Refractive Index of Silicon and Germanium and Its Wavelength and Temperature Derivatives ## H. H. Li Center for Information and Numerical Data Analysis and Synthesis, Purdue University, West Lafayette, Indiana 47906 Refractive index data for silicon and germanium were searched, compiled, and analyzed. Recommended values of refractive index for the transparent spectral region were generated in the ranges 1.2 to 14 μ m and 100–750 K for silicon, and 1.9 to 16 μ m and 100–550 K for germanium. Generation of these values was based on a dispersion equation which best fits selected data sets covering wide temperature and wavelength ranges. Temperature derivative of refractive index was simply calculated from the first derivative of the equation with respect to temperature. The results are in concordance with the existing dn/dT data. Key words: Germanium; optical constants; refractive index; silicon; temperature coefficient of refractive index. ## Contents | | Page | | Page | |--|-------------|--|-------------| | List of Tables | 562 | Table A-7. Experimental Data on the Tem- | | | List of Figures | 561 | perature Derivative of Refractive Index of | | | List of Symbols | 562 | Germanium (Wavelength Dependence) | 656 | | 1. Introduction | 562 | Table A-8. Experimental Data on the Tem- | | | 2. Theoretical Background on Refractive Dis- | | perature Derivative of Refractive Index of | | | persion in Crystals | 562 | Germanium (Temperature Dependence). | 658 | | 3. Presentation of Numerical Data | 564 | , , | | | 3.1. Silicon | 565 | List of Figures | | | 3.2. Germanium | 582 | | Page | | 4. Conclusions and Recommendations | 599 | 1. Available Experimental Refractive Index | | | 5. Acknowledgments | 599 | of Silicon (Wavelength Dependence) | 569 | | 6. References | 599 | 2. Available Experimental Refractive Index | | | Appendix | 602 | of Silicon (Temperature Dependence) | 570 | | Table A-1. Experimental Data on the Re- | | 3. Selected Experimental Refractive Index of | | | fractive Index of Silicon (Wavelength | | Silicon (Wavelength Dependence) | 571 | | Dependence) | 602 | 4. Available Experimental dn/dT of Silicon | 0.1 | | Table A-2. Experimental Data on the Re- | | (Wavelength Dependence) | 572 | | fractive Index of Silicon (Temperature | | | 012 | | Dependence) | 615 | 5. Available Experimental dn/dT of Silicon | 57 3 | | Table A-3. Experimental Data on the Tem- | | (Temperature Dependence) | 919 | | perature Derivative of Refractive Index of | | 6. Variation of Refractive Index of Silicon | | | Silicon (Wavelength Dependence) | 62 3 | with Temperature at Wavelength 3 μm | | | Table A-4. Experimental Data on the Tem- | | | 574 | | perature Derivative of Refractive Index of | | 7. Temperature Dependence of the Optical | | | Silicon (Temperature Dependence) | 624 | Energy Gap of Silicon [15] | 575 | | Table A-5. Experimental Data on the Re- | | 8. Recommended $n-\lambda-T$ Diagram of Silicon. | 577 | | fractive Index of Germanium (Wave- | | 9. Recommended dn/dT - λ - T Diagram of Sil- | | | length (Dependence) | 626 | icon | 579 | | Table A-6. Experimental Data on the Re- | | 10. Recommended $dn/d\lambda$ Curve of Silicon at | | | fractive Index of Germanium (Tempera- | | 293 K | 581 | | ture Dependence) | 649 | 11. Available Experimental Refractive Index of | | | © 1980 by the U.S. Secretary of Commerce on behalf | of the | Germanium (Wavelength Dependence) | 586 | | United States. This copyright is assigned to the An | or the | 12. Available Experimental Refractive Index of | | | Institute of Physics and the American Chemical Society | V. | Germanium (Temperature Dependence) | 587 | | | • | | | | 13. | Selected Experimental Refractive Index of Germanium (Wavelength Dependence) | 588 | |--|---|--------------------------| | 1.4 | Available Experimental dn/dT of Germa- | | | 14. | nium (Wavelength Dependence) | 589 | | 15. | Available Experimental dn/dT of Germa- | | | | nium (Temperature Dependence) | 590 | | 16. | Variation of Refractive Index of Germa- | | | | nium with Temperature at Wavelength | | | | 3 µm [12] | 591 | | 17. | Temperature Dependence of the Optical | | | | Energy Gap of Germanium [16] | 592 | | 18. | Recommended $n-\lambda-T$ Diagram of Germa- | | | | nium | 594 | | 19. | Recommended dn/dT - λ - T Diagram of Ger- | | | | manium | 596 | | 20. | Recommended $dn/d\lambda$ Curve of Germanium | | | | at 293 K | 598 | | | | | | | List of Tables | | | 1. | | | | | Recommended Values on the Refractive Index of Silicon | 576 | | | Recommended Values on the Refractive Index of Silicon | 576 | | 2. | Recommended Values on the Refractive Index of Silicon | 576
578 | | 2. | Recommended Values on the Refractive Index of Silicon | | | 2. | Recommended Values on the Refractive Index of Silicon | | | 3. | Recommended Values on the Refractive Index of Silicon | | | 3. | Recommended Values on the Refractive Index of Silicon | 578
580 | | 3. 4. | Recommended Values on the Refractive Index of Silicon | 578 | | 3. 4. | Recommended Values on the Refractive Index of Silicon | 578
580 | | 3. 4. | Recommended Values on the Refractive Index of Silicon | 578
580
593 | | 3. 4. 5. | Recommended Values on the Refractive Index of Silicon | 578
580 | | 3. 4. 5. | Recommended Values on the Refractive Index of Silicon | 578
580
593 | | 3. 4. 5. | Recommended Values on the Refractive Index of Silicon | 578
580
593
595 | | 3. 4. 5. | Recommended Values on the Refractive Index of Silicon | 578
580
593 | # List of Symbols | a | Adjustable constant; lattice constant | |-------------------------------------|---------------------------------------| | A, A_0, A_1, A_2 | Adjustable constants | | b | Adjustable constant | | B | Adjustable constant | | c | Adjustable constant | | C | Adjustable constant | | D | Adjustable constant | | E | Adjustable constant | | $E_{\scriptscriptstyle \mathtt{F}}$ | Energy gap | | L_{293} | Length at 293 K | | n | Refractive index | | N | Complex refractive index; density of | | | harmonic oscillator | | T | Absolute temperature | | V | Volume | | Greek | | | Symbols | | | α | Linear thermal expansion coefficient | | γ | Damping factor | | € | Complex dielectric constant, value of | | | dielectric constant | | Page | ϵ_1 | Real part of ϵ | |------|-----------------------|---| | | €2 | Imaginary part of e | | 588 | €0 | Static dielectric constant | | | ε _m | High-frequency dielectric constant | | 589 | к | Extinction coefficient; oscillator strength | | 590 | λ | Wavelength of light | | | λ_i | Wavelength of the ith absorption band | | | Δ | Change in a quantity | | 591 | ν | Wavenumber | | | ν_i | Resonant frequency; wavenumber of | | 592 | • • | the ith absorption band | #### 1. Introduction The refractive index of a material is one of its fundamental and useful optical properties. Accurate knowledge of the refractive index over a wide range of wavelength is indispensable for many applications. Although this property continues to receive attention for both industrial as well as purely scientific applications, the current state of the available data for certain widely used materials is less than adequate. While experimental results for the refractive index of pure silicon and germanium are reported by several groups of investigators claiming high internal accuracy and agreement, the data as a whole are in disagreement. In this study, an attempt is made to consolidate all of the published refractive index data on silicon and germanium and to critically evaluate the raw experimental data and techniques of observation. A modified Sellmeier type dispersion relation is utilized to describe the available body of data. The resultant equations were used to generate the most probable values which agree with the selected experimental data to within $\pm 2.0 \times 10^{-3}$ over the wavelength range 1.2 to 14.0 μm for silicon and 1.9 to 18.0 μm for germanium. # 2. Theoretical Background on Refractive Dispersion in Crystals Dispersion relations are of fundamental importance to the description of the optical properties of materials. They relate both the absorptive and dispersive properties into one relatively concise statement describing a general linear relationship between fundamental amplitudes. The only two major restrictions are boundedness and causality, thus these relatious are useful in many fields and applications in both physics and engineering. The dispersion of radiation in an optical material is intimately related to the microscopic structure of the material itself. In the most general terms, long wavelength transmission of a pure crystal is limited by molecular vibrations, rotations while short wavelength transmission is limited by the electronic excitations of individual atoms. Practically, this implies that the fundamental transparent spectral range may be determined by knowledge of the absorption spectra of a material. The energy necessary for electronic excitations is generally noted by the location of the energy gaps whicle the molecular excitation is represented by the fundamental phonon frequency. Experimentally, both of these parameters may be altered by various techniques including doping, stress, strain, and temperature variations. One other area of primary importance is that of point defects. The varied
effects of point defects in semiconducting materials plays an important role in both the electrical and optical properties, however a detailed analysis of these effects is beyond the scope of this work. A more complete analysis of these effects is given by Crawford and Slifkin [1]. In general, the absorption and transmission of a material is not well known except for a small wavelength range. Thus, on theoretical grounds, it is convenient to consider dispersion as arising from two major sources separately; namely, the bound and free electrons. In non-conducting dielectric materials, the bound electron, or molecular, interactions tend to predominate, while free electron interactions are most common in metals. In semiconducting materials, both of these contributions may be important. In fact, most semiconductors show an optical absorption and an anomalous dispersion in the far-infrared region. This effect is rather small in covalent semiconductors like Si and Ge, it increases, however, with increasing polarity. Both the radio-frequency measurement and infrared observation indicate that the effect of free carriers on Si and Ge are negligibly small. Furthermore, in the elemental Si and Ge, the lattice has no permanent dipole moment and consequently the lattice absorption is small. For pure dielectrics, the wavelength or frequency dependence of the optical constants may be described by the classical treatment of Lorentz. The theory assumes the solid to be composed of a series of independent oscillators, which are set into forced vibrations by the incident radiation. The Lorentz theory of absorption and dispersion for both insulating and semi-conducting materials leads to the two familiar relations, $$n^2 - \kappa^2 = 1 + \sum_i \frac{N_i (\nu_i^2 - \nu^2)}{(\nu_i^2 - \nu^2)^2 + \gamma_i^2 \nu^2} \tag{1}$$ and $$2n\kappa = \frac{1}{\nu} \sum_{i} \frac{N_{i} \gamma^{2} \nu^{2}}{(\nu_{1}^{2} - \nu^{2})^{2} + \gamma_{i}^{2} \nu^{2}}, \tag{2}$$ where n is the refractive index, κ the absorption index, N_i the parameter associated with the oscillator strength of the *i*-th oscillator, ν_i the resonant frequency of the *i*-th oscillator and γ_i the damping constant of the *i*-th oscillator. In the transparent wavelength region, eq. (1) can be reduced to a Sellmeier type equation by neglecting the line width of the oscillators, thus reducing to: $$n^{2} = 1 + \sum_{i} \frac{a_{i} \lambda^{2}}{\lambda^{2} - \lambda_{i}^{2}} + \sum_{j} \frac{b_{j} \lambda^{2}}{\lambda^{2} - \lambda_{j}^{2}}.$$ (3) Terms in the first summation are contributions from the ultraviolet absorption bands and those in the second from the infrared absorption bands. From eq (3), the dielectric constants, ϵ_{∞} and ϵ_{0} , of the material under consideration are defined as: $$\epsilon_{\varpi} \! = \! 1 \! + \! \sum_{i} a_{i}, \label{eq:epsilon}$$ and $$\epsilon_0 = 1 + \sum_i a_i + \sum_j b_j$$. As noted before, the effects of free carries and lattice absorption are found to be negligibly small in elemental Si and Ge, thus the contributions from infrared absorption bands can be dropped and eqs (3) and (4) are simplified to: $$n^2 = 1 + \sum_{i} \frac{a_i \lambda^2}{\lambda^2 - \lambda^2} \tag{5}$$ and $$\epsilon = \epsilon_0 = \epsilon_{\alpha} = 1 + \sum_i a_i. \tag{6}$$ In an ideal application of eq (5), one would need to know the wavelengths of all of the absorption peaks in the short wavelength region. This is very difficult in practice because of the large number of absorption peaks. In fact, only a few absorption peaks are accessible for experimental observation. It is also observed that among the absorption peaks, only the one that is located closest to the transparent region has noticeable effect on the refractive index in the transparent region. In order to simplify the calculations of the effect due to unobserved absorption bands and those other than the one affecting most the refractive index in the transparent region, the following considerations were taken. Each term, except the predominating one, in the summation of eq (5) is expanded as: $$\frac{a_i \lambda^2}{\lambda^2 - \lambda_i^2} = a_i \left(1 + \frac{\lambda_i^2}{\lambda^2} + \frac{\lambda_i^4}{\lambda^4} + \cdots \right)$$ (7) Since λ_i 's are usually considerably smaller than λ 's in the transparent region, a good approximation of eq. (5) is $$n^{2} = 1 + \sum_{i=2}^{N} a_{i} \left(1 + \frac{\lambda_{i}^{2}}{\lambda^{2}} \right) + \frac{a_{1} \lambda^{2}}{\lambda^{2} - \lambda_{1}^{2}}$$ (8) 01 $$n^{2} = 1 + \sum_{i} a_{i} + \frac{1}{\lambda^{2}} \sum_{i=2}^{N} a_{i} \lambda_{i}^{2} + \frac{a_{1} \lambda_{1}^{2}}{\lambda^{2} - \lambda_{1}^{2}}, \tag{9}$$ with a_1 and λ_1 associated with the term that has the greatest effect on the refractive index in the transparent region. Therefore, we have the simplified dispersion equation as: $$n^2 = \epsilon + \frac{A}{\lambda^2} + \frac{B \lambda_1^2}{\lambda^2 - \lambda_1^2}, \tag{10}$$ where A and B are adjustable parameters, $\lambda_1 = 1.1071$ μm for Si and $\lambda_1 = 1.8703$ μm for Ge [2]. Equation (10) can be generalized to include temperature as an inpendent variable. In this case, the parameters ϵ , A, B, and λ_1 are functions of temperature. At long wavelengths, the dielectric constant, ϵ , is equal to the square of refractive index, i.e., $\epsilon(T) = n^2(T)$ at long wavelength. Therefore, $$\frac{1}{\epsilon(T)} \frac{d\epsilon(T)}{dT} = 2 \frac{1}{n(T)} \frac{dn(T)}{dT}. \tag{11}$$ Cardona, Paul, and Brooks [3] found the longwavelength (1/n)(dn/dT) to be $(3.9 \pm 0.4) \times 10^{-5} \text{K}^{-1}$ for Si and $(6.9\pm0.4)\times10^{-5}\mathrm{K}^{-1}$ for Ge, between 77 and 400 K. Higher values of (1/n)(dn/T) were observed by other workers: $(4.8\pm0.2)\times10^{-5}\mathrm{K}^{-1}$ for silicon [4] and $9.7 \times 10^{-5} \text{K}^{-1}$ for germanium [5]. However, these constant values of (1/n)(dn/dT) only hold at high temperatures. Deviation from linearity at low temperatures requires that a non-linear relation between ϵ and T be established. The values of the dielectric constant which appear in the literature are inaccurate. In the survey work of Young and Frederikse [6], the value for Si varies from 11.7 to 12.1 and that of Ge from 13.6 to 16.6. As a consequence, the reported values of ϵ are not suitable for eq (10) and $\epsilon(T)$ can only be obtained by fitting selected room-temperature refractive index data to eq (10). The temperature dependence of λ_1 was investigated by Macfarlane et al. [7, 8], their results are $d\lambda_1/dT = 0.000267 \ \mu \text{m} \ \text{K}^{-1}$ for Si and 0.001016 µm K⁻¹ for Ge at temperatures higher than 200 K. Non-linearity predominates at low The parameters, A and B, in eq (10) can be expressed in terms of temperature based on the considerations given below. Since $$A = \sum_{i=2}^{N} a_i \lambda_i^2 \text{ and } B = a_1$$ (12) and the a's are respectively proportional to the density of the corresponding oscillator, the temperature dependence of a_i is given by the relation $$\frac{1}{a_i}\frac{da_i}{dT} = -\frac{1}{V}\frac{dV}{dT} = -3\alpha, \tag{13}$$ where V and α are respectively the volume and the thermal expansion coefficient of the material. Hence $$a_t = a_{t0} e^{-3 \int_{293}^T \alpha \, dT} = a_{t0} e^{-3\Delta L(T)/L_{293}},$$ (14) with a_{0t} being the value of a_t at 293 K. Furthermore, each of the λ_t^2 's in the summation can be considered as a quadratic function of temperature because it is an experimentally observed fact that λ_t is approximately a linear function of T [9] in the temperature region of interest. Therefore $$A(T) = e^{-3\Delta L(T)/L_{293}} (A_0 + A_1 T + A_2 \dot{A}^{2})$$ (15) and $$B = B_0 e^{-3\Delta L(T)/L_{293}}, \tag{16}$$ where A_0 , A_1 , A_2 , and B_0 are adjustable deficients. Incorporating these considerations into equal to the latter can be written in the general form as $$n^2 = f(\lambda, T). \tag{17}$$ In the actual cases, however, one finds negligibly small values for B_0 's through data fitting procedures. As a result, the following dispersion equation is adopted to calculate the refractive index of Si and Ge: $$n^2(\lambda, T) = \epsilon(T) + \frac{A(T)}{\lambda^2}$$ (18) With ϵ and the parameters A_0 , A_1 , and A_2 appropriately determined, dn/dT and $dn/d\lambda$ can be easily calculated taking the first derivatives of eq (18) with respect to T and λ . # 3. Presentation of Numerical Data Reference data are generated here through critical evaluation, analysis, and synthesis of the available experimental data. The procedure involves controlled at an aniformation, resolution, and reconciliation of disagreements in cases of conflicting data, correlation of data in terms of various controlling parameters, curve fitting with theoretical or empirical equations, and comparisons of experimental values with predictions. No attempt was made to analyze the thinfilm data and the regions of strong absorption, because of the scantiness of reliable information. However, experimental data of thin films and absorption regions are also presented along with those of the transparent region in the tables reporting experimental data. A number of figures and tables summarize the information and give data as a function of wavelength and temperature. The conventions used in this presentation, and specific comments concerning the interpretation and use of the data are given below. The subsections for Si and Ge give all the information and data for a given material and cover the following: - a. A text discussing the data, analysis, and recommentations, - b. A figure of experimental n values (for wavelength and temperature, respectively), - c. A figure of experimental $dn/dT = f(\lambda)$, - d. A figure of experimental dn/dT = f(T), - e. A table of experimental data
on $n=f(\lambda)$, given in Appendix, - f. A table of experimental data on n=f(T), given in Appendix, - g. A table of experimental data on $dn/dT=f(\lambda)$ given in Appendix, - h. A table of experimental data on dn/dT = f(T) given in Appendix, - i. Figures of recommended or provisional values of n, dn/dT, and $dn/d\lambda$, - j. Tables of recommended or provisional values of $n, \, dn/dT$, and $dn/d\lambda$. In figures containing experimental data, selected data sets are labeled by appropriate legends corresponding to those in the corresponding tables of experimental data given in Appendix, where specifications for individual data sets are also included. There are a number of experimental methods used for the determination of refractive index, among which the following are those commonly used: Deviation method (prism method) Interference method Transmission method Reflection method High frequency modulation method Brewster angle method Polarization method Thickness determination method Multilayer method The methods listed above are arranged in the order of their inherent accuracy or popularity. The deviation method is the most popular means of determining the refractive indices, but the accuracy of the results depends on the conditions of the prism specimen. The highest accuracy that can be attained is in the fifth decimal place. The interference technique can be used to obtain data up to the fourth decimal place. Transmission and reflection methods yield results good to the second place, while the multilayer results are no better than two places. For a comprehensive, yet concise, review of all these methods, the reader is referred to references [10] and [11]. Dispersion equations for Si and Ge have been proposed in earlier works. Available relations are discussed in the text so as to facilitate comparison. Refractive indices for most of selected data sets are reported to the fourth decimal place. However, detailed compositions and characterizations of the specimens were usually not clearly given. Since impurities in the sample and conditions of the surface are decisive factors affecting the accuracy of the observed results, such highly precise data cannot be applied to a sample chosen at random. For this reason no attempt is made to recommend any particular set of data with the reported high accuracy, but to generate the most probable values for the pure crystals. As a result, the estimated uncertainties for the recommended values on the refractive index are higher than those for the reported data obtained even by highprecision measurements. The accuracy of the recommended refractive index values in this work is estimated to be 1 to 2×10^{-3} . ## 3.1. Silicon, Si There are 55 sets of experimental data available for the refractive index (wavelength dependence and temperature dependence) of silicon as tabulated in tables A–1 and A–2 and plotted in figures 1 and 2. It should be pointed out that a few of the data sets are from observations for thin films and are reported here for purposes of comparison. After careful review and evaluation of the available information, it was found that data sets reported by Briggs [12], Salzberg and Villa [13], Cardona et al. [3], Lukes [4, 14], Primak [15], and Icenogle et al. [5] are representative for the refractive index of silicon in the transparent region between 1.3 and 12 μ m. Briggs [12] probably was the first one who reported the measured refractive index of silicon. A 99.8% pure silicon wedge specimen of about 11.5° apex angle was investigated using minimum deviation method over a spectral range from 1.05 to 2.60 μ m. He stated that the accuracy of his measurements was good to the second decimal place. Since this first measurement, a number of other investigations have been made. Refractive index determination from 1.35 to 11.04 μ m was made by Salzberg and Villa [13] for a wedge specimen of about 16° apex angle. The sample, of unknown purity, was obtained from the Texas Instrument Company. The autocollimation minimum deviation method was used to determine the refractive index. Their results were lower than those of Briggs by about 5 parts in the third decimal place. They claimed an accuracy of ± 2 parts in the fourth decimal place. Cardona et al. [14] measured the refractive index of a thin silicon wedge of 5° in the wavelength range from 1 to 5 μ m and at temperatures 100, 194, and 297 K. Their results were about 4 parts in the third decimal place lower than the corresponding ones of Briggs. Lukes [4, 14] measured the refractive index at five wavelengths, 1.259, 1.407, 1.564, 2.409, and 5.156 μ m, over a wide temperature region between 109 and 750 K by the conventional method of minimum deviation. The silicon wedge of \sim 18° angle was prepared from a p-type single crystal with a resistivity of \sim 380 ohm-cm. The reported error was $\pm \sim$ 0.0004, but his values of refractive index were systematically lower than those of Salzberg and Villa by 0.0015. Primak [15] went to great lengths in the determination of the refractive index of silicon from 1.12 to 2.16 μ m. His results corresponded closely to those reported by Lukes. As he took into account all of the influencing factors in arriving at the final values, he believed that his values were reliable within an uncertainty of 1 or 2 parts in the third decimal place. Icenogle et al. [15] made a thorough investigation on the refractive index for silicon over the temperature and wavelength ranges of 99-296 K and 2.554-10.27 μ m, respectively. The samples were obtained from the Exotic Materials, Inc. and were characterized as "good optical grade" without further details of purity of the material. The results are in fair agreement with other data sets. The claimed errors were $\pm 3 \times 10^{-4}$. 566 H. H. H. U For the purpose of ease of comparison, the above mentioned data sets are replotted in figure 3. It is obvious that the disagreement among the values reported by different researchers is greater than the accuracy claimed by them. Although internal consistency was observed in each investigation, unaccounted sources of errors are responsible for these discrepancies. Primak [15] devoted considerable space to the discussion of both systematic and random errors with the conclusion that the systematic errors played the key role in data discord. The possible sources of error were attributed to: - i. Inadequate care in checking the pyramidal error. If the wedge angle was not perpendicular to the circle and parallel to the telescope, the effective angle would be greater than the true wedge angle with the consequence of a larger deviation angle which would lead to a larger value of refractive index. - ii. Small wedge angle of the samples. For a highly refracting material such as silicon, a small wedge angle is required to measure the refractive index. As a result, large errors in angle measurement can be introduced and hence in the observed refractive index. - iii. Broad detector used. Observation in the infrared requires a detector in the determination of deviation angle. The detectors that have been used are in general many times broader than the width of the spectral line, thus decreasing the accuracy in reading the angles. Significant errors are, therefore, inevitably introduced. - iv. Optical inhomogeneity of the sample. Optical inhomogeneity of the material causes image distortion and thus the error in the angle setting. Among the above sources, the smallness of the wedge angle is the major factor that contributes to the error. A combination of these contributions limits the accuracy of the measurement of the refractive index by the minimum deviation method to 1 or 2 units in the third decimal place, a few times higher than that claimed by most investigators. The effect of impurities on the refractive index is considerable. In some cases, observations made on samples of questionable origin and undefined purity may yield radically different results. Villa [16] reported his grossly divergent values (shown in figure 3) to show that sample differences can be very significant. In figure 1 one can see Simon's [17] radically different results obtained for a silicon sample of high impurity content. The data of Spitzer et al. [18], obtained on heavily doped silicon, are significantly divergent from those of pure samples. Thus, when the effects of impurities are taken into consideration, discrepancies from pure samples may be much larger than 2 parts in the third decimal place. Although the factors discussed above are well known, unfortunately they are generally not cited in literature, but must be deduced from the assigned accuracies. In the present work it is assumed that data sets that are discordant only in the third decimal place are in reasonable agreement. This assumption can be supported by a careful comparison of the observations by Icenogle et al. [5] in which the values of the refractive index at a given wavelength and temperature, obtained from wavelength-dependence observation and from temperature-dependence observation, can be different in many cases by more than ! part in the third decimal, few times higher than the claimed precision of $\pm 3 \times 10^{-4}$. More data can be found in references [19-30] and are given in tables A-1 and A-2, in which one can find also data sets obtained on thin films. No attempt was made to analyze the thin film data. However, it has been observed that the refractive indices of pure silicon the films are deposited on substrates maintained at elevated temperatures during deposition or appropriately annealed after deposition. Surface contamination appears to be the most serious problem. However, data for thin films reported by those who exercise appropriate precautions in the sample preparation are usually in agreement with those of bulk material. literature data on the temperature coefficient of the refractive index is
rather scarce. Data reported in tables A-3 and A-4 and plotted in figures 4 and 5 are those of Lukes [4, 14]. His values were evaluated from his measurements given in table A-2 and in figure 2. A though a significant body of data on the refractive index of silicon is available, an attempt to analyze data has been rare. In the literature, only one quantitative study has been proposed. Hertzberger and Salzberg [31] proposed a dispersion equation for silicon which was derived in conjunction with 13 other materials. They noted that a comparison of the data from 14 materials indicated that all had refractive index values varying asymptotically with λ^2 . Furthermore, the mean asymptote was found to be at λ_0 = 0.168 um. The dispersion relation was based upon a Taylo: expansion in λ^2 which retains only the linear terms. The equation is $$n = A + BL + CL^2 + D\lambda^2 + E\lambda^4, \tag{19}$$ where λ is in units of μ m, $L=1/(\lambda^2-\lambda_0^2)$, and the coefficients for silicon in the region 1.3 to 11.0 μ m are $$A=3.41696, B=0.138497, E=0.000000148.$$ The determination of the coefficients in this equation was based on a single data set by Salzberg and Villa [13] and the fit is excellent. In the present work, eq (10) is used to represent the refractive index for silicon. The main task was the selection of the appropriate parameters ϵ and λ_i , and the determination of the coefficients A and B. But the most important of all was the selection of reliable data sets used as input information to eq (10). The selected data were limited to the works of Salzberg and Villa, Primak, and Icenogle et al. Data from Cardona et al. and Lukes were not used on the basis that their values had to be read off from the graphs in their reports. Deviations between the graph readings and the true values can occur in the second decimal place of the data. The data of Briggs were not chosen as his values disagree in the second decimal place with the corresponding values of Primak who exercised great care in the experiment for high purity silicon specimens. The remaining data sets from Primak, Salzberg and Villa, and Icenogle et al. constitute the basis of our recommendations. Their results are in agreement in the third decimal as expected. Fortunately, Icenogle's work covered a sizable temperature range, thus permitting the prediction of the refraction index at temperatures other than room temperature. Selection of ϵ and λ_1 in eq (10) was rather difficult. Figure 6 shows the results of Cardona et al. [3] who observed the relative changes of refractive index, $\Delta n/n$, at a wavelength of 3 µm as temperature varied between 77 to 400 K. The average slope, (1/n)(dn/dT), of this curve is $(3.9 \pm 0.4) \times 10^{-5} \text{K}^{-1}$. Lukes [4, 14] obtained a higher value of $4.8\pm0.2\times10^{-5}\mathrm{K^{-1}}$ for (1/n)(dn/dT) by extrapolating his results to longer wavelengths. It appeared that at long wavelengths, ε in eq (10) could be determined from the relation $(1/\epsilon)(d\epsilon/dT) = (2/n)(dn/dT)$ using one of the above mentioned (1/n)(dn/dT) values. The result should be an exponential relation of the form $\epsilon = \epsilon_0 e^{\epsilon T}$. However, es the constancy of (1/n)(dn/dT) does not hold for the wide termperature range of our interest, an empirical relation between ϵ and T had to be found based on the experimental data on n. It is shown in figure 2 that curves of temperature dependence of refractive index at various wavelengths are essentially parallel to each other and that each of them smoothly and monotonically increases with temperature. This provides the possibility to find relations between ϵ and T. Since ϵ is nearly equal to n^2 at long wavelengths, the best choice in the present case seemed to be the refractive indices at 10.27 µm by Icenogle et al. [5]. As the available data of n(T) at 10.27μm cover only the limited temperature range from 100 to 298 K, a wider temperature range coverage is needed to establish the relation between ϵ and T that is valid over the temperature range 100-750 K. As shown in figure 2, the 5.156 µm curve by Lukes [14] is slightly above, but parallel to, the extension made from the 10.17 μm curve. The required 10.27 μm data in the high temperature region can be estimated by an appropriate extrapolation of Icenogle's data within that region. In this way, the following polynomial expression is found to be valid at 10.27 μm ond aver 100-750 K temperature range, $$\begin{array}{c} n^2 (10.27~\mu m,~T) \! = \! 11.4552 \! + \! 2.7765 \! \times \! 10^{-4} T \! + \! 1.7066 \\ \times 10^{-6} T^2 \! - \! 8.1423 \! \times \! 10^{-10} T^3. \end{array} \eqno(20)$$ Since at long wavelengths the dielectric constant closely approaches n^2 , it is acceptable to consider the above quantity as a proportional factor and thus express the dielectric constant by the relation $$\epsilon(T) = En^2(10.27\mu m, T),$$ (21) where E is the proportional constant. The spectral positions of resonant absorption peaks have been observed by a number of investigators. Moss [32] made an attempt to calculate the refractive indices in the transparent region from the absorption data based on the general principle of oscillatory system. The spectral position of the natural frequency in his single oscillator model was determined at 3.4 eV or $\lambda = 0.365 \mu m$. McLean [2] investigated the absorption edge spectrum of silicon and found the optical energy gap at 300 K to be $E_g = 1.12$ eV or $\lambda_1 = 1.1071 \ \mu m$. Macfarlane et al. [7] further studied the absorption edge spectrum and found that the temperature variation of the optical energy gap is essentially linear in the temperature region 250-480 K, but nonlinearity progressively predominates at lower temperatures, as seen from figure 7. Lukes and Schmidt [9] studied the reflectivity spectrum of silicon and found two additional absorption peaks at about 0.36 and 0.27 μm . The first one is in line with the Moss' [32] result, while the second corresponds to the prediction of Yu and Cardona [33]. A summary of these findings results in three absorption peaks; namely: $\lambda_1 = 1.1071 \mu m$, $\lambda_2 = 0.365 \mu m$, and $\lambda_3 = 0.27 \mu m$, that supposedly have significant effects on the refractive index in the transparent region from 1.2 to 14 μ m. An attempt was made to fit the selected data to an equation similar to eq (10) by including extra terms due to λ_2 and λ_3 . It was found, however, that the introduction of the λ_2 aand λ_3 terms did not improve the agreement obtained when only the λ_1 term was included. Furthermore, the coefficients of the λ_2 and λ_3 terms could not be uniquely defined because there were no reliable data in the regions bounded by and near the three peak wavelengths. Also, the value of B was found to be negligibly small, thus making the contribution of the last term in eq (10) insignificant. As a consequence, eq (18) was adopted and the least squares fitting of selected data to this equation yielded the following expression for the refractive index of silicon in the ranges 1.2 to 14 μ m and 100–750 K: $$n^{2}(\lambda, T) = \epsilon(T) + \frac{L(T)}{\lambda^{2}} (A_{0} + A_{1}T + A_{2}T^{2}),$$ (22) where $$\epsilon(T) = 11.4445 + 2.7739 \times 10^{-4} T + 1.7050 \times 10^{-6} T^2 - 8.1347 \times 10^{-10} T^3,$$ $L(T) = e^{-3\Delta L(T)/L_{203}},$ $\lambda = \text{wavelength in units of } \mu \text{m},$ $T = \text{temperature in units of } K,$ $A_0 = 0.8948,$ $A_1 = 4.3977 \times 10^{-4},$ $A_2 = 7.3835 \times 10^{-8},$ and from reference [34] $$\frac{\Delta L(T)}{L_{293}} = -0.021 - 4.149 \times 10^{-7} T - 4.620 \\ \times 10^{-10} \, T^{2} + 1.482 \times 10^{-11} \, T^{3} \quad (20 - 293 \, \, \mathrm{K})$$ $$\begin{array}{c} \frac{\Delta L(T)}{L_{293}} \!\!=\! -0.071 \!+\! 1.887 \!\!\times\!\! 10^{-6} T \!\!+\! 1.934 \\ \times \!\! 10^{-9} T^2 \!\!-\! 4.544 \!\!\times\!\! 10^{-13} T^3 & (293 \!\!-\! 1600 \ \mathrm{K}). \end{array}$$ It should be pointed out that the room-temperature dielectric constant for silicon can be calculated from the expression for ϵ in eq (22). The result is 11.66 which agrees well with the commonly accepted value of 11.7. Equation (22) was used to calculate the recommended values of the refractive index of silicon with uncertainties of $\pm 2 \times 10^{-3}$. The recommended values are given in table 1 and plotted in figure 8. To provide visual comparison of calculated values with the experimental data, calculated values at a few specified temperatures and wavelengths are plotted in figures 2 and 3 where excellent agreement is revealed. Tables 2 and 3, respectively, give the calculated dn/dT and $dn/d\lambda$ values based on the first derivatives of eq (22) with respect to T and λ . The corresponding plots are shown in figures 9 and 10. Uncertainties in the calculated dn/dT are estimated based on Icenogle's [5] results which were the essential data on which eq (22) is based. Icenogle et al. evaluated $\Delta n/\Delta T$ values using their own measurements of n and found the average accuracy in $\Delta n/\Delta T$ to be about $\pm 0.15 \times 10^{-4} \, \mathrm{K}^{-1}$. Error bars corresponding to this amount are drawn on the calculated curves in figures 4 and 5 where calculations are compared with the experimental data. Although accuracies of experi- mental dn/dT are not given in Lukes' work [4, 14], it is reasonable to adopt the ame experimental error bar since the n versus T curves in figure 2 are closely parallel. Uncertainties of the calculated $dn/d\lambda$ are estimated in the following manner. Taking the first derivative of eq (22) with respect to λ , we have $$-dn/d\lambda = (1/n)A(T)/\lambda^3 = (1/n\lambda)(n^2 - \epsilon), \qquad (23)$$ which leads
to $$\delta(dn/d\lambda) \simeq \frac{1}{3} \cdot 2\delta n/\lambda.$$ (24) Based on the fact that the spectral dependence of the refractive index from various investigators are essentially parallel, it should be parmissible to apply the uncertainties, $\delta n = \pm 3 \times 10^{-4}$, quoted in Icenogle's work to evaluate $\delta (dn/d\lambda)$ using the above relation for the wavelength region between 2.55 and 14 μ m. For wavelengths <2.55 μ m, the uncertainty $\delta n = \pm 2 \times 10^{-3}$ of eq (22) should be used. Under these conditions, uncertainties of $dn/d\lambda$ are about $\pm \frac{10}{2} \times 10^{-4} \mu$ m⁻¹ at 2 μ m, $\pm 2.4 \times 10^{-4} \mu$ m⁻¹ at 2.55 μ m, $\pm 0.6 \times 10^{-4} \mu$ m⁻¹ at $\pm 0.44 0.44$ It should be noted that calculated values in tables 1, 2, and 3 are given with more digits than warranted merely for the purpose of tabular smoothness. As these values are calculated from an equation, it is highly desirable to give enough digits to show the variation of the variables in the equation and to provide comparison among neighboring entries. These extra digits which are insignificant and not in dicative of the accuracy of the values are indicated with an overstrike. Appropriate uncertainties in the recommended values discussed in the text are quoted in the footnotes of the tables. J. Phys. Chem. Ref. Data, Vol. 9, No. 3, 1980 AVAILABLE EXPERIMENTAL REFRACTIVE INDEX OF SILICON (Temperature Dependence) FIGURE 2. FIGURE 3. SELECTED EXPERIMENTAL REFRACTIVE INDEX OF SILICON (Wavelength Dependence) FIGURE 4. AVAILABLE EXPERIMENTAL dn/dT OF SILICON (Wavelength Dependence) FIGURE 5. AVAILABLE EXPERIMENTAL dn/dT OF SILICON (Temperature Dependence) FIGURE 6. VARIATION OF REFRACTIVE INDEX OF SILICON WITH TEMPERATURE AT WAVELENGTH 3 μm [3] FIGURE 7. TEMPERATURE DEPENDENCE OF THE OPTICAL ENERGY GAP OF SILICON [7] TABLE 1. RECOMMENDED VALUES ON THE REFRACTIVE INDEX OF SILICON * | 1.20 | | | | | | | | | | | | | | | | |--|---|---
--	--	--
--	---	---
--	--	
1.224 1.224 1.224 1.230 1.334 1.335 1.355 1.555 1.555 1.555 1.555 1.222 1.223	3.4845, 3.4757, 3.4757, 3.4757, 3.4757, 3.4636, 3.4636, 3.4636, 3.4598, 3.4598, 3.4598, 3.4437, 3.4437, 3.4240, 3.4210	3.4915 3.4884 4.4826 3.4779 3.4770 3.
3.49953 3.4904 3.4904 3.48553 3.48563 3.4756 3.4756 3.47564 3.	3.5084 3.5051 3.5020 3.4963 3.4963 3.4956 3.4852 3.	3.5157 3.5153 3.51072 3.5072 3.5073 3.5073 3.5016 3.5016 3.4941 3.4941 3.4941 3.4941 3.4953 3.4757 3.4757 3.4750 3.4550 3
3.5284 3.5285 3.5287 3.5187 3.5188 3.5193 3.5077 3.5029 3.5029 3.5029 3.4955 3.	400 3.5393 3.53595 3.53595 3.52555 3.52555 3.52555 3.52555 3.52555 3.5158 3.5111 3.511	450 3.554739 3.54739 3.54739 3.54739 3.54739 3.54739 3.55240 3.5524
3.5749 3.5644 3.5644 3.5644 3.55584 3.55584 3.55584 3.55584 3.55584 3.55584 3.55894 3.5394 3.5394 3.5395 3.5589 3.5589 3.5589 3.5589 3.5589 3.5589 3.5589 3.5689 3.	3.5873 3.5836 3.5767 3.5767 3.5767 3.5764 3.5619 3.5619 3.5511 3.5511 3.5513 3.5513 3.5513 3.5295 3.5135 3.5135 3.5135 3.4983	3.5999 3.5999 3.5999 3.5899 3.5899 3.5899 3.5859 3.5764 3.5764 3.5764 3.5576 3.
3.66140 3.6614	^{*} THE ESTIMATED UNCERTAINTY IN THE RECOMMENDED VALUES IS ±2X10*. RECOMMENDED VALUES ARE GIVEN TO MORE DIGITS THAN WARRANTED MERELY FOR THE PURPOSE OF TABULAR SMOOTHNESS. THE INSIGNIFICANT DIGITS OF THE VALUES ARE INDICATED BY OVERSTRIKES. FIGURE 8. RECOMMENDED $n-\lambda-T$ DIAGRAM OF SILICON TABLE 2. RECOMMENDED VALUES ON THE TEMPERATURE DERIVATIVE OF REFRACTIVE INDEX OF SILICON*	1
---	--	---
1.30291614(7)3031616016037(7)6017(1602)419364(3)31616037(7)6017(1602)419364(3)31616037(7)6017(1602)419364(3)31616037(7)6017(1602)419364(3)31616037(7)6017(1602)419364(3)31616037(7)6017(1602)419364(3)31616037(7)6017(1602)419364(3)31616037(7)6017(1602)419364(3)31616037(7)6017(1602)419364(3)31616037(7)6017(1602)419364(3)31616037(7)6017(1602)419364(3)31616037(7)6017(1602)419364(3)31616037(7)6017(1602)419364(3)31616037(7)6017(1602)419364(3)31616037(7)6017(7)6017(1602)419364(3)31616037(7)6017(7)6017(1602)419364(3)31616037(7)6017(7)6017(1602)419364(3)31616037(7)6017(7)6017(1602)419364(3)31616037(7)6017(7)6017(1602)419364(3)31616037(7)6017(7)6017(1602)419364(3)31616037(7)6017(7)6017(1602)419364(3)31616037(7)6017(7)6	1.509931443994615 1.47994615 1.47994615 1.47994615 1.37957405771455999571455 1.3795714555 1.3795714555 1.3795714555 1.3795714555 1.379571455 1.379571455 1.379571455 1.379571455 1.379571455 1.379571455 1.379571455 1.379571455 1.379571455 1.379571455 1.3795714 1.37957145 1.37957145 1.37957145 1.37957145 1.37957145 1.3795714 1.37957145 1.37957145 1.37957145 1.37957145 1.37957145 1.3795	1.6579694291100100011120101001112010100111201010111201010111201010111201010111201
1329174312141114111313334171411141114151515131091212116161 111107412114111411141114151515131091212116161 111107412114111411141114151515131091212116161 1111074121141141515151513109121211616161616161616161616161616161616	14.69.69.59.463.00.46.59.46.69.59.59.59.69.59.59.59.69.69.69.59.59.59.69.69.69.69.69.69.69.69.69.69.69.69.69	
in reference [40] are higher. Such discrepancies were attributed to the inhomogeneities and impurities in the samples which effectively reduced the thickness of the capacitors and thus resulted in an apparent increase in the dielectric constant. Rank et al. [35] measured the refractive index over a wavelength region between 2.0 and 2.4 μ m by an interferometric method. A single crystal germanium of unspecified purity was used and the resulting n's were about 0.01 higher than the corresponding values of Briggs. The temperature variation of the refractive index was observed to have a positive coefficient and the absorption edge moved to longer wavelengths as temperature increased. Lukes [36, 37] measured the refractive index for several germanium prism samples cut from single crystals of varying impurity. His measurements were carried out over a wavelength range of 1.8–5.5 μ m and the temperature range 100–530 K. The results obtained for the purest sample were in agreement with those of Salzberg and Villa, while the results for the impure samples showed discrepancies at the long wavelengths, the higher the impurity, the lower the n. In the shorter wavelength region, $<4~\mu$ m, the refractive index appeared practically independent on the impurity content. Icenogle et al. [5] made a thorough investigation on the refractive index for germanium over the 95–297 K and 2.554–12.360 μm regions. The samples were obtained from the Exotic Material, Inc. and were characterized as "good optical grade" without further details of purity of the material. The claimed error in the measurement of n was $\pm 6 \times 10^{-4}$. The results disagree with those of other workers by several parts in the third decimal. At room temperature and in the wavelength region where $\lambda > 3 \mu m$, Icenogle's values are higher than the earlier works. The sources for such discrepancies can possibly be ascribed to differences in the impurity content of the samples. Edwin et al. [38] made careful measurements of n for well characterized germanium specimens in the spectral region 8–14 μ m. Their results are in agreement with Icenogle's values when account is taken of both of their claimed uncertainties. Edwin et al. took into account the main sources of uncertainty in arriving at their reported values, including probable errors from temperature readings, angle determinations, wavelength identification, curvature of slit image, and random errors. The claimed uncertainty of their results is ± 0.0003 . According to their sample description, the specimens had a resistivity about 45 to 53 ohm-cm which indicated that they used purer samples than others. For ease of comparison, the above mentioned data sets are replotted on an enlarged scale in figure 13. It is obvious that the disagreement among the data sets is greater than the individually claimed accuracies. True internal consistency was observed in each measurement, unaccounted sources or errors were responsible for the discrepancies. Primak [15] devoted considerable space to discussions of both systematic and random errors for the case of silicon (see subsection 3.1). The conclusions are generally valid for other materials. Among the possible sources, the smallness of the prism angle is the major factor that contributes to the error. Combined with the errors from other sources, the limit of accuracy in the measurement of n by the minimum deviation method is 1 to 2 parts in the third decimal place, a few times higher than that claimed by many workers. The effect of impurities on the refractive index is considerable. In some cases, observations made on samples of questionable origin and undefined purity may yield radically different results. Simon [17] reported his radically different results (shown in figure 11) obtained for a germanium sample of high impurity content. Spitzer et al. [44] investigated the optical constants of heavily doped germanium with results greatly different from those of pure samples shown in figure 11. Thus, when the effects of impurities are taken into consideration, discrepancies from pure samples may be much higher than 2 parts in the third decimal place. Although the error causing factors given above are well known, unfortunately they are not generally given in the literature and authors advance independent claims of their own precisions. In the present work it is assumed that data sets are concordant if they are not identical in the third decimal place. More data can be found in references [41-58] and are given in tables A-5 and A-6, in which one can also find data sets obtained for thin films. No attempt was made to analyze the thin film data. However, it has been observed that the refractive indices of pure germanium thin films tend to agree with those of bulk crystal if the films are deposited on substrates maintained at elevated temperatures during the course of deposition or appropriately annealed after deposition. Surface contamination appears to be the most serious problem. However, data for thin films reported by those who exercised precaution in sample preparation are usually in agreement with those for bulk material. Literature data on the temperature derivative of the refractive index of germanium is rather scarce. The data tabulated in tables A-7 and A-8 and plotted in figures 14 and 15 are mainly those of Lukes [36, 58, 59]. His dn/dT values were evaluated from his measurements of n given in table A-6 and figure 12. Although considerable amounts of experimental data on the refractive index of germanium are available, they have received little analysis. The earliest quantitative results for germanium are generally attributed to Brattain and Briggs [41]. While they presented no dispersion relations in their work, they noted that their results were extremely sensitive to specimen preparation and that large discrepancies arose between samples. The first qualitative attempt was made by Rank et al. [35], who fitted a Cauchy type dispersion relation of the form $$n = n_0 + \frac{a}{\lambda^2} + \frac{b}{\lambda^4},\tag{25}$$ where λ is in units of μ m. They presented results for fits on both their own data and for the Brattain and Briggs data with the following constants:	Data	n ,
400 K with results plotted in figure 16. The average slope, (1/n)(dn/dT)of this plot is $(6.9\pm0.4)\times10^{-5}\mathrm{K}^{-1}$. Icenogle et al. obtained a higher value of $9.9 \times 10^{-5} \text{K}^{-1}$ for (1/n)(dn/dT) in the wavelength range 2.554 to 12.1 μ m. It appeared that din eq (10) could be determined from the relation $(1/\epsilon)(d/\epsilon/dT) = (2/n)(dn/dT)$ using the value of (1/n)(dn/dT) at long wavelengths. The result would be an exponential relation of the form $\epsilon = \epsilon_0 e^{\epsilon T}$. However, the constance of (1/n)(dn/dT) does not hold for a wide temperature range. Hence, an empirical relation between ϵ and T should be found based on available data of n. It is shown in figure 12 that curves of temperature dependence of refractive index at various wavelengths are essentially parallel to each other and that each of them smoothly and monotonically increases with temperature. This provides a possibility to find a relation between ϵ and T. As ϵ closely equals n^2 at long wavelengths, the best choice in the present case is the refractive indices at 10.27 µm by Icenogle et al. [5]. However, their results cover only a temperature range from 100 to 298 K. A wider temperature coverage is required to establish it relation between ϵ and T that is reliable over the temperature region 100-550 K of general interest. As shown in figure 12, the 5.156 μm curve of Lukes [36] is slightly above and parallel to the extension made from the 10.27 μm curve. The needed refractive indices at 10.27 μm in the higher temperature region was therefore obtained by appropriate extrapolation of cenogle's data in that region. In this way, the following polynomial equation is found to be valid at 10.27 μm and over 100–550 K: $$n^{2}(10.27 \ \mu\text{m}, T) = 15.3122 + 1.4571 \times 10^{-3}T + 3.5131 \times 10^{-6}T^{2} - 1.2089 \times 10^{-9}T^{3}.$$ (27) Since at long wavelengths the dielectric constant closely approaches but does not exactly equal n^2 , it is therefore appropriate to consider the above quantity as a proportional factor and the dielectric constant is expressed as: $$\epsilon(T) = En^2(10.27 \ \mu \text{m}, T)$$ where E is the proportional constant. Spectral positions of natural absorption peaks in germanium have been studied by a number of investigators. McLean [2] investigated the absorption edge spectrum of germanium and found the optical energy gap at 300 K to be E_s =0.663 eV or λ_1 =1.8703 μ m. Macfarlane et al. [8] further studied the absorption edge spectrum and found the temperature variation of the optical energy gap is essentially linear in the temperature range 200-300 K, but nonlinearity progressively predominates at lower temperatures as shown in figure 17. Lukes and Schmidt [9] studied the reflectivity spectrum of germanium and found two additional absorption peaks at $\lambda_2 \sim 0.589~\mu m$ and $\lambda_3{\sim}\,0.282~\mu\mathrm{m}.$ The latter corresponds to that predicted by Yu and Cardona [33]. As a summary of these findings, one now has three absorption peaks; namely: $\lambda_1 \!=\! 1.8703~\mu m,~\lambda_2 \!\!\sim \! 0.589~\mu m,~and~\lambda_3 \!\!\sim \! 0.282~\mu m$ that are supposed to have significant effects on the refractive index in the transparent region, 1.9-16 μ m. In this work, the selected data were fitted to an equation similar to eq (10) by including extra terms due to λ_2 and λ_3 . It was found, however, that introduction of the λ_2 and λ_3 terms did not improve the agreement obtained when only the λ_1 term was included. Furthermore, the coefficients of the λ_2 and λ_3 terms could not be uniquely defined because there were no reliable data in the regions bounded by and near the three peak wavelengths. Also, the value of B was found to be negligibly low and hence the contribution of the last term in eq (10) was insignificant. As a consequence, eq (18) was adopted and the least squares fitting of selected data to this equation yielded the following expression for the refractive index of germanium in the ranges of 1.9 to 18 μ m and 100-550 K: $$n^{2}(\lambda, T) = \epsilon(T) + \frac{L(T)}{\lambda^{2}} (A_{0} + A_{1}T + A_{2}T^{2}),$$ (28) where ``` \epsilon(T) = 15.2892 + 1.4549 \times 10^{-3}T + 3.5078 \times 10^{-6}T^2 -1.2071 \times 10^{-9}T^3, L(T) = e^{-3\Delta L(T)/L_{203}}, \lambda = \text{wavelength in units of } \mu m, T = \text{temperature in units of } K, A_0 = 2.5381, A_1 = 1.8260 \times 10^{-3}, A_3 = 2.8888 \times 10^{-6}, ``` and from reference [60] $$\begin{split} \frac{\Delta L(T)}{L_{293}} &= -0.089 + 2.626 \times 10^{-6} (T - 100) + 1.463 \\ &\times 10^{-8} (T - 100)^2 - 2.221 \times 10^{-11} (T - 100)^3 \\ &\qquad \qquad (100 < T < 293), \\ \frac{\Delta L(T)}{L_{293}} &= 5.790 \times 10^{-6} (T - 293) + 1.768 \\ &\qquad \qquad \times 10^{-9} (T - 293)^2 - 4.562 \times 10^{-13} (T - 293)^3 \\ &\qquad \qquad (293 < T < 1200). \end{split}$$ It is interesting to point out that the room temperature dielectric constant for germanium can now be calculated from the expression of ϵ in eq (28). The result is 16.009 which is in good agreement with the commonly accepted value of 16.0. Equation (28) was used to calculate the recommended values of the refractive index of germanium with uncertainties of $\pm 2 \times 10^{-3}$. The recommended values are given in table 4 and plotted in figure 18. To provide a visual comparision of the calculated values with experimental data, calculated values at a few specified temperatures and wavelengths are plotted in figures 12 and 13 where close agreement is revealed. Tables 5 and 6, respectively, give the calculated dn/dT and $dn/d\lambda$ values based on the first derivatives of eq (28) with respect to T and λ . The corresponding plots are shown in figures 19 and 20. Uncertainties in the calculated dn/dT values are estimated based on Icenogle's data [5] which are essentially the basis for eq (28). Icenogle et al. evaluated $\Delta n/\Delta T$ values using their own measurements of n and found the average uncertainty in $\Delta n/\Delta T$ to be about $\pm 0.5 \times 10^{-4} K^{-1}$. Error bars corresponding to this amount are drawn on the calculated curves in figures 14 and 15 where calculated results are compared with experimental data. Although accuracies of experimental dn/dT are not available in Lukes' work [36, 38, 59], it is reasonable to use the same error bar as the experimental errors because the n versus T curves in figure 12 are closely parallel. Uncertainties in the calculated $dn/d\lambda$ are estimated from the expression: $$\delta(du/d\lambda) \simeq \pm 2\delta n/\lambda$$ as discussed in subsection 3.1. Similar to the case of silicon, the uncertainties in $dn/d\lambda$ of germanium are about $\pm 5 \times 10^{-4} \mu \text{m}^{-1}$ at 2.55 μm , $1.2 \times 10^{-4} \mu \text{m}^{-1}$ at 10 μm , and $0.7 \times 10^{-4} \mu \text{m}^{-1}$ at 18 μm . It should be noted that calculated values in tables 4, 5, and 6 are given with more digits than warranted for the purpose of tabular smoothness. As these values are calculated from an equation, it is desirable to give enough digits to show the variation of the variables in the equation and to provide comparasion among neighboring entries. To identify the unwarranted insignificant digits in the values, an overstrike is used. Appropriate uncertainties in the recommended values are discussed in the text and quoted in the footnotes of the tables. FIGURE 11. AVAILABLE EXPERIMENTAL REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) FIGURE 12. AVAILABLE EXPERIMENTAL REFRACTIVE INDEX OF GERMANIUM (Temperature Dependence) FIGURE 13. SELECTED EXPERIMENTAL REFRACTIVE INDEX OF GERMANIUM (Wavelength Dependence) FIGURE 14. AVAILABLE EXPERIMENTAL dn/dT OF GERMANIUM (Wavelength Dependence) FIGURE 15. AVAILABLE EXPERIMENTAL dn/dT OF GERMANIUM (Temperature Dependence) FIGURE 16. VARIATION OF REFRACTIVE INDEX OF GERMANIUM WITH TEMPERATURE AT WAVELENGTH 3 µm [3] FIGURE 17. TEMPERATURE DEPENDENCE OF THE OPTICAL ENERGY GAP OF GERMANIUM [8] TABLE 4. RECOMMENDED VALUES ON THE REFRACTIVE INDEX OF GERMANIUM*	1	
2.50	3.0887	4.0055
---	--	--------------
Cardona, M., Paul, W., and Brooks, H., "Dielectric Constant of Germanium and Silicon as a Function of Volume," Phys. Chem. Solids, 8, 204-6 (1959). - [4] Lukes, F., "The Temperature-Dependence of the Refractive Index of Silicon," Phys. Chem. Solids, 11, 342-4 (1959). - [5] Icenogle, H.W., Platt, B.C., and Wolfe, W.L., "Refractive Indexes and Temperature Coefficients of Germanium and Silicon," Appl. Opt., 15(10), 2348-51 (1976). - [6] Young, K.F. and Frederikse, H.P.R., "Compilation of the Static Dielectric Constant of Inorganic Solids," J. Phys. Chem. Ref. Data, 2(2), 313-409 (1973). - [7] Macfarlane, G.G., McLean, T.P., Quarrington, J.E., and Roberts, V., "Fine Structure in the Absorption-Edge Spectrum of Si," Phys. Rev., 111, 1245-54 (1958). - [8] Macfarlane, G.G., McLean, T.P., Quarrington, J.E., and Roberts, V., "Fine Structure in the Absorption Edge Spectra of Ge," Phys. Rev., 108, 1377-83 (1957). - [9] Lukes, F. and Schmidt, E., "The Fine Structure and the Temperature Dependence of the Reflectivity and Optical Constants of Ge, Si and III-V Compounds," in Proceedings of the International Conference on Physical Semiconductors, 389-94 (1962). - [10] Ballard, S.S., McCarthy, K.A., and Wolfe, W.L., "Optical Materials for Infrared Instrumentation," Michigan University, Willow Run Lab. Rept. No. 2389-11-S, 115 pp. (1959). [AD 217 367] - [11] Coblentz, W.W., "Transmission and Refraction Data on Standard Lens and Prism Material with Special Reference to Infrared," J. Opt. Soc. Am., 4, 432-47 (1920). - [12] Briggs, H. B., "Optical Effects in Bulk Silicon and Germanium," Phys. Rev., 77(2), 287 (1950). - [13] Salzberg, C. D. and Villa, J. J., "Infrared Refractive Indexes of Silicon, Germanium and Modified Selenium Glass," J. Opt. Soc. Am., 47(3), 244-6 (1957). - [14] Lukes, F., "The Temperature-Dependence of the Refractive Index of Silicon," Czech. J. Phys., B10, 317-26 (1960). - [15] Primak, W., "Refractive Index of Silicon," Appl. Opt., 10(4), 759-63 (1971). - [16] Villa, J. J., "Additional Data on the Refractive Index of Silicon," Appl. Opt., 11(9), 2102-3 (1972). - [17] Simon, I., "Optical Constants of Germanium, Silicon, and Pyrite in the Infrared," J. Opt. Soc. Am., 41(10), 730 (1951). - [18] Spitzer, W. G., Gobeli, G. W., and Trumbore, F. A., "Effect of Heat Treatment on the Optical Properties of Heavily Doped Silicon and Germanium," J. Appl. Phys., 35(1), 206-11 (1964). - [19] Runyan, W. R., "Silicon for Infrared Optical Use," in Proceedings of the OSU-WADD Symposium on Electromagnetic Windows, U.S. Air Force Rept. WADD-TR-60-274, Vol. 1, 53-73 (1960). - [20] Fhilipp, H. R. and Taft, E. A., "Optical Constants of Silicon in the Region 1 to 10 eV," Phys. Rev., 120(1), 37-8 (1960). - [21] Archer, R. A., "Determination of the Properties of Films on Silicon by the Method of Ellipsometry," J. Opt. Soc. Am., 52(9), 970 (1962). - [22] Bennett, J. M. and Booty, M. J., "Computational Method for Determining n and κ for a Thin Film for the Measured Reflectance, Transmittance, and Film Thickness," Appl. Opt., 5(1), 41-3 (1966). - [23] Vedam, K., Knausenberger, W., and Lukes, F., "Ellipsometric Method for the Determination of All the Optical Parameters of the System of an Isotropic Non-Absorbing Film on an Isotropic Absorbing Substrate. Optical Constants of Silicon," J. Opt. Soc. Am., 59(1), 64-71 (1969). [24] Randall, C. M. and Rawcliffe, R. D., "Refractive Indices - [24] Randall, C. M. and Rawcliffe, R. D., "Refractive Indices of Germanium, Silicon and Fused Quartz in the Far Infrared," Appl. Opt., 6(11), 1889-95 (1967). - [25] Verleur, H. W., "Determination of Optical Constants from Reflectance or Transmittance Measurements on Bulk Crystals or Thin Films," J. Opt. Soc. Am., 58(10), 1356-64 (1968). - [26] Grigorovici, R. and Vancu, A., "Optical Constants of Amorphous Silicon Films Near the Main Absorption Edge", Thin Solid Films, 2, 105-10 (1968). - [27] Brodsky, M. H., Title, R. S., Weiser, K., and Pettit, G. D., "Structural, Optical and Electrical Properties of Amorphous Silicon Films," Phys. Rev. B, 1(6), 2632-41 (1970). - [28] Shevchenko, G. K., Rachkovskii, R. R., Kol'tsov, S. I., and Aleskovskii, V. B., "Influence of the Surface Film on the Refractive Index of Single-Crystal Silicon," Zh. Prikl. Khim. (Leningrad), 45(11), 2541-3 (1972). - [29] Thutupalli, G. K. M. and Tomlin, S. G., "The Optical Properties of Amorphous and Crystalline Silicon," J. Phys. C., Solid State Phys., 10, 467-77 (1977). - [30] Sato, T., "Spectral Emissivity of Silicon," Jpn. J. Appl. Phys., 6(3), 339-47 (1967). - [31] Hertzberger, M. and Salzberg, C. D., "Refractive Indices of Infrared Optical Materials and Color Correction of Infrared Lenses," J. Opt. Soc., Am., 52(4), 420-7 (1962). - [32] Moss, T. S., "Inter-Relation Between Optical Constants for Lead Telluride and Silicon," Proc. Phys. Soc., London, B66, 141-4 (1953). - [33] Yu, P. Y. and Cardona, M., "Temperature Coefficient of Refractive Index of Diamond- and Zinc-Blende-Type Semiconductors," Phys. Rev. B, 2(8), 3193-7 (1970). - [34] Touloukian, Y. S., Kirby, R. K., Taylor, R. E., and Lee, T. Y. R., Thermal Expansion—Nonmetallic solids, Vol. 13 of Thermophysical Properties of Matter—The TPRC Data Series, 1FI/Plenum, New York, p. 154 (1977). - [35] Rank, D. H., Bennett, H. E., and Cronemeyer, D. C., "The Index of Refraction of Germanium Measured by an Interference Method," J. Opt. Soc. Am., 44(1), 13-6 (1954). - [36] Lukes, F., "The Temperature Dependence of the Refractive Index of Germanium," Czech, J. Phys., 10(10), 742-8 (1960). - [37] Lukes, F., "Optical Constants of Thin Germanium Films," Czech. J. Phys., B10, 59-65 (1960). - [38] Edwin, R. P., Dudermel, M. T., and Lamare, M., "Refractive Index Measurements of a Germanium Sample," Appl. Opt., 17(7), 1066-8 (1978). - [39] Salzberg, C. D. and Villa, J. J., "Index of Refraction of Germanium," J. Opt. Soc. Am., 4(8), 579 (1958). - [40] Cardona, M., Paul, W., and Brooks, H., Conference on Solid State Physics, Brussels, June (1958). [41] Brattain, W. H. and Briggs, H. B., "The Optical Con- - [41] Brattain, W. H. and Briggs, H. B., "The Optical Constants of Germanium in the Infrared and Visible," Phys. Rev., 75, 1705-10 (1949). - [42] Collins, R. J., "Infrared Properties of Germanium," Purdue University, Ph. D. Thesis (1953). - [43] Oswald, F. and Schade, R., "On the Determination of the Optical Constants of Semiconductors of Type A¹¹¹B^v in the Infrared," Z. Naturforsch., 9a(7-8), 611-7 (1954). - [44] Spitzer, W. G. and Fan, H. Y., "Determination of Optical Constants and Carrier Effective Mass of Semiconductors," Phys. Rev., 106(5), 882-90 (1957). - [45] Archer, R. J., "Optical Constants of Germanium: 3600 A to 7000 A," Phys. Rev., 110(2), 354-8 (1958). - [46] Philipp, H. R. and Taft, E. A., "Optical Constants of Germanium in the Region 1 to 10 eV," Phys. Rev., 113(4), 1002-5 (1959). - [47] Huldt, L. and Staffin, T., "Optical Constant of Evaporated Films of Zinc Sulphide and Germanium in the Infrared," Opt. Acta, 6(1), 27-36 (1959). - [48] Kornfeld, M. I., "Dispersion of Light in Germanium," Sov. Phys. Solid State, 2(1), 42-3 (1960). - [49] Kiseleva, N. K. and Pribytkova, N. N., "Determination of the Optical Constants of Ge and CdTe by the Reflection Method," Opt. Spectros., 10(2), 133-4 (1961). - [50] Aronson, J. R. and McLinden, H. G., "Low-Temperature Far-Infrared Spectra of Germanium and Silicon," Phys. Rev., 135(3A), A785-8 (1964). - [51] Tauc, J., Abraham, A., Pajasova, L., Grigorovici, R., and Vancu, A., "Optical Properties of Non-Crystalline Semiconductors," in *Physics of Non-Crystalline Solids, Pro*ceedings of the International Conference (Delft, July 1964), (Prins, J.A., Editor), Interscience Publishers, New York (1965). - [52] Potter, R. F., "Optical Constants of Germanium in the Spectral Region from 0.5 eV to 3.0 eV," Phys. Rev., 150(2), 562-7 (1966). - [53] Gisin, M. A. and Ivanov, V. A. "Optical Properties of Thin Germanium Films in the Infrared Region of the Spectrum," Opt. Spectros., 26(2), 124-5 (1969). - [54] Wales, J., Lovitt, G. J. and Hill, R. A., "Optical Properties of Germanium Films in the 1-5 μm Range," Thin Solid Films, 1(2), 137-50 (1967). - 55] Knausenberger, W. H. and Vedam, K., "Optical Constants of Germanium by Ellipsometry," Phys. Lett., 29A(8), 428-9 (1969). - [56] Donovan, T. M., Spicer, W. E., Bennett, J. M., and Ashley, E. J., "Optical Properties of Amorphous Germanium Films," Phys. Rev. B, 2(2), 397-413 (1970). - [57] Jungk, G., "Determination of Optical Constants: Disordered Germanium," Phys. Status Solidi B, 44, 239-44 (1971). - [58] Lukes, F., "The Temperature-Dependence of the Refractive Index of Germanium," Czech. J. Phys., 8(2), 263-4 (1958). - [59] Lukes, F., "On the Theory of the Temperature Dependence of the Refractive Index of Insulators and Semi-conductors," Czech. J. Phys., 8(4), 423-34 (1958). - [60] Touloukian, Y. S., Kirby, R. K., Taylor, R. E., and Desai, P.D., Thermal Expansion—Metallic Elements and Alloys, Vol. 12 of Thermophysical Properties of Matter— The TPRC Data Series, IFI/Plenum, New York, p. 116 (1975). #### **Appendix** The tables included in the Appendix are available experimental data compiled during the course of present work. The collected information covers the reported works in the last three decades from 1949 to 1978. The tables give for each set of data the following information: the reference number, author's name (or names), year of publication, wavelength range, temperature range, the description and characterization of the specimen, and information on measurement conditions contained in the original paper. TABLE A-1. EXPERIMENTAL DATA ON THE REFRACTIVE INDEX OF SILICON (Wavelength Dependence) [Temperature, T, K; Wavelength, λ , μ m; Refractive Index, n]	Data Set [Ref.]	λ
--	---	---
silicon	Spitzer, W.G., et al.,	
determined to within $\pm 10\%$;		
incident reflectance and		
419.7 3.464 431.8 3.465 446.9 3.470 462.0 3.475 480.2 3.478 501.3 3.485 501.3 3.485 501.6 3.488 510.4 3.485 540.6 3.488 540.6 3.488 540.6 3.488 561.7 3.495 585.9 3.498 598.0 3.500 610.1 3.500 628.2 3.507 9 (\alpha=5.156 \nu) (14) 298.6 3.420 310.7 3.423 33.4 9.3426 310.7 3.423 33.4 9.3426 337.9 3.427 347.0 3.429 347.0 3.429 347.0 3.429 347.0 3.429 347.0 3.429 347.0 3.429 348.4 446.7 3.448 446.7 3.458 516.2 3.467 546.3 3.472 573.6 3.472 573.6 3.472 573.6 3.472 573.6 3.472 573.6 3.472 573.6 3.472 573.6 3.472 573.6 3.472 573.6 3.475 584.7 3.476 584.8 373 584.8 3.486 584.8 3.48		
573.6 3.472 573.6 3.		
3.473 585.7 3.475 594.7 3.476 621.9 3.481 10 $(\lambda=0.45 \ \mu m)$ Single crystal; $\rho=15 \ \Omega$ -cm; plane- parallel disk specimens of 23 mm in in a diameter; optical polished; emissivities		
T., 1967		[30]
BOA Lebens	Cimon I 1051	
0.148	0.812	phase angle computed from reflectance
K) 4.1083	Calculated data based upon similarities in several materials; data taken from	Hertzberger, M. and Salzberg, C.D., 1962
128.68	4.0059	
curve.		
glass substrate in a vacuum of		
-----------------		3(cont.)
	257	4.03767