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The current knowledge of thermodynamic properties of ordinary water substance is
summarized in a condensed form of a set of skeleton steam tables, where the most probable
values with the reliabilities on specific volume and enthalpy are provided in the range of
temperatures from 273 to 1073 K and pressures from 101.325 kPa to 1 GPa and at the
saturation state from the triple point to the critical point. These tables have been accepted
as the IAPS Skeleton Tables 1985 for the Thermodynamic Properties of Ordinary Water
Substance(IST-85) by the International Association for the Properties of Steam (IAPS).
The former International Skeleton Steam Tables, October 1963 (IST-63), have been with-
drawn by IAPS. About 17 000 experimental thermodynamic data were assessed and clas-
sified previously by Working Group 1 of IAPS. About 10 000 experimental data were
collected and evaluated in detail and especially about 7000 specific-volume data among
them were critically analyzed with respect to their errors using the statistical method
originally developed at Keio University by the first three authors. As a result, specific-
volume and enthalpy values with associated reliabilities were determined at 1455 grid
points of 24 isotherms and 61 isobars in the single-fluid phase state and at 54 temperatures
along the saturation curve. The background, analytical procedure, and reliability of IST-
85 as well as the assessmient of the existing experimental data and equations of state are
also discussed in this paper.

Keyv words: density: enthalpy; error analysis; IAPS;IST-85; saturated steam; saturated water; specif-
ic volume; steam; thermodynamic property; vapor pressure; water.
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1. Introduction

Water® is the most abundant compound on the surface
of the earth'; thus the knowledge of its thermodynamic
properties is essential to understanding the mechanisms of
nature. For practical applications, water has been used wide-
ly in industries as heating medium, working fluid of power
generation, solvent, medium of hydrothermal reactions, and
so on. The experimental data regarding the thermodynamic
properties of water have been accumulated from the nine-
teenth century up to the present to form a large body of
information. Industries have saved large amounts of energy
and improved safety by means of the rational design and
operation based on those experimental data.

Approximately 12 000 specific-volume data and 5000
other thermodynamic property data including heat capac-
ity, internal energy, enthalpy, Joule-Thomson coefficient,
and speed of sound, were reported for thermodynamic prop-
erties of water up to the present. Among them, about 6000
specific volume data and about 2000 other thermodynamic
property data were reported after the establishment of the
former International Skeleton Steam Tables(IST-63).

Although a large amount of experimental data has been
accumulated, the use of them requires much effort even to
collect and convert into common units. In addition, the fact
that different investigators have often provided different val-
ues due to experimental errors for a property at the same
state point, may lead users to be confused.

‘I'he objective of establishing skeleton tables is to extract
the best value from those current experimental data and to
provide it. A set of skeleton tables is the current information
consisting of the most probable values and the reliabilities
(tolerances) extracted from the experimental data by ana-
lyzing their errors on the basis of common criteria.

Straub, Scheffler, Rosner, Watanabe, Uematsu, and
Sato have emphasized the importance of obtaining interna-
tional agreement on the thermodynamic data’ they pro-
posed skeleton tables for the specific volume of water in

® The single word “water” throughout this paper referred to ordinary water
substance, light water, or H.O, including both the liquid state and the
gascous slatc.
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1980.>* Those efforts motivated the International Associ-
ation for the Properties of Steam (IAPS) to issue the IAPS
Skeleton Tables 1985(IST-85).

The IST-85 consists of three different tables. The first
table gives the most probable specific-volume values with
their associated tolerances in the range of temperatures from
273.15 to 1073.15 K and pressures up to 1 GPa, the second
table gives the most probable enthalpy values with their as-
sociated tolerances in the same range as that of the specific-
volume table, and the last one gives the thermodynamic
properties along the saturation curve.

The original specific-volume and enthalpy tables for the
single-fluid phase water were provided by the first three
present authors, Sato, Uematsu, and Watanabe.*'! The spe-
cific-volume table was constructed on the basis of the experi-
mental data by nsing the method of error analysis developed
by Sato, Uematsu, and Watanabe,*”’ whereas the enthalpy
table was constructed from existing equations of state for
water as described in Sec. 5.1.b. The table for the saturated
water and saturated steam was calculated by the equations
established by the last two present authors, Saul and Wag-
ner,'”'* whose equations have received international agree-
ment 10 be released as Supplementary Release on Saturation
Properties of Ordinary Water Substance.’’

The present paper aims to provide the detailed back-
ground, procedure and assessment of IST-85, as well as the
values of IST-85 and comparisons of the values of IST-85
with most of experimental data on specific volume and en-
thalpy of water, and with IST-63, existing equations of state
including currently internationally agreed upon equations,
the 1967 IFC Formulation for Industrial Use(IFC-67) and
the JAPS Formulation 1984 for Scientific and General
Use(IAPS-84).

2_Historical Background

In 1929, the First International Steam Table Confer-
ence was held in London in order to establish the Interna-
tional Skeleton Steam Tables for the purpose of providing
the unified thermodynamic property values of water. Before
1929, there had already been much valuable research work
on the thermodynamic properties of water and different
steam tables had been used in different countries as shown in
Table 1. But those steam tables do not agree at all grid points
to within combined tolerances. The first conference had to
start discussing the conversion factors of units regarding
temperature, pressure, specific volume, and heat. The unit of
heat, 1 kcal = 1/860 kW h, which was called “international
steam table kilocalorie,” was decided at this conference. This
conference also decided that the final recommendations of
the conference regarding thermodynamic properties of wa-
ter should be given in the form of skeleton tables, and a set of
basic skeleton tables was prepared. This set of skeleton steam
tables.consisted of a saturated steam table in the temperature
range up to 623 K and a superheated steam table in the range
of temperatures up to 823 K and pressures up to 25 MPa. But
the set of skeleton steain tables was not completed at this
conference.'®

In 1930, the Second International Steam Table Confer-
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Table 1. List of Steam Tables
Year Country Prepared by Title T/K P/MPa Base
1763 UK J. Watt
1847 France II.V. Regnault
1859 UK W.J.M. Rankine Manual of the Steam Engine
1860 Germany G. Zeuner Grundzige der mechanischen Warme-
theorie mit besonderer Ricksicht
auf das Verhalten des Wasser-
dampfes
1900 UK H.L. Callendar Callendar-egq.
1904 Germany R. Mollier Neue Diagramme zur Technischen Callendar-eq.
Wdrmelehre
1905 Germany G. Zeuner Technische Thermodynamik, 3
1906 Germany R. Mollier Neue Diagramme zur Technischen 773 2 Callendar-eq.
Wadrmelehre
1923 Germany O. Knoblauch Tabellen und Diagramme fir Was- 723 6
E. Raisch serdampf berechnet aus der spez-
II. Hausen ifischen Wdrme
1925 -USA G. E.
1925 Germany K. Mollier The Mollier Steam Tables and 823 15 Mollier-eq.
‘ Diagrams
1930 USA J.H. Keenan Steam Tables and Mollier Diagram Davis-eq.
(ASME)
1932 Cermany R. Mollier Neue Tabellen und Diagramme fir Mollier-eq.
Wasserdampf
1932 Germany A. Knoblauch Tabellen und Diagramme fiir Was- 823 25 Hausen-eq.
E. Raisch serdampf (IST-30)
H. Hausen
W. Koch
1934 Japan (JSME) Steam Tables and Diagrams of the 823 25 Sugawara-eq.
JSME (1IST-30)
1936 USA J.H. Keenan Thermodynamic Properties of Steam 1147 39 Keyes-Smith-
F.G. Keyes including Data for the Liquid and Gerry-eq.
Solid Phases (1ST-34)
1937 Germany W. Koch VDI-Wasserdampftafeln mit einem 823 30 Koch-eq.
(VDbl) Mollier-Diagramm auf einer beson- (IST-34)
deren Tafel
1939 UK G.S. Callendar The 1939 Callendar Steam Tables 811 23 (IST-34)
A.C. Egerton
1940 USSR M.P. Vukalovich Vukalovich-eq.
(1IST-34)
1943 USA J.H. Keenan Thermodynamic Properties of Steam 1147 39 (IST-34)
F.G. Keyes
1944 UK G.S. Callendar The 1939 Callendar Steam Tables 811 23  (IST-34)
A.C. Egerton
1946 USSR M.P. Vukalovich 823 30 Vukalovich-eq.
(IST-34)
1949 UK G.S. Callendar The 1939 Callendar Steam Tables 811 23 (IST-34)
A.C. Egerton
1950 Japan S. Niwa Revised Steam Tables and Diagrams 873 30 Tanishita-eq.
(JSME) of the JSME (IST-34)
1951 USSR M.P. Vukalovich Thermodynamic Properties of water 973 30 Vukalovich-eq.
and Steam (IST-34)
1952 USSK (Ministry of Tables of Thermodynamic Froperties 873 30 (IST-34)
Electric of Water and Steam based on exper-
Stations) imental data
1952 Germany W. Koch VDI-Wasserdampftafeln 811 30 Koch-eq.
(VDI) (IST 34)
1953 Sweden 0.H. Faxén Thermodynamic Tables in the 923 25 Jaza-eq.
Metric System for Water and Steam (1ST-34)
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Table 1. List of Steam Tables-continued

Year Country Prepared by Title T/K P/MPa Base

1955 Swiss L.S. Dzung Enthalpy-Entropy-Diagram for 1073 50 Vukalovich-eq.

W. Rohrbach Steam and Water (IST-34)
1955 Japan S. Sugawara Revised Steam Tables and Diagrams 973 34 Tanishita-eq.
(JSME) of the JSME (IST-34)

1955 USSR (Moscow Institute of Energetics) 973 30 (IST-34)

1956 USSR (Institute of Thermodynamics) 1073 40 (IST-34)

1956 Germany W. Koch VDI-Wasserdampftafeln mit einem 1073 30 Koch-eq.

E. Schmidt Mollier-Diagramm bis 800 °C (IST-34)

1958 USSR M.P. Vukalovich Thermodynamic Properties of Water 1273 100 Vukalovich-eq.
and Steam (IST-34)

1958 USSR (Institute of Tables for Thermodynamic Prop-

Thermodynamics) erties of Water and Steam (IST-63)

1963 Germany E. Schmidt VDI-Wasserdampftafeln mit einem 973 50 Koch-eq.
Mollier-Diagramm bis 800°C und (IST-34, IST-63)
einem T,s-Diagramm

1964 UK R.W. Bain Steam Tables 1964, Physical Prop- 1073 100 (IST-63)

(NEL) erties of Water and Steam

1963 USSR M.P. Vukalovich Tables of Thermodynamic Proper-~
ties of Water and Water Vapor

1965 USSR M.P. Vukalovich Tables of Thermodynamic Proper-
ties of Water and Water Vapor

1967 UK (ERA) 1967 Steam Tables 1073 100 (IST-63)

1967 USA C.A. Meyer ASME Steam Tables, Thermodynamic 1073 100 (IFC-67, IST-63)

R.B. McClintock and Transport Properties of Steam
G.J. Silvestri
R.C. Spencer,
Jr., (ASME)
1968 Japan I. Tanishita 1968 JSME Steam Tables 1073 100 (IFC-67, 1IST-63)
(JSME)
1968 USA J.H. Keenan Steam Tables, Thermodynamic Prop- 1573 100 Keenan-Keyes-
F.G. Keyes erties of Water including Vapor, Hill-Moore-eq.
P.G. Hill Liquid, and Solid Phases
J.G. Moore
1969 Germany E. Schmidt Properties of Water and Steam in 1073 100 (IFC-67, IST-63)
(ASME, JSME, SI Units
and VDI)
1969 USSR M.P. Vukalovich Tables for Physical Properties of
S.L. Rivkin Water and Steam
A.A. Alexandrov
1970 UK W.W, Campbell UK Steam Tables in SI Units 1970 1073 100 (IFC-67, IST-63)
(Ministry of
Technology)
1975 USA C.A., Meyer ASME Steam Tables, Thermodynamic 1073 100 (IFC-67, IST-63)
R.B. McClintock and Transport Properties of Steam
G.J. Silvestri
R.C. Spencer,
Jr., (ASME)
1975 USSR S.L. Rivkin Thermophysical Properties of
A.A. Alexandrov Water and Steam
1979 Germany E. Schmidt Properties of Water and Steam in 1073 100 (IFC-67, IST-63)
U. Grigull SI-Units
(ASME, JSME,
and VDI)
1980 Japan I. Tanishita 1980 SI JSME Steam Tables 1073 100 (IFC-67, IST-63)
(JSME)
1984 USaA L. Haar NBS/NRC Steam Tables, Thermodyn- 22/3 3000 (lAPS-84)
J.S. Gallahger amic and Transport Properties and
G.S. Kell Computer Programs for Vapor and

Liquid States of Water in SI Units
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ence was held in Berlin and the discussion for the establish-
ment of International Skeleton Tables was continued under
the chairmanship of Nobel prize winner W. Nernst. The re-
vised set of skeleton tables was worked out at this confer-
ence. But additional experimental data available had made it
possible to enlarge the effective range of the proposed skele-
ton tables."”

The .first International Skeleton Steam Tables,
1934(1IST-34) were finally adopted at the Third Interna-
tional Steam Table Conference held at three locations in the
United States: Washington, D.C. on Monday, September
17th; Cambridge, Massachusetts on Tuesday, September
18th; and New York, N.Y. on Wednesday, September 19th,
1934. The IST-34 contains specific volumes and total heats,
the latter name being used instead of enthalpy at that time.
The specific-volume table provided 159 values covering tem-
peratures up to 823 K and pressures up to 40 MPa, while the
total-heat table provided 143 values covering up to 823 K
and 30 MPa; the specific volumes and total heats for satu-
rated water and saturated steam were provided at 10 K inter-
vals between 273 and 643 K and at 1 K intervals between 643
and 647 K. Based on IST-34, many steam tables were pub-
lished in different countries; Keenan and Keyes prepared the
Steam Tables in 1936, in the United States; the VDI-Steam
Tables were published based on the equation of state devel-
oped by Koch in 1937, in the Federal Republic of Germany;
Callendar and Egerton prepared the Steam Tables in 1939,
in the United Kingdom; the JISME-Steam Tables were de-
rived from the equation of state developed by Tanishita in
1950, in Japan; and the Russian Steam Tables were derived
from the equation of state developed by Vukalovich in 1940,
in the Soviet Union.

The name of the International Steam Table Conference
was changed into “International Conference on the Proper-
ties of Steam (ICPS)” at the fourth ICPS held in Philadel-
phia, 1954. At the fourth ICPS, the scope of conference was
enlarged to other properties of water including viscosity and
thermal conductivity.

The fifth ICPS held in London, 1956, considered tenta-
tive newer skeleton tables but could not agree to accept them
because experimental work had not come to satisfactory
completion at that time. An International Coordinating
Committee was then established to prepare newer skeleton
steam tables for both equilibrium and transport properties.
The committee consisted of four countries, the Federal Re-
public of Germany, the United Kingdom, the United Statcs,
and the Soviet Union; it met four times between the fifth and
sixth ICPS, including informal committee meeting held in
London, 1957. At the fifth ICPS, the unit of energy was
decided as 1 J = 1 Ws = 10 erg, the unit of enthalpy as the
J/kg. Furthermore, the reference state for steam tables was
chosen to be liquid water at the triple point; at this point, the
values of the internal energy and entropy were defined to be
zero exactly.

The former International Skeleton Tables(IST-63),
were adopted at the sixth ICPS held in New York, 1963,
which provided specific-volume and enthalpy values at 580
points covering temperatures from 273 to 1073 K and pres-
sures up to 100 MPa. The delegates and observers at the
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sixth ICPS consisted of 63 participants including the experts
from Canada, CSSR, France, FRG, Japan, Norway, Swit-
zerland, the UK, the USA, and the USSR. The skeleton ta-
bles of viscosity and thermal conductivity were also author-
ized in 1964 under the name of “Supplementary Release on
Transport Properties,” November 1964(IST-64). At the
sixth ICPS most members recognized it to be important that
all countries use the same property values in design and per-
formance calculations of power plants. Therefore, the Inter-
national Formulation Committee of the Sixth International
Conference on the Properties of Steam (IFC) was set up in
1963 in order to develop a unified international formulation
for use with computers. The IFC consisted of six national
formulation teams including CSSR, FRG, Japan, the UK,
the USA, and the USSR.

The 1967 IFC Formulation for Industrial Use(IFC-
67)," which was formulated by combining separate equa-
tions in six subregions,'®-*? was established by IFC. The
IFC-67 is being used effectively in most of the engineering
calculations at present. The 1968 IFC Formulation for Sci-
entific and General Use(IFC-68)%* was also prepared by
IFC. With the exception of the USSR, which base its steam
tables on IFC-08, steain lables based on IFC-67 are used in
many countries.>* The computer software of IFC-67 is also
currently available everywhere.

In 1968, the seventh ICPS held in Tokyo appointed a
standing organization for the international cooperation on
the properties of steam, the International Organization for
the groperties of Steam (IOPS), by seven countries includ-
ing CSSR, France, FRG, Japan, the UK, the USA, and the
USSR, which was renamed as the International Association
for the Properties of Steam (IAPS) at the meeting of IOPS
executive committee in Moscow, 1970. This executive com-
mittee in Moscow also agreed to set up three Working
Groups, namely, Working Group 1 on the equilibrium prop-
erties, Working Group 2 on the transport properties, and
Working Group 3 on the other properties of water and
steam. Working Group 4 on the chemical thermodynamics
in power cycles was established at the meeting of the JAPS

‘executive committee in Ottawa, 1975. The meetings of the

IAPS executive committee and working groups have been
continuously held every year from the first executive com-
mittee meeting under the IOPS in Moscow, 1970, up to the
present.

The revision of IST-63 was discussed at the eighth
ICPS, held in Gicn, France, in 1974, and many releases were
issued by IAPS between the eighth and ninth ICPS; the for-
mer Dynamic Viscosity of Water Substance, 1975: the for-
mer Thermal Conductivity of Water Substance, 1977: The
current Surface Tension of Water Substance, 1976: and the
current Static Dielectric Constant of Water Substance, 1977.

The ninth ICPS was held in Munich in 1979 and com-
memorated the golden anniversary of Steam Property Con-
ferences. White, the Executive Secretary of IAPS, reported
the history of 50 years on international collaboration for the
thermophysical properties of water.”® The Japan National
Committee on the Properties of Steam, the 139th Committee
of the Japan Society for the Promotion of Science, compiled
all reports and releases issued by ICPS and IAPS over a 50-
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year period between 1929 and 1979 in two volumes.*® At the
ninth ICPS, Straub, as the chairman of Working Group 1,
introduced the status of experimental study and the activity
of IAPS on the equilibrium properties of water in the period
between 1974 and 1979.?” He reported that the number of
experimental thermodynamic property data obtained from
1890 up to 1979 was about 12 000 specific-volume data and
about 5000 caloric data. And he made it clear that, of these,
about 6000 specific-volume data and 2000 caloric data were
reported after 1961 and had not been taken into account for
the establishment of IST-63. Then he concluded that the
main task for Working Group 1 was the preparation of a new
representation of the thermodynamic surface of water by
developing revised international skeleton tables and a new
formulation.

The requirement was satisfied at the tenth ICPS held in
Moscow, 1984, with the acceptance of the IAPS Formula-
tion 1984 for the Thermodynamic Properties of Ordinary
Water Substance for Scientific and General Use (IAPS-
84)2% and the IAPS Skeleton Tables 1985 for the Thermody-
namic Properties of Ordinary Water Substance (IST-85).%
The IST-85 was proposed-at the tenth ICPS and was accept-
ed finally at the meeting of IAPS executive committee held
in Gaithersburg (U.S.) 1985. The releases on the Dynamic
Viscosity 1975 and Thermal Conductivity 1977 were also
revised according to the revision of its density values at the
meeting as the IAPS Formulation 1985 for the Viscosity of
Ordinary Water Substance and the IAPS Formulation 1985
for the Thermal Conductivity of Ordinary Water Substance,
respectively.

In addition, the following current releases were issued
by IAPS between the ninth and tenth ICPS: the Ion Product
of Water Substance, 1980; the 1983 IAPS Statement, Values
of Temperature, Pressure, and Density of Ordinary and
Heavy Water Substances at Their Respective Critical
Points®; the IAPS Formulation 1984 for the Thermody-
namic Properties of Heavy Water Substance; the Viscosity
and Thermal Conductivity of Heavy Water Substance, 1984.

At present, IAPS arc shifting emphasis to the study of
the properties of aqueous mixtures and solutions. Accord-
ingly, the four Working Groups of IAPS were reorganized
into two Working Groups at the meeting of the TAPS execu-
tive committee in Moscow, 1984. Working Group A is re-
sponsible for thermophysical properties of ordinary and
heavy water substance and aqueous systems not adopted for
the study by Working Group B, whereas Working Group B
is responsible for chemical thermodynamics of power cycles.

The historical progress on Steam Tables published in
various countries and three International Skeleton Tables

Table 2. Historicel progress of International Skeleton Tables

International Range Grid Temp.

Skeleton Property Temperature Pressure points scale

Tables(IST) K MPa

IST-34 volume(v) 273 - 823 0.1 - 40 159 I1TS-27
enthalpy(h) 273 - 823 0.1 - 30 143 ITS-27

IST-63 vy b 273 - 1073 0.1 - 100 580 IPTS-48

1ST-85 v, h 273 - 1073 0.1 - 1000 1455 IPTS-68
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(IST) for the thermodynamic properties of water is sum-
marized in Tables 1 and 2, separately. Note that while the
IST has been revised three times, the International Practical
Temperature Scale has been also changed three times from
the International Temperature Scale of 1927 (ITS-27) to the
International Practical Temperature Scale of 1948 (IPTS-
48)3! and to IPTS-68.32

3. Experimental Situation
3.1. Single-Fluid Phase State

A detailed data survey on the thermodynamic proper-
ties of water was conducted in 1974 by Watanabe and Ue-
matsu.>® Many experimental data were summarized and dis-
cussed in this survey. In addition, most of those data were
compared with IFC-67, the so-called MIT Formulation de-
vised by Keenan, Keyes, Hill, and Moore,** IFC-68, and the
equation of state devised by Jza in 1966.%° The work per-
formed by Watanabe led to IAPS discussions on the necessi-
ty of revisions of IST-63 and IFC-68 at Working Group
meetings in Schliersee, 1975. The discussion was continued
at meetings of IAPS in Ottawa, 1975, in Kyoto, 1976, in
Moscow, 1977, and in Washington, 1978.

The “International Input,” critically evaluated and in-
ternationally agreed upon thermodynamic properties data
set for the establishment of new standards, was prepared by
members of Working Group 1 of IAPS, namely, Alexan-
drov, Juza, Levelt Sengers, Straub, Uematsu, and Watanabe
for the experimental specific-volume data as well as Alexan-
drov, Juza, and Straub for the caloric property data includ-
ing heat capacity, enthalpy, and internal energy. The results
were compiled and reported by Straub and Rosner as an
internal IAPS report in 1977.3%*7 The report lists more than
170 papers as primary data base; 91 papers for the specific
volume and 38 papers for the caloric properties were select-
ed, with the evaluated results ranked, in order of decreasing
reliability, from A to D.

3.1.a. Specific Volume

Concerning the specific volume at high temperatures
and high pressures, 44 experimental data sets were collected.
They are listed in Table 3, which begins with the data report-
ed by Amagat in 18933 and ends with that by Hanafusa et al.
in 1984.7% The total number of the experimental data listed
in Table 3 is 10 490 including 4476 data points classified with
rank A, 1441 points with rank B, 3186 points with rank C
and additional 1387 unclassified data points reported more

~ recently.

The distribution of 6597 experimental data points
which are affixed with an asterisk to the authors’ name in
Table 3 and 231 specific-volumc data derived by Chen et al.®®
from speed-of-sound data, is shown in Figs. 1 and 2 on the
pressure-temperature diagram with different symbols for
different series of measurements. Figure 1 shows the distri-
bution of 1422 data points reported prior to 1963 when the
former international skeleton tables were issued, and Fig. 2
shows the distribution of 5406 data points reported after
1964. Most of specific-volume data in the range correspond-

J. Phys. Chem. Ref, Data, Vol. 17, No. 4, 1988 -
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Fig. 1. Experimental data of the specific volume of water
published prior to 1963 on the pressure-temperature
plane. Specific volume measured by Smith and Keyes
(X)), Keyes et al.(XjX), Vukalovich et al, in 18961

©
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ing to the temperatures from 273 to 1173 K and pressures up
to 1 GPa have been replaced with newer data reported after
1964 as shown in Fig. 2.

The first accurate measurements for the density of wa-
ter in a large pressure range were reported by Amagat in

in 1962(()), Jdza et al.
©) and in 1963(()) are shown.

(4), Rivkin et al. in

1893.3% According to the description by Dorsey in 1940,*
the original specific-volume values reported by Amagat
should be multiplied by 1.000 159 in order to get specific-
volume values in dm’/kg.

Similarly, a conversion factor of 0.055 509 6 should be

1000

LA

)
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Fig. 2. Experimental data of the specific volume of water

published after 1964 on the

pressure-temperature

plane. Specific volumes measured by Rivkin et al,
in 1964(()), (), and in 1966(&)), Tanishita et al.
(O), Maler and Franck(\%y), KUscer and Franck(y),

Vedam and Holton(® ), Borzunov et al.()(), Grindley
and Lind(A), Garnjost(X), Grigoryev(E) and (XD,

Kell et al., in 1974(Q), Kell and Whalley(&),
Kell et al.in 1978(CO), Alexandrov et al.(Q),
Alexandrov et al.(<¢®), Zubarev et al. in 1977(\/),
(), Burnnam et al. (X ), Cchen et al. (&),

Hilbert et al.{([x]), Hanafusa et al.(()), are shown.

J. Phvs. Chem Ref Nata Vnl 17 Na 4 10828



THERMODYNAMIC PROPERTIES OF WATER

multiplied to the original molar-volume values measured by
Bridgman in 1912,% 1913,%0 1931,*' and 1935.** Bridgman’s
1912 data®® seemed to be preferable to those of 1935%% as
described by Vedam and Holton.®® The specific-volume data
determined by Vedam and Holton agree with Bridgman’s
1912 data to within 4 0.1%. They pointed out that Bridg-
man had used the incorrect data in his calibration of pressure
at 273 K. The same conclusion was reached by Grindley and
Lind,*” whose specific-volume data agreed with Bridgman’s
earlier measurements*® to within + 0.17 %, after correcting
Bridgmat’s pressure scale; while Bridgman’s later data ob-
tained with the sylphon-bellows techniques® lic 0.6 % above
those of Grindley and Lind.

Similar correction must be made to the pressure scale
for the measurements of Burnham et al. in 1969* as pointed
out by Grindley and Lind. The corrected Burnham’s data
were circulated to members of Working Group 1 of IAPS in
1977.7

Smith and Keyes reported specific volumes of liquid
water in 1934* and those of steam and at saturation in
1935.* During the course of their experimental work on lig-
uid waler, three independent series of measurements were
made in three cylindrical vessels made of different materials,
anickel vessel at temperatures from 303 to 573 K, a chrome-
vanadium vessel at temperatures from 473 to 633 K, and a
number 1B Nirosta 18/8 vessel at temperatures from 303 to
633 K, respectively. These data are still valuable, except for
those measured by using the nickel vessel which are lower by
about 0.05% in specific volume than those measured by us-
ing other vessels.

Kennedy in 1957, Kennedy ez al. in 1958, and
Holser and Kennedy in 1958*” and 1959* added an oxidiz-
ing agent (CuQO) to water so as to prevent the reaction
between water and experimental bomb wall at high tempera-
tures. Their data have systematic errors along the 323, 473,
673, and 773 K isotherms as shown in the figures prepared
by Tanishita ez al.®!

Kirillin and Ulybin*® summarized a series of their data
reported from 1953 to 1959 in various papers. Their work
was followed by that of Vukalovich et al., who reported ex-
perimental data in the extended range including liquid wa-
ter’® and steam,"*2 at temperatures up to 1173 K and pres-
sures up to 120 MPa in 1959 to 1962. In addition, Zubarev
et al. extended the pressure range to 200 MPa in 1977.757¢

Alexandrov et al. measured specific volumes at two
special regions, namely, a region near the critical point and a
region including the locus of maximum density. The experi-
mental data were reported at the states adjacent to the criti-
cal point along every 10 K interval between 613 and 653 K at
pressures up to 101 MPa in 1974.% They reported later that
those data, because of the incorrect treatment of their mea-
sured pressures, required corrections of up to 0.072% in spe-
cific volume. The corrected values were presented to
members of Working Group 1 in 1976.7* Another set of ex-
perimental data reported by Alexandrov et al.” is valuable
information for revealing the behavior in the region where a
density maximum is present on isobars below about 40 MPa.
They measured specific volumes along isotherms at 1 K in-
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tervals between 264 and 278 K in the pressure range from 5
to 102 MPa.

Jhza et al. reported specific volumes at high pressures
from 27 to 350 MPa and temperatures from 347 to 623 K
with an uncertainty of + 0.2% in 1961%% smoothed specific-
volume values were given in an appendix to their 1966 publi-
cation on their equation of state®® at temperatures from 373
t0 623 K and pressures from 100 to 450 MPa with an uncer-
tainty of 4 0.3% in specific volume.

Maier and Franck in 1966, Vedam and Holton in
1968,%° Koster and Franck in 1969,%* Borzunov et al. in
1970,% Grindley and Lind in 1971,57 and Hilbert ez al. in
198178 reported experimental data at very high pressures
with the claimed uncertainty of + 1%, + 0.2%, + 1%,

+0.05%, + 0.01%, and + 0.02% in specific volume, re-
spectively.

Maier and Franck used a corrosion resistant nickel-
base alloy for their constant-volume vessel for measure-
ments at temperatures from 473 to 1123 K and pressures up
to 600 MPa. Koster and Franck improved the apparatus of
Maier and Franck and measured specific volumes at tem-
peraturcs from 298 to 873 K and pressurcs up to 1 GPa.

Vedam and Holton measured speed of sound at tem-
peratures from 303 to 353 K and pressures from 0.1 MPato 1
GPain 1968 and developed a computer-aided procedure for
obtaining specific-volume values from speed-of-sound data.

Borzunov et al. used a glass pycnometer to measure the
density of liquid water at temperatures up to 338 K and
pressures up to 923 MPa in 1970; although their claimed
uncertainty was reported as + 0.05%, their specific vol-
umes deviate systematically by about 0.2% from other mea-
surements.

Grindley and Lind measured specific volumes up to 800
MPabetween 298 and 423 K by electromagnetic detection of
the change in length of a water column.

Hilbert ez al. used an internally heated pressure vessel
including a nickel bellows to measure specific volumes of
water and aqueous electrolyte solutions in the range from
293 to 873 K and trom 10 to 400 MPa.

Tanishita et al. reported specific volumes of steam in
1963, those in the region near the critical point in 1968,%
and those in the extended range, temperatures from 423 to
773 K and pressures up to 195 MPa, in 1976°' by using a
constant volume vessel made of platinum; its inner volume
was 240 cm®. The data reported in 1976, with an uncertainty
of 4+ 0.03% in specific volume, give information at high
pressures up to 200 MPa over a wide temperature range up
to 773 K where accurate data have scarcely been available.

Sugawara et al.** measured specific volumes of super-
heated steam at high temperatures between 869 and 1108 K,
and at moderate pressures below 14 MPa with an uncertain-
ty of + 0.2% by using a 70-cm” quartz-glass vessel in 1964.

Garnjost®® reported specific volumes along isochores in
the temperature range from 374 to 573 K and the pressure
range from 9.2 to 74 MPa in 1974 with uncertainty of

4+ 0.012% in pressure, + 0.01 K in temperature, and from
+ 0.006% to -+ 0.037% in specific volume, respectively.

In the region near the critical point, Rivkin et al.,>*>®

-1 Phve Chem. Ref. Data. Vol. 17. No. 4. 1988
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Grigoryev et al.,*® and Hanafusa er al.'® have reported spe-
cific volumes. Rivkin e? al. measured 979 experimental data
in the immediate vicinity of the critical point with uncertain-
ty of 4-0.04% to 4 0.05% in specific volume, which were
reported in five different publications from 1962 to 1966.
Grigoryev et al. reported data in 1974 which were measured
by using two different vessels made of Kh18N10T steel, one
of 185 cm” and the other 804 cm? in inner volume. The data
at 298, 523, 573, 623, and 633 K were measured in the small
vessel with an uncertainty of + 0.043% in specific volume
and the data along eight isotherms between 298 and 448 K
were measured in the large vessel with an uncertainty of
=+ 0.018%. Hanafusa et al. reported 115 specific volumes
and eight vapor pressures in the temperature range from 643
to 653 K, the pressure range from 20 to 40 MPa, and the
density range from 136 to 617 kg/m?, with an uncertainty of
+ 0.04% in specific volume. Part of the results, namely, 66
specific volumes and four vapor pressures, were reported in
advance in 1983.7° The measurements were conducted by
using a 188 cm” spherical vessel made of 304 stainless steel.
In the liquid water region, four different specific-vol-
ume data sets have been reported in the range of tempera-
tures up to 773 K and pressures up to 100 MPa by Kell ez al.
in 1974,7° 1975, and 1978,7% and by Chen et al. in 1977.5°
Kell ez al. reported 1218 experimental data at temperatures
from 273 to 773 K and pressures from 0.1 to 103 MPa with a
250 cm’ cylindrical vessel made of 304 stainless steel for the
measurements at temperatures below 623 K, while a 35-cm?
vessel was used for the measurements at temperatures
between 623 and 773 K. Detailed description concerning
their apparatus was reported in 1965% together with the data
at temperatures from 273 to 423 K and pressures up to 103
MPa. But the data reported in 1965 were revised due to the
recalculation of the compressibility of their vessel on the ba-
sis of newly obtained speed of sound data in 1975.”' The
revised values exceed the original specific-volume data by
about 0.01%.
Very precise thermodynamic data have been obtained
at atmospheric pressure in the temperature range [rom 273

to423 K including metastable states between 373 and 423 K.

SATO ET AL.

Those are specific-volume data measured by Gildseth et al.
in 1972%¢ at temperatures from 278 to 353 K, those by Kell in
1975% at temperatures from 273 to 423 K, speed-of-sound
data by Del Grosso and-Mader in 1970*% and 1972% at tem-
peratures from 273 to 368 K, and heat capacity data by de
Haas in 1950°° at temperatures up to 373 K. Based on such
precise experimental data, Chen et al. in 1977*° and Sato
et al. in 1985°! reported equations of state, respectively.

Chen et al. derived specific-volume data at tempera-
tures from 273 to 373 K and pressures up to 100 MPa with a
claimed uncertainty of + 20 ppm from the speed-of-sound
data measured by Wilson®? and by Del Grosso and Mader.
This equation includes the correlation developed by Kell*’
for density of liquid water at atmospheric pressure.

Sato et al. reported an equation of state for liquid water
from 273 10423 K and pressures up to | GPa from which all
thermodynamic properties can be derived with high reliabil-
ity reflecting precise experimental data. At atmospheric
pressure, this equation represents specific volumes measured
by Gildseth et al.%® at temperatures from 278 to 353 K with
an absolute average deviation of 2 ppm and a maximum ab-
solute deviation of 4 ppm, specific volumes measured by
Kell®” at temperatures from 273 to 423 K with an absolute
average deviation of 2 ppm and a maximum absolute devi-
ation of 7 ppm, speed-of-sound data measured by Del
Grosso and Mader®®*®® within + 50 ppm at temperatures
from 273 to 368 K, and heat capacity data reported by de
Haas® within 4 5 J/(kg K) at temperatures up to 353 K
and + 7J/(kg K) at temperatures up to 373 K, respective-
ly. This equation can represent all well-known thermody-
namic singularities of liquid water such as maximum den-
sity, minimum isobaric specific heat, maximum speed of
sound, etc.

3.1.b. Enthalpy

Comparing with the amount of available specific-vol-
ume data, the total amount of enthalpy data is very limited.
Working Group 1 of IAPS selected seven experimental data
sets as “International Input” listed in Table 4. The distribu-
tion of these data, which include Osborne’s data along the

Table 4. Experimental studies on the enthalpy of water

Authors Year Ref. Temperature Pressure No. of Uncertainty
K MPa data in_enthalpy
HavliEek/Miékovskf 1936 93 293 -- 823 0.1 -- 39.2 104 0.25 %
Vukalovich/Zubarev/ 1958 94 720 —— 823 20 -- 40 48 6 kJ/kg
Prusakov
Callendar/Egerton 1960 97 473 -- 873 0.5 -- 22 120 2.1 kJ/kg
Vukalovich/Zubarev/ 1962 95 673 -—- 883 20 -—- 54 56 6 kJ/kg
Prusakov
Vukalovich/Zubarev/ 1963 96 673 -- 983 2.5 —- 49 48
Prusakov
Sheindlin/Gorbunova 1964 98 618 -- 734 20 -—- 49 72
Angus/Newitt 1966 99 673 -- 973 6 -- 100 16 0.1 %

J. Phvs. Chem. Ref_Data. Vol 17_Na._ 4. 1088
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Fig. 3. Experimental data of the enthalpy on the pressure-
temperature plane. Enthalpies measured by Havlicek
and Miscovskj(</), Osborne et al. in 1937(/\) and in
1939(A), Vukalovich et al. in 1958((), in 1962(())
and in 1963(@), Callendar and Egerton([]),
Sheindlin and Gorbunova((}), and Angus and Newitt
($) are shown.
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saturation curve, is shown on a pressure—temperature
diagram in Fig. 3. The total number of experimental data
listed in Table 4 is 464 excluding Osborne’s data; they cover
the temperature range from 293 to 983 K and pressure range
up to 100 MPa.

Angus and Newitt® reported 16 enthalpy values with
an uncertainty of + 0.19 at temperatures from 673 to 973
K and pressures from 6 to 100 MPa in 1966; they were de-
rived tfrom 382 experimental measurements performed
between 1959 and 1964. Their data agree in the range of
overlap with the data of Havlicek and Miskovsky in 1936,
the data of Vukalovich ez al. in 1958°* and 1962, and the
data of Callendar and Egerton in 1960°” within the respec-
tive claimed uncertainty.

The scarceness of experimental data on enthalpy is
mainly understood as a result of difficulty in measuring the
caloric properties precisely. Sato ez al.® have pointed out that
in the case of water the reliability of enthalpy values derived
from equations of state might be higher than the reliability of
experimental enthalpy data, since many accurate experi-
mental data regarding specific volume and heat capacity are
available at present for formulating equations of state.

3.2. Saturation State

3.2.a. Vapor Pressure

In 1974, Wagner'? reviewed and evaluated most of va-
por-pressure data of water in order to establish his vapor-

Table 5. Experimental studies on the vapor pressures of water
Authors Year Ref. Temperature No. of Uncertainty
K data in pressure
Osborne/Stimson/Fiock/ 1933 100 373 —- 647 382 0.03 %
Ginnings
Rivkin/Troyanovskaya/ 1964 101 646 —- 647 13
Akhundov
Stimson 1969 102 298 —- 373 7 0.002 7%
Kell/McLaurin/Whalley 1974 70 423 —- 623 22 0.2-0.3 kPa
Guildner/Johnson/Jones 1976 103 273.16 0.010 Pa
Hanafusa/Tsuchida/ 1984 104 643 —- 646 3 kPa
Kawai/Sato/Uematsu/

Watanabe
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pressure equation. Based on that review, six experimental
data sets were selected for representing the vapor-pressure
curve of water as listed in Table 5. Guildner ef al. measured
the triple-point pressure with an uncertainty of + 0.010 Pa
in 1976.'* Stimson measured vapor pressures up to 373 K
with an uncertainty of + 0.002% in 1969.'°? Osborne er al.
measured vapor pressures with an uncertainty of + 0.03%
in 1933,'% which are still valuable information at tempera-
tures between 373 and 647 K.

3.2.b. Specific Volume

Concerning specific volumes of saturated water, very
few reliable data are available as listed in Table 6. Smith and
Keyes* measured specific volumes of saturated water at
temperatures between 303 and 633 K. The specific-volume
values below 593 K are valuable input, but the data above
593 K deviate systematically from other data.

Kell*” derived correlations of density and of isothermal
compressibility of liquid water at atmospheric pressure
based on precise experimental data. Those correlations are
effective in the temperature range from 273 to 423 K. The
saturated liquid density of water can be derived from these
correlations by means of the relation,

P =p(TPY1+kr(TP)[P(T) —P]}, (1)

where p’, k1, F;, and P, and are saturated water density,
isothermal compressibility, vapor pressure, and atmospher-
ic pressure, respectively.

Osbornc, Stimson, and Ginnings'® dctermined specif-
ic-volume values from measurements of the caloric quantity
[3 by means of the relation,

-/(r22).

where v’ and T are specific volume of saturated water and
temperature, respectively. Their 5 data cover the tempera-
ture range from 373 to 647 K.

The specific volume of saturated steam v” is derived
from Osborne’s measurements of the caloric quantity 3 as
listed in Table 7 by means of the relation,

” dPS
v :y/(T a’T)' (3)

The y values obtained by Osborne ef al. at temperatures be-
yond 645 K are not recommended to be used because they
are not consistent with the critical parameters accepted by
IAPS.?°

Table 6. Experimental studies on the specific volume of
saturated water

Authors Year Ref. Temperature No. of Uncertainty

K data in volume

Smith/Keyes 1934 43 303 -- 593 9 0.05 7%

Osborne/Stimson/ 1937 105 373 -- 647 29

Ginnings

Kell/McLaurin/Whalley 1974 70 423 -- 623 22

Kell 1975 87 273 —-— 423 32 10 ppm

J. Phys. Chem. Ref. Data, Voi. 17, No. 4, 1988
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Table 7. Experimental studies on the specific
volume of saturated steam

Authors Year Ref. Temperature No. of

K data

Osborne/Stimson/ 1937 105 373 -- 645 189
Ginnings
Osborne/Stimson/
Ginnings

1939 107 273 -- 373 146

3.2.c. Enthalpy

As described in the previous section, Osborne and his
co-workers at the National Institute of Standards and Tech-
nology!%1%7 listed in Table 8 carried out calorimetric mca-
surements along saturation curve. They used the interna-
tional joule which is equal to 1.000 165 J according to the
analysis of Stimson."''° They measured the caloric quantities
a, B, and y. The a depends only on temperature, which is
defined by the following expression;

a=h'—B=h"—v, (4)
where h’ and h” are enthalpies of saturated water and steam;
[ and y are experimental values defined by Eqgs. (2) and (3).
The enthalpy values and latent heat can be derived from
Osborne’s calorimetric measurements of @, A, and ¥ accord-
ing to Eq. (4). Near the critical point Baehr et al. measured
the internal energy in 1974.'® The a values derived from
internal-energy data by Baehr er al. differ from Osborne’s
data by about 1%.

4. Statistical Treatment
4.1. Basic Concept

In order to establish skeleton tables from the large num-
ber and variety of experimental data reported by different
investigators, the uncertainty of the data must be evaluated
with a common set of criteria because the different investiga-
tors have reported the uncertainty of their measurements in
different ways. In addition, it is virtually impossible to evalu-
ate, from the limited information given in the literature, all
factors which cause thie unceriainiy of measurcienis, such

on the caloric
property of saturated water and steam

Table 8. Experimental studies

Authors Year Ref, Temperature No, of
K data

Osborue/Stimsoun/ 1937 105 373 —— 645 142

Ginnings

Osborne/Stimson/ 1939 107 273 —- 373 256

Ginnings
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as the effect of isotopic composition, of impurities and envir-
onmental conditions. Therefore, statistical treatment is the
only possible method for treating the uncertainty of experi-
mental data under these circumstances.

Two different types of errors, systematic error and ran-
dom error, should be evaluated for the uncertainty of mea-
surements. The random error is caused by inevitable fluctu-
ations of experimental conditions, which cause random
variations of results of repeated measurements conducted by
the same apparatus and the same experimenters. The sys-
tematic error, on the other hand, shows up as the difference
among results in different measuring procedures; it may be a
result of uncertainty caused by limited reliability of instru-
ments, processing of scanty experimental data, and system-
atic error in physical factors such as temperature and pres-
sure. .

Since systematic errors and random errors are distinct-
ly different components of uncertainty, different treatments
are necessary to analyze those two errors independently. The
random error is generally assigned as a standard deviation
from the correlation of an individual data set, while the sys-
tematic error is estimated as a difference (bias) between the
data and the weighted average of several independent mea-
surements performed by different methods and different ex-
perimenters.

Even though more than 10 000 specific-volume data are
available for water, very few measurements are performed at
the same state point; this causes difficulty in treating those
data statistically. Statistical treatment requires an appropri-
ate amount of sampling at a single condition. Hence, prior to
the statistical analysis, experimental data at different state
parameters, but within a limited domain, are converted into
values at a common state point (grid point) with the aid of
available equations of state. The procedures will be de-
scribed in the suceeeding sections.

4.2. Error Analysis

There are 10 490 experimental specific-volume data as
listed in Table 3. Some independent experimental data sets
overlap in their temperature and/or pressure ranges. Due to
the uncertainty of measurements, however, the different
data sets give different volume values at the same tempera-
ture and pressure; this makes it necessary to analyze the un-
certainty in order to obtain a most probable value with esti-
mated reliability.

In this section the statistical treatment of experimental
data for the specific volume of water will be summarized
briefly. The details of this treatment have been reported in
earlier publications by the present authors at Keio Universi-
ty. 47

The calculation of the random and systematic errors are
fairly simple. The random error at a certain grid point p is

estimated as a standard deviation, &, ,, by

Oy = | X (xiy =X,/ (n—1) (5)

i=1
where n denotes the total number of the experimental data
mecasurcd by a single rescarch group, j, within a limited do-
main prepared for the grid point, p; x;, denotes a single da-
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tum converted into the value at the grid point with the aid of
the available equation of state; and X;, denotes the average
value of x; , calculated by

X, = X,/n. (6)
i=1
The §;, and X;, are calculated at each grid point y for each
data set j by Egs. (5) and (6).
The systematic error is evaluated as a difference ;, by

E, = lxj.y —/uy,k;: (7
where u1,,,. is a weighted average, and k denotes the number

of times of iteration which will be discussed below. The p,,
is given by

N N
lu’y,k = z wj,yijy/z wj,y, (8)
= =1

where N denotes the total number of data sets availableat the
grid point y and w;, is the weighting factor for average value
of X;,. The weighting factor w;, is defined by

Wiy = ‘ij,y/(‘sj,y + Ej'y)ls (9
where 4 is an amplitude.

In the course of the calculation, E;, and 1, , are related
to each other as given in Egs. (7)-(9), so that an iteration
procedure is required. As an initial guess w;, is derived on
the basis of relative comparison of the uncertainty of experi-
mental data claimed by the experimenters, or all of them are
set equal to unity if uncertainty is not claimed. Then, the first
estimate of u,, _, is obtained by means of Eq. (8) after
which E;, and w;, are obtained by Egs. (7) and (9), respec-
tively. This procedure is repeated several times until the con-
dition described below is satisfied.

The weighting factor w;, is calculated for each data set
at each grid point by means of Eq. (9). When 4 is fixed to
0.01, the weighting factor is equivalent to the reciprocal of a
sum of evaluation for percentage random error and percen-
tage systematic error of X;,. As an index for evaluating ex-
perimental errors of overall measurements for a single data
set j, a new parameter A, is introduced:

A =

J
Yy

I\

8, Z E,
2y, iy 1
% +y§_l ~ (10)

1
where Y'is the total number of §;, and Z is the total number
of E;,, respectively. The A, is calculated for each data set
and compared with the respective claimed uncertainty. The
condition for terminating the iteration procedure is when
most of the A; show the respective claimed uncertainty at the
best relationship. ‘Lhere is, of course, a possibility of finding
inconsistency between A; and the claimed uncertainty for
some data sets in the course of this evaluation.

4.3. Skeleton Tables

The overall process as to establishing skeleton tables on
specific volume is summarized in a flow chart in Fig. 4. At
the first step literature values of thermodynamic properties
of water are collected and evaluated with respect to the
claimed uncertainty, then the data scts arc classified into
several ranks of priority for the data source(step 2). The
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FIG. 4. Process for the establishment of the present skeleton tables.

selected data sets are stored in a computer file and then these
data are converted to SI units, namely Pa for pressure,
K (IPTS-68) for temperature, m’/kg for specific volume
(step 3), respectively. The data sets are analyzed by the
original statistical error treatment described in the preced-
ing section(step 4).

SATO ETAL.

Throughout the data processing from steps 1-4, skele-
ton table values are primarily determined on the basis of the
experimental data. Next, the following items are investiga-
ted(step 5):

(1) Relation between determined table values and oth-
er parameters such as the critical parameters, the triple-
point temperature and pressure, the thermodynamic proper-
ties at atmospheric pressure and along the saturation line,
the thermodynamic properties at the ideal-gas state, second
virial coefficient, etc.

(2) Relation between determined table values and the
experimental data; this assessment requires equations of
state as a base for comparing them.

(3) Randomness of the grid-point values which have a
scatter reflecting the reliability of experimental data sources.

After the above assessment, the provisional skeleton ta-
bles are established (step 6). Finally, the reliabilities of the
most probable values called “tolerances” are determined on
the basis of the consistency with the experimental data and
of the results of the error analysis(step 7), and all of the most
probable values determined as the provisional skeleton ta-
bles are compared again with all of the available experimen-
tal data taking the associated tolerances into consideration
(step 8).

The detailed procedures for the establishment of the
present specific volume and the enthalpy tables are given in
the following section.

5. Data Processing

5.1. Single-Fluid Phase State
5.1.a. Specific Volume

The actual data processing for establishing the present
skeleton tables is described in this section. The data with an
asterisk in Table 3 and 231 specific-volume values derived by
Chen et al.®® from speed-of-sound data are the the data used
to establish the present specific-volume skeleton table in the
single-fluid-phase state. The distribution of these data is
shown in Figs. 1 and 2. The data reported by Hanafusa et @/.
in 1984'%* were only used in the process after step 5 of the
flow chart in Fig. 4, because they were published after the
establishment of the most probable values at step 4. There-
fore, 6713 data points become the data base in the statistical
treatment at step 4.

Figure 5 shows five distinct subregions of statistical

1123

/
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Temperature

273

| R =
0 500 1000
Density / kgem

FiG. 5. Five subregions for the error analysis of the experimental specific-
volume data.
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treatment in accordance with the difference of pressure de-
pendence of specific volume. The subregion 1 in Fig. 5 is
prepared for liquid phase; subregion 2 for supercritical-fluid
phase; subregion 3 for high-pressure phase; subregion 4 for
critical region; and subregion 5 for single-fluid phase at high
temperatures.

In subregions 1, 2, and 3, the errors in specific-volume
values were analyzed as a function of temperature and pres-
sure, whereas the errors in pressure values were analyzed as
a function of temperature and specific volume in subregions
4 and 5. The experimental data were converted into the grid-
point values by the equation of state developed by Pollak'"!
in subregions 1, 2, 4, and 5, whereas by the equation of state
developed by Jiiza® in subregion 3.

The evaluated errors for the specific-volume values are
given in Table 3, which were calculated by Eq. (10). The
evaluated pressure errors in subregions 4 and 5 have been
given in a previous publication.*

The size of a domain prepared for a grid point was cho-
sen case by case according to the distribution of data points
and the behavior of the thermodynamic state surface, name-
ly, how strongly specific volume depends on temperature
and pressure or how strongly pressure depends on tempera-
ture and specific volume. The domains were overlapped with
each other as widely as possible in order to get smoother
behavior among grid-point values.

The result and some detailed discussion of the error
analysis have been presented by Sato ez al.,* and the original
most probable values obtained directly by the present error
analysis are summarized in Tables 2 and 3 of a previous
publication.”

5.1.b. Enthalpy

Regarding the enthaipy ot water in the single-fluid
phase, only 464 experimental data in seven references’**
are available as mentioned in Sec. 3.1.b. Due to the scarcity
of enthalpy data, the statistical method used for establishing
the specific-volume table can not be applied to the case of
enthalpy.

The enthalpy table was constructed on the basis of de-
rived values from four equations of state of water, namely,
the equation developed by Pollak in 1974,''! the equation
developed by Haar, Gallagher, and Kell,''2 whose equation
was accepted as IAPS-84,”® and two independent equations
developed by Sato e al.in 1981'"* and in 1985.°' The reliabi-
lities of those equations were carefully examined on the basis
of the present specific-volume table and by comparing them
with experimental data regarding specific volume, heat ca-
pacity, and speed of sound, so on.*° These four equations
agree well with the present specific-volume table values and
with experimental data in most of the respective ranges ex-
cept at high pressures along the isotherm of 273 K. The dis-
crepancies among the derived values regarding specific vol-
ume, enthalpy, speed of sound, and heat capacity at constant
pressure along the 273 K isotherm are listed in Table 9.

Enthalpy values calculated from the equations of state
aretobe preferred over available experimental data in case of
water. That good equations of state can reliably predict en-
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Table 9. Discrepancies among derived thermodynamic

property values from four equations of
state; equation developed by Pollak,
IAPS-84, and two equations developed by

Sato et al., along 273 K isotherm

Property Pressure

100 MPa 200 MPa 300 MPa
Specific volume 0.012 Z 0.27 % 1.0 %
Enthalpy 0.7 % 0.3 % 2.2 %
Speed of sound 0.7 % 9% 20 %
Heat capacity, Cp 2.8 % 7% 15 %

thalpy values, is apparent from the excellent agreement of
thermodynamic surfaces fitted to specific-volume data and
other thermodynamic property data such as the heat capac-
ity at constant pressure data of Sirota ez al.''*"'?° For exam-
ple, in the case of the enthalpy data of Havlicek and Mis-
kovsk§®® on the 473.15 K isotherm, where the three
equations agree to within 4 0.05% but differ from the data
by more than 0.4% as shown in Fig. A.II1.9a in Appendix
I1I, we have given preference to the equations.

The tolerances for the enthalpy values at pressures be-
low 100 MPa were determined by taking the consistency of
the experimental data and the agreement among the four
equations into consideration. The tolerances above 100 MPa
were determined from the analysis of three equations exclud-
ing the equation by Pollak. The detailed discussions have
been reported in another publication® and the reliability of
each equation of state will be discussed in Sec. 9.2. Compari-
son of the skeleton table values with available experimental
data and four equations is given schematically along 24 iso-

therms in Appendix IIL

5.2. Saturation State

The skeleton table values at the saturation state were
calculated by the equations for the vapor pressure, densities
of saturated water and steam, and the caloric property a
from which the enthalpy values of saturated water and steam
were derived by using relations of Egs. (2)—(4) as previous-
ly described in Sec. 3.2. These equations are given in the
supplementary release'* issued by IAPS.

In order to obtain these equations, Wagner and Saul'?
and Saul and Wagner'* applied an optimization method de-
veloped by Ewers and Wagner.'?"!?% All equations have
been fitted to the data by weighted least squares according to
the method of maximum likelihood by Saul and Wagner.'*

. The variance of the data from their respective equations is

the basis for evaluating the tolerance. Each equation covers
the entire range of the vapor-liquid equilibrium and repre-
sents the experimental data within the claimed uncertainty.
More detailed discussions have been given by Saul and Wag-
ner.'*
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- 6. Common Requirements
6.1. Critical Point

6.1.a. Temperature, Pressure, and Density

The values of critical temperature, critical pressure,
and critical density of water which have been given in a 1983
IAPS Statement,*® have been determined on the basis of in-
ternational cooperative study conducted by Levelt Sengers,
Straub, Watanabe, and Hill.** We adopted these values for
the most probable values of present skeleton steam tables at
the critical point.

6.1.b. Enthalpy

The enthalpy values at the saturation state above 373 K
were determined on the same data base as for IST-63, since
no essential experimental data had been accumulated since
then except the internal energy data by Baehr ez al. In the
course of redetermination of the enthalpy at the critical
point, not only the effect of replacement of the temperature
scale from IPTS-48 to IPTS-68, but also the effect of the
newly determined critical parameters were taken into consi-
deration.

6.2. Saturation State
6.2.a. Triple Point

The temperature of the triple point of water, 273.16 K,
is defined as the fundamental standard of IPTS-68. The in-
ternal energy and the entropy of saturated water at the triple
point are assigned a value of zero as adopted at the fifth ICPS
in London, 1956. The triple-point pressure was measured
very precisely by Guildner ez al. in 1976.'°* They proposed
611.657 4+ 0.010 Pa.

6.2.b. Boiling Point

The normal boiling point is defined as being 373.15 K in
the current standard, IPTS-68. On the other hand, it should
be remembered that there exists a temperature difference
between the IPTS-68 and the thermodynamic temperature.
Guildner and Edsinger have reported the thermodynamic
temperature of the boiling point of water as being 373.1248
K with the random error of 4 0.0018 K and the systematic
error of + 0.000 54 K in 1976.'*°

6.2.c. Clapeyron’s Equation

The relation among temperature, vapor pressure, spe-
cific volume, and enthalpy at the saturated state must satisfy
Clapeyron’s equation. In the present skeleton tables, this
thermodynamic consistency is assured, since the most prob-
able values for the enthalpy at the saturated state were de-
rived from the vapor pressure, and the densities of saturated
water and saturated steam as discussed in Sec. 5.2.

6.3. Single-Fluid Phase State
6.3.a. Second Virial Coefficient
The study performed by Le Fevre er al. about the sec-

ond virial coefficient of water in 1975'% is reliable. The most
probable specific-volume values at pressures below 2.5 MPa
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have been determined by the careful consideration of Le
Fevre’s second virial coefficient.

6.3.b. Precise Data at Atmospheric Pressure

~ Very precise experimental data for the thermodynamic
properties of liquid water at atmospheric pressure are avail-
able as described in Sec. 3.1. Some of such precise experi-
mental data are reported by Gildseth ez al. in 1972,% and by
Del Grosso in 1970% and Del Grosso and Mader in 1972.%°
Sato et al.®! proposed an equation of state for representing
these experimental data precisely which is effective in the
temperature range from 273 to 423 K. The most probable
values in the present skeleton tables both for the specific
volume and enthalpy at atmospheric pressure agree with Sa-
to’s equation within their associated tolerances in the tem-
perature range between 273 and 373 K. This fact proves the
good relationship between the most probable values and the
precise experimental data at atmospheric pressure.

7. Skeleton Tables

The present skeleton tables were adopted as “The IAPS
Skeleton Tables 1985 for the Thermodynamic Properties of
Ordinary Water Substance (IST-85).” The IST-85 is repro-
duced in Appendix I.

The IST-85 consists of two parts, one is for the single-
fluid phase state and the other is for the saturation state. Part
I of IST-85 contains two skeleton tables. Table 1(IST-85)
gives the most probable specific-volume values with their
associated tolerances in the temperature range from 273.15
to 1073.15 K and pressure range up to 1 GPa, whereas Table
2(IST-85) gives the most probable enthalpy values with
their associated tolerances in the same range as that of the
specific-volume table. The boundary line between liquid wa-
ter and steam is indicated, beginning at 398.15 K and
101.325 kPa and disappears at 623.15 K and 15 MPa. No
entries are given in the range of the solid phase at the pres-
sures above 650 MPa along the 273.15 K isotherm and above
900 MPa along the 298.15 K isotherm. Part II of IST-85
contains skeleton table of thermodynamic properties at the
saturation state of water. Table 3(IST-85) gives the most
probable thermodynamic property values with their asso-
ciated tolerances for the coexisting vapor-liquid phases
between the triple point-and the critical point.

8. Comparisons
8.1. Single-Fluid Phase State

8.1.a. Specific Volume

Complete comparison of the most probable specific-
volume values with the essential experimental data and five
equations of state for water, namely, IFC-67,'" Pollak’s
equation,''! Sato’s equations®"''* and IAPS-84,? is shown
in Appendix II. Percent deviation, Av, is calculated by the
following equation:

Av = 100(v — vy )/ Vet (11

where v is the experimental or derived specific-volume value
including the most probable value and v, is the IAPS-84
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value. The experimental data plotted in the figures of Ap-
pendix II are reported at temperatures within 4+ 1 K around
the nominal temperature. The top figures are plotted on a
logarithmic pressure scale, whereas the bottom figures are
plotted on an ordinary pressure scale up to 1 GPa.

Regarding the specific volumes of liquid water in the
pressure range below 200 MPa (Figs. A.Il.1a-12a), the ex-
perimental data by Kell er @/.’%"? and the data by Chen
et al* are the most precise data. The most probable specific-
volume values agree with those data completely within a few
tenths of the associated tolerances.

For the superheated steam, the data measured by Kell™
and by Keyes ez al.** deviate from the most probable values
beyond the tolerance at 573.15 and 623.15 K (Figs. A.IL.11a
and 12a).

In the pressure range above 200 MPa (Figs. A.Il.1b—
24b), the experimental data reported by Jiza ez al.,>® Vedam
and Holton,*® Borzunov et al.,°® Grindley and Lind,®” Hil-
bert et al.,”® Tanishita et al.,' and Zubarev et al.,”>’® are the
major sources of information. The most probable values
agree with those data within their tolerances. The experi-
mental data reported by Maier and Franck,”’ Koster and
Franck,® and Burnham et al.”” are measured over a wide
temperature and pressure range with an uncertainty of about
L 1% in spccific volumc. The most probable values arc
larger than most of the data reported by Maier and Franck
and Koster and Franck (see, e.g., Figs. A.I1.9b-12b), but, on
the other hand, they are smaller than the data reported by
Burnham et al. (see, e.g., Figs. A.I1.13b).

8.1.b. Enthalpy

The complete comparison of the most probable enthal-
py values with the essential experimental data and five equa-
tions of state is shown in Appendix II1. The percent devi-
ation A/ is calculated by the following equation:

A =100(h — hoy) /by, (12)

where % is the experimental or derived enthalpy valuc in-
cluding the most probable value and 4_,, is the IAPS-84 en-
thalpy value. The temperature range of the experimental
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data plotted in the figures is + 1 K around the nominal
temperature.

As described in Sec. 5.1.b., the most probable enthalpy
values are determined from the equation developed by Pol-
lak, IAPS-84, and two independent equations developed by

Sato et al.

In most of the range up to 973 K and below 200 MPa
(Figs. A.II1.5a-22a), the differences among the four equa-
tions of state are smaller than the scatter among the experi-
mental data. Since some of these equations of state have been
developed on the basis of not only the precise specific-vol-
ume data but also the experimental heat capacity and speed-
of-sound data, they agree with each other very well. This
agreement justifies small tolerances assigned to the most
probable enthalpy values in comparison with discrepancies
among experimental data.

8.2. Saturation State

The comparison of the equation for the vapor pressure
with experimental data is shown in Fig. 6. The experimental
data reported by Stimson'®? between 298 and 373 K and
those reported by Osborne et al.'® between 373 and 647 K
have been used to determine the associated tolerances.

The comparison of the equation of the saturated water
density with experimental data is shown in Fig. 7. The toler-
ances of the most probable specific volumes between 273 and
423 K are determined from 10 to 30 ppm as shown in the
lower plot in Fig. 7. The tolerance of specific volume of satu-
rated steam includes all of the derived data reported by Os-
borne et al.'®>'7 as shown in Fig. 8.

As described in Sec. 5.2., the enthalpy values for satu-
rated water and saturated steam were calculated by Egs.
(2)-(4). The enthalpy values were determined on the basis
of a-values measured by Osborne ez a/.'°'%" These a-values
are plotted in Fig. 9. Osborne’s data agree with the equation
within + 0.07% upto373Kand + 0.3% above 373 K. The
tolerances for enthalpy values of saturated water and satu-
rated steam were decided so as to include the majority of
Osborne’s a-data and those tolerances are shown in Figs. 10
and 11, respectively.
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(v ,+) are shown. The Ty, Tp, and Tc are the
triple, boiling, and critical points of water,

respectively.
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Fig. 9. Percent deviations of the Aa|1 values, @ incre-
ments between temperatures T; and Ip,measured Dy
Osborne et al. in 1937((9) and in 1939(){) from
the equation developed by Wagner and Saul. The
data points are plotted at the lower temperature
Ty. T¢, Tp, and To are the triple, boiling, and
critical points of water, respectively.
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Fig. 10. Comparison of the derived enthalpy values of
saturated water from IAPS-84 and the values of
the International Skeleton Steam Tables, 1963
(1), and the associated tolerances( T, +) with
the present skeleton-table values. T,, Tp, and
TC gre Lthe Lriple, bLoliling, and «rilical poinls
of -water, respectively.
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and the values of
1963
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the present skeleton-table values. Ty,

T
of water, respectively.

9. Discussions
9.1. Tolerance of IST-85

The distribution of percent tolerance of IST-85 on the
pressure-temperature plane is shown in Figs. 12 and 13 for
the specific volume and enthalpy, respectively. Figures 12
and 13 consist of many grids corresponding to state points
defined at the present skeleton tables, i.e., 24 temperatures
and 61 pressures are given in the respective coordinates.
Most of the tolerances both for specific volume and for en-
thalpy except for the 273.15 K isotherm are less than + 2%

Tb’ and

c are the triple, boiling, and critical points

and they are less than + 0.5 % at lower pressures below 200
MPa. Especially in the liquid phase up to 423 K and 100
MPa both tolerances for the specific volume and for enthal-
py are smaller than those given in other regions.

The tolerance for specific volume in liquid water below
423.15 K and in the super-critical region above 25 MPa
between 573 and 723 K is smaller than that of the former
international skeleton steam tables, IST-63, about by the or-
der of magnitude of 2 or 3. The tolerance for enthalpy in the
critical region and super-critical region above 12.5 MPa
between 648.15 to 773.15 K is also smaller than that of IST-
63.
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9.2. Discussions of Skeleton Tables and Equations of
State

Figures 14-25 show comparisons of IST-63, IFC-67,'®
IAPS-84,%% the equation of state developed by Pollak,'"' and
cquations of state developed by Sato ez a/.°"'"* with IST-85
both for specific volume and enthalpy by using the same
coordinates as Figs. 12 and 13. The area, where the property
values differ from the present skeleton table values beyond
the associated tolerance, is shown by crosshatch. The area
where the property values are smaller than the present skele-
ton table values is shadowed and the rest is the area where
the property values are greater than the present skeleton ta-
ble values.

1463

9.2.a. IST-63

Many specific-volume values of IST-63 differ from the
present skeleton table values beyond the tolerance as shown
in Fig. 14 and figures of Appendix II (see Figs. A.Il.12a—
22a). The deviations of specific-volume values of IST-63
from those of the present skeleton table values are prominent
in the super-critical region between 623 and 973 K with the
maximum deviation of 3.3 times as much as the associated
tolerance. This fact reflects the considerable accumulation
of new reliable experimental data in the last two decades.

On the other hand, most of the enthalpy values of IST-
63 agree with the present skeleton table values except at high
pressures between 648 and 723 K as shown in Fig. 15 and in
figures of Appendix II1.

100
©
[a ™)
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-
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F1G. 14. Comparison of IST-63 specific-volume values with the present skeleton table values (IST-85). The area where the deviations of IST-63 values from
IST-85 values are greater than the IST-85 tolerances is shown by crosshatch. The area where IST-63 values are larger than IST-85 values is shown by
0. The area where IST-63 values are smaller than IST-85 values is shown by B.
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F1G. 15. Comparison of IST-63 enthalpy values with the present skeleton table values (IST-85). The area where the deviations of IST-63 values from IST-85
values are greater than IST-85 tolerances is shown by crosshatch. The area where IST-63 values are larger than IST-85 values is shown by U. The area
where IST-63 values are smaller than IST-85 values is shown by B.

table values in the liquid water below 423 K and in the super-

8.2.b. IFC-67 critical region between 623 and 973 K as shown in Fig. 16
Although IFC-67" is still effective for industrial useon  and in figures of Appendix II.
the authorization of IAPS, the IFC-67 does not reproduce On the other hand, enthalpy values derived from IFC-

the specific-volume values of the present skeleton tables 67 agree with the present skeleton table values except those
within the tolerance at many places. Many specific-volume at the temperatures between 623 and 723 K as shown in Fig.
values derived from II'C-67 differ from the present skeleton 17 and figurcs of Appendix L

J. Phys. Chem. Ref. Data, Vol. 17, No. 4, 1988
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FIG. 16. Comparison of IFC-67 specific-volume values with the present skeleton table values (IST-85). The area where the deviations of IFC-67 values from
IST-85 values are greater than the IST-85 tolerances is shown by crosshatch. The area where IFC-67 values are larger than IST-85 values is shown by

O. The area where IFC-67 values are smaller than IST-85 values is shown by B.
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FiG. 17. Comparison of IFC-67 enthalpy values with the present skeleton table values (IST-85). The area where the deviations of IFC-67 values from IST-85
values are greater than the IST-85 tolerances is shown by crosshatch. The area where IFC-67 values are larger than IST-85 values is shown by (1. The
area where IFC-67 values are smaller than IST-85 values is shown by H.

'J. Phys. Chem. Ref. Data, Vol. 17, No. 4, 1988
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range of temperatures above 923 K and pressures between 5

9.2.c.1APS-84 and 27.5 MPa as shown in Fig. 18 and in figures of Appendix

The specific-volume values derived from IAPS-84* 1L
agree with the present skeleton table values very well in most The enthalpy values of IAPS-84 agree completely with
of the regions covering temperatures 273 to 1073 Kand pres-  the present skeleton table values within the tolerance as

sures 0.1 MPa to 1 GPa except the specific volume in the  shown in Fig. 19 and in figures of Appendix III.
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FIG. 18. Comparison of IAPS-84 specific volume values with the present skeleton table values (IST-85). The area where the deviations of IAPS-84 values
from IST-85 values are greater than the IST-85 tolerances is shown by crosshatch. The area where IAPS-84 values are larger than IST-85 values is
shown by 0. The area where IAPS-84 values are smaller than IST-85 values is shown by B.
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F16. 19. Comparison of IAPS-84 enthalpy values with the present skeleton table values (IST-85). The area where the deviations of IAPS-84 values from IST-
85 values are greater than the IST-85 tolerances is shown by crosshatch. The area where IAPS-84 values are larger than IST-85 values is shown by 1.
The area where IAPS-84 values are smaller than IST-85 values is shown by B.
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9.2.d. Equation Developed by Pollak

The specific-volume values derived from the equation
of Pollak''! are getting smaller with increasing pressure than
the present skeleton table values in most of the effective re-
gion up to 300 MPa as shown in Fig. 20 and figures of Ap-
pendix II. The maximum deviation is about twice as much as

the associated tolerance at 573 K and 300 MPa as shown in
Fig. A.IL.11b.

On the other hand, the enthalpy values derived from the
equation of Pollak agree with the present skeleton table val-
ues in most of the effective region except only for a few grid
points at high pressures at 298 and 1073 K as shown in Fig.
21 and in figures of Appendix III.
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F1G. 20. Comparison of the specific-volume values derived from the equation developed by Pollak with the present skeleton table values (IST-85). The area
where the deviations of Pollak-values from IST-85 values are greater than the IST-85 tolerances is shown by crosshatch. The area where Pollak
values are larger than IST-85 values is shown by 0. The area where Pollak values values are smaller than IST-85 values is shown by B.
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FIG. 21. Comparison of the enthalpy values derived from the equation developed by Pollak with the present skeleton table values (IST-85). The area where
the deviations of Pollak values from IST-85 values are greater than the IST-85 tolerances is shown by crosshatch. The area where Pollak values are
larger than IST-85 values is shown by . The area where Pollak values are smaller than IST-85 values is shown by B.

9.2.e. Equations Developed by Sato et a/.

An equation (SUWH) developed by Sato, Uematsu,
and Watanabe in 1981'"?is effective for liquid water between
0.1 MPaand 1 GPa in the temperature range from 273 to 623
K as well as between 0.1 and 1 GPa in the temperature range
from 623 to 1073 K. The specific-volume values derived
from SUWH agree with the present skeleton table values
within the associated tolerances except for two points at at-
mospheric pressure and seven points at high pressures as
shown in Fig. 22 where the differences are of nearly.the same
magnitude as the assaciated tolerances as shown in figures of
Appendix II.

On the other hand, the enthalpy values derived from
SUWH agree with the present skeleton table values almost
completely within the associated tolerances except for a sin-
gle point at 298 K and 750 MPa as shown in Fig. 23 where

the difference is about the same as the tolerance as shown in
figures of Appendix IIIL

Another equation (SUWL) developed by Sato, Ue-
matsu, and Watanabe®' has been introduced in Sec. 3.1.a,
which is effective in the range of temperatures 273 to 423 K
and pressures up to 1 GPa. The SUWL reproduces the pres-
ent specific-volume values at atmospheric pressure within
the associated tolerances. The derived specific-volume val-
ues agree with the present skeleton table values within their
associated tolerances in the whole effective range except for
four points above 850 MPa at 423 K as shown in Fig. 24 and
figures of Appendix II, whereas the derived enthalpy values
agree with the present skeleton table values almost com-
pletely within their associated tolerances except for a single
point at 423 K and 1 GPa as shown in Fig. 25 where the
difference is about the same order as the associated tolerance
as shown in figures of Appendix IIL

J. Phys. Chem. Ref. Data, Vol. 17, No. 4, 1988
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Fi1G. 22. Comparison of the specific-volume values derived from the equation developed by Sato e al. (SUWH) with the present skeleton table values (IST-
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FIG. 23. Comparison of the enthalpy values derived from the equation developed by Sato et al. (SUWH) with the present skeleton table values (IST-85). The
area where the deviations of SUWH values from IST-85 values are greater than the IST-85 tolerances is shown by crosshatch. The area where SUWH
values are larger than IST-85 values is shown by [J. The area where SUWH values are smaller than IST-85 values is shown by H.
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F16. 24, Comparison of the specific-volume values derived from the equation developed by Sato er al. (SUWL) with the present skeleton table values (IST-
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area where the deviations of SUWL values from IST-85 values are greater than the IST-85 tolerances is shown by crosshatch. The area where SUWL values
are larger than IST-85 values is shown by 0. The area where SUWL values are smaller than IST-85 values is shown by M.
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10. Conclusion

The history and the current state of the art regarding
the experimental study of the thermodynamic properties of
ordinary water substance are summarized in this paper.

The considerable accumulation of the reliable experi-
mental data in the last two decades has represented the ther-
modynamic properties of water very well not only in a wide
region but also with high reliability. The measurements for
the speed of sound and the heat capacity have been carried
out in a wide region, and especially, new experimental den-
sity data have been obtained at higher pressures beyond 100
MPa after the establishment of IST-63. Moreover, highly
reliable experimental data have been obtained at the triple
point, at atmospheric pressure, and in the critical region. A
set of the present skeleton tables is a concise summary of
those experimental data.

The following problems may come up for the future
task on the thermodynamic properties of ordinary water
substance.

(1) Many present skeleton table values including vapor
pressure, density and enthalpy of saturated water and satu-
rated steam, and critical parameters are based on the experi-
mental study performed at one laboratory in the 1930s. Cur-
rent technology may have the ability to reveal those
properties more accurately.

(2) Experimental data on thermodynamic properties
near the melting line at temperatures below 298 K and pres-
sures above 100 MPa are not available in spite of their impor-
tance to the understanding of the structure and singularities
of water; large differences exist among the thermodynamic
property values derived from the available equations of state
along the 273 K isotherm at high pressures.

(3) No equation can represent the present skeleton ta-
ble values completely within the associated tolerances. The
establishment of improved equations of state is desired at the
next step. A set of present skeleton tables can be a valuable
base for establishing new equation of state.
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Appendix |

International Association for the
Properties of Steam
Release on the IAPS Skeleton Tables 1985 for The

Thermodynamic Properties of Ordinary Water
Substance

The

Unrestricted publication allowed in all countries.

Issued by the International Association for the Proper-
ties of Steam.

President, Professor P. G. Hill

Department of Mechanical Engineering

University of British Columbia

Vancouver, B.C. VGT 1WS5, Canada

Executive Secretary, Dr. Howard J. White, Jr.
Office of Standard Reference Data

National Bureau of Standards

Gaithersburg, MD 20899 USA

J. Phys. Chem. Ref. Data, Vol. 17, No. 4, 1988

SATO ETAL.

This release is issued by the International Association
for the Properties of Steam (IAPS) on the authority of the
Tenth International Conference on the Properties of Steam,
held in Moscow, USSR, 2-7 September, 1984. The members
of IAPS are: Canada, the Czechoslovak Socialist Republic,
the Federal Republic of Germany, France, Japan, the Union
of Soviet Socialist Republics, the United Kingdom and the
United States of America.

Part I of this release contains two Skeleton Tables of
Thermodynamic Properties of Single-Fluid Phase of Ordi-
nary Water Substance. Table 1 gives the most probable spe-
cific volume values with their associated tolerances for the
range of temperatures 273.15-1073.15 K and pressures up to
1000 MPa, whereas Table 2 gives the most probable specific
enthalpy values with their associated tolerances for the same
range of temperatures and pressures.

Part II of this release contains Skeleton Tables of Ther-
modynamic Properties along the Saturation Curve of Ordi-
nary Water Substance. Table 3 gives the most probable ther-
modynamic property values with their associated tolerances
for the coexisting vapor-liquid phases between the triple
point and the critical point.

It should be noted that the International Skeleton tables
(October 1963), authorized at the sixth International Con-
ference on the Properties of Steam in New York, U.S.A,,
1963, are hereby withdrawn from the authorization of IAPS.

Further information can be obtained from the Execu-
tive Secretary of IAPS:

Dr. Howard J. White, Jr.

Office of Standard Reference Data
National Bureau of Standards
Gaithersburg, MD 20899 USA
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Appendix |l

Comparison of the available specific-volume values of water with the present skeleton table values along the isotherms
between 273.15 and 1073.15 K in the pressure range up to 1 GPa. Percent deviations of the specific-volume values from the
IAPS Formulation 1984 (IAPS-84) are plotted in the figures.

Table A.ITI.1. The lines and marks in Figs. A.IIL.la-24b

The IFC Formulation for Industrial Use
(IFC-67)
———~ Equation developed by Pollak, R., 1974

————— Fquation developed by Sato, H., Uematsu
M., and Watanabe, K., 1981(SUWH)

—--— Equation developed by Sato, H., Uematsu
M., and Watanabe, K., 1985(SUWL)

& Alexandrov, et al. (1976)73
X Borzunov, et al. (1970)66
X Burnham, et al. (1977)77
® Chen, et al. (1977)8>
X Garnjost (1974)68
Grigoryev, et al. (1974)69
H I series
I1 series “
A Grindley and Lind (1971)%7
O Hanafusa, et al. (1984)104
X Hilbert, et al. (1974)78
(&) Kell, et al. (1974)
© Kell, et al. (1975)71
) Kell, et al. (1978) 72
X Keyes, et al. (1935)“4
O Koster and Franck (1969)64
O Maier and Franck (1966)63
o Rivkin, et al. (1962)24
@ Rivkin, et al. (1963)55
O Rivkin, et al. (1964)56
X Smith and Keyes (1934)43
O Tanishita, et al. (1976)61
® Vedam and Holton (1968)65
0 Vukalovich, et al. (1961)51
0 Vukalovich, et al. (1962)22
AV Zubarev, et al. (1977)75
-
0 IST-63 value and the associated tolerance
4

(

(O

IST-85 value and the associated tolerance

!
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FI1G. A.IL.1b. Specific volume deviation from IAPS-84 at 273.15 K against pressure.
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FiG. A.IL2b. Specific volume deviation from IAPS-84 at 298.15 K against pressure.
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F1G. A.I1.3b. Specific volume deviation from IAPS-84 at 323.15 K against pressure.
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Fi1G. A.I1.4b. Specific volume deviation from IAPS-84 at 348.15 K against pressure.
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FiG. A.IL.5a. Specific volume deviation from IAPS-84 at 373.15 K against logarithmic pressure scale.
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FIG. A.I1.5b. Specific volume deviation from IAPS-84 at 373.15 K against pressure.
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FiG. A.I1.6b. Specific volume deviation from IAPS-84 at 398.15 K against pressure.
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FI1G. A.IL.7b. Specific volume deviation from IAPS-84 at 423.15 K against pressure.
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J. Phys. Chem. Ref. Data, Vol. 17, No. 4, 1988



1506 SATO ET AL.

1 T yrrTi l] 1 T LB B LA I T 1
T @
0.250F TR
g -
: |
h ! -
Tolerance @ 5.?
g + —= @1@@ 0:’:,." IE
— 0. 00~——— N 1APS-84 .‘o.,,.\i.m
* IR = Rty = e < g,
— IFC-67 & ‘Ds\ ] 1 g
<< 0 & 0> Vo 7
— I + 0 poLLak
> -+ ] “0 .
L - ‘;E{L
m B / . 4![" \J
_l_ .
-0.250} Tolerance of IST-63 L -
1 a1 1l 1 Lol A NIF e RN
0.1 1000
PRESSURE / MPa
FIG. A.11.15a. Specific volume deviation from IAPS-84 at 698.15 K against logarithmic pressure scale.
1 1 T ] T ] T I T
2.50F J
~ » R
N
prd
N
— (.00 ]
— }
<< POLLAK/
- s
Ll B i
—/ B N
-2.50F y
1 1 | 1 L 1 | 1
0 200 200 500 800 TO0O

PRESSURE / MPa

FiG. A.I1.15b. Specific volume deviation from IAPS-84 at 698.15 K against pressure.

J. Phys. Chem. Ref. Data, Vol. 17, No. 4, 1988



THERMODYNAMIC PROPERTIES OF WATER

1507

T

0.250

DEVIATION / %

-0.250

J1APS-84

-
0.00f———31 @&Lygg O

1

I VEETTrg i Ll LI ]

)
T
™

Tolerance

G~drcss,

Tolerance of IST-637

11 3 131 1 1

1T riidg 1 T

i 10

~

.1

L1arnal 1
10

PRESSURE / MPa

FiG. A.11.16a. Specific volume deviation from IAPS-84 at 723.15 K against logarithmic pressure scale.

1000

2.50}

- i

N

=

)

—0.00

‘_

-

>

L

= !
-2.50f

0

200 500
PRESSURE /

200

F1G. A.IL.16b. Specific volume deviation from IAPS-84 at 723.15 K against pressure.

MPa

J. Phys. Chem. Ref. Data, Vol.

1000

17, No. 4, 1988



SATO ET AL.

1508

] 1 lllllll ] 1 Illllll 1 1 |+|||| 1 ¥ IllU"'ll
0.250 ha |-
~ l,"' 1
= A
O
— 0.00(
’_ -
<
= ]
LLJ -
= ]
-0.250 -

— ] ! 100 1000

0.1 0
PRESSURE / MPa

F1G. A.Il.17a. Specific volume deviation from IAPS-84 at 748.15 K against logarithmic pressure scale.

T T T T T T T T T

2.50¢F i
N - -
N
P
(A
— 0.00
—
<C
- - -
L - .
— ! 4

-2.50f .

1 1 1 1 1 1 1 1
0 200 4b0 600 800 1000

PRESSURE / MPa

FiG. A.I1.17b. Specific volume deviation from IAPS-84 at 748.15 K against pressure.

J. Phys. Chem. Ref. Data, Vol. 17, No. 4, 1988



THERMODYNAMIC PROPERTIES OF WATER 1509
T T T T TTT7] T T T T TTTT] T 71 TTTTT T T T T T
0.250F} A .
i T/
'\. |y,
N |
T
=z Tolerance - @ E|' -.
) T ~ T @ ]
: = [] Ipc\67 0 ~O-R-_ ?z» @,
— 1 + 4+ @ O :=,; )
= @
; L Tolerance of IST—63/L (,SD =
-0.250} +
1 Lt 11911 1 1111t 1 L1l esal
0.1 000
PRESSURE / MPa
F1G. A.11.18a. Specific volume deviation from IAPS-84 at 773.15 K against logarithmic pressure scale.
T T T T T T T T T
2.50F .
~ B -
N i Qoxe{a‘\oe |
=z B mee7 A oobfog B i
S ooB s QT
i & M
<C i o T O ]
—_ R POLLAK -
> 0]
L - -
(= i .
e 2 . 50 - ]
1 1 1 | 1 1 1 | 1
0 200 400 600 800 1000

PRESSURE / MPa

FiG. A.11.18b. Specific volume deviation from IAPS-84 at 773.15 K against pressure.
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FIG. A.11.21a. Specific volume deviation from IAPS-84 at 923.15 K against logarithmic pressure scale.
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Appendix Il

Comparison of the available enthalpy values of water with the present skeleton table values along the isotherms between
273.15and 1073.15 K in the pressure range up to 1 GPa. Percent deviations of the enthalpy values from the IAPS Formulation
1984 (IAPS-84) are plotted in the figures.

Table A.III.1. The lines and marks in Figs. A.III.la-24b

The IFC Formulation for Industrial Use
(IFC-67)
————  Equation developed by Pollak, R., 1974

"""" Equation developed by Sato, H., Uematsu
M., and Watanabe, K., 1981(SUWH)
Equaltion developed by Sato, H., Uematsu
M., and Watanabe, K., 1985(SUWL)

O Angus and Newitt (1966)99

O Callendar and Egerton  (1960)77

AV ‘Havlilek and MiSkovsky (1936)93

A Osborne, et al. (1937)183

AN Osborne, et al. (1939)1

O Sheindlin and Gorbunova (1964)92

0 Vukalovich, et al. (1958)2

9) Vukalovich, et al. (1962)92

0 Vukalovich, et al. (1963)9

—

g IST-63 value and the associated tolerance
4

-~

] IST-85 value and the associated tolerance
~
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FIG. A.II1.7b. Enthalpy deviation from IAPS-84 at 423.15 K against pressure.
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FiG. A.II1.9a. Enthalpy deviation from IAPS-84 at 473.15 K against logarithmic pressure scale.
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F1G. A.II1.9b. Enthalpy deviation from IAPS-84 at 473.15 K against pressure.
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FI1G. A.I11.13b. Enthalpy deviation from IAPS-84 at 648.15 K against pressure.
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FiG. A.IIl.14a. Enthalpy deviation from IAPS-84 at 673.15 K against logarithmic pressure scale.
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F1G. A.111.15a. Enthalpy deviation from IAPS-84 at 698.15 K against logarithmic pressure scale.
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Fi1G. A.II1.15b. Enthalpy deviation from IAPS-84 at 698.15 K against pressure.
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FiG. A.I11.16a. Enthalpy deviation from IAPS-84 at 723.15 K against logarithmic pressure scale.
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F1G. A.I11.16b. Enthalpy deviation from IAPS-84 at 723.15 K against pressure.
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FI1G. A.II1.17a. Enthalpy deviation from IAPS-84 at 748.15 K against logarithmic pressure scale.
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F1G. A.II1.17b. Enthalpy deviation from IAPS-84 at 748.15 K against pressure.
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Fi1G. A 111.18a. Enthalpy deviation from IAPS-84 at 773.15 K against logarithmic pressure scale.
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F1G. A.II1.18b. Enthalpy deviation from IAPS-84 at 773.15 K against pressure.
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F1G. A.II1.19a. Enthalpy deviation from IAPS-84 at 823.15 K against logarithmic pressure scale.
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FiG. A.IIL.19b. Enthalpy deviation from 1APS-84 at 823.15 K against pressure.
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F1G. A.TI1.20b. Enthalpy deviation from IAPS-84 at 873.15 K against pressure.

J. Phys. Chem. Ref. Data, Vol. 17, No. 4, 1988



THERMODYNAMIC PROPERTIES OF WATER 1537
T T T T TTTT] T T T T TTTT] T T T T 17177 T LI 1
—
<C
—1
>
(W]
M
Tolerance of IST—63}
1 113 s sl 1 P11 110l i s o1 a1zl 1 Ll 1 i1
0.1 1 100 1000
PRESSURE / MPa
Fi1G. A.1l1.21a. Enthalpy deviation from IAPS-84 at 923.15 K against logarithmic pressure scale.
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F1G. A.111.24b. Enthalpy deviation from IAPS-84 at 1073.15 K against pressure.
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