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A comprehensive compilation is given of elastic properties of iron-nickel alloys. When sufficient data
exist, preferred values are recommended. This compilation covers, besides pure iron and pure nickel,
the entire binary composition range, both b.c.c. and f.c.c. phases. Elastic constants included are:
Young’s modulus, shear modulus, bulk medulus (reciprocal compressibility), Poisson’s ratio, and single-
crystal elastic stiffnesses, both second-order and higher-order. Data are compiled for variation of
elastic constants with camposition, temperature, pressure, magnetic field. mechanical deformation.
annealing, and crystallographic transitions. An overview is given from the vantage points of the electron
theory of metals, elasticity theory, and crystallographic theory. Also included are discussions of iso-
thermal and adiabatic elastic constants, interrelationships among engineering elastic constants, com-
putation of the latter from single-crystal elastic stiffnesses, and similar topics. Where key data have
not been measured, they were generated if possible from existing data using standard formulae. Other
gaps, both theoretical and experimental, in the elastic properties of iron-nickel alloys are indicated. A
few theoretical results are included where experimental data are nonexistent or scarce. A semantic
scheme is proposed for distinguishing elastic constants of solids.
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Cijkl, Cijkimn third-order elastic stiffnesses (contracted,
full)

C11, €12, €44 three independent elastic stiffnesses fpr

' cubic symmetry

=Ca4q
= (cr1—¢12)/2

specific heat at constant x

Young’s modulus

Helmbholtz energy

shear modulus

Gibbs energy

Planck’s constant

enthalpy

tensor invariants

Boltzmann’s constant

Murnaghan’s  third-order
elastic constants

8

MmO OO0

Lm,n quusi-isutrudic

M general elastic modulus
N Avogadro’s number
P pressure

1. Introduction

In this century, solid-state physics has advanced dra-
matically. Essential to this advance was accumulatjon
of vast quantities of data describing properties of solifls.
As much as any set of properties, elastic properties were
central in this advance. Similarly, technologies such| as
metallurgy and ultrasonics have matured only through a
necessary knowledge and understanding of elastic prjop-
erties of solids that provide their basis.

Most solids are crystalline, therefore elastically 4ni-
sotropic, and are either single crystals or polycrystalli
aggregates. Thus, crystalline studies form a large part
of solid-state physics, which attempts generally to relate
properties of atoms and atom groupings to macroscgpic
properties of solids at various temperatures, pressufes,
etc.

While most phenomenological crystal elasticity was
developed by late 19th century, systematic studies and
practical applications of crystalline elasticity emerged
only recently. Uses of crystals in solid-state devices and
engineering applications of elastic solids increased gub-
stantially since about 1945. Measurement of elagtic
properties by ultrasonic techniques facilitated thiese
applications.

With the view that elasticity of solids will be incre¢as-
ingly important in both science and technology, a begin-
ning is made here toward a comprehensive compilation
and critical review of elastic properties of selected gys-
tems that hold high interest for both of these commumni-
ties. For examples of practical applications of elastic
properties one need only consult any standard reference
on strength of materials. Perusal of various formula¢ for
describing states of stress such as compression or b¢nd-

Sijs Sijkl elastic compliances (contracted, full)
S entropy
T temperature (degrees Kelvin)
u displacement
v velocity
specific volume, volume
linear thermal expansion coefficient
volume thermal expansion coefficient
shear strain
Griineisen’s constant
Kronecker’s delta
strain
strain
Debye characteristic temperature
Lamé constant
magnetostriction constant
Lamé constant (=G)
Poisson’s ratio
mass density
stress
shear stress

MR R WR

<

S gToeE>>o3 M

ing shows that elastic constants are key design param-
eters. Indeed, few stress-bearing members can be
designed adequately in ignorance of the elastic proper-
ties of the constitutive material.

Engineering materials that are macroscopically isot-
ropic are completely defined elastically by two param-
cters, Parameter selection is arbitrary, varying with
application. As examples: pressure vessel design
requires knowing the bulk modulus, design of rotating
shafts requires knowing the rigidity modulus, and design
of flexed beams or support columns requires knowing
Young’s modulus,

For some special scientific purposes it is sufficient to
know the elastic properties of a material in some refer-
ence state, for example—a pure, annealed, defect-free,
single crystal at 0 K and 1 atmosphere. However, for
ordinary purposes the elastic properties of a material
must be known in other, non-reference, states. Depart-
ure from the state of reference usually involves varying
one or more of—composition, temperature, pressure,
mechanical deformation, magnetic field, or degree of
polycrystallinity. Thus, an understanding is sought as to
how these variables affect elastic properties. These
topics are discussed in sections 10-11 and 13-16.

The purpose of this paper is to present a compre-
hensive compilation and a critical overview of the
elastic properties of alloys of the binary system iron-
nickel. These alloys hold much interest for both en-
gineers and scientists, for both metallurgists and
geophysicists. Iron-nickel alloys also provide. fertile
ground for probing relationships between. elastic con-
stants and phase transitions, an area of physics and
metallurgy now ripe for both theoretical and experi-
mental study. Since both iron and nickel are ferro-
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magnetic, their alloys show a variety of curious magnetic
effects, many of which are important technologically;
and magnetic effects are frequently coupled to elastic
constants, as for example in magnetostriction. Similarly,
Invar?! is an alloy of Fe-36Ni? where magnetic effects
combine with thermal expansion such that virtually no
thermal expansivity is exhibited over a wide temperature
range, one of the curious exceptions to the almost uni-
versal thermal expansion of solids.

Other materials such as Covar (thermal expansion
coefficient similar to that of glass) and Permalloy
(exceptionally high magnetic permeability) are based
on iron-nickel binary alloys. Metallic meteorites, also
scientific curiosities, are iron alloys containing as much
as 60 percent nickel. Extensive meteorite metallography
has been done to deduce the thermal-mechanical history
of meteorites to elucidate the problem of planetary
genesis. Finally, the earth’s core is generally assumed
to be an alloy of iron and nickel, and elastic constants
enter many geophysical calculations, notably those
dealing with seismic-wave propagation. The many tech-
nological applications of Fe-Ni alloys are discussed by
Chickazumi [1],* Rosenberg [2], and Everhart [3].

This review collects, for the first time, all available
data on the elastic properties of iron-nickel alloys.
Data are discussed from the viewpoints of the modern
theory of metals, elasticity, and crystallography in an
attempt to understand, as much as possible, in a unified
way the elastic properties of iron-nickel alloys. This is
useful because: (1) most of the literature on the subject
is purely experimental, and (2) an overview facilitates
semi-quantitative extrapolation of existing information
to conditions where neither experimental nor theoretical
data are available.

Most data are available as engineering elastic con-
stants: Young’s modulus, shear modulus, bulk modulus,
and Poisson’s ratio. Single-crystal data exist also, but
less abundantly. Relationships between single-crystal
data and engineering data are discussed in section 5.
Besides the compositional variation of the elastic con-
stants, data on the effects of temperature, pressure, mag-
netic field, mechanical deformation, and annealing are
also included and discussed. This review is intended to
provide a convenient source of information on the elastic
properties of iron-nickel alloys and to stimulate further
research, both theoretical and experimental. Gaps in
the knowledge and understanding of the elastic proper-
ties of iron-nickel alloys are delineated.

Since the present article is seen as the first of a series,
the discussion herein is more general and more extensive
than is necessary for treating only the elastic properties
of iron-nickel alloys. Remarks special to iron-nickel are
so designated whenever appropriate. Mainly, the elastic

d n 4

1 1,
Trade names are used to facilitate

of work p no app I, end
ment, or recommendation by NBS is implied.
2 L. - . . .
Tk h are exp ] as weight percent nickel. Because iron and

nickel have similar atomic weights, weight and atemic percentages always differ by less
thau twu percent,

*Ni Is in brackets indicate li fe at the end of this paper.
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properties of metals and alloys are described in general
terms. Much of the discussion necessarily applies also to
other types of solids such as ionic or covalent crystals.
However, readers should make such extrapolations only
cautiously.

2. Perspective on Elastic Constants

Invoking three realms of knowledge of solids— pure
science, phenomenology, and engineering— elastic
parameters of solids are distributed among these realms
as shown schematically in figure 1. As far as elastic prop- -
erties of solids are concerned, objects of interest in these
realms are, respectively— discrete atoms or molecules,
anisotropic continua, and quasi-isotropic continua.

The « and 8 can be taken to represent extensions (or
contractions) and bendings of valence bonds between
atoms in solids; subscript i denotes the various sets of
atomic neighbors. The ci’s represent elastic stiffness
coefficients that relate stresses to strains; both stress
and strain are specified with respect to a set of axes
denoted by indices i and j and usually chosen to coincide
with crystallographic axes. E, G, B, and v denote the
Young’s modulus, shear modulus, bulk modulus, and
Poisson ratio, parameters arising naturally in char-
acterizing, respectively, uniaxial loading, shear loading,
hydrostatic loading, and transverse strain under uniaxial
loading. (In section 4 all of the elastic constants are
defined. In section 5 relationships between single-
crystal and polycrystal constants are discussed.)

Many properties of solids are related to elastic coeffi-
cients. The most important of these properties is Debye’s
characteristic temperature 6. Several techniques exist
for computing 6 from the cij. In turn, 6 relates directly
to such properties of solids as heat capacity, intensities
of Bragg diffractions, Mossbauer emission, thermal con-
ductivity, electrical resistivity, superconducting transi-
tion temperature, etc. Many of these relationships are
discussed in section 18.

Elastic coefficients are central in considering defects
in solids such as vacancies, interstitials, substitutional
impurities, dislocations, twin boundaries, and grain
boundaries. Beingrelated to the second spatial derivative
of the interatomic potential, elastic cocfficients relate
intimately to the problem of cohesion in solids, an
especially important problem for metals. In this regard,
pure-shear elastic coeflicients allow for volume effects
to be separated from non-volume effects. Many crystalline
phenomena—thermal expansion, temperature and pres-
sure derivatives of the sccond-order elastic coeflicients,
thermal conductivity of insulators, sound wave attenua-
tion, etc.—are anharmonic effects related directly to
the existence of third-order, and higher-order, elastic
constants, Thus, better understanding, both experimental
and theoretical, of elastic constants of solids pays
dividends in diverse ways, often unsuspected. (Section
11.3 treats hriefly the topic of lattice defects and elastic
constants,)
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3. Terminology

Despite several proposals, there is no generally
accepted, rational and consistent terminology for
describing the elastic parameters of solids that form
the subject of this review. This problem becomes
especially acute when semantic distinctions are required
among: (1) the general class of all elastic parameters,
(2) the sub-class of the parameters used commonly to
describe quasi-isotropic or engineering solids, and (3)
the sub-class of parameters used to describe anisotropic
single crystals. Therefore, a scheme of usage is proposed
here that corresponds closely to that usually accepted
but makes useful semantic distinctions:

E = Young’s modulus

. (polycrystal)
G = shear modulus frlla:ml:i engineering
B = bulk modulus ocu elastic

elastic

constants constants

v = Poisson’s ratio

(single-crystal)

cij= elastic stiffnesses
elastic coefficients

si5 = elastic compliances

Adoption of this, or a similar, semantic scheme in the
literature of elastic phenomena of solids should allow
for a more logical and a more lucid description of the
subject than has resulted previously. In much of the
existing literature the c¢i; are referred to simply as
“elastic constants”. Thus, an alternative to the present
proposal would be to substitute “constants” for “coefhi-
cients” and perhaps ‘“parameters” for ‘“‘constants”.
Also, some authors prefer “technical”, “practical”, or
“bulk” to “engineering”.

4. Definitions of Elastic Constants

Elastic materials obey Hooke’s law

O'ij = Cijkl €kl, 4.1)
where repeated indices are summed from 1 to 3, o'j; are

stress components given by
fi= aijnj, 4.2)
where fi are the components of a force acting internally
on an imaginary plane (with normal n) of a body, and €x:
are the (infinitesimal) strain components given by
€xr=3(0ur/0x1+ du.foxx), 4.3)

and ux, u: are components of the displacement.

While Hooke’s law emerged experimentally, it can
be den'ved in various ways. For example, Lanczos [4]
showed that Hooke’s law is the necessary stress-strain

relationship when Hamilton’s variational principle
is invoked.

Equation (4.1) means that the strain response of
an elastic material is instantaneous, independent of
rate or history. Removal of force restores the original
reference configuration; no strain exists in the un-
stressed state and vice versa. If non-mechanical
(electrical, magnetic, thermal, etc.) effects are incorpo-
rated, then stress and strain may not vanish simultane-
ously unless the non-mechanical effects are subtracted
from the total stress and strain. Metals approximate
Hookean behavior within their elastic limit; plastic
deformation frequently begins before non-linear elastic
behavior becomes significant.

Except for third-order elastic constants, the elastic
constants described herein are either those c¢ijx: in eq
(4.1) or can be derived simply from them.

The cijx1 are components of a fourth-rank tensor
and are called the elastic stiffness coeflicients. Gener-
ally, there are 3*=81 such components. However,
thermodynamic and symmetry considerations show for
all crystal systems that

Cijkl™ Cilij= Cijik= Cjikl 7 Cikjl. “@.4)
Complete commutability of indices occurs only when
Cauchy’s relations, based on central forces between
atoms and inversion symmetry, hold. In metals these
relations are broken because of the conduction electrons
acting through electron-electron and electron-ion
interactions.

From eq (4.4) it follows that in general only 21 cijx: are
independent. If Voigt’s contracted notation? is invoked,
then the cijxi can be represented as a symmetric 6 X6
matrix, and Hooke’s law becomes

Ta = CoB €8

@.5)
where repeated indices are summed from 1 to 6 and
Cap = Cijki
Tu= oy
=€, =1,2,3
=2€r;, 8= 4,5, 6.

For cubic symmetry, which is the case for iron, nickel,
and all iron-nickel alloys, the 21 c¢4g components reduce
to three:

€11 = C32= C33, 4.6)
C12 == C21 = C13 = C31 = Cag = C32, (4.7)
and
C44=C55= Cé6, (4.8)
*The Voigt scheme is ized as follows:

Y, kl: 11 22 33 23,32 13,31 12,21
@, B: 1 2 3 4 5 6

4. Phys. Chem. Ref. Data, Vol. 2, No. 3, 1973
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all other cqg are zero.
The elastic compliance coeflicients s;jx have the same
symmetry as the ¢ and their relationship is inverse

CapSap=lexs6
where I denotes the identity matrix. Formulae for con-

verting cqgto s.g and vice versa are collected in table 3.
For cubic symmetry, Hooke’s law in matrix form is

o [cn ¢z 2 0 0 0] [e |
a2 ¢z cu €12 0 0 0 €2
O3 iz €12 ¢ O 0 0 €3
= (4.10)
(e /'] 0 0 0 Caq 0 0 €3
Ts5 0 0 0 0 Caq 0 €5
L O6_{ \__O O 0 0 0 Cagf, | Es__

The choice of three independent elastic constants is
not unique. For example, a useful alternative set advo-
cated by Zener [5] is

C=cu. @1

C'= (c11—12)/2, 4.12)
and

B={c11+2c12)/3. 4.13)

A set arising frequently in ultrasonic experiments is C,
C’, and
Cr=(cnn+ci2+2c4)/2. 4.14)

It can be shown that B is the bulk modulus for cubic
symmetry. Thus, when a hydrostatic pressure

P=—o,=—0y=—03(0s=05=0s=0), (4.15)
is applied to a cubic crystal the strains are
ae=e=a=—AV[3V(a=e=€e=0), (4.16)
and eq (4.1) becomes
B=~—P[(AV]V). @.17)
For cubic symmetry the compressibility
k=—% (—‘3%) @.18)

is given by

J. Phys. Chem. Ref. Data, Vol. 2, No. 3, 1973

@.9)

K=3(S11+2812)=1/B. (4'.19)
The constant C= cq4 relates a shear stress on a {100}
plane to the shear strain in any direction in that plane.
For a shear stress o acting along (100) [010] and effect-
ing a shear angle y
0s=0, 4.20)
and

€=, @.21)

All other stress and strain components are zero. Thus,
eq (4.1) becomes

ces=0oly=cu=C. (4.22)

The constant C"= (c11—c12)/2 relates a shear stress
on a {110} plane to a shear strain along (110). This is
equivalent to the c41 case just described, but rotated
=+ 45° about [001). In this case the non-vanishing stress
components are

01 =—02=0 4.23)
and the non-vanishing strains are
a=—e€="1y/2 4.24)

so that cq (4.1) becomes in this case

(ci—ci2)2=0oly=C"'=cs rotated £45° about [001].

(4.25)

For isotropic materials there are only two independent
elastic constants. The Lamé constants A and . were the
first set to be used. For isotropic media, Hooke’s law
in a reduced matrix form is

o] Mt2ex & 0 o 0llel
o2 A A+2u A 0 0 O0]je
a3 A A A+2u 0 O O |les
= 4.26)
T4 0 0 0 uw 0 0 fle
Ts 0 0 0 0 v 0les
e 0 0 0 0 0 pu €
Clearly, for visotropic media
cini=A+2u, 4.27)
ciz=N\, 4.28)
and
Cag = M. (4.29)
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Much recent work on isotropic media uses, instead of

X and u, such constants as the bulk modulus B, Young’s
modulus £, the shear modulus G, and Poisson’s ratio ».
B is defined by eqs (4.13) and (4.17).

Young’s modulus is defined as the ratio of uniaxial
stress (tensile or compressive) to strain measured

along the same axis. Thus, eq (4.1) becomes for stress
along [100]

€ Sy 4.30)

There can be only one shear modulus in the isotropic
case, so that

C=c5=1(c}

175 ) @.31)
Poisson’s ratio is defined as the negative of the ratio
of transverse strain to longitudinal strain for the case

of uniaxial stress. For stress along [001],

v=—€f€;=—s7,/5%,. 4.32)
Zener [5] introduced an additional parameter, a
dimensionless ratio '

A = CIC" = 2c44f (€11 — c12), 4.33)

called the elastic anisotropy factor.® Clearly, 4=1 for
isotropy since all shear moduli, including C and C’, are
equal. Aluminum and tungsten are the only cubic metals
with known elastic coefficients where 4 =1. Zener’s
anisotropy concept has been very useful in discussing
b.c.c. lattice instabilities. In fact, Barrett [7] was led
by this consideration to discover low-temperature
martensitic transformations in both lithium and sodium.
Iron-nickel alloys have moderate to high elastic anisot-
ropy. As discussed below, martensitic transitions in
iron-nickel alloys can be characterized by a high value
of A even though the parent phase is f.c.c. as opposed
to b.c.c. for lithium and sodium.

Energetic considerations show that B, E, G (both C
and C' for cubic crystals) are all positive. Bounds on
v are 1/2 and — 1. No negative values of ¥ have ever been
observed for isotropic media. Typically, v ranges from
0.25 to 0.45 for metals. Lacking any data, the best guess
for metals is v=1/3.

Connecting identities among E, G, B, and v are
given in table 1. Other variables included there are
Lamé’s constants A and u, longitudinal and transverse
sound velocities v; and v;, quasi-isotropic elastic stiff-
nesses c3;, and quasi-isotropic elastic compliances s3;.
The sound wave velocities considered herein refer to

. ®There is no unique definition of crystalline elastic anisotropy. For example, Chung and
B [6} d an imp. d form, although slightly more complicated. Their factor
A* is zero for isotropy, gives better relative magnitudes of elastic anisotropies than does 4,
and is especially useful in interpreting 4<1 cases, which occur frequently for non-metals
and also for metals such as vanadium and chromium.

537

waves in an infinite medium, that is to the so-called
body or volume waves.

The operational definitions of E, B, G, and v for
isotropic media apply also to single crystals. If these
measurement operations are applied to single crystals,
results depend on the crystal axis (hkl) along which the
crystal is tested. Elastic constants so obtained are
designated Enki, Grit, and vri and are related to the c¢i;
and si; by formulae summarized in table 2 for cubic
symmetry. (Note that Bp=B for all possible hkl)
Thus, by measuring engineering constants on single
crystals along three independent directions (100, 110,
and 111 are the simplest) ci; andfor si; can be deter-
mined. Before the advent of ultrasonic measurement
methods, this method was used extensively to determine
cij; it is still used occasionally.

5. Relationships Among Elastic Coefficients and
Engineering Elastic Constants

As described above, cubic crystals are characterized
by three elastic coefficients while isotropic and quasi-
isotropic solids are characterized elastically by two con-
stants. The relationship between the constants £, G, B,
and v of a quasi-isotropic material and the ¢;; of a single
crystal of the same substance is considered here.

5.1. Isotropic Case (A=1)
The isotropy condition for cubic crystals is

€11 —C12=2C44 6.1
When this relationship is satisfied, identities in table 1
hold among various constants for both single crystals
and polycrystals.

5.2. Anisotropic Case (A # 1)

In computing two constants from three, the problem is
generally overdetermined. The overdeterminancy was
eliminated in the case A=1 by eq (5.1). Many different
approaches have been suggested for the anisotropic case.
A general review of this subject has apparently not been
made, although comparisons of many of the methods
were made by Ledbetter [8]. Two of the proposed meth-
ods are discussed here since they are important histor-
ically. and their basic assumptions establish upper and
lower limits for the correct result. A compromise aver-
aging method is then discussed that gives good results
with quite simple formulae.

The problem is one of averaging a tensor property over
all possible spatial orientations, that is,

(e =om f;o ;0 f(@.6) sin6dode (52

where f(¢,0) contains the directional dependence of
the c¢;;. Many schemes have been proposed for solving
eq (5.2) or its equivalent, but these have not been
reviewed critically.
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Voigt [9] assumed constant strain and averaged the
¢i; with the result
Gy =1 (c11— c12 + 3cas). (5.3)

Reuss [10], on the other hand, assumed constant stress
and averaged the s;; with the result

GR= >

. (.4
4(811—512) +3844 )

For both cases, the bulk modulus is given by eq (4.13).
Thus, all engineering elastic constants can be.deter-
mined from G and B by using equations in table 1. Hill
[11] showed on thermodynamic grounds that egs (5.3)
and (5.4) represent upper and lower limits on the shear
modulus and proposed either an arithmetic or a geo-
metric average, that is,

=% (Gy + Gy), (5.5)

or

GHG = (Gvck)llz, (5.6)
where subscripts V and R refer to Voigt's and Reuss’s
approximations. Hill’s method, owing to both its sim-
plicity and its reliability, is used widely and was used
here. While Hill’s average has no theoretical or physical
basis, it agrees closely (particularly for low elastic
anisotropy) with averages that have such bases. As
discussed by Landau and Lifshitz {12], the préblem of
averaging the ci; to obtain E, G, v, etc. cannot be solved
uniquely.

6. Measurement Methods and Errors

6.1. Measurement Methods

The subject of measuring elastic constants has been
reviewed extensively by several authors, [13]-[22]. Thus,
only those experimental aspects essential to under-
standing and interpreting the data herein will be
described briefly.

Direct, indirect, and derived methods are distin-
quished first. Direct methods are based on definitions of
elastic constants. For example, measuring Young’s
modulus directly requires measuring simultaneously
stress and strain along a uniaxial loading direction.

Indirect methode are hased on calcul

meinoe are pasea

using ol oo
using oOuicr

measured elastic constants as input. Thus an indirect
measurement of Young’s modulus could be made by
measuring B and v and using the formula E = 3B/(1—2v).
A derived method involves a physical relationship
between an elastic constant and some nonelastic param-
eters, the latter being measured and the elastic
constant then being calculated. For example, Young’s
modulus is a simple and well-known function of longi-
tudinal and transverse sound-wave velocities and mass
density. Both direct and indirect methods measure
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elastic constants while derived methods measure

nonelastic parameters.

Secondly, static and dynamic methods are distin-
guished. Static methods are characterized by time-
independent or, at least, slowly-varying (quasi-static)
applied stresses. Slow deformation rates ensure heat
exchange with surroundings. Thus, static methods are
constant temperature, or isothermal. Dynamic methods
are characterized by time-dependent, rapidly-varying
stresses that preclude heat transfer between a specimen
and its environment. Thus, dynamic methods are isent-
ropic or adiabatic. Static methods have been important
historically, but have been largely pre-empted by
dynamic methods. (Distinctions between isothermal and
adiabatic elastic constants are discussed in section 7.)
Emergence of high-frequency (ultrasonic) experimental
methods has heen accompanied naturally by smaller
specimen sizes, about one centimeter. For efficiency and
accuracy in the case of single crystals, specimens are
cut and oriented on specific crystallographic planes.

Thirdly, relaxed and unrelaxed moduli are distin-
guished. Usually, measuring an elastic constant involves
imposing a vibrational frequency on a specimen. Relaxa-
tion processes due to interstitial impurities, disloca-
tions, grain boundaries, residual stresses, etc. can occur
within the specimen. A measurement frequency lower
than the natural frequency of the relaxation events meas-
ures a relaxed elastic constant. Conversely, a measure-
ment frequency exceeding the relaxation frequency
measures unrelaxed elastic properties. If super-imposed
and relaxation frequencies are about equal, then consid-
erable internal friction or energy dissipation results, and
measured elastic constants fall somewhere between
relaxed and unrelaxed values. Differences between
relaxed and unrelaxed constants are usually less than a
few percent. :

Relative merits of various experimental methods for
specific materials, conditions, and elastic constants are
discussed in references [13}-[22].

Aside from magnetic effects, which are discussed
below, there are two additional problems in measurmg
elastic properties of iron-nickel alloys.

First, impurities. Effects of substitutional impurities
can be estimated from the work of Speich, et al. {23] who
determined the variation of E and G for Fe due to alloying
elements. Carbon is the principal interstitial impurity,
and small cancentrations have negligible effect on elas-
tic properties of iron-nickel alloys. Whether large con-
centrations of carbon increase [24] or decrease [25]
elastic stiffnesses is still unresolved. Most theory pre-
dicts an increase. But most experiments reveal a
decrease due to carbon [25],

Secondly, b.c.c. phases that contain twins as a result
of the f.c.c. to b.c.c. transition may show spuriously low
elastic stiffnesses due to a twin-hboundary contribution to
the strain. This problem becomes acute near ~35Ni
where the martensite is heavily twinned, but it can be
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overcome by using high-frequency measurement

methods.

6.2. Measurement Errors

The emergence of dynamic methods, particularly
ultrasonic techniques in the megahertz region, has
allowed such high precision that elastic constants are
now among the most accurately measurable properties
of solids. Static methods are limited mainly by the im-
precision of measuring stress and strain, and extensive
calibrations are usually required. Dynamic methods
employ relatively small stresses and strains, namely
those produced by a piezoelectric transducer. Whereas
static methods claim accuracies of about one percent,
dynamic methods can detect relative elastic modulus
changes as small as 108 (see Holder {26]). Absolute
values of elastic moduli are restricted primarily by
transducer-specimen bond corrections, phase-shift cor-
rections (see McSkimin [27]), non-flatness and mis-
orientation of specimen faces (see Waterman [28]),
and transducer misorientation. Careful specimen prepa-
ration and proper experimental techniques can result in
absolute errors being as small as 10-4.

Chronological variations of the engineering elastic
constants of iron are shown in figure 2. While more
recent values are more self-consistent, none of the older
values can be excluded on the basis of deviations from
the mean. '

7. Isothermal and Adiabatic Elastic Constants

Distinctions between isothermal and adiabatic elastic
constants are discussed here. (These constants are
denoted herein by subscripts T and § denoting constant
temperature and constant entropy, respectively.) The
distinction arises naturally from measurement methods.
Slow or static loading gives isothermal constants while
rapid or dynamic loading gives adiabatic constants. For
most engineering purposes, differences between the two
cases are negligible, being a few percent or less.
However, for detailed comparisons between elastic
constants, this difference becomes important. Using
thermodynamic relations generalized to include elastic
strain energy it can be shown that [29]

Sijktg = Sijktp = — @ijapl/Co (7.1)
where sijn = elastic compliances: a;;, o = thermal
expansion coefhicients; T = temperature, and C, = heat
capacity per unit volume at constant stress o. Since
solids have, almost invariably, positive thermal expan-
sion coefhicients, adiabatic compliances are smaller than
isothermal compliances. Differences were computed for
a few cases by Hearmon [29].

A similar relationship exists between the isothermal
and adiabatic stiffnesses, ciji. Thus, after Mason [30];

Cijkig — Cijkty = Nij Aet T/Ce (7.2)
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where Ajj, Axr=the temperature coefficients of stress at
constant strain, and C. = heat capacity per unit volume
at constant strain.

For cubic symmetry

1] = Q2= Q33 = Q, (1.3)
Q12 = Q13 = Qa3 = 0, (74)
A1= Aa2 = Agz =, (7.5)
and
Aiz= M3= Agz=0; (7.6)
thus
A= 3(131‘, (77)
so that in the cubic case, in compact notation:
2T
3115—5111.:3123"512T=_%:‘, (7-8)
Sagg — 544, = 0, (7.9)

Ciig = C11p = Ci12g ™ C12;, = BS—BT=9aZB,? TiCv,
(7.10)

and

Ca4 g— Caq = 0. (7.11)

For completeness, relationships between isothermal
and adiabatic engineering elastic constants are given
also:

Er TR?

N ....x S 2 £B°
Es=y—%, apyocy ~ Ert En’* 56,
(7.12)
1_1 9317
Bs Br Cr ’ (7.13)
= V1'+ ET (Tﬁzlg(:l’) ~ Zﬁ
Vs ]. —ET (TBZ/QCP) VT+ (]- + VT) ET QCP ’
(7.14)
and
Gs=Gr, (7.15)

where T= temperature, 8 = volume thermal expansion
coeflicient, ¥ = volume, and Cp = heat capacity per unit
volume at constant pressure. Derivations of these rela-
tionships were given by Landau and Lifshitz {31] and
Bhatia [32], for example. Approximations in egs (7.12)
and (7.14) assume that ETB2Cp is small. Isothermal and
adiabatic shear moduli are equivalent since shear at
constant volume, and entropy, leaves temperature
unaffected.
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Finally, the relationship of the isothermal and adia-
bati¢ moduli to the thermodynamics of elastic deforma-
tion is indicated. The first law of thermodynamics is,
including an elastic energy term,

dU=TdS+ cr,-de,-. (7.16)

The increment of Helmholtz free energy F=U—TS is

dF =—SdT+ ode;, (7.17)
so that the» stress tensor is given by
oi= (8U/3€i)s= (3F|o€:)r, (7.18)

for the isothermal and adiabatic cases, respectively. And
bnally,

Cik, = (30i/0€x) x, ¢,

(7.19)
where € denotes constancy of all strains except €, so that

Cikg= (02U[d€ider)s, ¢ , (7.20)

and

Cikp= (0F [o€der) 7, ¢. (7.21)

8. Elements Iron and Nickel

The purpose here is to collect data for both Fe and Ni
that relate to their elastic properties and to the elastic
properties of their alloys. Table 4 summarizes the data.

Both elements are transition metals (incomplete 3d
electronic shells) and occur in the first long period of
Mendeleev’s table, separated in that row only by Co. As
shown in table 4, Fe and Ni are quite similar in most of
their properties. As discussed below. this similarity is
reflected in many aspects of the elastic properties of
Fe-Ni alloys.

Properties of solids that are determined largely by
orbital electrons must vary periodically with atomic num-
‘ber according to Mendeleev’s table of elements. This
subject is an important part of the phenomenology and
science of solids. However, since this review treats only
two elements that are closely related in both the periodic
table and in their basic properties, periodic variation of
elastic and related properties will not be discussed here
in any detail. Interested readers should see Mack [33],
Dorn and Tietz [34], Vereshchagin and Lichter [35],
'Ryabinin [36], Koster and Franz [37], and Gschneider
[38].

9. Iron-Nickel Phase Diagram

Since elastic properties of alloys are related inti-
mately to the corresponding constitution diagram, some
cursory considerations of Fe-Ni phase equilibria are
appropriate. One of the first proposals for an Fe-Ni
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phase diagram was made on the basis of meteorite
metallography [39]. A currently accepted phase diagram
is shown in figure 3, adapted from Hansen and Anderkeo
[40], Elliott [41], and Shunk [42]. This diagram is rela-
tively simple, reflecting similar atomic sizes, melting
points, heats of fusion, etc. of Fe and Ni. Hume-Rothery’s
criteria [43] for solid solubility are favorable: atomic
size difference is small, electronegativities and valences
are identical. Difference in crystal structures at room
and lower temperatures precludes complete solid sol-
ubility. Complete mutual miscibility does occur  at
higher temperatures where both crystal structures
are f.c.c.

Nickel is f.c.c. at all temperatures and is comp]i-
cated only by a paramagnetic-to-ferromagnetic transi-
tion, the Curie temperature being 627 K. Iron has two
allotropic phase transitions: b.c.c. (@)tof.c.c. (¥)
at 1183 K, and f.c.c. (y)-to-b.c.c. (8) at 1663 K. Also,
Fe undergoes a paramagnetic-to-ferromagnetic transi
tion at 1043 K. The lower allotropie transition in iron is
unusual since a b.c.c. phase becomes stable at lower
temperatures. Because of vibrational entropies. b.c.c.
phases are stable usually at higher temperatures. The
upper allotropic transition y-to-8 is also unusual. As
first explained by Seitz [44], f.c.c. ¥ would be ex-
pected to be stable up to its melting point since its
Debye temperature is lower than that of the b.c.c.
phase. Debye temperatures are measures of lattice
vibrational energies. According to Seitz, the 7y-to-8
transition occurs because the electronic energy becomes
large, on the order of £T. This happens because the elec-
tronic specific heat, which increases linearly with T, be-
comes relatively large due to partly filled d shells; the d
shells have a high density of states; therefore a large
number of electrons are available at the top of the
unfilled band to absorb thermal energy.

Polymorphic transitions of iron were interpreted:
differently by Zener [5]. He ascribed the upper transition
8-toy to a low value of C'=(c11—c12)/2, the {110}s
(110)6 shear modulus. ‘Abscncc of clastic data of any
kind for 8 Fe precludes experimental confirmation of
this proposal. He ascribed the lower transition y-to-a
to a spontaneous magnetization (ferromagnetism) of
b.c.c. Fe. The difference between the Curie temperature
and the allotropic transition temperature was ascribed
to a local correlation of electron spins, ferromagnetism
being a long-range correlation.

The 7y-to-w transition that occurs on cooling has
martensitic character in the range of about 18 to 34 Ni
and “‘massive” character for compositions up to about
18 Ni [45]. Some evidence. suggests that very rapid
cooling of ¥ prevents a diffusion mechanism and gives
a martensitic transformation in alloys of lower Ni
content, even Fe, [46),

Curie 1lemperatures representing paramagnetic-to-
ferromagnetic transitions are shown in figure 3 as dotted
linen; dutn were 1aken from the recent comnilation of
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Zonnolly and Copenhaver [47]. Possible relevance of
Curie temperatures to structural transitions was dis-
cussed by Davies and Magee [48]. )

An order-disorder transition occurs in the FeNis
region, the critical temperature at stoichiometry being
about 776 K. Some evidence also exists that order-
disorder transitions occur near the stoichiometric com-
positions FezNi and FeNi [49]. Because of strong
similarities between Fe and Ni atoms, occurrence of
Fe-Ni superlattices is surprising and not understood
completely, though magnetic interactions between
atoms are surely important. .

Thermodynamic equilibrium in Fe-Ni alloys is no
established readily, and the final form of the equilibrium
diagram has probably not yet emerged. For present
purposes, metastahle states eorresponding to continuous
heating and cooling are more important than the
equilibrium states since man-made Fe-Ni alloys are
metastable. In figure 3 the two long-short dashed curves
are so-called realization curves representing boundaries
of the o and y phases for Fe-rich alloys. Thus, in
practice the b.c.c. phase exists at room temperature up
to about 30 Ni, beyond the 10 Ni predicted by “cqui-
librium” phase boundaries.

Recent experimental and theoretical work on meteor-
ites has suggested modifications of existing Fe-Ni
phase diagrams; for example, see Goldstein and Ogilvie
[50] and Kaufman and Ringwood [51].

For further details on Fe-Ni phase equilibria readers
can consult refs. [40, 41, and 42).

10. Compositional Dependence of Elastic
Constants

Compositional variation data, including iron and
nickel, are given in figures 4-8 and in tables 5-19.
Many earlier data (pre-1945) are based on poorly char-
acterized materials, and data variation is due probably
to non-identical specimens and test conditions. Trace
impurities influence - elastic constants through an
impurity-dislocation interaction; dislocations contribute
an additional strain upon stress application. Similarly.
small residual stresses affect measured elastic con-
stants. Thus. measurements made on low-impurity.
well-annealed specimens are much preferred. Both
residual stresses and dislocation density are reduced
by annealing. As discussed in section 11. presences
of some types of defects are useful for minimizing

dislocation effects.
Changes in elastic constants due to alloying are usu-

ally considered to consist of three parts: (1) change in
valency or electron/atom ratio;  (2) change in inter-
atomic spacing, and (3) change in interatomic potential.
A fourth contribution—change in band structure
energy —is complicated, not generally understood, and
is treated usually either by simple approximations or
by neglecting it.

For Fe-Ni alloys valence is invariant if d electrons
are neglected; both elements have two 4s electrons. As

shown by Reed and Schramm [52], lattice parameters
of both Fe and Ni are reduced only slightly by alloying;
thus, the lattice paramenter effect is small and possibly
negligible. The interatomic potential may change signifi-
cantly; this effect has apparently never been estimated.
An estimation could be made by assuming a Born-
Mayer, or similar, ion-core repulsive potential and
evaluating  the Born-Mayer parameters from the cj.
Similarly, contributions from 3d and 4s band structure
energies are undoubtedly important but apparently
have never been evaluated. Thus, the theory of alloying
effects on the elastic properties of transition metals is
presently inadequate for treating the problem even
qualitatively. Since both valence and lattice param-
eter effects are negligible, the Fe-Ni system provides
an opportunity for studying effects of hand structure
and/or effects of changing interatomic potential on
elastic properties.

An alternative model by Zener [53] explains lowering
of elastic moduli by alloying such as shown in figures
5 and 6. Zener’s model is based on residual strain
energy arising from the atomic size difference of solvent
and solule atvms. Since relative sizes also affect the
mutual solubility of species, the effect is related crudely
to the limits of maximum solubility; a lower solubility
giving a larger effect on the modulus per unit solute.
It can be shown simply that strain energy associated
with uniaxial tension is largely shear-strain energy
rather than dilatation-strain energy. For the shear mod-
ulus Zener was able to relate the composition coefficient
to the temperature coefficient. Thus,

1/G(dG/dx) = 4/Nk(8r{r)?(dG/dT), (10.1)

where x=compositional variable, N=Avogadro’s num-
ber, k=Boltzmann’s constant, r=radius of solvent
atom, and 8r=radius difference between solvent and
solute atoms. As shown in section 13, (dG/dT) is usually
negative so that (dG/dx) is negative also. Since be-
haviors of E and G are usually parallel, compositional
dependence of E is also accounted for, albeit crudely.
Magnetic effects are involved in the minima of elastic
stiffnesses near 30 Ni; these effects are discussed in
section 15.

Poisson’s ratio v is a poorly characterized elastic
constant, both experimentally and theoretically, Espe-
cially, the effect of alloy composition on v cannot be
predicted a priori. Observed variations of » with com-
position for Fe-Ni alloys are shown for both b.c.c. and
f.c.c. phases in figure 8. While data are sparse, certain
trends seem to be established. The b.c.c. data, ob-
tained by indirect methods, increase monotonically,
with increasing Ni content, extrapolating to v="1Y2 at
about 40 Ni. indicating that b.c.c. Fe-Ni is unstable
at higher Ni contents. The large magnitnde of dv/dx
for the b.c.c. phase is surprising. and reflects a sig-
nificant change in the interatomic interaction as Ni
is alloyed with Fe. This may be the largest change in v
now known for any primary solid solution and reflects
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undoubtedly the transition-metal aspect (unfilled 3d
electronic shell) of the two species. For comparison, v
is constant within experimental error for alloys of Cu,
0-38 percent Zn [37]. _

For the f.c.c. pliase (the open symbols in figure 8),
v changes in a more complicated manner with composi-
tion, having a maximum at about 40 Ni, Koster and Franz
[37] interpreted the compositional variation of v for the
f.c.c. phase in terms of magnetostriction, which is
discussed in section 15.

Decreases in E and G with increasing Ni content
shown in figures 5 and 6 are relatively large, about 1
percent modulus change per atomic percent of solute
up to ~ 35 Ni. Drastic changes of E and/or G with alloy-
ing are typical of systems that have limited mutual
solid solubility and that tend to form intermetallic
phases. Strong compositional variations in Fe-Ni alloys
are unexpected because Fe and Ni have similar proper-
ties. Magnetic effects are probably important. This
subject is ripe for theoretical study. Additional refer-
ences on alloy effects were given by Speich, Schwoeble,
and Leslie [23].

Studies of effects of alloying on elastic constants in
systems other than iron-nickel were summarized by
Hearmon [54]. Some additional studies include:

Cu, Ag+many solutes Hopkin, Pursey, Markham [55]

Cu-Al Cain, Thomas [56]

Cu-Al, Cu-Sn Moment [57]

Mg-Ag, -Sn, -In Eros, Smith [58]

Fe-Al Leamy, Gibson, Kayser [59]
Ni-Co Leamy, Warlimont [60]
Ni-Cu Sakurai, et al. [61]

Pd.Rh, Pd-Ag Walker, et al. [62]

Cu.Ag. Au+B-metals Koster [63]

Friedel [64] correlated deviations from Vegard’s law
with difference in compressibilities of solute and solvent.
(Vegard’s law states that, in substitional alloys, lattice
parameters are related linearly to concentration.) As
discussed by Mott [65], Friedel [Af] extended these
considerations to elastic constants. His correlations are
most appropriate when atomic volume changes rapidly
with composition but Fermi energy is constant. Oriani
[67] criticized some aspects of the elastic approach.
Mufioz [68] showed that if &r/r exceeds about 1 percent
then second-order terms become important but that
second-order theory brcaks down if 8r/r exceeds about
7 percent. '

11. Effects of Mechanical Deformation,
Annealing, Recovery, and Lattice Defects

Crystals and crystal aggregates described above were

assumed tacitly to be perfect except for substitutional
impurities. thermal vibrations. free surfaces. and (in

the case of aggregates) grain boundaries. In this section

the small but important effect on elastic constants due to
various lattice defects is discussed, both implicitly in
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terms of macroscopic mechanical states and explicitly
in terms of defect contributions per se.

11.1. Mechanical Deformation

Since mechanical loading beyond the elastic limit
causes plastic deformation and increases a solid’s
volume, one expects a lowering of elastic stiffnesses by
cold-working. Few data exist for testing this hypothesis
for Fe-Ni alloys. Most available experimental data are
given in figures 9 and 10 for iron, figures 11 and 12 for
nickel, and in figure 13 for their alloys. Properties of
deformed metals are difficult to understand because of
preferred orientations that may be introduced by work-
ing, that is, a mechanically induced anisotropy whose
degree and nature are usually unknown. For example,
such anisotropy may account for the non-parallel
behavior of E and G of Ni with plastic deformation as
shown in figures 11 and 12. Usually, highly anisotropic
mechanical states arise from severe plastic deformation.

Effects of mechanical deformation on elastic properties
are difficult problems both experimentally and theoretic-
ally. As discussed below, full understanding is inacces-
sible since it depends on detailed interactions among
various species of lattice defects that are deformation
induced. These interactions vary with material and de-
pend on composition, crystal structure, mechanical and
thermal histories, etc., that is, on any variable which af-
fects the character and/or number of deformation-in-
duced defects. An obviously important variable is method
of deformation; whether loading is tensile, compressive,
hydrostatic, torsional, slow, impulsive, etc. In short,
the relationship between plastic deformation and
elastic properties is complicated and will remain so.
Additional well-characterized experimental data would
illumine the subject somewhat. Interested readers may
find some solace in Zener’s [69] study where the latent
energy of cold-work is related to the lattice expansion
accompanying lattice distortion.

A good example of effects of preferred orientations
on elastic properties is shown in figure 8 where the
upper curve gives the compositional variation of v for
44 percent cold-worked alloys. In several cases, values
of v exceeding Y2 were found. As described in section
4, Y2 is the upper limit for an isotropic aggregate. Thus.
v can provide a fairly sensitive index for presence of
strong preferred orientations. The problem of correcting
elasticity measurements for slightly anisotropic ag-
gregates was discussed in detail by Bradfield and
Pursey [70] and by Pursey and Cox [71].

Effects on elastic constants due to mechanical defor-
mation can be correlated to a certain extent with effecte
due to radiation damage since both methods introduce
large numbers of lattice point defects. Many funda-
mental studies, both experimental and theoretical,
have been made on radiation damage effects. For a
review see Seitz and Koehler [72], Additional data on
deformation and elastic constants are included in figures
14, 18, 19, 26, 30, and 32.
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11.2. Anneadling

When deformed materials are heated, lattice defects
and distortions induced by cold-work are eliminated;
that is, lattices recover to unstrained and unstressed
states. If both amount of cold-work and annealing
temperature are sufficiently high, recrystallization
occurs; a new set of strain-free grains grows from the
deformed matrix material. Preferred orientations can
arise also from recrystallization and subsequent grain
growth. Thus, interpretation of the elasticity of a re-
crystallized material can also be complicated by an
anisotropic aspect or annealing texture just as in the
case of a material with a deformation texture. Some
annealing data for nickel are given in figure 14. For
nickel, the Young’s modulus for a heavily deformed
specimen is close to that of the magnetically saturated
state; and higher annealing temperatures produce
lower moduli. As also shown in figure 14, rapid cooling
from the annealing temperature to room temperature
(quenching) tends to increase the modulus, presumably
because of stresses induced by temperature gradients
during quenching, .

11.3. Lattice Defects

Since both deformation and annealing processes must
be described ultimately by creation and annihilation
of lattice defects, effects on elastic constants due to
four types -of lattice imperfections—vacancies, inter-
stitials, dislocations, and grain boundaries — will be dis-
cussed briefly. Effects due to presence of lattice defects
are expected to be especially strong in systems where
core-core repulsion energies contribute significantly to
elastic constants, for example in noble and in transition
metals. Of various energy terms that contribute to
elastic constants (see section 17). exchange repulsion
terms are probably most affected by displacements of
atoms from equilibrium positions.

Since creation of vacancies decreases mass density,
one expects vacancies to lower elastic stiffnesses.
Theoretical verification of this was obtained by Brugge-
man [73] and by Mackenzie [74], and by Dienes [75] who
used the Fuchs [76] extended Wigner-Seitz approach
with a Morse potential for sodium and a Born-Mayer
potential for copper.

In the presence of thermal or static defects, Schok-
necht and Simmons [77] showed that

VP, TH _ o
aP )T_VJBTl

- [ (O (@]

VBri= (

where vy;= (9gy/0F)r is the free volume of formation

of the defect j, giy=partial Gibbs energy of defect,
n;=number of defects of species j, and superscript °
denotes the defect-free case. For thermal monovacan-
cies eq (11.1) becomes

np?
NkTva,

Bt — Bt =~ (11.2)

since (V' (P, T)/oP)r is small; v,=atomic volume.
Thus, the bulk modulus B is decreased by thermal
vacancies. :

Conversely, interstitials increase mass density, and
higher elastic stiffnesses are expected. Theoretical
calculations by Bruggeman [73] and by Dienes [75] also
predict this effect. Considering copper and sodium,
Dienes showed that a 1 percent vacancy concentration
decreases all of the elastic stiffnesses by about 1 percent,
while a 1 percent interstitial concentration increases
all elastic stiffnesses by about 10 percent. The large
difference between effects of vacancies and interstitials
is related directly to relaxation of lattices around
defects. Dienes found for copper that the percent change
in interatomic distance upon relaxation was 2 and 9
percent for vacancies and interstitials, respectively.
Dienes also concluded that interatomic relaxation is
much larger in a b.c.c. (more open) crystal structure
than in an f.c.c. (close-packed) crystal structure.
Melngailis [78] considered how Frenkel defects (vacancy-
interstitial pairs) affect elastic properties of copper and
concluded that an elastic softening results. This is con-
sistent with the observation that Frenkel defects de-
crease mass density. Point defects can alter elastic
stiffnesses by another mechanism, dislocation pinning.
This phenomenon is discussed next.

In discussing effects of dislocations on elastic con-
stants, two types of dislocations are distinguished — those
which move freely upon stress application and those
which are immobile or pinned. That dislocations should
lower elastic stiffnesses was noted apparently first by

~ Echelby [79]. Subsequently the problem was treated

theoretically by Koehler and DeWit [80] for the case
of pinned dislocations in f.c.c. crystals. Elastic stiff-
nesses are altered because reversible dislocation
motions contribute a reversible elastic strain component
to the total strain. Thus, total strain is increased for a
given stress and observed elastic stiffnesses are lower.
Kuelder and DeWii found approximately thart

AE/E=—Kpl2, (11.3)
where E=Young’s modulus, K= constant, p= disloca-
tion density, and L= average dislocation loop length.
For annealed copper they concluded that pinned dis-
locations contribute only a few percent to elastic
constants, but that for slightly deformed materials

(where dislocation densities are much higher) the
contribution to elastic constants can be 10 percent or
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higher. Because of dilatational components in their
strain fields, edge dislocations are about ten times as
effective as screw dislocations (which have only a
shear strain field) in decreasing elastic stiffnesses.
Granato and Liicke [81] gave a detailed vibrating
string mode! for pinned dislocations where damping is
related to elastic modulus change; this work was
initiated by Koehler [82].

A related subject—anisotropic dislocation theory—
has become within recent years a flourishing area of
solid-state physics with many intriguing applications
for single-crystal elastic data. Interested readers
should see chapter 13 of the text by Hirth and Lothe
f83l.

If thermal oscillations (phonons) are considered
crystalline defects. then phonon contributions to elastic
stiffness can be computed from statistical thermo-
dynamics. Holder [84] did such a calculation for the
bulk modulus with the result for large T that

@_aww{_ B _ o ('y)} (a1.4)

ATV

B B U v "y

where B = modulus, N = Avogadro’s number, & =
Boltzmann’s constant, V'=volume, T=temperature,
and y= Griineisen’s constant. According to Holder,
substitution of appropriate experimental values into
eq (11.4) predicts approximately the observed thermal
variation of the bulk modulus. Extension of this, or a
similar, approach to dB/dT would be quite useful.

Grain boundaries can affect elastic constants at
higher temperatures when a static or slowly-varying
load is applied such that stress relaxation occurs across
grain boundaries [5]. At higher temperatures, the
viscous aspect of grain boundaries becomes more
important, grain-boundary sliding occurs as a Le
Chatelier accommodation, and the elastic moduli are
effectively lowered. This effect is often seen as a
departure from linear temperature dependence and
varies with the stress frequency.

12. Higher-Order Elastic Coefficients

Deviations from Hooke’s law (stress is proportional
linearly to strain) require the concept of elastic coeffi-
cients higher than second-order. These coefficients
arise naturally from a Taylor expansion of the elastic
internal energy about the unstrained or reference
state., Thus, )

U=Up+a(x—2x0)2+b(x—x0)3+c(x—x0)*+ . . .,
a2.1
and the nth order elastic constant is the nth derivative
of the energy evaluated at the reference spacing. For

example
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(02U (x— %0)%) 2=z,

= 2a =second-order elastic coefficient (12.2)
(83U/6 (x “x0)3)1‘=.z‘n
=6b = third-order elastic coefficient (12.3)

and so on.

Identifying elastic stiffnesses with coefficients in a
series expansion of energy in terms of strains was first
discussed in detail by Birch [85]. More recently, Brugger
[86] gave definitions of nth order isothermal and adia-
batic elastic coefficients:

c‘;‘kl. . = po(*U/dm0mp1 . - .)s, (12.4)
CZ]:kl. - po(8”Flonone .« )Ty 12.5)
sfjkl, = po(B"H/Bt{jatkl o )s (12.6)

and :
sg]‘.“' ) .=po(6"G/8tijalm R TS 12.7)

where ’
5= 1(0x:l0a:) (9130} — 85112, (12.8)

are Lagrangian strain components. F=Helmholtz
elastic energy, S=entropy, H=enthalpy, G=Gibbs
elastic energy, T'=temperature, a; and x; are Cartesian
components of a material particle in unstrained and
strained states, and po=mass density of undeformed
state. The t; represent thermodynamic tensions con-
jugate to the variables my;; for example
ti=po(3F mi;)r= po(3U[m3)s. (12.9)

Currently there is much activity, both theoretical
and experimental, on third-order elastic constants of
metals, Fourth-order and higher-order elastic con-
stants have been explored only slightly.

The primary significance of third-order elastic coeffi-
cients is that they relate directly to anharmonic prop-
erties of lattices such as thermal expansion, thermal
conductivity, differences between adiabatic and iso-
thermal elastic constants, and temperature and pressure
coefficients of elastic constants. Anharmonic crystal
properties were discussed by Leibfried and Ludwig [87].

Anharmonic properties of solids can be described
conveniently by invoking Griineisen’s . Brugger [88]
gave a generalized isothermal Griineisen parameter

P | (a&)i)
Yi =\ ’
i ®; \ONkt/n=0

where w;= angular frequency of ith normal mode. By
differentiating the wave equation Brugger related this
parameter to sccond-order and third-order elastic
stiffnesses Crimn and Ciimnop: '

(12.10)

Y (n)=— Gw:)[2wuru+ (Chtmn + Chimnoplolip ) RmMin ]

(12.11)
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where
Wi= CrimnNikNmliilly, M= propagation vector,

and u= polarization vector.
Griineisen’s parameter figures prominently in
equations of state for solids. For example
P+ dU[dV="E [V (12.12)

is the Mie-Griineisen equation of state, which is a
special case (all y; are equal) of the more general form

hv;

exp (hvi/kT) — l} (12.13)

1
P+dU[dV = —I;Z Yi {hvi/2+

that follows simply from the thermodynamic partition
function for an array of oscillators.

Griineisen’s model succeeds for two reasons. First,
while the 7y; are not equal the assumption describes
macroscopic thermodynamic properties fairly well.
Secondly, while v depends on volume the dependence
is slight; thus, treating ¥ as a constant, independent
of tompceraturc, locads to theoretical predictions that
are largely verified by observation. Section 18 discusses
a few anharmonic properties. Interested readers should
see Griineisen [89] and Slater [90] for further discussion
of v and its applications to theory of solids.

For tetrahedral cubic symmetry (point groups 7=23,
Tr=m3) there are eight independent third-order elastic
coefficients as shown by Birch [85], Fumi [91], and
Hearmon [92].

€111 = Ca22 = C333, (12.14)
C112= C133= C223, (12.15)
€113 C122 = C233, (12.16)
Ciz2s,

C144 = C255 = C366, 12.17)
C155= C266 = C344, (12.18)
€166 = C244 = C355, (12.19)

and
C456.
All other coefficients are zero.
For octahedral cubic symmetry (point groups T4
=43m, 0=432, and Op=m3m) there are two ad-
ditional relationships:

(12.20)

C112=Cns,

and

(12.21)

€155~ C166 5

and therefore only six independent third-order elastic
coefficients. Both b.c.c. and f.c.c. crystal structures
have O, point symmetry.

The Cauchy (central-force) conditions for cubic
third-order elastic constants are:
Ci12= C166, (12.22)
and .
€144 = €123 = C456. (12.23)
Thus, cubic Cauchy crystals have three independent
third-order elastic constants. Like second-order con-
stants, Cauchy conditions for third-order constants are
not expected to hold in metals because of free-electron
effects. However, for Cu, Ag, and Au, Hiki and Granato
[93] showed that Cauchy conditions are more closely
followed for third-order than for second-order con-
stants. This is because ion-ion overlap forces. which
are central forces, contribute more strongly to higher-
order elastic constants. Similar considerations should
apply also to the transition metals.
For isotropy, there are three relationships among
third-order constants corresponding to eq (5.1) for
second-order constants:

C112 = C123 + 2C144, “(12.24)

Ci66 = C144 + 2Css6, (12.25)
and

i = €123+ 6cy44+ 8645@- (12.26)

Thus, for isotropic crystals there are three independent
third-order elastic constants.

Available cij data for iron and nickel are collected in
tables 20 and 21. No third-order elastic constants have
been measured or calculated for Fe-Ni alloys.

Elastic coefficients are invaluable for testing the
validity of model interatomic potentials. Such tests
are quite sensitive since second- and third-order elastic
coefficients relate to second and third derivatives of
the potential. These coefficients describe changes not
only with respect to various shear deformation, but also
with respect to volume deformations. Such detailed
comparisons have borne out, for example, the validity
of pseudopotentials as applied to the simple metals,
[94]-[97]. In many cases, a knowledge of the experi-
mentally determined coefficients gives directly infor-
mation on the interatomic forces. For example, if
Cauchy relations are satisfied one expects a central-
force type model to successfully predict the elastic
coefficients. Hiki and Granato [93] observed that the
third-order elastic coefficients of Cu, Ag, and Au
followed the Cauchy relations much more closely than
did the second-order elastic coefficients. From this
observation they concluded that short-range central
forces, in this case arising from d-shell overlap, be-
come increasingly more important as one considers
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higher-order derivatives of the total energy. As shown
in tables 5 and 6, second-order Cauchy relationships
are violated for both iron and nickel, as expected.
However, the deviations are small, about 20 percent.
The data in table 21 show that for nickel the deviations
from third-order Cauchy relationships are guite small,
and also that the deviation from the condition for first-
nearest-neighbor interactions is very small. The situa-
tion for iron is more ambiguous, and additional exper-
mental third-order data would be very valuable.

Several proposals have been made for averaging the
ciyjr to obtain the quasi-isotropic coefficients e Most
of the considerations discussed in section 5 for obtain-
ing cjj apply also to the ¢ case. Hamilton and Parrott
[98] pointed out that the difference between Voigt’s and
Reuss’s averages are even more important for the cij
than for the c¢;;. Whether a Hill-type average is also
appropriate for the cij has not yet been established. The
problem of averaging cij is ripe for both theoretical and
experimental study. Interested readers should see
Barsch [99], Nran’yan [100], Cousins [101], and Chang
[102].

Some authors have reported quasi-isotropic third-
order elastic' constants as Lamé coefficients v,, v,, and
v3 or as Murnaghan’s constants [, m, and n. These are
related to the c$; as follows:

cl=ni=l, (12.27)

€ = =m, (12.28)

Cls=V3=n, (12.29)

C‘1>12= v+ 21)2, (12.30)

cSe=v2+ 2vs, (12.31)
and

chi=v1+6v,+8us. (12.32)

13. Temperature Dependence of Elastic
Constants.

Temperature (and as discussed in section 14, also
pressure) variations of elastic constants are an important
part of the subject of equations of state of solids. If
equations of state were known precisely., then elastic
constants and their temperature and pressure coef-
ficients could be calculated immediately. Large parts
of both theoretical and experimental solid-state physics
would then be obviated. In fact, equations of state of
solids are known only crudely, and such parameters as

-9c;dT and dcy/dP are measured and used to test and
to improve the equations.

The problem of temperature dependence of elastic
constants of solids was first considered carefully by Born
and co-workers [103]. Zener [104] discussed the problem
in terms of an oscillator model of solids. Discussion here
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is purely thermodynamic and therefore more general.

It is easy to show that temperature coefficients of elas-
tic stiffnesses, or any linear combination of elastic
stiffnesses, should approach zero as T approaches zero.
Invoking Nernst’s heat theorem that the entropy S of
all crystalline solids approaches zero as T approaches
zero, then

lim (3S/dxi)r=0, (13.1)
where x; is any usual thermodynamic variable that
preserves crystallinity, Physically this means that the
entropy change in an isothermal physical process goes
to zero as T approaches zero, that is all crystalline states
of a solid have zero entropy at zero temperature. Also,

lim (928/9x:0x;)r=1lim [8/dxi(3S/0x;) ]r=0. (13.2)
T—6

T—0

If x; and x; are strains €; and €; and if a Maxwell rela-
tion in elasticity variables

(00/dT)e= (8S/0€;) 7, (13.3)

is invoked, then

lim [Af3e; (A, /aT) ] =1im [3/aT(Acry/dei) ] =0, (13.4)
-0 -0

and

Yim [3/aT(cis)]1=0, (13.5)

_ since

Cri = (00 k/0€) . (13.6)
Thus, elastic stiffnesses ¢;i; approach constant values
with vanishing slope when plotted versus tempera-
ture as T approaches zero. This feature must be con-
sidered when extrapolating elastic data at cryogenic
temperatures. '
Temperature dependence of elastic stiffness at higher
temperatures cannot be demonstrated so simply since
the effect is anharmonic. Like thermal expansion, it
relates to higher-order elastic coefficients, which were
described in section 12. Any discussion of higher-order
or anharmonic effects is simplified by introducing
Griineisen’s parameter
y=—(Vlvi)(dvi/dV)=—dInvi/dInV (13.7)
where V= volume of the crystal and v;=frequency of
tth normal vibrational mode. Griineisen’s v is actually a
tensor property, but its isotropic form is sufficient for

many purposes. In the quasi-harmonic model, y does
not depend explicitly on temperature [105]. And it is
related directly to various thermodynamic properties,

for example [100],

y=BVB1/C, (13.8)
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where 8= volume thermal expansion coefficient, V=
volume, Br=isothermal bulk modulus and C,= specific
heat at constant volume. Thus,y can be determined from
a set of macroscopic thermodynamic parameters. For
metals v has a range of 1 to 3 and is usually about 2
[107]. This limited range of 7y is expected since by
integration of eq (13.7)

T A (13.9)
that is the volume dependence of vibrational frequencies
is weak and is roughly similar for all materials. If an
Einstein oscillator mode! of solids is invoked. then

vi=v=1Fk0lh (13.10)

where 6= characteristic temperature, £=Boltzmann’s
constant and A=Planck’s constant. Substitution into
eq (13.7) gives

y=—dIn 6/d In V=—(V/0)(d6/dV). (13.11)
‘Invoking the well-known relationship

C,—C,=TVgB®B, (13.12)
for quasi-isotropic solids, combining this with eq (13.8)
and rearranging terms,

ColCo=1+vTB=1++T(dV/dT)s/V. (13.13)
Substituting from eq (13.11)

Cp/Co=1—T(d0/dT)»/6. (13.14)
Thus, since C), > C,, the characteristic temperature de-
creases with increasing temperature. The characteristic
temperature 6 can be related to the elastic moduli,
e.g., E, by invoking relationships introduced originally
by Madelung {108] and by Einstein [109],

0= KE*f(v), (13.15)
where f (v) depends upon Poisson’s ratio. Assuming that
v # v(T), which is only crudely true, then

d6/e= (1/2)dE|E, (13.16)
and .

(UE)(dE[dT)p= (2]T) (1—C,/C,).  (13.17)
Thus, in this model clastic stiffnesses behave exactly
as the characteristic temperature; their coefficients are
negative.

Since elastic coefficients c;j are given by the second
spatial derivative of the elastic potential energy, one
expects a priori a slow decrease of c¢; with increasing
temperature due to the interatomic potential becoming
more shallow as atomic vibration amplitudes increase.

In fact, it has been shown experimentally [54] for a

wide variety of materials that dc;;/dT is zero at T=0K,
is constant and negative at high temperatures (T > 8),
and changes rapidly at low temperatures. The exact low
temperature dependence of c; remains an unsettled
prohlem; several suggestinns have heen made on either
theoretical or empirical grounds for the low-temperature
dependence of ¢ These include

cij(T) = cy(0) [1—KT*], (13.18)

cii(T) =c;5(0) —AT exp (—T/T), (13.19)
and

cii(T) =c;5(0) —B/[exp (C/T)—1].  (13.20)

All these functions fit selected data quite well, indicating
that the exact form of the interpolation from T > @ to
T=0 is unimportant for most purposes.

Since no fourth-order elastic stiffness have yet been
measured, it is attractive to attempt a derivation of
fourth-order constants from the temperature derivatives
of second-order constants. Hiki, Thomas, and Granato
{110] derived expressions among dcy/dT, cin and cym
in the high-temperature limit of a continuum model.
This approach to the cijx: has been made for 8 Cu-Zn
[111], NaCl {112], and the noble metals [93] and was
discussed by Holder and Granato [113].

Temperature variation data are given mainly in figures
15-32and alsoin 33-6 and 38. The only really anomalous
temperature data are shown in figure 17 where for Fe-Ni
alloys containing about 30 percent Ni, most elastic
stiffnesses have positive temperature coefficients over
a wide temperature range. Positive coefficients, while
unusual, occur also in other systems; for example
Mo(ciz), Pd(cu, €1z, cas), and Th(cy2) [54]. However,
no single theory accounts for occurrences of positive
coefficients; separate explanations must be sought for
anomalies in individual cases. In the case of Fe ~ 30 Ni
alloys, apparently no explanation has been proposed in
the literature. Usual magnetic effects can be disregarded
since Curie temperatures (see figure 3) lie well below
temperature regions where anomalies occur. It is in-
teresting to note that alloys in this composition range
show also curious “invar” effects and phase transition
effects. Both these aspects are discussed below.

For additional discussion on the temperature variation
of elastic constants, readers should see refs. {87] and
[114}-[116].

At low temperatures where the internal energy is given
approximately by

U=Uy+ aT?+ bT, (13.21)
it follows that a general elastic stiffness M is
U _ o 0% 9% aM(0)
M(T)—3€2 =M(0)+ 7e 2+ aEZT"-i—BV Y% T
(13.22)
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where €= appropriate strain, B=volume expansion
coefficient, and the linear term allows for thermal ex-
pansion. Alers [22] described the validity of eq (13.22)
for several metals and pointed out that for transition
metals the quadratic term, which arises from the elec-
tron gas, dominates the quartic term that arises from
lattice vibrations.

Sutherland [117] suggested eighty years ago that re-
duced shear modulus G(T)/G(0) plotted versus reduced
temperature T/T,, gave a universal curve for all metals
and that G becomes zero at T'=T'». While Sutherland’s
correlation of reduced G’s remains valid and valuable,
it is now known that G need not vanish at the melting
point [118].

In figures 18 and 23 anomalous increases both in E
and G are shown that result from crystallographic phase
transitions. Generally, elastic properties are discon-
tinuous through first-order phase transitions. This topic
is discussed in section 16.

In absence of a saturating magnetic field, ferro-
magnetic materials may show anomalous elastic be-
havior as a function of temperature duc to motion of
magnetic domains upon stress application. As shown
in figures 14 and 19, mobility of ferromagnetic domain
walls leads to an effective elastic softening because
domain walls can contribute an additional strain. When
materials are heated through the ferromagnetic-to-
paramagnetic transition, then they usually behave
normally since in the paramagnetic state there are no
magnetic domain walls that can move under applied
stress. Applying a strong magnetic field to the ferro-
magnetic state has a similar effect; domain walls take
positions that are most favorable for minimizing the total
energy of the system, and they are effectively immobile
until the magnetic field is removed. These topics are
discussed further in section 15.

Apparently, no theory has been proposed to explain
the variation of v with T. For many purposes this varia-
tion can be ignored since it is small for most solids. As
discussed by Slater [119], dv/dT should be positive
since the upper limit of v=1/2 corresponds to a 'liquid,
and heating metals increases their volume and their
behavior becomes more liquid-like. Kister and Franz
[37] discussed some experimental and a few analytical
aspects of dv/dT. As shown in figures 30 and 31, dv/dT
1s positive and small for both iron and nickel.

14. Pressure Dependence of Elastic Constants

Most existing data for the pressure variation of the
elastic constants are for the bulk modulus (reciprocal
compressibility). This is because compressibility can
be determined directly as a volume change under pres-
sure as shown by eq (4.18). Extensive data for metallic
elements were acquired in the pioneering experiments
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of Bridgman [120)s Following Bridgman, compres-
sibility data are expressed frequently in the form

V=Vo(1—aP+bP?), 14.1)

where both coefficients @ and b depend on temperature.
The compressibility is

B-1=— (1/V) (8V[3P) = (a—2bP)/(1 — aP+ bP2).
(14.2)

Coefficient a is the initial (zero-pressure) isothermal
compressibility, and b is related to the pressure deriva-
tive of the isothermal bulk modulus by the relationship

b= (1/2B%) (1+3B/aP)p-o. (14.3)

The first expressions for the pressure dependence of
the elastic stiffnesses were given by Birch [85]:

e (P)=cu(0)+ @ (2c1i+2ci2+6ck,+4ck,), 14.4)
c12(PY=cp0)+ d(—cui—crztcHetdeTy,), (14.5)
and
csa(P)=cu@+d(cu+2cteutich ok,  (14.6)
where ¢ is defined by

VIve=(1+24) 14.7)

with Vo= original volume and V= volume at pressure
P. Conversion of P to ¢ is accomplished by eqs (14.1)
and (14.7). The third-order coefficients appearing in
eqs (14.4)-(14.6) are related to the third-order coef-
ficients defined by Brugger [86] as follows:

ciu=c/6, (14.8)

cl=cnz(2, (14.9)

= Ciz3, (14.10)

CH=2c1u, (14.11)
and .

s — 2C 166 (14.12)

It follows that the pressure derivatives of the second-
order elastic coefficients may be written as

—(3¢11/3P) p=0= (211 + 212+ 11+ 2¢112) /3B,

(14.13)

6 Much confusion exists concerning Bridgman's compressibility values be the com-

pressibility standard. iron. was re-evaluated. Different corrections have been used. and old

and now valuea are « not distingnished. Gsehneider [38] di t this prohlem in
detail, and his recommendations are adopted here.
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— (9¢12/8P) p=o= (—c11—C12+ ci2a+2c112)/3B,
' (14.14)

—(3c44f/0P) p=0= (c11+2¢1zt caatCraat+ 2c16)/3B,

(14.15)
and
- (aB/aP)P=0= (C111+6C112+2L'123)_/93, (14-.16)
where the bulk modulus B is
B=§‘(Cn+2012)- (14.17)

By using the finite strain theory of Murnaghan [121]
and Birch [85], Ghate [122] derived theoretical ex-
pressions for the pressure dependence of second-,
third-, and fourth-order elastic constants. For the second-
order case, he obtained the general form

¢ij(P) = ¢;;(0) +An+ Bn? (14.18)
where 7 is the Lagrangian strain and the parameters
A and B are linear combinations of ¢;; and cix. Ghate’s
second-order equations are identical to Birch’s when
the third-order elastic coefficients are defined identically.

It is interesting to note that no expressions comparable
to eqs (14.13)—(14.16) have yet been derived for the
temperature derivatives in terms of higher-order elastic
coefficients, even from simple models.

Both the temperature and pressure dependence of
the elastic constants can be deduced qualitatively
very simply by assuming a linear anharmonic oscillator
model. In the harmonic approximation the energy per
atom is

U=Up+3k(x—x0)?, (14.19)
where Ujs=energy in unstrained (reference) state,
k="“spring’” constant, and xo=position of atom cor-
responding to Us. In the simplest anharmonic model,
a single asymmetric term appears. Thus,

U=Us+tk(x—x0)2—#(x—x0)®,  (14.20)
is the energy when a particle is ‘displaced from x,
10 x. (The negative sigu of ithe cubic o assures pusi-
tive thermal expansion coeflicients.)

The second-order elastic constant is

¢z = (32U)0 (x—x0)2) =k—Il{x—x0). (14.21)
Thus, when the linear chain is compressed (e.g., by
increasing the pressure) x <x¢ and ¢; is increased.
Similarly, when the chain is expanded (e.g., by increas-
ing the temperature) x >x and ¢z is decreased. In
this meodel, both tcmpcraturc and pressure effects
are simply related to changes in x. the linear lattice

parameter.
The influence of pressure on the elastic constants of
Fe-Ni alloys is shown in tables 14, 15, and 22.

15. Magnetic Field Dependence of Elastic

Constants

Since magnetic interactions between atoms contribute
to the total energy of a ferromagnet, there must be a
corresponding contribution to the elastic constants,
which are second derivatives of the total energy with
respect to appropriate strains. Direct observation of this
contribution would elucidate the nature of the magnetic
exchange energy, particularly its derivatives with
respect to atomic spacing. However, except in the pres-
ence of a saturating magnetic field. this contribution is
overridden by effects due to magnetic domain boundaries.

In the domain theory of ferromagnets the demag-
netized state corresponds to an array of domains, each
of which is permanently magnetized to saturation. The
domains are oriented randomly so that a specimen has
no net magnetization. Net magnetization is achieved by
applying an external magnetic field so that magnetization
vectors within domains tend to align with the external
field.

Magnetic effects on elastic constants were first ob-
served in 1902 by Honda [123] who termed the phenom-
enon the “AE effect”; AE refers to the difference in
Young’s modulus Eo—E 4 between saturated and de-
magnetized states. In ihe demagnetized state, ele-
mentary magnetic domains can change their magnetiza-
tion direction under applied stress and grow at the
expense of neighboring domains that have different
orientations that are energetically unfavorable in the
applied stress field. Growth consists of motion of domain
boundaries (Bloch walls). At magnetic saturation
domain walls are immobile, and a *‘true’”’ or maximum
value of E is obtained.

Stress plays a role similar to magnetic field in de-
termining a specimen’s magnetization. In effect, stress
alters magnetization. which alters a ferromagnet’s
elastic constants. If domain redistribution does not
occur, then different elastic constants are observed.
Domain redistribution is prevented, for example, by
superimposing a saturating magnetic field or by a high
magnetic anisotropy energy.

The following brief analysis follows closely thar given
by Lee [124].

Assuming that the total strain e€; consists of non-
magnetic and magnetic parts, Karnetski [125] showed
empirically that

e=¢cot+en=0(1/Es+1/E,+E>), (15.1)
where numerical subscripts indicate derivatives of
1/E with respect to stress. In the demagnetized state

VYEq=1/Eo+1/E. (15.2)
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And at saturation €, =0 so that E=FE,. From eq (15.1)
it follows that £=o/e first decreases, passes through a
minimum, and then approaches E as stress is increased.
Figure 19.17 in Chickazumi 1] shows this behavior; see
also figures 13.123 and 13.124 in Bozorth [126].

As shown in figures 18 and 19, the AE effect for an-
nealed Ni is several percent and for Fe less than one
percent. For alloys, as shown in figures 34 and 37, the
effect is strongly composition dependent.

Clearly, the AE effect should be related to the mag-
netostriction constant, A, the strain due to magnetic
saturation. Chickazumi [1] has given relatipnships of
the form

(AE/E®) pit ~ gt (15.3)

and for Fe-Ni a plot of A versus composition (his fig.
19.14). The AE effects shown in figures 34 and 37
correlate remarkably well with the variations of A with
. composition, heing zera at ahont 28 and 82 nickel and
with maxima at about 40 and 100 nickel. _

Taking AB=0, it can be shown from table 1 that the

change in the shear modulus is related to the change in
the Young’s modulus by the relationship

AG/G= (3G/E)AEJIE. (15.4)
This effect is shown in figures 34 and 35. Clearly, the
bulk modulus is unaffected by magnetic fields since
hydrostatic pressures do not cause domain boundary
movements.

The importance of the AE effect is well-illustrated by
the Elinvar alloys (Fe ~35 Ni~10 Cr) where the
decrease in E.due to increased temperature is largely
compensated for by a smaller AE/E effect with increas-
ing temperature. Thus, to a good approximation E is
independent of T for Elinvar alloys below their Curie
temperatures. '

16. Effects of Crystallographic Transitions on
Elastic Constants

When metals or alloys undergo crystallographic
transitions, their elastic constants change for several
possible reasons: (1) change of lattice type, (2) change
of specific volume, (3) change of electronic or Brillouin
zone structure, (4) change of relative positions of atoms
in the unit cell (even when lattice type ie invariant, for
example, hexagonal-to-hexagonal with a change in
c/a ratio). In most_cases, there is also a non-physical
.effect, namely a change of co-ordinate axes. The effect
can be eliminated by a suitable co-ordinate transforma-
tion or alternatively by considering force constants, for
example—the spring constant between atoms in closest-
packed directions in both phases. In short, any param-
eter that affects vibrational spectra must also influence
elastic constants. No a priori basis exists for predicting
effects of phase transitions on elastic constants. Each
case must be considered individually since both ener-
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getics and mechanisms of solid-solid transitions vary
widely. :

If a phase transition can be characterized completely
by lattice considerations, then clearly the lower tempera-
ture phase must be elastically harder than the high
temperature phase since it must have a higher Debye
characteristic temperature in order to be the phase of
lowest free energy at lower temperatures. As shown in
figures 18, 23, 26, and 38, in Fe-Ni alloys, with one ex-
ception at low Ni contents, low temperature phases are
elastically softer. Thus, in this system strong electronic
effects are undoubtedly involved in the f.c.c.-to-b.c.c.
phase transition. Volume increase during the f.c.c.-to-
b.c.c. transition may also account partially for the ob-
served elastic softening,

Phase transitions characteristically show a marked
increase in damping in the region of the transition temp-
erature. Thus, materials should deform readily in the
temperature regions of their phase transitions since
deformation mechanisms are augmented by damping
mechanisms, In fact, some superplastic phenomena
are due directly to phase-transition softening, Spurious
elastic measurements can be obtained near a phase
change, and such data should be interpreted carefully.

It is attractive to consider a simple explanation for
erystallographic transitions, namely, mechanical and
therefore also thermodynamic instability of lattices. In
1940, Born [127] derived mechanical, thermodynamic
stability conditions that apply to all cubic crystals
regardless of unit-cell size and regardless of the type
of interatomic forces. These conditions follow from the
requirement that elastic strain energy

Ue=cijei€;/2, (16.1)

is positive-definite. that is

Ue=0. (16.2)

In other words, any elastic strain or combination of
strains must increase elastic energy. Stability conditions
can be derived readily by considering the matrix array
of elastic coefficients for a cubic crystal, eq (4.10); and
requiring that each principal minor of this matrix is
positive. After some algebra, it results that

cn >0, 16.3)

e >|ez] or (cii—ei2) >0, (16.4)

(c11+2¢12) >0, (16.5)
and

€1a > 0. (16.6)

If any of these conditions are violated, then crystals
are unstable with respect to long-wavelength phonons
and a transition to another crystal structure or to a liquid
phase must occur. Of course, such transitions may occur
for other reasons since phase equilibria are determined
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by relative stabilities of competing structures and egs
(16.3)-(16.6) describe conditions of absolute insta-
bilities. These conditions may be summarized by saying
that ¢y;, the bulk modulus (c¢1;+2¢12)/3, and the two
shear moduli (c1;—cy2)/2 and c4s must all be positive.

Since elastic stiffnesses for cubic crystals are found
experimentally to be always positive, eq (16.4) is
usually the strongest stability constraint.

The following assumptions are implicit in deducing
egs (16.3)~(16.6):

(a) Lattices undergo homogeneous deformations. Ac-
cording to Born and Huang [128] this means that only
long-wavelength vibrational modes are important,

(b) Elastic strain energy density is expanded only to
second-order terms in-deformation parameters.

Equations (16.3)-(16.6) also imply inequalities for the
wave . velocities, which are related to the ci; by the
Christoffel equations (see eq (18.3)).

By assuming a Mie-Criineisen form of interatomic

potential

—_a_ b
‘P(r)_ rm+r"’

(16.7)
where n > m for a minimum energy to exist, and m >3
for cohesive energy to be finite, Born [127] proved that

(a) simple cubic lattices are never stable;

(b) face centered lattices are always stable;

(c) body-centered lattices are unstable except for
small exponents m and n in the force law.

For an interatomic potential given by eq (16.7), the
concept of mechanical instability applies only to b.c.c.
lattices. Zener [129] extended the concept of mechanical
instability to include ideas on shear anisotropy and
vibrational entropy. While Zener’s ideas were proposed
originally to explain instability of higher-temperature
b.c.c. phases on cooling, they can be applied to any
phase instability on cooling or heating. (For example,
as shown by Fisher and Renken [130], the hexagonal-to-
b.c.c. transitions in Ti, Zr, and Hf seem to show an un-
usual temperature dependence of vibrational entropy
near the transformation temperatures.) Despite suc-
cess claimed for Zener’s criteria, they are not universal,
Many phase transformations occur without shear con-
stants becoming small or elastic anisotropies becoming
large. Conversely, some systems with small shear
constants and/or high elastic anisotropies exhibit no
phase transitions,

Thus, while Zener’s criteria are useful for testing
for possible occurrcnces of phasc transitions, they are
neither necessary nor sufficient. (As discussed above,
the limit of vanishing c¢1; — ¢z is sufficient reason for a
phase transition to occur.)

Iron-nickel alloys in the region of 28 to 35 Ni all
undergo diffusionless-shear (martensitic) transforma-
tions. In all cases as the transformation temperatures
are approached, C’' decreases while C is relatively
unchanged. Thus, the elastic anisotropy increases with

decreasing temperatures above the transformation
temperature. Furthermore, data in table 7 show that
the elastic anistropy of f.c.c. Fe-Ni alloys is maximum
at about 35 Ni, which corresponds roughly to the a—vy
realization phase boundary shown in figure 3.

Recently, for ke-Ni and Fe-Ni-C alloys, Diesburg
[131] correlated the temperature coefficients of the cy;
with the morphologies of the martensite phase. Since,
as discussed in section 13, the dci;/dT are related to
higher-order elastic coefficients, the desirability is
indicated of measuring higher-order elastic coeflicients
to elucidate the problem of phase instabilities. Higher-
order stability conditions corresponding to eqgs (16.3)—
(16.6) have apparently never been published.

17. Theoretical Calculation of Elastic Constants

Theory of elastic properties of solids is part of the
theory of cohesion; see Jaswon [132] and Seitz [133]
Besides elastic properties, cohesion theories usually
predict also: lattice parameters or specific volumes,
cohesive energies, pressure-volume relationships, and,
at their most ambitious, energy differences between
allotropic forms. Thus, elastic properties relate funda-
mentally to solid-state theory and therefore also to
other parameters. associated with theory. (See also -
section 18.)

Transition metals, which have incomplete d shells
and which include both iron and nickel, pose particularly
difficult problems for most theories of cohesion. It is
known that even filled d shells, such as in noble metals,
can contribute significantly to cohesion. When d shells
are incomplete the contribution is even larger since
incomplete shells contribute to bonding in solids be-
cause the average energy of the solid’s energy band
differs substantially from the atomic energy level. In
simplest models, filled energy bands contribute nothing
to cohesion.

17.1. Fundamental Models

Elastic stiffnesses of monovalent metals have been
calculated successfully by methods of Fuchs [76] and
Frohlich [134]. The former gives shear constants
(c11 — €12)/2 and c44 while the latter gives the bulk mod-
ulus (¢ +2c¢12)/3. Fuchs considered three principal
contributions to shear constants: (1) electrostatic energy
of positive ions in a negative, charge-compensating
electron gas, (2) exchange energy due to ion-core over-
lap and repulsion, and (3) Fermi or kinetic energy of

the valence clcctrons. A minor contribution also con-

sidered by Fuchs was the van der Waals or dipole-
dipole energy.

Recently, so-called pseudopotential methods have
proven quite useful for calculating several properties
of “simple” metals [135]. These methods replace, for
computational purposes, the rapidly and strongly os-
cillating potential near the ion-core with a smooth,
slowly-varying effective potential. With respect to
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elastic constants, this method has been fairly successful
for simple metals. But, to date, no pseudopotential
calculation of elastic constants has been made for transi-
tion metals (incomplete d shells). It would be very
valuable to extend pseudopotential theory to this case,
which includes both iron and nickel.

Johnson [136] constructed an interatomic potential
for iron based on experimentally observed elastic
constants. That is, in effect, the reverse problem; but
it is useful to consider the results becausé they decom-
pose the elastic constants into various contributing ener-
gies. The Fermi energy contribution was neglected and
only electrostatic and ionic terms were considered. By
computing the electrostatic contribution it was deduced
by difference that the ionic term makes the dominant
contribution to. iron’s elastic constants. This reflects
the large ion-core size of iron compared to its inter-
atomic spacing.

To determine the applicability of a Morse potential
to studies of atomic properties of crystals, Girifalco
and Weizer [137] calculated second-order elastic co-
efficients for several cubic metals including iron and
nickel. Morse’s potential for a pair of atoms is

¢(rij) =Dle-2atrij=ro— 2e~"5~70)] (17,1
where r;;= center-to-center spacing of ion pair, ro
= equilibrium separation of two ions. ¢ (ro)=— D=dis-
sociation energy, and « is an adjustable “hardness”
parameter evaluated from the compressibility.

These results are in only fair agreement with observa-
tion considering how the three Morse parameters were
evaluated. B= (c11+2¢12)/3 was input, and an elaborate
(1000 neighboring atoms) lattice sum was performed.
And, of course, the fundamental defect of a Morse, or
similar, interatomic potential is that it permits only
central pair-wise interactions, neglecting non-central
and many-body forces. Central forces demand in the
cubic case that c¢;2=c44, and this condition is rarely
observed experimentally. Lincoln, Koliwad and Ghate
[138] used a Morse potential to calculate third-order
elastic constants of several cubic metals and some of
their results disagree strongly with experiment. Iron
and nickel were not included in their calculations. Third-
order elastic stiffnesses as well as the pressure coefhi-
cients of the second-order elastic stiffnesses were
recently calculated by Mathur and Sharma [139] using
a Murse putential; their resulits are given in wables 20
and 21. All of these results should be considered
cautiously since Milstein [140] recently criticized
application of Morse potentials to b.c.c. crystals since
such potentials cannot predict values of ¢;; in the b.c.c.
case that are within stability limits imposed by Born’s
criteria (see section 16). Use of a Morse potential for
f.c.c. metals was recenly criticized on experimental
grounds [141].

Ducastelle [142] studied theoretically the elastic
coefficients of transition metals assuming the total
energy to consist of a d band contribution (using a tight
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binding approximation) and a Born-Mayer repulsion
term. His model accounted for the variation in c;; along
a transition series for f.c.c. and h.c.p. crystal structures.
Failure to account for the b.c.c. case was attributed to d
band details not included in his model. For both Fe and
Ni, his calculated ¢;; agreed surprisingly well with
observation.

Lieberman [143] recently carried out a self-consistent-
field band calculation for zero temperature and pressure
with a potential incorporating both exchange and cor-
relation contributions. For iron a good result was
obtained for the bulk modulus.

Rosenstock and Blanken [144] considered interatomic
forces in several cubic solids, including nickel, on the
basis of experimentally observed dispersion of lattice
vibrations. :

Zwikker [145] showed for metals that the bulk modulus
is given by

(17.2)

where I=ionization energy, V= volume, and m, n= ex-
ponential factors in the Mie-Griineisen potential energy,
eq (16.7). Values of m and n were tabulated by Fiirth.
However, application of a Mie-Criineisen potential to
metals is quite approximate since it does not contain
non-central forces.

17.2. Hard-Sphere Model

Much metallurgy and crystal physics can be under-
stood, albeit crudely, by considering a hard-sphere
model of solids. In this model, atoms are represented as
incompressible spheres in contact along close-packed
lattice directions, (111) p.c.c. and (110} ¢c .. This model
assumes implicitly that only ion-ion repulsion energies
contribute to elastic constants. This approximation is
reasonably good for both noble metals and transition
metals. Table 23 gives relative elastic constants for both
b.c.c. and f.c.c. crystals based on a hard-sphere model;
B was set arbitrarily to unity. Considering the model’s
crudeness, predicted relative quantities correlate sur-
prisingly well with observation in many aspects. For
example:

(1) cu=c12>=cCuay

(2) B~E,

(3) G~ 3/8E,

(4) high 4 for b.c.c. case, and

(5) low {110}(110) shear resistance for b.c.c. case.

Additional aspects of hard-sphere models were dis-
cussed by Mott [146].
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18. Relationship of Elastic Constants to Other
Physical Parameters

The purpese here is to indicate briefly how elastic
properties of crystals relate to a wide variety of solid-
state phenomena, many of which might appear to be
independent of elasticity. While some of the relation-
ships described here are empirical and not understood
altogether, they have proven useful in interpreting
behavior of solids.

Elastic properties of solids are related intimately to’

atomic vibrational, or phonon, spectra. Vibrational spec-
tra link elastic properties with most other phenomena
that are discussed here.

Frequency distributions of atomic vibrations in crys-
tals have intrigued scientists since Debye’s parabolic
approximativn to the problem was propused in 1912,
Despite intense efforts, theorists have failed to either
devise an exact mathematical solution for frequency
spectra or to-explain why Debye’s crude model is effec-
tive; obviously, for many purposes the exact shape of
frequency distributions is relatively unimportant. Thus,
many lattice vibrational problems in many branches of
solid-state physics are discussed meaningfully in terms
of Debye’s theta.

While the main purpose of this section is to relate elas-
tic properties to other solid-state phenomena, this can
be done most conveniently by invoking Debye’s 6. Thus,
for present purposes 8 should be considered an elastic
stiffness parameter.

The Debye thetas calculated by several authors from
their elastic data are given in table 24.

Sound Velocities

Sound waves in solids differ from sound waves in
gases or liquids in two vital ways. First, solids transmit
-transverse or shear waves as well as longitudinal or
dilatational waves. Sccondly, sound waves in solids are
polarized, and in the anisotropic case polarization
vectors are not simply related (orthogonal) to the
propagation vector.

Debye’s 0 is linearly related to a mean sound velocity
Um, that is

0= Kvm, (18.1)

where K = (h/k)(3/47vq)V3, where h =
constant, k= Boltzmann’s constant.
volume.
- For single crystals, v, is obtained from elastic
constants by the integration over all space

m3=f > o7 dQfdar,
a=1,2,3

Planck’s

and v,= atomic

(18.2)

where v, = quasi-longitudinal wave velocity, v; and
v3 = quasi-transverse wave velocities, d{) = increment of
solid angle, and 441 = normalization factor. Velocities v
are roots of Christoffel’s equations
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det (cijrixjxe — pv28u) =0 (18.3)
which follow from the equations of motion of plane, mono-
chromatic waves where p = mass density, ¢;jx = fourth-
rank elastic stiffness tensor, x; = components of unit
wave vector relative to cubic axes, and 8.1 = Kronecker
delta. .

For polycrystals these equations simplify to
R + 4GJ3,

poi= (18.4)

and

pvi=0G, (18.5)
where v; = longitudinal wave velocity and v,= transverse
wave velocity. The mean velocity is obtained by averag-
ing over v3, that is

vt =v7%+ 2072 (18.6)

As shown in table 1, v; and v; can be computed from any
two polycrystailine elastic constants together with the
mass density.

Some authors prefer to regard v: as the velocity of
sound in solids while others prefer v, ; either concept is
valid in context. '

For further discussion of these relatlonshlps the reader
should consult Blackman [147], for example.

Sound velocities for Fe, Ni, and Fe-Ni alloys have been
computed from elastic coefficients by Anderson [148]
and by Simmons and Wang [149].

Specific Heats '

Historically, lattice specific heats have been most fre-

quently used to determine the Debye temperature 0s.
Debye [150] showed that

Co=9Nk. (T) ""’ ST Zlerdz

0 (er—=1)%

where C,=specific heat at constant volume, N= Avo-
gadro’s number, k= Boltzmann’s constant, 7= absolute
temperature. Electronic contributions to C,, which are
linear in T, must be separated from measured values of
C,. Measurements of 8 by specific heats have been sum-
marized by DeSorbo [151] and by Holm [152). The rela-
tionship between 6; and 0,4 was discussed by Alers
and Neighbors [153] and by Alers [154]. From existing
data, errors in 0. are smaller than those in 6;.

Many authors [155]-[157] have discussed the equlval
ence of 0; and O, at T=0.

18.7)

Entropies
Vibrational entropies S can be calculated from Boliz-

mann’s relationship

S=knw, (18.8)

where w=randomness. For a system of three-dimen-

sional oscillators Lumsden [158] showed for a Debye
frequency spectrum that
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- a1, 0.3 (0 _ 3 (6}
S=Nk [4 3lnT+40<T) o (T)+. . ]

(18.9)

Again, S calculated by eq (18.9) contains only vibra-
tional terms; electronic and other non-vibrational terms
must be determined separately.

All other usual thermodynamic quantities can be cal-
culated from 6 by invoking the thermodynamic partition
function, as discussed by Fowler and Guggenheim [159],
for example.

Zero Point Energy

Behavior of many substances at low temperatures is
influenced by zero point energy, which arises as a quan-
tum effect; the energy of a linear oscillator in its ground
state of energy at 7=0 K is Av/2 where v is the vibra-
tional frequency of the oscillator. Integration over a
Debye spectrum gives for zero point energy

9 9
Eo=-§thmax=§R0 (18.10)

since hvp.,=k6. Details concerning eq (18.10) were
given by Domb and Salter [160].

Thermal Conductivity

While thermal conductivity occurs by many mech-
anisms and the theories of these are difficult and
disputed, 8 is a pervasive parameter for describing
these mechanisms. For example, Klemens [161]
discussed a relationship due to Leibfried and Schloe-
mann for lattice thermal conductivity of non-metals
at high temperatures, T > 0:

03
K =~ constant —; ,

- (18.11)
where y = Griineisen parameter. A similar expression
was derived on a different basis by Dugdale and Mac-
Donald [162]. While 9?2 is relatively constant from one
material to another, 83 changes considerably. By com-
paring theoretical and observed values of KT at room

tempecraturcs, Klemens cstablished the approximate

validity of the 63 dependence of K.
Electrical Resistivity

The most convenient point of departure here is Bloch
and Griineisen’s relationship that describes for many
metals the temperature variation of their electrical
resistivity p over a wide temperature range:

zdz

C T5 (04T
L #(ezﬂl) (1—e-?)’ (18.12)

P =% 5

where C = constant, A = atomic weight, and 6= char-
acteristic temperature for lattice resistivity.
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Since in Bloch’s theory only longitudinal lattice
vibrations affect p, no agreement between 6, and 0
would be expected; in Debye’s theory there are two
transverse vibrational modes for each longitudinal
mode. Since 8; > 0., it would be expected that 6, > 6.
However, Griineisen showed that 8, = 6 for a large
number of cases. Blackman [163] considered the
problem by calculating 6; both by averaging wave
velocities as v=3, as is conventional, and as v~5, as is
suggested by eq (18.12); no correlations between these
thetas and 6 were found. A recent experimental
study by Cullen [164] for Cu-Au alloys showed that 6;
(from elastic coefficients) exceeds 6, but that 6; and 6.
have the same compositional dependence, which differs
from that of 6. This implies that transverse phonons
contribute to - in a way not now known.

The general problem of A, was discussed at length by
Kelly and MacDonald [165] and by Meaden [166]
who gave a compilation of 8, values. ‘

Bragg Intensities

As shown early in this century by Debye and by
Waller, change in intensities of Bragg scattering of
x-tays by crystals with increasing temperature due to
change of the atomic structure factor is given by

I(T) = 1 c-2M. (18.13)

The Debye-Waller factor 2M is simply related to
Debye’s theta:

oy — A2h? sin® ¢(D(x)+}), (18.14)

mkOy  A? x 4

where h = Planck’s constant, k = Boltzmann’s constant,
m = mass of atom, ¢ = Bragg angle, A = x-ray wave-
length, and D(x) = Debye function where x = 6/T, T
being absolute temperature. The factor 1/4 allows for
zero point energy. _

As shown by Zener and Bilinsky [167] 61 in eq (18.14)

is vbtained by the average

30, = 0>+ 262, (18.15).
rather than the usual average
36-2=07°+26.°. (18.16)

Thus, Ou is always slightly larger than 0 by a few percent.
This topic was discussed extensively by Lonsdale
[168], by James [169], and by Herbstein [170].
For both Fe and Ni, Singh and Sharma [171] recently
reported Debye-Waller factors computed from elastic
stiffnesses.

Vibration Amplitudes

This subject refates closely to the preceding section
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in that the Debye-Waller factor can be expressed as

_ 16m2sin’¢

2M B TYVI (u?), 18.17)

where {(#2) = mean square atomic vibrational amplitude
parallel to diffracting plane. Thus, one has

_ __3A°T x
(uny = ST (D(x) + 4>.

Lonsdale [168] tabulated {z2?) values for many elements.
She emphasized that vibration amplitudes are anisot-

(18.18)

ropic even for cubic symmetry and that vibrational

anisotropy can be calculated from elastic coefficients.

For Fe-Ni alloys, (u?) were computed from E and G
by Tanji and Shirakawa [172] and by Tanji [173] to
interpret thermal expansion, electrical resistivity, and
abnormal volume expansion of Invaer alloys. For Fe and
Ni, (u?) were recently computed from elastic stiffnesses

by Singh and Sharma [171].

Melting

As discussed in section 16, if a material is heated and
elastic constants change with temperature such that any
of Born’s stability criteria are violated, then a phasc
change must occur— either to another solid phase or to
a liquid. Of course, phase changes can occur for other
reasons—generally a lowering of free energy. Linde-
mann [174] believed that melting occurred when atomic
vibration amplitudes reached critical magnitudes. This
topic was developed extensively by Pines [175] who
showed that

kT n 12
) ) (18.19)

6~C (A—_nga

where C = constant, 4= atomic weight, k= Boltzmann’s -

constant, T,= absolute melting temperature, and
Vo= atomic volume. Pines concluded that melting occurs
when the root-mean-square atomic displacement
becomes roughly r0/8 where 2ry= interatomic spacing.

Thermal Expansivity

As is well known, thermal expansion is an anharmonic
effect inconsistent with Debye’s model of solids. How-
ever, Griineisen showed for most temperatures that vol-
ume expansivity 8 is proportional to specific heat Cp,
and at low temperatures

_BB
7_pCu’

(18.20)

where C,= specific heat at constant volume, p= mass
density, B=bulk modulus, and y= Griineisen constant
with a value of ahanut 2 for all solids. Clearly then at low
temperatures

~KXP
& KBB’

(18.21)
where K= constant. This equation is also important
because it allows computation of  from a single elastic
constant plus thermal data. Manipulation of thermo-
dynamic equalities yields many alternative expressions
for 9, related generally to Griineisen’s equation of state

d
v (G
T

C, (%F

(18.22)

.
V=L (@) - (1),
TG, 9Ty f14
Co (3P s
Atomic Diffusivity
Diffusion coefficients for metallic self-diffusion or for
substitutional diffusion of different metals are well
known to be given by Arrheniuss’s empirical relationship
D= A exp (— AH/RT), (18.23)
where A and AH are temperature-independent constants,
R = universal gas constant, and 7" = temperature.
Assuming a vacancy mechanism for diffusion, then
AH= AH;+ AHn, (18.24)
where AH; = formation energy of a vacancy and
AH, = motion energy of a vacancy. Realizing from
thermodynamics that
AG= AH —TAS, (18.25)
where G = Gibbs free energy and § = entropy, then
elastic constants are related to diffusion coefficients
through a model given by Zener [176] and independently
by LeClaire [177], which shows that
AGn = KE, (18.26)
where E = Young’s modulus appropriate to AH,,, and
K has units of volume. Substitution into eq (18.23) gives
after rearrangement
In D+ KE/RT=1n D¢ — AG,/RT, (18.27)
where
InDo=1nA— AS;/R — ASx/R.

Since in single crystals E varies with direction, its choice
is not unique. Reasonable choices are E,,; for b.c.c.
lattices and Ei0 for f.c.c. lattices. Along with its
directionality, the temperature dependence of Ej; must
also be considered.

Mechanical Plasticity

Same empirical and semi-empirical relationshipe
between elastic and plastic properties of solids were
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suggested by Pugh [178]. While this topic is now only
embryonic, it is discussed briefly here because it has
high potential importance but has received little
empbhasis in the scientific literature.

That elastic-plastic relationships should exist is
expected from microplastic theories where most all

dislocation equations contain explicitly various elastic’

constants.

Advantages of such relationships include: (1) relating
plasticity more intimately to interatomic forces; (2)
possibility of correlating plastic properties with other
parameters via elastic properties, for example with
atomic number, melting temperatures, or Debye thetas;
and (3) a higher degree of correlation among plastic
properties themselves.

Some relationships suggested by Pugh include: (1)
for T <Twn/3 resistance to plastic deformation is pro-
portional to Gb, where G = shear modulus and b= magni-
tude of Burgers vector; (2) fracture strength is propor-
tional to Ba, where B = bulk modulus and a = lattice
parameter; (3) range of plasticity is proportional to
B/G, so that a high value of B/G indicates malleability
and 4 low value indicates brittleness.

Besides Pugh, interested readers should see also
Crutchley and Reid {179].

Diatomic Molecular Vibration Frequencies

Relationships between interatomic force constants
determined from ultrasonic wave velocities in solids and
force constants determined spectroscopically from gas
molecules might appear at first to be vague and com-
plicated. However, rough empirical relationships
between Og11q and 8.5 were demonstrated by Baughan
[180]; and Waser and Pauling [181] demonstrated the
relevance of Badger’s rule to solids. Badger [182]
discovered for diatomic gases that &k~ d~3 where
k={force constant and d=interatomic distance. Kecent
work by Haussuhl [183] and by Gilman [184] suggests
that £ ~d * is a better correlation for most solids, a
dependence first predicted theoretically by Fuchs [76].

These studies suggest strong correspondences
between vibrational properties of atoms in solid and
gaseous forms. Since better and more complete ex-
perimental data now exist, both elastic and spectro-
scopic, a re-examination of the problem would be
appropriate to determine its synergistic aspects. Both
iron and nickel were included in the studies of Baughan,
and Waser and Pauling.

Other Properties

Elastic Debye temperatures correlate with many
other solid-state phenomena that are not discussed
here, for example—theoretical strength, Mossbauer
emission, superconducting transition temperatures,
infra-red reststrahlen, diffuse x-ray scattering, and
neutron scattering. For discussion of some of these
phenomena with respect to 8 and/or elastic constants
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the reader should see Partington [185], Cartz [186],
Neshpor [187], and Herbstein [170] as examples.

19. Concluding Remarks

As evidenced by over 200 references to the experi-
mental literature, elastic properties of iron, nickel, and
iron-nickel alloys have been much studied with the
result that most are now well characterized.

Despite this intensity of effort, a few of the elastic
properties have been studied experimentally only
cursorily, and the general subject would be strength-
ened by further studies. These properties include: (1)
temperature dependence of the bulk modulus of nickel,
(2) pressurc dependence of properties other than single-
crystal coefficients or the bulk modulus, and (3) explicit
dependence of properties on magnetic field.

Other properties have not yet been studied experi-
mentally; these include: (1) pressure derivatives of
alloys, (2) third-order elastic stiffnesses of alloys, and
(3) fourth-order elastic stiffnesses of both iron and
nickel.

From existing single-crystal data it would be useful
to derive averaged elastic constants and sound velocities.

Ripe problems for theoretical study include: (1) rela-
tionship of elastic constants to phase transitions,
particularly martensitic transitions, (2) effects of
ferromagnetism on elastic properties, (3) contributions
of d electrons to bonding and to elasticity, (4) thermal
dependence of elastic properties, and (5) the existence
and role of atomic ordering on elasticity.

Since iron-nickel alloys are of much interest both
scientifically and technologically, one might expect
many of these areas to be studied intensively within
the next few years.
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‘“Best values” represent arithmetic means without
weighting factors. “Uncertainties” represent computed
standard deviations, and they include variations of
samples, experimental methods, etc. Systematic error
is believed negligible compared to imprecision. All data
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TaABLE2. Expressions for engineering elastic constants of cubicsingle ~ TaBLE 3. Conversions between elastic stiffnesses ¢y and elastic

crystals compliances sy for cubic crystals
_ st si s= o+
Young’s modulus 1= G —s12) (511 + 2812) U (eu—ci2) (e +2¢12)
Ert=s;,=s,—8T cm:—-—-———(s"_sv; z:: oo S1p= o __6132(0“-’.26‘2)
Shear modulus
1 1
Caa =" S44=
G;‘=S:4=344 + 28T S Caa
Bulk modulus And, by derivation:
B=1% (5114 2s12)"'=% (c11+2¢12) (independent of J) cu—c= 1 —_
S$11— 812 €11 Ci2
Poisson ratio 1 1
cn+2ep=—"7— su+2s=—T5
© vim=—s /s, =—{s12+SA)(s::—ST") u B 50+ 281 cn+2cp2

where

S= (23;; — 2810 —Su) »

TABLE 4. Selected properties of iron and nickel

Fe Ni
=22+ BE+ B where L, L, [,=direction cosines of an arbi-
trary crystallographic direction; Atomic number............coveneeen. 26 28
‘ Atomic weight, mkeg/mol.. 55.85 58.71
A=0m2+ Em2+ Em2 where m,, m,, m,= direction cosines of an Electronic structure....... [ Ar]3d®4s? [Ar]3d®4s?
arbitrary vector perpendicular to L. Ionic (Goldschmidt, 12-fold........ 0.127 0.124
coordination) radius, nm
Distance of closest approach, nm 0.24823 0.24919
Lattice parameter, nm, 293 K.... 0.28664 0.35238
Density, kkg/nf, 293 K............. 7.87 8.91
Melting point, K.....coeeenvnnenn.e. 1810 1726
Boiling point, K....... w3106 3059
Heat of fusion, kJ/mol.............. 15.3 17.7
Heat of vaporization, MJ/mol..... 0.416 0.430
TABLE 5. Second-order elastic stiffnesses c;; of iron
I : . Cu Ciz C4a
nve(sYlvxeg::;) (s) Composition Technique Specimen, Test Conditions
(1022 dyn/cm?)
Gocns, Schmid 99,85 Fe (0.025 Transv. res. freq. Strain-ann. crystals. Nv ficld. 2.37 1.41 1.16
(1931) Mn, 0.03C, 0.01
P, 0.08 S, 0.06
Cu, trace Si)
Kimura, Ohno Bending, torsion opt. Recrystallized. No field. 2.41 1.46 1.12
(1934) microscope.
Kimura (1939) a) Long. res. freq. No field. 2.09 1.14 ™
b) Long. res. freq. Saturated field. 2.10 1.13 1.12
¢) Bending, torsion. No field. 2.28 1.33 1.11
Yamamoto (1941, Fe (0.03 C, 0.01 Si, | Magnetostrictive oscilla- No field. 2.34 1.35 1.176
1943) 0.04 Mn, 0.01 P, tion. Bridgman (1940)
0.04 S, 0.06 Cu) compressibility data.
Moller, Brasse Fe (0.02-0.2 Mn, Tension, induction. H; ann., 1223 K; 3-10% strain; vac. | 2.28 1.40 1.12
(1955) 0.01-0.06 Si, ann. 1153 K, 72 h.
0.015 C, 0.01 P,
0.02 S, 0.15 0)
Markham (1957) 5-20 MHz pulse-echo. One crystal. No field. 2.330 1 1.392 | 1.162
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TaBLE 5. Second-order elasiic stiffnesses ¢;; of iron— Continued
cn Cyz Caq
Investigator(s}
(Year) Composition Technique Specimen, Test Conditions
(102 dynfem?)
Rayne, Chand- 99.99 Fe 10 MHz pulse-echo. Strain-ann. crystal. No field, f(7) in | 2.331 | 1.354 | 1.178
rasekhar (1961) figure 15.
Lord, Beshers 99.8 Fe 7, 10 MHz pulse-echo. 11 kOe field (saturated). [100], [110] | 2.28 1.32 1.165
(1965) crystals ann., wet Hs, 993 K, 216 h,
slow cool. [111] crystal vac. ann. 1123
K, 176 h, slow cool. Strain-ann. crys-
tals, f(T) in figure 15.

Truell (1965) Pulse-echo. 2.23 1.27 1.15
Rotter, Smith (1966) | 99.99 Fe (Cr, Mn 10 MHz pulse-echo. Specimens from crystal of Rayne, | 2.314 | 1.346 | 1.164
traces) Chandrasekhar (1961); no field,

f(P).
Leamy, Gibson, Fe, 1-25 Al alloys 10 MHz pulse-echo. Bridgman technique crystals,ann. 1173 | 2.338 | 1.378 | 1.186
Kayser (1967) Extrapolated from K, 72 h. extremely slowly cooled
alloy data. (60 days), argon atmos; f(T) in figure
15.
Leese, Lord (1968) 99.8 Fe 30--60 MHz pulse-echo. Specimens and treatment from Lord, | 2.26 1.40 1.16
Beshers (1965); no field; f(T') in
figure 15.
Guinan, Beshers 99.8 Fe 10 MHz pulse-echo. Specimens from Lord, Beshers (1965), | 2.301 | 1.346 | 1.167
(1968) no field, f(P).
Dever (1972) Ferrovae 40, 70 MHz phase Two crystals, no field, f(T) in figure 15. | 2.322 | 1.356 | 1.170
comparison
Best values 2.29 1.34 1.15
Uncertainties | 0.09 0.09 0.03
TABLE 6. Second-order elastic stiffnesses c;; of nickel
Investigator(s) cu Ciz [
(Year) Composition Technique Specimen. Test Conditions
(102 dyn/cm?)
Honda, Shirakawa Bending, opt. micro- Bridgman method crystals. 2.52 1.51 1.04
(1937, 1949) scope.
Bozorth, Mason, 99.95 Ni 10 MHz pulse-echo. Bridgman method, dry H., crystals. 2.50 1.60 1.185
MeSkimin, Walker
(1949)
Bozorth, Mason, 99.95 Ni 10 MHz pulse-echo. Bridgman method, dry H.. crystals;
McSkimin (1951) i flfreq.); a) no field. 2517 | 1.574| 1.226
b) saturated feld. 2.523 1.566 1.23
Neighbours, 99.9 Ni 10 MHz pulse-echo. Bridgman method ¢rystals. annealed | 2.53 1.52 1.24
Bratten, Smith 2 hin H.. 5 kOe transv. field.
(1952)
Yamamoto (1942, Ni(0.02-0.19 Fe. Magnetostrictive Bridgman method crystals; vac, ann. | 2.44 1.58 1.02
1950, 1951) ! 0.01P.8, Al oscillation. 1273 K. 1 k.
i 0.03 C, Si. Mn,
[ 0.01-0.20 Co, Cu)
Levy, Truell (1953) f 99.9 Ni 27, 30 MHz pulse-echo. Bridgman  wmethod  crysials;  f(H, | 2.47 1.52 1.21
freqg.): saturaied field.
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TABLE 6. Second-order elastic stiffnesses ¢i; of nickel—Continued
T
Investigator(s) . en Cr Cu
(Year) Composition Technique Specimen, Test Conditions
(102 dynfcm
DeKlerk, Musgrave 2—10 MHz pulse-echo, a) No ficld, 2.43 1.49 1.19
(1955) b) saturated field. 2.46 1.47 1.24
Shirakawa, Ni(0.06 C, 0.02 Si, | Tension, opt. micro- X(Cu) 2.55 1.69 0.902
Numakura (1957) 0.05 Fe, 0.02 Co) scope.
DeKlerk (1959) 2-10 MHz pulse-echo. F(freq.). a) No field, 2459 | 1.500| 1.213
b) saturated field || to [001]. 2461 |°1475| 1.220
Alers, Neighbours, “Electrolytic” 10 MHz pulse-echo. Bridgman method crystals, 10 kOe | 2,508 | 1.500 | 1.235
Sato (1960) : field, f(T) in figure 16.
Sakurai (1964) 99.95 Ni 1-5 MHz pulse-echo. Bridgman method crystals, 10 kOe | 2.51 1.53 1.24
field.
Sakurai, Fujii, 1-5 MHz pulse-echo. Bridgman method crystals, X(Cu, Fe). |c11—¢12{=0.93 1.24
Nakamura, Takaki .
(1964)
Epstein, Carlson, 99.95 Ni 10 MHz pulse-echo. Bridgman method crystals; ann. 1373 K,
(1965) 200 h; X(Cu); a) no field, 2.481 1.54 1.242
b) saturated field. 12504 | 1.57 1.256
Vintaikin (1966) X-ray, thermal diffuse Bridgman method crystals; ann. 1173K, | 2.47 1.4 1.24
scarttering). 3h.
Salama, Alers “Pure” Change of sound velocity | Saturated, 10 kOe, field, 2516 | 1.54 | 1.220
(1969) under uniaxial stress.
Shirakawa, et al. Ni (0.012 Fe, 0.007 | Single-crystal resonant Saturated field. 2.88 1.81 1.24
(1969) Si, 0.008 Cu, frequency. .
0.003 Mn)
Best values (no field) 2.49 1.55 1.14
(sat. field) 2.54 1.55 1.23
Uncertainties (uv field) 0.04 0.07 0.12
(sat. field) 0.12 0.10 G.01
TaBLE 7. Secund-urder elastic stiffnesses cjj of irvn-nickel alluys
Investigator(s) (71 Ci1z Csq
(Year) Composition Technique Specimen, Test Conditions
(1012 dyn/cm?)
Alers, Neighbours, Fe-30.0 Ni 10 MHz pulse-echo. | Bridgman. method crystals, f(T) in .
Sato (1960) figure 17, a) H=0, 1.473 0.888 1.135
b) H=10kOe. 1.463 0.881 1.132
Einspruch, Clair- Fe-73.8 Ni Pulse-echo. Bridgman method crystals, no field | 2.304 1.444 1.192
borne (1964) and saturated field.
Sakurai, Fujii a) Fe-59 Ni 1-5 MHz pulse- Bridgman method crystals, 2—4 kOe | ciy—ci2 | =0.72 1.22
- Nakamura, b) Fe-75 Ni echo. -field, AE effect =1-2%. en—cp | =0.89 1.27
Takaki (1964) c) Fe-90 Ni cn—cpz =095 1.25
d) 100 Ni ey —cz | =0.94 1.24
Salama, Alers Fe-30.0 Ni 10 MHz pulse-echo. | Specimens from Alers, Neighbours, | 1.474 0.894 1.134
(1968) Sato (1960); 10 kOe field; £ (T) in
figure 17.
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TABLE 7. Second-order elastic stiffnesses c;j of iron-nickel alloys — Continued
Investigator(s) cn i Ciz Cas
(Year) Composition Technique Specimen, Test Conditions
(1012 dynfem?)
Bower, Claridge, a) Fe-36.1 Ni 10 MHz pulse-echo.| Bridgman method crystals (quenched), | 1.573 1.235 1.006
Tsong (1968) b) Fe-38.2 Ni measured at T=4K. T 1.545 1.211 0.992
¢) Fe-60.8 Ni ’ 2.283 1.501 1.176
d) Fe-61.8 Ni 2.286 1.500 1.184
e) Fe-78.4 Ni 2.476 1.512 1.277
f) Fe-89.8 Ni 2.627 1.528 1.300
g) Ni 2.614 1.548 1.309
Shirakawa, et al. a) Fe-35 Ni Single-crystal, Saturated field. 1.40 0.92 111
(1969) b) Fe-40 Ni resonant fre- 1.57 1.09 0.96
c) Fe-45 Ni quency. 1.96 1.42 0.83
d) Fe-50 Ni 2,12 1.55 0.90
e) Fe-60 Ni 2.24 1.51 1.12
f) Fe-70 Ni 2.33 1.46 1.27
¢) Fe-80 Ni 2.41 143 1.38
h) Fe-90 Ni 2.52 1.43 1.39
i) Ni 2.88 1.81 1.24
Diesburg (1971) a) Fe-28.2 Ni 10 MHz pulse-echo-| Bridgman method crystals, homog. | 1.6080 | 0.9578 1.1598
b) Fe-30.0 Ni overlap. 1473 K 120h, f(T)in figure 17, no | 1.5258 0.9157 1.1313
c) Fe-34.4 Ni field. 1.3328 0.8570 1.0591
Hausch, Warlimont a) Fe-31.5 Ni 10 MHz pulse-echo.| Bridgman method crystals, 6kOe field, | 1.404 0.840 1.121
(1973) (T in figure 17. 1.362 0.852 1.086
1.379 0.899 1.058
1.356 - 0.910 1.042
1.507 1.077 1.020
1.592 1.162 1.024
T 1713 1.261 1.029
1.860 1.372 1.035
2.053 1.459 1.059
TABLE 8. Young’s modulus E of iron
Inve(s{}f::)o r(s) Composition Technique Specimen. Test Conditions ‘5.5}3‘:,)
Guillaume (1897) Spring tension. X (Fe). 1.96
Schaefer (1901) Res. freqa. 1.80
Benton (1903) “Steel” Tension. F (T, 76— 300 K), relative to 300 K.
Morrow (1903) “Wrought iron” Compression, opt. lever. Range of values: 2.01-2.12. 2.06
Carpenter, Hadfield, Fe(0.95 Mn, 0.17 Si, 0.47 C, | Tension, extensometer. Ann. 1023 K, x(Ni). 2.21
Longmuir (1905) 0.04 S,0.02 P)
Griineisen (1907) 99.5 Fe(0.1 C, 0.2 Si, 0.1 Mn)| a) Tension, opt. lever. 2.10
b) Transv. res. freq. 2.10
Honda, Terada (1907) “Swedish steel” Tension opt. lever. Ann., f(S), x(Ni). 2.0
Griineisen (1908) a) “Steel” Res. freq. 2.09
b) “Iron” Res. freq. 2.13
Griineiscn (1910) Dending. Range of values—2.05 2.11. 2.08
Honda (1919) Bending, opt. lever. Ann. 1173 K, x(Ni). 2.05
Honda (1919) Fe(0.29 Cu, 0.31 Mn, 0.11 Si,| Bending, opt. lever. X{Con 2.1

0.09C,03P,S)
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TasLE 8. Young’s modulus E of iron— Continued
. . E (102
Investigator(s . : .
nv e egar) r(s) Composition Technique Specimen, Test Conditions dynfem?)
Bach, Baumann (1921) F(T, 293-773 K). 2.03
Honda, Hasimoto (1921) Fe(0.18 C, 0.20 Mn+Si) Bending, opt. lever. a) Ann. 1173 K, slow cool. 2.055
b) Ann. 1173 K, quench. X(C). 1.955
Koch, Dieterle (1022) Res. freq. F (T, 285-873 K). 1.4
Lea (1922) “Armeco iron” - Tension, oﬁt. lever. F(T, 293-573 K). 2.0
Carrington (1924) a) “Wrought iron” Tension. Ann. 1183 K, slow cool, f(T, 293- 2.00
. 590 K).
b) Fe(0.19 C) Tension. Ann. 1183 K, slow cool, f(T, 293— 1.98
590K).
Kimball, Lovell (1925) Fe(0.15 C) Res. freq. F(T, 290-790 K).
Honda, Tanaka (1926) a)Fe(0.31 Mn, 0.29 Cu, 0.09 C,} Bending, opt. lever. Ann. 1173 K, 2 h, slow cool. 2.087
0.11 Si, 0.03 P, S) Ann. 1173 K, 1/2 h, slow cool. 2.045
b)Fe(0.38 Mn, 0.1 C,0.02 P, S) Ann. 1173 K, 1/2 h, oil quench. 1.942
X (Ni, Co, C), f(H).
Nishiyama (1929) a) Fe(0.1 C) Bending, opt. lever. Ann. 1173 K in vac.,, 1 h, furna(;e 2.12
cooled; x(Si, V, Al, W, Mn, Cr,
Co, Ni).
b) “Armco iron” 2.11
¢) “Electrolytic iron” 2.13
Kawai (1930) “Armco iron” Tension. Ann. 1273 K, f(D) in figure 9. 2.13
Jacquerod, Mugeli (1931) Bending. Ann., f(T, 273-390 K), relative to 2.09
273 K.
Everett (1931) Fe(0.35 C, 0.80 Mn, 0.10 Si, | Tension, opt. lever. a) Ann. 1173 X, 4 h, slow cool. 2.01
0.02 P,0.03 S) b) Unannealed. 211
Ke(llﬂ;Bg:Sn' Houseman Fe(0.66 C,0.8 Mn, 0.01 P) Loaded helical springs. Detm. temp. coeff., 223-323 K. -
Bez-Bardili (1935) Long. and transv. res., 1-20 2.18
MHz.
Verse (1935) a) Fe(0.43C,0.86 Mn,0.04 S, | Tension, cathetometer. Ann., (T, 298-733 K). 2.06
0.02 P, 0.14 Si)
b) Fe(0.34 C,0.80 Mn, 0.10 Si,! Long. torsional res. freq. Ann. 1173 K, f(T) in figure 18. 2.08
0.02 P, 0.03 S)
Nakamura (1935) 99.94 Fe Long. res. freq. Ann. 1273 K, 1 h, slow cool; x(Ni); 2.107
f(H).
Cooke (1936) “Armco iron” Long. (56 MHz), torsional. a) Ann, 1200 K, 2 h, H; atmos., slow 1.99
" cool (8 h), H=0.
b) Cold rolled, H=0. F(H). 1.86
Forster, Koster (1937) Transv. Tes. freq. Ann. 1200 K, { h. air cool. 213
Engler (1938) | Long. res. freq. F(H) 0-0.575kO0e, f(T) in figure 18. 2.12
Yamamoto (1938) “Armco iron” Magnetostrictive oscillation. | Ann. 1203 K, 1 h; X (€); f(H). 2.11
Kimura (1939) ““Armco iron™ Long. res. freq. Ann., He atmos.; f(H), f(T) in 2.17
figure 18.
Koster (1940) “Armco iron” Transv. res. freq. X(Co, Cr, C, Ni), f(D) in figure 9. 2.12
f(T, 293-1173 K), £ (GS, 4, R).
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TABLE 8. Young’s modulus E of iron— Continued

Investigator(s) L. . . - E (1012
(Year) Composition Technique Specimen, Test Conditions dynfem?)
Yamamoto (1941, 1943) a) “Electrolytic” Magnetostrictive oscillation. | Vac. ann. 1203 K, 1.5 h, furnace cool. | 2.140
b) Fe(0.03 C,0.01 Si, 0.39 Mn, Vae. ann. 1203 K, 1 h, furnace cool. 2.058
0.01 P, 0.04'S, 0.06 Cu) F(H).
Koster (1943) Transv. res. freq. Ann. 1273 K, 1 h, H=0.
a) Bee crystal structure. 2.12
b) Fec crystal structure (extrapo-| 2.20
lated). F(Ni), f(T) in figure 18,
f(H}, f(0).
Smith, Wood (1941) 99.95 Fe Tension, x-ray spectometer. | Vac. ann. 0.050 in. sheet. 179
Seager, Thompson (1943) | a) Fe(0.8 Mn, 0.06 Si, 0.18 C, | Bending, interferometer. Hot rolled, £(T, 295-500 K(, flm- 1.94
0.08 8, 0.02 P) purities).
b) “Armco iron” Bending, interferometer. Cold rolled, ann., f(T) in figure 18. 1.81
Everett, Miklowitz (1944) | Fe(0.15 0.25 C, 0.3-0.6 Mn, | Bending, opt. lever. F(T, 203-810 K). 2.03
. 0.04 P, 0,05 S)[SAE1020]
Scheil, Reinacher (1944) Res. freq. X (Ni), f£(T) in figure 18. 211
Roberts, Noricliffe (1947) | Fe(0.09 Ni, 0.22 Mn, 0.21 Si, | a) Transv. res. freq. Ann. 1200 K, £(T) in figure 18. 2.09
0.06 Cr, 0.09 C) b) *“Static”. Ann. 1200 K, £(T), 293-673 K. 2.06
Koster (1948) Transv. res. freq. Worked, ann. 1273 K; f(T) in figure | 2.11
18.
Bennett, Davies (1949) 99.75 Fe Res. freq. Ann. 973 K, 6 h; f(T); relative { --e--ee-
98.83 Fe(0.25 C, 0.65 Mn) values, 273-850 K.
Andrews (1950) 99.97 Fe(0.01 C, 0.02 Mn) Transv. res. freq. 0.03 in. sheet; f(T) in figure 18. 2.12
Frederick (1947) “Armco iron” 0.5-15 MHz pulse-echo. F(T). 2.089
Garofalo, Malcnuck, Smith | Fe(0.45 Mn, 0.12 Si, 0.13 C, | Tension, opt. lover. Ann. 1173 K, } h, air cool; £(T) in 2.03
(1952) 0.01 P, 0.02 S)[SAE1015] figure 18.
Hughes, Kelly (1953) “Armco iron” Pulse-echo. F(P). 2.11
Yamamoto, Taniguchi Fe(0.02 Al) Magnetostrictive. Ann., x(Al, f(H). 2.152
(1954)
Burnett (1956) 99.8 Fe Res. freq., bending. F(T) in figure 18. 1.98
Yamamoto (1959) Fe(0.06 Mn, 0.03 Si, C, S, | Magnetostrictive oscillation. | Ann. 1273 K, 2 h, Hz atmos.; x(Ni); | 2.091
0.02 P) f(H), a) H=0,
b) H sat. 2.096
Hill, Shimmin, Wilcox | Fe(0.30 Mn,0.24 C,0.01 Si; P, | a) Long. res. freq. “Warm rolled”, f(T) in figure 18. 2.10
(1961) 0.04 S)[SAE1020] b) Tension, opt. strain gauges. 2.08
Voronov, Vereshchagin | 99.8 Fe(0.02 Mn, 5i, 0.01 C, | 10 MHz pulse-echo. Annealed. 2.09
(1961) 0.03 P, S)
Durham, et al. (1963) Fe(0.08 C, 0.3 Mn, 0.15 Si) | Tension, strain gage ex- | Ann. 1060 K, 1 h, oil quench, 655K, | 2.07
[SAE1075] tensumeler. 1 h, air cool, f(T) in figurc 18.
Kamber (1963) Fe(0.002 C, P, S, Mn, 0.001 |1 MHz, transv. res. freq. a) 1 mm GS, H=0, 2.04
Cr, V,0.003 Mo, Al, 0.004 b) 1 mm GS, H=1.5 kOe. Strained } 2.06
Si, 0.011 Ni, 0.014 Cu, 0.040 3%, ann. 1173 K, 25 h
xy) ¢) 30 mm GS, H=0, 1.94
d) 30 mm GS, H=1.5 kOe. F(T) in| 1.94
figure 18.
Masumoto, Saito, Koba- | “Electrolytic” Long. res. freq. Vac. ann. 1273 K, 1 h, slow cool; | 1.97

yashi (1963)
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TABLE 8. Young’s modulus E of iron— Continued
Investigator(s) L. . . " E (1012
(Year) Composition Technique Specimen, Test Conditions dyn/em?)
Shved (1964) “Armco iron” X-ray scattering, uniaxial ten- 2.21
sion. :
Smith, Stern, Stephens| a) Fe(0.4 C, 0.35i, 0.8 Mn) Long. transv. pulse-echo. F(P). 2.11
(1966) b) Fe(0.6 C, 0.25 i, 0.8 Mn) 2.11
Masumoto, Sawaya, Kiku-| “Electrolytic” Fe(0.004 Cu, | Resonance frequency, 700-| Vac. ann. 1 h at 1273 K, cooled at 1.97
chi (1971) trace Al, 0.005 Mn, 0.005 900 Hz. ~ 573 K/h; £(T) in figure 18.
Si, 0.005 C, 0.005 S, 0.004
P)
Speich, Schwoeble, Leslie | Fe(0.057 C) 80 kHz pulse-echo. Austenitized 1 h at 1273 K and water 2.082
(1972) quenched.
Best value 2.05
Uncertainty 0.12
TABLE 9. Young’s modulus E of nickel
Investigator(s) Composition Technique Specimen, Test Conditions E (101%
(Year) dyn/cm?)
Guillaume (1897) Spring tension. X (Ni). 1.92
Schaefer (1901) Res. freq. 2.31
Honda, Terada {1907) a) “Pure” Tension, opt. lever. Ann., f(S), x(Fe). 1.9
b) “Commercial” 2.2
Griineisen (1907) 97.0 Ni(2.4 Co,0.4 Fe. 1.0 Mn. | a) Transv. res. freq. Hard drawn. 1.95
0.1 Cu, Si) b) Tension, opt. lever. 2.01
Kurnakow, Rapke (1914) | 99.9 Ni Tension, opt. Ann. 820-870 K, x(Cu). 1.97
Harrison (1915) Tension, opt. mic. Ann. 773 K, f(T, 293-740 K). 2.16
Koch, Dieterle (1922) Res. freq. F (T, 285-1273 K). 1.7
Honda, Tanaka (1926) Ni(0.145 C, 0.05 Si, 0.01 Cu, | Bending, opt. lever. Ann. 1173 K, £ h; x(Fe, Co, C); f(H). 1.93
0.15 Fe, 0.04 S)
Mudge. Luff (1928) 99.18 Ni(0.01 C., 0.16 Cu, | Tension. a) Hot rolled. 2.13
0.06 Si, Mn, 0.4 Fe, 0.01 S) b) Ann. 1030 K, 4 h. 2.15
Nishiyama (1929) Ni(0.10 Fe, 0.03 Co, 0.05 Si, | Bending, opt. lever. Vac. ann. 1173 K, 2 h, furnace cool. 1.99
. 0.02P,0018)
Kawai (1930) Tension, opt. lever. Ann. 1173 K; f(D(tension)), A(T(an- 2.10
neal)).
Giebe, Blechschmidt Res. freq. a) Cold worked, H=0; 2.259
(1931) : b) Cold worked, H=6.2 kOe; 2.285
¢) Ann. 973 K, 12 h, slow cool; 1.908
d) Ann. 973 K, 12 h. slnw (:(m]. H 2.256
=6.2 kOe;
e) Ann. 973 K, 2 h quenched, H=0, 2.063
f) Ann. 973 K, 2 h, quenched, H 2.207
=6.2 kOe.
Jacquerod, Mugeli (1931) | “Pure” Bending. a) As received. . 2.17
' b) Ann. 858 K, H, atmos.. 16 h; f(T) 2.00
in figure 19.
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TABLE 9. Young’s modulus E of nickel—Continued

Investigator(s) Composition Technique Specimen, Test Conditions £q@o»
(Year) : dyn/cm?)
Zacharias (1933) Ni(0.41 Fe,0.13 Cu,0.02 Mn, {Long. res. freq. a) Ann. 973 K, slow cool. - 2.141
0.09 Si, 0.11 C, 0.3~0.4 Co, b) Ann. 1173 K, 2 h, slow cool. 1.986
0.01 S) 99.9 Ni(<0.003 Cu, ¢) Ann. 1373 K, 2 h, slow cool. 2.077
0.11 Mo) d) Ann. 1373 X, 2 h, reheated 1373 2.301
K, H:0 quench.
a) Single crystal from melt, ann. 2.138
1373 K, H20 quench.
b) Single crystal from melt, slow 2.076
cool from 1723 K. F(T) in figure
19.
Nakamura (1935) 99.84 Ni Long. res. freq. Vac. ann., 1273 K. 1 h, slow cnal;
x(Fe).’
a)H=0, 1.940
b) H=0.325 kOe. 2.275
Nakamura (1936) Long. res. freq. F(Cu), (T, 288-743 K). 1.950
Siegel, Quimby (1936) 99.715 Ni(0.01 Si, S 0.02 Cu, | Long. res. freq. Ann. 1373 K, 4 h, Hz atmos., slow
0.11 Fe, Mg 0.05 C) figure 33. cool; GS=0.4 mm.;
fH, T) in
a) H=0, 2.085
'b) H sat. 2.218
Davies, Thomas (1937) 99.2 Ni Res. freq. a) Ann. 1123 K, 45 h. 1.937
b) Unannealed. x(Fe). 1.918
Forster, Koster (1937a, Transv. res. freq. Ann. 973 K, h, x(Fe), f (T, 293-745 2.15
1938) K).
Forster, Koster (1937b) Transv. res. freq. Ann. 973 K, 1 h, slow cool; x(Fe); 2.1193
f(vibr. ampl.).
Engler (1938) 99 Ni Long. res. freq. Ann. 973 X; (T, H) in figure 33.
' a) H=0, 2.06
b) H=0.575 kOe. 2.21
Kimura (1939) “Electrolytic” Long. res. freq. Ann. 1223 K, 3 h, slow cool; f (T, H)
in figure 33;
a) H=0, 1.921
b) H sat. 2.174
Koster (1940) Transv. res. freq. Ann. 973 K, 1 h, slow cool; x (Fe). 2.11
Aoyama, Fukuroi (1941) | 98.9 Ni(0.3 Mn, 0.05 Fe) “Dynamic”. Vac. ann. 1173 K, 6 h, f(Cu);
a) T=289 K. 1.70
b) T=18 K. 1.95
Yamamoto (1941, 1943) “Electrolytic” Magnetoscillation. Vac. ann. 1273 K, 2 h, slow cool; 2.012
f(H).
Yamamoto (1942, 1954) 99.6 Ni(0.08 Fe, 0.32 Co, 0.01 | Magnetoscillation. Vac. ann. 1173 K, 2 h, x(Cu); f (H);
Si, 0.02 C) a) H=0, 1.86
b) H=0.6 kOe. 2.17
Koster (1943a) Ni(0.5 Mn) Transv. res. freq. a) Ann. 1273 K: cold rolled 80% 2.15
b) Vac. ann. 973 K 2.00
¢) Vac. ann. 1173 K 1.92
d) Vac. ann. 1573 K, H=0 1.82
e} Vac. ann. 1573 K, H sat. 2.19
F(T, GS, T anneal) in figure 14.
Késter (1943b) Ni(0.5 Mn) Transv. res. freq. Vac. ann. 913 X, 1 h, slow cool;
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TABLE 9. Young’s modulus E of nickel —Continued
Inve&Lg: rt)or(s) Composition Technique Specimen, Test Conditions dfn(llcg‘:;)
a) H=0, 1.87
b) H=0.5 kOe. 2.19
(Extrapolated  paramagnetic fcc 2.16)
phase to 293 K.)
Masumoto, Saito (1944) 99.6 Ni(0.02 Fe, 0.02 C, 0.01 | “Static”, helical coils. Vac. ann. 1273 K, 1 h, x(Cu). 1.68
Si)
Koster (1948) Transv. res. freq. Ann. 1173 K; f(T) in figure 19;
’ a) H=0, 1.93
b) H sat. 2.18
Koster, Rauscher (1948) Transv. res. freq. X (Cu);
a) H=0, 2.01
b) H sat. 2.16
Bennett, Davies (1949) 99.9 Ni, 99.2 Ni Transv. res. freq. 923 K ann. 8-29 h, f(T, 273-850 K)
relative values, x(Fe).
Fukuroi, Shibuya (1950) 98.9 Ni(0.3 Mn, 0.05 Fe) Bending, interferometer. Vac. ann. 1173 K, 1 h x(Cu). 1.65
Beeck, Kouvelites, MeKee- | “Cammerenially pure” Long res. freq. a) Ann. at 923 K. 3 h. in Hs. 1.873
han (1951) b) Unannealed. 2.010
F(H) in figure 37.
AEJE data in Kouvelites, McKeehan
(1952)
Frederick (194-7)> 0.5-15 MHz pulse-echo. F(T)in figure 19. 2.075
Yamamoto, Taniguchi Magnetostrictive oscillation. | Vac. ann. 1273 K, 2 h; f(Co conc.),
(1951, 1955) Ni values obtained by extrapola-
tion of Ni-Co data; f(H);
a) H=0, 1.99
b) H sat. 2.24
Umekawa (1954) Transv. res. freq. Vac. ann. 1123 K, 1 h; x(Cu, Co). 1.72
Burnett (1956) 99.8 Ni(0.04 Fe, 0.03 Mn, 0.11 | Res. freq. in bending. F(T) in figure 19. - 1.89
Si, 0.01 Cu, C)
Pavlov, Kirutchkov, 99,99 Ni 0.7 MHz transv. res. freq. Vae. ann. 1073 K, 3 h; 2(Cu); £(T) 2.00
Fedotov (1957) " in figure 19.
Shirakawa, Numakura Ni(0.09 Mn, 0.01 C) Bending. a) Vac. ann. 973 X, 1 h, GS=0.060 1.70
(1958) mm.
b) Vac. ann. 1073 K, 1 h, GS = 0.069 1.69
mm.
c) Vac. ann. 1173 K, 1 h, GS=0.082 1.68
mm.
d) Vac. ann. 1273K,1 h, GS=0.111 1.66
mm.
¢) Vac. aun. 1373 K, 1 L, G5=0.1190 1.65
mm.
Yamamoto (1959) Ni(0.1 Fe, 0.01 Si, Cu, 0.04 C, | Magnetostrictive oscillation. “Ann, 1273 K, H: atmos., 1 h; rean-
0.02 S) ’ nealed 1273 K, vac., 1} h; x(Fe);
fH),
a) H=0, 1.749
b) H sat. 1.915
Hill, Shimmin, Wilcox | Ni(0.01 C, Si, P) Long. res. freq. . F(T, 293-920 K). 2.02
(1961)
Durham, et al. (1963) Ni(0.3 Mn, 0.1 Fe, 0.06 C, 0.1 | Tension, strain-gauge ex- Ann. 1213 K, § h; £(T) in figure 19. 1.96

S)

tensometer.
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TABLE 9. Young’s modulus E of nickel—Continued

i . - E (1012
I"veg‘f::)"'(s) Composition Technique Specimen, Test Conditions dyn(lcm")
Kamber (1963) *“A” Nickel; Ni0.1 Cu, C,0.15| 1.2 MHz transv. res. freq. a) ann. 1623 K, H; atmos.,3 h,GS=1 1.90
Fe, 0.20 Mn, 0.05 Si, 0.005 mm; no field.
S) b) ann. 1623 K, H; atmos.,3 h,GS=1 2.16
mm; saturated field.
c) ann. 1173 K, H; atmos., 1 h, GS= 2.10
0.13 mm,
F(T) in figure 19.
Tino, Maeda (1963) Electrolytic Ni Res. freq., 20-30 kHz. a) H=0, 2.06
b) H=2320 Qe. 2.17
F(T, H) in figure 33.
Armstrong, Brown (1964) | Ni(0.55 metallic, 0.05 C,0.005| Long. res. freq. Ann. 1173, f(T) in figure 19. 2.06
S4-0)
Orlov, Fedotov (1966) 99.98 Ni Trans., long. res. freq. Vac. electron arc melting, x(Cu), 2.08
Sf(T) in figure 19.
Masumoto, Saito, Mura- Ni(0.19 Co, 0.01 Fe, Al, 0.02 | Res. freq. F(T) in figure 19. 1.95
kami, Kikuchi (1968) Q)
Faninger (1969) 99.99 Ni Tension, x-ray. X{(Cu), f(H). 2.15
Masumoto, Saito, Sawaya | Electrolytic 99.98 Ni (0.016} 600-800 Hz oscillator. Vac. ann. 30 min. at 1173 K, cooled 1.96
(1970) Co, 0.001 Cu, 0.001 Fe, 300 °C/h.
0.002 8, 0.000 Si,Mn, Pb, C)|
Best values (no field) 1.97
(sat. field) 2.18
Uncertainties (no feld) 0.15
(sat. field) 0.09
TABLE 10. Young’s modulus £ of iron-nickel ailoys
Investigator| . . . e E (102
(Ylegar)o (s) Composition Technique Specimen, Test Conditions dynjem?)
Guillaume (1897, 1898, 15 alloys Spring tension. X (Cr, C), f(T, 243-313 K). Figure 5
1927)
Angenheister (1903) Fe-24.1 Ni (0.36 C, 0.41 Mn) | Tension. a) Ann. “non-magnetic”, 1.74
b) Cooled to 76 K, “magnetic”. 1.53
Carpenter, Hadfield, 6 alloys, impurities (0.40-0.52 Tension extensometer. - Ann. 1030 K, slow cool. Figure 5
Longmuir (1905) C, 0.83-0.18 Si, 0.01-0.04
S,P
‘Honda, Terada (1907) 6 alloys Tension, opt. lever. F(S). Figure 5
Honda (1919) 14 alloys Bending, opt. lever. Ann. 1173 K. Figurc 5
Miiller (1922) 12 alloys, impurities (0.12- Tension, opt. microscope). Ann. 8131073 K. Figure 5
0.73 C, 0.34~1.24 Mn,
0.13-0.27 Si, < 0.02 P,
< 0.04 S)
Carrington (1924) Fe-3.41 Ni (0.19 C, 0.55 Mn, | Bending. Ann. 1180 K, 4 h, slow cool; f(T) in 2.07
0.03 P, S, 0.10 Si) frzuere 21,
Kimball, Lovell (1925) Fe-3.5 Ni (0.35 C, 0.21 Si, Transv. res. freq. Aun. 1123 K, oil quench, drawn 923
0.02 S, P, 0.58 Mn) K. f(T) in figure 22.
Honda, Tanaka (1926) 12 alleys Bending, opt. lever. \in. 1173 K, 2 h, slow cool; f(H). Figure 5
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TaBLE 10. Young’s medulus E of iron-nickel alloys — Continued
Inve(i}iegaz;t)or(s) Composition Technique Specimen, Test Conditions dfn(ft(::z)
Chevenard (1927, 1943) 33 alloys Bending, torsion. Ann. 1173 K. Figure 5
also Chevenard,
Crussard (1943)
Nishiyama (1929) 9 alloys from electrolytic Fe, | Bending, opt. lever. Ann. 1173 K, 2 h, furnace cooled. Figure 5
Mond Ni
Kawai (1930) Fe-3 Ni (0.3 C) Tension. a) Ann. 1133 K, 2.07
b) tensile elongation = 2.1%), 2.01
¢) tensile elongation = 5.3%, 1.99
d) tensile elongation = 8.0%, 1.97
e) tensile elongation = 12.9%. 2.02
Honegger (1932) a) Fe-5 Ni Transv. res. freq. 1.99
b) Fe-3 Ni 1.94
Keulegan, Houseman Tension, torsion. F(T, 295-906 K) in Fe-3.5-5.0 Ni,
(1933) ann. } h, furnace cooled or water
quenched; Fe-35 Ni as received;
f(T), temp. coeff. a1 273 K.
Nakamura (1935) 10 alloys from 99.94 Fe, Ni Long. res. freq. Vac. ann. 1273 K, 1 h, slow cool,| Figure 5
fH).
Moller, Barbers (1936) Fe-0.02 C, Si, S, 0.37 Mn, a) X-ray. Vaec. ann. 873 K, 1 h, slow cool. 1.79
0.05 P) b) Tension. 1.98
Forster, Koster (1937) Fe-22.4 Ni Transv. res. freq. F(T), in figure 38. 1.49
Forster, Koster (1937) 6 alloys Transv. res. freq. F(vibr. ampl.). Figure 5
Davies, Thomas (1937) Fe-48 Ni Res. freq. a) Ann. 1173 K, 7 h. 1.365
b} As received. 1.529
Déring (1938) Fe-42 Ni Kes. freq. ajH=0. 1.575
b) H = 0.575 kOe. 1.62
‘F(T) in figure 20.
Engler (1938) 4 alluys (0.4 Mun, 0.1 Si) Long. res. frey. Ann 973 K, 8 h, slow coul; f(T, X_) in| Figure 5
figure 20; f(H, X) in figure 33.
f(D,X) in figure 13.
Scheil, Thiele (1938) Fe-22.4 Nj (0.2 Mn, 0.28 Sj, Res. freq. Ann. 1083K, H;, f(T) in figure 21. 1.50
0.03C,001P,8
Williams, Bozorth, Fe-68 Ni (0.3 Mn) Long. res. freq. a) Rolled (83% red. thick.), i) H=0, 1.8145
Christensen ii) H Sat. 1.8161
(1941) b) Ann. 1273 K,1 h,H;, i)H=0,} 1.783
slow cool, ii) H Sat. 1.870
¢) Treatment (b), then HH=0, 1.654
873 K, rapid cool, ii) H Sat. 1.826
d) Treatment (b), then YH=0, 1.843
873 K, H: cool in 0.01 i) H Sat. 1.930
kOe long. field, .
e) Treatment (b); then HH=0, 2105
873 K, H;, cool in 0.01 ii) H Sat. 2.181
kOe transv. field,
Chevenard, Crussard a) Fe-49 Ni Bending, torsion. Cold worked 44%; f(T) in figure 20. 1.93
(1943) b) 12 alloys Annealed. Figure 5
Seager, Thompson (1943)| Fe-3.1 Ni (0.51 Mn, 0.16 Si, | Bending, interferometric. Ann., f(T) in figure 21. 1.92
02C,0.01S,P)
Koster (1943b) 11 alloys ‘I'ransv. res. treq. Ann. 1273 K, 1 h; f(Ni). F{H), Figure 5
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TaBLE 10. Young’s modulus E of iron-nickel alloys — Continued

ioat 12
Im{e(syt':ag:rt)or(s) Composition Technique Specimen, Test Conditions dfn(/lc(:ni)
Scheil, Reinacher (1944) | 7 alloys (0.1-0.9 Mn, 0.1-0.3 Si) | Transv. res. freq. Ann. 1173 K, H; atmos., § h., slow | Figure 5
cool; f(T) in figure 20.
Fontana (1948) Fe-8.6 Ni (0.77 Mn, 0.23 Si, | Tension, strain gauges. Ann. 1173 K, 1 h, air cool then 1063K,{ 1.91
0.05 Al, 0.05 Ti, 0.01 C, P 1 h, air cool; then 838 K, 2 h, air
0.02 S) cool; f(T) in figure 21.
Bennett, Davies (1949) Fe-48 Ni Res. Freq. Ann. 923K, 10 h; £(7) in figure 22.
Fine, Ellis (1950) 15 alloys (0-0.4 Co, 0.0.7 Mn)| Long. res. freq. Cold swaged 74%; ann. 1223 K. 1 h; | Figure5
A(T) in figure 20. Cold swaged 41,
55%; ann. 673 K, not plotted.
Beck, Kouvelites, 5 alloys (46.2,69.1,84.9,88.5, | Long. res. freq. Ann. at 923 K, 3 h, in He. F(H) in Figure 5
McKeehan (1951) 100 Ni) figure 37. AE/E datain Kouvelites,
McKeehan (1952).
Ochscnfcld (1955) Fe-60Ni Res. freq. a) No field, 1.76
b) Saturated field. 1.86
Markham (1957) Fe-3 Ni a) Tension. 2.01
h) 10 MHz pulse-echo. 2.05
Yamamoto (1959) 12 alloys from Armco iron, Magnetostrictive vibration| Ann. 1273 K, 1 h, Hz; then vac. ann. Figure 5
Mond nickel 1273K, 11 h; f(H, x).
Hill, Shimmin, Fe-35.6 Ni Long. res. freq. “Recrystallized”; f(T) in figure 20. 1.48
Wilcox (1961)
Durham, et al. (1963) Fe-36 Ni (0.8 Mn, 0.4 Si, 0.2 | Torsion, opt. lever. Cold drawn 12-15%, f(T) in figure 20. 1.45
Se, 0,08 C,0.01 P, S)
Tino, Maeda (1963) 6 alloys, 26.2-100 Ni Res. freq., 20-30 kHz. F(T, H) in figure 34, f (D) in figure Figure 5
13.
Goldman, Robertson Fe-29.9 Ni (0.004 C) Fe-25.1 | Long. res. freq. Vac. ann. 1173 K, 2 h; 0.035 mm GS; Figure 5
(1964) Ni (0.26 C) f(T) in figure 38.
Doroshek (1964) 6 alloys (0.4-0.5 Mn, 0.14-0.48| Res. freq. Figure 5
Si, 0.17-0.38 Cr, 0.01 Al,
0.02-0.03 C, 0.02-0.04 P, S)
Smith, Stern, Fe-2.5 Ni (0.4 C, 0.6 Cr, Long, transv. pulse-echo. F(P), third-order stiffnesses. 2.10
Stephens (1966) 0.5 Mo)
Eganyan, Selissikiy (1967)| Fe-75 Ni Res. freq. F(H), a) H=0, 2.06
b) H = 1kOe. 2.16
F(T) in figure 20.
Kototayev, Koneva (1968) | Fe-75 Ni Res. freq. F(T) in figure 22, relative values. | ..................
Khomenko, Tseytlin 9 alloys, 30.2-46.4 Ni Res. freq. Vac. ann, at 1173 K, 2 h, cooled at
(1969) 100°/h.
a) 30.2 Ni.H = 0; 1.67
) 30.2 Ni, H = sat.; 1.67
¢) 464 Ni,H=0; 1.33
«) 46.4 Ni, H = sat. 1.49
Shirakawa, et al. (1969) | 9 alloys, 26.2-100 Ni Res. freq. I sat. Polycrystal and (100), (110), Figure 5
(111) single crystals.
Maeda (1971) Fe-35 Ni Res. freq.
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TaBLE 10. Young’s modulus E of iron-nickel alloys — Continued
Investigator(s) ies . . . E(102
ve(Year) Composition Technique Specimen, Test Conditions dynjem?)

a) H=20, 1.26
b) H= 190 Oe, 1.36
¢) H=1900 Oe. 1.38
F(T,H) in figure 34.

Diesburg (1971) 3 alloys 10 MHz pulse-echo-overlap. Calculated from ¢;; by V-R-H method. Figure 5
Hausch, Warlimont (1972) 9 alloys 10 MHz pulse-echo. Calculated from ¢;; by V-R-H method. | Figure 5
TasBLE 11. Shear modulus G of iron

Investigator(s) Composition Technique Specimen, Test Conditions G (1012
(Year) dynfcm?)
Earlier reports Range = 0.68 — 0.83. average =
(1853-1900) 0.76
Schaefer (1901) " Torsional res. freq. 0.719
Benton (1903) “Steel” Torsion F(T, 76-300 K), relative to 300 K.
. Horton (1905) Res. freq. F(T), f(4). 0.826
Griineisen (1908) a) “Steel” Long. res. freq. 0.812
b} “Iron” 0.831
Guye, Fi reedericksz Torsion pendulum. F(T) in figure 23. 0.805
(1909)
Koch, Dannecker (1915) Torsion F(T) in figure 23. 0.79
Honda (1919) Fe (0.29 Cu, 0.31 Mn, Torsion, opt. lever. X(Co). 0.84
0.11 Si, 0.09 C,003 P, S)
Honda (1919) Torsion, opt. lever. Ann. 1173 K, f(X). 0.834
Honda, Hasimoto (1921) Fe (0.18 C, 0.2 Si + Mn) Torsion, opt. lever. Ann. 1173 K, a) slow cool, 0.832
b) oil quench. 0.806
X(C), f(CR).
Iokibe, Sakai (1921) 99.98 Fe (0.0085 C) Torsional oscillations. Ann. 1973 K, f(T) in figurc 23. 0.78
Kikuta (1921) Fe (0.35 C) Res. freq. Ann. 1173 K, £(T) in figure 23. 0.807
Honda, Tanaka {1926) Fe (0.38 Mn, 0.1 C. 0.02P,S) Torsion, opt. lever. X (Ni, Co, C), f(H).
Fe (0.31 Mn, 0.11 Si, a) Ann. 1173 K, % h slow cool. 0.813
0.09 C, 0.29 Cu, 0.03 P, S) b) Ann. 1173 K, % h oil quench. 0.792
c) Ann. 1173 X, 2 h., slow cool. 0.834
Chevenard (1927) Torsion. X (Ni, Cr, C). 0.85
Goens (1930) a) Res. freq. 0.800
b) Torsion. 0.808
Gutenberg, Schlechtweg Res. freq., torsion. 0.78
(1930)
Everett (1931) Fe (0.35 C, 0.80 Mn, Torsion, dial gauge, mech. Ann. 1173 X, % h, slow cool F(T, 0.794
0.10 Si, 0.02 P, 0.03 S) lever. 295-773K).
Kawai (1931) “Armco iron” Torsion, opt. le\{er. Ann. 1273 K, f(D) in figure 10, 0.812
M’Farlene (1931) “Soft iron” Torsion pendulum. F(D) in figure 10. 0.78
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TABLE 11. Shear modulus G of iron— Continued

Inv;;t;ia:;or(s) Composition Technique Specimen, Test Conditions d?n(/::(r::)
Keulegan, Houseman Fe (0.66 C, 0.8 Mn, 0.01 P, Helical loaded springs. Temp. coeff., 223-323 K.
(1933) 0.04 S)
Verse (1935) a) Fe (0.4 C, 0.86 Mn, 0.04 S, |Torsion. Ann., f(T, 298-773 K). 0.796
0.02 P, 0.14 Si)
b) Fe {0.34 C, 0.80 Mn, 0.10 Si|Long. torsional res. freq. Ann. 1173 K, £(T) in figure 23. 0.798
0.02 P, 0.03 S)
Bez-Bardili (1935) Long., transv. sound-wave 0.845
velocities, 1-20 MHz.
Brown (1936) “Armco iron” Long. (56 MHz), torsional Ann., f(H). 0.846
(39 MHz) res. freq.
Glocker, Schaaber (1938) | Fe (0.06 C) Torsion, x-ray 0.798
Everett, Miklowitz (1944) | Fe (0.15-0.25 C, 0.3-0.6 Mn, |Torsion, opt. lever. F(T} in figure 23. 0.78
0.04 P, 0.05 S); SAE 1020
Garofalo, Malenock, Fe (0.45 Mn, 0.19 Si, 0.13 C, |Torsion, opt. lever. Ann. 1170 K, 4 h air cooled; f(T)in | 0.80
Smith (1952) 0.01 P, 0.02 S); (SAE 1015) figure 23.
Hughes, Kelly (1953) “Armco iron” Pulse-echeo. F(P). 0.820
Burnett (1956) 99.8 Fe “Free-free sonic vibration”, | F(T) in figure 23. 0.78
res. freq. in torsion,
Hughes, Maurette (1956) | “Armco iron” Puilse-echo. F(P), f(T) in figure 23. 0.814
Voronov, Vereshchagin 99.8 Fe (0.02 Mn, 0.02 Si, 10 MHz pulse-echo. Ann.; f(P). 0.812
(1961) 0.012 C,0.03 P, S)
Durham, McClintock, Fe (0.8 C, 0.3 Mn, 0.15 Si) Torsion, opt. lever. Ann. 1056 K, 1 h, oil quench, temper 0.795
Reed, Warren, 655 K, 1 h, air cool; £(T) in figure
Guntner (1963) 23.
Smith, Stern, Stephens a) Fe (0.8 Mn, 0.3 Si, 0.4 C) |Long. and transv. pulse- X(Ni), f(P), third-order polycrystal- | 0.821
(1966) echo. line moduli.
b) Fe (0.8 Mn, 0.2 Si, 0.6 C) 0.820
Frederick (1947) “Armco iron” 0.5-15 MHz pulse-echo. F(T). 0.808
Speich, Schwoeble, Fe (0.057 C) 80 kHz pulse-echo. Austenitized 1 h at 1000 °C and water 0.806
Leslie (1972) ) quenched.
Best valuc 0.81
Uncertainty 0.03
TABLE 12. Shear modulus G of nickel
Inve(sYtieg;t)or(s) Composition Technique Specimen, Test Conditions dgn;cl:?r::)
Earlier reports (1853~ Range: 0.68-0.83 average
1900) 0.76
Schaefer (1901) Torsion, res. freq. 0.933
Griineisen (1908) Long. res. freq. Hard drawn. 0.770
Guye, Schapper (1910) Torsional oscillations. F(T) in figure 24. 0.762
Koch, Dannecker (1915) Res. freq. F(T) in figure 24. 0.716
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TABLE 12. Shear modulus G of nickel— Continued
X . . G (10t
Inve(sytf:rt)or(S) Composition Technique Specimen, Tgst Conditions dynfem?)
Tokibe, Sakai (1921) Torsional oscillations under | Vac. ann. 1073 K, f(T) in figure 24.- | 0.723
tensile load.
Kikuté (1921) Torsional oscillations under | Ann., f(T) in figure 24. 0.782
tensile load.
Honda, Tanaka (1926) 99.6 Ni (0.15 Fe, 0.14 C, 0.01 | Torsion, opt. lever. Ann. 1173 K, 0.5 h; f(H)+ x(Fe). 0.750
Cu, 0.05 Si, 0.04 S)
Chevenard (1927). 1 Torsion. X(Fe, Cr). 0.86
Mudge, Luff (1928) 99.18 Ni (0.1 C, 0.16 Cu, 0.06 | Torsion. a) Hot rolled. 0.78
: Si, 0.01 S, 0.4 Fe, 0.05 Mn) b) Ann. 1030 K, 4 h. 0.758
Gutenberg, Schechtweg Res. freq. in torsion. 0.80
(1930)
Kawai (1931) 99.5 Ni Torsion, opt. lever. Ann. 1073 K, (D, tension) in figure 0.785
11, f(R).
Mobius (1932, 1934) Res. freq. F(H); f(T, 293-673 X).
Kikuchi (1936) Torsion. X(Cu). 0.710
Landon, Davies (1938) 99.2 Ni Res. freq. in torsion. a) Ann. 1133 K, 1 h, cold rolled, 0.800
Brinnell hardness = 210.
b) Ann. 1133 K, 1 h, cold rolled, ann. 0.827
1133 K, 4 h.
‘Burnett (1956) 99.8 Ni (0.04 Fe, 0.03 Mn, Res. freq. in torsion. F(T) in figure 24. 0.738
0.11 Si, 0.01 Cu, C)
Susse (1956) 99.7 Ni Torsional res. freq. F(T) in figure 24. 0.79
Orlov, Fedotov (1966) 99.98 Ni Long., transv., torsional Ann., x(Cu), £(T) in figure 24. 0.805
res. freq.
Faninger (1969) 99.99 Ni X-ray, tension, X (Cu), f(H). 0.83
Shirakawa, et al. (1969) Electrolytic Ni (0.012 Fe, Res. freq. H sat., 1 mm GS. 0.83
0.007 Si, 0.008 Cu, 0.003
Mn)
Frederick (1947) 0-15 MHz pulse-echo. F(T). 0.808
Best value 0.785
Uncertainty 0.05
TABLE 13. Shear modulus G of iron-nickel alloys
Investigator(s) - . . . G (1012
(Year) Composition Technique Specimen, Test Conditions dynjem?)
Angerheister (1903) Fe-24.1 Ni (0.36 C, 0.41 Mn) | Tension, torsion, res. freq. a) Ann. “non-magnetic”, fcc. 0.67
b) Cooled to 76K, “magnetic”’, bee. 0.56
Guye, Woelfle (1907) Fe-36.118 Ni (0.02 Cu) Res. freq. F(T) in figure 25. 0.563
Honda (1919) 13 alloys Torsion, opt. lever. Ann. 1173K. Figure 6
Chevenard (1920) Fe-36 Ni Res. freq. in torsion. Ann. 973K, cold worked, tempered,
ann. F(T) in figure 25.
Honda, Tanaka (1926) 12 alloys Torsion, opt. lever. Ann. 1173 K, % h; f(H). Figure 6
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TABLE 13. Shear modulus G of iron-nickel alloys — Continued

Investigator(s) Composition Technique Specimen, Test Conditions G (10*
(Year) dynfcm?)
Chevenard (1927) 35 alloys Res. freq. in torsion. Ann. 1023K, x(Cr); f(T), relative in Figure 6
figure 26.
Landon, Davies (1938) Fe-48 Ni Res. freq. in torsion. a) Unannealed 1173K, 20 min., rolled
40%. 0.601
b) Ann. 1173K, 20 min., volled 40%,
ann. 1173K, 20 min. 0.596
Burnett (1956) 66.97 Fe, 31.95 Ni (0.81 Mn, [ Res. freq. in torsion. F(T) in ﬁgure 25. 0.58
0.14 Si,0.05 Cr, 0.08 C)
Markham (1957) Fe-3 Ni a) 10 MHz pulse-echo. 0.797
b) Torsion. 0.790
Bungardt, Preisendanz, |a) 90.68 Fe, 9.21 Ni (0.05 Mn, | Res. freq. in torsion. Ann. 1173 K, 1 h; F(T, 100-1100 X),
Brandis (1962) 0.02 C,001 P,S,N) relative, in figure 26.
b) 82.74 Fe, 17.14 Ni {0.05
Mn, 0.02 C, 0.01 P. S. N}
Durham, McClintock, Fe-36 Ni (0.8 Mn, 0.2 Se, Torsion, opt. lever. Cold drawn 12:15%.,f(T) in figure 25. 0.565
Guntner, Warren (1963)| 0.08 C,0.01P,S)
Goldman, Robertson a) Fe-29.9 Ni (0.004 C) Long., torsional res. freq. Vac. ann. 1173 K, 3 h, 0.035 mm GS;
(1964) b) Fe-25.1 Ni(0.26 C) A(T) in figure 25.
i) fee 0.68
ii) bee 0.54
i) fce 0.72
ii) bee 0.625
Smith, Stern, Fe-2.5 Ni (0.4 C, 0.6 Cr, 0.5 | Long., transv. pulse-echo. F(P), third-order stiffnesses. 0.818
Stephens (1960) Mo)
Roberts, Owen 6 alloys (50 ppm C) Res. freq. in torsion. Ann. 1198K, 3 h, 2% H, atmos., |Figure6
(1967) quenched.
Meincke, Litva (1969) Fe-35 Ni Sound velocity measurements.| Ann. 1273K, air cool. F (T) in figure 25. 0.56
Maeda (1971) Fe-35 Ni Res. freq. Vac. ann. 1273K,10h, )
a) H=0, 0.407
b) H =190 Oe, 0.458
) H= 1900 Oe. 0.473
F(T,H) in figure 3.
Shirakawa, et al. (1969) |9 alloys, 26.2-100 Ni Res. freq. H sat. Polycrystal and (100), (110}, Figure 6
(111) single crystals.
Diesburg (1971) 3 alloys 10 MHz pulse-echo-overlap. | Calculated from ¢;; by V-R-H method.  |Figure 6
Hausch, Warlimont {1972)19 alloys 10 MHz pulse-echo Calculated from ci; by V-R-H methed.  |Figure 6
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ELASTIC PROPERTIES OF METALS AND ALLOYS 581
TABLE 15. Bulk modulus B and compressibility B-? of nickel
Investigator(s) Br'=a* Br b*
(Year) Composition Technique Specimen, Test Conditions (1012 (102 (1024
cm?{dyn) dynfcm?) cmt{dyn®)
Griineisen (1908) Res. freq., Al/l 0.57 1.75
measurements.
Bridgman T (1923) |a) 99 Ni. Alfl Fe standard, pie- Ann. 2 h. F(P,<1 kbar).
zometer, hydrostatic P. | i) T=303 K, 0.535 1.869 2.14
ii) T=348K. 0.539 1.855 2.14
b) “Pure” Aljltensile. Drawn, ann. to “bright red™
i) T=303K, 0.540 1.853 2.14
ii) T=348 K. 0.546 1.832 2.14
Ebert, Kussmann Ni (0.12 Fe, AA[A in magnetic Saturated field. 0.542 1.845
(1937) 0.04 Mn, field. F(H), X(Ni), P =< 10 kbar.
Si, 0.1 Co.,
0.05 Cu)
Bridgman (1949) about 99.98 | Piezometer, Fe stand- Ann., H;, ~ 1650 K. 0.488 2.048
Ni ard, hydrostatic P, F(P, < 30 khar).
Alfl. T=296-299 K.
Aliev, Lazarev Bimetallic helix, differ- T=4.2 K. 0.49 2.02
Sudovtsov (1967) ential, compared to
Pb
Tanji, et al. (1970), Calc. from E, G data. Ann. 1273 K, 3 h.
reported also in a) H=0, 0.46 2.17
Shirakawa, et al. b) H sat. 0.54 1.85
(1969)
*a and b are coefficients in the equation AV/Vo=aP+ bP2. Best values 0.526 1.903 2.14
TOriginal values corrected according to Bridgman (1940,
1949). : Uncertainties 0.036 0.127 —
TABLE 16. Bulk modulus B and compressibility B! of iron-nickel alloys
Investigator(s) B! B
(Year) Composition Technique Specimen, Test Conditions (1012 (1012
cm?/dyn) | dyn/cm?)
Ebert, Kussmann (1937) |13 alloys from 99.99 | Pressure dependence in mag- | X(Co, Cr, Pt). Figure 7
Fe, Ni(0.12 Fe, netic field.
0.04 Mn, 0.1 Co,
0.05 Cu, 0.04 Si)
Takahashi, Bassett, Fe-5.15 Ni P 1o 300 kbars, H to 15 kOe, a) Using Murnaghan eqn. 0.645 1.55
Mao (1968) x-ray diffraction, NaCl b) Using 1st order Birch eqn. 0.641 1.56
standard, molar volume detn.
Fe-10.26 Ni a) Using Murnaghan eqn. 0.645 1.55
b) Using 1st order Birch eqn. 0.654 1.53
Meincke, Litva (1969) Fe-35 Ni Sound velocity measurements. | Ann. 1273 K, air cool; f(T') in 0.90 1.11
figure 29.
Maeda (1971) Fe-35 Ni Flexural and tarsional reso- Vac. ann. at 1273 for 10 h.
nance of a bar specimen. a) H=190 Oe, 0.813 1.23
Calc. from E and G data. b) H=1900 Oe. 0.847 1.18
F(T), f(H) in figure 36.
Diesburg (1971) 3 alloys 10 MHz pulse-echo-overlap Calculated from c;; by V=-R-H Figure 7
method.
Hausch, Warlimont 9 alloys 10 MHz pulse-echo. Calculated from ¢; by V-R-H Figure 7
(1972) method.
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TaBLE 17. Poisson ratio v of iron

Investigator(s) Composition Technique Specimen, Test Conditions v
(Year)

Earlier publica- a) “Steel” Range=0.27—0.30. average 0.29
tions (1879— b) “Iron” Range=0.26 —0.32. average 0.28
1903)

Benton (1901) “Iron* Interference microscope. 0.29

Schaefer (1901) Torsion, res. freq. 0.247

Morrow (1903) “Wrought iron™ Meas. of lateral and long. Range=10.270 —0.289. 0.275

strains under compression.

Griineisen (1908) a) “Steel” Res. freq. 0.287

h) ‘4Iron!7 0.28()

Griineisen (1910)

Carrington (1924)

Honda, Tanaka
(1926)

Keulegan, House-

man (1933)

Verse (1935)

Bez-Bardili (1935)

Smith, Wood (1941)

Everett, Miklowitz
(1944)

Garofalo,
Malenock,
Smith (1952)

Burnett (1956)

‘Voronov,
Vereshchagin
(1961)

Shved (1964)

a) “Wrought iron”

b) Fe(0.19 C)

Fe(0.09 C, 0.11 Si, 0.31 Mn,
0.03 P, S, 0.29 Cu)

Fe(0.66 C, 0.8 M, 0.01 P,
0.04 S)

a) Fe(0.43 C, 0.86 Mn. 0.04
S, 0.02 P, 0.14 Si)

b) Fe(0.34 C, 0.80 Mn, 0.10
Si, 0.02 P, 0.03 S)

99.95 Fe

Fe(0.15-0.25 C, 0.3-0.6 Mn,
0.04 P, 0.05 S) {SAE 1020}

Fe(0.45 Mn, 0.19 Si, 0.13 C,
0.01 P, 0.02 S) [SAE 1015]

99.8 Fe

99.8 Fe(0.01 C, 0.02 Si, Mn,
0.03 P, S)

“Armco iron”

Bending, torsion.

Flexure.

Bending torsion.

Loaded helical springs.

Tension cathetometer
torsion.

Long., torsional res.
freq.

Long., transv. sound-wave
velocities, 1-20 MHz.

Tension, x-ray spectrometer.

Bending, torsion.

Bending, torsion.

“Free-free sonic vibration,”
. res. freq. in torsion.

10 MHz pulse-echo.

X-ray scattering, uniaxial
tension.

Range=0.28 —0.293.

Ann. 1183 K, slow cool, f(T) in
figure 30.

Ann. 1183 K, slow cool, f(T') in
figure 30.

Ann. 1173 K, Y2 h, f(H), x(Ni).

Detm. temp. coeff., 223—323 K.

Ann. £{T, 298133 K).

Ann. 1173 K, f(T) in figure 30.
Calc. from meas. E, G.

Vac. ann. 0.050 in. sheet.

a) Hot rolled,

b) Cold rolled.
F(T) in figure 30.

Ann. 1170 K, Y2 h, air cooled. F(T)
in figure 30.

F(T) in figure 30.

Ann., a) Hydrostatic P=0,
b) Hydrostatic P=9.8 bar.

average 0.284
0.23

0.27

0.27

0.295

0.307

0.290

0.27

0.313
0.286

0.265

0.275

0.290
2.292

0.283
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ELASTIC PROPERTIES OF METALS AND ALLOYS 583
TaBLE 18. Poisson ratio v of nickel
Investigator(s) - : . . i
Composition Technique Specimen, Test Conditions v
(Year)
Schaefer (1901) Torsion, res. freq. 0.240
Benton (1901) Interference microscope. 0.96 Diam. wire. 0.375
1.49 diam. wire. 0.271
Griineisen (1908) Static. 0.309
Honda, Tanaka (1926) | Ni(0.05 Si, 0.01 Ca, 0.15 Fe, Bending, torsion. Ann. 1173 K, Y2 h; f(H); X(Fe). 0.29
0.04 S, 0.14 C)
Burnett (1956) 99.8 Ni(0.04 Fe, 0.03 Mn, 0.11 | Res. freq. in bending, torsion. 0.280
Si, 0.01 Cu)
Kister (1961) Calculated from Koster E, G 0.31
data.
Best value 0.296
Uncertainty 0.029
TABLE 19. Poisson ratio v of iron-nickel alloys
Investigator(s . i
vestigator(s) Composition Technique Specimen, Test Conditions v
(Year)
Angenheister (1903) | Fe-24.1 Ni(0.36 C, 0.41 Mn) Tension, torsion, res. Ann., non-magnetic, fcc. 0.298
freq. Cooled to 76 K, magnetic, bcc. 0.358
Carrington (1924) Fe-3.4 Ni(0.19 C, 0.55 Mn, 0.03 | Bending. Ann. 1180 K, ¥z h, slow cool; £(T) in 0.27
P, S, 0.01 Si) figure 32.
Honda, Tanaka (1926) | 12 alloys Torsion, bending. Ann. 1173 K, ¥%2 h; f (H). Figure 8
Chevenard, Crussard | a) Fe-6 Ni Torsion-flexure. i) Cold worked. 0.27
(1942) ’ ii) Ann. 1073 K. 0.29
b) Fe-36 Ni Ann. 1073 K; £ (T) in figure 32. 0.28
Chevenard, Crussard | a) Fe-49 Ni Torsion-flexure. Cold worked 44%; f (T') in figure 32. 0.56
(1943) b) 12 alloys Ann. 1173 K, cold warked 449%. Figure 8
Goldman, Robertson | a) Fe-29.9 Ni(0.004 C) Long., torsional res. Vac. ann. 1173 K, Y2 h, 0.035 mm GS; f(T') 0.28
(1964) b) Fe-25.1 Ni(0.26 C) freq. in figure 32.
fee, 293 K. 0.26
bee, 293 K; 0.23
fee, 217 K; 0.22
bee, 217 K. 0.20
Diesburg (1971) 3 alloys 10 MHz pulse-echo- Calculated from c¢; by V-R-H method. Figure 8
overlap.
Hausch, Warlimont | 9 alloys 10 MHz pulse-echo Calculated from c¢; by V-R-H method. Figure 8

1972)
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TABLE 20. Third-order elastic stiffnesses cjjx of iron

Investigator(s) cin cnz Ci23 Cia4 C166 Case
(Year) Technique
(1072 dyn/cm?)
Hughes, Kelly (1953)* Ultrasound velocities under tension and hydro- -3.48 —-10.31 9.81
static pressure.
Seeger, Buck (1960)* Poynting effect. -—1.67 —17.55 —14.9
Powell, Skove (1968) Measured deviations from Hooke’s law of single | — 28.29 —8.00 —6.07
crystals, Calculated using Rotter, Smith (1966)
pressure derivatives of second-order stiff-
nesses,
Tietz (1969)* Ultrasound velocities under tension and hydro- 5.99 —9.44
static pressure.
Mathur, Sharma (1970) | Calculated using Morse central-force potential | —16.44 —2.60 —3.00 —-3.00 —2.60 | —3.00
and Girifalco, Weizer (1959) parameters.
*Determined isotrobic constants ctas €3, and C3ie: see text for rélationshin of these to other ciik.
TaBLE 21. Third-order and fourth-order elastic stiffnesses cij. and cixr of nickel
Investigator(s) Cit Cuz C123 €144 C166 Csss Cun Cuzz | Cues
{(Year) Technique
(1012 dyn/ecm2)
Rose (1966) Calc. from data in —14.37 | —10.53 1.19 1.19 | -—-10.53 1.19 102.70 58.63 | 65.48 | —3.47
Huntington (1958)
using finite strain
theory and central-
force potential.
Salama, Alers Change of sound —20.32 | —1043 | -2.20 |—1.38 | —9.10 |—0.70
(1969 velocity under unj-
axial stress, speci-
mens neutron
irradiated to pin
dislocations, satu-
rated, 10 kQe held.
Sarma, Mathur Cale. from 9 nn Morse | —17.896 | —11.420 0.814} 0.814 | —11.420 0.814| —15.366 | —0.741 | —0.141| —0.083
(1969) potential. :
Sarma, Reddy Change of sound —21.04 | —13.45 0.59 |—1.80 | —7.57 |[—042
(1973) velocity under
uniaxial stress,
specimens neutron
irradiated to pin
dislocations, satu-
rated, 8 kOe field.
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TABLE 22. Pressure derivatives dec;;/dP of elastic stiffnesses of iron and nickel

1 C12 Cs4 (cu+2ci2)/3 (en —c2)f2
Fe: Rotter, Smith (1966) 751 5.19 2.66 5.97 1.16
Fe: Guinan, Beshers (1968) 6.72 4.58 2.59 5.29 1.07
Ni: Salama, Alers (1967) 6.03 4.87 2.38 5.26 0.58
Ni: Sarma, Mathur (1969) 5.70 L 458 | 2.65 495 0.70

TABLE 23. Relative elastic constants based on a hard-sphere model, B=1 arbitrarily
i ¢ | o Br G Er v 4
b. c. c. 1.000 | 1.000 | 0.667 | 0.000 | 1.000 | 0.200 | 0.563 | 0.406 ©
Fe (obs.) 1.375 | 0.838 | 0.726 | 0.481 | 1.000 | 0.489 | 1.246 | 0.282 | 243
f.c.c 1.333 0.833 | 0.500 | 0.250 1.000 | 0.379 1.000 | 0.333 2.00
Ni (obs.) 1.350 | 0.825 | 0.666 | 0.486 | 1.000 | 0413 | 1145 0.296 | 2.54

TABLE 24. Debye characteristic temperatures 8 of iron, nickel, and iron-nickel alloys calculated from single-crystal elastic data

Low-temperature

|

Room-temperature

o | 0K Ref. AR < Ref.
0 472 | Lord, Beshers (1965) 29.82 435 | Tanji (1971)
35.3 351 | Hausch, Warlimont (1972) 35.7 405 | Tanji 1971)
36.1 348 Bower, et al. (1968) 39.62 398 Tanji (1971)
317 358 | Hausch, Warlimont (1972) 44.43 410 | Tanji (1971)
38.2 346 | Bower, et al. (1968) 49.96 425 | Tanji (1971)
40.0 {. 369 Hausch, Warlimont (1972) 60.7 458 | Tanji (1971)
42.5 383 | Hausch, Warlimont (1972) 70.02 465 | Tanji (1971)
45.2 396 | Hausch, Warlimont (1972) 78.5 478 | Tanji (1971)
51.4 419 | Hausch, Warlimont (1972) 89.6 475 | Tanji (1971)
60.8 436 | Hausch, Warlimont (1972) 99.98 474 | Tanji (1971)
61.9 437 | Hausch, Warlimont (1972)

78.5 463 | Hausch, Warlimont (1972)

89.7 468 | Hausch, Warlimont (1972) See tables 5~7 for details.

100.0 472 | Hausch, Warlimont (1972)

100.0 476 | Alers, et al. (1960)
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Realim: Pure Science Phenomenology Engineering

Atomic Single-Crystal Engineering

Porometer : Force Constants Elastic Coefficients Elastic Constants

FiGURE 1. Schematic interconnectivity of elastic parameters of solids
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FIGURE 4. Compositional variation of elastic stiffnesses ¢;; of iron-nickel alloys
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Ficure 5. Compositional variation of Young’s modulus E of iron-nickel alloys
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FIGURE 6. Compositional variation of shear modulus G of iron-nickel alloys
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