	169.9		62.47	219.9
Wagman et al., 1968 (NBS TN-270-3)	8.96	53.25		10.25	58.94	106.8	12.20	62.04	164.5	14.60	62.50	221.0
Stull, Westrum and Sinke, 1969	8.96	53.25	55.9	10.25	58.94	108.2	12.20	62.04	166.7	14.68	62.50	223.0
JANAF, 1969	8.96	53.25	56.0	10.24	58.94	107.7	12.20	62.03	166.6	14.59	62.45	223.0
This Work, 1972	8.96	53.25	56.8	10.25	58.94	108.2	12.22	62.04	165.7	14.59	62.46	223.0

TABLE 10-3. Comparison of the ideal gas thermodynamic data at 1 atm and 700 K for chloromethanes

	CH₃Cl			CH ₂ Cl ₂				CHCl		CCl ₄		
	C_p°	S°	$-\Delta H f^{\circ}$, C _p	. S°	$-\Delta H f^{\circ}$	C_p°	S°	$-\Delta H f^{\circ}$	C° _p	S°	$-\Delta H f^{\circ}$
	cal K ⁻¹ mol ⁻¹		kcal mol-1	cal K ⁻¹ mol ⁻¹		kcal mol -1	cal K-1 mol-1		kcal mol-1	cal K-1 mol-1		kcal mol-1
Landolt-Bornstein, 1961.	15.92	66.54	21.68	18.47	77.65		21.22	86.50	24.3	24.31	93.19	24.6
Gurvich et al., 1962 (USSR)		66.78	15.3		77.67	16.1		86.62	17.2		93.30	15.5
Stull, Westrum, and Sinke, 1969	15.93	66.81	22.7	18.47	77.75	24.1	21.27	86.58	24.5	24.61	93.44	23.0
JANAF, 1969	15.92	66.73	22.7	18.40	77.59	24.2	21.22	86.49	25.0	24.31	93.20	22.1
This Work, 1972	15.94	66.73	21.7	18.40	77.63	24.1	21.22	86.49	24.9	24.31	93.25	22.0

		CH₃F		CH ₂ F ₂				CHF ₃		CF ₄			
	C_p°	S°	$-\Delta H f^{\circ}$	C_p°	S°.	$-\Delta H f^{\circ}$	C_p°	s°	$-\Delta H f^{\circ}$	C_p°	S°	$-\Delta H f_{\circ}^{\circ}$	
	cal K ⁻¹ mol ⁻¹		kcal mol-1	cal K ⁻¹ mol ⁻¹		kcal mol-1	cal K ⁻¹ mol ⁻¹		kcal mol-1	cal K-1 mol-1		kcal mol-	
Landolt-Bornstein, 1961 .	15.20	63.22	61.42	17.11	70.29	107.4	19.36	75.48	163.7	21.85	78.67	217.4	
Gurvich et al, 1962 (USSR)		63.22	63.04		70.40	112.3		75.50	163.4		78.20	212.3	
Stull, Westrum and Sinke, 1969	15.23	63.27	58.22	17.08	70.41	110.1	19.36	75.58	167.8	21.99	78.32	223.3	
JANAF, 1969	15.23	63.25	58.33	17.08	70.39	109.6	19.36	75.48	167.8	21.80	78.16	223.4	
This Work, 1972	15.23	63.25	59.1	17.08	70.40	110.1	19.38	75.52	166.8	21.80	78.16	223.3	

This study was supported by the NBS Office of Standard Reference Data under contract number 2-35730 with the Texas A&M Research Foundation. The IBM 360/65 System of the Texas A&M Data Processing Center was utilized in all computer calculations and was partially supported by the Texas Engineering Experiment Station. The authors wish to thank the Editor for his helpful suggestions and careful editing of the manuscript.

12. References

Alcock, N. Z. and Hurst, D. G., Phys. Rev. 83, 1100 (1951).

Allen, T. L., J. Chem. Phys. 31, 1039 (1959).

Andersen, F. A., Bak, B., and Brodersen, S., J. Chem. Phys. 24, 989 (1956)

Baibuz, V. F., Proc. Acad. Sci. USSR, Phys. Chem. 140, 786 (1961). Bartell, L. S., Brockway, L. O., and Schwendeman, R. H., J. Chem. Phys. 23, 1854 (1955).

Bernstein, H., J. Phys. Chem. 69, 1550 (1965).

Bernstein, H. T. and Herzberg, G., J. Chem. Phys. 16, 30 (1948).

Bodenstein, M., Gunter, P., and Hoffmeister, F., Angew. Chem. 39, 875 (1926)

Bowen, H. J. M., Trans. Faraday Soc. 50, 444 (1954).

Brockway, L. O., Acta Crystallogr. 7, 682 (1954).

Cox, J. D., Gundry, H. A., and Head, A. J., Trans. Faraday Soc. 61, 1594 (1965).

Domalski, E. S. and Armstrong, G. T., J. Res. Nat. Bur. Stand., A, 71, 105 (1967).

Duncan, J. L., J. Mol. Struct. 6, 447 (1970).

605 (1952).

Eftring, E., Dissertation, University of Lund, Lund, Sweden, 1938. Eucken, A. and Schroder, E., Z. Phys. Chem. Abt. B, 41, 307 (1938). Fletcher, R. A. and Pilcher, G., Trans. Faraday Soc. 67, 3191 (1971). Ghosh, S. N., Trambarulo, R., and Gordy, W., J. Chem. Phys. 20,

Gilliam, O. R., Edwards, H. D., and Gordy, W., Phys. Rev. 75, 1014 (1949).

Good, W. D., Scott, D. W., and Waddington, G., J. Phys. Chem. 60, 1080 (1956).

Greenberg, E. and Hubbard, W. N., J. Phys. Chem. 72, 222 (1968). Gurvich, L. V. et al., "Thermodynamic Properties of Chemical Substances," Vol. 2, Academy of Sciences, USSR, 1962.

Soc. 66, 1064 (1944).

Hildebrand, D. L. and McDonald, R. A., J. Phys. Chem. 63, 1521

Hoffman, C. W. W. and Livingston, R. L., J. Chem. Phys. 21, 565

Hu, A. T. and Sinke, G. C., J. Chem. Thermodynamics 1, 507 (1969). Hwang, Y. T. and Martin, J. J., AIChE J. 10, 89 (1964).

"Interatomic Distances," Special Publication No. 16, The Chemical Society (London, 1958).

International Council of Scientific Unions, "CODATA Bulletin No. 5," December, 1971.

JANAF. Thermochemical Tables, NSRDS-NBS 37, 1971.

Jen, M. and Lide, D. R., Jr., J. Chem. Phys. 36, 2525 (1962).

Johnson, G. K., Smith, P. N., and Hubbard, W. N., private communication, Argonne Natl. Lab., 1971.

Karle, I. L. and Karle, J., J. Chem. Phys. 17, 1052 (1949).

Kirkbride, F. W., J. Appl. Chem. 6, 11 (1956).

Kolossowsky, N. and Alimov, A., Bull. Soc. Chim. Fr. 1, 877 (1934). Lacher, J. R., Amador, A., and Park, J. D., Trans. Faraday Soc. 63, 1608 (1967).

Lacher, J. R., Emery, E., Bohmfalk, E., and Park, J. D., J. Phys. Chem. 60, 492 (1956a).

Lacher, J. R., Emery, E., Bohmfalk, E., and Park, J. D., Trans. Faraday Soc. 52, 1500 (1956b).

Landolt-Bornstein, "Zahlenwerte und Funktionen," 6th Edition, Vol. 2, Part 4, "Kalorische Zustandsgrossen," Springer-Verlag, Berlin,

Lide, D. R., Jr., J. Amer. Chem. Soc. 74, 3548 (1952).

Lord, A. and Pritchard, H. O., J. Chem. Thermodynamics 1, 495 (1969).

Lord, R. C., Jr. and Blanchard, E. R., J. Chem. Phys. 4, 707 (1936). Mathews, J. H., J. Amer. Chem. Soc. 48, 562 (1926).

Mayer, J. E. and Mayer, M. G., "Statistical Mechanics," John Wiley & Sons, Inc., New York, 1940, p. 495.

Messerley, G. H. and Aston, J. G., J. Amer. Chem. Soc. 62, 886 (1940). Montgomery, J. B. and DeVries, T., J. Amer. Chem. Soc. 64, 2372 (1942).

Myers, R. J. and Gwinn, W., J. Chem. Phys. 20, 1420 (1952).

Neugebauer, C. A. and Margrave, J. L., J. Phys. Chem. 60, 1318 (1956).

Neugebauer, C. A. and Margrave, J. L., J. Phys. Chem. 62, 1043 (1958).

Page, C. H. and Vigoureaux, P., NBS Special Publication 330, 1970.

Patrick, C. R., Advan. Fluorine Chem. 2, 1 (1961).

Patton, H. W., Thesis, Vanderbilt University, 1952. Pitzer, K. S., J. Amer. Chem. Soc. 63, 2413 (1941).

Plyler, E. K. and Benedict, W. S., J. Res. Nat. Bur. Stand. 47, 202 (1951).

- Rank, D. H., Shull, E. R., and Pace, E. L., J. Chem. Phys. 18, 885 (1950)
- Rodgers, A. S., J. Phys. Chem. 71, 1996 (1967).
- Rossini, F. D., Wagman, D. D., Evans, W. H., Levine, S., and Jaffe, I., "Selected Values of Chemical Thermodynamic Properties," National Bureau of Standards, Circular 500, 1952.
- Scott, D. W., Good, W. D., and Waddington, G., J. Amer. Chem. Soc. 77, 245 (1955).
- Settle, J. L., Greenberg, E., and Hubbard, W. N., private communication, Argonne Natl. Lab., 1971.
- Shimanouchi, T., "Tables of Molecular Vibrational Frequencies," Consolidated Volume I, NSRDS-NBS 39, 1972.
- Smith, J. H. and Pace E. L., J. Phys. Chem. 73, 4232 (1969).
- Smith, L., Bjellerup, L., Krook, S., and Westermark, H., Acta Chem. Scand. 7, 65 (1953).
- Stewart, H. B. and Nielsen, H. H., Phys. Rev. 75, 640 (1949).
- Stull, D. R., J. Amer. Chem. Soc. 59, 2726 (1937).
- Stull, D. R., Westrum, E. F., and Sinke, G. C., "The Chemical Thermodynamics of Organic Compounds," John Wiley & Sons, Inc., New York, 1969.
- Taylor, B. N., Parker, W. H., and Langenberg, D. N., Rev. Mod. Phys. 41, 375 (1969).
- The Commission on Atomic Weights of IUPAC, Pure Appl. Chem. 21, 91 (1970).

- Thomsen, J. J., "Thermochemistry," (Transl. by K. Barth), Longmans, Green, London, 1908.
- Thorton, C. G., Univ. Microfilms Publ. No. 7746, Dissertation Abstr. 14, 604 (1954).
- Valentine, R. H., Brodale, G. E., and Giauque, W. F., J. Phys. Chem. 66, 392 (1962).
- Vanderkooi, W. N. and DeVries, T., J. Phys. Chem. 60, 636 (1956).
- Wagman, D. D., Evans, W. H., Parker, V. B., Halow, I., Bailey, S. M., and Schumm, R. H., "Selected Values of Chemical Thermodynamic Properties," National Bureau of Standards Technical Note 270-3, 1968
- Wolfe, P. N., J. Chem. Phys. 25, 976 (1956).
- Wood, J. L., Lagow, R. J., and Margrave, J. L., J. Chem. Eng. Data 12, 255 (1967).
- Zahn, C. T., J. Chem. Phys. 2, 671 (1934).
- Zwolinski, B. J. et al., "Selected Values of Properties of Chemical Compounds," Thermodynamics Research Center Data Project, Thermodynamics Research Center, Texas A&M University, College Station, Texas (Loose-leaf data sheets, extant, 1972).
- Zwolinski, B. J. et al., "Selected Values of Properties of Hydrocarbons and Related Compounds," American Petroleum Institute Research Project 44, Thermodynamics Research Center, Texas A&M University, College Station, Texas (Loose-leaf data sheets, extant, 1972).