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Selected values of critical supersaturations for homogeneous nucleation of droplets from the
vapor and for heterogeneous nucleation of droplets on the natural stationary concentration of gaseous
ions are tabulated and plotted, and a rationale is given for selection of these data.
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1. Introduction

The critical supersaturation for nucleation from
the vapor is defined as that ratio of actual partial
pressure of vapor to equilibrium vapor pressure of
bulk liquid for which the nucleation rate of droplets
becomes appreciable. Thus in quoting a critical
supersaturation it is also necessary to specify the
approximate rate to which it corresponds if the state-
ment is to have any meaning. It is found experi-
mentally [e.g., C. T. R. Wilson, 1897, M. Volmer,
1939)] and predicted theoretically [e.g., M. Volmer,
1939] that the nucleation rate increases very rapidly
with increase in supersaturation, and this is the
justification for speaking of a critical supersatura-
-tion.- The-writer knows ™ of no reliable and precise’
measurements of actual nucleation rates in conden-
sation, other than the approximate values needed to
define the critical supersaturation. Of course, the
critical supersaturation is a function of temperature,
and tends to increase with decrease in temperature.

The experiments must be conducted in such a
way that the nucleation of droplets does not occur
on some unknown concentration of unidentified
dust particles in the vapor. Another type of hetero-
geneous nucleation to be avoided is that catalyzed
by unknown concentrations of unidentified ions,
such as occurs in some experiments where artifi-
cial radiation is used to produce a concentration of
gaseous ions. Meaningful information can perhaps
be obtained from measurements of critical super-
saturation on the stationary concentration of ions
in naturally ionized air-vapor mixtures, and such
data are included in the present review. Here,
although the ionic species are by no means identi-
fied, the concentration is known to be of the order
of 10 ion pairs per cubic centimeter [e.g., Loeb,
1934]. Even more meaningful results are measure-
ments of critical supersaturation for homogeneous
nucleation, i.e., uncatalyzed by ions and particulate
matter. Such results may be compared with various
quantitative theories for nucleation rate.

Measurements of critical supersaturation for
nucleation of droplcts in condcnsation arc important
in at least three connections:

(a). They may be used to test various conflicting
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nucleation process [e.g.,see Lothe and Pound,
1968, and Reiss, Katz and Cohen, 1968, and
Parlange, 1968]. This is of fundamental im-
portance to our understanding of the thermo-
dynamics of small bodies [e.g., Hill, 1964,
Abraham and Pound, 1968].

Agreement of the results with theory is the
foundation of our understanding of nucleation
in all phase transformations, such as trans-
formations in solids [e.g., Christian, 1965],
crystallization from liquids [e.g., Strickland-
Constable, 1968] and condensation from the
vapor on substrates [e.g., Hirth and Pound,
1963].

Although ‘formation of -all rains and fogs is
thought to occur by heterogeneous nucleation
on particulate matter (dust particles), an
understanding of homogeneous nucleation
and heterogeneous nucleation on ions is of
fundamental importance to our understanding
of meteorological phenomena [e.g., Dufour
and Defay, 1963, and Amelin, 1966].

There are at present three principal methods by
which reliable measurements of critical super-
saturations can be made:

(b).

(C).’

(a). The expansion cloud chamber method, which
was invented by C. T. R. Wilson [1897].

(b). The supersonic nozzle technique as developed
by Wegener and coworkers [e.g., Wegener
and Mack, 1958, and Wegener and Pouring,
1964} and by Hill [1966].

(c¢) The diffusion cloud chamber method, which
was developed by Franck and Hertz [1956]
and by Katz and Ostermier [1967].

These techniques and their limitations wil} be
described in the following section.

The purpose of the present work is to extract from
the literature the correct values of critical super-
saturation for homogeneous nucleation and for
nucleation on gaseous ions of droplets from the
vapor. Most of the data are for condensation of pure
vapors. However the data of Flood [1934] for homo-
geneous nucleation from the water-ethanol binary
are also included. The scope of this work originally
included data for nucleation of crystallites from
vapor; however no suitably reliable work of this type
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could be found. One notes that the condensate
usually occurs in liquid form, even though the tem-
perature is below the thermodynamic freezing
point; this is a consequence of Ostwald’s “Law of
Stages” [e.g., see Hirth and Pound, 1963].

Finally, in view of the controversies presently
surrounding the theoretical developments in this
field, no comparison will be made between the data
and the theories, except to say that no single theory
describes all substances.

2. Experimental Methods
2.1. The Expansion Cloud Chamber

The expansion cloud chamber was invented by
Wilson [1897], and for many years it was the only
device available for measuring critical supersatura-
tions. In this method, a mixture of “inert carrier”
gas such as air and the condensible vapor, usually
at the equilibrium vapor pressure p; of the bulk
liquid, is subjected to a sudden expansion. From
resistance thermometry of these sudden expansions
using the inert carrier gas only [e.g., Makower 1903]
it is known that they are reversible ! and that they
are also adiabatic in sufficiently large chambers.

Furthermore Volmer and Flood [1934] have shown.

from oscilloscope traces of a resistance thermom-
eter that the duration of the theoretical terminal
temperature is several tenths of a second for ex-
pansion ratios V»/V; less than about 1.4 (correspond-
ing to a temperature drop of about 30 °C) in a cham-
ber of one liter volume. For a larger volume and
faster piston speeds than used by Volmer and Flood,
the duration of the theoretical terminal temperature
should be appreciable for even larger expansion
ratios. One notes that the expansions may be accom-
plished without a piston by merely opening a valve
to an evacuated vessel; however such expansions
may not be sufficiently fast to reach the theoretical
terminal temperature.

The terminal temperature of a reversible adiabatic
expansion of an ideal gas is given by

in which v is the ratio of specific heats of the
gaseous mixture at constant pressure and volume,
respectively. If p. denotes the equilibrium vapor
pressure of the bulk liquid at T, the supersatura-
tion ratio is

p_pmhl

pco poo V2 Tl’ (2)

upon the excellent assumption that the mixture be-
haves as an ideal gas. In the usual technique,

! The reversibility is an expected result in view of the high thermal velocity of
gas molecules with respect to the speed of the piston.
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several preliminary expansions are made to create
droplets on the dust particles so that they will fall
to the bottom of the chamber and thus be removed.
Then the expansion ratio is increased in successive
expansions. For the case of water vapor in air,
Wilson [1897, 1898, 1899] and others have found
that nothing happens on increasing the expansion
ratio until a supersaturation ratio of 4.2 {at 267 K]
is reached, whereupon a rain-like precipitation
occurs on the natural stationary concentration
[~ 103/cm 3] of negative ions in the air-vapor
mixture (the negative ion limit). Then there is no
further appreciable increase in the amount of
precipitation until a supersaturation of 8.0 [at 257 K]
where a dense fog, containing of the order of 106
droplets per cm 3, is formed by homogeneous
nucleation (the fog limit). In the presence of an
appropriate electric field, Wilson [1899] could
detect the positive ion limit at a supersaturation
ratio of about six.

Volmer and Flood [1934] and others used an
electric field, which supposedly removed almost all
of the ions. They claimed that homogeneous nucle-
ation actually began only slightly above the negative
ion limit at a supersaturation ratio of 5.0 [at 260 K],
and they took this homogeneous “rain limit”,
which they thought corresponded to a nucleation
rate of about 1 cm=3 s~1, as their criterion for the
critical supersaturation. They believed that the con-
centration of droplets does not increase rapidly
until the fog limit because the supersaturation is
relieved due to consumption of monomer and warm-
ing by the heat of condensation.

An alternative point of view, as expressed for
example by Hirth and Pound [1963], is that this
homogeneous rain limit actually represents nuclea-
tion on an attenuated (by the field) concentration of
ions. However, as will be discussed in a later sec-
tion, the diffusion cloud chamber, when used with
an electric field, apparently can separate the effect
of ions from homogeneous nucleation effects, and
the homogeneous rain limit is verified. Also no
existing theory of homogeneous nucleation can
account for the paucity of condensation below the
Wilson fog limit, unless it is brought about by one of
the uncontrolled experimental conditions men-
tioned above. Therefore it will be assumed in this
paper that the absence of homogeneous nucleation
noted by Wilson below the fog limit is an experi-
mental artifact of the expansion cloud chamber
method. If it is not, then all of the data in the
accompanying tables and graphs which purport to
describe small homogeneous nucleation rates
(~ 102 cm™3 s7! or less) just above the ion limit
may be wrong.

2.2. The Supersonic Nozzle

The supersonic nozzle technique for accomplish-
ing adiabatic expansions was adapted for homoge-
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neous nucleation studies by Wegener and Mack
[1958], Wegener and Pouring [1964], Hill [1966]
and Duff and Hill [1966]. The speed of the reversible
adiabatic expansion is sufficiently great that much
higher maximum critical supersaturations can be
observed than in expansion cloud chambers, and
peak nucleation rates may reach 10'2 to 10'® cm—3
s~! for short periods of time. Thus ions or dust
pérticles, in the usual relatively small concentra-
tions, are unimportant as agents for condensation.
On the other hand, the expansion speed is not so
high that transient effects are important; enough
time (~ 20 ws) is available to establish the station-
ary concentration distribution of embryos for nucle-
ation. Another great advantage of the supersonic
nozzle is that the flow conditions are nearly station-
ary and thus the history of the entire expansion is
readily observed. Further, the wall boundary layers
are thin relative to the nozzle diameter, and contami-
nation and heating from the walls are thereby
avoided. Nucleation is unlikely to occur in the
boundary layers because these are generally
superheated. The stream expanding between the
wall boundary layers may be taken as a uniform
adiabatic flow. The condensate particles occupy
only a very small volume, and, because they are
less than 1000 A in diameter, travel with the bulk
velocity of the stream.

The rate of condensation may be inferred directly
from measurements of the wall static pressure
distribution. The point at which the static pressure
deviates by about 1 percent from the “dry” pressure
distribution is taken as the location of the onset of
condensation. Wegener ‘and Stein [1967] studied
the Rayleigh scattering of a helium-neon laser beam
by the resultant water fog in a supersonic nozzle
and found a concentration of some 10'2 droplets
cm-3 of about 40 A in radius, consistent with a nu-
cleation rate of ~ 10'5 cm=3s-1.

Actually, in the later, more sophisticated work
cited above, mass, momentum and energy balances
and the growth rate equation are applied to the
stream, together with an assumed nucleation rate
expression, to reproduce the observed pressure
distribution. This complicated calculation is gen-
erally done with the aid of a computer. In this con-
nection, one notes that the condensation zone is
always located well downstream of the throat to
facilitate calculation of the corresponding theo-
retical pressure distribution. A fit of the calculated
to the observed pressure distribution yields the
correct nucleation rate expression and an estimate
of the effective condensation coefficient. The
resultant nucleation rates turn out to be of the order

of 102-10" c¢m=3 1 at the incidence of
condensation,

2.3. The Diffusion Cloud Chamber

The diffusion cloud chamber technique was
adapted for nucleation studies by Franck and Hertz
[1956], Hertz [1956] and Katz and Ostermier
[1967]. In this stationary-state device an adiabatic
expansion is not used to produce the supersatura-
tion. Rather, the supersaturation is produced in a
diffusing stream of vapor with a temperature gra-
dient parallel to the axis of diffusion. Since the equi-
librium vapor pressure of the bulk liquid is expo-
nential with temperature and the dependence of
partial pressure on temperature is linear, a fairly
large supersaturation may be produced in the cham-
ber. In practice, a short cylinder of large diameter
is used to minimize convection and wall effects,
and the liquid is evaporated from a pool on the warm
flat floor and condensed on the cool flat ceiling. The
liquid then drains down the walls to the pool on
the bottom. A light carrier gas, usually hydrogen or
helium, is used so that the density of the gaseous
mixture decreases from bottom to top of the cylin-
der, thus avoiding convection.

No instruments for measuring temperature or
pressure can be placed in the volume of the cham-
ber, because nucleation and condensation would
occur on them, thus relieving the supersaturation
and perturbing the conditions in the chamber.
Rather, the stationary conditions in the chamber
must be calculated from a knowledge of the bound-
ary conditions in this one dimensional diffusion and
heat transfer problem. These boundary conditions
are the temperatures of the liquid surfaces on the
lower and upper plates and the vapor pressures
corresponding to these temperatures. The tempera-
tures are measured by thermocouples which are
usually embedded in the surfaces of the metal
plates, and estimation of the liquid surface tempera-
ture from these thermocouple readings is a major
experimental problem. Assuming that the surface
temperatures are correct, the temperature and
partial pressure profiles and hence the supersatura-
tion profile along the axis of the cylinder can be
calculated. The coupling of currents of matter and
heat is duly considered, and this complicated
calculation is customarily performed on a computer.

The “critical condition” of the cloud chamber is
determined by slowly raising the temperature of the
lower plate until droplets are just observed to form
(at a rate of about 1 ¢cm=3 s-1) at a certain level in
the chamber. The height of this level is not taken
as a measurement, because its value is too im-
precise. Rather, the supersaturation profile is com-
puted for this set of experimental conditions.
Similar critical conditions and supersaturation pro-
files are determined for other values of temperature
of the top plate. Each of these supersaturation pro-
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files (called envelopes) are plotted against tempera-
ture, and the curve tangent to this series of envelopes
is the experimental curve of critical supersaturation
versus temperature.

In the absence of an electric field, the critical
supersaturation so determined is for nucleation on
the natural, stationary concentration of ions
(which is appreciably less for a hydrogen or helium
carrier gas than the --10% ion pairs present when
air is the carrier). When an electric field is used to
remove the ions, the only ion condensation appears
as a trail of drops formed on the trail of ions left hy
energetic particles. The critical condition of the
chamber is then reached only at some higher super-
saturation supposedly characteristic of homogene-
ous nucleation; increase of the supersaturation
beyond this point is said to be accompanied by a
sharp increase in the concentration of droplets.

3. Criteria for Inclusion of Data in Tables
and Graphs

In regard to the expansion cloud chamber
method, the following conditions had to be satisfied
to warrant inclusion of the data in the tables:

(a) Essential adiabaticity and reversibility-of the
expansions such that the terminal tempera-
ture was surely attained for a sufficient
period of time.

(b) Inappreciable heating by condensation such
that the terminal temperature was surely
attained for a sufficient period of time.

(c) Inappreciable consumption of monomer dur-
ing the nucleation period.

(d) Inappreciable evaporation of bulk liquid in
the chamber during expansion.

(e) Sufficiently precise measurements of tempera-
ture, pressure and volume.

(f) Sufhiciently pure liquids.

(g) Absence of chemical reactions, e.g., reaction
of vapor with the carrier gas.

(h) Absence of important impurities and dust
particles.

(i) Absence of artificial radiation sources (espe-
cially in determinations of the ion limit),
which produce unknown concentrations of
unidentified ions.

(j) Inappreciable coursening of condensated
droplets (Ostwald ripening) as discussed by
Feder et al. [1966] Such coursening would lead
to a great decrease in droplet concentration.

(k) No large uncertainty as to whether the nuclei
are liquid or solid.

The above criteria were also used for the super-
sonic nozzle results, together with the requirement
that the expansion not be too rapid for establish-
ment of a stationary embryo concentration
distribution.
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For the diffusion cloud chamber data, the criteria
numbered above were used with the exception of
(a) and (d). Also (b) and (c) are replaced by:

(b") Inappreciable heating by condensation in

the volume of the chamber.

(¢’) Inappreciable consumption of monomer by

condensation in the volume of the chamber.
In addition, there had to be no evidence of appreci-
able convective cffccts.

Finally, the author particularly regrets that
the results of Katz and Ostermier [1967] are not
included in the present tables. Those results were
calculated on the assumption of a linear depen-
dence of the thermal conductivity of the gaseous
mixture on composition. He has been advised by
Dr. Katz that subsequent investigation reveals
that this assumption is sufficiently in error to
require recalculation of the results from the raw
data. The work is now in progress, and this val-
uable information should be forthcoming in the
near future. A similar assumption was made in
the work of Franck and Hertz [1956]; it is assumed
that the corresponding errors are smaller in the
case of their work.

4. The Tables and Graphs

The meaning of the tables and graphs is best

understood by reference to the text.

It seems of prime importance to note the major

inconsistencies, reservations and uncertainties:

(a). The writer is unable to reproduce the
critical supersaturations reported by Volmer
and Flood [1934] and by Scharrer [1939] from
their published expansion ratios (except for
the case of water). This problem is difficult
to resolve, because they are not sufficiently
explicit as to their sources of vapor pres-
sure data. In general, the writer’s results
are some one-half to one supersaturation
ratio unit lower.

(b). The results of Volmer and Flood [1934]
and Scharrer [1939] for homogeneous
nucleation of methanol (about 3.2 at 279 K)
are at odds with the results of Franck and
Hertz [1956], who found a critical super-
saturation ratio of about 1.9 at 270 K. The
former workers used the expansion cloud
chamber method, while the latter authors
used a diffusion cloud chamber. Both took
the criterion for critical supersaturation to
be a nucleation rate of about 1 cm=3? s-L
Franck and Hertz used hydrogen as the car-
rier gas, while the others used air.

(c). As discussed in the description of the
expansion cloud chamber, it is assumed in
this paper that the absence of homogeneous
nucleation noted by Wilson [1897] and
Powell [1928] below the fog limit is an
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experimental artifact of the expansion
cloud chamber method. If it is not, then all
of the data in the accompanying tables and
graphs which purport to describe small
homogeneous  nucleation rates (~ 10%
cm~2 s~ or lcss) just above the ion limit may
be wrong.

5. Conclusions to be Drawn from the

Tables and Graphs

(a). If the three exceptions noted above are
overlooked, the three different experimental
methods are in reasonable agreement for
homogeneous nucleation of all substances.
One notes that in order to compare the
results for high homogeneous nucleation
rates (i.e., the supersonic nozzle results
and thc  cxpansion cloud chamber rcsults
of Wilson [1897] and Powell [1928]), with
the other critical supersaturation data for
low homogeneous nucleation rates, it is
necessary to have recourse to a theoretical
nucleation rate equation for the extrapola-
tion Although the theory is not discussed in
this paper, it is found that a single nuclea-
tion--rateequation—describes - all- observed
rates for a given substance. The trouble is
that different substances require different
nucleation rate equations. (There now ap-
pear to be two principal theoretical rate
equations.)

(b). If exception (a) above is overlooked, then the
critical supersaturation ratios for nucleation
on a stationary concentration of natural ions
are the same by either the expansion cloud
chamber or diffusion cloud chamber method.

(c). The critical supersaturation for nucleation on
a natural stationary concentration of ions is
only several tenths of a supersaturation ratio
unit below that for a low rate of homogeneous
nucleation (~ 1 em~3 s-1),
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TaBLE 2. Critical supersaturation ratios for homogeneous
nucleation of liquid from ethanol vapor in a diffusion cloud
chamber [After Franck and Hertz, 1956)

TABLE

CRITICAL SUPERSATURATION FOR NUCLEATION OF LIQUIDS 129

3. Critical supersaturation ratios for homogeneous

nucleation of liquid from methanol vapor in a diffusion cloud
chamber [After Franck and Hertz, 1956]

Temperature

Critical supersatura-
tion for a carrier gas
pressure of ~ 1 atm

Critical supersatura-
| tion for a carrier gas
pressure of ~ 1/2 atm

K
280
277
273
270
267
263
260
255
250
245
240

9009 80 19 P 2 19 10 1
KRILBR=ERR
I

R8IFBBVISBER
HHE

Loooeooooooo
e e e e

0.1 1.
0.1 1.
0.1 2.
0.1 2.
0.1 2.
0.1 2.
0.1 2.
0.1 2:
0.1 2.

2.

3.

NO-0

Critical supersatura- | Critical supersatura-
Temperature | tion for a carrier gas | tion for a carrier gas
pressure of ~ 1 atm |pressure of ~ 1/3 atm
K »
278 1.82+0.1 1.80+0.1
273 1.86+0.1 1.84+0.1
270 1.89+0.1 1.87+0.1
265 1.96 +0.1 1.92+0.1
260 2.02+0.1 1.98+0.1
256 2.10%0.1 2.05+0.1
250 2.26+0.1 2.17+0.1
244 2.44+0.1 2.30+0.1
240 2.40+0.1

TABLE 4. Critical supersaturation ratios for homogeneous
nucleation of liquid from water-ethanol vapors in an expansion

cloud chamber [After Flood, 1934]

Mole per- | Temperature | Mole per- Critical
cent ethanol ) cent ethanot | supersaturation
in liquid in nucleus

0 263.7 0 4.85+0.1
3.86 272.8 .8 2.64x .1
11.5 275.6 3.7 197+ .1
35.3 280.4 8.5 1.75+ .1
67.1 277.0 25.0 1.62+ .1
77.9 274.9 61.0 177+ 1
90.3 273.8 82.0 2.07x .1
100.0 273.2 100.0 234+ 1
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TABLE 6. Critical supersaturation ratios for heterogeneous 107! T I T -
nucleation of liquid from water vapor on the natural stationary c 3
concentration of ions in a vapor-air mixture in an expansion t ]
cloud chamber (After Volmer and Flood, 1934) B

. I 3’*" b
Temperature Critical supersaturation N 3 e B
K L .
277.0 39+0.1 — g{f
276.8 3901 o =)
275.3 38+0.1 s F =
263.7 4.3+0.1 A ]
263.5 4.2+0.1 . B ]
262.7 42+0.1 £ [ CeHe
262.8 4.2x0.1 o | |
w
o
o -
e |
©
S 3
10 C-_ —-E
B Denotes -
i Scatter Band P,,VAPOR PRESSURE ]
- OF BULK LIQUID]
BENZENE
10 | | ! | |
180 190 200 210 220 230 240
T, °K
FiGURE 2. Ciritical pressure of benzene vapor for homogeneous
nucleation in supersonic nozzles. (after Dawson et al., 1969)
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FIGURE 1. Critical pressure of ammonia vapor for homoge- FiGure 3. Critical pressure of chloroform vapor for homoge-
neous nucleation in supersonic nozzles. (After Jaeger et al., neous nucleation in supersonic nozzles. (After Dawson et al.,
1969) 1969)
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FiGURE 6. Critical prcssurc of watcr vapor for homogencous
nucleation in supersonic nozzles. (After Jaeger et al., 1969)
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