Atomic Transition Probabilities # Volume I Hydrogen Through Neon A Critical Data Compilation W. L. Wiese, M. W. Smith, and B. M. Glennon Institute for Basic Standards National Bureau of Standards Washington, D.C. ## NSRDS-NBS 4-National Standard Reference Data Series National Bureau of Standards 4 (Category 3 — Atomic and Molecular Properties) Issued May 20, 1966 ### National Standard Reference Data System The National Standard Reference Data System is a government-wide effort to give to the technical community of the United States optimum access to the quantitative data of physical science, critically evaluated and compiled for convenience. This program was established in 1963 by the President's Office of Science and Technology, acting upon the recommendation of the Federal Council for Science and Technology. The National Bureau of Standards has been assigned responsibility for administering the effort. The general objective of the System is to coordinate and integrate existing data evaluation and compilation activities into a systematic, comprehensive program, supplementing and expanding technical coverage when necessary, establishing and maintaining standards for the output of the participating groups, and providing mechanisms for the dissemination of the output as required. The NSRDS is conducted as a decentralized operation of nation-wide scope with central coordination by NBS. It comprises a complex of data centers and other activities, carried on in government agencies, academic institutions, and nongovernmental laboratorics. The independent operational status of existing crictical data projects is maintained and encouraged. Data centers that are components of the NSRDS produce compilations of critically evaluated data, critical reviews of the state of quantitative knowledge in specialized areas, and computations of useful functions derived from standard reference data. For operational purposes, NSRDS compilation activities are organized into seven categories as listed below. The data publications of the NSRDS, which may consist of monographs, looseleaf sheets, computer tapes, or any other useful product, will be classified as belonging to one or another of these categories. An additional "General" category of NSRDS publications will include reports on detailed classification schemes, lists of compilations considered to be Standard Reference Data, status reports, and similar material. Thus, NSRDS publications will appear in the following eight categories: | Category | Title | |----------|--| | 1 | General | | 2 | Nuclear Properties | | 3 | Atomic and Molecular Properties | | 4 | Solid State Properties | | 5 | Thermodynamic and Transport Properties | | 6 | Chemical Kinetics | | 7 | Colloid and Surface Properties | | 8 | Mechanical Properties of Materials | Within the National Bureau of Standards publication program a new series has been established, called the National Standard Reference Data Series. The present report, which is in Category 3 of the above list, is Volume I of Number 4 of the new series and is designated NSRDS-NBS 4 Vol. I. A. V. ASTIN, Director. ## Contents ## General Introduction | REFEREN
APPENDI | NCES | DOPINI | ENTS | | VI | |--------------------|-------------|----------|----------|------------------|-----------------| | | | | | | VI | | APPENDI | | | | | y | | MI I LINDI | X B | | | | Y | | | | List of | Tables | | | | Spectrum | | Page | Spectrum | | Pa | | Hvdrogen | H 1* | 1 | Oxygen | О і | 7 | | Helium | Не 1 | 9 | | О п | 8 | | Lithium | Li 1 | 16 | | О ш | ç | | | Li II | 19 | | O IV | 10 | | Beryllium | Be I | 22 | | O v | 10 | | | Ве и | 23 | | O vi | 11 | | | Ве III | 24 | | O vii | 11 | | Boron | В т | 25 | Fluorine | F 1 | 11 | | | В п | 27 | | F 11 | 11 | | | В ш | 28 | | F III | 11 | | | B IV | 29 | | F IV | 11 | | Carbon | C I | 30 | | F v | 12 | | | С и | 37 | | F vi | 12 | | | C III | 41 | | F VII | 12 | | | C IV | 45 | N.T | F vIII | 12 | | N.T.*. | C V | 47 | Neon | Ne I | 12 | | Nitrogen | N I | 48 | | Ne II | 13 | | | N II | 56
65 | | Ne III | 13 | | | N III | 03
71 | | Ne IV | 14 | | | N IV
N v | 74 | | Ne v | 14
14 | | | N VI | 74
76 | | Ne vi
Ne vii | $\frac{14}{15}$ | | | 11 VI | 70 | | | 15
15 | | | | | | Ne viii
Ne ix | 19 | ^{*}I = spectrum of neutral atom, II = spectrum of singly ionized atom, etc. | • | | | | |---|--|--|--| | • | ## ATOMIC TRANSITION PROBABILITIES* (A critical data compilation) #### Volume I ## Elements Hydrogen through Neon W. L. Wiese, M. W. Smith, and B. M. Glennon Atomic transition probabilities for about 4,000 spectral lines of the first ten elements, based on all available literature sources, are critically compiled. The data are presented in separate tables for each element and stage of ionization. For each ion the transitions are arranged according to multiplets, supermultiplets, transition arrays, and increasing quantum numbers. Allowed and forbidden transitions are listed separately. For each line the transition probability for spontaneous emission, the absorption oscillator strength, and the line strength are given along with the spectroscopic designation, the wavelength, the statistical weights, and the energy levels of the upper and lower states. In addition, the estimated accuracy and the source are indicated. In short introductions, which precede the tables for each ion, the main justifications for the choice of the adopted data and for the accuracy rating are discussed. A general introduction contains a critical review of the major data sources. #### A. INTRODUCTORY REMARKS After a long period of limited activity in atomic spectroscopy, the last half dozen years have brought rapid growth to this field. This has been sparked largely by urgent needs from areas in which basic atomic data are employed, namely plasma physics, astrophysics, and space research. As part of these developments, the pace and scope of determining atomic transition probabilities has greatly increased, so that the amount of accumulated material appears now to be sufficiently large to make a critical data compilation worthwhile and desirable. To realize this idea, a data center on atomic transition probabilities was established at the National Bureau of Standards in 1960. As a first step of the program, a search for the widely scattered literature references was undertaken. This phase of the work was essentially completed in 1962 with the publication of a "Bibliography on Atomic Transition Probabilities" (NBS Monograph 50) [1]. After that, only the monitoring of the current literature had to be kept up, and the emphasis of the work therefore could be shifted to the critical evaluation of the literature and the tabulation of the numerical data. Since the lightest ten elements have been of dominant interest, and on the other hand, the largest amount of data are available for them, it was decided to concentrate on these and publish their "best" values as the first part of a general compilation. pilation. When the present tabulation was started, it was hoped that sufficient reliable material was available for a fairly comprehensive list, which would contain data for at least all the strong prominent transitions. This hope materialized only partially. A number of gaps and large discrepancies were found, and the theoretical and experimental efforts of several members of the Plasma Spectroscopy Section at NBS were needed to remedy the most critical situations. Furthermore, the Coulomb approximation of Bates and Damgaard [2] was extensively applied to obtain additional data. Although this unforeseen extra work delayed the publication of this compilation somewhat, we feel that we are now able to present a more useful and substantial collection of data. #### B. SCOPE OF THE TABLES In the present compilation the "best" available transition probabilities of allowed (i.e., electric dipole) and forbidden (i.e., electric quadrupole and magnetic dipole) lines of the first ten elements, including their ions, are tabulated. The hydrogen-like ions are excluded; their transition probabilities may be obtained by scaling the hydrogen values according to the formulas given in table I. Furthermore, f-values or absorption coefficients for continua, i.e., bound-free transitions are not listed. As source material all the literature given in Ref. [1] plus later articles obtained from continuous scanning of the current literature are available. It is our opinion that a tabulation of the present kind must contain fairly reliable values for at least all the stronger, characteristic lines of the various ions in order to be of general usefulness. We have tried to adhere to this goal from the start. More specifically, we have felt that for most atoms and ions at least the "prominent" half of the multiplets listed in the "Revised Multiplet Table" [3], and the "Ultraviolet Multiplet Table" [4] should be included in the tabulation, and uncertainties should be smaller than 50 percent. A number of gaps in the data and inferior values were noticed at the start, and—as already mentioned—it has been largely due to the efforts of some ^{*}This research is a part of project DEFENDER, sponsored by the Advanced Research Projects Agency, Department of Defense, through the Office of Naval Research. ¹Hereafter, we shall use the equivalent terms "transition probability, oscillator strength or f-value, and line strength" on an interchangeable basis. The numerical relationships between these quantities are given in table III. members of the Plasma
Spectroscopy Section at NBS and the availability of the Coulomb approximation [2] that the most glaring defects could be eliminated. Although we still must compromise in some cases by including inferior material (marked in the accuracy column as "E") we feel that waiting for these improvements would unduly delay the publication of the table. Aside from this objective of including at least all the stronger lines, we have listed all additional available material with uncertainties smaller than 50 percent. We have deviated from this scheme only in a few instances: In these cases we have excluded data for very highly excited transitions, because these transitions have never been observed (no experimental wavelengths are available) and are of little practical interest. However, we have listed this additional material by spectrum in table II. Most final tabulations were undertaken during 1964. Thus the literature through 1963 and in some cases even later work could be included. However, a few 1963 articles, which have been found in abstracting journals, came to our attention too late. These are listed, together with other recent material, in the list of additions at the end of the tables. #### C. REVIEW OF THE DATA SOURCES The present status of our knowledge of atomic transition probabilities must be considered as being far from ideal. The available material leaves much to be desired in quality as well as quantity [5]. This becomes especially evident if comparison is made with the other most important quantity of a spectral line, its wavelength. The only transition probabilities known with an accuracy comparable to that for wavelengths are available for hydrogen and hydrogenlike ions and a few lines of helium. For all other elements more or less reliable values have been obtained from various experimental and theoretical approaches. While experimental work has provided, with very high accuracy, practically all the data for the wavelengths of lines, it could not accomplish nearly the same in the case of transition probabilities. The measurement techniques are quite complicated and laborious, and it has proved to be very difficult to obtain accuracies of 10 percent or better. On the other hand, advanced theoretical approximations have been quite successful for the light, relatively simple atomic systems, and large amounts of data have been obtained from their applications. But the theoretical methods have the shortcoming that they do not permit estimates of the size of the errors as do the experiments. In view of this reliability problem it is very important to discuss in detail how the accuracy ratings for the tabulated values have been obtained. For this purpose, a brief discussion is given in the individual introductions for each ion. Furthermore, to provide a better background and understanding for these short explanations, we include the following discussion of those major experimental and theoretical methods from which the bulk of the material for the lightest ten elements has been obtained. ### 1. Experimental Sources #### a. Measurements in Emission Experimentally, the largest number of f-values has been obtained from measurements of the intensities of spectral lines which are emitted from plasmas under known conditions. With this method the first and second spectra of carbon, nitrogen, and oxygen, the third spectrum of oxygen, and the first spectrum of neon have been studied. The plasma sources are various types of stabilized arcs, and, to a lesser extent, shock-tubes. In brief, the method [6] is as follows: The transition probability for spontaneous emission from upper state k to lower state i, A_{ki} , is related to the total intensity I_{ki} of a line of frequency ν_{ik} by $$I_{ki} = \frac{1}{4\pi} A_{ki} h \nu_{ik} N_k \tag{1}$$ where h is Planck's constant and N_k the population of state k. A_{ki} may therefore be obtained from the measurement of I_{ki} and the determination of N_k . The experimental conditions are chosen so that the plasma is approximately in a state of local thermodynamic equilibrium (LTE), because N_k is then a function of temperature and total density of the species only, and may be determined from the application of equilibrium and conservation equations and measurements of the temperature and electron density. The measurements have always been done spectroscopically from the determinations of the intensities of lines and continua of known transition probabilities and absorption coefficients, or by measuring line profiles and utilizing the results of line broadening theory in plasmas. Checks for the existence of LTE have been made repeatedly. It appears to be always closely approximated, except in the high-temperature magnetically driven shocktubes where only partial LTE exists [7]. Also, the investigated lines have generally been checked for self-absorption. A demixing effect in arcs [8, 9] has introduced uncertainties into the results of some earlier arc experiments with gas mixtures, in which the mixture ratio was employed for the analysis. Since primarily the densities are affected, larger uncertainties in the absolute f-value scale are likely, but the relative f-values should be still quite accurate. However, this effect has been circumvented in most of the recent arc experiments used for this data compilation. Significant errors in emission experiments may arise from difficulties in determining the continuous background, from neglecting intensity contributions of the distant line wings [10], from uncertainties in the calibration of standard light sources, and from uncertainties in the high-density corrections in plasmas [11]. Applications of wall-stabilized arcs [12, 13] have given the most accurate results of all emission measurements. The best absolute f-values obtained from emission experiments are estimated to be accurate within 15 percent, but for the bulk of the tabulated data errors between 20 to 50 percent must be expected. It should finally be noted that absorption measurements (only one is encountered in the case of Ne I) are quite analogous to the above mentioned emission experiments. #### b. Lifetime Determinations The direct measurement of lifetimes of excited atomic states has important applications for helium and neon. The method [6, 14] employed here consists essentially of exciting atoms by radiation or electron impact in short bursts and of observing the subsequent depopulation of excited levels by studying the time decay of the emitted radiation (delayed coincidence technique). The population N_k of an excited state k decays according to $$N_k = N_{o,k} \exp(-\gamma_k t) \tag{2}$$ where $N_{\theta, k}$ is the population at time t = 0 and γ_k the decay constant. Thus, an exponential decay in the radiation is observed. The mean lifetime $\tau_k = \gamma_k^{-1}$ of the atomic state is related to the transition probability A_{ki} for spontaneous emission by $$\tau_k^{-1} = \sum_i A_{ki} + Q \tag{3}$$ neglecting absorption and induced emission. Q denotes a term for collisional population and depopulation rates. In order to obtain $\sum_{i} A_{ki}$, one has to choose experimental conditions such that the collisional term Q (as well as the less critical absorption and induced emission) becomes negligible. This condition is achieved at very low densities. It is seen that from lifetime measurements generally the sum of all probabilities for transitions to lower levels i is obtained, and individual transition probabilities may be obtained explicitly only in the following two cases: (a) The sum reduces to a single term, i.e., only transitions to the ground state are possible. This is, for example, the case for resonance lines. (b) The sum is dominated by one strong term (this is likely if it contains a transition of comparatively high frequency $\nu_{ik}(A_{ki}$ is proportional to ν_{ik}^3), or if all transitions but one are "forbidden", i.e., have very small transition probabilities). Furthermore, one may use lifetime experiments to normalize available relative transition probabilities to an absolute scale, if all relative probabilities contributing to the sum are known. The lifetime method is, therefore, limited to only a few lines per spectrum, namely those originating from the lowest excited levels. But the results should be very accurate, with uncertainties less than 10 percent, since the method is simple and the instrumentation is by now well developed [14]. The major uncertainties arise from radiative cascading from higher levels, which repopulates the initial level, and from depopulation by collisions. # c. Measurement of f-values from the Anomalous Dispersion at the Edges of Spectral Lines This method has found applications for lines of neutral lithium and neon. It is based on the following relation: In the neighborhood of a spectral line the index of refraction n varies according to $$n-1 = \frac{e^2 N_i f_{ik}}{4\pi m_e c^2} \frac{\lambda_0^3}{\lambda - \lambda_0} \left(1 - \frac{N_k g_i}{N_i g_k} \right)$$ (4) Here g denotes the statistical weight; λ the wavelength; N_i the population of the lower state i; and e, m_e , c are the usual natural constants. The experimental conditions are chosen such that the excited states are populated according to the Boltzmann formula, so that generally $N_k << N_i$, and the term $N_k g_i/N_i g_k$ may be neglected. For the determination of $N_{i}f_{ik}$ the index of refraction n at the wavelength distance $\lambda - \lambda_0$ from the center of the line, λ_0 , has to be measured. This can be done most precisely with the "hook" method developed by Rozhdestvenskii [15] and recently reviewed by Penkin [16]. In this method the gas to be studied fills a tube, which is part (one arm) of a Jamin or Mach-Zehnder interferometer. The tube must be at an elevated temperature to achieve sufficient population of the excited levels. Light from the continuum source penetrates the
tube as well as an evacuated comparison tube of the same length, and the resulting interference fringes are sent into a spectrograph. On either side of an absorption line the interference fringes are characteristically bent due to the rapid change in the index of refraction. By introducing a thick glass plate into the compensating arm of the interferometer, a tilting of the fringes and the formation of the hooks is accomplished. The measurement of the wavelength distance between the extrema then permits a precise determination of the index of refraction. In the three experiments encountered for this compilation, the absolute number densities for the lower states N_i could not be determined, so that only relative f-values for lines originating from the same lower levels were measured. Uncertainties in the relative values should not exceed 10 to 20 percent. In the original papers, absolute f-values were then obtained from applications of the Thomas-Kuhn-Reiche f-sum rule, but for this compilation we have normalized the relative values to different scales, which are based on other, more accurate material. #### 2. Theoretical Sources #### a. The Coulomb Approximation Under the assumption of Russell-Saunders (or LS-) coupling, which is generally very well fulfilled for the first ten elements, the line strength S may be expressed as the product of three factors [2] $$S = \mathfrak{S}(\mathfrak{M})\mathfrak{S}(\mathfrak{L})\sigma^2. \tag{5}$$ (The relations of S with A and f are given in table III.) The first two factors in eq (5) represent the strength of the multiplet $(\mathfrak{S}(\mathfrak{A}))$ and the fractional strength of the spectral line within the multiplet $(\mathfrak{S}(\mathfrak{A}))$. The numerical values for these may be obtained from tables by Goldberg [17], and White and Eliason [18], which have also been reproduced by Allen [19]. The difficult problem is the evaluation of the transition integral σ . Bates and Damgaard [2] showed that for most transitions the main contribution to the integral comes from a region in which the deviation of the potential of an atom or ion from its asymptotic Coulomb form is so small that it may be replaced by the latter. Since for the Coulomb potential the transition integral may be expressed analytically, it is possible to calculate σ^2 as a function of the observed term value and the azimuthal quantum number. Bates and Damgaard have thus compiled tables with numerical values of σ^2 for s-p, p-d, and d-f transitions.² The Coulomb approximation is restricted to transitions between levels having the same parent term. It gives the best results if the degree of cancellation in the transition integral is small, i.e., if σ^2 is not too close to zero, and if the upper and lower levels of the excited electron are in a shell which contains no other electrons. This is true for the moderately and highly excited levels. But even if the lower level is in a shell which contains other electrons, the results often agree fairly well with those obtained by other methods. On the whole, the Coulomb approximation has given impressive results and has proved to be of great value. In most cases where comparisons are available—there are several hundred of them for the first ten elements—the results agree within 20-40 percent with those from advanced theoretical and experimental methods. We have therefore made extensive use of this approximation 3 to supplement ² The customary spectroscopic notations are used throughout. ³ We have been fortunate in obtaining a computer program for the calculation of Bates-Damgaard values from H. R. Griem to whom we would like to express our special thanks. the available material. However, we have restricted ourselves to the medium-strong or stronger lines (as judged from the intensity data supplied in the multiplet tables) for which experimental wavelength and energy level data are available and for which the lower state is significantly above the ground state. If the need for f-values of other higher excited lines should arise, we strongly recommend the application of the Coulomb approximation. On the basis of many comparisons, the uncertainties of the Bates-Damgaard values have been estimated as follows: For transitions between excited states in the spectra of neutral helium, lithium, beryllium, boron, and their isoelectronic sequences they do not exceed 25 percent and in favorable situations may be as low as 10 percent. For the more complex atoms among the first ten elements, namely carbon, nitrogen, oxygen, fluorine, and their equivalent ions, we have estimated the uncertainties to be within 50 percent for the moderately excited transitions including 3s-3p and within 25 percent for the medium and highly excited lines, i.e., transitions of the types 3p-3d, 3d-4f, etc. A few of the tabulated values may be much more uncertain than the stated error limit because of cancellation in the transition integral which we did not check in each case. It is worth noting that in many instances the results of the Coulomb approximation appear to be as good as those from other, more elaborate theoretical treatments, such as the self-consistent field approximation with exchange. This is primarily indicated from comparisons with the most advanced theoretical and experimental methods. #### b. Calculations Based on the Self-Consistent Field (SCF) Approximation This method has found, in varying degrees of refinement, widespread use for the calculation of f-values. It provides a set of wave functions for the atomic electrons which produce an approximately self-consistent electric field. The transition probabilities are then determined by integration over the radial parts of these wave functions. A short outline of the procedure, developed by Hartree, and extensively described by him [20], is given below: It is assumed that the charge density distribution of the atomic system is spherically symmetric, i.e., the potentials of the electrons depend only on their radial positions. Correlations between the electrons are at first neglected; all are supposed to move independently in the central field, experiencing only the averaged charge distribution of the other electrons and the nucleus. With these simplifications the motions of the individual electrons can be calculated by assuming trial wave functions for the others, and from the resulting wave functions the charge density distribution is computed and compared with the initial one obtained with the trial functions. If self-consistency is not achieved, the new, computed wave functions are used as trial functions, and the procedure is repeated until initial and final charge distributions are identical, i.e., the field is self-consistent. This basic procedure was improved by Fock [21], who included exchange effects between the electrons, by Trefftz et al. [22], and Biermann and Lübeck [23] who in the special cases of He I and C II took into account other correlations between the electrons. More recently, large-scale computations were made possible after the introduction of elaborate computer programs by Roothaan and co-workers [24]. An assessment of the errors resulting from the various approximations in the calculations has not been feasible. But a number of comparisons with experimental results and with more accurate variational calculations, as well as con- sistency checks made by applying the dipole length and dipole velocity representations of the matrix element have shown that for simple atomic systems accurate transition probabilities with uncertainties smaller than 10 percent may be obtained when a refined procedure including exchange effects is applied. This is particularly true for He I and Li I and their isoelectronic sequences, for which the extensive calculations by Weiss [25], and Trefftz et al. [22] are available. The large-scale computations by Kelly [26] for lines of nitrogen and oxygen contain the exchange effects only in an approximate way (the exchange term is replaced by an averaged potential) and errors of about 20 percent must be expected for most of the moderately excited transitions as judged from many comparisons. In a few cases, the positive and negative contributions to the transition integral are almost equal to each other (the ratios are listed by Kelly); i.e., cancellations are encountered and a much lower accuracy must be expected. In these cases we have given preference to available experimental results. For the breakdown of the transition integrals into multiplet and line values we have used the LS-coupling strengths [19] unless special results have been available, as for example for O II. We have generally avoided using SCF calculations if they were done without considering exchange effects, but have had to make an exception for some important lines of B I because no other comparable material is available. Large uncertainties in the SCF calculations as well as other theoretical treatments are expected for transitions where configuration interaction becomes important. For the first ten elements these transitions are of the type $1s^22s^m2p^n \rightarrow 1s^22s^{m-1}2p^{n+1}$. Only a few attempts have yet been made to take configuration interaction into account. Very recently, Weiss [27] has undertaken limited calculations for some CI and BeI lines and Yutsis, Bolotin and co-workers have for some time employed a "many configuration approximation," [28] as they call it. The Russian group has greatly simplified its approach by including only one interacting term for the lower state, which is always the ground state ("double configuration approximation") and none for the upper state. In addition to this simplification, relatively crude wave functions have been employed, namely analytical one-electron wave functions or SCF functions without exchange. Unfortunately, practically all these transitions are in the far ultraviolet; only two experimental investigations by Boldt
[29] and Labuhn [30], both done with a wall-stabilized arc, are available for a detailed comparison. From the experimental results one must judge that the success of the many-configuration method in its present form is only fair. Errors of factors of two or more must be expected. This seems to be also the case for Weiss' somewhat more elaborate treatment of configuration interaction (up to three interacting terms for the lower state). Thus, the transition probabilities for the $1s^22s^m2p^n \rightarrow 1s^22s^{m-1}2p^{n+1}$ transitions are among the least well known for the lightest ten elements, and further improvements for these lines are urgently needed. #### c. Quantum Mechanical Calculations of Forbidden Transitions We have considered as forbidden lines all magnetic dipole and electric quadrupole lines. The extensive calculations by Garstang [31, 32, 33] and Naqvi [34], and—to a lesser extent—the papers by Seaton and Osterbrock [35], Yamanouchi and Horie [36], and Ufford and Gilmour [37], have been principal sources. All these calculations have as a common starting point the general expressions for the line strengths of forbidden lines in the p^2 , p^3 , and p^4 configurations, which were given algebraically and tabulated by Shortley et al. [38], and later extended by Naqvi to the few transitions of the sp, p, and p^5 configurations. The principal differences between the various calculations are the approaches chosen to determine the most important parameters: (a) The "spin-orbit," and "spin-spin and spin-other-orbit" integrals, usually designated by ζ and η , have been determined either empirically or by using available wave functions. Garstang has compared the empirical and theoretical values for some ions—the latter obtained from SCF functions with exchange—and has found differences of up to 20 percent for ζ and up to 30 percent for η . When a choice is available, we have given preference to the empirical values. (b) The term intervals. Here one has the choice between using exclusively experimental energy values or combining some of these with the results of the Slater theory [39] for inter-multiplet separations, that is, by employing the Slater parameters F_2 . Differences between the two approaches arise mainly due to the effects of configuration interaction. These are neglected in all calculations and may cause deviations up to a factor of two. A study by Garstang [40] in 1956 led to the result that the exclusive use of observational material partially includes, at least in simple cases, the effects of configuration interaction, when the latter is otherwise not taken into account. Thus the work based on experimental term intervals has been adopted whenever available. Naqvi used in his calculations essentially the second of the above-mentioned approaches. He compared empirically determined Slater parameters F₂ for the various term intervals with theoretically derived values, and selected the one experimental parameter which was in best agreement with theory. Then he employed this particular F_2 and the Slater theory for the determination of all other term intervals. In view of the above mentioned study by Garstang we have used from Naqvi's work only the transition probabilities based entirely on this initial parameter, i.e., based exclusively on observational material. Consequently, his data for the p3 configuration have not been applied, with the exception of the ion FIII, since in this case his work was the only available source. On the other hand. Naqvi's calculations for the simpler sp-configuration are all based on the empirical value for the one term interval there and should, therefore, take the effects of configuration interaction partially into account. - (c) Transformation coefficients. The atoms and ions under consideration are most closely represented by the intermediate coupling scheme, but for the calculations of transition probabilities the actual wave functions are more conveniently expressed in terms of LS-coupling wave functions. The transformation coefficients were first derived by Shortley et al. [38] and were later refined by several others, in particular by Naqvi [34]. Thus, Naqvi's results have been adopted whenever the choice of the transformation coefficients became important and when he accounted for the effects of configuration interaction in the abovementioned manner. It is especially worth noting that by including the effects of spin-spin and spin-other-orbit interactions on the transformation coefficients of the p^4 configuration some results are improved by about 10 percent. - (d) The integral s_q for electric quadrupole transitions. This depends principally on the quality of the employed wave functions. We have preferred calculations with SCF wave functions over those with hydrogenic functions or screening constants and, among SCF calculations, we have preferred those with exchange effects included over those without exchange. The improvement with SCF wave functions is estimated to be of the order of 20 percent. In general, the electric quadrupole transitions are not as accurate as the magnetic dipole values for transitions of the same general type because of the additional uncertainty in the determination of s_q . This uncertainty should generally be in the neighborhood of 20 percent. A good assessment of the uncertainties in the calculated values for forbidden lines is possible due to the fortunate circumstance that some forbidden lines of O I have been determined experimentally. These lines appear strongly in the aurora, which has been utilized as a "light source". The transition probabilities could be accurately determined via a measurement of the lifetimes of the upper atomic states. Extensive auroral observations by Omholt [41] gave for the 'D-'S transition a transition probability of 1.43 sec⁻¹, while the best calculated value is 1.25 sec⁻¹. For another case, namely the lifetime of the 'D state, the averaged experimental result is approximately 160 sec, while the theory gives 135 sec. The theoretical transition probabilities involved in this comparison depend sensitively on the choice of some parameters, particularly s_q and ζ . The good agreement with the observations indicates that uncertainties no greater than 25 to 50 percent have to be generally expected. For a number of magnetic dipole transitions, the uncertainties should be even smaller, since the results are almost independent of the choice of the parameters. In the p^2 and p^4 configurations these are the transitions ${}^3P_2 - {}^3P_1$ and ${}^3P_1 - {}^3P_0$, which have, near LS-coupling, the strengths of 2 and 2.5 respectively. In the p^3 configuration one encounters the transitions ${}^2P_{3/2}^{\circ} - {}^2P_{1/2}^{\circ}$ with a strength of 1.33 and the transition ${}^2D_{5/2}^{\circ} - {}^2D_{3/2}^{\circ}$ with a strength of 2.4, again near LS-coupling. For all these lines the effects of configuration interaction and deviations from LS-coupling do not enter sensitively into the results. Thus, these transition probabilities should be considered accurate to within 10 percent, while all other magnetic dipole lines are uncertain within about 25 percent. Analogously, the transition probabilities for a number of electric quadrupole lines depend essentially only on the quadrupole integral s_q . These are the transitions ${}^1S_0 - {}^1D_2$, ${}^3P_2 - {}^3P_1$, and ${}^3P_2 - {}^3P_0$ for the p^2 and p^4 configurations and ${}^2D_{5/2}^{\circ} - {}^2P_{3/2}^{\circ}$, ${}^2D_{3/2}^{\circ} - {}^2P_{3/2}^{\circ}$, ${}^2D_{5/2}^{\circ} - {}^2P_{1/2}^{\circ}$, and ${}^2D_{3/2}^{\circ} - {}^2P_{1/2}^{\circ}$ for the p^3 configuration. Within a given spectrum these should be the best available quadrupole lines and they have been estimated to be accurate within 25 percent, while the rest of the quadrupole transitions should be accurate within 50 percent. On the whole, electric quadrupole lines have been rated to be of lower accuracy than magnetic dipole lines, since the uncertainties in the quadrupole integral must be added to the other uncertainties already present for the magnetic dipole lines. Further details on the calculations of forbidden line strengths may be found in the recent review article by Garstang [42]. ### D. METHOD OF EVALUATION We shall now discuss the general steps in the evaluation of the data: The literature, as taken from the files of our data center, has first been screened for outdated and superseded material. The remaining articles have then been individually studied and the results collected in comparison tables. Additional values have been computed by employing the Coulomb approximation by Bates and Damgaard [2] whenever this has been considered necessary and useful. When large discrepancies or odd values have appeared in the comparison tables, we have searched for likely sources of numerical errors, and have also communicated in many instances with the respective authors. The evaluation and final selection of the sets of best values depends so much on the particular material available for each ion that the main justifications for the selections has to be delegated to the individual introductions. Only a few general rules on the selection may be given now: Thus, self-consistent field calculations with exchange effects have been regarded as superseding those not including these effects4; the Coulomb approximation is generally not employed when the transition is very far from being hydrogen-like, e.g., when the lower state is the ground state or when it contains two or more electrons of the same principal quantum number; experiments employing photoelectric techniques are preferred over similar experiments utilizing photographic detection; measurements with wallstabilized arc sources are considered superseding analogous measurements with fluid- or gas-stabilized arc sources because of the stability problems of the
latter. For forbidden lines, the calculations based on empirical term intervals are preferred to those based on the Slater theory for intermultiplet separations, since a theoretical study [40] shows that the effects of configuration interaction, which are often important, are at least partially taken into account by the first approach. When several methods of comparable quality are available, the results are averaged to obtain the best value. If one method appears clearly better than the others, only those results are employed. The final step in the evaluation is the estimate of the uncertainties. At the present status of our knowledge, we find it impossible to assign specific numerical error limits to each transition. Instead we have introduced a classification scheme with several classes of accuracy, and assigned each transition probability to a certain class. We have used the following arbitrary notation: | AAfor uncertainties within | 1% | |---------------------------------|-------| | Ado | 3% | | Bdo | 10% | | Cdo | 25% | | Ddo | 50% | | E for uncertainties larger than | . 50% | The word uncertainty is being used in the meaning "extent of possible error" or "possible deviation from the true value". We are aware that this is far from being a precise definition of error, but, considering the multitude of approaches to the error discussions in the various papers (or the lack of them), it seems impossible to find a better common denominator. Uncertainties of class "AA", i.e., values that are essentially exact, are found only in hydrogen and a few transitions of helium. Going to the other extreme, we have included class "E" data, i.e., very uncertain values, only in those special cases, when for the most important and most characteristic lines of a spectrum no better data are available, so that otherwise these lines would have to be omitted. Occasionally, we have made a further differentiation in the classification scheme by assigning plus or minus signs to some transitions. This serves to indicate that these lines are significantly better or worse than the average values, but do no quite belong into the next higher or lower class. They should be therefore the first or last choice among similar lines. Since the theoretical treatments essentially do not permit error estimates per se, these have to be obtained from comparisons with experimental and other theoretical determinations or from general consistency checks, such as applications of f-sum rules, etc. A few rather audacious extrapolations have had to be undertaken, when no reliable comparison material was available. On the other hand, the errors given by the experimentalists are sometimes only indications of their precision, and no allowance is made for systematic errors. Therefore, we have generally been more conservative with our error estimates, and hope that we have arrived at a realistic and consistent error presentation. # E. ARRANGEMENT AND EXPLANATION OF COLUMNS We have adopted the present arrangement of the tables after consulting with a number of physicists working in three fields from which—it is anticipated—most of the users of this compilation will come, i.c., spectroscopy, astrophysics, and plasma physics. We feel that of the multitude of units in which transition probabilities are expressed, the adopted combination of the transition probability for spontaneous emission A_{ki} (in \sec^{-1}), the absorption oscillator strength f_{ik} (dimensionless), the log gf (a further discussion of the statistical weight g is given in Appendix B) and the line strength S (in atomic units) gives a very adequate representation. The other units are either not commonly used or, in case of gf and gA, may be obtained by simply multiplying two columns of the table. The units that are only occasionally used are: 1. The transition probability of absorption B_{ik} (i = lower, k = upper state) which is related to A_{ki} by $$B_{ik} = 6.01 \ \lambda^3 \frac{g_i}{g_i} A_{ki} \tag{6}$$ (λ is the wavelength in Angstrom units, and g_i , g_k are the statistical weights, further discussed in Appendix B) 2. The transition probability of induced emission B_{ki} , which is related to A_{ki} by $$B_{ki} = 6.01 \ \lambda^3 \ A_{ki}.$$ (7) 3. The emission oscillator strength f_{ki} , which is related to the absorption oscillator strength f_{ik} by $$f_{ki} = -\frac{g_i}{g_k} f_{ik}. \tag{8}$$ In addition, some authors have introduced still other quantities, but these have not found general acceptance and will not be considered further. The conversion factors between the tabulated quantities A_{ki} , f_{ik} , and S are listed in table III, as reproduced from reference [1]. (For the case of hydrogen, we have employed the reduced mass and other appropriate constants in the conversion factors.) ⁴Fortunately, most of the selected self-consistent field calculations include exchange effects in varying degrees of refinement. The general arrangement of the tables according to increasing atomic number and stage of ionization needs no further comments. The material for the individual ions is further subdivided into sections for allowed (electric dipole) and forbidden transitions. As forbidden transitions we have considered all magnetic dipole and electric quadrupole lines. Intercombination lines, although they are forbidden in the case of pure LS-coupling, are listed under allowed transitions, since they are electric dipole transitions. The tabulations for each ion start out with listings of the ground state configuration and the ionization potential, both taken from ref. [43]. In all cases, where we have tabulated more than 20 allowed lines per ion, we have then assembled a "finding list," i.e., we have arranged the lines in order of increasing wavelength and indicated their position in the main tables—which are arranged according to spectroscopic notation—by listing their running numbers. The latter are given in front of the spectroscopic notation in the tables. These finding lists should, for many applications, permit one to find out quickly which lines are covered in the present tabulation. Each table is then preceded by a short introduction containing in brief the major reasons which have led to the selection of the presented data and their classification in terms of accuracy. This is followed by a reference list of the selected articles. It remains to discuss the columns of the main tables: The first part of the tables contains data connected with the identification of lines, i.e., spectroscopic notation, wavelength, and energy levels. All these data have been taken from the compilations by Mrs. Moore-Sitterly, i.e., the "Revised Multiplet Table" [3], the "Ultraviolet Multiplet Tables" [4], and "Atomic Energy Levels," Vol. I, and addenda in Vols. II and III, recent reports of the Triple Commission for Spectroscopy [44], and from newer material generously furnished by her. All designations, as usual, are written in terms of the absorption process, i.e., the lower (initial) state first. For the classification of the lines we have employed the standard spectroscopic notation for LScoupling, with the exception of Ne I, where we have used the jl-coupling notation, all in accordance with the above mentioned "Atomic Energy Levels" tables. In listing the transition arrays, we have presented only the electrons in the unfilled shells. Furthermore, to distinguish between the different supermultiplets, we have inserted the parent terms in the notation. If they are given only once, as is generally the case, then no change occurs from lower to For all spectra with pronounced multiplet structure, i.e., for Be I through Ne I and their isoelectronic sequences, we have arranged the lines according to a configurational order: They are grouped to multiplets, supermultiplets, transition arrays, and increasing quantum numbers. Within the transition arrays, the multiplets are in order of increasing lower energy levels. Individual lines within the multiplets are listed whenever the total wavelength spread amounts to more than 0.01 percent. This arrangement is convenient for the application of f-sum rules⁵ and to the similar one used in the "Revised Multiplet Table" [3] and "Ultraviolet Multiplet Tables" [4]. At first we attempted to copy and extend these older arrangements, but this would have meant that many new multiplets had to be inserted. Therefore, we abandoned this plan. We have, however, made reference to the two multiplet lists by including the multiplet numbers in the present tabulation. The numbers are given in parentheses under the multiplet designation. The letters "uv" are added if the numbers are from the "Ultraviolet Multiplet Tables." For the He I isoelectronic sequence we have changed the arrangement slightly by listing the singlets and triplets separately. For hydrogen we have made several changes in the arrangement to adapt the tables to the very divergent applications in theory and experiment: The tables are split into four separate parts: In table A we list the "average" transition probabilities, etc., for the transitions between lower state of principal quantum number n_i and upper state n_k . These are defined by the following relations: $$A_{n_k, n_i}^* = \sum_{l_k, l_i} \frac{2l_k + 1}{n_k^2} A_{(nl)_k, (nl)_i}$$ (9) $$f_{n_i, n_k}^* = \sum_{l_k, l_i} \frac{2l_i + 1}{n_i^2} f_{(nl)_i, (nl)_k}$$ (10) $$S_{n_i, n_k}^* = \sum_{l_k, l_i} S_{(nl)_i, (nl)_k}.$$ (11) These "average" values are applicable to most problems in plasma spectroscopy and astrophysics. This is due to the circumstance that states with the same principal (n), but different orbital (l) quantum numbers fall practically together ("degeneracy"), so that only a single line is observed for all the possible combinations between states of different principal quantum numbers. The only assumption entering into the application of "average" values is that the atomic substates must be
occupied according to their statistical weights [45]. The above assumption is fulfilled for any reasonably dense plasma, where the excited atoms undergo many collisions during their lifetimes. In table B the probabilities for transitions between the various sublevels $(nl)_i - (nl)_k$ are listed. This table should be useful primarily for theoretical applications. Tables C and D, finally, contain the most important fine structure $[(nlj)_i - (nlj)_k]$ and hyperfine structure lines $[(nljf)_i - (nljf)_k]$ of hydrogen (j = inner) or total electronic angular momentum quantum number; f = total atomic angular momentum quantum number). For these two special tables we have made a further change by presenting frequencies and energy differences rather than the usual wavelengths and energy levels. In all other tables, the energy levels are given (in units of cm^{-1}) relative to the ground state with $E_0=0$. We have limited the numerical values to six digits which should be more than sufficient for all applications. The same limitation was imposed on the wavelengths. In a number of cases we have had to calculate wavelengths from energy level differences. These are given in brackets to distinguish them from the presumably more accurate observed material. However, hydrogen is an obvious exception. Also given in brackets are all energy levels which are not derived from the analysis of spectra, but are extrapolated or obtained from approximate wave function calculations. We have included in this category those energy levels derived from observational material that are shifted by an unknown amount indicated by an ⁵ It should be mentioned, that for allowed transitions the strengths S of lines in a multiplet add up to the total multiplet strength (see also appendix B), and that for forbidden transitions the total transition probability is obtained by adding the electric quadrupole and magnetic dipole probabilities. "x" or "y" in ref. [43]. Those calculated or extrapolated values which we expect to be quite uncertain have been indicated, in addition to the brackets, by a question mark. The averaged energy levels for a multiplet have been obtained by weighting the component levels according to their statistical weights, and the multiplet wavelength is calculated from the averaged energy levels, taking the refraction of air into account for wavelengths longer than 2000 A [42]. These averaged values are indicated by italics. The statistical weights g have been included in this tabulation because of their importance in applications involving line intensities. They have been obtained from the inner quantum numbers J listed in the "Atomic Energy Levels" by applying the relations given in Appendix B. The second part of the table contains the data proper. The numerical values contain as many digits as are consistent with the estimated accuracy of the data.6 The numbers in the source column refer to the references listed after the individual introductions. If two or more references are listed, we have given each source equal weight in arriving at the averaged value. If the data for all lines of a multiplet are given, then these are either obtained from the relationships listed in Appendix B and from LScoupling tables [17-19], which is indicated in the source column by "ls", or they are obtained directly from the literature. In the latter case they are sometimes marked "n", if they are normalized to a basis which is different from the one chosen originally by the authors. Similarly, the multiplet values sometimes have been renormalized and have been marked "n". For the forbidden lines, a few small changes in the arrangement have been made. First, we have indicated the type of transition, i.e., we have listed an "m" for magnetic dipole and "e" for electric quadrupole lines. Furthermore, the log gf and f_{ik} columns are omitted, since these units are not used for forbidden lines. (The line strength S, which now has different atomic units (see table III), is also used infrequently). It should be noted that the total transition probabilities of forbidden lines are obtained by adding the magnetic dipole and electric quadrupole values. We finally would like to mention that we have assembled and explained in Appendix A all abbreviations appearing in the tabulations. ## F. FUTURE PLANS AND ACKNOWLEDGEMENTS It is our plan to extend this critical compilation to all other elements and make revisions whenever necessary. The present tables should therefore be regarded as the first volume of a larger work spanning all elements. However, realization of this large project in a systematic fashion, say, in order of increasing atomic number, does not appear feasible at the present time, since there are relatively few reliable data available for many heavier elements, and essentially none for higher stages of ionization. As an interim solution, we probably shall attempt to assemble, in an irregular fashion, tables of best values for the spectra of those heavier elements and ions for which extensive and worthwhile data are presently at hand. These will be primarily the heavier noble gases, some of the wellknown metals, the alkalis, and the alkaline earths. Also, the third period of the periodic table appears to be promising. Finally, it is our wish and hope that this compilation may stimulate further work on the lightest ten elements, since many gaps and unreliable data are evident on closer inspection of the tables. The two areas that merit the highest attention are the higher ions and those lower excited transitions that are subject to the effects of configuration interaction. It is our pleasure to acknowledge the help and collaboration of many workers in this field. In particular, we would like to thank P. S. Kelly and B. H. Armstrong for sending us preprints of their extensive SCF-calculations on nitrogen and oxygen, H. R. Griem for supplying us with a computer program to calculate Bates-Damgaard values; and R. H. Garstang and A. M. Nagvi for extensive discussions and some re-calculations of transition probabilities for forbidden lines. We also express our sincere gratitude to the students who have worked during the past summers on the prelimiary aspects of this compilation: These are Mary Des Jardins, Maureen Zagronic, Berry Cobb, Don Hall, and Paul Voigt. We would finally like to thank several of our collegues at NBS; especially A.W. Weiss for many useful discussions and for carrying out many SCF-calculations when serious gaps in the data showed up; Mrs. C. E. Moore-Sitterly for generously furnishing us with new material on energy levels and wavelengths; and J. Z. Klose for undertaking a lifetime study for important excited states of Ne I. It is also a pleasure to acknowledge the competent help of Miss Jean Bates and Mrs. Marilyn Duffany in typing and proofreading the manuscript. #### References - Glennon, B. M. and Wiese, W. L., National Bureau of Standards Monograph 50 (1962) (U.S. Government Printing Office, Washington, - [2] Bates, D. R. and Damgaard, A., Phil. Trans. Roy. Soc. London A242, 101 (1949). - [3] Moore, C. E., "A Multiplet Table of Astrophysical Interest, Revised Edition," National Bureau of Standards Tech. Note 36 (1959) (U.S. Government Printing Office, Washington, D.C.). [4] Moore, C. E., "An Ultraviolet Multiplet Table," National Bureau of Standards Circular 488, Sec. 1 (1950) (U.S. Government Printing - Office, Washington, D.C.). [5] Wiese, W. L. in "Proceedings Xth Colloq. Spectrosc. Internat.," p. 37, (Spartan Books, Washington, D.C., 1963). [6] Foster, E. W., Repts. Prog. in Physics, XXVII, 469 (1964). [7] Berg, H. F., Eckerle, K. L. Burris, R. W., and Wiese, W. L., Astrophys. J. 139, 751 (1964). - J. 139, 781 (1994). Richter, J., Z. Astrophysik 53, 262 (1961). Frie, W. and Maecker, H., Z. Physik 162, 69 (1961). Wiese, W. L., Chapter VI in "Plasma Diagnostics," (edited by Huddlestone, R. H. and Leonard, S. L., Academic Press, New York, 1965). - Griem, H. R., Phys. Rev. 128, 997 (1962). - Shumaker, Jr., J. B., Rev. Sci. Instr. 32, 65 (1961). Maecker, H., Z. Naturforsch. 11, 457 (1956). Bennett, Jr., W. R., Kindlmann, P. J., and Mercer, G. N., Applied Optics, Supplement 2 of Chemical Lasers, 34 (1965). - Opucs, Supplement 2 of Chemical Lasers, 34 (1965). [15] Rozhdestvenskii, D., Ann. Physik 39, 307 (1912). [16] Penkin, N. P., J. Quant. Spectrosc. Radiat. Transfer 4, 41 (1964). [17] Goldberg, L., Astrophys J. 82, 1 (1935) and 84, 11 (1936). [18] White, H. E. and Eliason, A. Y., Phys. Rev. 44, 753 (1933). [19] Allen, C. W., "Astrophysical Quantities," 2d Ed. (The Athlone Press, London 1963) - London, 1963). [20] Hartree, D. R., "The Calculation of Atomic Structures," (John Wiley and Sons, New York, 1956). Fock, V., Z. Physik 61, 126 (1930). - [22] Trefftz, E., Schlüter, A., Dettmar, K. H., and Jörgens, K., Z. Astrophysik 44, 1 (1957). - [23] Biermann, L. and Lübeck, K., Z. Astrophysik 25, 325 (1948). [24] Roothaan, C. C. J. and Bagus, P. S., in "Methods in Computational Physics", Vol. II p. 47 (Academic Press, New York, 1963). - [25] Weiss, A. W., Astrophys. J. 138, 1262 (1963). ⁶ During the computations and conversions all digits were retained and finally rounded off. Thus it may sometimes occur that the line strengths do not exactly add up to the multiplet strength. Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117 (1964). [26] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117 (1904). [27] Weiss, A. W., private communication (1964). [28] Yutsis, A. P., Zhur. Eksptl. i Teoret. Fiz. 23, 129 (1952). [29] Boldt, G., Z. Naturforsch. 18A, 1107 (1963). [30] Labuhn, F., to be published in Z. Naturforsch. [31] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 111, 115 (1951). [32] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 120, 201 (1960). [33] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 120, 201 (1960). [34] Naqvi, A. M., Thesis Harvard (1951). Naqvi, A. M., Thesis Harvard (1951). Seaton, M. J.
and Osterbrock, D. E., Astrophys. J. 125, 66 (1957). Yamanouchi, T. and Horie, H., J. Phys. Soc. Japan 7, 52 (1952). Ufford, C. W. and Gilmour, R. M., Astrophys. J. 111, 580 (1950). [38] Shortley, G. H., Aller, L. H., Baker, J. G., and Menzel, D. H., Astrophys. J. **93**, 178 (1941). [39] Slater, J. C., Phys. Rev. 34, 1293 (1929). [40] Garstang, R. H., Proc. Cambridge Phil. Soc. 52, 107 (1956). Omholt, A., Geofys. Publikasjoner Norske Videnskaps. - Akad. Oslo **21,** 1 (1959). [42] Garstang, R. H., Chapter I in "Atomic and Molecular Processes", [42] Garstang, R. H., Chapter I in Atomic and Molecular Processes, (edited by Bates, D. R., Academic Press, New York, 1962). [43] Moore, C. E., "Atomic Energy Levels", National Bureau of Standards Circular 467; Vol. I (1949); Vol. II (1952); Vol. III (1958) (U.S. Government Printing Office, Washington, D.C.). [44] Reports of the Thick Commission for Spectroscopy I Out See Am [44] Reports of the Triple Commission for Spectroscopy, J. Opt. Soc. Am. 52, 476 (1962); 52, 583 (1962); 53, 885 (1963). [45] Bethe, H. A. and Salpeter, E. E., "Quantum Mechanics of One-and Two-Electron Atoms", (Academic Press, New York, 1957). [46] Coleman, C. D., Bozman, W. R., and Meggers, W. F., National Bureau of Standards Monograph 3 (1960) (U.S. Government Printing Office, Washington, D.C.). #### Table 1. Relationships between the quantities for hydrogen, indicated by H, and hydrogen-like ions of charge Z (the other symbols are explained in Sec. E). $$f_{\rm Z} = f_{\rm H}$$ $S_{\rm Z} = Z^{-2}S_{\rm H}$ $A_{\rm Z} = Z^4A_{\rm H}$ Table II. Reference list of additional material which is considered to be quite reliable but not covered in the table because of its very limited use (the quantum numbers are given in their customary notation). | Spectrum | Transitions | Author | |-------------|---|--| | Н1 | $2 \rightarrow n \text{ for } 41 \le n \le 60$
$n_i l_i \rightarrow n_k l_k \text{ for}$
$5 \le n_i \le 20, 6 \le n_k \le 20,$
and all possible <i>l</i> -values
$2l \rightarrow nl \text{ for } 21 \le n \le 60$ | Green, L. C., Rush, P. P., and Chandler, C. D., Astrophys. J. Suppl. Ser. 3, 37 (1957). | | Н1 | $\begin{array}{l} \text{ls} \rightarrow np \text{ for } 7 \leqslant n \leqslant 50 \\ 2l \rightarrow nl \text{ for } 7 \leqslant n \leqslant 50 \\ \text{and all possible } l\text{-values} \\ 3l \rightarrow nl \text{ for } 7 \leqslant n \leqslant 50 \\ \text{and all possible } l\text{-values} \\ 4l \rightarrow nl \text{ for } 7 \leqslant n \leqslant 50 \\ \text{and all possible } l\text{-values} \\ \end{array}$ | Harriman, J. M., Phys. Rev. 101, 594 (1956)
and Document No. 4705, American Docu-
mentation Institute Auxiliary Publica-
tions Project, Photoduplication Service,
Library of Congress, Washington, D. C. | | NΙ | $s-p, p-d, \text{ and } d-f \text{ for } 2 \le n \le 11; \text{ with } 1s^22s^22p^2 \text{ core } s-p, p-d, \text{ and } d-f \text{ for } 2 \le n \le 8; \text{ with } 1s^22s \ 2p^3 \text{ and } 1s^22p^4 \text{ cores}$ | Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964). | | N II, О III | $s-p, p-d$, and $d-f$ for $2 \le n \le 8$; with $1s^2 2s^2 2p$ core | Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117–148 (1964). | | N III, O IV | $s-p, p-d$, and $d-f$ for $2 \le n \le 8$; with $1s^2 2s^2$ core | Kelly, P. S., J. Quant. Spectrosc. Radiat.
Transfer 4, 117–148 (1964). | | N IV, O V | $s-p$, $p-d$, and $d-f$ for $2 \le n \le 8$; with $1s^2 2s$ core | Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117–148 (1964). | | N v, O vi | $s-p, p-d, \text{ and } d-f \text{ for } 2 \le n \le 8; \text{ with } 1s^2 \text{ core}$ | Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117–148 (1964). | | 01 | $s-p$, $p-d$, and $d-f$ for $2 \le n \le 8$; with $1s^2 2s^2 2p^3$ core | Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117–148 (1964). | | Оп | $s-p, p-d$, and $d-f$ for $2 \le n \le 8$; with $1s^2 2s^2 2p^2$ core | Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117–148 (1964). | Table III. Conversion factors. The factor in each box converts by multiplication the quantity above it into the one at its left. | | A_{ki} | f_{ik} | S | |------------------|---|--|--| | | | | $E_d = \frac{2.026_1 \times 10^{18}}{g_k \lambda^3}$ | | A_{ki} | 1 | $\frac{6.670_2 \times 10^{15}}{\lambda^2} \frac{g_i}{g_k}$ | $\frac{E_q}{\frac{1.679_8 \times 10^{18}}{g_k \lambda^5}}$ | | | | | $\frac{M_d}{\frac{2.697_2 \times 10^{13}}{g_k \lambda^3}}$ | | | | | E_d $\frac{303.7_5}{g_i\lambda}$ | | f_{ik} | $1.4992 \times 10^{-16} \lambda^2 rac{g_k}{g_i}$ | 1 | $E_q = \frac{251.8}{g_i \lambda^3}$ | | | | E_q M_d | M_d $\frac{4.043_6 \times 10^{-3}}{g_i \lambda}$ | | | E_d 4.935 ₆ ×10 ⁻¹⁹ $g_k \lambda^3$ | E_d $3.292_1 \times 10^{-3} g_i \lambda$ | | | \boldsymbol{S} | E_q 5.953 × 10 ⁻¹⁹ $g_k \lambda^5$ | $E_q = 3.971 \times 10^{-3} g_i \lambda^3$ | 1 | | | $M_d = 3.707_6 \times 10^{-14} g_k \lambda^3$ | M_d 247.3 ₀ g_i λ | | The line strength is given in atomic units, which are: For electric dipole transitions (allowed—denoted by E_d): $$a_0^2e^2 = 6.459_4 \times 10^{-36} \text{ cm}^2 \text{ esu}^2$$; for electric quadrupole transitions (forbidden-denoted by E_q): $$a_0^4 e^2 = 1.808_8 \times 10^{-52} \text{ cm}^4 \text{ esu}^2;$$ for magnetic dipole transitions (forbidden-denoted by M_d): $$e^2h^2/16\pi^2m_e^2c^2 = 8.599 \times 10^{-41} \text{ erg}^2 \text{ gauss}^{-2}$$. The transition probability is in units \sec^{-1} , and the f-value is dimensionless. The wavelength λ is given in Angstrom units, and g_i and g_k are the statistical weights of the lower and upper state, respectively. #### APPENDIX A Key to abbreviations and symbols used in the tables (A) Symbols for indication of accuracy: | 1) Зу | AAuncertainties within | 1% | |-------|------------------------|-----| | | Ado | 3% | | | B do | 10% | | | C do | 25% | | | D do | 50% | | | | | 50% E.... uncertainties larger than (B) Abbreviations appearing in the source column of allowed transitions ls = LS-coupling ca = Coulomb approximation n = normalized to a different scale (C) Types of forbidden lines e = electric quadrupole linem = magnetic dipole line > (Total transition probabilities of forbidden lines are obtained by adding the e- and m-values). (D) Special symbols used in the wavelength and energy level columns. Number in parentheses under multiplet notation refers to running number of ref. [3] (Revised Multiplet Table) If letters "uv" are added, reference is made to running number in ref. [4] (Ultraviolet Multiplet Table) Numbers in italics indicate multiplet values, i.e., weighted averages of line values. Numbers in square brackets approximate calculated or extrapolated values. Question marks indicate rather uncertain values. #### APPENDIX B (A) Statistical Weights: The statistical weights are related to the inner quantum number J_L (in one-electron spectra j) of a level (initial and final states of a line) by $$g_L = 2J_L + 1$$, and to the quantum numbers of a term (initial and final states of a multiplet) by $$g_M = (2L+1)(2S+1).$$ (The "multiplet" values g_M may also be obtained by summing over all possible "line" values g_L . S is the resultant spin.) (B) Relations between the strengths of lines and the total multiplet strength: 1. Line strength S: $$S(i,\ k) = \sum_{J_i,\ J_k} S(J_i,\ J_k)$$ or $$S(Multiplet) = \sum S(line)$$ (k denotes the upper and i the lower term). 2. Absorption oscillator strength: $$f_{ik}^{\text{multiplet}} = \frac{1}{\overline{\lambda}_{ik} \sum_{J_i} (2J_i + 1)} \sum_{J_k, J_i} (2J_i + 1) \times \lambda(J_i, J_k) \times f(J_i, J_k)$$ The mean wavelength for the multiplet $\bar{\lambda}_{ik}$ may be obtained from the weighted energy levels. Usually the wavelength differences for the lines within a multiplet are very small, so that the wavelength factors may be neglected. 3. Transition probabilities $$A_{k!}^{\text{multiplet}} = \frac{1}{(\bar{\lambda}_{ik})^3 \sum\limits_{J_k} (2J_k+1)} \sum\limits_{J_i,\,J_k} (2J_k+1) \times \lambda(J_i,J_k)^3 \times A(J_k,J_i)$$ Relative strengths $S(J_i, J_k)$ of the components of a multiplet are listed in refs. [17-19] for the case of LS-coupling. ## **HYDROGEN** H Ground State $1s \, {}^{2}S_{1/2}$ Ionization Potential $13.595 \text{ eV} = 109678.758 \text{ cm}^{-1}$ #### **Allowed Transitions** For hydrogen a special tabular arrangement is used. In Table A the "average" transition probabilities for transitions between lower states of principal quantum number $(n)_i$ to upper states $(n)_k$ are listed. They are taken from extensive calculations by Green, Rush, and Chandler; Harriman; Herdan and Hughes; Karzas and Latter; and Menzel and Pekeris [1]. These values are applicable to most problems in plasma spectroscopy and astrophysics (see general introduction, Sec. E). Table B contains the probabilities for transitions between the various sublevels $(nl)_i - (nl)_k$. This table should be useful primarily for theoretical applications. Both tables include only four significant figures since relativistic effects, which are of the order of α^2 ,
have been neglected in the calculations (α is the fine structure constant). It should be noted that Green, Rush, and Chandler; and Harriman list more transitions, but these, not being of any practical importance, are omitted. Table C contains the values for nine fine structure lines as calculated from the work of Wild [2]. The effect of the Lamb shift has been taken into account by using his equation (4a) to calculate the line strength and then by using the energy levels given in NBS Circular 467 (Atomic Energy Levels) for conversion into the other quantities. The values for the transition between the two hyperfine structure components of the $1s^2S_{1/2}$ level are also taken from Wild [2] and are given in Table D. This magnetic dipole transition has a statistical weight of 2f+1, where f is $j\pm 1/2$ for hydrogen. The metastable $2s \, ^2S_{1/2}$ level gives rise to transitions to the ground state only by means of two-photon emission. This process was studied in particular by Shapiro and Breit [3]. Their calculation of the transition probability for the $1s \, ^2S_{1/2} - 2s \, ^2S_{1/2}$ transition gives a value of 8.23 sec⁻¹ with an estimated accuracy of better than 3 percent. The transition itself gives rise to a continuum; hence no f or S values are given. Finally, it should be mentioned that in the conversion factors used for hydrogen the reduced mass and other appropriate constants are taken into account. #### References - [1] Green, L. C., Rush, P. P., and Chandler, C. D., Astrophys. J. Suppl. Ser. 3, 37-50 (1957); Harriman, J. M., Phys. Rev. 101, 594-598 (1956) and Document No. 4705, American Documentation Institute Auxiliary Publications Project, Photoduplication Service, Library of Congress, Washington, D. C.; Herdan, R., and Hughes, T. P., Astrophys. J. 133, 294-298 (1961); Karzas, W. J., and Latter, R., Astrophys. J. Suppl. Ser. 6, 167-212 (1961); Menzel, D. H., and Pekeris, C. L., Monthly Notices Roy. Astron. Soc. 96, 77-111 (1935). - [2] Wild, J. P., Astrophys. J. 115, 206-221 (1952). - [3] Shapiro, J., and Breit, G., Phys. Rev. 113, 179-181 (1959). **H**-Table A. $(n)_i$ - $(n)_k$ Transitions (Average Values) | Transition | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | g_k | $A_{ki}(\sec^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu- | Source | |---|--------------------|--|-----------------------|--------------------------------------|--------------|---|--|---|---|----------|--| | | | | | | | | | | | | | | $1-2 (L_{\alpha})$ | 1215.67 | 0 | 82259 | 2 | 8 | 4.699×10^{8} | 0.4162 | 3.330 | -0.0797 | AA | 1 | | $1-3$ (L _{β}) | 1025.72 | 0 | 97492 | 2 | 18 | 5.575×10^{7} | 7.910×10^{-2} | 0.5339 | -0.8008 | AA | 1 | | $1-4 (L_{\gamma})$ | 792.537 | 0 | 102824 | 2 | 32 | 1.278×10^{7} | 2.899×10^{-2} | 0.1855 | -1.2367 | AA |]] | | $1-5$ (L _{δ}) | 949.743 | 0 | 105292 | 2 | 50 | 4.125×10^{6} | 1.394×10^{-2} | 8.711×10^{-2} | -1.5548 | ΛA | | | $1-6 (L_{\epsilon})$ | 937.803 | 0 | 106632 | 2 | 72 | 1.644×10^{6} | 7.799×10^{-3} | 4.813×10^{-2} | -1.8069 | AA | 1 | | 1-7 | 930.748 | 0 | 107440 | 2 | 98 | 7.568×10^{5} | 4.814×10^{-3} | 2.948×10^{-2} | -2.0165 | AA | 1 | | 1-8
1-9 | 926.226 | 0 | 107965 | 2 | 128 | 3.869×10^{5} | 3.183×10^{-3} | 1.940×10^{-2} | -2.1961 | AA | 1 | | 1-9
1-10 | 923.150
920.963 | $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ | 108325 | 2 | 162 | 2.143×10^{5} | 2.216×10^{-3} | 1.346×10^{-2} | -2.3534 | AA | 1 | | 1-11 | 919.352 | 0 | 108582
108772 | $\begin{vmatrix} 2\\2 \end{vmatrix}$ | 200
242 | $\begin{array}{ c c c }\hline 1.263 \times 10^5 \\ 7.834 \times 10^4 \end{array}$ | $\begin{array}{c c} 1.605 \times 10^{-3} \\ 1.201 \times 10^{-3} \end{array}$ | 9.729×10^{-3} | -2.4934 | AA | 1 1 | | | | | | • | | | 1.201 × 10 ° | 7.263 × 10^{-3} | -2.6196 | AA | 1 | | 1 - 12 | 918.129 | 0 | 108917 | 2 | 288 | 5.066×10^{4} | 9.214×10^{-4} | 5.567×10^{-3} | -2.7345 | AA | 1 | | 1 - 13 $1 - 14$ | 917.181
916.429 | 0 | 109030 | 2 | 338 | 3.393×10^{4} | 7.227×10^{-4} | 4.362×10^{-3} | -2.8400 | AA | 1 | | 1 - 14 $1 - 15$ | 910.429 | $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ | 109119
109191 | $\begin{vmatrix} 2\\2 \end{vmatrix}$ | 392 | 2.341×10^{4} | 5.774×10^{-4} | 3.482×10^{-3} | -2.9375 | AA | 1 | | 1 - 16 | 915.329 | | 109191 | $\frac{2}{2}$ | 450
512 | 1.657×10^{4}
1.200×10^{4} | $\begin{array}{ c c c c c }\hline 4.686 \times 10^{-4} \\ 3.856 \times 10^{-4} \\\hline \end{array}$ | $\begin{array}{c} 2.824 \times 10^{-3} \\ 2.323 \times 10^{-3} \end{array}$ | $\begin{bmatrix} -3.0281 \\ -3.1129 \end{bmatrix}$ | AA
AA | $\begin{vmatrix} 1 \\ 1 \end{vmatrix}$ | | | | " | | | 312 | 1.200 × 10 | 5.630 × 10 · | 2.525 × 10 ⁻⁶ | - 5.1129 | AA | 1 | | 1-17 | 914.919 | 0 | 109299 | 2 | 578 | 8858 | 3.211×10^{-4} | 1.933×10^{-3} | -3.1924 | AA | 1 | | $ \begin{array}{r} 1 - 18 \\ 1 - 19 \end{array} $ | 914.576 | 0 | 109340 | 2 | 648 | 6654 | 2.702×10^{-4} | 1.626×10^{-3} | -3.2673 | AA | 1 | | $1-19 \\ 1-20$ | 914.286
914.039 | 0 | 109375 | 2 | 722 | 5077 | 2.296×10^{-4} | 1.381×10^{-3} | -3.3381 | AA | 1 | | $1-20 \\ 1-21$ | 914.039 | 0 | 109405
109430 | $\begin{vmatrix} 2\\2 \end{vmatrix}$ | 800
882 | 3928
3077 | 1.967×10^{-4} | 1.183×10^{-3} | -3.4052 | AA | $\begin{vmatrix} 1 \\ 1 \end{vmatrix}$ | | | | " | 109430 | 2 | 002 | 3077 | 1.698×10 ⁻⁴ | 1.021×10^{-3} | -3.4691 | AA | 1 | | 1 - 22 | 913.641 | 0 | 109452 | 2 | 968 | 2438 | 1.476×10^{-4} | 8.874×10^{-4} | -3.5299 | AA | 1 | | 1-23 | 913.480 | 0 | 109471 | 2 | 1058 | 1952 | 1.291×10^{-4} | 7.761×10^{-4} | -3.5880 | AA | 1 | | $1-24 \\ 1-25$ | 913.339
913.215 | 0 | 109488 | 2 | 1152 | 1578 | 1.136×10^{-4} | 6.827×10^{-4} | -3.6436 | AA | 1 | | 1-26 | 913.213 | 0 | 109503
109517 | 2 2 | 1250
1352 | 1286
1057 | 1.005×10^{-4}
8.928×10^{-5} | $\begin{array}{c} 6.037 \times 10^{-4} \\ 5.364 \times 10^{-4} \end{array}$ | $\begin{array}{r r} -3.6970 \\ -3.7482 \end{array}$ | AA
AA | | | | | - | | | | | | | | | | | $\begin{array}{c} 1-27 \\ 1-28 \end{array}$ | 913.006
912.918 | 0 | 109528 | 2 | 1458 | 875.3 | 7.970×10^{-5} | 4.788×10^{-4} | -3.7975 | AA | 1 | | 1-26 $1-29$ | 912.918 | $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ | 109539
109548 | $\begin{vmatrix} 2\\2 \end{vmatrix}$ | 1568 | 729.7 | 7.144×10^{-5} | 4.292×10^{-4} | -3.8450 | AA | | | 1-30 | 912.768 | 0 | 109548 | $\frac{2}{2}$ | 1682
1800 | 612.2
516.7 | $egin{array}{ccc} 6.429 imes 10^{-5} \ 5.806 imes 10^{-5} \end{array}$ | 3.862×10^{-4} 3.487×10^{-4} | -3.8908 -3.9351 | AA
AA | 1
1 | | 1 - 31 | 912.703 | 0 | 109565 | $\frac{2}{2}$ | 1922 | 438.6 | 5.261×10^{-5} | 3.160×10^{-4} | -3.9779 | AA | i | | 1 - 32 | 912.645 | 0 | 109572 | 2 | 2048 | 374.2 | 4.782×10^{-5} | 2.872×10^{-4} | -4.0193 | AA | 1 | | 1 - 33 | 912.592 | ŏ | 109578 | 2 | 2178 | 320.8 | 4.360×10^{-5} | 2.618×10^{-4} | -4.0595 | AA | ī | | 1 - 34 | 912.543 | 0 | 109584 | 2 | 2312 | 276.3 | 3.986×10^{-5} | 2.394×10^{-4} | -4.0985 | AA | 1 | | 1 - 35 | 912.499 | 0 | 109589 | 2 | 2450 | 239.0 | 3.653×10^{-5} | 2.194×10^{-4} | -4.1363 | AA | 1 | | 1-36 | 912.458 | 0 | 109594 | 2 | 2592 | 207.6 | 3.357×10^{-5} | 2.016×10^{-4} | -4.1730 | AA | 1 | | 1 - 37 | 912.420 | 0 | 109599 | 2 | 2738 | 181.0 | 3.092×10^{-5} | 1.856×10^{-4} | -4.2088 | AA | 1 | | 1 - 38 | 912.385 | 0 | 109603 | 2 | 2888 | 158.4 | 2.854×10^{-5} | 1.713×10^{-4} | -4.2436 | AA | 1 | | 1-39 | 912.353 | 0 | 109607 | 2 | 3042 | 139.1 | 2.640×10^{-5} | 1.585×10^{-4} | -4.2774 | AA | 1 | | 1 - 40 | 912.324 | 0 | 109610 | 2 | 3200 | 122.6 | 2.446×10^{-5} | 1.469×10^{-4} | -4.3105 | AA | 1 | | $2-3$ (H _{α}) | 6562.80 | 82259 | 97492 | 8 | 18 | 4.410×10^{7} | 0.6407 | 110.7 | 0.7098 | AA | 1 | | $2-4~(H_{\beta})$ | 4861.32 | 82259 | 102824 | 8 | 32 | 8.419×10^{6} | 0.1193 | 15.27 | -0.0202 | AA | 1 | | $2-5(H_{\lambda})$ | 4340.46 | 82259 | 105292 | 8 | 50 | 2.530×10^{6}
9.732×10^{5} | $4.467 \times 10^{-2} \ 2.209 \times 10^{-2}$ | 5.105
2.386 | -0.4469
-0.7527 | AA
AA | 1 | | $\frac{2-6}{2}$ (H _δ) | 4101.73 | 82259
82259 | 106632
107440 | 8 | 72
98 | 9.732×10^{5}
4.389×10^{5} | 1.270×10^{-2} | 1.328 | -0.7327 -0.9929 | AA | ĺi | | $2-7~(\mathrm{H}_{\epsilon})$ | 3970.07 | 82239 | 107440 | 0 | 90 | 4.569 \ 10 | | | | | _ | | 2 - 8 | 3889.05 | 82259 | 107965 | 8 | 128 | 2.215×10^{5} | 8.036×10^{-3} | $0.8228 \\ 0.5482$ | -1.1919 | AA | 1
1 | | 2-9 | 3835.38 | 82259 | 108325 | 8 | 162 | 1.216×10^{5}
7.122×10^{4} | 5.429×10^{-3}
3.851×10^{-3} | 0.5482
0.3851 | -1.3622 -1.5114 | AA
AA | 1 | | $\frac{2-10}{2}$ | 3797.90 | 82259
82259 | 108582
108772 | 8 | $200 \\ 242$ | 4.397×10^{4} | 2.835×10^{-3} | 0.2815 | -1.5114
-1.6443 | AA | î | | $
\begin{array}{c} 2 - 11 \\ 2 - 12 \end{array} $ | 3770.63
3750.15 | 82259
82259 | 108772 | 8 | 288 | 2.834×10^{4} | 2.151×10^{-3} | 0.2124 | -1.7643 | AA | 1 | | 4-14 | 3130.13 | } | } | | | | | | | | 1 | | 2 - 13 | 3734.37 | 82259 | 109030 | 8 | 338 | 1.893×10^4 | 1.672×10^{-3}
1.326×10^{-3} | $0.1644 \\ 0.1300$ | -1.8737
-1.9743 | AA
AA | ì | | 2 - 14 | 3721.94 | 82259 | 109119 | 8 | 392 | 1.303×10^{4}
9210 | 1.326×10^{-3}
1.070×10^{-3} | 0.1300 | -1.9743
-2.0674 | AA | i | | 2-15 | 3711.97 | 82259
82259 | 109191
109250 | 8 | 450
512 | 6658 | 8.764×10^{-4} | 8.547×10^{-2} | -2.1542 | AA | 1 | | $ \begin{array}{r} 2 - 16 \\ 2 - 17 \end{array} $ | 3703.85
3697.15 | 82259
82259 | 109250 | 8 | | 4910 | 7.270×10^{-4} | 7.077×10^{-2} | -2.2354 | AA | 1 | | 2-11 | 1 3071.13 | 02207 | 1 20/2// | , , | . 510 | | | | | | | **H**-Table A. $(n)_i-(n)_k$ Transitions (Average Values)- Continued | Transition | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | g_k | $A_{ki}(\sec^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |--|---|--|--|--|---|--|---|---|---|----------------------------------|----------------------------| | $ \begin{array}{r} 2 - 18 \\ 2 - 19 \\ 2 - 20 \\ 2 - 21 \\ 2 - 22 \end{array} $ | 3691.55
3686.83
3682.81
3679.35
3676.36 | 82259
82259
82259
82259
82259 | 109340
109375
109405
109430
109452 | 8
8
8
8
8 | 648
722
800
882
968 | 3685
2809
2172
1700
1347 | $\begin{array}{c} 6.099 \times 10^{-4} \\ 5.167 \times 10^{-4} \\ 4.416 \times 10^{-4} \\ 3.805 \times 10^{-4} \\ 3.302 \times 10^{-4} \end{array}$ | $\begin{array}{c} 5.928 \times 10^{-2} \\ 5.016 \times 10^{-2} \\ 4.283 \times 10^{-2} \\ 3.686 \times 10^{-2} \\ 3.196 \times 10^{-2} \end{array}$ | $\begin{array}{r} -2.3117 \\ -2.3837 \\ -2.4518 \\ -2.5165 \\ -2.5781 \end{array}$ | AA
AA
AA
AA | 1
1
1
1
1 | | $ \begin{array}{r} 2 - 23 \\ 2 - 24 \\ 2 - 25 \\ 2 - 26 \\ 2 - 27 \end{array} $ | 3673.76
3671.48
3669.46
3667.68
3666.10 | 82259
82259
82259
82259
82259 | 109471
109488
109503
109517
109528 | 8
8
8
8 | 1058
1152
1250
1352
1458 | 1078
870.7
709.6
583.0
482.6 | $\begin{array}{c} 2.884 \times 10^{-4} \\ 2.534 \times 10^{-4} \\ 2.238 \times 10^{-4} \\ 1.987 \times 10^{-4} \\ 1.772 \times 10^{-4} \end{array}$ | $\begin{array}{c} 2.790\times 10^{-2} \\ 2.449\times 10^{-2} \\ 2.163\times 10^{-2} \\ 1.919\times 10^{-2} \\ 1.711\times 10^{-2} \end{array}$ | -2.6369
-2.6931
-2.7470
-2.7987
-2.8484 | AA
AA
AA
AA | 1
1
1
1
1 | | $ \begin{array}{r} 2 - 28 \\ 2 - 29 \\ 2 - 30 \\ 2 - 31 \\ 2 - 32 \end{array} $ | 3664.68
3663.40
3662.26
3661.22
3660.28 | 82259
82259
82259
82259
82259 | 109539
109548
109557
109565
109572 | 8
8
8
8 | 1568
1682
1800
1922
2048 | 402.2
337.4
284.7
241.6
206.1 | $\begin{array}{c} 1.587\times 10^{-4}\\ 1.427\times 10^{-4}\\ 1.288\times 10^{-4}\\ 1.167\times 10^{-4}\\ 1.060\times 10^{-4} \end{array}$ | $\begin{array}{c} 1.532 \times 10^{-2} \\ 1.377 \times 10^{-2} \\ 1.242 \times 10^{-2} \\ 1.125 \times 10^{-2} \\ 1.021 \times 10^{-2} \end{array}$ | -2.8962
-2.9424
-2.9869
-3.0300
-3.0717 | AA
AA
AA
AA | 1
1
1
1
1 | | $ \begin{array}{r} 2 - 33 \\ 2 - 34 \\ 2 - 35 \\ 2 - 36 \\ 2 - 37 \end{array} $ | 3659.42
3658.64
3657.92
3657.27
3656.66 | 82259
82259
82259
82259
82259 | 109578
109584
109589
109594
109599 | 8
8
8
8 | 2178
2312
2450
2592
2738 | 176.7
152.2
131.6
114.3
99.66 | $\begin{array}{c} 9.658 \times 10^{-5} \\ 8.825 \times 10^{-5} \\ 8.086 \times 10^{-5} \\ 7.427 \times 10^{-5} \\ 6.837 \times 10^{-5} \end{array}$ | $\begin{array}{c} 9.305\times 10^{-3} \\ 8.501\times 10^{-3} \\ 7.788\times 10^{-3} \\ 7.152\times 10^{-3} \\ 6.583\times 10^{-3} \end{array}$ | $\begin{array}{r} -3.1120 \\ -3.1512 \\ -3.1892 \\ -3.2261 \\ -3.2620 \end{array}$ | AA
AA
AA
AA | 1
1
1
1 | | $ \begin{array}{r} 2 - 38 \\ 2 - 39 \\ 2 - 40 \end{array} $ | 3656.11
3655.59
3655.12 | 82259
82259
82259 | 109603
109607
109610 | 8
8
8 | 2888
3042
3200 | 87.20
76.57
67.46 | | $ \begin{vmatrix} 6.073 \times 10^{-3} \\ 5.615 \times 10^{-3} \\ 5.202 \times 10^{-3} \end{vmatrix} $ | $ \begin{array}{r} -3.2969 \\ -3.3310 \\ -3.3641 \end{array} $ | AA
AA
AA | 1
1
1 | | $\begin{array}{l} 3-4 \ (P_{\alpha}) \\ 3-5 \ (P_{\beta}) \\ 3-6 \ (P_{\gamma}) \\ 3-7 \ (P_{\delta}) \\ 3-8 \ (P_{\epsilon}) \end{array}$ | 18751.0
12818.1
10938.1
10049.4
9545.98 | 97492
97492
97492
97492
97492 | 102824
105292
106632
107440
107965 | 18
18
18
18
18 | 32
50
72
98
128 | $\begin{array}{c} 8.986 \times 10^{6} \\ 2.201 \times 10^{6} \\ 7.783 \times 10^{5} \\ 3.358 \times 10^{5} \\ 1.651 \times 10^{5} \end{array}$ | $\begin{array}{c} 0.8421 \\ 0.1506 \\ 5.584 \times 10^{-2} \\ 2.768 \times 10^{-2} \\ 1.604 \times 10^{-2} \end{array}$ | 935.4
114.3
36.18
16.48
9.069 | 1.1806
0.4331
0.0022
-0.3025
-0.5396 | AA
AA
AA
AA | 1
1
1
1
1 | | 3-9 $ 3-10 $ $ 3-11 $ $ 3-12 $ $ 3-13$ | 9229.02
9014.91
8862.79
8750.47
8665.02 | 97492
97492
97492
97492
97492 | 108582
108772
108917 | 18
18
18
18
18 | 162
200
242
288
338 | $\begin{array}{c} 8.905 \times 10^4 \\ 5.156 \times 10^4 \\ 3.156 \times 10^4 \\ 2.021 \times 10^4 \\ 1.343 \times 10^4 \end{array}$ | $\begin{array}{c} 1.023\times10^{-2}\\ 6.980\times10^{-3}\\ 4.996\times10^{-3}\\ 3.711\times10^{-3}\\ 2.839\times10^{-3} \end{array}$ | 5.595
3.728
2.623
1.924
1.457 | $\begin{array}{c c} -0.7347 \\ -0.9009 \\ -1.0461 \\ -1.1752 \\ -1.2916 \end{array}$ | AA
AA
AA
AA | 1
1
1
1 | | 3-14
3-15
3-16
3-17
3-18
3-19
3-20 | 8598.39
8545.39
8502.49
8467.26
8437.96
8413.32
8392.40 | 97492
97492
97492
97492
97492
97492 | 109191
109250
109299
109340
109375 | 18
18
18
18
18
18 | 392
450
512
578
648
722
800 | 9211
6490
4680
3444
2580
1964
1517 | $\begin{array}{c} 2.224\times10^{-3}\\ 1.776\times10^{-3}\\ 1.443\times10^{-3}\\ 1.188\times10^{-3}\\ 9.916\times10^{-4}\\ 8.361\times10^{-4}\\ 7.118\times10^{-4} \end{array}$ | 1.133
0.8992
0.7267
0.5963
0.4957
0.4167
0.3539 | -1.3977
-1.4952
-1.5855
-1.6696
-1.7484
-1.8225
-1.8924 | AA
AA
AA
AA
AA
AA | 1
1
1
1
1
1 | | 4-5
4-6
4-7
4-8
4-9 | 40512.0
26252.0
21655.0
19445.6
18174.1 | 102824
102824
102824
102824
102824 | 106632
107440
107965 | 32
32
32
32
32
32 | 50
72
98
128
162 | $\begin{array}{c} 2.699 \times 10^{6} \\ 7.711 \times 10^{5} \\ 3.041 \times 10^{5} \\ 1.424 \times 10^{5} \\ 7.459 \times 10^{4} \end{array}$ | $\begin{array}{c} 1.038 \\ 0.1793 \\ 6.549 \times 10^{-2} \\ 3.230 \times 10^{-2} \\ 1.870 \times 10^{-2} \end{array}$ | 4428
495.6
149.4
66.14
35.79 | 1.5212
0.7586
0.3213
0.0143
-0.2230 | AA
AA
AA
AA | 1
1
1
1 | | 4-10
4-11
4-12
4-13
4-14 | 17362.1
16806.5
16407.2
16109.3
15880.5 | 102824
102824
102824
102824
102824 | 108772
108917
109030 | 32
32
32
32
32
32 | 200
242
288
338
392 | 4.235×10^{4} 2.556×10^{4} 1.620×10^{4} 1.069×10^{4} 7288 | $\begin{array}{c} 1.196 \times 10^{-2} \\ 8.187 \times 10^{-3} \\ 5.886 \times 10^{-3} \\ 4.393 \times 10^{-3} \\ 3.375 \times 10^{-3} \end{array}$ | 21.87
14.49
10.17
7.452
5.645 | $\begin{array}{c} -0.4171 \\ -0.5817 \\ -0.7250 \\ -0.8521 \\ -0.9665 \end{array}$ | AA
AA
AA
AA | 1
1
1
1 | | 4-15
4-16
4-17
4-18
4-19
4-20 | 15700.7
15556.5
15438.9
15341.8
15260.6
15191.8 | 102824
102824
102824
102824
102824
102824 | 109250
109299
109340
109375 | 32
32
32
32
32
32
32
32 | 450
512
578
648
722
800 | 5110
3671
2693
2013
1529
1178 | $\begin{array}{c} 2.656 \times 10^{-3} \\ 2.131 \times 10^{-3} \\ 1.739 \times 10^{-3} \\ 1.439 \times 10^{-3} \\ 1.204 \times 10^{-3} \\ 1.019 \times 10^{-3} \end{array}$ | 4.392
3.492
2.827
2.324
1.936
1.631 | $\begin{array}{c} -1.0706 \\ -1.1662 \\ -1.2547 \\ -1.3370 \\ -1.4141 \\ -1.4865 \end{array}$ | AA
AA
AA
AA
AA | 1
1
1
1
1 | $\mathbf{H} - \text{Table A.}$ $(n)_i - (n)_k$ Transitions (Average Values) - Continued | Transition | λ(Å) | $E_i(\text{cm}^{-1})$ |
$E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(\mathrm{sec^{-1}})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |--|---|--|--|---|---|--|---|---|---|----------------------------------|----------------------------| | 5-6
5-7
5-8
5-9
5-10 | 74578
46525
37395
32961
30384 | 105292
105292
105292
105292
105292 | 106632
107440
107965
108325
108582 | 50
50
50
50
50 | 72
98
128
162
200 | $\begin{array}{c} 1.025\times10^{6} \\ 3.253\times10^{5} \\ 1.388\times10^{5} \\ 6.908\times10^{4} \\ 3.800\times10^{4} \end{array}$ | $\begin{array}{c} 1.231 \\ 0.2069 \\ 7.448 \times 10^{-2} \\ 3.645 \times 10^{-2} \\ 2.104 \times 10^{-2} \end{array}$ | 1.511×10^{4} 1584 458.3 197.7 105.2 | 1.7893
1.0147
0.5710
0.2607
0.0219 | AA
AA
AA
AA | 1
1
1
1
1 | | 5-11
5-12
5-13
5-14
5-15 | 28722
27575
26744
26119
25636 | 105292
105292
105292
105292
105292 | 108772
108917
109030
109119
109191 | 50
50
50
50
50 | 242
288
338
392
450 | $\begin{array}{c} 2.246\times10^{4} \\ 1.402\times10^{4} \\ 9148 \\ 6185 \\ 4308 \end{array}$ | $\begin{array}{c} 1.344\times 10^{-2} \\ 9.209\times 10^{-3} \\ 6.631\times 10^{-3} \\ 4.959\times 10^{-3} \\ 3.821\times 10^{-3} \end{array}$ | 63.55
41.79
29.18
21.32
16.12 | $\begin{array}{c} -0.1725 \\ -0.3368 \\ -0.4794 \\ -0.6056 \\ -0.7189 \end{array}$ | AA
AA
AA
AA | 1
1
1
1 | | 5-16 $5-17$ $5-18$ $5-19$ $5-20$ | 25254
24946
24693
24483
24307 | 105292
105292
105292
105292
105292 | 109250
109299
109340
109375
109405 | 50
50
50
50
50 | 512
578
648
722
800 | 3079
2249
1675
1268
975.1 | $\begin{array}{c} 3.014\times10^{-3}\\ 2.425\times10^{-3}\\ 1.984\times10^{-3}\\ 1.646\times10^{-3}\\ 1.382\times10^{-3} \end{array}$ | 12.53
9.957
8.062
6.631
5.528 | -0.8218
-0.9162
-1.0035
-1.0846
-1.1605 | AA
AA
AA
AA | 1
1
1
1 | | 6-7
6-8
6-9
6-10
6-11 | 123680
75005
59066
51273
46712 | 106632
106632
106632
106632
106632 | 107440
107965
108325
108582
108772 | 72
72
72
72
72
72 | 98
128
162
200
242 | $\begin{array}{c} 4.561 \times 10^{5} \\ 1.561 \times 10^{5} \\ 7.065 \times 10^{4} \\ 3.688 \times 10^{4} \\ 2.110 \times 10^{4} \end{array}$ | $\begin{array}{c} 1.424 \\ 0.2340 \\ 8.315 \times 10^{-2} \\ 4.038 \times 10^{-2} \\ 2.320 \times 10^{-2} \end{array}$ | 4.173×10^{4} 4160 1164 490.6 256.8 | 2.0108
1.2266
0.7772
0.4635
0.2227 | AA
AA
AA
AA | | | 6-12 $6-13$ $6-14$ $6-15$ $6-16$ | 43753
41697
40198
39065
38184 | 106632
106632
106632
106632
106632 | 108917
109030
109119
109191
109250 | 72
72
72
72
72
72 | 288
338
392
450
512 | $\begin{array}{c} 1.288 \times 10^{4} \\ 8271 \\ 5526 \\ 3815 \\ 2707 \end{array}$ | $\begin{array}{c} 1.479 \times 10^{-2} \\ 1.012 \times 10^{-2} \\ 7.289 \times 10^{-3} \\ 5.455 \times 10^{-3} \\ 4.207 \times 10^{-3} \end{array}$ | 153.3
100.0
69.43
50.50
38.07 | $\begin{array}{c c} 0.0273 \\ -0.1374 \\ -0.2800 \\ -0.4059 \\ -0.5186 \end{array}$ | AA
AA
AA
AA | 1
1
1
1 | | 6-17 $6-18$ $6-19$ $6-20$ | 37484
36916
36449
36060 | 106632
106632
106632
106632 | 109299
109340
109375
109405 | 72
72
72
72
72 | 578
648
722
800 | 1966
1457
1099
842.4 | 3.324×10^{-3} 2.679×10^{-3} 2.196×10^{-3} 1.825×10^{-3} | 29.53
23.44
18.96
15.59 | -0.6209
-0.7146
-0.8011
-0.8815 | AA
AA
AA | 1
1
1
1 | | 7-8 $7-9$ $7-10$ $7-11$ $7-12$ | 190570
113060
87577
75061
67701 | 107440
107440
107440
107440
107440 | 107965
108325
108582
108772
108917 | 98
98
98
98
98 | 128
162
200
242
288 | $\begin{array}{c} 2.272\times10^5\\ 8.237\times10^4\\ 3.905\times10^4\\ 2.117\times10^4\\ 1.250\times10^4 \end{array}$ | $\begin{array}{c} 1.616 \\ 0.2609 \\ 9.163 \times 10^{-2} \\ 4.416 \times 10^{-2} \\ 2.525 \times 10^{-2} \end{array}$ | 9.931×10^{4} 9514 2588 1069 551.3 | 2.1996
1.4077
0.9533
0.6363
0.3935 | AA
AA
AA
AA | 1
1
1
1 | | 7-13
7-14
7-15
7-16
7-17 | 62902
59552
57099
55237
53783 | 107440
107440
107440
107440
107440 | 109030
109119
109191
109250
109299 | 98
98
98
98
98 | 338
392
450
512
578 | 7845
5156
3516
2471
1781 | $ \begin{array}{c} 1.605\times 10^{-2} \\ 1.097\times 10^{-2} \\ 7.891\times 10^{-3} \\ 5.905\times 10^{-3} \\ 4.556\times 10^{-3} \end{array}$ | 325.7
210.6
145.3
105.2
79.03 | $\begin{array}{c} 0.1967 \\ 0.0313 \\ -0.1116 \\ -0.2376 \\ -0.3502 \end{array}$ | AA
AA
AA
AA | 1
1
1
1 | | 7-18 $7-19$ $7-20$ | 52622.5
51679
50899 | 107440
107440
107440 | 109340
109375
109405 | 98
98
98 | 648
722
800 | 1312
984.9
751.7 | $\begin{array}{c} 3.602 \times 10^{-3} \\ 2.905 \times 10^{-3} \\ 2.383 \times 10^{-3} \end{array}$ | 61.13
48.43
39.13 | $ \begin{array}{r} -0.4522 \\ -0.5456 \\ -0.6316 \end{array} $ | AA
AA
AA | 1
1
1 | | 8-9
8-10
8-11
8-12
8-13 | 277960
162050
123840
105010
93894 | 107965
107965
107965
107965
107965 | 108325
108582
108772
108917
109030 | 128
128
128
128
128 | 162
200
242
288
338 | $\begin{array}{c} 1.233\times10^5\\ 4.676\times10^4\\ 2.301\times10^4\\ 1.287\times10^4\\ 7804 \end{array}$ | $\begin{array}{c} 1.807 \\ 0.2876 \\ 0.1000 \\ 4.787 \times 10^{-2} \\ 2.724 \times 10^{-2} \end{array}$ | $\begin{array}{c} 2.116 \times 10^5 \\ 1.964 \times 10^4 \\ 5217 \\ 2117 \\ 1077 \end{array}$ | 2.3642
1.5661
1.1072
0.7873
0.5424 | AA
AA
AA
AA | 1
1
1
1 | | 8-14
8-15
8-16
8-17
8-18
8-19
8-20 | 86621
81527
77782
74930
72696
70908
69448 | 107965
107965
107965
107965
107965
107965 | 109119
109191
109250
109299
109340
109375
109405 | 128
128
128
128
128
128
128 | 392
450
512
578
648
722
800 | 5010
3359
2331
1664
1216
906.9
688.6 | $\begin{array}{c} 1.726\times10^{-2}\\ 1.177\times10^{-2}\\ 8.456\times10^{-3}\\ 6.323\times10^{-3}\\ 4.877\times10^{-3}\\ 3.856\times10^{-3}\\ 3.112\times10^{-3} \end{array}$ | 629.8
404.1
277.1
199.6
149.4
115.2
91.04 | $ \begin{array}{c} 0.3442 \\ 0.1778 \\ 0.0344 \\ -0.0919 \\ -0.2046 \\ -0.3066 \\ -0.3998 \end{array} $ | AA
AA
AA
AA
AA
AA | 1
1
1
1
1
1 | \mathbf{H} -Table A. $(n)_i-(n)_k$ Transitions (Average Values) - Continued | Transition | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g_k | $A_{ki}(\sec^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |---|---|--|--|---|---|---|---|---|--|----------------------------|----------------------------| | 9-10 $9-11$ $9-12$ $9-13$ $9-14$ | 388590
223340
168760
141790
125840 | 108325
108325
108325
108325
108325 | 108582
108772
108917
109030
109119 | 162
162
162
162
162
162 | 200
242
288
338
392 | | 1.999
0.3143
0.1083
5.152 × 10 ⁻²
2.918 × 10 ⁻² | $\begin{array}{c} 4.141 \times 10^{5} \\ 3.742 \times 10^{4} \\ 9746 \\ 3895 \\ 1958 \end{array}$ | 2.5103
1.7068
1.2442
0.9215
0.6746 | AA
AA
AA
AA
AA | 1
1
1
1
1 | | 9-15 $9-16$ $9-17$ $9-18$ $9-19$ $9-20$ | 115360
108010
102580
98443
95191
92579 | 108325
108325
108325
108325
108325
108325 | 109191
109250
109299
109340
109375
109405 | 162
162
162
162
162
162
162 | 450
512
578
648
722
800 | 3325
2268
1598
1156
855.5
645.2 | $\begin{array}{c} 1.843\times 10^{-2} \\ 1.254\times 10^{-2} \\ 8.995\times 10^{-3} \\ 6.719\times 10^{-3} \\ 5.180\times 10^{-3} \\ 4.094\times 10^{-3} \end{array}$ | 1134
721.9
492.0
352.7
262.9
202.1 | | AA
AA
AA
AA
AA |
1
1
1
1
1
1 | | 10-11
10-12
10-13
10-14
10-15 | 525200
298310
223250
186100
164070 | 108582
108582
108852
108582
108582 | 108772
108917
109030
109119
109191 | 200
200
200
200
200
200 | 242
288
338
392
450 | 4.377×10^{4} 1.774×10^{4} 9231 5417 3424 | $\begin{array}{c} 2.190 \\ 0.3408 \\ 0.1166 \\ 5.513 \times 10^{-2} \\ 3.109 \times 10^{-2} \end{array}$ | | 2.6415
1.8335
1.3676
1.0424
0.7937 | AA
AA
AA
AA | 1
1
1
1 | | 10-16
10-17
10-18
10-19
10-20 | 149580
139380
131840
126080
121530 | 108582
108582
108582
108582
108582 | 109250
109299
109340
109375
109405 | 200
200
200
200
200
200 | 512
578
648
722
800 | 2280
1578
1127
825.2
617.3 | $\begin{array}{c} 1.958 \times 10^{-2} \\ 1.328 \times 10^{-2} \\ 9.515 \times 10^{-3} \\ 7.099 \times 10^{-3} \\ 5.468 \times 10^{-3} \end{array}$ | 1927
1219
825.8
589.2
437.4 | 0.5928
0.4243
0.2794
0.1522
0.0389 | AA
AA
AA
AA | 1
1
1
1 | | 11-12
11-13
11-14
11-15
11-16 | 690500
388320
288230
238620
209150 | 108772
108772
108772
108772
108772 | 108917
109030
109119
109191
109250 | 242
242
242
242
242
242 | 288
338
392
450
512 | 2.799×10^{4} 1.163×10^{4} 6186 3699 2377 | $\begin{array}{c} 2.381 \\ 0.3673 \\ 0.1248 \\ 5.872 \times 10^{-2} \\ 3.298 \times 10^{-2} \end{array}$ | $\begin{array}{c} 1.310\times10^{6} \\ 1.136\times10^{5} \\ 2.865\times10^{4} \\ 1.116\times10^{4} \\ 5495 \end{array}$ | 2.7606
1.9489
1.4800
1.1526
0.9021 | AA
AA
AA
AA | 1
1
1
1 | | 11-17
11-18
11-19
11-20 | 189730
176030
165900
158120 | 108772
108772
108772
108772 | 109299
109340
109375
109405 | 242
242
242
242
242 | 578
648
722
800 | 1606
1127
814.1
602.6 | $\begin{array}{c} 2.070 \times 10^{-2} \\ 1.402 \times 10^{-2} \\ 1.002 \times 10^{-2} \\ 7.468 \times 10^{-3} \end{array}$ | 3129
1965
1324
940.5 | 0.6999
0.5304
0.3848
0.2570 | AA
AA
AA | 1
1
1 | | 12-13 $12-14$ $12-15$ $12-16$ $12-17$ | 887300
494740
364610
300020
261610 | 108917
108917
108917
108917
108917 | 109030
109119
109191
109250
109299 | 288
288
288
288
288 | 338
392
450
512
578 | 1.857×10^{4} 7884 4271 2596 1693 | $\begin{array}{c} 2.572 \\ 0.3938 \\ 0.1330 \\ 6.228 \times 10^{-2} \\ 3.486 \times 10^{-2} \end{array}$ | $\begin{array}{c} 2.163 \times 10^{6} \\ 1.847 \times 10^{5} \\ 4.596 \times 10^{4} \\ 1.771 \times 10^{4} \\ 8644 \end{array}$ | 2.8697
2.0547
1.5832
1.2538
1.0017 | AA
AA
AA
AA | 1
1
1
1 | | 12 - 18 $12 - 19$ $12 - 20$ | 236260
218360
205090 | 108917
108917
108917 | 109340
109375
109405 | 288
288
288 | 648
722
800 | 1159
822.3
600.5 | $\begin{array}{c} 2.182 \times 10^{-2} \\ 1.474 \times 10^{-2} \\ 1.052 \times 10^{-2} \end{array}$ | 4886
3050
2045 | 0.7982
0.6278
0.4814 | AA
AA
AA | 1
1
1 | | 13-14
13-15
13-16
13-17
13-18
13-19
13-20 | 1118000
619000
453290
371000
322000
289640
266740 | 109030
109030
109030
109030
109030
109030
109030 | 109119
109191
109250
109299
109340
109375
109405 | 338
338
338
338
338
338
338 | 392
450
512
578
648
722
800 | 1.271×10^{4} 5496 3026 1866 1232 853.2 611.9 | $\begin{array}{c} 2.763 \\ 0.4202 \\ 0.1412 \\ 6.584 \times 10^{-2} \\ 3.672 \times 10^{-2} \\ 2.292 \times 10^{-2} \\ 1.545 \times 10^{-2} \end{array}$ | 3.438×10^{6} 2.894×10^{5} 7.119×10^{4} 2.717×10^{4} 1.316×10^{4} 7386 4584 | 2.9703
2.1524
1.6787
1.3474
1.0939
0.8892
0.7178 | AA
AA
AA
AA
AA | 1
1
1
1
1
1 | | 14-15
14-16
14-17
14-18 | 1386000
762300
555200
452220 | 109119
109119
109119
109119 | 109191
109250
109299
109340 | 392
392
392
392 | 450
512
578
648 | 8933
3926
2192
1369 | $\begin{array}{c} 2.954 \\ 0.4467 \\ 0.1494 \\ 6.938 \times 10^{-2} \end{array}$ | 5.284×10^{6} 4.393×10^{5} 1.070×10^{5} 4.048×10^{4} | 3.0637
2.2433
1.7675
1.4345 | AA
AA
AA | 1
1
1
1 | \mathbf{H} -Table A. $(n)_i$ - $(n)_k$ Transitions (Average Values)-Continued | Transition | λ(Å) | $E_i({ m cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | g_i | g_k | $A_{ki}(\mathrm{sec^{-1}})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |---------------------------------------|---|--|--|--|---------------------------------|---------------------------------------|--|---|--|----------------------|------------------| | 14 - 19 $14 - 20$ | 390880
350300 | 109119
109119 | 109375
109405 | 392
392 | 722
800 | 914.4
639.7 | $3.858 \times 10^{-2} \ 2.402 \times 10^{-2}$ | $1.946 \times 10^{4} \\ 1.086 \times 10^{4}$ | 1.1796
0.9738 | AA
AA | 1 | | 15-16 $15-17$ $15-18$ $15-19$ $15-20$ | 1694000
926100
671200
544400
468760 | 109191
109191
109191
109191
109191 | 109250
109299
109340
109375
109405 | 450
450
450
450
450
450 | 512
578
648
722
800 | 6429
2864
1620
1023
690.3 | $\begin{array}{c} 3.145 \\ 0.4731 \\ 0.1575 \\ 7.292 \times 10^{-2} \\ 4.043 \times 10^{-2} \end{array}$ | 7.889×10^{6} 6.489×10^{5} 1.566×10^{5} 5.879×10^{4} 2.807×10^{4} | 3.1509
2.3281
1.8505
1.5160
1.2599 | AA
AA
AA
AA | 1
1
1
1 | | 16-17
16-18
16-19
16-20 | 2044000
1112000
802300
648200 | 109250
109250
109250
109250 | 109299
109340
109375
109405 | 512
512
512
512
512 | 578
648
722
800 | 4720
2130
1217
776.7 | $\begin{array}{c} 3.336 \\ 0.4995 \\ 0.1657 \\ 7.644 \times 10^{-2} \end{array}$ | $\begin{array}{c} 1.149 \times 10^{7} \\ 9.358 \times 10^{5} \\ 2.240 \times 10^{5} \\ 8.349 \times 10^{4} \end{array}$ | 3.2325
2.4078
1.9285
1.5926 | AA
AA
AA
AA | 1
1
1
1 | | 17 - 18 $17 - 19$ $17 - 20$ | 2438000
1321000
949200 | 109299
109299
109299 | 109340
109375
109405 | 578
578
578 | 648
722
800 | 3530
1610
929.6 | 3.527
0.5259
0.1738 | $\begin{array}{c} 1.636 \times 10^{7} \\ 1.321 \times 10^{6} \\ 3.139 \times 10^{5} \end{array}$ | 3.3094
2.4828
2.0020 | AA
AA
AA | 1
1
1 | | 18-19
18-20 | 2882000
1554000 | 109340
109340 | 109375
109405 | 648
648 | 722
800 | 2680
1235 | 3.718
0.5523 | 2.285×10^{7} 1.831×10^{6} | 3.3819
2.5537 | AA
AA | 1 1 | | <u>19-20</u> | 3374000 | 109375 | 109405 | 722 | 800 | 2067 | 3.909 | 3.134×10^{7} | 3.4506 | AA | 1 | **H**-Table B. $(nl)_i - (nl)_k$ Transitions | Transition | λ(Å) | $E_i(em^{-1})$ | $E_k(cm^{-1})$ | gi | gk | $A_{ki}(\sec^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |---|---------|--|------------------|--------------------------------------|---------------|---|---|------------------------|-------------------|-------------------|--------| | | 1015 (5 | | 00070 | | | | 0.4169 | 0.000 | 0.0707 | AA | , | | $ \begin{array}{c} 1s-2p\\1s-3p \end{array} $ | 1215.67 | $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ | 82259 | $\begin{vmatrix} 2\\2 \end{vmatrix}$ | 6 | $\begin{array}{ c c c c c }\hline 6.265 \times 10^8 \\ 1.672 \times 10^8 \\ \hline \end{array}$ | $\begin{array}{c} 0.4162 \\ 7.910 \times 10^{-2} \end{array}$ | 3.330
0.5339 | -0.0797 -0.8008 | AA | 1 | | 1s-3p | 1025.72 | 0 | 97492 | $\frac{2}{2}$ | 6 | 6.818×10^{7} | 2.899×10^{-2} | 0.3339 | -1.2367 | $\Lambda \Lambda$ | 1 | | 1s-4p | 972.537 | | 102824
105292 | $\frac{1}{2}$ | 6 | 3.437×10^7 | 1.394×10^{-2} | 8.711×10^{-2} | -1.5548 | AA | i | | 1s-5p | 949.743 | 0 | 105292 | $\frac{2}{2}$ | 6 | 1.973×10^7 | 7.800×10^{-3} | 4.813×10^{-2} | -1.8069 | AA | l î | | 1s-6p | 937.804 | 1 | 100032 | 4 | | 1.975 × 10 | 7.000 \ 10 | 4.013 \(10 \) | 1.000 | 1111 | 1 | | 9 9 | 6562.86 | 82259 | 97492 | 6 | 2 | 6.313×10^{6} | 1.359×10^{-2} | 1.761 | -1.0886 | AA | 1 | | 2p-3s | 4861.35 | 82259 | 102824 | 6 | 2 | 2.578×10^{6} | 3.045×10^{-3} | 0.2923 | -1.7383 | AA | 1 | | 2p-4s | 4340.48 | 82259 | 102024 | 6 | 2 | 1.289×10^{6} | 1.213×10^{-3} | 0.1040 | -2.1379 | AA | 1 | | 2p-5s | 4101.75 | 82259 | 106632 | 6 | $\frac{5}{2}$ | 7.350×10^{5} | 6.180×10^{-4} | 5.006×10^{-2} | -2.4309 | AA | 1 | | 2p-6s | 4101.73 | 02207 | 100032 | | - | 1.000 / 10 | 0.200 | 9,000 | | | | | 20 20 | 6562,74 | 82259 | 97492 | 2 | 6 | 2.245×10^{7} | 0.4349 | 18.79 | -0.0606 | | 1 | | 2s-3p | 4861.29 | 82259 | 102824 | $\frac{1}{2}$ | 6 | 9.668×10^{6} | 0.1028 | 3.288 | -0.6871 | AA | 1 | | 2s-4p
2s-5p
| 4340.44 | 82259 | 105292 | $\frac{1}{2}$ | 6 | 4.948×10^{6} | 4.193×10^{-2} | 1.198 | -1.0764 | AA | 1 | | 2s-5p
2s-6p | 4101.71 | 82259 | 106632 | 2 | 6 | 2.858×10^{6} | 2.163×10^{-2} | 0.5840 | -1.3639 | AA | 1 | | 2s - 0p | 1101.11 | 0 | 10000 | | | | | | 1 | | | | 2p-3d | 6562.81 | 82259 | 97492 | 6 | 10 | 6.465×10^7 | 0.6958 | 90.17 | 0.6206 | AA | 1 | | 2p-3d
2p-4d | 4861.33 | 82259 | 102824 | 6 | 10 | 2.062×10^7 | 0.1218 | 11.69 | -0.1362 | AA | 1 | | 2p-4a
2p-5d | 4340.47 | 82259 | 105292 | 6 | 10 | 9.425×10^{6} | 4.437×10^{-2} | 3.803 | -0.5748 | AA | 1 1 | | 2p-3a
2p-6d | 4101.74 | 82259 | 106632 | 6 | 10 | 5.145×10^{6} | 2.163×10^{-2} | 1 1.752 | -0.8868 | l AA | 1 | $\mathbf{H} - \mathbf{Table} \ \mathbf{B}. \ (nl)_i - (nl)_k \ \mathbf{Transitions.} - Continued$ | Transition | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | g_i | g_k | $A_{ki}(\sec^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |--|-------------------------------|-------------------------|----------------------------|---|----------------|--|--|---------------------------|--|----------------|-------------| | 3s-4p $3s-5p$ $3s-6p$ | 18750.8
12818.0
10938.0 | 97492
97492
97492 | 102824
105292
106632 | $\begin{vmatrix} 2\\2\\2 \end{vmatrix}$ | 6
6
6 | 3.065×10^{6} 1.638×10^{6} 9.551×10^{5} | $\begin{array}{c} 0.4847 \\ 0.1210 \\ 5.139 \times 10^{-2} \end{array}$ | 59.83
10.21
3.700 | -0.0135
-0.6161
-0.9881 | AA
AA
AA | 1
1
1 | | 3p-4s 3p-5s 3p-6s | 18751.1
12818.1
10938.1 | 97492
97492
97492 | 102824
105292
106632 | 6
6
6 | 2
2
2 | $\begin{array}{c c} 1.835 \times 10^{6} \\ 9.046 \times 10^{5} \\ 5.071 \times 10^{5} \end{array}$ | $ \begin{vmatrix} 3.225 \times 10^{-2} \\ 7.428 \times 10^{-3} \\ 3.032 \times 10^{-3} \end{vmatrix} $ | 11.94
1.880
0.6550 | $ \begin{array}{r r} -0.7133 \\ -1.3510 \\ -1.7401 \end{array} $ | AA
AA
AA | 1
1
1 | | $\begin{array}{c} 3p - 4d \\ 3p - 5d \\ 3p - 6d \end{array}$ | 18750.9
12818.0
10938.1 | 97492
97492
97492 | 102824
105292
106632 | 6
6
6 | 10
10
10 | $ \begin{vmatrix} 7.037 \times 10^6 \\ 3.391 \times 10^6 \\ 1.878 \times 10^6 \end{vmatrix} $ | $ \begin{vmatrix} 0.6183 \\ 0.1392 \\ 5.614 \times 10^{-2} \end{vmatrix} $ | 228.9
35.24
12.13 | $0.5693 \\ -0.0781 \\ -0.4726$ | AA
AA
AA | 1
1
1 | | $3d-4p \ 3d-5p \ 3d-6p$ | 18751.2
12818.2
10938.1 | 97492
97492
97492 | 102824
105292
106632 | 10
10
10 | 6
6
6 | $\begin{array}{c c} 3.475 \times 10^5 \\ 1.495 \times 10^5 \\ 7.824 \times 10^4 \end{array}$ | $ \begin{vmatrix} 1.099 \times 10^{-2} \\ 2.210 \times 10^{-3} \\ 8.420 \times 10^{-4} \end{vmatrix} $ | 6.783
0.9324
0.3031 | $ \begin{array}{r} -0.9589 \\ -1.6556 \\ -2.0747 \end{array} $ | AA
AA
AA | 1
1
1 | | $\begin{array}{c} 3d-4f \\ 3d-5f \\ 3d-6f \end{array}$ | 18751.1
12818.1
10938.1 | 97492
97492
97492 | 102824
105292
106632 | 10
10
10 | 14
14
14 | $\begin{array}{c} 1.379 \times 10^{7} \\ 4.542 \times 10^{6} \\ 2.146 \times 10^{6} \end{array}$ | 1.018
0.1566
5.389×10 ⁻² | 628.0
66.08
19.40 | $1.0075 \\ 0.1949 \\ -0.2685$ | AA
AA
AA | 1
1
1 | | 4s - 5p $4s - 6p$ | 40511
26251 | 102824
102824 | 105292
106632 | $\frac{2}{2}$ | 6
6 | $7.372 \times 10^{5} \\ 4.456 \times 10^{5}$ | 0.5442
0.1381 | 145.1
23.87 | $0.0368 \\ -0.5587$ | AA
AA | 1
1 | | $\begin{array}{c} 4p - 5s \\ 4p - 6s \end{array}$ | 40512
26251 | 102824
102824 | 105292
106632 | 6
6 | $\frac{2}{2}$ | $6.450 \times 10^{5} 3.582 \times 10^{5}$ | 5.291×10^{-2}
1.234×10^{-2} | 42.33
6.396 | -0.4983 -1.1306 | AA
AA | 1
1 | | 4p-5d $4p-6d$ | 40511
26251 | 102824
102824 | $\frac{105292}{106632}$ | 6
6 | 10
10 | $1.486 \times 10^{6} \ 8.622 \times 10^{5}$ | 0.6093
0.1485 | 487.4
76.96 | $0.5630 \\ -0.0502$ | AA
AA | 1
1 | | 4d-5p
4d-6p | 40512
26252 | 102824
102824 | 105292
106632 | 10
10 | 6
6 | 1.884×10^{5}
9.416×10^{4} | $\begin{array}{c} 2.782 \times 10^{-2} \\ 5.837 \times 10^{-3} \end{array}$ | 37.10
5.044 | $-0.5556 \\ -1.2338$ | AA
AA | 1
I | | 4d-5f $4d-6f$ | 40512
26252 | 102824
102824 | 105292
106632 | 10
10 | 14
14 | $\begin{array}{c} 2.584 \times 10^{6} \\ 1.287 \times 10^{6} \end{array}$ | 0.8903
0.1862 | 1187
160.8 | 0.9495
0.2699 | AA
AA | 1 | | 4f-5d $4f-6d$ | 40512
26252 | 102824
102824 | 105292
106632 | 14
14 | 10
10 | $\begin{array}{c} 5.047 \times 10^{4} \\ 2.145 \times 10^{4} \end{array}$ | $\begin{array}{c} 8.871 \times 10^{-3} \\ 1.583 \times 10^{-3} \end{array}$ | 16.56
1.915 | - 0.9059
- 1.6544 | AA
AA | 1
1 | | 4f-5g
4f-6g | 40512
26252 | 102824
102824 | 105292
106632 | 14
14 | 18
18 | $\begin{array}{l} 4.254 \times 10^{6} \\ 1.373 \times 10^{6} \end{array}$ | 1.346
0.1824 | 2512
220.6 | $1.2751 \\ 0.4070$ | AA
AA | 1
1 | | 5s-6p | 74577 | 105292 | 106632 | 2 | 6 | 2.430×10^{5} | 0.6078 | 298.4 | 0.0848 | AA | 1 | | 5p-6s | 74578 | 105292 | 106632 | 6 | 2 | 2.682×10^{5} | 7.454×10^{-2} | 109.8 | -0.3495 | AA | 1 | | 5p-6d | 74578 | 105292 | 106632 | 6 | 10 | $4.495 imes 10^5$ | 0.6247 | 920.0 | 0.5738 | AA | 1 | | 5d-6p | 74579 | 105292 | 106632 | 10 | 6 | 9.593×10^{4} | 4.800×10^{-2} | 117.8 | -0.3188 | AA | 1 | | 5d-6f | 74578 | 105 2 92 | 106632 | 10 | 14 | 7.232×10^{5} | 0.8443 | 2072 | 0.9265 | AA | 1 | | 5f-6d | 74579 | 105292 | 106632 | 14 | 10 | 3.908×10^{4} | 2.328×10^{-2} | 79.98 | -0.4870 | AA | 1 | | 5f-6g | 74578 | 105292 | 106632 | 14 | 18 | 1.106×10^6 | 1.185 | 4073 | 1.2200 | AA | 1 | | 5g-6f | 74579 | 105292 | 106632 | 18 | 14 | $1.137\!\times\!10^{4}$ | 7.376×10^{-3} | 32.59 | -0.8769 | AA | 1 | | 5g-6h | 74578 | 105292 | 106632 | 18 | 22 | 1.645×10^{6} | 1.676 | 7406 | 1.4796 | AA | 1 | ## $\mathbf{H} - \text{Table C.}$ $(nlj)_i - (nlj)_k$ Transitions (Fine Structure Lines) | Transition | ν(Mc/sec) | $\Delta E(\text{cm}^{-1})$ | g_i | gk | $A_{ki}(\sec^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |---|-----------|----------------------------|-------|----|------------------------|-----------------------|----------|---------|---------------|--------| | $2s {}^{2}\mathrm{S}_{1/2} - 2p {}^{2}\mathrm{P}^{\circ}_{3/2}$ | 9884 | 0.3297 | 2 | 4 | 6.54×10^{-7} | 1.80×10^{-5} | 36.0 | -4.443 | A | 2 | | $3s {}^{2}S_{1/2} - 3p {}^{2}P^{\circ}_{3/2}$ | 2944 | 0.0982 | 2 | 4 | 1.04×10^{-7} | 3.22×10^{-5} | 216 | -4.191 | A | 2 | | $3p {}^{2}\mathrm{P}^{\circ}{}_{1/2} - 3d {}^{2}\mathrm{D}_{3/2}$ | 3244 | 0.1082 | 2 | 4 | 8.67×10^{-8} | 2.22×10^{-5} | 135 | -4.353 | A | 2 | | $3p {}^{2}\mathrm{P}^{\circ}_{3/2} - 3d {}^{2}\mathrm{D}_{5/2}$ | 1082 | 0.0361 | 4 | 6 | 3.86×10^{-9} | 6.67×10^{-6} | 243 | - 4.574 | A | 2 | | $4s\ ^2\mathrm{S}_{1/2} - 4p\ ^2\mathrm{P}^{\circ}_{3/2}$ | 1247 | 0.0416 | 2 | 4 | 2.63×10^{-8} | 4.55×10^{-5} | 720 | -4.041 | A | 2 | | $4p\ ^2{ m P}^{\circ}{}_{1/2} - 4d\ ^2{ m D}_{3/2}$ | 1367 | 0.0456 | 2 | 4 | 2.77×10^{-8} | 3.99×10^{-5} | 576 | - 4.098 | A | 2 | | $4p\ ^2{ m P}^{\circ}_{3/2} - 4d\ ^2{ m D}_{5/2}$ | 456 | 0.0152 | 4 | 6 | 1.23×10^{-9} | 1.20×10^{-5} | 1040 | -4.320 | A | 2 | | $4d{}^2\mathrm{D}_{3/2}\!-\!4f{}^2\mathrm{F}^{\circ}_{5/2}$ | 456 | 0.0152 | 4 | 6 | 7.18×10^{-10} | 6.98×10^{-6} | 605 | -4.554 | A | 2 | | $4d{}^2\mathrm{D}_{5/2} - 4f{}^2\mathrm{F}^{\circ}{}_{7/2}$ | 228 | 0.0076 | 6 | 8 | 9.61×10^{-11} | 3.33×10^{-6} | 864 | -4.700 | A | 2 | # **H**-Table D. $(nljf)_i-(nljf)_k$ Transition (Hyperfine Structure Line, Magnetic Dipole Transition) | Transition | ν(Mc/sec) | $\Delta E(\text{cm}^{-1})$ | gi | gk | $A_{ki}(\mathrm{sec^{-1}})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |--|-----------|----------------------------|----|----|-----------------------------|------------------------|----------|----------|---------------|--------| | $1s^2 S_{1/2} (f = 0 \rightarrow f = 1)$ | 1420.4 | 0.04738 | 1 | 3 | 2.87×10^{-15} | 5.75×10^{-12} | 3.00 | - 11.241 | A | 2 | ## HELIUM ## He I **Ground State** $1s^2 {}^1S_0$ Ionization Potential $24.580 \text{ eV} = 198305 \text{ cm}^{-1}$ ## **Allowed Transitions** List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |-------------------|-------------|----------------|------------|----------------------|-----------| | 506 900 | 71 | 4207.02 | 20 | 10542 | 105 | | 506.200 | 11 | 4387.93 | 29 | 19543 | 105 | | 506.570 | 10 | 4437.55 | 23 | 20425 | 113 | | 507.058 | 9 | 4471.5 | 86 | 20581.3 | 12 | | 507.718 | 8 | 4713.2 | 80 | 21120 | 97 | | 508.643 | 7 | 4921.93 | 28 | 21132.0 | 39 | | 509.998 | 6 | 5015.68 | 13 | 21494 | 116 | | 512.098 | 5
4
3 | 5047.74 | 22 | 21608 | 126 | | 515.617 | 4. | 5875.7 | 85 | 21617 | 67 | | 522.213 | 3 | 6678.15 | 27 | 21841 | 60 | | 537.030 | 2 | 7065.19 | 79 | 22284 | 57 | | 584.334 | 1 | 7065.71 | 79 | 23063 | 54 | | 2677.1 | 78 | 7281.35 | $2\dot{1}$ | 24727 | 120 |
| 2696.1 | 77 | 8361.77 | 96 | 26113 | 63 | | 2723.2 | 76 | 9463.57 | 90
95 | 26185 | | | 2763.8 | 75 | | | 16 | 125 | | 2105.8 | 19 | 9603.42 | 38 | 26198 | 66 | | 2829.07 | 74 | 9702.66 | 100 | 26248 | 69 | | 2945.10 | 73 | 10311 | 104 | 26251 | 128 | | 3187.74 | 72 | 10667.6 | 99 | 26531 | 59 | | 3231.27 | 20 | 10829.1 | 70 | 26671 | 122 | | 3258.28 | 19 | 10830.2 | 70 | 26881 | 115 | | 3296.77 | 18 | 10830.3 | 70 | 27600 | 56 | | 3354.55 | 17 | 10902.2 | 48 | 28542 | 112 | | 3447.59 | 16 | 10912.9 | 110 | 33299 | 53 | | 3554.4 | 92 | 10917.0 | 51 | 37026 | 119 | | 3562.95 | 84 | 10996.6 | 107 | 40053 | 62 | | 3587.3 | 91 | 11013.1 | 37 | 40365 | 124 | | 3613.64 | 15 | 11045.0 | 44 | 40396 | 65 | | 3634.2 | 90 | 11225.9 | 41 | 40536 | 68 | | 3652.0 | 83 | 11969.1 | 103 | | | | 3705.0 | 89 | 12528 | 94 | 40550
41216 | 127
58 | | | | | | | | | 3819.6 | 88 | 12755.7 | 47 | 42430 | 121 | | 3833.55 | 34 | 12785 | 109 | 42497 | 93 | | 3867.5 | 82 | 12790.3 | 50 | 46053 | 55 | | 3871.79 | 33 | 12846 | 98 | 46936 | 114 | | 3888.65 | 71 | 12968.4 | 43 | 74351 | 35 | | 3926.53 | 32 | 12985 | 106 | 108800 | 111 | | 3935.91 | 26 | 13411.8 | 40 | 180950 | 52 | | 3964.73 | 14 | 15083.7 | 36 | 186200 | 101 | | 4009.27 | 31 | 17002 | 102 | 439440 | 118 | | 4023.97 | 25 | 18555.6 | 46 | 957600 | 45 | | 4026.2 | 07 | 10404 | 100 | 2 16 × 108 | | | 4026.2 | 87 | 18686 | 108 | 2.16×10^{6} | 61 | | 4120.8
4143.76 | 81 | 18696.9 | 49 | 1.39×10^{7} | 123 | | | 30 | 19063 | 117 | 1.82×10^{7} | 64 | | 4168.97 | 24 | 19089.4 | 42 | | t | Aside from hydrogen, extremely precise f-values exist only for a few lines of helium. These are the result of extensive variational calculations (up to 220 parameter wave functions) of Schiff and Pekeris, [1] which give an agreement of 1% or less between the dipole length, velocity, and acceleration forms of the transition matrix element. Similar calculations have been undertaken for a few other transitions by Weiss, [2] but are not quite as refined (up to 54 parameter wave functions) and the agreement between the different forms of the matrix element is not quite as good. For transitions to higher excited states, recourse has to be taken to somewhat less elaborate theoretical approximations. The following work has been used: Calculations by Low and Stewart (unpublished, but results quoted by Dalgarno and Stewart [3]) with variational wave functions for the ground state and modified hydrogenic wave functions for the excited states; similar calculations by Körwien [6]; self-consistent field calculations, including exchange and correlation effects, by Trefftz, Schlüter, Dettmar, and Jörgens [4]; and applications of various sum rules to modify calculated values by Dalgarno and Lynn [5], and Dalgarno and Kingston [7]. Furthermore, the results of Goldberg [8], who employed screened hydrogenic wave functions, and Hylleraas [9], who employed variational wave functions have been used in a few instances. (Hylleraas' work has not been extensively used, since it probably contains quite a number of numerical errors.) Finally, for all other tabulated transitions, the Coulomb approximation (see general introduction) has been employed, and is expected to give reliable results for this simple atom (uncertainties within 10%). It should be noted that all above-mentioned calculations are nonrelativistic. For some important helium lines reliable experimental data [10-13] are also available. They all result from determinations of lifetimes of excited states and agree generally quite closely, often within 10%, with the tabulated theoretical results, which are considered more accurate in these cases. #### References - [1] Schiff, B., and Pekeris, C. L., Phys. Rev. 134, A638-A640 (1964). - [2] Weiss, A. W., private communication (1962). - [3] Dalgarno, A., and Stewart, A. L., Proc. Phys. Soc. London A 76, 49-55 (1960). - [4] Trefftz, E., Schlüter, A., Dettmar, K. H., and Jörgens, K., Z. Astrophys. 44, 1-17 (1957). - [5] Dalgarno, A., and Lynn, N., Proc. Phys. Soc. London A 70, 802-808 (1957). - [6] Körwien, H., Z. Physik 91, 1-36 (1934). - [7] Dalgarno, A., and Kingston, A. E., Proc. Phys. Soc. London A 72, 1053-1060 (1958). - [8] Goldberg, L., Astrophys. J. 90, 414-428 (1939). - [9] Hylleraas, E. A., Z. Physik 106, 395-404 (1937). - [10] Heron, S., McWhirter, R. W. P., and Rhoderick, E. H., Proc. Roy. Soc. London A 234, 565-582 (1956). - [11] Osherovich, A. L., and Savich, J. G., Optika i Spektroskopiya 4, 715-718 (1958) (Translated in "Optical Transition Probabilities," Office of Technical Services, U.S. Department of Commerce, Washington, D.C.) - [12] Bennett, R. G., and Dalby, F. W., J. Chem. Phys. 31, 434-441 (1959). - [13] Kindlmann, P. J., and Bennett, W. R., Jr., Bull. Am. Phys. Soc. II 8, 87 (1963). He I. Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8~{ m sec}^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|---|---------|-----------------------|-------------------------|----|-------|------------------------------|---------|----------|-----------------|---------------|--------| | 1 | $1s^2-1s2p$ | ¹ S - ¹ P° (2 uv) | 584.334 | 0 | 171135 | 1 | 3 | 17.99 | 0.2762 | 0.5313 | -0.5588 | AA | 1 | | 2 | $1s^2-1s3p$ | ¹ S _ ¹ P° (3 uv) | 537.030 | 0 | 186210 | 1 | 3 | 5.66 | 0.0734 | 0.1298 | -1.1343 | AA | 1 | | 3 | $1s^2-1s4p$ | ¹ S_ ¹ P° (4 uv) | 522.213 | 0 | 191493 | 1 | 3 | 2.46 | 0.0302 | 0.0519 | -1.520 | A | 2 | | 4 | $1s^2 - 1s5p$ | ¹ S - ¹ P°
(5 uv) | 515.617 | 0 | 193943 | 1 | 3 | 1.28 | 0.0153 | 0.0260 | -1.815 | B+ | 3 | | 5 | $1s^2 - 1s6p$ | ¹ S - ¹ P° (6 uv) | 512.098 | 0 | 195275 | 1 | 3 | 0.719 | 0.00848 | 0.0143 | -2.072 | B+ | 3, 4 | | 6 | $1s^2-1s7p$ | ¹ S- ¹ P° (7 uv) | 509.998 | 0 | 196079 | 1 | 3 | 0.507 | 0.00593 | 0.00995 | -2.227 | В | 5, 6 | | 7 | $1s^2-1s8p$ | ¹ S - ¹ P°
(8 uv) | 508.643 | 0 | 196602 | 1 | 3 | 0.343 | 0.00399 | 0.00668 | -2.399 | В | 5, 6 | | 8 | $1s^2 - 1s9p$ | ¹ S- ¹ P°
(9 uv) | 507.718 | 0 | 196960 | 1 | 3 | 0.237 | 0.00275 | 0.00459 | -2.561 | В | 5, 6 | | 9 | $1s^2 - 1s10p$ | ¹ S - ¹ P°
(10 uv) | 507.058 | 0 | 197216 | 1 | 3 | 0.181 | 0.00209 | 0.00349 | -2.680 | В | 5, 6 | | 10 | $1s^2-1s11p$ | ¹ S- ¹ P° | 506.570 | 0 | 197406 | 1 | 3 | 0.130 | 0.00150 | 0.00250 | -2.824 | В | 6 | | 11 | $1s^2 - 1s12p$ | 1S-1P° | 506.200 | 0 | 197550 | 1 | 3 | 0.104 | 0.00119 | 0.00199 | -2.923 | В | 6 | | 12 | 1s2s-1s2p | ¹ S- ¹ P° | 20581.3 | 166278 | 171135 | 1 | 3 | 0.01976 | 0.3764 | 25.50 | -0.4244 | AA | 1 | | 13 | 1s2s-1s3p | ¹ S- ¹ P° (4) | 5015.68 | 166278 | 186210 | 1 | 3 | 0.1338 | 0.1514 | 2.500 | -0.8199 | AA | 1 | | 14 | 1s2s - 1s4p | ¹ S_ ¹ P° (5) | 3964.73 | 166278 | 191493 | 1 | 3 | 0.0717 | 0.0507 | 0.662 | -1.295 | A | 2 | | 15 | 1s2s-1s5p | ¹ S_ ¹ P° (6) | 3613.64 | 166278 | 193943 | 1 | 3 | 0.0376 | 0.0221 | 0.263 | -1.656 | В | 7 | | 16 | 1s2s-1s6p | ¹ S- ¹ P° (7) | 3447.59 | 166278 | 195275 | 1 | 3 | 0.0239 | 0.0128 | 0.145 | -1.894 | A | 4 | | 17 | 1s2s-1s7p | ¹ S- ¹ P° (8) | 3354.55 | 166278 | 196079 | 1 | 3 | 0.0130 | 0.00660 | 0.0729 | -2.180 | В | 7 | | 18 | 1s2s-1s8p | ¹ S_ ¹ P° (9) | 3296.77 | 166278 | 196602 | 1 | 3 | 0.00901 | 0.00440 | 0.0478 | -2.356 | В | 7 | | 19 | ls2s - ls9p | ¹S−¹P° | 3258.28 | 166278 | 196960 | 1 | 3 | 0.00650 | 0.00310 | 0.0333 | 9.500 | | _ | | 20 | 1s2s-1s10p | ¹ S- ¹ P° | 3231.27 | 166278 | 197216 | 1 | 3 | 0.00490 | 0.00230 | 0.0333 | -2.508 -2.638 | В | 7 | | 21 | 1s2p-1s3s | ¹ P°- ¹ S
(45) | 7281.35 | 171135 | 184865 | 3 | 1 | 0.181 | 0.0480 | 3.45 | -2.638 -0.842 | B
A | 7
2 | | 22 | 1s2p-1s4s | ¹ P°- ¹ S (47) | 5047.74 | 171135 | 190940 | 3 | 1 | 0.0655 | 0.00834 | 0.416 | -1.602 | A | 4 | | 23 | 1s2p-1s5s | ¹ P°- ¹ S (50) | 4437.55 | 171135 | 193663 | 3 | 1 | 0.0313 | 0.00308 | 0.135 | -2.034 | В | ca | | 24 | 1s2p-1s6s | ¹ P°- ¹ S (52) | 4168.97 | 171135 | 195115 | 3 | 1 | 0.0176 | 0.00153 | 0.0630 | -2.338 | A | 4 | He I. Allowed Transitions - Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gk | $A_{ki}(10^8~{ m sec}^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|--|-----------|-------------------------|-----------------------|----|----|------------------------------|-------------------------|----------|---------|---------------|--------| | 25 | 1s2p-1s7s | ¹ P°_1S
(54) | 4023.97 | 171135 | 195979 | 3 | 1 | 0.0109 | 8.81×10^{-4} | 0.0350 | - 2.578 | B+ | 4 | | 26 | 1s2p - 1s8s | ¹ P°- ¹ S
(57) | 3935.91 | 171135 | 196535 | 3 | 1 | 0.00718 | 5.56 × 10 ⁻⁴ | 0.0216 | -2.778 | B+ | 4. | | 27 | 1s2p-1s3d | ¹ P°- ¹ D
(46) | 6678.15 | 171135 | 186105 | 3 | 5 | 0.638 | 0.711 | 46.9 | 0.329 | A | 2 | | 28 | 1s2p-1s4d | ¹ P°- ¹ D
(48) | 4921.93 | 171135 | 191447 | 3 | 5 | 0.202 | 0.122 | 5.95 | -0.435 | A | 4 | | 29 | 1s2p-1s5d | ¹ P°- ¹ D
(51) | 4387.93 | 171135 | 193918 | 3 | 5 | 0.0907 | 0.0436 | 1.89 | -0.883 | A | 4 | | 30 | 1s2p-1s6d | ¹ P°- ¹ D
(53) | 4143.76 | 171135 | 195261 | 3 | 5 | 0.0495 | 0.0213 | 0.870 | -1.195 | В | ca | | 31 | 1s2p-1s7d | ¹ P°- ¹ D | 4009.27 | 171135 | 196070 | 3 | 5 | 0.0279 | 0.0112 | 0.444 | -1.473 | C+ | 8 | | 32 | 1s2p-1s8d | (55)
¹ P° – ¹ D
(58) | 3926.53 | 171135 | 196596 | 3 | 5 | 0.0195 | 0.00750 | 0.291 | -1.648 | A | 4 | | 33 | 1s2p-1s9d | ¹ P°- ¹ D
(60) | 3871.79 | 171135 | 196956 | 3 | 5 | 0.0126 | 0.00471 | 0.180 | -1.850 | C+ | 8 | | 34 | 1s2p-1s10d | ¹ P°- ¹ D
(62) | 3833.55 | 171135 | 197213 | 3 | 5 | 0.00971 | 0.00357 | 0.135 | -1.971 | A | 4 | | 35 | 1s3s-1s3p | ¹ S- ¹ P° | [74351] | 184865 | 186210 | 1 | 3 | 0.00253 | 0.629 | 154 | -0.201 | A | 2 | | 36 | 1s3s - 1s4p | ¹ S- ¹ P° | 15083.7 | 184865 | 191493 | 1 | 3 | 0.0137 | 0.140
| 6.95 | -0.854 | В | 2 | | 37 | 1s3s — 1s5p | ¹ S- ¹ P° (70) | 11013.1 | 184865 | 193943 | 1 | 3 | 0.00956 | 0.0521 | 1.89 | -1.283 | В | ca | | 38 | 1s3s — 1s6p | ¹ S - ¹ P° (71) | 9603.42 | 184865 | 195275 | 1 | 3 | 0.00564 | 0.0234 | 0.739 | - 1.631 | В | 9 | | 39 | 1s3p — 1s4s | ¹P°-¹S | 21132.0 | 186210 | 190940 | 3 | 1 | 0.0459 | 0.103 | 21.4 | -0.512 | В | ca | | 40 | 1s3p - 1s5s | ¹P°-¹S | [13411.8] | 186210 | 193664 | 3 | 1 | 0.0202 | 0.0182 | 2.41 | -1.263 | В | ca | | 41 | 1s3p — 1s6s | ¹ P°- ¹ S
(87) | 11225.9 | 186210 | 195115 | 3 | 1 | 0.0110 | 0.00690 | 0.765 | -1.684 | В | ca | | 42 | 1s3p-1s4d | ¹P°−¹D | 19089.4 | 186210 | 191447 | 3 | 5 | 0.0711 | 0.647 | 122 | 0.288 | В | ca | | 43 | 1s3p-1s5d | ¹P°−¹D | 12968.4 | 186210 | 193918 | 3 | 5 | 0.0331 | 0.139 | 17.8 | -0.380 | В | ca | | 44 | 1s3p-1s6d | ¹ P°- ¹ D (88) | 11045.0 | 186210 | 195261 | 3 | 5 | 0.0181 | 0.0553 | 6.03 | -0.780 | В | ca | | 45 | 1s3d-1s3p | ¹ D- ¹ P° | [957600] | 186105 | 186210 | 5 | 3 | 1.68×10^{-6} | 0.0139 | 219 | -1.158 | В | 2 | | 46 | 1s3d-1s4p | ¹D-¹P° | 18555.6 | 186105 | 191447 | 5 | 3 | 0.00277 | 0.00858 | 2.62 | -1.368 | C+ | 2 | | 47 | 1s3d-1s5p | ¹D-¹P° | 12755.7 | 186105 | 193943 | 5 | 3 | 0.00127 | 0.00186 | 0.390 | -2.032 | В | ca | | 48 | 1s3d-1s6p | ¹ D- ¹ P° | 10902.2 | 186105 | 195275 | 5 | 3 | 9.23×10^{-4} | 9.86×10^{-4} | 0.177 | -2.307 | В | 9 | | 49 | 1s3d-1s4f | ¹ D- ¹ F° | 18696.9 | 186105 | 191452 | 5 | 7 | 0.138 | 1.01 | 312 | 0.705 | В | ca | | 50 | 1s3d-1s5f | ¹D−¹F° | 12790.3 | 186105 | 193921 | 5 | 7 | 0.0461 | 0.158 | 33.3 | -0.102 | В | ca | | 51 | 1s3d-1s6f | ¹ D- ¹ F° (84) | 10917.0 | 186105 | 195263 | 5 | 7 | 0.0212 | 0.0529 | 9.51 | — 0.577 | В | ca | He I. Allowed Transitions - Continued | No. | Transition
Array | Multiple | λ(Å) | E((cm ⁻¹) | $E_k(\mathrm{cm}^{-1})$ |) g | i é | $A_{ki}(10^8 \ { m sec}^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|--|--|-------------------------------|----------------------------|----------------------------|-------------|-------------|--------------------------------|-----------------------------|-------------------------|--|----------------|----------------| | 52 | $\begin{vmatrix} 1s4s - 1s4p \end{vmatrix}$ | 1S_1P° | [180950] | 190940 | 191493 | | | 5.79×10^{-4} | 0.853 | 508 | -0.069 | В | ca | | 53 | $\begin{array}{ c c c c c c }\hline 1s4s - 1s5p \\ \hline \end{array}$ | 1S-1P° | [33299] | 190940 | 193943 | | | | 0.151 | 16.5 | -0.822 | В | ca | | 54 | 1s4s-1s6p | ¹S−¹P° | [23063] | 190940 | 195275 | 1 | 3 | | 0.0599 | 4.55 | -1.222 | В | ca | | 55 | 1s4p-1s5s | 1P°-1S | [46053] | 191493 | 193664 | 3 | 1 | 0.0150 | 0.159 | 72.2 | -0.322 | В | ca | | 56 | 1s4p - 1s6s | ¹P°-¹S | [27600] | 191493 | 195115 | 3 | 1 | 0.00721 | 0.0274 | 7.48 | -1.085 | В | ca | | 57 | 1s4p-1s7s | ¹P°-¹S | [22284] | 191493 | 195979 | 3 | 1 | 0.00438 | 0.0109 | 2.39 | -1.487 | В | ca | | 58 | 1s4p-1s5d | 1P°-1D | [41216] | 191493 | 193918 | 3 | 5 | 0.0153 | 0.649 | 264 | 0.289 | В | ca | | 59 | 1s4p-1s6d | ¹P°-¹D | [26531] | 191493 | 195261 | 3 | 5 | 0.00861 | 0.152 | 39.7 | -0.342 | В | ca | | 60 | 1s4p - 1s7d | ¹ P°- ¹ D | [21841] | 191493 | 196070 | 3 | 5 | 0.00533 | 0.0635 | 13.7 | -0.720 | В | ca | | 61 | 1s4d-1s4p | ¹D−¹P° | [2.16×10 | ⁵] 191447 | 191493 | 5 | 3 | 5.70×10^{-7} | 0.0240 | 856 | -0.920 | В | ca | | 62 | 1s4d-1s5p | ¹D−¹P° | [40053] | 191447 | 193943 | 5 | 3 | 0.00166 | 0.0240 | 15.8 | -0.922 | В | ca | | 63 | 1s4d-1s6p | ¹D−¹P° | [26113] | 191447 | 195275 | 5 | 3 | 7.85×10^{-4} | 0.00482 | 2.07 | -1.618 | В | ca | | 64 | 1s4d-1s4f | ¹D_¹F° | $[1.82 \times 10^{3}]$ | 7] 191447 | 191452 | 5 | 7 | 3.63×10^{-10} | 0.00253 | 757 | -1.899 | В | ca | | 65 | 1s4d-1s5f | ¹D−¹F° | [40396] | 191447 | 193921 | 5 | 7 | 0.0259 | 0.887 | 590 | 0.647 | В | ca | | 66 | 1s4d-1s6f | ¹D-¹F° | [26198] | 191447 | 195263 | 5 | 7 | 0.0130 | 0.187 | 80.7 | -0.029 | В | ca | | 67 | 1s4d-1s7f | ¹D-¹F° | [21617] | 191447 | 196071 | 5 | 7 | 0.00734 | 0.0719 | 25.6 | -0.444 | В | ca | | 68 | 1s4f - 1s5d | ¹F°−¹D | [40536] | 191452 | 193918 | 7 | 5 | 5.20×10^{-4} | 0.00915 | 8.55 | - 1.193 | В | ca | | 69 | 1s4f - 1s6d | ¹F°−¹D | [26248] | 191452 | 195261 | 7 | 5 | 2.49×10 ⁻⁴ | 0.00184 | 1.11 | - 1.891 | В | ca | | 70 | 1s2s-1s2p | ³ S- ³ P° (1) | 10830 | 159856 | 169087 | 3 | 9 | 0.1022 | 0.5391 | 57.66 | 0.2088 | AA | 1 | | | | (1) | 10830.3
10830.2
10829.1 | 159856
159856
159856 | 169087
169087
169088 | 3
3
3 | 5
3
1 | 0.1022
0.1022
0.1022 | 0.2994
0.1797
0.05990 | 32.03
19.22
6.407 | $ \begin{array}{r} -0.0466 \\ -0.2684 \\ -0.7454 \end{array} $ | AA
AA
AA | ls
ls
ls | | 71 | 1s2s-1s3p | ${}^{3}S - {}^{3}P^{\circ}$ (2) | 3888.65 | 159856 | 185565 | 3 | 9 | 0.09478 | 0.06446 | 2.476 | -0.7136 | AA | 1 | | 72 | 1s2s-1s4p | ³ S - ³ P° (3) | 3187.74 | 159856 | 191217 | 3 | 9 | 0.0505 | 0.0231 | 0.727 | -1.159 | В | 2 | | 73 | 1s2s-1s5p | ³ S - ³ P° (11 uv) | 2945.10 | 159856 | 193801 | 3 | 9 | 0.0293 | 0.0114 | 0.332 | -1.465 | В | 7 | | 74 | 1s2s-1s6p | ³ S - ³ P° (12 uv) | 2829.07 | 159856 | 195193 | 3 | 9 | 0.0169 | 0.00608 | 0.170 | -1.739 | В | 7 | | 75 | 1s2s-1s7p | ³ S− ³ P° | 2763.8 | 159856 | 196027 | 3 | 9 | 0.0111 | 0.00381 | 0.104 | -1.942 | В | 7 | | 76 | 1s2s-1s8p | ³ S - ³ P° | 2723.2 | 159856 | 196567 | 3 | 9 | 0.00780 | 0.00260 | | -2.108 | B | 7 | | 77 | 1s2s-1s9p | ³ S - ³ P° | 2696.1 | 159856 | 196935 | 3 | 9 | 0.00550 | 0.00180 | | -2.268 | В | 7 | | 78 | 1s2s-1s10p | ³ S - ³ P° | 2677.1 | 159856 | 197198 | 3 | 9 | 0.00404 | 0.00130 | 1 | -2.409 | В | 7 | | 79 | 1s2p-1s3s | ³ P°- ³ S | 7065.3 | 169087 | 183237 | 9 | 3 | 0.278 | 0.0693 | 14.5 | -0.205 | A | 2 | | i | I | (10) | 7065.19
7065.19
7065.71 | 169087
169087
169088 | 183237
183237
183237 | 5
3
1 | 3
3
3 | 0.154
0.0925
0.0308 | 0.0693
0.0692
0.0692 | 8.06
4.83
1.61 | -0.460
-0.683
-1.160 | A
A
A | ls
ls
ls | He I. Allowed Transitions - Continued | | | | , — | | inowed 1 | | | | r | | | | | |------------|---------------------|---|---|-----------------------|-------------------------|----|-------|--------------------------------|-----------------------|----------|--------|---------------|--------| | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8 \ { m sec}^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | | 80 | 1s2p - 1s4s | ³ P°- ³ S
(12) | 4713.2 | 169087 | 190298 | 9 | 3 | 0.106 | 0.0118 | 1.65 | -0.973 | В | 4 | | 81 | 1s2p-1s5s | ³ P°- ³ S
(16) | 4120.8 | 169087 | 193347 | 9 | 3 | 0.0430 | 0.00365 | 0.446 | -1.483 | В | ca | | 82 | 1s2p - 1s6s | ³ P°- ³ S (20) | 3867.5 | 169087 | 194936 | 9 | 3 | 0.0236 | 0.00176 | 0.202 | -1.800 | В | ca | | 83 | 1s2p-1s8s | ³ P°- ³ S
(27) | 3652.0 | 169087 | 196461 | 9 | 3 | 0.0108 | 7.21×10^{-4} | 0.0780 | -2.188 | В | 4 | | 84 | s2p-1s10s | ³ P°- ³ S
(33) | 3562.95 | 169087 | 197145 | 9 | 3 | 0.00543 | 3.45×10^{-4} | 0.0364 | -2.508 | В | 4 | | 8 5 | 1s2p-1s3d | ³ P°- ³ D
(11) | 5875.7 | 169087 | 186102 | 9 | 15 | 0.706 | 0.609 | 106 | 0.739 | A | 2 | | 86 | 1s2p-1s4d | ³ P°- ³ D
(14) | 4471.5 | 169087 | 191445 | 9 | 15 | 0.251 | 0.125 | 16.6 | 0.052 | A | 4 | | 87 | 1s2p-1s5d | ³ P°- ³ D
(18) | 4026.2 | 169087 | 193917 | 9 | 15 | 0.117 | 0.0474 | 5.66 | -0.370 | A | 4 | | 88 | 1s2p-1s6d | ³ P°- ³ D
(22) | 3819.6 | 169087 | 195260 | 9 | 15 | 0.0589 | 0.0215 | 2.43 | -0.714 | В | ca | | 89 | 1s2p-1s7d | ³ P°- ³ D
(25) | 3705.0 | 169087 | 196070 | 9 | 15 | 0.0444 | 0.0152 | 1.67 | -0.864 | C+ | 8 | | 90 | 1s2p-1s8d | ³ P°-3D
(28) | 3634.2 | 169087 | 196595 | 9 | 15 | 0.0261 | 0.00862 | 0.928 | -1.110 | A | 4 | | 91 | 1s2p-1s9d | ³ P°- ³ D
(31) | 3587.3 | 169087 | 196955 | 9 | 15 | 0.0205 | 0.00660 | 0.702 | -1.226 | C+ | 8 | | 92 | 1s2p - 1s10d | ³ P°- ³ D
(34) | 3554.4 | 169087 | 197213 | 9 | 15 | 0.0131 | 0.00414 | 0.436 | -1.429 | A | 4 | | 93 | 1s3s - 1s3p | 3S-3P° | [42947] | 183237 | 185565 | 3 | 9 | 0.0108 | 0.896 | 380 | 0.429 | A | 2 | | 94 | 1s3s - 1s4p | 3S-3P° | 12528 | 183237 | 191217 | 3 | 9 | 0.00608 | 0.0429 | 5.31 | -0.890 | В | 2 | | 95 | 1s3s - 1s5p | ³ S - ³ P° (67) | 9463.57 | 183237 | 193801 | 3 | 9 | 0.00608 | 0.0245 | 2.29 | -1.134 | В | ca | | 96 | 1s3s-1s6p | ³ S – ³ P° (68) | 8361.77 | 183237 | 195193 | 3 | 9 | 7.16×10^{-4} | 0.00225 | 0.186 | -2.170 | В | 9 | | 97 | 1s3p - 1s4s | ³P°-3S | 21120 | 185565 | 190298 | 9 | 3 | 0.0652 | 0.145 | 91.0 | 0.117 | В | ca | | 98 | 1s3p - 1s5s | ³P°_3S | 12846 | 185565 | 193347 | 9 | 3 | 0.0269 | 0.0222 | 8.45 | -0.699 | В | ca | | 99 | 1s3p - 1s6s | ³ P°- ³ S
(73) | 10667.6 | 185565 | 194936 | 9 | 3 | 0.0142 | 0.00810 | 2.56 | -1.137 | В | ca | | 100 | 1s3p - 1s7s | ³ P°- ³ S
(75) | 9702.66 | 185565 | 195868 | 9 | 3 | 0.00858 | 0.00404 | 1.16 | -1.440 | В | ca | | 101 | 1s3p-1s3d | ³ P°- ³ D | [186200] | 185565 | 186102 | 9 | 15 | 1.28×10^{-4} | 0.111 | 613 | 0.000 | A | 2 | | 102 | 1s3p - 1s4d | 3P°-3D | 17002 | 185565 | 191445 | 9 | 15 | 0.0668 | 0.482 | 243 | 0.638 | В | ca | | 103 | _ | ³ P°- ³ D
(72) | 11969.1 | 185565 | 193917 | 9 | 15 | 0.0343 | 0.123 | 43.5 | 0.043 | В | ca | He I. Allowed Transitions—Continued | - | T | T | Ţ | | | 7 | T | | | T | | Ţ | | |-----|---------------------|---------------------------------------|----------------------|-------------------------|-----------------------|----|----
--|-----------------------|----------|--|---------------|----------| | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gk | $A_{ki}(10^8 \ { m sec}^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | | 104 | 1s3p - 1s6d | ³ P°- ³ D (74) | 10311 | 185565 | 195260 | 9 | 15 | 0.0197 | 0.0524 | 16.0 | -0.327 | В | ca | | 105 | 1s3d-1s4p | ³ D ~ ³ P° | 19543 | 186102 | 191217 | 15 | 9 | 0.00597 | 0.0205 | 19.8 | -0.512 | C+ | 2 | | 106 | 1s3d-1s5p | 3D-3P° | 12985 | 186102 | 193801 | 15 | 9 | 0.00274 | 0.00415 | 2.66 | -1.206 | В | ca | | 107 | 1s3d-1s6p | ³ D ~ ³ P° (78) | 10996.6 | 186102 | 195193 | 15 | 9 | 5.67×10^{-4} | 6.17×10 ⁻⁴ | 0.335 | -2.034 | В | 9 | | 108 | 1s3d - 1s4f | ³ D- ³ F° | 18686 | 186102 | 191452 | 15 | 21 | 0.139 | 1.02 | 937 | 1.183 | В | ca | | 109 | 1s3d-1s5f | ³ D- ³ F° | 12785 | 186102 | 193921 | 15 | 21 | 0.0462 | 0.158 | 100 | 0.376 | В | ca | | 110 | 1s3d – 1s6f | ³ D~ ³ F° (79) | 10912.9 | 186102 | 195263 | 15 | 21 | 0.0212 | 0.0531 | 28.6 | -0.099 | В | ca | | 111 | 1s4s - 1s4p | 3S-3P° | [108800] | 190298 | 191217 | 3 | 9 | 0.00227 | 1.21 | 1300 | 0.560 | В | ca | | 112 | 1s4s - 1s5p | 3S _3P° | [28542] | 190298 | 193801 | 3 | 9 | 0.00128 | 0.0468 | 13.2 | -0.852 | В | ca | | 113 | 1s4s - 1s6p | 3S-3P° | [20425] | 190298 | 195193 | 3 | 9 | 0.00147 | 0.0276 | 5.57 | -1.082 | В | ca | | 114 | 1s4p - 1s5s | ³P°_3S | [46936] | 191217 | 193347 | 9 | 3 | 0.0202 | 0.223 | 310 | 0.302 | В | ca | | 115 | 1s4p - 1s6s | ³P°-3S | [26881] | 191217 | 194936 | 9 | 3 | 0.00925 | 0.0334 | 26.6 | -0.522 | В | ca | | 116 | 1s4p - 1s7s | ³P°-3S | [21494] | 191217 | 195868 | 9 | 3 | 0.00543 | 0.0125 | 7.99 | -0.947 | В | ca | | 117 | 1s4p - 1s8s | ³P°-3S | [19063] | 191217 | 196461 | 9 | 3 | 0.00340 | 0.00618 | 3.49 | -1.255 | В | ca | | 118 | 1s4p-1s4d | 3P°-3D | [439440] | 191217 | 191445 | 9 | 15 | 4.15×10^{-5} | 0.200 | 2610 | 0.256 | В | ca | | 119 | 1s4p - 1s5d | ³ P°- ³ D | [37026] | 191217 | 193917 | 9 | 15 | 0.0129 | 0.442 | 485 | 0.600 | В | ca | | 120 | 1s4p-1s6d | 3P°-3D | [24727] | 191217 | 195260 | 9 | 15 | 0.00795 | 0.121 | 89.0 | 0.039 | В | ca | | 121 | 1s4d-1s5p | ³D−³P° | [42430] | 191445 | 193801 | 15 | 9 | 0.00333 | 0.0539 | 113 | -0.092 | В | ca | | 122 | 1s4d-1s6p | 3D-3P° | [26671] | 191445 | 195193 | 15 | 9 | 0.00160 | 0.0102 | 13.5 | -0.813 | В | ca | | 123 | 1s4d-1s4f | ³D−3F° | $[1.39 \times 10^7]$ | 191445 | 191452 | 15 | 21 | 8.15×10^{-10} | 0.00331 | 2270 | -1.305 | В | ca | | 124 | 1s4d-1s5f | ³D−3F° | [40365] | 191445 | 193921 | 15 | 21 | 0.0260 | 0.888 | 1770 | 1.125 | В | ca | | 125 | ls4d-1s6f | ³D−3F° | [26185] | 191445 | 195263 | | 21 | 0.0130 | 0.187 | 242 | 0.448 | B | ca | | 126 | 1s4d-1s7f | ³D − 3F° | [21608] | 191445 | 196071 | | 21 | 0.00734 | 0.0720 | 76.8 | 0.033 | В | ca | | 127 | 1s4f-1s5d | ³F°−3D | [40550] | 191452 | 193917 | 21 | 15 | 5.25×10^{-4} | 0.00924 | 25.9 | -0.712 | В | | | 128 | 1s4f-1s6d | ³F°−³D | [26251] | 191452 | - 1 | 21 | 15 | 2.51×10^{-4} | 0.00924 | | $\begin{bmatrix} -0.712 \\ -1.410 \end{bmatrix}$ | В | ca
ca | | | | <u></u> | 1 | | | | ! | | | 0.00 | 1.410 | Ь | | ## LITHIUM #### LiI **Ground State** $1s^2 2s \, ^2S_{1/2}$ **Ionization Potential** $5.390 \text{ eV} = 43487.19 \text{ cm}^{-1}$ #### **Allowed Transitions** #### List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |--------------------|-----|----------------|-----|----------------------|-----| | 2333.94 | 12 | 10510.6 | 28 | 28417 | 38 | | 2340.16 | 11 | 10792.1 | 21 | 38081 | 40 | | 2348.22 | 10 | 10919.1 | 33 | 40294 | 45 | | 2358.92 | 9 | 11032.1 | 24 | 40562 | 47 | | 2373.55 | 8 | 12237.7 | 27 | 41791 | 42 | | 2394.36 | 7 | 12793.3 | 32 | 47804 | 50 | | 2425.41 | 6 | 12928.9 | 30 | 54633 | 37 | | 2475.06 | 5 | 13557.8 | 23 | 68592 | 34 | | 2562.31 | 4 | 17546.1 | 26 | 70319 | 53 | | 2741.19 | 3 | 18586.8 | 36 | 74379 | 56 | | 3232.63 | 2 | 18703.1 | 31 | 75010 | 57 | | 3985.5 | 16 | 19274.8 | 29 | 77145 | 54 | | 4132.6 | 19 | 24464.7 | 22 | 102850 | 51 | | 4273.1 | 15 | 24971 | 35 | 139610 | 49 | | 4602.9 | 18 | 25197 | 41 | 279490 | 25 | | 4071.7 | 14 | 26201 | 46 | 650000 | 39 | | 4971.7 | 17 | 26260 | 48 | 1261000 | 52 | | 6103.6 | 1 1 | 26536 | 43 | 1.04×10^{7} | 55 | | $6707.8 \\ 8126.4$ | 13 | 26877.8 | 20 | 1.47×10^{7} | 44 | The transition probabilities for the 2s-2p, 2p-3s, 2p-3d, 3s-3p, and 3p-3d transitions are taken from the dipole length calculations of Weiss [1]. The values for the 2s - np (n = 3 . . . 13)transitions are selected from the anomalous dispersion measurements of Filippov [2] normalized to Weiss' f-value for the resonance transition 2s-2p. For this series, preference is given to Filippov's experimental values since the theoretical methods show strong cancellation effects in the transition integral. Uncertainties of not more than 10% are indicated by the very good agreement of the selected material with other determinations. #### References [1] Weiss, A. W., Astrophys. J. 138, 1262-1276 (1963). ^[2] Filippov, A. N., Z. Physik 69, 526-547 (1931); Zhur. Eksptl. i Teoret. Fiz. 2, 24-41 (1932) (translated in "Optical Transition Probabilities," Office of Technical Services, U.S. Department of Commerce, Washington, D.C.). Li I. Allowed Transitions | | | | | | | | | | | | | | | |-----|---------------------|---|-----------|-----------------------|-------------------------|-------|-------|------------------------|-----------------------|----------|--------|---------------|--------| | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | g_i | g_k | $A_{ki}(\sec^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | | 1 | 2s-2p | ² S - ² P° (1) | 6707.8 | 0.00 | 14903.9 | 2 | 6 | 3.72×10^7 | 0.753 | 33.3 | 0.178 | A | 1 | | 2 | 2s-3p | ² S - ² P° (2) | 3232.63 | 0.00 | 30925.4 | 2 | 6 | 1.17×10^6 | 0.00552 | 0.117 | -1.957 | В | 2 | | 3 | 2s-4p | ² S - ² P° (1 uv) | 2741.19 | 0.00 | 36469.6 | 2 | 6 | 1.42×10^6 | 0.00480 | 0.0866 | -2.018 | В | 2 | | 4 | 2s-5p | ² S - ² P° (2 uv) | 2562.31 | 0.00 | 39015.6 | 2 | 6 | 1.07×10^{6} | 0.00316 | 0.0533 | -2.199 | В | 2 | | 5 | 2s-6p | ² S - ² P° (3 uv) | 2475.06 | 0.00 | 40390.8 | 2 | 6 | 6.97×10^{5} | 0.00192 | 0.0313 | -2.416 | В | 2 | | 6 | 2s-7p | ² S - ² P° (4 uv) | 2425.41 | 0.00 | 41217.4 | 2 | 6 | 4.84×10^{5} | 0.00128 | 0.0204 | -2.592 | В | 2 | | 7 | 2s-8p | ² S - ² P° (5 uv) | 2394.36 | 0.00 | 41751.6 | 2 | 6 | 3.55×10^{5} | 9.16×10^{-4} | 0.0144 | -2.737 | В | 2 | | 8 | 2s-9p | 2S – 2P° | 2373.55 | 0.00 | 42118.3 | 2 | 6 | 2.68×10^{5} | 6.79×10^{-4} | 0.0106 | -2.867 | В | 2 | | 9 | 2s-10p | ² S – ² P° | 2358.92 | 0.00 | 42379.2 | 2 | 6 | 2.09×10^{5} | 5.22×10^{-4} | 0.00811 | -2.981 | В | 2 | | 10 | 2s-11p | ² S− ² P° | 2348.22 | 0.00 | 42569.1 | 2 | 6 | 1.65×10 ⁵ | 4.08×10^{-4} | 0.00631 | -3.088 | В | 2 | | 11 | 2s-12p | 2S-2P° | 2340.16 | 0.00 | 42719.1 | 2 | 6 | 1.34×10^{5} | 3.29×10^{-4} | 0.00507 | -3.182 | В | 2 | | 12 | 2s-13p | ² S – ² P° | 2333.94 | 0.00 | 42832.9 | 2 | 6 | 1.09×10^{5} | 2.67×10^{-4} | 0.00410 | -3.273 | В | 2 | | 13 | 2p-3s | ² P°- ² S (3) | 8126.4 | 14903.9 | 27206.1 | 6 | 2 | 3.49×10^7 | 0.115 | 18.5 | -0.160 | B+ | 1 | | 14 | 2p-4s | ² P°- ² S (5) | 4971.7 | 14903.9 | 35012.1 | 6 | 2 | 1.01×10^7 | 0.0125 | 1.23 | -1.126 | В | ca | | 15 | 2p-5s | ²P°−2S | 4273.1 | 14903.9 | 38299.5 | 6 | 2 | 4.60×10^{6} | 0.00420 | 0.355 | -1.599 | В | ca | | 16 | 2p-6s | 2P°-2S | 3985.5 | 14903.9 | 39987.6 | 6 | 2 | 2.50×10^{6} | 0.00198 | 0.156 | -1.924 | В | ca | | 17 | 2p-3d | ² P°- ² D (4) | 6103.6 | 14903.9 | 31283.1 | 6 | 10 | 7.16×10^7 | 0.667 | 80.4 | 0.602 | B+ | 1 | | 18 | 2p-4d | ² P°- ² D (6) | 4602.9 | 14903.9 | 36623.4 | 6 | 10 | $2.30 imes 10^7$ | 0.122 | 11.1 | -0.137 | В | ca | | 19 | 2p-5d | ²P°−²D | 4132.6 | 14903.9 | 39094.9 | 6 | 10 | $1.06 imes 10^7$ | 0.0453 | 3.70 | -0.566 | В | ca | | 20 | 3s-3p | $^{2}S-^{2}P^{\circ}$ | 26877.8 | 27206.1 | 30925.4 | 2 | 6 | 3.77×10^6 | 1.23 | 217 | 0.389 | B+ | 1 | | 21 | 3s-4p | ² S- ² P° | [10792.1] | 27206.1 | 36469.6 | 2 | 6 | 3.69×10^3 | 1.93×10 ⁻⁴ | 0.0137 | -3.413 | В | ca | | 22 | 3p-4s | ² P°- ² S | 24464.7 | 30925.4 | 35012.1 | 6 | 2 | 7.46 × 10 ⁶ | 0.223 | 108 | 0.127 | В | ca | | 23 | 3p-5s | ² P°- ² S | 13557.8 | 30925.4 | 38299.5 | 6 | 2 | 2.76×10^{6} | 0.0254 | 6.80 | -0.817 | В | ca | | 24 | 3p-6s | ² P°- ² S | 11032.1 | 30925.4 | 39987.6 | 6 | 2 | 1.44×10^6 | 0.00874 | 1.90 | -1.280 | В | ca | | 25 | 3p-3d | ² P°- ² D | [279490] | 30925.4 | 31283.1 | 6 | 10 | 3.81×10^3 | 0.0743 | 410 | -0.351 | В | 1 | | 26 | 3p-4d | ² P°− ² D | 17546.1 | 30925.4 | 36623.4 | 6 | 10 | 6.85×10^{6} | 0.527 | 183 | 0.500 | В | ca | | 27 | 3p-5d | ² P°− ² D | 12237.7 | 30925.4 | 39094.9 | 6 | 10 | 3.41×10^6 | 0.128 | 30.9 | -0.116 | В | ca | | 28 | 3p-6d | ² P°- ² D | 10510.6 | 30925.4 | 40437.3 | 6 | 10 | 1.94×10^6 | 0.0534 | 11.1 | -0.494 | В | ca | Li I. Allowed Transitions – Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | g_i | g_k | $A_{ki}(\mathrm{sec^{-1}})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|-------------------------|----------------------------------|----------------------|-------------------------|-----------------------|-------|-------|-----------------------------|-----------------------|----------|--------|---------------|--------| | 29 | 3d-4p | ² D- ² P° | 19274.8 | 31283.1 |
36469.6 | 10 | 6 | 5.52×10 ⁵ | 0.0184 | 11.7 | -0.734 | В | ca | | 30 | 3d-5p | ² D- ² P° | [12928.9] | 31283.1 | 39015.6 | 10 | 6 | 2.31×10^{5} | 0.00348 | 1.48 | -1.459 | В | ca | | 31 | 3d-4f | ² D- ² F° | 18703.1 | 31283.1 | 36630.2 | 10 | 14 | 1.38×10^{7} | 1.01 | 625 | 1.006 | В | ca | | 32 | 3d-5f | ² D− ² F° | 12793.3 | 31283.1 | 39104.5 | 10 | 14 | 4.63×10^{6} | 0.159 | 67.0 | 0.201 | В | ca | | 33 | 3d-6f | ²D−²F° | [10919.1] | 31283.1 | [40439.0] | 10 | 14 | 2.11×10^{6} | 0.0529 | 19.0 | -0.277 | В | ca | | 34 | 4s-4p | ² S- ² P° | [68592] | 35012.1 | 36469.6 | 2 | 6 | 7.72×10^{5} | 1.63 | 737 | 0.514 | В | ca | | 35 | 4s 5p | ² S- ² P° | [24971] | 35012.1 | 39015.6 | 2 | 6 | 2.07×10^{3} | 5.81×10^{-4} | 0.0955 | -2.935 | В | ca | | 36 | 4s-6p | ² S - ² P° | [18586.8] | 35012.1 | 40390.8 | 2 | 6 | 8.38×10^{3} | 0.00130 | 0.159 | -2.585 | В | ca | | 37 | 4p-5s | ² P°- ² S | [54633] | 36469.6 | 38299.5 | 6 | 2 | 2.25×10^{6} | 0.335 | 362 | 0.303 | В | ca | | 38 | 4p-6s | ² P°- ² S | [28417] | 36469.6 | 39987.6 | 6 | 2 | 9.22×10^{5} | 0.0372 | 20.9 | -0.651 | В | ca | | 39 | 4p-4d | ² P°- ² D | [650000] | 36469.6 | 36623.4 | 6 | 10 | 1.28×10^{3} | 0.135 | 1740 | -0.091 | В | ca | | 40 | 4p-5d | ² P°- ² D | [38081] | 36469.6 | 39094.9 | 6 | 10 | 1.36×10 ⁶ | 0.494 | 372 | 0.472 | В | ca | | 41 | 4p-6d | ² P°- ² D | [25197] | 36469.6 | 40437.3 | 6 | 10 | 8.19×10^{5} | 0.130 | 64.6 | -0.108 | В | ca | | 42 | 4d-5p | ² D- ² P° | [41791] | 36623.4 | 39015.6 | 10 | 6 | 2.86×10^{5} | 0.0450 | 61.9 | -0.347 | В | ca | | 43 | 4d-6p | ² D- ² P° | [26536] | 36623.4 | 40390.8 | 10 | 6 | 1.39×10 ⁵ | 0.00879 | 7.67 | -1.056 | В | ca | | 44 | 4d-4f | ² D− ² F° | $[1.47 \times 10^7]$ | 36623.4 | 36630.2 | 10 | 14 | 6.90×10^{-2} | 0.00313 | 1520 | -1.504 | В | ca | | 45 | 4d-5f | ² D- ² F° | [40294] | 36623.4 | 39104.5 | 10 | 14 | 2.58×10^{6} | 0.878 | 1160 | 0.944 | В | ca | | 46 | 4d-6f | $^{2}D-^{2}F^{\circ}$ | [26201] | 36623.4 | [40439.0] | 10 | 14 | 1.30×10 ⁶ | 0.187 | 161 | 0.272 | В | ca | | 47 | 4f-5d | ² F°- ² D | [40562] | 36630.2 | 39094.9 | 14 | 10 | 5.23×10 ⁴ | 0.00922 | 17.2 | -0.889 | В | ca | | 48 | 4f-6d | ² F°− ² D | [26260] | 36630.2 | 40437.3 | 14 | 10 | 2.50×10^{4} | 0.00185 | 2.24 | -1.587 | В | ca | | 49 | 5s-5p | ² S - ² P° | [139610] | 38299.5 | 39015.6 | 2 | 6 | 2.33×10^5 | 2.05 | 1880 | 0.612 | В | ca | | 50 | 5s-6p | ² S - ² P° | [47804] | 38299.5 | 40390.8 | 2 | 6 | 1.72×10^3 | 0.00177 | 0.557 | -2.451 | В | ca | | 51 | 5p-6s | ² P°- ² S | [102850] | 39015.6 | 39987.6 | 6 | 2 | 8.48×10^{5} | 0.448 | 911 | 0.430 | В | ca | | 52 | 5p-5d | ² P°- ² D | [1261000] | 39015.6 | 39094.9 | 6 | 10 | $4.78 imes 10^2$ | 0.190 | 4730 | 0.057 | В | ca | | 53 | 5p-6d | ² P°- ² D | [70319] | 39015.6 | 40437.3 | 6 | 10 | 3.98×10^{5} | 0.491 | 683 | 0.470 | В | ca | | 54 | 5d - 6p | ² D − ² P° | [77145] | 39094.9 | 40390.8 | 10 | 6 | $1.42 imes 10^5$ | 0.0758 | 192 | -0.121 | В | ca | | 55 | 5d-5f | ² D- ² F° | $[1.04 \times 10^7]$ | 39094.9 | 39104.5 | 10 | 14 | 0.696 | 0.0159 | 5440 | -0.800 | В | ca | | 56 | 5 <i>d</i> -6 <i>f</i> | ²D−²F° | [74379] | 39094.9 | [40439.0] | 10 | 14 | 7.22×10^5 | 0.838 | 2050 | 0.924 | В | ca | | 57 | 5 <i>f</i> – 6 <i>d</i> | ² F°− ² D | [75010] | 39104.5 | 40437.3 | 14 | 10 | 4.19×10^{4} | 0.0252 | 87.3 | -0.452 | В | ca | $1s^2 {}^1S_0$ Ionization Potential $75.619 \text{ eV} = 610079 \text{ cm}^{-1}$ #### **Allowed Transitions** List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |----------------|-----|----------------|-----|----------------|---------| | 178.015 | 2 | 1653.2 | 31 | 3306.5 | 17 | | 199.282 | ī | 1681.8 | 10 | 3684.1 | 39 | | 861.36 | 30 | 1755.5 | 6 | 4156.3 | 14 | | 944.72 | 29 | 2605.1 | 47 | 4325.7 | 45 | | 972.30 | 34 | 2657.3 | 43 | 4637.8 | 23 | | 1018.0 | 37 | 2674.43 | 40 | 4671.8 | 50 | | 1031.9 | 33 | 2728.4 | 52 | 4678.4 | 24 | | 1044.3 | 9 | 2730.7 | 26 | 4787.5 | 19 | | 1093.2 | 5 | 2767.1 | 21 | 4840.8 | 48 | | 1102.6 | 12 | 2790.5 | 18 | 4881.3 | 41 | | 1109.0 | 8 | 2952.5 | 15 | 5038.7 | 16 | | 1132.0 | 36 | 3029.1 | 46 | 5484.8 | 27 | | 1166.7 | 32 | 3155.4 | 42 | 9562.2 | 3
38 | | 1198.3 | 28 | 3195.8 | 51 | 21091 | 38 | | 1237.4 | 11 | 3199.4 | 25 | 33661 | 13 | | 1253.5 | 7 | 3235.7 | 49 | 57324 | 44 | | 1420.7 | 4 | 3250.1 | 20 | 211360 | 22 | | 1493.2 | 35 | | | | | The values are selected from Weiss' calculations [1] or, when not available, from the Coulomb approximation. The transition probabilities determined by Weiss are the result of extensive non-relativistic variational calculations. Values have been determined in both the dipole length and dipole velocity approximations and agree to within 1%, except for the 3p $^{1}P^{\circ}-3d$ ^{1}D transition where agreement is not as good. The average of the two approximations is adopted [1]. #### Reference [1] Weiss, A. W., private communication (1964). Li II. Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | <i>E</i> _i (cm ⁻¹) | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(\sec^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|---|----------|---|-------------------------|----|----|-----------------------|---------|----------|---------|---------------|--------| | 1 | $1s^2-1s2p$ | ¹ S- ¹ P° (1 uv) | 199.282 | 0 | 501816 | 1 | 3 | 256 | 0.457 | 0.300 | -0.340 | A | I | | 2 | $1s^2-1s3p$ | ¹ S - ¹ P° (2 uv) | 178.015 | 0 | 561749 | 1 | 3 | 77.9 | 0.111 | 0.0651 | -0.955 | A | 1 | | 3 | 1s2s - 1s2p | 1S-1P° | [9562.2] | 491361 | 501816 | 1 | 3 | 0.0518 | 0.213 | 6.71 | -0.672 | A | 1 | | 4 | 1s2s - 1s3p | 1S-1P° | [1420.7] | 491361 | 561749 | 1 | 3 | 2.82 | 0.256 | 1.20 | -0.592 | A | 1 | | 5 | 1s2s - 1s4p | ¹ S- ¹ P° | [1093.2] | 491361 | 582832 | 1 | 3 | 1.32 | 0.0712 | 0.256 | - 1.147 | В | ca | | 6 | 1s2p-1s3s | ¹ P°- ¹ S | [1755.5] | 501816 | 558779 | 3 | 1 | 2.04 | 0.0314 | 0.544 | -1.026 | В | ca | | 7 | 1s2p-1s4s | ¹P°-¹S | [1253.5] | 501816 | 581590 | 3 | 1 | 0.776 | 0.00609 | 0.0754 | -1.738 | В | ca | | 8 | 1s2p-1s5s | ¹P°-¹S | [1109.0] | 501816 | 591984 | 3 | 1 | 0.382 | 0.00235 | 0.0257 | -2.152 | В | ca | | 9 | 1s2p - 1s6s | ¹P°-¹S | [1044.3] | 501816 | 597574 | 3 | 1 | 0.214 | 0.00117 | 0.0120 | -2.456 | В | ca | | 10 | 1s2p-1s3d | ¹P°−¹D | [1681.8] | 501816 | 561276 | 3 | 5 | 10.1 | 0.714 | 11.9 | 0.331 | A | 1 | | 11 | 1s2p-1s4d | ¹P°−¹D | [1237.4] | 501816 | 582631 | 3 | 5 | 3.10 | 0.119 | 1.45 | -0.448 | В | ca | | 12 | 1s2p-1s5d | ¹P°−¹D | [1102.6] | 501816 | 592508 | 3 | 5 | 1.37 | 0.0415 | 0.452 | -0.905 | В | ca | | 13 | 1s3s - 1s3p | 'S-'P° | [33661] | 558779 | 561749 | 1 | 3 | 0.00710 | 0.362 | 40.1 | -0.442 | В | ca | | 14 | 1s3s - 1s4p | ¹ S- ¹ P° (3) | 4156.3 | 558779 | 582832 | 1 | 3 | 0.343 | .0.267 | 3.65 | -0.574 | В | ca | | 15 | 1s3s-1s5p | ¹ S- ¹ P° | [2952.5] | 558779 | 592639 | 1 | 3 | 0.202 | 0.0791 | 0.769 | -1.102 | В | ca | | 16 | 1s3p - 1s4s | ¹ P°- ¹ S | [5038.7] | 561749 | 581590 | 3 | 1 | 0.541 | 0.0687 | 3.42 | -0.686 | В | ca | | 17 | 1s3p - 1s5s | ¹P°-¹S | [3306.5] | 561749 | 591984 | 3 | 1 | 0.252 | 0.0138 | 0.449 | -1.384 | В | ca | | 18 | 1s3p-1s6s | ¹ P°- ¹ S | [2790.5] | 561749 | 597574 | 3 | 1 | 0.139 | 0.00542 | 0.149 | -1.789 | В | ca | | 19 | 1s3p-1s4d | ¹ P°- ¹ D | [4787.5] | 561749 | 582631 | 3 | 5 | 1.14 | 0.654 | 30.9 | 0.293 | В | ca | | 20 | 1s3p - 1s5d | ¹P°−¹D | [3250.1] | 561749 | 592508 | 3 | 5 | 0.528 | 0.139 | 4.48 | -0.379 | В | ca | | 21 | 1s3p - 1s6d | ¹P°−¹D | [2767.1] | 561749 | 597877 | 3 | 5 | 0.289 | 0.0552 | 1.51 | -0.781 | В | ca | | 22 | 1s3d - 1s3p | ¹ D- ¹ P° | [211360] | 561276 | 561749 | 5 | 3 | 3.98×10^{-5} | 0.0160 | 55.7 | -1.097 | В | 1 | | 23 | 1s3d-1s4p | ¹ D- ¹ P° | [4637.8] | 561276 | 582832 | 5 | 3 | 0.0471 | 0.00911 | 0.695 | -1.342 | В | ca | | 24 | 1s3d - 1s4f | ¹D - ¹F° | [4678.4] | 561276 | 582645 | 5 | 7 | 2.21 | 1.02 | 78.2 | 0.706 | В | ca | | 25 | 1s3d-1s5f | ¹D-1F° | [3199.4] | 561276 | 592523 | 5 | 7 | 0.736 | 0.158 | 8.33 | -0.102 | В | ca | | 26 | 1s3d - 1s6f | ¹D - ¹F° | [2730.7] | 561276 | 597886 | 5 | 7 | 0.338 | 0.0528 | 2.38 | -0.578 | В | ca | | 27 | 1s2s - 1s2p | ³ S- ³ P° (1) | 5484.8 | 476046 | 494273 | 3 | 9 | 0.228 | 0.308 | 16.7 | -0.034 | A | 1 | | 28 | 1s2s - 1s3p | 3S-3P° | [1198.3] | 476046 | 559501 | 3 | 9 | 2.88 | 0.186 | 2.20 | -0.253 | A | 1 | | 29 | 1s2s-1s4p | 3S-3P° | [944.72] | 476046 | 581897 | 3 | 9 | 1.39 | 0.0558 | 0.521 | -0.776 | В | ca | | 30 | 1s2s — 1s5p | 3S - 3P° | [861.36] | 476046 | 592141 | 3 | 9 | 0.722 | 0.0241 | 0.205 | -1.141 | В | ca | | 31 | 1s2p-1s3s | ³P°-3S | [1653.2] | 494273 | 554761 | 9 | 3 | 2.85 | 0.0390 | 1.91 | -0.455 | В | ca | | 32 | 1s2p - 1s4s | ³P°3S | [1166.7] | 494273 | 579982 | 9 | 3 | 1.02 | 0.00697 | 0.241 | -1.202 | В | ca | Li H. Allowed Transitions - Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gk | $A_{ki}(\sec^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|--|----------|-----------------------|-----------------------|----|----|---------------------|---------|----------|--------|---------------|--------| | | | | | | | | | | | | | | | | 33 | 1s2p-1s5s | 3P°_'3S | [1031.9] | 494273 | 591184 | 9 | 3 | 0.490 | 0.00261 | 0.0797 | -1.630 | В | ca | | 34 | 1s2p-1s6s | ³P°−3S | [972.30] | 494273 | 597122 | 9 | 3 | 0.270 | 0.00128 | 0.0368 | -1.939 | В | ca | | 35 | 1s2p-1s3d | 3P°-3D | [1493.2] | 494273 | 561245 | 9 | 15 | 11.2 | 0.625 | 27.7 | 0.750 | A | 1 | | 36 | 1s2p-1s4d | ³P°-3D | [1132.0] | 494273 | 582612 | 9 | 15 | 3.80 | 0.122 | 4.08 | 0.039 | В | ca | | 37 | 1s2p-1s5d | ³ P°- ³ D |
[1018.0] | 494273 | 592505 | 9 | 15 | 1.78 | 0.0461 | 1.39 | -0.382 | В | ca | | 38 | 1s3s - 1s3p | ³ S - ³ P° | [21091] | 554761 | 559501 | 3 | 9 | 0.0254 | 0.509 | 106 | 0.184 | В | ca | | 39 | 1s3s - 1s4p | ³ S- ³ P° (2) | 3684.1 | 554761 | 581897 | 3 | 9 | 0.309 | 0.189 | 6.86 | -0.248 | В | ca | | 40 | 1s3s - 1s5p | $^{3}S - ^{3}P^{\circ}$ $(4 uv)$ | 2674.43 | 554761 | 592141 | 3 | 9 | 0.192 | 0.0617 | 1.63 | -0.733 | В | ca | | 41 | 1s3p-1s4s | ³ P°- ³ S (4) | 4881.3 | 559501 | 579982 | 9 | 3 | 0.714 | 0.0850 | 12.3 | -0.116 | В | ca | | 42 | 1s3p - 1s5s | ³P°-3S | [3155.4] | 559501 | 591184 | 9 | 3 | 0.318 | 0.0158 | 1.48 | -0.846 | В | ca | | 43 | 1s3p - 1s6s | 3P°-3S | [2657.3] | 559501 | 597122 | 9 | 3 | 0.172 | 0.00606 | 0.477 | -1.263 | В | ca | | 44 | 1s3p - 1s3d | 3P°-3D | [57324] | 559501 | 561245 | 9 | 15 | 0.00110 | 0.0904 | 154 | -0.090 | A | 1 | | 45 | 1s3p-1s4d | ³ P°- ³ D
(5) | 4325.7 | 559501 | 582612 | 9 | 15 | 1.09 | 0.508 | 65.1 | 0.660 | В | ca | | 46 | 1s3p-1s5d | ³P°−3D | [3029.1] | 559501 | 592505 | 9 | 15 | 0.549 | 0.126 | 11.3 | 0.054 | В | ca | | 47 | 1s3p - 1s6d | 3P°-3D | [2605.1] | 559501 | 597876 | 9 | 15 | 0.312 | 0.0530 | 4.09 | -0.322 | В | ca | | 48 | 1s3d-1s4p | 3D-3P° | [4840.8] | 561245 | 581897 | 15 | 9 | 0.0941 | 0.0198 | 4.74 | -0.527 | В | ca | | 49 | 1s3d-1s5p | 3D-3P° | [3235.7] | 561245 | 592141 | 15 | 9 | 0.0391 | 0.00369 | 0.589 | -1.257 | В | ca | | 50 | 1s3d-1s4f | 3D – 3F° | [4671.8] | 561245 | 582644 | 15 | 21 | 2.21 | 1.01 | 234 | 1.182 | В | ca | | 51 | 1s3d — 1s5f | ³D-3F° | [3195.8] | 561245 | 592527 | 15 | 21 | 0.739 | 0.158 | 25.0 | 0.376 | В | ca | | 52 | 1s3d — 1s6f | ³D−3F° | [2728.4] | 561245 | 597886 | 15 | 21 | 0.339 | 0.0530 | 7.14 | -0.100 | В | ca | | | | I | | | | l | | | | | | <u> </u> | + | ## BERYLLIUM ### BeI **Ground State** $1s^22s^2$ 1S_0 Ionization Potential $9.320 \text{ eV} = 75192.29 \text{ cm}^{-1}$ ### **Allowed Transitions** The results taken from Weiss' self-consistent field calculations [1] are estimated to be accurate to 10-25 percent because of the good agreement between the dipole length and velocity approximations and because of the inclusion of configuration interaction. The average of the two approximations is adopted [1]. For the resonance line the adopted value is within 10 percent of the result of calculations of Bolotin and Yutsis [2], who include configuration interaction in a more limited way. The Coulomb approximation, employed for the other transitions, is not considered to be very reliable here since the lower state has the same principal quantum number as the ground state. ### References - [1] Weiss, A. W., private communication (1964). - [2] Bolotin, A. B., and Yutsis, A. P., Zhur. Eksptl. i Teoret. Fiz. 24, 537-543 (1953) (Translated in "Optical Transition Probabilities," Office of Technical Services, U.S. Department of Commerce, Washington, D.C.). Be I. Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | g_i | g_k | $A_{ki}(10^8~{ m sec^{-1}})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|----------------------|---|----------|-----------------------|-------------------------|-------|-------|------------------------------|----------|----------|--------|---------------|--------| | 1 | $2s^2 - 2s2p(^2S)2p$ | ¹ S- ¹ P° (1 uv) | 2348.61 | 0.0 | 42565.3 | 1 | 3 | 5.47 | 1.36 | 10.5 | 0.133 | C + | 1 | | 2 | $2s2p-2p^2$ | ³ P°- ³ P
(2 uv) | 2650.6 | 21980.1 | 59695.8 | 9 | 9 | 4.42 | 0.466 | 36.6 | 0.623 | C + | 1 | | 3 | | ¹P°-¹S | [3455.2] | 42565.3 | 71498.9 | 3 | 1 | 2.21 | 0.132 | 4.50 | -0.403 | С | 1 | | 4 | 2s2p —
2s(2S)3s | ³ P°- ³ S
(1) | 3321.2 | 21980.1 | 52080.9 | 9 | 3 | 0.62 | 0.034 | 3.4 | -0.51 | D | ca | | 5 | ` ´ | ¹ P°- ¹ S (2) | 8254.10 | 42565.3 | 54677.2 | 3 | 1 | 0.38 | 0.13 | 11 | -0.41 | D | ca | | 6 | 2s2p —
2s(2S)3d | ³ P°- ³ D
(3 uv) | 2494.6 | 21980.1 | 62053.6 | 9 | 15 | 1.0 | 0.16 | 12 | 0.15 | D | ca | | 7 | | ¹ P°- ¹ D | 4572.67 | 42565.3 | 64428.2 | 3 | 5 | 0.37 | 0.19 | 8.6 | -0.24 | D | ca | | 8 | 2s2p —
2s(2S)4s | P°-1S
(4) | 4407.91 | 42565.3 | 65245.4 | 3 | 1 | 0.090 | 0.0087 | 0.38 | -1.58 | D | ca | | 9 | 2s2p -
2s(2S)4d | ¹ P°- ¹ D
(5) | 3813.40 | 42565.3 | 68781.2 | 3 | 5 | 0.23 | 0.084 | 3.2 | -0.60 | D | ca | | 10 | $2s2p - 2s(^{2}S)5s$ | ¹ P°- ¹ S
(6) | 3736.28 | 42565.3 | 69322.3 | 3 | 1 | 0.038 | 0.0027 | 0.099 | -2.10 | D | ca | | 11 | 2s2p -
2s(2S)5d | ¹ P°- ¹ D (7) | 3515.54 | 42565.3 | 71002.3 | 3 | 5 | 0.13 | 0.041 | 1.4 | -0.91 | D | ca | Naqvi's calculations [1] are the only available source. The results for the ${}^3P^{\circ}-{}^3P^{\circ}$ transitions are essentially independent of the choice of the interaction parameters. For the ${}^3P^{\circ}-{}^1P^{\circ}$ transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included. ### Reference [1] Naqvi, A. M., Thesis Harvard (1951). Beil. Forbidden Transitions | No. | Transition Array | Multiplet | $\lambda(\mathring{A})$ | $E_i(cm^{-1})$ | $E_k(cm^{-1})$ | gi | gk | Type of
Transi-
tion | $A_{ki}({ m sec}^{-1})$ | S(at.u.) | Accu-
racy | Source | |-----|--------------------|----------------------------------|--|-------------------------------|-------------------------------|-------------|-------------|----------------------------|--|---|---------------|-------------| | 1 | $2s2p - 2s(^2S)2p$ | ³ P°- ³ P° | $[14.7 \times 10^7]$
$[42.6 \times 10^6]$ | 21978.25
21979.93 | 21979.93
21981.28 | 1 3 | 3
5 | m
m | $5.66 \times 10^{-12} \\ 1.74 \times 10^{-10}$ | 2.00
2.50 | B
B | 1
1 | | 2 | | 3P°-1P° | [4856.1]
[4856.5]
[4856.8] | 21978.3
21979.9
21981.3 | 42565.3
42565.3
42565.3 | 1
3
5 | 3
3
3 | m
m
m | $\begin{array}{c} 9.6 \times 10^{-7} \\ 0.0092 \\ 1.19 \times 10^{-6} \end{array}$ | 1.22×10^{-8} 1.17×10^{-4} 1.52×10^{-8} | C
C
C | 1
1
1 | ### Be II **Ground State** 1s22s 2S1/2 **Ionization Potential** $18.206 \text{ eV} = 146881.7 \text{ cm}^{-1}$ ### **Allowed Transitions** The values taken from Weiss' calculations [1] are estimated to be accurate to within 10 percent because of the very close agreement between his dipole length and dipole velocity approximations, except for the case of the 3p-3d transition where somewhat larger divergencies occur. The values calculated with the dipole length approximation are adopted. ### Reference [1] Weiss, A. W., Astrophys. J. 138, 1262-1276 (1963). **Be II.** Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8 { m sec}^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|--|---------|-------------------------|-------------------------|----|-------|------------------------------|--------|----------|--------|---------------|--------| | 1 | 2s-2p | ² S- ² P° (1) | 3130.6 | 0.0 | 31933.2 | 2 | 6 | 1.15 | 0.505 | 10.4 | 0.004 | A | 1 | | 2 | 2s-3p | ² S - ² P°
(1 uv) | 1036.27 | 0.0 | 96497.6 | 2 | 6 | 1.66 | 0.0804 | 0.549 | -0.794 | В | ,1 | | 3 | 2p-3s | ² P°- ² S
(3 uv) | 1776.2 | 31933.2 | 88231.2 | 6 | 2 | 4.22 | 0.0665 | 2.33 | -0.399 | B+ | 1 | | 4 | 2p-3d | ² P°- ² D
(4 uv) | 1512.4 | 31933.2 | 98053.2 | 6 | 10 | 11.4 | 0.652 | 19.5 | 0.592 | B+ | 1 | | 5 | 3s-3p | 2S −2P° | 12094 | 88231.2 | 96497.6 | 2 | 6 | 0.128 | 0.839 | 66.8 | 0.225 | В | 1 | | 6 | 3s-4p | ² S - ² P° (2) | 3274.64 | 88231.2 | 118760 | 2 | 6 | 0.143 | 0.0691 | 1.49 | -0.860 | В | ca | | 7 | 3p-4s | ² P°- ² S (3) | 5270.7 | 96497.6 | 115465 | 6 | 2 | 0.969 | 0.134 | 14.0 | -0.093 | В | ca | | 8 | 3p-5s | ² P°- ² S (5) | 3247.7 | 96497.6 | 127336 | 6 | 2 | 0.410 | 0.0216 | 1.38 | -0.888 | В | ca | | 9 | 3p-3d | ²P°−²D | 64266 | 96497.6 | 98053.2 | 6 | 10 | 7.83×10 ⁻⁴ | 0.0808 | 103 | -0.314 | В | 1 | | 10 | 3p-4d | ² P°- ² D
(4) | 4360.9 | 96497.6 | 119422 | 6 | 10 | 1.09 | 0.519 | 44.7 | 0.493 | Ŕ | ca | | 11 | 3d-4f | ² D - ² F° (6) | 4673.46 | 98053.2 | 119445 | 10 | 14 | 2.21 | 1.01 | 156 | 1.006 | В | ca | ## BeIII Ground State $1s^2 {}^1S_0$ Ionization Potential $153.850 \text{ eV} = 1241255 \text{ cm}^{-1}$ ## **Allowed Transitions** The results of extensive non-relativistic variational calculations by Weiss [1] are chosen. Values have been calculated in both the dipole length and dipole velocity approximations and agree to within 1 percent, except for the 3p $^1P^{\circ}-3d$ 1D transition where agreement is not as good. The average of the two approximations is adopted [1]. ### Reference [1] Weiss, A. W., private communication (1964). BeIII. Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gk | $A_{ki}(10^8 { m sec}^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|---------------------------------|-----------|-----------------------|-----------------------|----|----|------------------------------|----------|----------|--------|---------------|--------| | | | | | | | | | | | | | | | | 1 | $1s^2 - 1s2p$ | ¹ S- ¹ P° | [100.25] | 0 | 997466 | 1 | 3 | 1220 | 0.552 | 0.182 | -0.258 | A | 1 | | 2 | $1s^2-1s3p$ | 1S-1P° | [88.314] | 0 | 1132323 | 1 | 3 | 362 | 0.127 | 0.0369 | -0.896 | A | 1 | | 3 | 1s2s - 1s2p | ¹ S- ¹ P° | [6141.2] | 981187 | 997466 | 1 | 3 | 0.0877 | 0.149 | 3.02 | -0.827 | A | 1 | | 4 | 1s2s-1s3p | ¹S−¹P° | [398.19] | 981187 | 1132323 | 1 | 3 | 42.8 | 0.305 | 0.400 | -0.516 | A | 1 | | 5 | 1s2p - 1s3d | ¹P°_¹D | [746.70] | 997466 | [1131389] | 3 | 5 | 51.0 |
0.711 | 5.24 | 0.329 | A | l | | 6 | 1s3d-1s3p | ¹ D- ¹ P° | [107000]? | [1131389] | 1132323 | 5 | 3 | $1.32 imes10^{-4}$ | 0.0136 | 24.0 | -1.168 | C+ | 1 | | 7 | 1s2s-1s2p | 3S-3P° | [3721.8] | [956496] | [983357] | 3 | 9 | 0.342 | 0.213 | 7.83 | -0.195 | A | I | | 8 | 1s2s-1s3p | 3S-3P° | [583.01] | [956496] | [1128020] | 3 | 9 | 16.5 | 0.252 | 1.45 | -0.122 | A | 1 | | 9 | 1s2p-1s3d | ³P°-3D | [675.66] | [983357] | [1131360] | 9 | 15 | 56.1 | 0.640 | 12.8 | 0.760 | A | 1 | | 10 | 1s3p - 1s3d | ³P°-3D | [29930]? | [1128020] | [1131360] | 9 | 15 | 0.00318 | 0.0712 | 63.1 | -0.193 | A | 1 | ## **BORON** $\mathbf{B}\mathbf{I}$ **Ground State** $1s^22s^22p \ ^2{\rm P}^{\circ}_{1/2}$ **Ionization Potential** $8.296 \text{ eV} = 66930 \text{ cm}^{-1}$ ## **Allowed Transitions** The values for the $2s^22p - 2s2p^2$ ($^2P^\circ - ^2D$, 2S , 2P) transitions are taken from the calculations of Bolotin and Yutsis [1], who employ analytical one-electron wave functions. Self-consistent field calculations of Tsiunaitis and Yutsis [2] have been adopted for the 2p $^2P^\circ - 3s$ 2S transition. Since both determinations take into account the important effects of configuration interaction only in a limited way, large uncertainties are expected. ### References [2] Tsiunaitis, G. K., and Yutsis, A. P., Soviet Phys. -JETP 1, 358-363 (1955). ^[1] Bolotin, A. B., and Yutsis, A. P., Zhur. Eksptl. i Teoret. Fiz. 24, 537-543 (1953) (Translated in "Optical Transition Probabilities," Office of Technical Services, U.S. Department of Commerce, Washington, D.C.). **BI.** Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(10^8 { m sec}^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|---|--|-------------------------|----------------------------------|------------------|------------------|------------------------------|------------------------------|-------------------------|------------------------------|------------------|----------------| | 1 | $2s^22p - 2s2p^2$ | $^{2}P^{\circ}-^{2}D$ (2 uv) | 2089.3 | 10 | 47857 | 6 | 10 | 2.2 | 0.24 | 9.7 | 0.15 | Е | 1 | | į | | (= 4.) | 2089.57
2088.84
[2089.6] | 15
0
15 | 47857
47857
47857 | 4
2
4 | 6
4
4 | 2.1
1.8
0.36 | $0.21 \\ 0.23 \\ 0.024$ | 5.8
3.2
0.65 | -0.07 -0.33 -1.02 | E
E
E | ls
ls
ls | | 2 | ' | 2P°-2S | 1573.5 | 10 | 63561 | 6 | 2 | 13 | 0.16 | 5.1 | -0.01 | E | 1 | | | | | [1573.7]
[1573.3] | 15
0 | 63561
63561 | 4 2 | 2
2 | 8.8
4.4 | 0.16
0.16 | 3.4
1.7 | -0.18 -0.48 | E
E | ls
ls | | 3 | | ² P° – ² P | 1378.7 | 10 | 72543 | 6 | 6 | 23 | 0.66 | 18 | 0.60 | E | 1 | | | | | [1378.7]
[1378.6]
[1378.9]
[1378.4] | 15
0
15
0 | 72547
72535
72535
72547 | 4
2
4
2 | 4
2
2
4 | 19
15
7.7
3.9 | 0.55
0.44
0.11
0.22 | 10
4.0
2.0
2.0 | 0.34 -0.05 -0.36 -0.36 | E
E
E
E | ls
ls
ls | | 4 | $2p - (^{1}S)3s$ | ² P°- ² S
(1 uv) | 2497.4 | 10 | 40040 | 6 | 2 | 3.6 | 0.11 | 5.5 | -0.17 | D | 2 | | | | | 2497.72
2496.77 | 15
0 | 40040
40040 | 4 2 | 2 2 | 2.4
1.2 | 0.11
0.11 | 3.7
1.8 | -0.35 -0.66 | D
D | ls
ls | | 5 | $3s - (^{1}S)3p$ | ² S - ² P° | 11661 | 40040 | 48613 | 2 | 6 | 0.174 | 1.07 | 82 | 0.330 | С | ca | | | | | 11660
11662 | 40040
40040 | 48613
48612 | $\frac{2}{2}$ | 4 2 | 0.174
0.174 | 0.71
0.355 | 54
27.2 | $0.152 \\ -0.149$ | C | ls
ls | | 6 | $3p - (^{1}S)3d$ | 2P°−2D | 16243 | 48613 | 54768 | 6 | 10 | 0.138 | 0.90 | 291 | 0.73 | С | ca | | | | | 16245
16240
16245 | 48613
48612
48613 | 54768
54768
54768 | 4
2
4 | 6
4
4 | $0.138 \\ 0.115 \\ 0.0230$ | 0.82
0.91
0.091 | 175
97
19.4 | 0.51
0.259
0.440 | | ls
ls
ls | | 7 | $3p - (^{1}S)4s$ | ²P°−2S | 15628 | 48613 | 55010 | 6 | 2 | 0.154 | 0.188 | 58 | 0.052 | C | ca | | | | | 15629
15625 | 48613
48612 | 55010
55010 | 4 2 | 2 2 | 0.103
0.051 | 0.188
0.188 | 38.8
19.4 | -0.123 -0.424 | | ls
ls | | 8 | $3p - (^{1}S)5s$ | ² P°- ² S | 8668.1 | 48613 | 60146 | 6 | 2 | 0.0486 | 0.0182 | 3.12 | -0.96 | С | ca | | | | | 8668.6
8667.2 | 48613
48612 | 60146
60146 | 4 2 | 2
2 | 0.0324
0.0162 | 0.0182
0.0182 | 2.08
1.04 | -1.137
-1.438 | C | ls
ls | Naqvi's calculation [1] of the one possible transition in the ground state configuration 2p is the only available source. The line strength should be quite accurate, since it does not sensitively depend on the choice of the interaction parameters. ### Reference [1] Naqvi, A. M., Thesis Harvard (1951). ## BI. Forbidden Transitions | No. T | ransition Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | g_i | g_k | Type of
Transi-
tion | $A_{ki}(\sec^{-1})$ | S(at.u.) | Accu-
racy | Source | |-------|-----------------|----------------------------------|----------------------|-----------------------|-------------------------|-------|-------|----------------------------|-----------------------|----------|---------------|--------| | 1 | 2p-2p | ² P°- ² P° | $[66.0 \times 10^5]$ | 0 | 15.15 | 2 | 4 | m | 3.15×10^{-8} | 1.33 | С | 1 | Ground State 1s²2s² ¹S₀ Ionization Potential $25.149 \text{ eV} = 202895 \text{ cm}^{-1}$ ### **Allowed Transitions** Except for the 2s3d $^3D-2s4f$ 3F $^\circ$ transition, for which a Coulomb approximation is employed, the values are taken from Weiss' self-consistent field calculations [1]. The length and velocity approximations disagree noticeably—for the 2s2p 1P $^\circ-2p^2$ 1D transition by as much as a factor of three. The average of the two approximations is adopted [1]. Accuracies within 50 percent are indicated by the following comparison: Weiss [1] has undertaken refined calculations, including configuration interaction, for the same transitions in Be I—the first member of this isoelectronic sequence—in addition to calculations of the type done for this ion. In all cases the agreement with the average of the dipole length and velocity approximations is close. ### Reference [1] Weiss, A. W., private communication (1964). **BII.** Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(10^8~{ m sec^{-1}})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|---|--|---|--|-----------------------|----------------------------|--|---|--|--------------------------------------|-----------------------|----------------------------| | 1 | $2s^2 - 2s(^2S)2p$ | ¹ S- ¹ P° (1 uv) | 1362.46 | 0.0 | 73396.7 | 1 | 3 | 13 | 1.1 | 4.9 | 0.04 | D | 1 | | 2 | $2s2p-2p^2$ | ³ P°- ³ P
(3 uv) | [1624.0] | [37350.9] | [98925.5] | 9 | 9 | 8.4 | 0.33 | 16 | 0.48 | D | 1 | | | | | 1623.99
1623.99
1624.37
[1624.2]
1623.57
[1623.8] | [37356.4]
[37340.0]
[37356.4]
[37340.0]
[37340.0] | [98932.7]
[98918.7]
[98918.7]
[98910.3]
[98932.7]
[98918.7] | 5
3
5
3
1 | 5
3
3
1
5
3 | 6.3
2.0
3.5
8.5
2.1
2.8 | $\begin{array}{c} 0.25 \\ 0.081 \\ 0.082 \\ 0.11 \\ 0.14 \\ 0.34 \end{array}$ | 6.7
1.3
2.2
1.8
2.2
1.8 | 0.10 -0.61 -0.39 -0.47 -0.39 | D
D
D
D
D | ls
ls
ls
ls
ls | | 3 | | ¹ P°- ¹ D
(1) | 3451.41 | 73396.7 | 102362 | 3 | 5 | 2.2 | 0.65 | 22 | 0.29 | E | 1 | | 4 | | ¹P°-¹S | [1842.8] | 73396.7 | 127662 | 3 | 1 | 6.8 | 0.12 | 2.1 | -0.46 | D | 1 | | 5 | 2s3d —
2s(2S)4f | ³ D− ³ F° (2) | 4121.95 | [150649] | [174903] | 15 | 21 | 2.55 | 0.91 | 185 | 1.135 | С | ca | ### Forbidden Transitions Naqvi's calculations [1] are the only available source. The results for the ³P°-³P° transitions are essentially independent of the choice of the interaction parameters. For the ³P°-¹P° transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included. #### Reference ^[1] Nagvi, A. M., Thesis Harvard (1951). ## BII. Forbidden Transitions | No. | Transition Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g_k | Type of
Transi-
tion | $A_{ki}(\mathrm{sec}^{-1})$ | S(at.u.) | Accu-
racy | Source | |-----|--------------------|-----------|---|-------------------------------------|-------------------------------|-------|-------|----------------------------|--|---|---------------|-------------| | 1 | $2s2p - 2s(^2S)2p$ | 3P°_3P° | $[15.6 \times 10^{6}]$ $[61.0 \times 10^{5}]$ | [37333.6]
[37340.0] | [37340.0]
[37356.4] | | 3 5 | m
m | 4.74×10^{-9}
5.94×10^{-8} | 2.00
2.50 | C
B | 1 | | 2 | | 3P°_1P° | [2772.1]
[2772.5]
[2773.9] | [37333.6]
[37340.0]
[37356.4] | 73396.7
73396.7
73396.7 | 1 3 5 | 3 3 3 | m
m
m | $\begin{vmatrix} 8.5 \times 10^{-5} \\ 0.201 \\ 1.07 \times 10^{-4} \end{vmatrix}$ | $ \begin{vmatrix} 2.02 \times 10^{-7} \\ 4.77 \times 10^{-4} \\ 2.53 \times 10^{-7} \end{vmatrix} $ | C
C
C | 1
1
1 | ### BIII **Ground State** $1s^2 2s \, ^2S_{1/2}$ **Ionization Potential** $37.920 \text{ eV} =
305931.1 \text{ cm}^{-1}$ ### **Allowed Transitions** The values taken from Weiss' calculations [1] are estimated to be accurate to within 10 percent because of the very close agreement between his dipole length and dipole velocity approximations, except for the case of the 3p-3d transition where somewhat larger divergencies occur. The values calculated with the dipole length approximation are adopted. #### Reference [1] Weiss, A. W., Astrophys. J. 138, 1262-1276 (1963). **BIII.** Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8 { m sec}^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|-------------------------------------|---------|-------------------------|-------------------------|----|-------|------------------------------|----------|----------|--------|---------------|--------| | 1 | 2s-2p | ² S – ² P° | 2066.3 | 0.0 | 48381.2 | 2 | 6 | 1.91 | 0.366 | 4.98 | -0.136 | A | 1 | | 2 | 2s-3p | 2S-2P° | 518.25 | 0.0 | 192956 | 2 | 6 | 12.5 | 0.151 | 0.515 | -0.520 | В | 1 | | 3 | 2p-3s | ²P°−2S | 758.60 | 48381.2 | 180202 | 6 | 2 | 16.3 | 0.0470 | 0.704 | -0.550 | B+ | 1 | | 4 | 2p-3d | ²P°−²D | 677.09 | 48381.2 | 196071 | 6 | 10 | 56.8 | 0.651 | 8.71 | 0.592 | B+ | 1 | | 5 | 3s-3p | ² S − ² P° | 7838.5 | 180202 | 192956 | 2 | 6 | 0.222 | 0.614 | 31.7 | 0.089 | В | 1 | | 6 | 3p-3d | ²P°−²D | 32094 | 192956 | 196071 | 6 | 10 | 0.00279 | 0.0719 | 45.6 | -0.365 | В | 1 | | 7 | 4p-5d | ² P°- ² D (1) | 4243.60 | 242832 | 266390 | 6 | 10 | 1.11 | 0.501 | 42.0 | 0.478 | В | ca | | 8 | 4d-5f | ² D− ² F° (2) | 4487.46 | 244139 | 266417 | 10 | 14 | 2.10 | 0.887 | 131 | 0.948 | В | ca | $1s^2 \, {}^1S_0$ Ionization Potential $259.298 \text{ eV} = 2091960 \text{ cm}^{-1}$ ## **Allowed Transitions** The results of extensive non-relativistic variational calculations by Weiss [1] are chosen. Values have been calculated in both the dipole length and dipole velocity approximations and agree to within 1 percent, except for the $3p^1P^\circ-3d^1D$ transition, where agreement is not as good. The average of the two approximations is adopted [1]. ### Reference [1] Weiss, A. W., private communication (1964). BIV. Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gĸ | $A_{ki}(10^8~{ m sec^{-1}})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|----------------------------------|----------|-------------------------|-------------------------|----|----|------------------------------|----------|----------|--------|---------------|--------| | 1 | $1s^2 - 1s2p$ | ¹S−¹P° | [60.313] | 0 | 1658020 | l | 3 | 3720 | 0.609 | 0.121 | -0.215 | A | 1 | | 2 | $1s^2 - 1s3p$ | ¹ S - ¹ P° | [52.682] | 0 | 1898180 | 1 | 3 | 1080 | 0.135 | 0.0234 | -0.870 | A | 1 | | 3 | 1s2s-1s2p | ¹ S - ¹ P° | [4499.4] | [1635801] | 1658020 | 1 | 3 | 0.125 | 0.114 | 1.69 | -0.943 | A | 1 | | 4 | 1s2s - 1s3p | 1S-1P° | [381.13] | [1635801] | 1898180 | 1 | 3 | 51.0 | 0.333 | 0.418 | -0.478 | A | 1 | | 5 | 1s2p - 1s3d | ¹ P°- ¹ D | [418.83] | 1658020 | [1896780] | 3 | 5 | 162 | 0.709 | 2.93 | 0.328 | A | 1 | | 6 | 1s3d - 1s3p | ¹D — ¹P° | [71410]? | [1896780] | 1898180 | 5 | 3 | 2.62×10^{-4} | 0.0120 | 14.1 | -1.222 | C+ | 1 | | | | | | | | | | | | | | | | | 7 | 1s2s-1s2p | ³ S − ³ P° | 2823.4 | 1601505 | 1636913 | 3 | 9 | 0.455 | 0.163 | 4.55 | -0.311 | A | 1 | | 8 | 1s2s-1s3p | ³ S − ³ P° | [344.19] | 1601505 | [1892046] | 3 | 9 | 54.6 | 0.291 | 0.989 | -0.059 | A | 1 | | 9 | 1s2p - 1s3d | 3P°-3D | [385.05] | 1636913 | [1896618] | 9 | 15 | 175 | 0.650 | 7.42 | 0.767 | A | 1 | | 10 | 1s3p-1s3d | 3P°-3D | [21870]? | [1892046] | [1896618] | 9 | 15 | 0.00484 | 0.0578 | 37.5 | -0.284 | A | 1 | # **CARBON** ## $\mathbf{C}\mathbf{I}$ **Ground State** $1s^22s^22p^2$ 3P_0 Ionization Potential $11.264 \text{ eV} = 90878.3 \text{ cm}^{-1}$ ## **Allowed Transitions** ## List of tabulated lines: | | | | | · · · · · · · · · · · · · · · · · · · | | |----------------|---------------|----------------|-------------|---------------------------------------|-----------------| | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | | | | | _ | | | | 945.193 | 4 | 1657.00 | 5
5 | 9078.32 | 29 | | 945.336 | 4 | 1657.37 | 5 | 9088.57 | 29 | | 945,566 | 4 | 1657.89 | 5 | 9094.89 | 29 | | 1260.75 | 13 | 1658.11 | 5 | 9111.85 | 29 | | 1260.9 | 13 | 1751.9 | 20 | 9603.09 | 28 | | 1200.7 | 10 | 1751.5 | 20 | 7000.07 | 20 | | 1260.96 | 13 | 1764 | 24 | 9620.86 | 28 | | 1261.12 | 13 | 1765 | 19 | 9658.49 | 28 | | 1261.4 | 13 | 1930.93 | 6 | 10124 | 42 | | 1261.56 | 13 | 2478.56 | 8 | 10548.0 | 48 | | 1274.13 | 12 | 2582.90 | 7 | 10683.1 | 27 | | 12/4.15 | 12 | 2302.90 | ' ' | 10005.1 | 21 | | 1277.15 | 11 | 2902.1 | 26 | 10685.3 | 27 | | 1277.27 | 11 | 2903.1 | 26 | 10691.2 | 27 | | 1277.4 | ii | 2904.9 | 26 | 10707.3 | 27 | | 1277.62 | ii | 2964.85 | 1 1 | 10729.5 | $\overline{27}$ | | 1277.77 | 11 | 2967.22 | l î l | 10754.0 | 27 | | 1277.77 | 11 | 2901.22 | 1 | 10134.0 | 2. | | 1277.8 | 11 | 4268.99 | 39 | 11330.3 | 30 | | 1279.25 | 10 | 4371.33 | 38 | 11330.4 | 41 | | | 21 | 4762.41 | 34 | 11602.9 | 44 | | 1279.90 | | | 34 | 11602.9 | 44 | | 1280.15 | 21 | 4766.62 | | | 44 | | 1280.34 | 21 | 4770.00 | 34 | 11619.0 | 44 | | 1280.65 | 21 | 4771.72 | 34 | 11631.6 | 44 | | 1280.89 | 21 | 4775.87 | 34 | 11638.6 | 44 | | | | 4812.84 | 33 | 11653 | 45 | | 1328.82 | 3 | | 33 | 11656.0 | 45 | | 1329.10 | 3 | 4817.33 | | | 45 | | 1329.58 | 3 | 4826.73 | 33 | 11667.1 | 40 | | 1364.14 | 25 | 4932.00 | 37 | 11667.1 | 44 | | | 9 | 5039.05 | 32 | 11677.0 | 44 | | 1431.60 | 9 | 5041.66 | 32 | 11747.5 | 43 | | 1432.12 | | | 32 | 11754.0 | 43 | | 1432.54 | 9 | 5044.0 | | | 43 | | 1459.05 | 18 | 5049.6 | 32 | 11778.0 | 45 | | 1463.33 | 17 | 5052.12 | 36 | 11801.8 | 43 | | | | 5054.5 | 32 | 11820 | 49 | | 1467.45 | 23 | | 35 | 11824 | 43 | | 1469 | 16 | 5380.24 | 40 | 11849.3 | 49 | | 1470.20 | 15 | 5793.51 | | | 49 | | 1472 | 22 | 5794.46 | 40 | 11863.0 | 49 | | 1403 77 |] ,, | 5794.8 | 40 | 11880.4 | 49 | | 1481.77 | 14 | | 40 | 11894.9 | 49 | | 1560.31 | 2 | 5800.33 | 40 | 12551.0 | 46 | | 1560.70 | $\frac{1}{2}$ | 5801.17 | | I F | 46 | | 1561.29 | 2 | 5805.76 | 40 | 12565.0 | 46 | | 1561.3 | 2 | 6587.75 | 50 | 12582.3 | 40 | | | | 0225 10 | 31 | 12602.6 | 46 | | 1561.40 | 2 | 8335.19 | 29 | 12614.8 | 46 | | 1656.26 | 5 | 9061.48 | 29 | 16890 | 47 | | 1656.92 | 5 | 9062.53 | 29 | 10090 | 7' | | | | tl | L | <u> </u> | | The largest part of the data is from emission measurements with stabilized arc sources [2, 5, 6, 7]. In the vacuum ultraviolet, recent measurements by Boldt [2] are given preference over theoretical determinations by Weiss [4] and Bolotin et al. [3], with which the experiment is in marked disagreement (factors of 2-3). At present there are strong indications that the principal source of the disagreement is the relatively crude theoretical treatment of configuration interaction, which is very critical for these transitions. Thus, the theoretical results [3, 4] have been employed only for a few strong transitions for which no experimental data are available. But it should be noted that some experimental values may be quite unreliable due to uncertainties in the identification of the lines. For the higher excited transitions in the visible several experimental investigations are available. Richter's work with a carbon dioxide plasma [6] is regarded as the most advanced one and his results are principally used. However, from an analysis of his method it appears very likely that the absolute scale is shifted due to a demixing effect in the arc source (see general introduction). This is further substantiated by a disagreement with the Coulomb approximation by an almost constant factor. Since the Coulomb approximation has given very reliable results for 3p-3d transitions of atoms of analogous structure, Richter's absolute values are renormalized to give the best agreement with the Coulomb approximation for these latter type transitions. The normalization factor of 1.30 is then applied to all of his other transitions. The work of Maecker [5] and Foster [7], which is used for a few transitions not covered by Richter, is expected to be also subject to demixing effects of the same order of magnitude or higher, since these authors have used more complicated gas mixtures. Thus, their results have been also fitted to the scale established by the Coulomb approximation. Normalization factors of 2.50 and 1.40 are used, respectively. Finally, two intercombination lines are taken from a recent paper by Garstang [1], who performed intermediate coupling calculations and normalized the values to a scale obtained from the Coulomb approximation. ### References - [1] Garstang, R. H., The Observatory 82, 50-51 (1962). - [2] Boldt, G., Z. Naturforsch. 18a, 1107-1116 (1963). - [3] Bolotin, A. B., Levinson, I. B., and Levin, L. I., Soviet Phys. JETP 2, 391–395 (1956). - [4] Weiss, A. W., private communication (1964). - [5] Maecker, H., Z. Physik 135, 13-22 (1953). - [6] Richter, J., Z. Physik 151, 114-123 (1958). - [7] Foster, E. W., Proc. Phys. Soc. London A 80, 882-893 (1962). ### CI. Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8~{ m sec^{-1}})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|--|--------------------|-----------------------|-----------------------|--------|--------|------------------------------|--|--|----------------|---------------|---| | 1 | $2s^22p^2 - 2s2p^3$ | ³ P - ⁵ S° (1 uv) | | | 22-25 | _ | _ | | | |
| _ | | | 1 | | | 2967.22
2964.85 | 44
16 | 33735
33735 | 5
3 | 5
5 | | 3.2×10^{-8}
1.8×10^{-8} | 1.6×10^{-6}
5.3×10^{-7} | | E
E | $\begin{array}{ c c } & 1 \\ & 1 \end{array}$ | | 2 | | ³ P - ³ D°
(3 uv) | 1561.0 | 30 | 64091 | 9 | 15 | 1.5 | 0.091 | 4.2 | -0.09 | D | 2 | | \ | | (= 1., | 1561.40 | 44 | 64089 | 5 | 7 | 1.5 | 0.078 | 2.0 | -0.41 | D | ls | | | | | 1560.70 | 16 | 64093 | 3 | 5 | 1.1 | 0.065 | 1.0 | -0.71 | D | ls | | | | | 1560.31 | 0 | 64092 | 1 | 3 | 0.84 | 0.091 | 0.47 | -1.04 | D | ls | | 1 | 1 | | 1561.29 | 44 | 64093 | 5 | 5 | 0.37 | 0.014 | 0.35 | -1.67 | D | ls | | 1 | | | 1560.70 | 16 | 64092 | 3 | 3 | 0.62 | 0.023 | 0.35 | -1.67
-2.35 | D | ls | | ı | | İ | [1561.3] | 44 | 64092 | 5 | 3 | 0.041 | 8.9×10^{-4} | 0.023 | - 2.33 | D | ls | # $\textbf{C}|\textbf{I.} \quad \textbf{Allowed Transitions} - \textbf{Continued}$ | _ | · · · · · · · · · · · · · · · · · · · | | | | T | | | · · · · · · · · · · · · · · · · · · · | | | | | | |-----|---|--|--|---------------------------------|--|----------------------------|----------------------------|---|---|---|---|-----------------------|----------------------------| | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{kl}(10^8{ m sec}^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | | 3 | | 3P-3P° | 1329.3 | 30 | 75256 | 9 | 9 | 1.4 | 0.038 | 1.5 | -0.47 | D | 2 | | | | (4 uv) | 1329.58
1329.10
1329.58
1329.10
1329.10
1328.82 | 44
16
44
16
16 | 75256
75256
75256
75256
75256
75256 | 5
3
5
3
1 | 5
3
1
5
3 | 1.1
0.37
0.60
1.5
0.36
0.49 | 0.029
0.0099
0.0096
0.013
0.016
0.039 | 0.63
0.13
0.21
0.17
0.21
0.17 | $\begin{array}{c} -0.84 \\ -1.53 \\ -1.32 \\ -1.41 \\ -1.32 \\ -1.41 \end{array}$ | D
D
D
D
D | ls
ls
ls
ls
ls | | 4 | | 3P_3S° | 945.44 | 30 | 105801 | 9 | 3 | 61 | 0.27 | 7.6 | 0.39 | E | 3 | | | | (31 uv) | 945.566
945.336
945.193 | 44
16
0 | 105801
105801
105801 | 5
3
1 | 3
3
3 | 34
20
6.7 | 0.27
0.27
0.27 | 4.2
2.5
0.84 | $ \begin{array}{r} 0.13 \\ -0.10 \\ -0.57 \end{array} $ | E
E
E | ls
ls
ls | | 5 | $2p^2 - 2p(^2P^\circ)3s$ | ³ P- ³ P°
(2 uv) | 1657.2 | 30 | 60374 | 9 | 9 | 4.1 | 0.17 | 8.3 | 0.18 | D | 2 | | | - p(1)00 | (2 41) | 1657.00
1657.37
1658.11
1657.89
1656.26
1656.92 | 44
16
44
16
16 | 60394
60353
60353
60334
60394
60353 | 5
3
5
3
1 | 5
3
3
1
5
3 | 3.1
1.0
1.8
4.1
1.1
1.4 | 0.13
0.042
0.044
0.056
0.073
0.17 | 3.5
0.69
1.2
0.92
1.2
0.92 | $\begin{array}{c} -0.19 \\ -0.90 \\ -0.66 \\ -0.77 \\ -0.66 \\ -0.77 \end{array}$ | D D D D D D | ls
ls
ls
ls
ls | | 6 | | ¹ D- ¹ P° (33 uv) | 1930.93 | 10194 | 61982 | 5 | 3 | 2.4 | 0.082 | 2.6 | -0.39 | E | 4 | | 7 | | ¹ S- ³ P° (60 uv) | 2582.90 | 21648 | 60353 | 1 | 3 | 8.6×10^{-5} | 2.6×10^{-5} | 2.2×10^{-4} | -4.59 | D | 5n | | 8 | | ¹ S- ¹ P°
(61 uv) | 2478.56 | 21648 | 61982 | 1 | 3 | 0.34 | 0.094 | 0.77 | -1.03 | E | 4 | | 9 | $\begin{vmatrix} 2s2p^3 - \\ 2s2p^2(^4P)3s \end{vmatrix}$ | ⁵ S°- ⁵ P
(65 uv) | 1431.9 | 33735 | 103570 | 5 | 15 | 1.4 | 0.13 | 3.1 | -0.19 | D | 2 | | | 232p (1)03 | (05 47) | 1431.60
1432.12
1432.54 | 33735
33735
33735 | 103587
103563
103542 | 5
5
5 | 7
5
3 | 1.5
1.4
1.3 | 0.064
0.043
0.024 | 1.5
1.0
0.57 | $ \begin{vmatrix} -0.49 \\ -0.67 \\ -0.92 \end{vmatrix} $ | D
D
D | 2
2
2 | | 10 | $\begin{array}{c} 2p^2 - \\ 2p(^2P^\circ)3d \end{array}$ | ³ P_ ³ F° (6 uv) | 1279.25 | 44 | 78216 | 5 | 7 | 0.11 | 0.0038 | 0.080 | -1.72 | D | 2 | | 11 | | ³P-3D° | 1277.5 | 30 | 78310 | 9 | 15 | 1.6 | 0.063 | 2.4 | -0.24 | D | 2 | | | | (7 uv) | 1277.62
1277.27
1277.15
1277.77
[1277.4]
[1277.8] | 44
16
0
44
16
44 | 78316
78307
78301
78307
78301
78301 | 5
3
1
5
3
5 | 7
5
3
5
3
3 | 1.5
1.2
0.88
0.39
0.65
0.042 | $ \begin{array}{c} 0.052 \\ 0.048 \\ 0.064 \\ 0.0095 \\ 0.016 \\ 6.2 \times 10^{-4} \end{array} $ | 1.1
0.60
0.27
0.20
0.20
0.013 | $\begin{array}{c} -0.58 \\ -0.85 \\ -1.19 \\ -1.32 \\ -1.32 \\ -2.51 \end{array}$ | D
D
D
D
D | ls
ls
ls
ls
ls | | 12 | | ³ P- ¹ F° (8 uv) | | i. | | | | | | | | | | | | | (0 01) | 1274.13 | 44 | 78531 | 5 | 7 | 0.0068 | 2.3×10^{-4} | | -2.94 | D | 2 | | 13 | | ³ P- ³ P°
(9 uv) | 1261.3 | 30 | 79315 | 9 | 9 | 1.2 | 0.029 | 1.1 | -0.58 | D | 2 | | | | | 1261.56
1260.96
[1261.4]
[1260.9]
1261.12
1260.75 | 44
16
44
16
16
0 | 79311
79319
79319
79323
79311
79319 | 5
3
5
3
1 | 5
3
1
5
3 | 0.93
0.31
0.50
1.2
0.30
0.40 | 0.022
0.0074
0.0072
0.0096
0.012
0.029 | 0.46
0.092
0.15
0.12
0.15
0.12 | $\begin{array}{c} -0.96 \\ -1.65 \\ -1.44 \\ -1.54 \\ -1.54 \\ -1.54 \end{array}$ | D
D
D
D | ls
ls
ls
ls
ls | ## CI. Allowed Transitions - Continued | No | . Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8~{ m sec}^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |----|--|---|--|--|--|----------------------------|-----------------------|--|--|---|---|-----------------------|----------------------------| | 14 | | ¹ D- ¹ D° (34 uv) | 1481.77 | 10194 | 77681 | 5 | 5 | 0.33 | 0.011 | 0.27 | -1.26 | D | 2 | | 15 | | ¹ D- ³ F° (35 uv) | 1470.20 | 10194 | 78216 | 5 | 7 | 0.0088 | 4.0×10^{-4} | 0.0097 | -2.70 | D | 2 | | 16 | | ¹D-3D° | 1469 | 10194 | 78301 | 5 | 3 | 0.019 | 3.6×10^{-4} | 0.0087 | -2.74 | D | 2 | | 17 | | ¹ D- ¹ F°
(37 uv) | 1463.33 | 10194 | 78531 | 5 | 7 | 2.1 | 0.093 | 2.2 | -0.33 | D | 2 | | 18 | | ¹ D- ¹ P° (38 uv) | 1459.05 | 10194 | 78728 | 5 | 3 | 0.37 | 0.0070 | 0.17 | -1.46 | D | 2 | | 19 | | ¹ S- ³ D° | 1765 | 21648 | 78301 | 1 | 3 | 0.0071 | 0.0010 | 0.0058 | -3.00 | D | 2 | | 20 | | ¹ S - ¹ P° (62 uv) | 1751.9 | 21648 | 78728 | 1 | 3 | 0.87 | 0.12 | 0.69 | -0.92 | D | 2 | | 21 | $\begin{vmatrix} 2p^2 - \\ 2p(^2P^\circ)4s \end{vmatrix}$ | ³ P- ³ P°
(5 uv) | 1280.4 | 30 | 78133 | 9 | 9 | 0.82 | 0.020 | 0.76 | -0.74 | D | 2 | | | | | 1280.34
1280.34
1280.89
1280.65
1279.90
1280.15 | 44
16
44
16
16 | 78148
78117
78117
78105
78148
78117 | 5
3
5
3
3
1 | 5
3
1
5
3 | 0.62
0.20
0.35
0.81
0.21
0.27 | 0.015
0.0050
0.0052
0.0066
0.0087
0.020 | 0.32
0.063
0.11
0.084
0.11
0.084 | $ \begin{array}{r} -1.12 \\ -1.83 \\ -1.58 \\ -1.70 \\ -1.58 \\ -1.70 \end{array} $ | D
D
D
D
D | ls
ls
ls
ls
ls | | 22 | | ¹D−³P° | 1472 | 10194 | 78117 | 5 | 3 | 0.0051 | 1.0×10^{-4} | 0.0024 | - 3.30 | D | 2 | | 23 | | ¹ D- ¹ P°
(36 uv) | 1467.45 | 10194 | 78338 | 5 | 3 | 0.46 | 0.0089 | 0.21 | -1.35 | D | 2 | | 24 | | ¹ S- ¹ P° | 1764 | 21648 | 78338 | 1 | 3 | 0.022 | 0.0031 | 0.018 | -2.51 | D | 2 | | 25 | $\begin{bmatrix} 2p^2 - \\ 2p(^2P^\circ)4d \end{bmatrix}$ | ¹ D – ¹ D°
(39 uv) | 1364.14 | 10194 | 83500 | 5 | 5 | 0.047 | 0.0013 | 0.029 | -2.19 | D | 2 | | 26 | $2s^22p3p - 2s2p^3$ | ³ P - ³ S° | 2903.9 | 71375 | 105801 | 9 | 3 | 0.044 | 0.0019 | 0.16 | -1.78 | D | 5 <i>n</i> | | | | | [2904.9]
[2903.1]
[2902.1] | 71386
71365
71353 | 105801
105801
105801 | 5
3
1 | 3 3 | 0.022
0.017
0.0066 | 0.0017
0.0021
0.0025 | 0.079
0.061
0.024 | $ \begin{array}{r} -2.08 \\ -2.20 \\ -2.60 \end{array} $ | D
D
D | 5n
5n
5n | | 27 | $ \begin{array}{c c} 2p3s - \\ 2p(^2P^\circ)3p \end{array} $ | ³ P°- ³ D (1) | 10695 | 60374 | 69722 | 9 | 15 | 0.18 | 0.50 | 160 | 0.66 | D | 6 <i>n</i> | | | | ļ | 10691.2
10683.1
10685.3
10729.5
10707.3
10754.0 | 60394
60353
60334
60394
60353
60394 | 69744
69711
69690
69711
69690
69690 | 5
3
1
5
3
5 | 7
5
3
5
3 | 0.18
0.13
0.10
0.043
0.072
0.0048 | 0.43
0.38
0.51
0.074
0.12
0.0050 | 75
40
18
13
13
0.89 | 0.33 0.06 -0.29 -0.43 -0.43 -1.60 | D
D
D
D
D | ls
ls
ls
ls
ls | | 28 | | ³ P°- ³ S (2) | 9640.6 | 60374 | 70744 | 9 | 3 | 0.22 | 0.10 | 29 | -0.04 | D | 6n | | | | (-7 | 9658.49
9620.86
9603.09 | 60394
60353
60334 | 70744
70744
70744 | 5
3
1 | 3
3
3 | 0.12
0.074
0.024 | 0.10
0.10
0.10 | 16
9.7
3.2 | $ \begin{array}{c c} -0.30 \\ -0.51 \\ -0.99 \end{array} $ | D
D
D | ls
ls
ls | ## Ca. Allowed Transitions - Continued | No. |
Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(10^8~{ m sec^{-1}})$ | f_{ik} | S(at.u.) | $\log gf$ | Accu-
racy | Source | |-----|---|---|----------|-------------------------|-------------------------|----|----|------------------------------|----------------------|----------|----------------|---------------|------------| | 29 | | 3P°_3P | 9087.6 | 60374 | 71375 | 9 | 9 | 0.25 | 0.31 | 83 | 0.44 | D | 6 <i>n</i> | | | r | (3) | 9094.89 | 60394 | 71386 | 5 | 5 | 0.19 | 0.23 | 35 | 0.07 | D | ls | | | } | l | 9078.32 | 60353 | 71365 | 3 | 3 | 0.19 | 0.23 | 6.9 | -0.64 | D | | | | | Ì | 9111.85 | 60394 | 71365 | 5 | 3 | 0.002 | 0.080 | 12 | -0.40 | | ls | | | | | 9088.57 | 60353 | 71353 | 3 | 1 | 0.11 | 0.10 | 9.2 | -0.51 | D | ls | | | | | 9061.48 | 60353 | 71386 | 3 | 5 | 0.25 | 0.10 | 12 | -0.40 | D | ls | | | | | 9062.53 | 60334 | 71365 | 1 | 3 | 0.083 | 0.31 | 9.2 | -0.51 | D | ls
ls | | 30 | | ¹ P°- ¹ D (9) | 11330.3 | 61982 | 72611 | 3 | 5 | 0.13 | 0.42 | 47 | 0.10 | D | 6 <i>n</i> | | 31 | | ¹ P°- ¹ S
(10) | 8335.19 | 61982 | 73976 | 3 | 1 | 0.32 | 0.11 | 9.1 | -0.48 | D | 6 <i>n</i> | | 32 | $\begin{vmatrix} 2p3s - \\ 2p(^2P^\circ)4p \end{vmatrix}$ | ³ P°- ³ D (4) | 5041.7 | 60374 | 80203 | 9 | 15 | 0.0039 | 0.0025 | 0.37 | -1.65 | D | 6 <i>n</i> | | | -P(~ /*P | (1) | 5041.66 | 60394 | 80223 | 5 | 7 | 0.0038 | 0.0020 | 0.17 | - 1.99 | D | ls | | | | | 5039.05 | 60353 | 80192 | 3 | 5 | 0.0029 | 0.0020 | 0.092 | -2.26 | D | ls | | | | | 5039.05 | 60334 | 80173 | ĺ | 3 | 0.0022 | 0.0025 | 0.041 | -2.61 | Ď | ls | | | | | [5049.6] | 60394 | 80192 | 5 | 5 | 9.8×10^{-4} | 3.7×10^{-4} | 0.031 | -2.73 | Ď | ls | | | | | 5044.0 | 60353 | 80173 | 3 | 3 | 0.0016 | 6.2×10^{-4} | 0.031 | -2.73 | l Ď | ls | | | | | [5054.5] | 60394 | 80173 | 5 | 3 | $1.1 imes 10^{-4}$ | $2.5 imes 10^{-5}$ | 0.0021 | -3.90 | Ď | ls | | 33 | | ³ P°- ³ S
(5) | 4822.1 | 60374 | 81106 | 9 | 3 | 0.0084 | 9.8×10^{-4} | 0.14 | -2.05 | D | 7n | | | | (-) | 4826.73 | 60394 | 81106 | 5 | 3 | 0.0047 | 9.8×10^{-4} | 0.078 | -2.31 | D | ls | | | | | 4817.33 | 60353 | 81106 | 3 | 3 | 0.0028 | 9.9×10^{-4} | 0.047 | -2.53 | l Ď | ls | | | | | 4812.84 | 60334 | 81106 | 1 | 3 | 9.7×10^{-4} | 0.0010 | 0.016 | -2.99 | D | ls | | 34 | | ³ P°_ ³ P
(6) | 4769.7 | 60374 | 81334 | 9 | 9 | 0.016 | 0.0053 | 0.75 | -1.32 | D | 6n | | | l | | 4771.72 | 60394 | 81344 | 5 | 5 | 0.012 | 0.0039 | 0.31 | -1.70 | D | ls | | | | | 4766.62 | 60353 | 81326 | 3 | 3 | 0.0039 | 0.0013 | 0.063 | -2.40 | D | ls | | | | | 4775.87 | 60394 | 81326 | 5 | 3 | 0.0062 | 0.0013 | 0.10 | -2.20 | D | ls | | | | | 4770.00 | 60353 | 81312 | 3 | 1 | 0.015 | 0.0018 | 0.083 | -2.28 | D | ls | | | | | 4762.41 | 60353 | 81344 | 3 | 5 | 0.0038 | 0.0021 | 0.10 | -2.20 | D | ls | | | | | 4762.41 | 60334 | 81326 | 1 | 3 | 0.0052 | 0.0053 | 0.083 | -2.28 | D | ls | | 35 | | ¹ P°- ¹ P
(11) | 5380.24 | 61982 | 80564 | 3 | 3 | 0.016 | 0.0070 | 0.37 | -1.68 | D | 6 <i>n</i> | | 36 | | ¹P°-¹D | 5052.12 | 61982 | 81770 | 3 | 5 | 0.017 | 0.011 | 0.54 | -1.49 | D | 6 <i>n</i> | | | | (12) | | | { | 1 | | | | | 1.70 | | | | 37 | | ¹ P°- ¹ S
(13) | 4932.00 | 61982 | 82252 | 3 | 1 | 0.046 | 0.0055 | 0.27 | -1.78 | D | 6n | | 38 | $2p3s - 2p(^2\mathrm{P}^\circ)5p$ | ¹ P°-1P
(14) | 4371.33 | 61982 | 84852 | 3 | 3 | 0.0097 | 0.0028 | 0.12 | -2.08 | D- | ca | | 39 | _ | ¹P°_¹D | 4268.99 | 61982 | 85400 | 3 | 5 | 0.0032 | 0.0015 | 0.062 | -2.36 | D | 7 n | | | | (16) | ļ | | | | | | | | | | | | 40 | $2s2p^3-$ | 3D°-3P | 5797.8 | 64091 | 81334 | 15 | 9 | 0.0039 | 0.0012 | 0.34 | -1.75 | D | 6 <i>n</i> | | 1 | $2s^22p(^2\mathrm{P}^\circ)4p$ | (18) | 5702.53 | 64000 | 81344 | 7 | 5 | 0.0033 | 0.0012 | 0.16 | -2.08 | D | ls | | | | | 5793.51 | 64089 | 01044 | | | 0.0033 | 8.9×10^{-4} | 0.10 | -2.35 | D | ls | | | | | 5801.17 | 64093 | 81326 | 5 | 3 | | 6.6×10^{-4} | | -2.35
-2.70 | | ls ls | | | | | 5805.76 | 64092 | 81312 | 3 | 1 | 0.0039 | 0.0×10^{-4} | 0.038 | -2.70
-2.83 | D | ls | | | | | 5794.46 | 64093 | 81344 | 5 | 5 | 5.8×10^{-4} | | 0.028 | -2.83
-2.83 | D | ls | | | | | 5800.23 | 64092 | 81326 | 3 | 3 | 9.7×10^{-4} | 4.9×10^{-4} | 0.028 | | D | ls | | | | | [5794.8] | 64092 | 81344 | 3 | 5 | 4.0×10^{-5} | 3.3×10^{-5} | 0.0019 | -4.00 | D | ıs | | 41 | $\begin{array}{c} 2p3p - \\ 2p(^2P^\circ)3d \end{array}$ | ¹ P- ¹ D° (19) | 11330.4 | 68858 | 77681 | 3 | 5 | 0.198 | 0.63 | 71 | 0.280 | С | 6n, ca | ## CI. Allowed Transitions - Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | g_i | gk | $A_{ki}(10^8 { m \ sec^{-1}})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|------------------------------|---------------------------------------|---------|-------------------------|-----------------------|-------|----|--------------------------------|---------|----------|------------------|---------------|------------| | | | | | | | | | 0.171 | 0.262 | 26.2 | -0.105 | С | 6n, ca | | 42 | | 'P-'P° | 10124 | 68858 | 78728 | 3 | 3 | 0.171 | 0.202 | 20.2 | -0.103 | | | | 43 | | ³ D− ³ F° (24) | 11755 | 69722 | 78227 | 15 | 21 | 0.242 | 0.70 | 407 | 1.022 | C | 6n, ca | | | | (24) | 11754.0 | 69744 | 78250 | 7 | 9 | 0.241 | 0.64 | 174 | 0.65 | C | ls | | | | | 11754.0 | 69711 | 78216 | 5 | 7 | 0.216 | 0.63 | 121 | 0.495 | C | ls | | | | | 11747.5 | 69690 | 78199 | 3 | 5 | 0.202 | 0.70 | 81 | 0.321 | C | ls | | | | | 11801.8 | 69744 | 78216 | 7 | 7 | 0.0266 | 0.056 | 15.1 | -0.411 | C | ls | | 1 | | | [11778] | 69711 | 78199 | 5 | 5 | 0.0375 | 0.078 | 15.1 | -0.410 | C | ls ls | | | | | [11824] | 69744 | 78199 | 7 | 5 | 0.00104 | 0.00156 | 0.426 | -1.96 | С | ls | | 44 | | ³D − ³D°
(25) | 11641 | 69722 | 78310 | 15 | 15 | 0.065 | 0.132 | 76 | 0.297 | С | 6n, ca | | | | (23) | 11667.1 | 69744 | 78316 | 7 | 7 | 0.057 | 0.117 | 31.5 | -0.086 | С | ls | | | | | 11631.6 | 69711 | 78307 | 5 | 5 | 0.0453 | 0.092 | 17.6 | -0.338 | | ls | | | | | 11609.9 | 69690 | 78301 | 3 | 3 | 0.0492 | 0.099 | 11.4 | -0.53 | CCC | ls | | | | | 11677.0 | 69744 | 78307 | 7 | 5 | 0.0101 | 0.0147 | 3.95 | -0.99 | l c | ls | | | | | 11638.6 | 69711 | 78301 | 5 | š | 0.0163 | 0.0198 | 3.80 | -1.004 | C | ls | | - 1 | | | 11619.0 | 69711 | 78316 | 5 | 7 | 0.0073 | 0.0207 | 3.95 | -0.99 | C | ls | | | | | 11602.9 | 69690 | 78307 | 3 | 5 | | 0.0332 | 3.80 | -1.002 | C | ls | | 45 | | 3S-3P° | 11664 | 70744 | 79315 | 3 | 9 | 0.157 | 0.96 | 111 | 0.461 | С | 6n, ca | | | | (29) | 11667.1 | 70744 | 79311 | 3 | 5 | 0.158 | 0.54 | 62 | 0.208 | С | ls | | | | | 11667.1 | 70744 | 79311 | 3 | 3 | 0.158 | 0.321 | 37.0 | -0.208 | Č | ls | | | | | 11656.0 | 1 | 79319 | 3 | 1 | | 0.107 | 12.3 | -0.010
-0.494 | č | ls | | ŀ | | | [11653] | 70744 | 19323 | ' | 1 | 0.137 | 0.101 | 12.0 | -0.494 | | LS | | 46 | | ³ P - ³ P° (30) | 12591 | 71375 | 79315 | 9 | 9 | 0.105 | 0.249 | 93 | 0.351 | C | 6n, ca | | | | l ` ´ | 12614.8 | 71386 | 79311 | 5 | 5 | 0.078 | 0.186 | 38.7 | -0.031 | C | ls | | | | | 12565.0 | 71365 | 79319 | 3 | 3 | 0.0262 | 0.062 | 7.7 | -0.73 | C | ls | | | | | 12602.6 | 71386 | 79319 | 5 | 3 | 0.0435 | 0.062 | 12.9 | -0.51 | C | ls | | | | | 12565.0 | 71365 | 79323 | 3 | 1 | 0.105 | 0.083 | 10.3 | -0.60 | C | ls | | I | | | 12582.3 | 71365 | 79311 | 3 | 5 | 0.0262 | 0.104 | 12.9 | -0.51 | C | ls | | | | | 12551.0 | 71353 | 79319 | 1 | 3 | 0.0352 | 0.249 | 10.3 | -0.60 | C | ls | | 47 | | ¹D-¹F° | 16890 | 72611 | 78531 | 5 | 7 | 0.123 | 0.74 | 205 | 0.57 | С | 6n, ca | | 48 | 2p3p –
2p(2P°)4s | ¹ P - ¹ P° (20) | 10548.0 | 68858 | 78338 | 3 | 3 | 0.010 | 0.017 | 1.8 | -1.29 | D | 6 <i>n</i> | | 49 | | ³ D- ³ P° (23) | 11886 | 69722 | 78133 | 15 | 9 | 0.11 | 0.14 | 85 | 0.34 | D | 6n | | | | (20) | 11894.9 | 69744 | 78148 | 7 | 5 | 0.096 | 0.15 | 40 | 0.01 | D | ls | | | | | 11894.9 | 69711 | 78117 | 5 | 3 | 0.084 | 0.11 | 21 | -0.27 | D | ls | | | | | 11880.4 | 69690 | 78105 | 3 | ĭ | | 0.080 | 9.4 | -0.62 | D | ls | | - 1 | | l | 11849.3 | 69711 | 78148 | 5 | 5 | | 0.036 | 7.1 | -0.02 -0.74 | D | 1 - | | | | 1 | 11863.0 | 69690 | 78117 | 3 | 3 | | 0.061 | 7.1 | -0.74 -0.74 | | ls | | | | | | 69690 | 78148 | 3 | 5 | | 0.001 | 0.47 | | D | ls | | Ì | | | [11820] | 09090 | (0140 | ' | 13 | 0.0012 | 0.0040 | 0.41 | -1.92 | D | ls | | 50 | $2p3p - 2p(^{2}P^{\circ})4d$ | ¹ P - ¹ P° (22) | 6587.75 | 68858 | 84032 | 3 | 3 | 0.024 | 0.015 | 1.0 | -1.34 | D | ca | The adopted values are selected from calculations by Garstang [1], Naqvi [2], and Yamanouchi and Horie [3], which are very similar in character. All electric quadrupole values are taken from Garstang [1], since his estimate of s_q appears to be the most advanced one. For most magnetic dipole lines, values could be taken from Garstang [1], as well as from Naqvi [2], and Yamanouchi and Horie [3], who all arrive at identical results. Only for the ${}^3P^{-1}S$ transition, for which configuration interaction is important, a difference occurs. In this case the results of Garstang [1], and Yamanouchi and Horie [3] are selected, since they represent, according to a later study by Garstang [4], the best available approximation (see also the general introduction). ### References - [1] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 111, 115-124 (1951). - [2] Naqvi, A. M., Thesis Harvard (1951). - [3] Yamanouchi, T. and Horie, H., J. Phys. Soc. Japan 7, 52-56 (1952). - [4] Garstang, R. H., Proc. Cambridge Phil. Soc. 52, 107-113 (1956). ### CI. Forbidden Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gk | Type of
Transition | $A_{ki}(\mathrm{sec^{-1}})$ | S(at.u.) | Accu-
racy | Source | |-----|---------------------
--|---|-------------------------------------|---|-----------------------|-----------------------|-----------------------|---|--|-----------------------|---| | 1 | $2p^2 - 2p^2$ | 3P — 3P | $[61.0 \times 10^{5}]$ $[23.0 \times 10^{5}]$ $[36.9 \times 10^{5}]$ $[36.9 \times 10^{5}]$ | 0.0
0.0
16.4
16.4 | 16.4
43.5
43.5
43.5 | 1
1
3
3 | 3
5
5
5 | m
e
m
e | $7.93 \times 10^{-8} 2.00 \times 10^{-14} 2.68 \times 10^{-7} 4.20 \times 10^{-15}$ | 2.00
3.82
2.50
8.6 | В
С
В
С | 1, 2, 3
1
1, 2, 3
1 | | 2 | | ³ P – ¹ D
(1 F) | 9808.9
9823.4
9823.4
9849.5
9849.5 | 0.0
16.4
16.4
43.5
43.5 | 10193.7
10193.7
10193.7
10193.7
10193.7 | 1
3
3
5
5 | 5
5
5
5
5 | e
m
e
m | 5.5×10^{-8} 7.8×10^{-5} 1.7×10^{-7} 2.30×10^{-4} 1.2×10^{-6} | 1.5×10^{-5} 1.37×10^{-5} 4.6×10^{-5} 4.08×10^{-5} 3.3×10^{-4} | D
C
D
C
D | $\begin{bmatrix} 1 \\ 1, 2, 3 \\ 1 \\ 1, 2, 3 \\ 1 \end{bmatrix}$ | | 3 | | ³ P- ¹ S
(2 F) | 4621.5
4627.3 | 16.4
43.5 | 21648.4
21648.4 | 3 5 | 1 | m
e | $0.00260 \\ 1.9 \times 10^{-5}$ | $\begin{array}{c} 9.5 \times 10^{-6} \\ 2.4 \times 10^{-5} \end{array}$ | C
D | 1, 3 | | 4 | | ¹ D- ¹ S
(3 F) | 8727.4 | 10193.7 | 21648.4 | 5 | 1 | e | 0.50 | 15.1 | С | 1 | Ionization Potential $24.376 \text{ eV} = 196659.0 \text{ cm}^{-1}$ ## **Allowed Transitions** ### List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |----------------|--------|----------------|-----|----------------|-----| | 687.059 | 10 | 3360.9 | 27 | 4413.2 | 24 | | 687.35 | 10 10 | 3361.09 | 27 | 4618.9 | 26 | | 687.355 | 10 | 3361.75 | 27 | 4628.1 | 26 | | 858.092 | 9 | 3581.80 | 18 | 5132.96 | 14 | | 858.559 | 9 | 3584.98 | 18 | 5133.29 | 14 | | 903.624 | 3 | 3585.83 | 18 | 5137.26 | 14 | | 903.962 | 3
3 | 3587.68 | 18 | 5139.21 | 14 | | 904.142 | 3 | 3588.92 | 18 | 5143.49 | 14 | | 904.480 | 3 | 3589.67 | 18 | 5145.16 | 14 | | 1009.85 | 4 | 3590.87 | 18 | 5151.08 | 14 | | 1010.07 | 4 | 3876.05 | 22 | 5640.50 | 13 | | 1010.37 | 4 | 3876.19 | 22 | 5648.08 | 13 | | 1036.34 | 2 2 | 3876.41 | 22 | 5662.51 | 13 | | 1037.02 | 2 | 3876.67 | 22 | 5889.4 | 20 | | 1065.88 | 6 | 3878.22 | 22 | 5889.97 | 20 | | 1065.9 | 6 | 3879.60 | 22 | 5891.65 | 20 | | 1066.12 | 6 5 | 3880.59 | 22 | 6578.03 | 11 | | 1323.9 | 5 | 3881.2 | 22 | 6582.85 | 11 | | 1334.53 | 1 | 3883.8 | 22 | 6779.74 | 12 | | 1335.66 | 1 | 3918.98 | 17 | 6780.27 | 12 | | 1335.71 | 1 | 3920.68 | 17 | 6783.75 | 12 | | 2173.8 | 15 | 4074.53 | 23 | 6787.09 | 12 | | 2174.1 | 15 | 4076.00 | 23 | 6791.30 | 12 | | 2509.11 | 7 | 4267.02 | 21 | 6798.04 | 12 | | 2511.71 | 7 | 4267.2 | 21 | 6800.50 | 12 | | 2512.03 | 7 | 4267.27 | 21 | 6812.19 | 12 | | 2746.50 | 19 | 4371.59 | 25 | 7231.12 | 16 | | 2747.3 | 19 | 4372.49 | 25 | 7236.19 | 16 | | 2747.31 | 19 | 4374.28 | 25 | 7236.2 | 16 | | 2836.71 | 8 | 4411.20 | 24 | 18895 | 29 | | 2837.60 | 8 | 4411.52 | 24 | 18916 | 29 | | 2992.6 | 28 | | | | 1 | Self-consistent field calculations by Weiss [1], and Biermann and Lübeck [3], and a high current arc experiment by Maecker [2] are utilized for the tabulation. The results for the lower and moderately excited transitions should be quite uncertain because in the calculations the strong effects of configuration interaction are essentially neglected, and the experimental work is subject to large systematic uncertainties. #### References ^[1] Weiss, A. W., private communication (1964). ^[2] Maecker, H., Z. Physik 135, 13-22 (1953). ^[3] Biermann, L. and Lübeck, K., Z. Astrophys. 25, 325-339 (1948). CII. Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | g_i | gk | $A_{ki}(10^8 \; { m sec}^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|--------------------------------------|---|--|--------------------------------------|--------------------------------------|--|------------------|----------------------------------|----------------------------------|---|--|------------------|----------------------| | 1 | $2s^22p - 2s2p^2$ | ² P°- ² D
(1 uv) | 1335.3 | 43 | 74932 | 6 | 10 | 6.0 | 0.27 | 7.0 | 0.20 | E | 1 | | | | (1 uv) | 1335.71
1334.53
1335.66 | 64
0
64 | 74931
74933
74933 | 4
2
4 | 6
4
4 | 6.0
4.9
1.0 | $0.24 \\ 0.26 \\ 0.027$ | 4.2
2.3
0.47 | $ \begin{array}{c c} -0.02 \\ -0.28 \\ -0.97 \end{array} $ | E
E
E | ls
ls
ls | | 2 | | ² P°- ² S
(2 uv) | 1036.8 | 43 | 96494 | 6 | 2 | 11 | 0.059 | 1.2 | -0.45 | E | 1 | | | | | 1037.02
1036.34 | 64
0 | 96494
96494 | 4 2 | $\frac{2}{2}$ | 7.3
3.6 | 0.059
0.059 | 0.80
0.40 | $\begin{bmatrix} -0.63 \\ -0.93 \end{bmatrix}$ | E
E | ls
ls | | 3 | | ² P°- ² P
(3 uv) | 904.09 | 43 | 110652 | 6 | 6 | 42 | 0.52 | 9.2 | 0.49 | E | 1 | | | | (5 47) | 904.142
903.962
904.480
903.624 | 64
0
64
0 | 110666
110625
110625
110666 | 4
2
4
2 | 4
2
2
4 | 35
27
14
6.9 | 0.43
0.34
0.084
0.17 | 5.1
2.0
1.0
1.0 | $\begin{array}{c c} 0.23 \\ -0.17 \\ -0.47 \\ -0.47 \end{array}$ | E
E
E
E | ls
ls
ls
ls | | 4 | $2s2p^2-2p^3$ | ⁴ P - ⁴ S°
(7 uv) | 1010.2 | 43033 | 142024 | 12 | 4 | 32 | 0.16 | 6.5 | 0.29 | E | 1 | | | | (1 uv) | 1010.37
1010.07
1009.85 | 43051
43022
43000 | 142024
142024
142024 | 6
4
2 | 4
4
4 | 16
11
5.4 | 0.17
0.17
0.17 | 3.3
2.2
1.1 | $ \begin{array}{r} 0.00 \\ -0.18 \\ -0.48 \end{array} $ | E
E
E | ls
ls
ls | | 5 | į | ² D- ² D°
(11 uv) | 1323.9 | 74932 | 150465 | 10 | 10 | 8.7 | 0.23 | 10 | 0.36 | E | 1 | | 6 | | ² D - ² P°
(12 uv) | 1066.0 | 74932 | 168744 | 10 | 6 | 8.1 | 0.083 | 2.9 | -0.08 | E | 1 | | | | | 1065.88
1066.12
[1065.9] | 74931
74933
74933 | 168750
168732
168750 | 6
4
4 | 4
2
4 | 7.1
8.1
0.79 | 0.081
0.069
0.014 | 1.7
0.97
0.19 | $ \begin{array}{r} -0.31 \\ -0.56 \\ -1.27 \end{array} $ | E
E
E | ls
ls
ls | | 7 | | ² P- ² D°
(14 uv) | 2511.0 | 110652 | 150465 | 6 | 10 | 0.97 | 0.15 | 7.6 | -0.04 | E | 2 | | | | (11 41) | 2512.03
2509.11
2511.71 | 110666
110625
110666 | 150463
150468
150468 | 4
2
4 | 6
4
4 | 0.96
0.83
0.17 | 0.14
0.16
0.016 | 4.5
2.6
0.52 | -0.26 -0.50 -1.20 | E
E
E | ls
ls
ls | | 8 | $2s2p^2 - 2s^2({}^1S)3p$ | ² S - ² P°
(13 uv) | 2837.0 | 96494 | 131732 | 2 | 6 | 0.35 | 0.13 | 2.4 | -0.59 | E | 2 | | | == (= /- F | (== == , | 2836.71
2837.60 | 96494
96494 | 131736
131725 | $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ | 4 2 | 0.36
0.35 | $0.086 \\ 0.043$ | 1.6
0.80 | -0.77 -1.07 | E
E | ls
ls | | 9 | 2p-(1S)3s | ² P°- ² S
(4 uv) | 858.41 | 43 | 116538 | 6 | 2 | 12 | 0.046 | 0.78 | -0.56 | D | 1 | | | | (4° uv) | 858.559
858.092 | 64 | 116538
116538 | 4 2 | 2 2 | 8.3
4.2 | 0.046
0.046 | 0.52
0.26 | -0.74 -1.04 | D
D | ls
ls | | 10 | $2p - (^{1}S)3d$ | ² P° – ² D
(5 uv) | 687.25 | 43 | 145551 | 6 | 10 | 22 | 0.26 | 3.5 | 0.19 | D | 1 | | | | (3 uv) | 687.355
687.059
[687.35] | 64
0
64 | 145551
145550
145550 | 4
2
4 | 6
4
4 | 22
19
3.6 | $0.23 \\ 0.27 \\ 0.025$ | $\begin{array}{c} 2.1 \\ 1.2 \\ 0.23 \end{array}$ | -0.03 -0.28 -0.99 | D
D
D | ls
ls
ls | | 11 | $3s - ({}^{1}S)3p$ | ² S - ² P° | 6579.7 | 116538 | 131732 | 2 | 6 | 0.480 | 0.93 | 40.5 | 0.272 | С | 1, 3 | | | | (2) | 6578.03
6582.85 | 116538
116538 | 131736
131725 | 2 2 | 4 2 | 0.480
0.479 | 0.62
0.311 | 27.0
13.5 | $-0.096 \\ -0.206$ | C | ls
ls | | 12 | 2s2p3s -
2s2p(3P°)3p | ⁴ P°- ⁴ D
(14) | 6785.6 | 167007 | 181740 | 12 | 20 | 0.369 | 0.424 | 114 | 0.71 | С | ca | | | 2 52 <i>p</i> (°Γ')5 <i>p</i> | (1 14) | 6783.75
6779.74
6780.27
6800.50 | 167033
166988
166965
167033 | 181770
181734
181709
181734 | 6
4
2
6 | 8
6
4
6 | 0.370
0.258
0.154
0.110 | 0.340
0.267
0.212
0.076 | 45.6
23.8
9.5
10.2 | 0.310 0.029 -0.373 -0.341 | C
C
C | ls
ls
ls
ls | CII. Allowed Transitions—Continued | N | o. Transition | Multiple | t λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | g | i gi | $A_{ki}(10^8 { m sec}^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |----|----------------------------------|--|--|--|--|---|--|--|--|---
--|------------------|----------------------------------| | | | | 6791.30
6787.09
6812.19
6798.04 | 166988
166965
167033
166988 | 181709
181695
181709
181695 | $\begin{vmatrix} 2 \\ 6 \end{vmatrix}$ | $\begin{vmatrix} 2 \\ 4 \end{vmatrix}$ | 0.307
0.0183 | 0.135
0.212
0.0085
0.0211 | 12.1
9.5
1.14
1.89 | $ \begin{array}{r} -0.268 \\ -0.373 \\ -1.292 \\ -1.074 \end{array} $ | C
C
C
C | ls
ls
ls | | 13 | | ⁴ P°- ⁴ S
(15) | 5653.9 | 167007 | 184689 | 12 | 4 | 0.65 | 0.104 | 23.2 | 0.096 | С | ca | | | | (13) | 5662.51
5648.08
5640.50 | 167033
166988
166965 | 184689
184689
184689 | 4 | 4 | 0.325
0.217
0.109 | 0.104
0.104
0.104 | 11.6
7.7
3.86 | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | C
C
C | ls
ls
ls | | 14 | | ⁴ P°- ⁴ P
(16) | 5141.8 | 167007 | 186450 | 12 | 12 | 0.86 | 0.342 | 69 | 0.61 | С | ca | | | | (10) | 5145.16
5139.21
5137.26
5151.08
5143.49
5133.29
5132.96 | 167033
166988
166965
167033
166988
166988 | 186464
186441
186425
186441
186425
186464
186441 | 4
2
6
4
4 | 4
2
4
2
6 | 0.60
0.115
0.144
0.385
0.72
0.260
0.361 | 0.239
0.0456
0.057
0.102
0.142
0.154
0.285 | 24.3
3.09
1.93
10.4
9.6
10.4
9.6 | $\begin{array}{c} 0.157 \\ -0.74 \\ -0.94 \\ -0.213 \\ -0.246 \\ -0.210 \\ -0.244 \end{array}$ | 0000000 | ls
ls
ls
ls
ls
ls | | 15 | $3s - (^{1}S)4p$ | ² S- ² P° | 2173.9 | 116538 | 162523 | 2 | 6 | 0.253 | 0.054 | 0.77 | -0.97 | C | 3 | | | | | [2173.8]
[2174.1] | 116538
116538 | 162525
162519 | | $\begin{vmatrix} 4\\2 \end{vmatrix}$ | $\begin{array}{c} 0.251 \\ 0.252 \end{array}$ | 0.0356
0.0179 | 0.51
0.256 | -1.147
-1.447 | C
C | ls
ls | | 16 | $3p - (^{1}S)3d$ | ² P°- ² D (3) | 7234.4 | 131732 | 145551 | 6 | 10 | 0.450 | 0.59 | 84 | 0.55 | С | 1 | | | | | 7236.19
7231.12
[7236.2] | 131736
131725
131736 | 145551
145550
145550 | 4
2
4 | 6
4
4 | $0.446 \\ 0.375 \\ 0.075$ | 0.52
0.59
0.059 | 50
28.0
5.6 | $0.322 \\ 0.071 \\ -0.63$ | C
C
C | ls
ls
ls | | 17 | $3p - (^{1}S)4s$ | ² P°- ² S (4) | 3920.2 | 131732 | 157234 | 6 | 2 | 1.87 | 0.143 | 11.1 | -0.066 | С | 3 | | | | , , | 3920.68
3918.98 | 131736
131725 | $\frac{157234}{157234}$ | $\frac{4}{2}$ | 2 2 | $\frac{1.24}{0.62}$ | $0.143 \\ 0.143$ | 7.4
3.70 | $\begin{bmatrix} -0.242 \\ -0.54 \end{bmatrix}$ | C | ls
ls | | 18 | $2s2p3p - 2s2p(^{3}P^{\circ})4s$ | ⁴ D- ⁴ P° (23) | 3589.3 | 181740 | 209593 | 20 | 12 | 0.92 | 0.107 | 25.3 | 0.330 | С | ca | | | | | 3589.67
3590.87
3590.87
3584.98
3587.68
3588.92
3581.80
3585.83 | 181770
181734
181709
181734
181709
181695
181709
181695 | 209620
209574
209550
209620
209574
209550
209620
209574 | 8
6
4
6
4
2
4
2 | 6 4 2 6 4 2 6 4 | 0.74
0.58
0.465
0.166
0.295
0.466
0.0184
0.0426 | 0.107
0.075
0.0449
0.0319
0.057
0.090
0.0053
0.0178 | 10.1
5.3
2.12
2.26
2.69
2.13
0.250
0.420 | $ \begin{array}{r} -0.068 \\ -0.347 \\ -0.75 \\ -0.72 \\ -0.64 \\ -0.74 \\ -1.67 \\ -1.450 \end{array} $ | 00000000 | ls
ls
ls
ls
ls
ls | | 19 | $3p - (^{1}S)4d$ | ² P°- ² D
(15 uv) | 2747.0 | 131732 | 168124 | 6 | 10 | 0.466 | 0.088 | 4.77 | -0.278 | С | ca | | | | | 2747.31
2746.50
[2747.3] | 131736
131725
131736 | 168124
168124
168124 | $\begin{bmatrix} 4 \\ 2 \\ 4 \end{bmatrix}$ | 6
4
4 | 0.466
0.389
0.078 | 0.079
0.088
0.0088 | 2.86
1.59
0.318 | $ \begin{array}{c c} -0.50 \\ -0.75 \\ -1.454 \end{array} $ | CCC | ls
ls
ls | | 20 | $3d-(^{1}S)4p$ | ² D- ² P° (5) | 5890.4 | 145551 | 162523 | 10 | 6 | 0.337 | 0.105 | 20.4 | 0.022 | С | ca | | | | | 5889.97
5891.65
[5889.4] | 145551
145550
145550 | 162525
162519
162525 | 6
4
4 | 4
2
4 | $\begin{array}{c} 0.302 \\ 0.337 \\ 0.0337 \end{array}$ | 0.105
0.088
0.0175 | 6.8 | -0.201
-0.455
-1.154 | C
C
C | ls
ls
ls | | 21 | $3d - (^{1}S)4f$ | ² D - ² F° (6) | 4267.2 | 145551 | 168979 | 10 | 14 | 2.46 | 0.94 | 132 | 0.97 | c | ca | | | | į | 4267.27
4267.02
[4267.2] | 145551
145550
145551 | 168979
168979
168979 | 6 6 | 8
6
6 | 2.44
2.30
0.164 | 0.89
0.94
0.0447 | 75
53
3.77 | 0.73
0.58
-0.57 | C
C
C | ls
ls
ls | | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8 { m sec}^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|------------------------------|--|--------------------|-----------------------|-----------------------|---------------|---------|------------------------------|------------------|-------------|--|---------------|---| | 22 | $2s2p3d - 2s2p(^3P^\circ)4f$ | ⁴ F°− ⁴ G (33) | 3876.7 | 195786 | 221574 | 28 | 36 | 2.66 | 0.77 | 275 | 1.333 | С | ca | | | | (55) | 3876.19 | 195812 | 221604 | 10 | 12 | 2.67 | 0.72 | 92 | 0.86 | С | ls | | | } | | 3876.41 | 195785 | 221575 | 8 | 10 | 2.43 | 0.69 | 70 | 0.74 | Č | ls | | | İ | | 3876.67
3876.05 | 195765
195751 | 221553
221543 | 6 | 8 | 2.30 | 0.69 | 53 | 0.62 | C | ls | | | | | 3880.59 | 195751 | 221545 | 10 | 6
10 | 2.28
0.218 | $0.77 \\ 0.0493$ | 39.3
6.3 | 0.489 | Ç | ls | | | } | | 3879.60 | 195785 | 221553 | 8 | 8 | 0.360 | 0.0493 | 8.3 | $\begin{bmatrix} -0.307 \\ -0.187 \end{bmatrix}$ | C | ls
ls | | | | | 3878.22 | 195765 | 221543 | 6 | 6 | 0.365 | 0.082 | 6.3 | -0.307 | Č | ls ls | | | | | [3883.8] | 195812 | 221553 | 10 | 8 | 0.0080 | 0.00145 | 0.186 | -1.84 | č | ls | | |] | | [3881.2] | 195785 | 221543 | 8 | 6 | 0.0132 | 0.00224 | 0.229 | -1.75 | Č | ls | | 23 | | ⁴ D° – ⁴ F
(36) | | | | | | | | | | | | | | | (00) | 4076,00 | 196581 | 221107 | 8 | 10 | 2.28 | 0.71 | 76 | 0.75 | С | 00.10 | | | 1 | | 4074.53 | 196571 | 221106 | 6 | 8 | 1.96 | 0.65 | 52 | 0.13 | č | $\begin{array}{c c} ca, ls \\ ca, ls \end{array}$ | | 24 | | ² D°- ² F (39) | 4411.4 | 198433 | 221095 | 10 | 14 | 2.11 | 0.86 | 125 | 0.93 | С | ca | | | [| (0)) | 4411.52 | 198437 | 221099 | 6 | 8 | 2.09 | 0.81 | 71 | 0.69 | C | ls | | | | | 4411.20 | 198426 | 221090 | 4 | 6 | 1.97 | 0.86 | 50 | 0.54 | č | ls | | | | | [4413.2] | 198437 | 221090 | 6 | 6 | 0.140 | 0.0410 | 3.57 | -0.61 | Č | ls | | 25 | | ⁴ P°- ⁴ D
(45) | | | | | | | | | | } | | | | | () | 4374.28 | 198842 | 221697 | 6 | 8 | 1.99 | 0.76 | 66 | 0.66 | C | ca, ls | | | | | 4372.49 | 198864 | 221727 | 4 | 6 | 1.40 | 0.60 | 34.5 | 0.380 | C | ca, ls | | | | | 4371.59 | 198878 | 221746 | 2 | 4 | 0.83 | 0.475 | 13.7 | -0.022 | С | ca, ls | | 26 | | ² F°− ² G (50) | 4619.1 | 199966 | 221609 | 14 | 18 | 2.24 | 0.92 | 196 | 1.110 | С | ca | | | | (/, | [4618.9] | 199984 | 221628 | 8 | 10 | 2.24 | 0.90 | 109 | 0.86 | C | ls | | | | | [4618.9] | 199941 | 221585 | 6 | 8 | 2.16 | 0.92 | 84 | 0.74 | C | ls | | | 1 | | [4628.1] | 199984 | 221585 | 8 | 8 | 0.079 | 0.0255 | 3.11 | -0.69 | Č | ls | | 27 | $3d-(^{1}S)5p$ | ² D− ² P° (7) | 3361.3 | 145551 | 175293 | 10 | 6 | 0.121 | 0.0123 | 1.36 | -0.91 | С | ca | | | | . , | 3361.09 | 145551 | 175295 | 6 | 4 | 0.109 | 0.0124 | 0.82 | -1.130 | C | ls | | | [| | 3361.75 | 145550 | 175288 | 4 | 2 | 0.121 | 0.0102 | 0.453 | -1.388 | C | ls | | | | | [3360.9] | 145550 | 175295 | 4 | 4 | 0.0121 | 0.00206 | 0.091 | -2.085 | Č | ls | | 28 | $3d-(^{1}S)5f$ | ² D- ² F° (8) | 2992.6 | 145551 | 178956 | 10 | 14 | 0.90 | 0.169 | 16.6 | 0.227 | C | ca | | 29 | $4s - (^1S)4p$ | ² S – ² P° | 18902 | 157234 | 162523 | 2 | 6 | 0.074 | 1.18 | 147 | 0.373 | С | 3 | | | | | Г18895] | 157234 | 162525 | 2 | 4 | 0.074 | 0.79 | 98 | 0.197 | C | ls | | | | | [18916] | 157234 | 162519 | $\frac{2}{2}$ | 2 | 0.073 | 0.393 | 49.0 | -0.104 | Ĭč | ls | Naqvi's calculation [1] of the one possible transition in the ground state configuration 2p is the only available source. The line strength should be quite accurate, since it does not sensitively depend on the choice of the interaction parameters. ### Reference [1] Naqvi, A. M., Thesis Harvard (1951). ## CII. Forbidden Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | g_k | Type of
Transition | $A_{ki}(\sec^{-1})$ | S(at.u.) | Accu-
racy | Source | |-----|---------------------|-----------|-------------------------|-----------------------|-----------------------|----|-------|-----------------------|-----------------------|----------|---------------|--------| | 1 | 2p-2p | 2P°_2P° | [15.6×10 ⁵] | 0 | 64 | 2 | 4 | m | 2.36×10^{-6} | 1.33 | С | 1 | **Ground State** Ionization Potential $47.864 \text{ eV} = 386213.9 \text{ cm}^{-1}$ ### **Allowed Transitions** ### List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |-------------------|----------|----------------|-----------------|----------------|-----| | 310.171 | 3 | 3609.96 | 23 | 4673.91 | 15 | | 371.694 | 11 | 3609.61 | 23 | 5244.5 | 14 | | 371.72 | 1 11 | 3703.52 | 18 | 5249.6 | 26 | | 371.72
371.747 | 1 11 | 3883.80 | 27 | 5253.55 | 14 | | 371.784 | 1 11 | 3885.99 | $\frac{1}{27}$ | 5272.56 | 14 | | 3/1./64 | 11 | 3005.57 | | 92.11.00 | | | 371.80 | 11 | 3886.2 | 27 | 5696.0 | 17 | | 386.203 | 2 | 3889.18 | 27 | 5857.9 | 20 | | 459.462 | 9 | 3889.7 | 27 | 5862.8 | 20 | | 459.521 | 9 | 3889.8 | $\frac{1}{27}$ | 5871.6 | 20 | | 459.633 | 9 | 4056.06 | 28 | 5871.8 | 20 | | 407.000 | 1 ′ | 1000.00 | - | | | | 459.64 | 9 | 4122.05 | 24 |
5880.4 | 20 | | 538.075 | 7 | 4325.70 | 16 | 5894.1 | 20 | | 538.150 | 7 | 4379.97 | 25 | 6727.1 | 13 | | 538.312 | 7 | 4383.24 | 25 | 6730.7 | 13 | | 574.279 | 10 | 4388.24 | 25 | 6742.1 | 13 | | 314.219 | 1 10 | 1000.21 | | 3, 2, 2, 2, 2 | | | 690.526 | 8 | 4516.02 | 22 | 6744.2 | 13 | | 977.026 | ì | 4516.93 | 22 | 6762.2 | 13 | | 1174.92 | 4 | 4647.40 | 12 | 6773.7 | 13 | | 1175.25 | 4 | 4650.16 | $\overline{12}$ | 6851.2 | 19 | | 1175.57 | 4 | 4650.9 | 15 | 6853.1 | 19 | | 1110.01 | • | 1000.5 | | | | | 1175.70 | 4 | 4651.35 | 12 | 6857.3 | 19 | | 1175.97 | 4 | 4651.8 | 15 | 6862.9 | 19 | | 1176.35 | 4 | 4659.0 | 15 | 6869.1 | 19 | | 1247.37 | 6 | 4663.53 | 15 | 6871.7 | 19 | | 2296.89 | 5 | 4665.90 | 15 | 6881.4 | 19 | | 2270.07 | " | | 1 - | 1 | | | 3170.16 | 21 | | | H | | | 0110.10 | 1 | | | <u> </u> | | Values for the $2s^2-2s2p$ and $2s2p-2p^2$ transition arrays are taken from the self-consistent field calculations of Weiss [1]. These calculations do not include the important effects of configuration interaction; hence fairly large uncertainties must be expected. The average of the dipole length and velocity approximations is adopted [1]. Accuracies within 50 percent are indicated by the following comparison: Weiss [1] has undertaken refined calculations, including configuration interaction, for the same transitions in Be I—the first member of this isoelectronic sequence—in addition to calculations of the type done for this ion. In all cases the agreement with the average of the dipole length and velocity approximations is close. #### Reference [1] Weiss, A. W., private communication (1964). CIII. Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8~{ m sec^{-1}})$ | f_{ik} | S(at.u.) | $\log gf$ | Accu-
racy | Source | |-----|----------------------|--|--|--|--|----------------------------|----------------------------|---|---|--|---|-----------------------|----------------------------| | 1 | $2s^2 - 2s(^2S)2p$ | ¹ S- ¹ P° | 977.026 | 0.0 | 102351 | 1 | 3 | 19 | 0.81 | 2.6 | -0.09 | D | 1 | | 2 | $2s^2 - 2s(^2S)3p$ | (1 uv)
¹ S - ¹ P°
(2 uv) | 386.203 | 0.0 | 258931 | 1 | 3 | 38 | 0.26 | 0.32 | -0.59 | D | ca | | 3 | $2s^2 - 2s(^2S)4p$ | ¹ S - ¹ P° (3 uv) | 310.171 | 0.0 | 322403 | 1 | 3 | 3.7 | 0.016 | 0.017 | -1.79 | D | ca | | 4 | $2s2p-2p^2$ | ³ P°- ³ P
(4 uv) | 1175.7 | 52419 | 137478 | 9 | 9 | 13 | 0.26 | 9.1 | 0.37 | D | 1 | | | | (* u*) | 1175.70
1175.57
1176.35
1175.97
1174.92
1175.25 | 52447
52390
52447
52390
52390
52367 | 137502
137455
137455
137426
137502
137455 | 5
3
5
3
3 | 5
3
1
5
3 | 9.4
3.1
5.2
13
3.1
4.2 | 0.20
0.065
0.065
0.087
0.11
0.26 | 3.8
0.76
1.3
1.0
1.3
1.0 | $\begin{array}{c} -0.01 \\ -0.71 \\ -0.49 \\ -0.58 \\ -0.49 \\ -0.58 \end{array}$ | D
D
D
D
D | ls
ls
ls
ls
ls | | 5 | | ¹ P°- ¹ D
(8 uv) | 2296.89 | 102351 | 145875 | 3 | 5 | 3.6 | 0.47 | 11 | 0.15 | D | 1 | | 6 | | ¹ P°- ¹ S
(9 uv) | 1247.37 | 102351 | 182520 | 3 | 1 | 12 | 0.090 | 1.1 | -0.57 | D | 1 | | 7 | $2s2p - 2s(^{2}S)3s$ | ³ P°- ³ S
(5 uv) | 538.23 | 52419 | 238212 | 9 | 3 | 21 | 0.031 | 0.49 | -0.55 | D | ca | | | | (3 44) | 538.312
538.150
538.075 | 52447
52390
52367 | 238212
238212
238212 | 5
3
1 | 3
3
3 | 7.1
2.3 | 0.031
0.031
0.031 | 0.27
0.16
0.054 | $ \begin{array}{r r} -0.81 \\ -1.04 \\ -1.51 \end{array} $ | D
D
D | ls
ls
ls | | 8 | | ¹ P°- ¹ S
(10 uv) | 690.526 | 102351 | 247170 | 3 | 1 | 22 | 0.053 | 0.36 | -0.80 | D | ca | | 9 | $2s2p - 2s(^2S)3d$ | | 459.57 | 52419 | 270013 | 9 | 15 | 79 | 0.42 | 5.7 | 0.57 | D | ca | | | | (6 uv) | 459.633
459.521
459.462
459.633
459.521
[459.64] | 52447
52390
52367
52447
52390
52447 | 270015
270011
270009
270011
270009
270009 | 5
3
1
5
3
5 | 7
5
3
5
3
3 | 79
59
44
20
33
2.2 | 0.35
0.31
0.42
0.063
0.10
0.0042 | 2.7
1.4
0.63
0.47
0.47
0.032 | $\begin{array}{c} 0.24 \\ -0.03 \\ -0.38 \\ -0.51 \\ -0.50 \\ -1.68 \end{array}$ | D
D
D
D
D | ls
ls
ls
ls
ls | | 10 | | ¹ P°- ¹ D
(11 uv) | 574.279 | 102351 | 276483 | 3 | 5 | 63 | 0.52 | 2.9 | 0.19 | D | ca | | 11 | $2s2p - 2s(^{2}S)4d$ | ³ P°- ³ D
(7 uv) | 371.73 | 52419 | 321435 | 9 | 15 | 34 | 0.12 | 1.3 | 0.03 | D | ca | | | 23(5) 14 | | 371.747
371.694
371.694
371.784
[371.72]
[371.80] | 52447
52390
52367
52447
52390
52447 | 321450
321427
321411
321427
321411
321411 | 5
3
1
5
3
5 | 7
5
3
5
3
3 | 34
26
19
8.6
14
0.96 | 0.10
0.089
0.12
0.018
0.030
0.0012 | 0.61
0.33
0.15
0.11
0.11
0.0073 | $\begin{array}{c c} -0.30 \\ -0.57 \\ -0.92 \\ -1.05 \\ -1.05 \\ -2.23 \end{array}$ | D
D
D
D
D | ls
ls
ls
ls
ls | | 12 | 2s3s — | 3S-3P° | 4648.8 | 238212 | 259718 | 3 | 9 | 0.78 | 0.76 | 34.9 | 0.358 | C | ca | | | 2s(2S)3p | (1) | 4647.40
4650.16
4651.35 | 238212
238212
238212 | 259724
259711
259706 | 3
3
3 | 5
3
1 | 0.78
0.78
0.78 | 0.423
0.253
0.084 | 19.4
11.6
3.88 | $ \begin{array}{r} 0.103 \\ -0.121 \\ -0.60 \end{array} $ | CCC | ls
ls
ls | | 13 | 2p3s- | ³ P°- ³ D | 6740.8 | 308283 | 323114 | 9 | 15 | 0.267 | 0.303 | 61 | 0.436 | С | ca | | | 2p(2P°)3p | (3) | 6744.2
6730.7
6727.1
[6762.2]
[6742.1]
[6773.7] | 308317
308248
308215
308317
308248
308317 | 323140
323101
323076
323101
323076
323076 | 5
3
1
5
3
5 | 7
5
3
5
3
3 | 0.266
0.201
0.149
0.066
0.111
0.0073 | 0.254
0.227
0.303
0.0453
0.076
0.00301 | 28.2
15.1
6.7
5.0
5.0
0.336 | $ \begin{vmatrix} 0.104 \\ -0.167 \\ -0.52 \\ -0.65 \\ -0.64 \\ -1.82 \end{vmatrix} $ | C C C C | ls ls ls ls ls ls | CIII. Allowed Transitions - Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(10^8 { m sec}^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|--|--|---------------------|-----------------------|-------------------------|--|--------|------------------------------|--------------------------------|--|---|--|----------| | 14 | | ³ P°- ³ S | 5263.1 | 308283 | 327277 | 9 | 3 | 0.58 | 0.080 | 12.5 | -0.142 | С | ca | | | | (4) | 5272.56 | 308317 | 327277 | 5 | 3 | 0.320 | 0.080 | 7.0 | -0.398 | C | ls | | | 1 | Ì | 5253.55 | 308248 | 327277 | 3 | 3 | 0.194 | 0.080 | 4.17 | -0.62 | C | ls | | | | | 5244.5 | 308215 | 327277 | 1 | 3 | 0.065 | 0.081 | 1.39 | -1.094 | C | ls | | 15 | | ³ P°- ³ P
(5) | 4662.7 | 308283 | 329724 | 9 | 9 | 0.84 | 0.273 | 37.7 | 0.390 | С | ca | | | | | 4665.90 | 308317 | 329743 | 5 | 5 | 0.63 | 0.204 | 15.7 | 0.010 | C | ls | | | | | [4659.0]
4673.91 | 308248
308317 | 329706
329706 | 3
5 | 3 3 | $0.210 \\ 0.347$ | 0.068
0.068 | $\begin{array}{c} 3.14 \\ 5.2 \end{array}$ | $\begin{bmatrix} -0.69 \\ -0.468 \end{bmatrix}$ | C | ls
ls | | İ | | Ì | 4663.53 | 308248 | 329685 | 3 | ĺ | 0.84 | 0.000 | 4.19 | -0.408 | č | ls | | - 1 | | | [4650.9] | 308248 | 329743 | 3 | 5 | 0.211 | 0.114 | 5.2 | -0.466 | C | ls
ls | | | | | [4651.8] | 308215 | 329706 | 1 | 3 | 0.281 | 0.274 | 4.19 | -0.56 | С | ls | | 16 | | ¹ P°- ¹ D (7) | 4325.70 | 310005 | 333116 | 3 | 5 | 1.08 | 0.50 | 21.6 | 0.181 | С | ca | | 17 | $2s3p - 2s(^{2}S)3d$ | ¹ P°- ¹ D (2) | 5696.0 | 258931 | 276483 | 3 | 5 | 0.50 | 0.407 | 22.9 | 0.087 | С | ca | | 18 | $\begin{array}{c} 2p3p - \\ 2p(^2P^\circ)3d \end{array}$ | ¹ P- ¹ P° (12) | 3703.52 | 319719 | 346713 | 3 | 3 | 0.320 | 0.066 | 2.41 | -0.70 | С | ca | | 19 | ! | ³ D- ³ D° (19) | 6865.8 | 323114 | 337675 | 15 | 15 | 0.066 | 0.0469 | 15.9 | -0.153 | С | ca | | | | (22) | 6871.7 | 323140 | 337688 | 7 | 7 | 0.059 | 0.0416 | 6.6 | -0.54 | С | ls | | | | | 6862.9 | 323101 | 337668 | 5 | 5 | 0.0463 | 0.0327 | 3.69 | -0.79 | C | ls | | | | | 6857.3
[6881.4] | 323076
323140 | 337655
337668 | 3
7 | 3 | 0.050 | 0.0352 | 2.39 | -0.98 | C | ls | | - 1 | | j | [6869.1] | 323140 | 337655 | 5 | 5
3 | 0.0103
0.0166 | $0.0052 \\ 0.0070$ | 0.83
0.80 | -1.438 -1.450 | C | ls | | | | | [6853.1] | 323101 | 337688 | 5 | 7 | 0.0074 | 0.0073 | 0.83 | -1.430 -1.436 | č | ls
ls | | İ | | · | [6851.2] | 323076 | 337668 | 3 | 5 | 0.0100 | 0.0117 | 0.80 | -1.453 | č | ls | | 20 | | ³ D - ³ P° (20) | 5880.4 | 323114 | 340115 | 15 | 9 | 0.0124 | 0.00385 | 1.12 | -1.238 | С | ca | | | | | 5894.1 | 323140 | 340101 | 7 | 5 | 0.0104 | 0.00385 | 0.52 | -1.57 | C | ls | | | | ĺ | 5871.6
5857.9 | 323101
323076 | 340128
340142 | 5
3 | 3 | 0.0093
0.0126 | 0.00290 | 0.280 | -1.84 | C | ls | | | | | [5880.4] | 323101 | 340101 | 5 | 1
5 | 0.0126 | 0.00216 9.6×10^{-4} | $0.125 \\ 0.093$ | $ \begin{array}{r} -2.188 \\ -2.317 \end{array} $ | $\begin{bmatrix} c \\ c \end{bmatrix}$ | ls | | | | | [5862.8] | 323076 | 340128 | 3 | 3 |
0.00313 | 0.00161 | 0.093 | -2.317 | č | ls
ls | | 1 | | | [5871.8] | 323076 | 340101 | 3 | 5 | 1.25×10^{-4} | 1.07×10^{-4} | 0.0062 | -3.492 | \ddot{c} | ls | | 21 | $2s4s - 2s(^2S)5p$ | ¹ S- ¹ P° (8) | 3170.16 | 311721 | 343256 | 1 | 3 | 0.325 | 0.147 | 1.53 | -0.83 | С | ca | | 22 | 2s4p -
2s(2S)5s | ³ P°- ³ S | 4516.5 | 317798 | 339933 | 9 | 3 | 1.66 | 0.169 | 22.6 | 0.182 | С | ca | | | , , | | 4516.93 | 317800 | 339933 | 5 | 3 | 0.92 | 0.169 | 12.6 | -0.072 | c | ls | | | (| | 4516.02 | 317795 | 339933 | 3 | 3 | 0.55 | 0.169 | 7.5 | -0.295 | č | ls | | | | | 4516.02 | 317795 | 339933 | 1 | 3 | 0.184 | 0.169 | 2.51 | -0.77 | C | ls | | 23 | $\begin{array}{c} 2s4p - \\ 2s(^2S)5d \end{array}$ | ³ P°- ³ D (10) | 3609.3 | 317798 | 345496 | 9 | 15 | 0.95 | 0.308 | 32.9 | 0.442 | С | ca | | | |] | 3609.61 | 317800 | 345496 | 5 | 7 | 0.95 | 0.259 | 15.4 | 0.113 | C | ls | | | | | 3608.96
3608.96 | 317795
317795 | 345496
345496 | $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ | 5
3 | 0.71 | 0.231 | 8.2 | -0.160 | \mathbf{C} | ls | | | İ | ĺ | 3609.61 | 317800 | 345496 | 5 | 5 | $0.53 \\ 0.236$ | 0.308
0.0461 | $\frac{3.66}{2.74}$ | -0.51 | C | ls . | | | | { | 3608.96 | 317795 | 345496 | 3 | 3 | 0.394 | 0.0401 | 2.74 | $\begin{bmatrix} -0.64 \\ -0.64 \end{bmatrix}$ | $\begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix}$ | ls
Is | | | | ľ | 3608.96 | 317795 | 345496 | 3 | 5 | 0.0158 | 0.0051 | 0.183 | -1.81 | č | ls
ls | | 24 | ł | ¹P°−¹D | 4122.05 | 322403 | 346656 | 3 | 5 | 1.04 | 0.443 | 18.0 | ł | | | | | ļ | (17) | | | 3 10000 | Ĭ | ٠ | ***** | U.TET | 10.0 | 0.124 | C | ca | CIII. Allowed Transitions - Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | g_i | g_k | $A_{ki}(10^8 { m sec}^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------------------|--|---|--|--|----------------------------------|----------------------------------|--|---|---|---|-----------------|----------------------------| | 25 | 2s4d —
2s(² S)5p | ³ D - ³ P° (14) | 4385.1
4388.24
4383.24
4379.97
4383.24
4379.97 | 321435
321450
321427
321411
321427
321411
321411 | 344233
344233
344233
344233
344233
344233 | 15
7
5
3
5
3
3 | 9
5
3
1
5
3
5 | 0.267
0.224
0.200
0.268
0.0401
0.067
0.00268 | 0.0463
0.0462
0.0346
0.0257
0.0115
0.0193
0.00129 | 10.0
4.67
2.50
1.11
0.83
0.83
0.056 | -0.160
-0.491
-0.76
-1.114
-1.239
-1.238
-2.414 | C C C C C C C C | ca ls ls ls ls | | 26 | | ¹ D- ¹ P° (23) | 5249.6 | 324212 | 343256 | 5 | 3 | 0.52 | 0.128 | 11.1 | -2.414 -0.194 | C | ls
ca | | 27 | 2s4d –
2s(² S)5f | ³ D – ³ F°
(15) | 3887.1
3889.18
3885.99
3883.80
[3889.7]
[3886.2]
[3889.8] | 321435
321450
321427
321411
321450
321427
321450 | 347154
347155
347153
347151
347153
347151
347151 | 15
7
5
3
7
5
7 | 21
9
7
5
7
5
5 | 1.81
1.61
1.52
0.201
0.282
0.0079 | 0.58
0.53
0.51
0.57
0.0456
0.064
0.00128 | 47.2
32.6
22.0
4.09
4.09
0.115 | 0.93
0.57
0.406
0.236
- 0.496
- 0.495
- 2.047 | 0 00000 | ca
ls
ls
ls
ls | | 28 | | ¹ D - ¹ F° (24) | 4056.06 | 324212 | 348860 | 5 | 7 | 1.45 | 0.50 | 33.4 | 0.398 | С | ca | Naqvi's calculations [1] are the only available source. The results for the ³P°—³P° transitions are essentially independent of the choice of the interaction parameters. For the ³P°—¹P° transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included. ### Reference [1] Naqvi, A. M., Thesis Harvard (1951). CIII. Forbidden Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gk | Type of
Transi-
tion | $A_{ki}(\sec^{-1})$ | S(at.u.) | Accu-
racy | Source | |-----|----------------------|-----------|--|-------------------------------|----------------------------|-------------|-------|----------------------------|--|---|---------------|-------------| | 1 | $2s2p - 2s(^{2}S)2p$ | 3P°-3P° | $[43.5 \times 10^{5}]$
$[17.6 \times 10^{5}]$ | 52366.7
52389.7 | 52389.7
52446.5 | 1 3 | 3 5 | m
m | $\begin{vmatrix} 2.18 \times 10^{-7} \\ 2.47 \times 10^{-6} \end{vmatrix}$ | 2.00
2.50 | B
B | 1 1 | | 2 | | 3P°-1P° | [2000.0]
[2000.9]
[2003.2] | 52366.7
52389.7
52446.5 | 102351
102351
102351 | 1
3
5 | 3 3 3 | m
m
m | 0.00142
1.35
0.00179 | $1.26 \times 10^{-6} \\ 0.00120 \\ 1.60 \times 10^{-6}$ | CCC | 1
1
1 | $1s^2 2s \, ^2S_{1/2}$ Ground State Ionization Potential $64.476 \text{ eV} = 520177.8 \text{ cm}^{-1}$ ## **Allowed Transitions** ### List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |----------------|-----|----------------|-----|----------------|-----| | 222,791 | 4 | 384.19 | 6 | 4647 | 19 | | 244,907 | 3 | 419.525 | 5 | 4665 | 20 | | 259,471 | 9 | 419.714 | 5 | 4737 | 22 | | 259,542 | 9 | 1548.20 | 1 | 4789 | 18 | | 289,143 | 8 | 1550.77 | 1 | 5021 | 16 | | 289.230 | 8 | 2524.40 | 14 | 5023 | 16 | | 296.857 | 7 | 2595.14 | 13 | 5801.51 | 10 | | 296.951 | 7 | 2697.73 | 12 | 5812.14 | 10 | | 312.418 | 2 | 2698.70 | 12 | 6592 | 21 | | 312.455 | 2 | 3936 | 15 | 20694 | 11 | | 384.032 | 6 | 4440.4 | 17 | 20780 | 11 | | 384.178 | 6 | 4441.8 | 17 | 20828 | 11 | The values taken from Weiss' calculations [1] are estimated to be accurate to within 10 percent because of the very close agreement between his dipole length and dipole velocity approximations. The values calculated with the length approximation are adopted. ### Reference [1] Weiss, A. W., Astrophys. J. 138, 1262-1276 (1963). ## CIV. Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | g_i | gk | $A_{ki}(10^8~{ m sec^{-1}})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|---|--------------------------------|-------------------------|----------------------------|-------------|-------------|------------------------------|--------------------------|-----------------------|---|----------------|----------------| | 1 | 2s-2p | $^{2}S - ^{2}P^{\circ}$ $(1 uv)$ | 1549.1 | 0.0 | 64555 | 2 | 6 | 2.65 | 0.286 | 2.91 | -0.243 | A | 1 | | | | , | 1548.20
1550.77 | 0.0
0.0 | 64591
64484 | 2 2 | 4 2 | 2.65
2.63 | 0.190
0.0950 | 1.94
0.970 | -0.420 -0.721 | A
A | ls
ls | | 2 | 2s-3p | $^{2}S - ^{2}P^{\circ}$ (2 uv) | 312.43 | 0.0 | 320070 | 2 | 6 | 45.6 | 0.200 | 0.412 | -0.397 | B+ | 1 | | | | | 312.418
312.455 | 0.0
0.0 | 320080
320049 | 2 2 | 4
2 | 45.7
45.5 | 0.134
0.0666 | $0.275 \\ 0.137$ | -0.573 -0.876 | B+
B+ | ls
ls | | 3 | 2s-4p | $^{2}S - ^{2}P^{\circ}$ (3 uv) | 244.907 | 0.0 | 408318 | 2 | 6 | 22.1 | 0.0597 | 0.0963 | -0.923 | В | ca | | 4 | 2s-5p | ² S - ² P° (4 uv) | 222.791 | 0.0 | 448859 | 2 | 6 | 11.8 | 0.0263 | 0.0385 | -1.280 | В | ca | | 5 | 2p-3s | ² P°- ² S
(6 uv) | 419.65 | 64555 | 302848 | 6 | 2 | 42.7 | 0.0376 | 0.312 | -0.647 | B+ | 1 | | | | (0 41) | 419.714
419.525 | 64591
64484 | 302848
302848 | 4 2 | 2
2 | 28.5
14.3 | 0.0376
0.0376 | 0.208
0.104 | $-0.822 \\ -1.123$ | B+
B+ | ls
ls | | 6 | 2p-3d | ² P°- ² D
(7 uv) | 384.12 | 64555 | 324887 | 6 | 10 | 177 | 0.654 | 4.96 | 0.594 | B+ | 1 | | | | (7 uv) | 384.178
384.032
[384.19] | 64591
64484
64591 | 324891
324880
324880 | 4
2
4 | 6
4
4 | 177
148
29.6 | 0.589
0.653
0.0654 | 2.98
1.65
0.331 | $\begin{array}{c c} 0.372 \\ 0.116 \\ -0.582 \end{array}$ | B+
B+
B+ | ls
ls
ls | CIV. Allowed Transitions—Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(10^8~{ m sec}^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|--|----------------------------------|----------------------------|----------------------------|--|--------------------------------------|--|-----------------------------|---------------------------|---|---------------|----------------| | 7 | 2p-4s | ² P°- ² S
(8 uv) | 296.92 | 64555 | 401347 | 6 | 2 | 17.5 | 0.00772 | 0.0453 | -1.334 | В | ca | | | | | 296.951
296.857 | 64591
64484 | 401347
401347 | 4 2 | $\begin{vmatrix} 2\\2 \end{vmatrix}$ | 11.7
5.85 | 0.00772
0.00773 | $0.0302 \\ 0.0151$ | $ \begin{array}{r r} -1.510 \\ -1.811 \end{array} $ | B
B | ls
ls | | 8 | 2p-4d | ² P°- ² D
(9 uv) | 289.20 | 64555 | 410336 | 6 | 10 | 58.1 | 0.121 | 0.694 | -0.137 | В | ca | | | | | 289.230
289.143
[289.23] | 64591
64484
64591 | 410338
410334
410334 | 4
2
4 | 6
4 4 | 58.2
48.5
9.69 | $0.109 \\ 0.122 \\ 0.0122$ | 0.417
0.231
0.0463 | $ \begin{array}{r r} -0.359 \\ -0.614 \\ -1.313 \end{array} $ | B
B
B | ls
ls
ls | | 9 | 2p-5d | ² P°- ² D
(10 uv) | 259.52 | 64555 | 449887 | 6 | 10 | 22.8 | 0.0383 | 0.196 | -0.639 | В | ca | | | | | 259.542
259.471
259.542 | 64591
64484
64591 | 449887
449887
449887 | 4
2
4 | 6
4
4 | 22.8
18.9
3.80 | 0.0345
0.0382
0.00383 | 0.118
0.0653
0.0131 | $ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | B
B
B | ls
ls
ls | | 10 | 3s-3p | ² S- ² P° (1) | 5804.9 | 302848 | 320070 | 2 | 6 | 0.318 | 0.481 | 18.4 | -0.017 | В | 1 | | | | (1) | 5801.51
5812.14 | 302848
302848 | 320080
320049 | 2 2 | 4 2 | 0.319
0.316 | 0.322
0.160 | 12.3
6.13 | -0.191 -0.494 | B
B | ls
ls | | 11 | 3p-3d | ² P°- ² D | 20754 | 320070 | 324887 | 6 | 10 | 0.00579 | 0.0623 | 25.5 | -0.427 | В | 1 | | | | | [20780]
[20694]
[20828] | 320080
320049
320080 | 324891
324880
324880 | 4
2
4 | 6
4
4 | $\begin{array}{c} 0.00576 \\ 0.00486 \\ 9.53 \times 10^{-4} \end{array}$ | 0.0559
0.0624
0.00620 | 15.3
8.50
1.70 | -0.650 -0.904 -1.606 | B
B
B | ls
ls
ls | | 12 | 4p-5s | ² P°- ² S
(12 uv) | 2698.4 | 408318 | 445366 | 6 | 2 | 4.09 | 0.149 | 7.94 | -0.049 | В | ca | | | | (12 41) | 2698.70
2697.73 | 408322
408309 | 445366
445366 | 4 2 | $\frac{2}{2}$ | 2.73
1.37 | 0.149
0.149 | 5.29
2.65 | $-0.225 \\ -0.525$ | B
B | ls
ls | | 13 | 4d-5p | ² D - ² P° (13 uv) | 2595.14 | 410336 | 448859 | 10 | 6 | 0.746 | 0.0452 | 3.86 | -0.345 | В | ca | | 14 | 4d-5f | ² D- ² F° (14 uv) | 2524.40 | 410336 | 449938 | 10 | 14 | 7.44 | 0.995 | 82.7 | 0.999 | В | ca | | 15 | 5s-6p | ² S - ² P° (2) | 3936 | 445366 | 470763 | 2 | 6 | 0.340 | 0.237 | 6.14 | -0.325 | В | ca | | 16 | 5p-6s | ² P°- ² S | 5022.2 | 448859 | 468765 | 6 | 2 | 1.40 | 0.176 | 17.5 | 0.024 | В | ca | | | | (0) | 5023
5021 | 448861
448854 | 468765
468765 | $\begin{vmatrix} 4 \\ 2 \end{vmatrix}$ | 2
2 | 0.935
0.467 | 0.177
0.176 | 11.7
5.83 | -0.150 -0.453 | B
B | ls
ls | | 17 | 5p-6d | ² P°- ² D
(4) | 4441.8 | 448859 | 471368 | 6 | 10 | 1.05 | 0.516 | 45.3 | 0.491 | В | ca | | | | (-) | [4441.8]
[4440.4]
[4441.8] | 448861
448854
448861 | 471368
471368
471368 | $egin{array}{c} 4 \ 2 \ 4 \ \end{array}$ | 6
4
4 | 1.05
0.874
0.175 | 0.465
0.516
0.0516 | 27.2
15.1
3.02 | $0.270 \\ 0.014 \\ -0.685$ | B
B
B | ls
ls
ls | | 18 | 5d-6p | $^{2}D - ^{2}P^{\circ}$ (5) | 4789 | 449887 | 470763 | 10 | 6 | 0.341 | 0.0704 | 11.1 | -0.152 | В | ca | | 19 | 5d-6f | $^{2}D - ^{2}F^{\circ}$ (6) | 4647 | 449887 | 471403 | 10 | 14 | 1.85 | 0.837 | 128 | 0.923 | В | ca | | 20 | 5f-6d | ² F°- ² D (7) | 4665 | 449938 | 471368 | 14 | 10 | 0.103 | 0.0241 | 5.18 | -0.472 | В | ca | | 21 | 6s - 7p | ² S - ² P° (10) | 6592 | 468765 | 483931 | 2 | 6 | 0.132 | 0.258 | 11.2 | -0.288 | В | ca | | 22 | 6d-8p | ² D- ² P° (12) | 4737 | 471368 | 492473 | 10 | 6 | 0.104 | 0.0210 | 3.27 | -0.678 | В | ca | **Ground State** $1s^2 \, {}^1S_0$ **Ionization Potential** $391.986 \text{ eV} = 3162450 \text{ cm}^{-1}$ ## **Allowed Transitions** The results of extensive non-relativistic variational calculations by Weiss [1] are chosen. Values have been calculated in both the dipole length and dipole velocity approximations and agree to within 1 percent, except for the 3p $^{1}P^{\circ}-3d$ ^{1}D transition where agreement is not as good. The average of the two approximations is adopted [1]. #### Reference [1] Weiss, A. W., private communication (1964). Cv. Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8 { m sec}^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|----------------------------------|----------|-------------------------|-------------------------|----|-------|------------------------------|--------|----------|---------|---------------|--------| | 1 | $1s^2 - 1s2p$ | ¹S-¹P° | [40.270] | 0 | 2483240 | 1 | 3 | 8870 | 0.647 | 0.0858 | -0.189 | A | 1 | | 2 | $1s^2 - 1s3p$ | ¹ S - ¹ P° | [34.973] | 0 | 2859350 | 1 | 3 | 2550 | 0.141 | 0.0162 | - 0.852 | A | 1 | | 3 | 1s2s - 1s2p | ¹ S – ¹ P° | [3540.8] | [2455006] | 2483240 | 1 | 3 | 0.165 | 0.0931 | 1.09 | -1.031 | A | 1 | | 4 | 1s2s - 1s3p | ¹ S- ¹ P° | [247.31] | [2455006] | 2859350 | 1 | 3 | 128 | 0.351 | 0.286 | -0.455 | A | 1 | | 5 | 1s2p-1s3d | ¹P°-¹D | [267.21] | 2483240 | [2857480] | 3 | 5 | 396 | 0.707 | 1.87 | 0.327 | A | 1 | | 6 | 1s3d-1s3p | ¹D-¹P° | [53460]? | [2857480] | 2859350 | 5 | 3 | 3.97 × 10 ⁻⁴ | 0.0102 | 8.98 | -1.292 | C+ | 1 | | | | | | | | | | | | | | | | | 7 | 1s2s-1s2p | ³ S− ³ P° | 2273.9 | 2411244 | 2455207 | 3 | 9 | 0.565 | 0.132 | 2.95 | -0.404 | A | 1 | | 8 | 1s2s - 1s3p | 3S-3P° | [227.37] | 2411244 | [2851060] | 3 | 9 | 136 | 0.316 | 0.710 | -0.023 | A | 1 | | 9 | 1s2p-1s3d | 3P°-3D | 248.71 | 2455207 | 2857286 | 9 | 15 | 425 | 0.657 | 4.84 | 0.772 | A | 1 | | 10 | 1s3p-1s3d | ³ P°- ³ D | [16057]? | [2851060] | 2857286 | 9 | 15 | 0.00753 | 0.0485 | 23.1 | -0.360 | A | 1 | # NITROGEN ## NI **Ground State** $1s^2 2s^2 2p^3 {}^4S_{3/2}^{\circ}$ Ionization Potential $14.53 \text{ eV} = 117214 \text{ cm}^{-1}$ ## **Allowed Transitions** ## List of tabulated lines: | | | | | <u> </u> | | |--------------------|----------|-------------------|----------------|--------------------|-----------------| | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | | 1100 = | | 1000.10 | 20 | ((00.54 | 47 | | 1100.7 | 19 | 4222.12 | 29 | 6622.54 | 47 | | 1134.17 | 1 1 | 4223.04 | 29 | 6626.8 | 47 | | 1134.42 | 1 | 4224.74 | 29 | 6636.94 | 47 | | 1134.98 | 1 1 | 4230.35 | 29 | 6644.96 | 47 | | 1163.87 | 10 | 4253.28 | 28 | 6646.51 | 47 | | 1163.88 | 10 | 4254.7 | 28 | 6653.46 | 47 | | 1164.31 | 10 | 4258.7 | 28 | 6656.51 | 47 | | 1167.45 | 9 | 4261.2 | 28 | 6926.90 | 48 | | 1168.42 | 9 | 4263.2 | 28 | 6945.22 | 48 | | 1168.54 | 9 | 4264.7 | 28 | 6951.7 | 48 | | 1169.69 | 8 | 4269.8 | 28 | 6960.4 | 48 | | | | | 43 | 6973.0 | 48 | | 1176.4 | 14 | 4384.4 | | 6979.10 | 48 | | 1176.6 | 14 | 4391.3 | 43 | | 48 | | 1177.7 | 14 | 4914.90 | 31 | 6981.8 | | | 1199.55 | 2 | 4935.03 | 31 | 7423.64 | 23 | | 1200.22 | 2 | 5170.0 | 18 | 7442.30 | 23 | | 1200.71 | 2 | 5181.5 | 18 | 7468.31 | 23 | | 1231.7 | 20 | 5186.9 | 18 | 8184.85 | 22 | | 1243.17 | 5 | 5197.8 | 49 | 8188.01 | 22 | | 1243.30 | 5 | 5201.8 | 49 | 8200.36 | 22 | | 1243.31 | 5 | 5281.18 | 17 | 8210.71 | 22 | | | | | 17 | 8216.32 | 22 | | 1310.54 | 13 | 5292.9 | 17 | 8223.12 | $\frac{22}{22}$ | | 1310.97 | 13 | 5293.5 | | 8242.37 | 22 | | 1316.29 | 12 | 5305.0 | 17 | 8567.74 | 25 | | 1319.04 | 11 | 5309.2 | 17 | 8507.74 | | | 1319.72 | 11 | 5310.6 | 17 | 8590.01 | 25 | | 1326.63 | 15 | 5314.8 | 17 | 8629.24 | 25 | | 1327.96 | 15 | 5328.70 | 16 | 8655.87 | 25 | | 1411.94 | 6 | 5344.4 | 16 | 8680.27 | 21 | | 1492.62 | 3 | 5354.7 | 16 | 8683.40 | 21 | | 1409.67 | 3 | 5356.77 | 16 | 8686.16 | 21 | | 1492.67 | 3 | = : | 16 | 8703.26 | 21 | | 1494.67 | 3 | 5367.1 | 16 | 8711.71 | 21 | | 1742.72 | 4 | 5372.5 | | 8718.84 | $\frac{1}{21}$ | | 1742.73 | 4 | 5372.66 | 16 | 8728.91 | 21 | | 1745.25 | 4 | 5378.3 | 16 | 0120.91 | | | 1745.26 | 4 | 5401.45 | 32 | 8747.36 | 21 | | 4099.95 | 26 | 5411.88 | 32 | 9028.92 | 33 | | 4099.95
4109.96 | 26 | 5816.48 | 50 | 9045.88 | 27 | | | 26 | 5829.53 | 50 | 9049.47 | 27 | | 4113.97
4137.63 | 30 | 5834.7 | 50 | 9049.89 | 27 | | | | | 50 | 9060.72 | 33 | | 4143.42 | 30 | 5841.01 | 50 | 9386.81 | 24 | | 4151.46 | 30 | 5850.1 | 50 | 9392.79 | 24 | | | | | (C () | n 9392.79 | 47 | | 4214.73 | 29 | 5854.16 | 50 | | 94 | | | 29
29 | 5854.16
5856.3 | 50
50
47 | 9460.68
9776.90 | 24
35 | List of tabulated lines-Continued | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |---|----------------------------|---|----------------------------|---|----------------------------| | 9786.79
9788.30
9798.57
9810.02 | 35
35
35
35 | 10563.3
10591.9
10596
10597.0
10623.2 | 39
44
44
44
38 | 11628.0
11656.0
11964
11997.9
12074.1 | 7
7
42
42
42 | | 9814.03
9822.75
9834.62
9863.33
9872.16 | 35
35
35
35
35 | 10623.2
10644.0
10653.0
10675
10693.2 | 38
38
38
38
37 | 12107.4
12128.6
12186.9
12203.4 | 42
46
46
46 | | 10105.1
10108.9
10112.5
10114.6 | 34
34
34
34 | 10713.6
10718.0
10730.5
10757.9 | 38
38
37
38 | 12232.9
12280
12288.0
12291 | 46
46
46
40 | | 10128.3
10147.3
10164.8
10166.8 | 34
34
34
34 | 10775.0
10879.2
10884.6
11180.1 | 37
36
36
45 | 12307
12330
12384
12461.2
12467.8 | 46
40
40
41
41 | | 10200.0
10500.3
10507.0
10513.4 | 34
39
39
39 | 11227.1
11237.6
11266.2
11291.7 | 45
45
45
45 | 12582.3 | 41 | | 10520.6
10533.8
10539.6
10549.6 | 39
39
39
39 | 11294.2
11313.9
11323.3
11564.8 | 45
45
45
7 | | | The numerical values for the $2s^2 2p^3 - 2s 2p^4$, $2p^3 - 2p^2 3s$, and $2p^3 - 2p^2 3d$ transitions are taken exclusively from measurements with a wall-stabilized high current arc by Labuhn [1], since the available theoretical treatments for these transitions must be considered quite unreliable because of the strong effects of configuration interaction. However, even the experimental data should be considered with caution since they suffer, for example, from uncertainties in the identification of the lines. The
data for most higher excited transitions are taken from a stabilized-arc experiment by Richter [2], the Coulomb approximation, and approximate self-consistent field calculations by Kelly [6]. For about half of the 3p-3d transitions the numbers agree within an impressive 10 percent, and the results have been averaged. For most 3s-3p and 3s-4p transitions, strong cancellations in the calculations render the theoretical results unreliable. In these cases experimental results are exclusively used whenever available. The above material is supplemented by a few numbers obtained from a shock tube investigation by Doherty [5], a wall-stabilized arc study by Shumaker and Yokley [4], and work with a less refined arc source by Motschmann [3]. Motschmann's absolute values appear to be shifted by a constant factor due to a demixing effect in the arc and have been renormalized by applying a factor of 1.5, which has given the best fit with Richter's data. ### References - [1] Labuhn, F., to be published in Z. Naturforsch. - [2] Richter, J., Z. Astrophys. 51, 177-186 (1961). - [3] Motschmann, H., Z. Physik 143, 77-92 (1955). - [4] Shumaker, Jr., J. P., and Yokley, C. R., Applied Optics 3, 83-87 (1964). - [5] Doherty, L. R., Thesis Michigan (1961). - [6] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964). N I. Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gk | $A_{ki}(10^8~{\rm sec^{-1}})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|----------------------------|--|--|----------------------------------|--------------------------------------|--|------------------|-------------------------------|---|--------------------------------|---|------------------|---| | 1 | $2s^22p^3 -$ | 4S°-4P | 1134.6 | 0.0 | 88135 | 4 | 12 | 2.3 | 0.13 | 2.0 | -0.27 | D- | 1 | | | 2s2p4 | (2 uv) | 1134.98
1134.42
1134.17 | 0.0
0.0
0.0 | 88110
88153
88173 | 4 4 | 6 4 2 | 2.2
2.5
2.5 | 0.064
0.048
0.024 | 0.95
0.72
0.36 | $ \begin{array}{c c} -0.59 \\ -0.71 \\ -1.02 \end{array} $ | D-
D-
D- | 1
1, <i>ls</i>
1, <i>ls</i> | | 2 | $2p^{3} - 2p^{2}(^{3}P)3s$ | 4S°-4P
(1 uv) | 1199.9 | 0.0 | 83336 | 4 | 12 | 5.4 | 0.35 | 5.5 | 0.15 | D- | 1 | | | | | 1199.55
1200.22
1200.71 | 0.0
0.0
0.0 | 83366
83319
83286 | 4
4
4 | 6
4
2 | 5.5
5.3
5.5 | 0.18
0.11
0.059 | 2.8
1.8
0.94 | $ \begin{array}{r r} -0.15 \\ -0.34 \\ -0.62 \end{array} $ | D-
D-
D- | 1
1
1 | | 3 | | ² D° – ² P
(4 uv) | 1493.3 | 19228 | 86193 | 10 | 6 | 5.5 | 0.11 | 5.4 | 0.04 | D | 1 | | | | | 1492.62
1494.67
1492.67 | 19224
19233
19233 | 86221
86138
86221 | 6
4
4 | 4
2
4 | 5.3
5.0
0.58 | 0.12
0.084
0.019 | 3.5
1.6
0.38 | $ \begin{array}{c c} -0.15 \\ -0.48 \\ -1.11 \end{array} $ | D
D
D | 1, <i>ls</i> 1 1, <i>ls</i> | | 4 | 1 | ² P° - ² P
(9 uv) | 1743.6 | 28840 | 86193 | 6 | 6 | 2.0 | 0.091 | 3.1 | -0.26 | D | 1 | | | | | 1742.73
1745.25
1745.26
1742.72 | 28840
28840
28840
28840 | 86221
86138
86138
86221 | 4
2
4
2 | 4
2
2
4 | 1.8
1.3
0.65
0.35 | 0.082
0.059
0.015
0.032 | 1.9
0.68
0.34
0.37 | -0.48 -0.93 -1.23 -1.20 | D
D
D | 1, ls
1, ls
1, ls
1, ls | | 5 | $2p^3 - 2p^2(^1D)3s'$ | $^{2}D^{\circ}-^{2}D$ (5 uv) | 1243.3 | 19228 | 99663 | 10 | 10 | 4.6 | 0.11 | 4.4 | 0.03 | D | 1 | | | 1 (=)-0 | | 1243.17
1243.30
1243.17
1243.31 | 19224
19233
19224
19233 | 99663
99663
99663
99663 | 6
4
6
4 | 6
4
4
6 | 4.3
4.3
0.45
0.30 | 0.10
0.10
0.0070
0.010 | 2.4
1.6
0.17
0.17 | -0.22 -0.40 -1.38 -1.38 | D
D
D
D | ls
ls
ls | | 6 | | ² P°- ² D
(10 uv) | 1411.94 | 28840 | 99663 | 6 | 10 | 0.52 | 0.026 | 0.72 | -0.8 1 | D | 1 | | 7 | $2s2p^4 - 2s^22p^2(^3P)3p$ | ⁴ P~ ⁴ S° (12) | 11602 | 88135 | 96752 | 12 | 4 | 0.0405 | 0.0273 | 12.5 | -0.485 | С | 2 | | | - -p (1)op | (12) | 11564.8
11628.0
11656.0 | 88110
88153
88173 | 96752
96752
96752 | 6
4
2 | 4
4
4 | 0.0130 | 0.0280
0.0264
0.0267 | 6.4
4.04
2.05 | $ \begin{array}{r} -0.77 \\ -0.98 \\ -1.272 \end{array} $ | C
C
C | 2, <i>ls</i>
2, <i>ls</i>
2, <i>ls</i> | | 8 | $2p^3 - 2p^2(^3P)3d$ | ² D°-4F | | | | | | | | | | | l | | | | | 1169.69 | 19224 | 104718 | 6 | | | 8.2×10^{-4} | 0.019 | -2.31 | D | 1 | | 9 | | ² D° – ² F
(6 uv) | 1167.9 | 19228 | | | 14 | | 0.034 | 1.3 | -0.46 | D | 1 | | | | | 1167.45
1168.54
1168.42 | 19224
19233
19224 | 104883
104811
104811 | 6
4
6 | 8
6
6 | 1.3 | 0.030
0.040
0.0019 | 0.69
0.61
0.045 | $ \begin{array}{c c} -0.75 \\ -0.80 \\ -1.93 \end{array} $ | D
D
D | 1
1, <i>ls</i>
1, <i>ls</i> | | 10 | | $^{2}D^{\circ} - ^{2}D$ (7 uv) | 1164.0 | 19228 | 105135 | 10 | 10 | 0.47 | 0.0095 | 0.37 | -1.02 | D | 1 | | | | (7 uv) | 1163.88
1164.31
1164.31
1163.87 | 19224
19233
19224
19233 | 105144
105121
105121
105144 | 6
4
6
4 | 6
4
4
6 | 0.43
0.048 | 0.0087 0.0087 6.5×10^{-4} 9.7×10^{-4} | 0.20
0.13
0.015
0.015 | $ \begin{array}{c c} -1.28 \\ -1.46 \\ -2.41 \\ -2.41 \end{array} $ | D
D
D | ls
ls
ls | | 11 | | ² P°- ² P | 1319.5 | 28840 | 104628 | 6 | 6 | 1.3 | 0.034 | 0.88 | -0.69 | D | 1 | | | | (12 uv) | 1319.72
1319.04
1319.04
1319.72 | 28840
28840
28840
28840 | 104615
104655
104655
104615 | $egin{array}{c} 4 \ 2 \ 4 \ 2 \end{array}$ | 2 | 0.85
0.42 | 0.029
0.022
0.0055
0.011 | 0.50
0.19
0.095
0.10 | -0.94
-1.35
-1.66
-1.64 | D
D
D | 1, <i>ls</i> 1, <i>ls</i> 1, <i>ls</i> 1, <i>ls</i> | NI. Allowed Transitions - Continued | No | . Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gk | $A_{ki}(10^8~{\rm sec^{-1}}$ |) fik | S(at.u.) | log gf | Accu-
racy | Source | |----|----------------------------|---------------------------------------|---|--|--|--|--------------------------------------|---|---|---|--|---------------|---| | 12 | | ² P° − ² F | 1316.29 | 28840 | 104811 | 4 | 6 | 0.025 | 9.6×10 ⁻⁴ | 0.017 | -2.42 | D | 1 | | 13 | | 2P°-2D | 1310.7 | 28840 | 105135 | 6 | 10 | | 0.056 | 1.4 | -0.48 | D | 1 | | | | (13 uv) | 1310.54
1310.97
1310.97 | 28840
28840
28840 | 105144
105121
105121 | 4
2
4 | 6
4
4 | 1.3
1.1
0.23 | 0.050
0.057
0.0059 | 0.87
0.49
0.10 | $\begin{vmatrix} -0.70 \\ -0.95 \\ -1.63 \end{vmatrix}$ | D
D
D | ls
ls
ls | | 14 | $2p^3-$ | ²D° - ²P | 1176.9 | 19228 | 104199 | 10 | 6 | 1.1 | 0.014 | 0.53 | -0.86 | D | 1 | | | 2p ² (3P)4s | | [1176.4]
[1177.7]
[1176.6] | 19224
19233
19233 | 104227
104142
104227 | 6
4
4 | 4 2 4 | 0.95
1.3
0.11 | 0.013
0.014
0.0023 | 0.31
0.21
0.035 | $\begin{vmatrix} -1.10 \\ -1.27 \\ -2.04 \end{vmatrix}$ | D
D
D | 1, <i>ls</i> 1 1, <i>ls</i> | | 15 | | ² P°-2P
(11 uv) | 1327.0 | 28840 | 104199 | 6 | 6 | 0.20 | 0.0053 | 0.14 | -1.50 | D | 1 | | | | (11 uv) | 1326.63
1327.96
1327.96
1326.63 | 28840
28840
28840
28840 | 104227
104142
104142
104227 | 4
2
4
2 | 4
2
2
4 | 0.15
0.17
0.085
0.030 | 0.0040
0.0045
0.0011
0.0016 | 0.069
0.039
0.020
0.014 | -1.80
-2.05
-2.35
-2.50 | D
D
D | 1, ls
1, ls
1, ls
1, ls | | 16 | $2s2p^4 - 2s^22p^2(^3P)4p$ | ⁴ P - ⁴ D° (13) | 5349.0 | 88135 | 106825 | 12 | 20 | 0.00252 | 0.00180 | 0.380 | -1.67 | С | 2 | | | • • • • | | 5328.70
5356.77
5372.66
[5344.4]
[5367.1]
[5378.3]
[5354.7]
[5372.5] | 88110
88153
88173
88110
88153
88173
88110
88153 | 106871
106816
106780
106816
106780
106761
106780
106761 | 6
4
2
6
4
2
6
4 | 8
6
4
6
4
2
4
2 | $ \begin{vmatrix} 0.00254 \\ 0.00189 \\ 0.00107 \\ 6.2 \times 10^{-4} \\ 0.00118 \\ 0.00210 \\ 1.35 \times 10^{-4} \\ 4.31 \times 10^{-4} \end{vmatrix} $ | $ \begin{array}{c} 0.00144 \\ 0.00122 \\ 9.3 \times 10^{-4} \\ 2.64 \times 10^{-4} \\ 5.1 \times 10^{-4} \\ 9.1 \times 10^{-4} \\ 3.88 \times 10^{-5} \\ 9.3 \times 10^{-5} \end{array} $ | 0.152
0.086
0.0328
0.0279
0.0361
0.0323
0.00410
0.0066 | -2.062
-2.312
-2.73
-2.80
-2.69
-2.74
-3.63
-3.428 | 00000000 | 3n, ls
3n, ls
3n, ls
3n, ls
3n, ls
3n, ls
3n, ls
3n, ls | | 17 | | ⁴ P – ⁴ P° (14) | 5294.9 | 88135 | 107016 | 12 | 12 | 0.00373 | 0.00157 | 0.328 | -1.73 | С | 2 |
| | | | 5281.18
[5305.0]
[5314.8]
[5292.9]
[5309.2]
[5293.5]
[5310.6] | 88110
88153
88173
88110
88153
88153
88173 | 107039
106998
106983
106998
106983
107039
106998 | 6
4
2
6
4
4
2 | 6
4
2
4
2
6
4 | $\begin{array}{c} 0.00282 \\ 5.3 \times 10^{-4} \\ 6.9 \times 10^{-4} \\ 0.00167 \\ 0.00273 \\ 0.00113 \\ 0.00137 \end{array}$ | $\begin{array}{c} 0.00118 \\ 2.23 \times 10^{-4} \\ 2.91 \times 10^{-4} \\ 4.68 \times 10^{-4} \\ 5.8 \times 10^{-4} \\ 7.1 \times 10^{-4} \\ 0.00116 \end{array}$ | 0.123
0.0156
0.0102
0.0489
0.0403
0.0495
0.0404 | $\begin{array}{r} -2.150 \\ -3.049 \\ -3.234 \\ -2.55 \\ -2.64 \\ -2.55 \\ -2.64 \end{array}$ | C C C C C C | 3n, ls
3n, ls
3n, ls
3n, ls
3n, ls
3n, ls
3n, ls | | 18 | | 4P - 4S° | 5176.7 | 88135 | 107447 | 12 | 4 | 0.00427 | 5.7×10^{-4} | 0.117 | -2.163 | С | 2 | | | | | [5170.0]
[5181.5]
[5186.9] | 88110
88153
88173 | 107447
107447
107447 | $egin{array}{c} 6 \ 4 \ 2 \end{array}$ | 4.
4.
4. | 0.00144 | 5.6×10^{-4}
5.8×10^{-4}
5.9×10^{-4} | 0.057
0.0395
0.0201 | $ \begin{array}{r} -2.475 \\ -2.64 \\ -2.93 \end{array} $ | C
C
C | 3n, $ls3n$, $ls3n$, ls | | 19 | $2p^{3} - 2p^{2}(^{3}P)5s$ | ² D°-2P | 1100.7 | 19228 | 110082 | 10 | 6 | 0.33 | 0.0036 | 0.13 | -1.44 | D | 1 | | 20 | | ² P° – ² P | [1231.7]
[1231.7] | 28840
28840 | 110029
110029 | 2 4 | 2 2 | | 5.0×10^{-4} 1.3×10^{-4} | 0.0041
0.0020 | -2.99
-3.30 | D
D | 1, <i>ls</i>
1, <i>ls</i> | | 21 | $2p^23s - 2p^2(^3P)3p$ | 4P-4D° | 8691.6 | 83337 | 94839 | 12 | 20 | 0.190 | 0.358 | 123 | 0.63 | С | 2 | | | | | 8680.27
8683.40
8686.16
8718.84
8711.71
8703.26
8747.36
8728.91 | 83366
83319
83286
83366
83319
83286
83366
83319 | 94883
94832
94795
94832
94795
94772
94772 | 6
4
2
6
4
2
6
4 | 6 | 0.133
0.079
0.054
0.101
0.171
0.0079 | 0.287
0.226
0.178
0.062
0.115
0.194
0.0061
0.0171 | 49.2
25.8
10.2
10.6
13.2
11.1
1.05
1.97 | $\begin{array}{c} 0.236 \\ -0.045 \\ -0.448 \\ -0.433 \\ -0.337 \\ -0.412 \\ -1.438 \\ -1.164 \end{array}$ | 0000000 | 2, ls
2, ls
2, ls
2, ls
2, ls
2, ls
2, ls
2, ls
2, ls | NI. Allowed Transitions-Continued | No. | Transition | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8 { m sec}^{-1})$ | f_{ik} | S(at.u.) | log gf | 1 | Source | |-----|---|---|----------|-----------------------|-------------------------|----|----------|------------------------------|----------------------|----------|--------|-------------------|----------------------| | | Array | | | | | | <u> </u> | | | | | racy | | | 22 |] | $^{4}P - ^{4}P^{\circ}$ (2) | 8211.8 | 83337 | 95511 | 12 | 12 | 0.228 | 0.231 | 75 | 0.443 | С | 2, 5 | | | | | 8216.32 | 83366 | 95533 | 6 | 6 | 0.160 | 0.162 | 26.3 | -0.012 | C | 2n, ls | | |] . | | 8210.71 | 83319 | 95495 | 4 | 4 | 0.0363 | 0.0367 | 3.97 | -0.83 | C | 2n, ls | | | | | 8200.36 | 83286 | 95477 | 2 | 2 | 0.0364 | 0.0367 | 1.98 | -1.135 | C | 2n, ls | | | } | 1 | 8242.37 | 83366 | 95495 | 6 | 4 | 0.102 | 0.069 | 11.3 | -0.381 | / C | 2n, ls | | | | | 8223.12 | 83319 | 95477 | 4 | 2 | 0.202 | 0.103 | 11.1 | -0.387 | $\perp c$ | 2n, ls | | | | | 8184.85 | 83319 | 95533 | 4 | 6 | 0.063 | 0.096 | 10.3 | -0.418 | Č | 2n, ls | | | | | 8188.01 | 83286 | 95495 | 2 | 4 | 0.092 | 0.185 | 10.0 | -0.431 | Č | 2n, ls | | 23 | | ⁴ P- ⁴ S° (3) | 7452.2 | 83337 | 96752 | 12 | 4 | 0.318 | 0.088 | 26.0 | 0.025 | С | 2, 5 | | | | | 7468.31 | 83366 | 96752 | 6 | 4 | 0.161 | 0.089 | 13.2 | -0.270 | C | 2n, ls | | | | | 7442.30 | 83319 | 96752 | 4 | 4 | 0.106 | 0.088 | 8.6 | -0.454 | č | 2n, ls | | | | | 7423.64 | 83286 | 96752 | 2 | 4. | 0.052 | 0.086 | 4.21 | -0.76 | Ιč | 2n, ls | | | | | | | | - | - | 1 | 0.000 | 1.21 | 0.10 | ~ | 211, 13 | | 24 | | $ \begin{array}{c c} ^{2}P-^{2}D^{\circ} \\ (7) \end{array} $ | 9395.3 | 86193 | 96834 | 6 | 10 | 0.217 | 0.478 | 89 | 0.458 | С | 2 | | | | | 9392.79 | 86221 | 96864 | 4 | 6 | 0.218 | 0.432 | 53 | 0.237 | C | 2, ls | | | | | 9386.81 | 86138 | 96788 | 2 | 4 | 0.183 | 0.482 | 29.8 | -0.016 | C | 2, <i>ls</i> | | | | | 9460.68 | 86221 | 96788 | 4 | 4 | 0.0334 | 0.0449 | 5.6 | -0.75 | C | $\frac{1}{2}$, ls | | 25 | | ² P - ² P° (8) | 8617.5 | 86193 | 97794 | 6 | 6 | 0.286 | 0.318 | 54 | 0.281 | С | 2 | | | | (0) | 8629.24 | 04 99 1 | 07006 | 1 | | Δ 020 | 0.000 | 20.0 | 0.007 | | | | | | | | 86221 | 97806 | 4 | 4 | 0.238 | 0.266 | 30.2 | 0.027 | C | 2, ls | | | | | 8590.01 | 86138 | 97770 | 2 | 2 | 0.190 | 0.210 | 11.9 | -0.376 | C | 2, ls | | | | | 8655.87 | 86221 | 97770 | 4 | 2 | 0.099 | 0.056 | 6.3 | -0.65 | C | 2, <i>ls</i> | | | | | 8567.74 | 86138 | 97806 | 2 | 4 | 0.0458 | 0.101 | 5.7 | -0.70 | C | 2, ls | | 26 | $2p^{2(3}\mathrm{P})3s - 2p^{(1}\mathrm{D})3p'$ | ${}^{2}P - {}^{2}D^{\circ}$ (10) | 4106.8 | 86193 | 110536 | 6 | 10 | 0.041 | 0.017 | 1.4 | -0.98 | D | 3n | | | 2p(D)3p | (10) | 4109.96 | 86221 | 110546 | 4 | 6 | 0.040 | 0.015 | 0.83 | -1.21 | n | , | | | | | | 00221 | | | | | 0.013 | | | D | ls | | | | | 4099.95 | 86138 | 110522 | 2 | 4 | 0.034 | 0.017 | 0.46 | -1.47 | D | ls | | | | | 4113.97 | 86221 | 110522 | 4 | 4 | 0.0068 | 0.0017 | 0.093 | -2.16 | D | ls | | 27 | $2p^23s' - 2p^2(^1D)3p'$ | ² D − ² F° | 9047.6 | 99663 | 110713 | 10 | 14 | 0.272 | 0.467 | 139 | 0.669 | В | 2, 6, ca | | | - p (D) o p | | 9045.88 | 99663 | 110715 | 6 | 8 | 0.269 | 0.439 | 78.5 | 0.421 | В | 2n, ls | | | | | 9049.89 | 99663 | 110711 | 4 | 1 | 0.258 | 0.475 | 56.6 | | B | 2n, ls | | ľ | ĺ | | | | | | 6 | | | l . | 0.279 | | 211, 18 | | | | | 9049.47 | 99663 | 110711 | 6 | 6 | 0.0180 | 0.0222 | 3.96 | -0.876 | B | 2n, ls | | 28 | $2p^23s - 2p^2(^3P)4p$ | ⁴ P - ⁴ D° (4) | 4256.3 | 83337 | 106825 | 12 | 20 | 0.020 | 0.0089 | 1.5 | -0.97 | E | 6 | | | -p (1) ip | (1) | 4253.28 | 83366 | 106871 | 6 | 8 | 0.020 | 0.0071 | 0.60 | -1.37 | E | 1. | | | | | 4254.7 | 83319 | 106816 | 4 | 6 | 0.014 | 0.0057 | 0.32 | -1.64 | Ë | ls | | | | | 4254.7 | | 106780 | l | | 0.0079 | 0.0037 | 0.32 | -2.07 | 1 – 1 | ls | | | | | | 83286 | | 2 | 4 | | | | | E | ls . | | - 1 | | | [4263.2] | 83366 | 106816 | 6 | 6 | 0.0061 | 0.0017 | 0.14 | -2.00 | E | ls | | - 1 | İ | | [4261.2] | 83319 | 106780 | 4 | 4 | 0.010 | 0.0029 | 0.16 | -1.94 | E | ls | | 1 | | | [4258.7] | 83286 | 106761 | 2 | 2 | 0.016 | 0.0043 | 0.12 | -2.07 | <u>E</u> | ls | | - 1 | | | [4269.8] | 83366 | 106780 | 6 | 4 | 9.8×10 ⁻⁴ | 1.8×10^{-4} | 0.015 | -2.97 | E | ls | | | | | [4264.7] | 83319 | 106761 | 4 | 2 | 0.0033 | 4.5×10^{-4} | 0.025 | -2.75 | E | ls | | 29 | | 4P – 4P° | 4222.0 | 83337 | 107016 | 12 | 12 | 0.073 | 0.020 | 3.3 | -0.63 | D | 3n | | | } | (5) | 4000.04 | 00066 | 107020 | _ | _ | 0.051 | 0.014 | 1.1 | -1.09 | D | 1. | | | | | 4223.04 | 83366 | 107039 | 6 | 6 | | | | | D | ls | | | | | 4222.12 | 83319 | 106998 | 4 | 4 | 0.0098 | 0.0026 | 0.15 | -1.98 | | ls | | | 1 | | 4218.87 | 83286 | 106983 | 2 | 2 | 0.012 | 0.0033 | 0.091 | -2.18 | D | ls | | 1 | Ì | | 4230.35 | 83366 | 106998 | 6 | 4 | | 0.0059 | 0.49 | -1.45 | D | ls | | | | | 4224.74 | 83319 | 106983 | 4 | 2 | | 0.0082 | 0.45 | -1.49 | D | ls | | | | | 4214.73 | 83319 | 107039 | 4 | 6 | 0.022 | 0.0088 | 0.49 | -1.45 | D | ls | | | | | 4215.92 | 83286 | 106998 | 2 | 4 | 0.031 | 0.016 | 0.45 | -1.49 | D | ls | | 30 | į | 4P – 4S° | 4146.3 | 83337 | 107447 | 12 | 4 | 0.025 | 0.0021 | 0.35 | -1.59 | D | 3n | | | | (6) | | | | | , | 0.016 | 0.0000 | 0.10 | _ 1 07 | $ _{\mathbf{D}} $ | 9 1 | | | | | 4151.46 | 83366 | 107447 | 6 | 4 | *** | 0.0023 | 0.19 | -1.87 | D | 3n, ls | | | | | 4143.42 | 83319 | 107447 | 4 | 4 | | 0.0020 | 0.11 | -2.09 | D | 3n, ls | | | 1 | | 4137.63 | 83286 | 107447 | 2 | 4 | 0.0039 | 0.0020 | 0.055 | -2.40 | D | 3n, ls | | ' | • | | | | | | | | | | | | | N I. Allowed Transitions-Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gk | $A_{ki}(10^8 { m \ sec^{-1}})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|--|--|--|--|--|--|--|---|---|--|---|---------------------------------------|--| | 31 | | ² P- ² S° | 4928.2 | 86193 | 106479 | 6 | 2 | 0.0234 | 0.00285 | 0.277 | -1.768 | В | $\begin{bmatrix} 2,4 \end{bmatrix}$ | | | | (9) | 4935.03
4914.90 | 86221
86138 | 106479
106479 | 4 2 | $\begin{vmatrix} 2\\2 \end{vmatrix}$ | 0.0158
0.00759 | 0.00289
0.00275 | 0.188
0.0889 | -1.937 -2.260 | B
B | 4n, ls
4n, ls | | 32 | $\begin{vmatrix} 2p^2(^3P)3p - \\ 2p^2(^3P)3p - \end{vmatrix}$ | ²P°−2S | 5408.4 | 97794 | 116279 | 6 | 2 | 0.0111 | 0.00162 | 0.173 | -2.013 | С | 2 | | | $2p^{2(1S)}3s''$ | | 5411.88
5401.45 | 97806
97770 |
116279
116279 | 4 2 | 2 2 | 0.0075
0.00369 | 0.00164
0.00161 | 0.117
0.057 | $ \begin{array}{r} -2.183 \\ -2.491 \end{array} $ | C
C | 2, <i>ls</i>
2, <i>ls</i> | | 33 | $2p^23p - 2p^2(^3P)3d$ | ² S°- ² P
(15) | 9050.4 | 93582 | 104628 | 2 | 6 | 0.256 | 0.945 | 56.3 | 0.276 | В | 2, 6, ca | | | 2p-(-1)3u | (13) | 9060.72
9028.92 | 93582
93582 | 104615
104655 | 2 2 | 4 2 | 0.257
0.255 | 0.634
0.311 | 37.8
18.5 | $0.103 \\ -0.206$ | B
B | 2n, ls
2n, ls | | 34 | | ⁴ D° — ⁴ F
(18) | 10117 | 94839 | 104721 | 20 | 28 | 0.373 | 0.802 | 534 | 1.205 | В | 2, 6, ca | | | | (10) | 10114.6
10112.5
10108.9
10105.1
10164.8
10147.3
10128.3
10200.0
10166.8 | 94883
94832
94795
94772
94883
94832
94795
94883
94832 | 104767
104718
104684
104665
104718
104684
104665
104684
104665 | 8
6
4
2
8
6
4
8
6 | 10
8
6
4
8
6
4
6
4 | 0.374
0.321
0.281
0.262
0.0523
0.0898
0.104
0.00353
0.00737 | 0.717
0.656
0.646
0.803
0.0811
0.139
0.160
0.00413
0.00762 | 191
131
86.0
53.4
21.7
27.8
21.4
1.11
1.53 | 0.759
0.595
0.412
0.206
-0.188
-0.080
-0.193
-1.481
-1.340 | B
B
B
B
B
B | ls
ls
ls
ls
ls
ls | | 35 | | ⁴ D°−⁴D
(19) | 9829.2 | 94839 | 105010 | 20 | 20 | 0.0992 | 0.144 | 93.0 | 0.458 | В | 2, 6, ca | | | | | 9863.33
9822.75
9798.57
9788.30
9872.16
9834.62
9810.02
9814.03
9786.79
9776.90 | 94883
94832
94795
94772
94883
94832
94795
94832
94795
94772 | 105020
105011
104998
104987
105011
104998
104987
105020
105011
104998 | 8
6
4
2
8
6
4
6
4
2 | 8
6
4
2
6
4
2
8
6
4 | 0.0144 | 0.147
0.0783
0.0498
0.0445
0.0243
0.0445
0.0300
0.0227
0.0311
0.0506 | 38.1
15.2
6.42
2.87
6.33
8.65
3.87
4.41
4.01
3.26 | 0.069
-0.328
-0.701
-1.050
-0.711
-0.573
-0.921
-0.865
-0.905
-0.995 | B B B B B B B B B B B B B B B B B B B | 2n, ls 2n 2n 2n, ls | | 36 | | ⁴ P°− ⁴ F | 10884.6
10879.2 | 95533
95495 | 104718
104684 | 6 | 8 | | 0.00335
0.00426 | 0.72
0.61 | -1.70 -1.77 | CCC | 2
2 | | 37 | | ⁴ P°− ² F | | | | | | | | 0,01 | 1 | | 2 | | | | | 10693.2
10730.5
10775.0 | 95533
95495
95533 | 104883
104811
104811 | 6
4
6 | 8
6
6 | 0.0170 | 0.0092
0.0440
0.0073 | $ \begin{array}{c c} 1.94 \\ 6.2 \\ 1.56 \end{array} $ | $ \begin{array}{r r} -1.259 \\ -0.75 \\ -1.357 \end{array} $ | CCC | 2
2
2 | | 38 | | 4P°-4P | 10708 | 95511 | 104847 | 12 | 12 | 0.126 | 0.216 | 91.5 | 0.414 | | 2, 6, ca | | | | | 10757.9
[10675]
10623.2
10718.0
10644.0
10713.6
10653.0 | 95533
95495
95477
95533
95495
95495
95477 | 104825
104860
104886
104860
104886
104825
104860 | 6
4
2
6
4
4
2 | 6
4
2
4
2
6
4 | 0.0169
0.0215
0.0564
0.107
0.0376 | 0.151
0.0289
0.0363
0.0647
0.0906
0.0971
0.181 | 32.0
4.06
2.54
13.7
12.7
13.7
12.7 | $\begin{array}{c} -0.044 \\ -0.937 \\ -1.139 \\ -0.411 \\ -0.411 \\ -0.411 \\ -0.441 \end{array}$ | B
B
B
B
B | ls
ls
ls
ls
ls | | 39 | | ⁴ P° – ⁴ D (28) | 10525 | 95511 | 105010 | 12 | 20 | 0.248 | 0.688 | 286 | 0.917 | В | 2, 6, ca | | | | | 10539.6
10507.0
10500.3
10549.6 | 95533
95495
95477
95533 | 105020
105011
104998
105011 | 6
4
2
6 | 6
4 | 0.132
0.0652 | 0.538
0.327
0.216
0.210 | 112
45.2
14.9
43.8 | $\begin{array}{c} 0.509 \\ 0.116 \\ -0.366 \\ 0.101 \end{array}$ | B
B
B | 2n, ls $2n$ $2n$ $2n$ $2n$ | NI. Allowed Transitions - Continued | | | T | | - Town | T | г — | ī | | т | · | | | | |-----|--------------------------------|--|--|--|--|--------------------------------------|--------------------------------------|--|---|--|--|----------------------------------|----------------------------------| | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8~{ m sec^{-1}})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | | 39 | (con.) | | 10520.6
10513.4
10563.3
10533.8 | 95495
95477
95533
95495 | 104998
104987
104998
104987 | 4
2
6
4 | 4
2
4
2 | 0.162
0.174
0.0369
0.0405 | 0.269
0.289
0.0411
0.0337 | 37.2
20.0
8.58
4.67 | $\begin{array}{r} 0.031 \\ -0.238 \\ -0.608 \\ -0.871 \end{array}$ | B
B
B | 2n
2n
2n
2n, ls | | 40 | | ⁴ S° – ⁴ P
(34) | 12350 | 96752 | 104847 | 4 | 12 | 0.124 | 0.85 | 138 | 0.53 | c | 6, ca | | | | | [12384]
[12330]
[12291] | 96752
96752
96752 | 104825
104860
104886 | | 6
4
2 | 0.123
0.124
0.125 | 0.423
0.283
0.142 | 69
46.0
23.0 | $0.229 \\ 0.054 \\ -0.245$ | CCC | ls
ls
ls | | 41 | | $^{2}D^{\circ} - {}^{2}F$ (36) | 12469 | 96834 | 104852 | 10 | 14 | 0.216 | 0.71 | 290 | 0.85 | С | 6, ca | | | | | 12467.8
12461.2
12582.3 | 96864
96788
96864 | 104883
104811
104811 | 6
4
6 | 8
6
6 | 0.217
0.202
0.0141 | 0.67
0.71
0.0334 | 166
116
8.3 | $\begin{array}{ c c c } 0.61 \\ 0.451 \\ -0.70 \end{array}$ | C
C
C | ls
ls
ls | | 42 | | ² D° - ² D (37) | 12043 | 96834 | 105135 | 10 | 10 | 0.060 | 0.130 | 52 | 0.114 | С | 6, ca | | | i | | 12074.1
11997.9
12107.4
[11964] | 96864
96788
96864
96788 | 105144
105121
105121
105144 | 6
4
6
4 | 6
4
4
6 | 0.055
0.054
0.0059
0.00406 | 0.121
0.117
0.0086
0.0131 | 28.8
18.5
2.06
2.06 | $\begin{array}{c c} -0.140 \\ -0.329 \\ -1.287 \\ -1.282 \end{array}$ | C
C
C
C | ls
ls
ls | | 43 | $2p^{2(3}P)3p - 2p^{2(1}D)3d'$ | ² P°- ² S | 4389.1 | 97794 | 120572 | 6 | 2 | 0.0153 | 0.00148 | 0.128 | -2.053 | С | 2 | | | - F (=) | | [4391.3]
[4384.4] | 97806
97770 | 120572
120572 | 4 2 | 2
2 | 0.0102
0.0052 | 0.00147
0.00151 | 0.085
0.0435 | $ \begin{array}{r r} -2.231 \\ -2.52 \end{array} $ | C | 2, <i>ls</i>
2, <i>ls</i> | | 44 | $2p^23p' - 2p^2(^1D)3d'$ | 2F°−2G | 10595 | 110713 | 120149 | 14 | 18 | 0.338 | 0.731 | 357 | 1.010 | В | 2, 6, ca | | | 2p (D)3a | | 10597.0
10591.9
[10596] | 110715
110711
110715 | 120149
120150
120150 | 8
6
8 | 10
8
8 | 0.337
0.326
0.0121 | 0.709
0.731
0.0204 | 198
153
5.68 | 0.754
0.642
-0.788 | B
B
B | ls
ls
ls | | 45 | $2p^23p - 2p^2(^3P)4s$ | ⁴ D° – ⁴ P
(17) | 11290 | 94839 | 103694 | 20 | 12 | 0.147 | 0.168 | 125 | 0.527 | C+ | 2, 6, ca | | | 2p (1)+3 | (11) | 11291.7
11313.9
11323.2
11227.1
11266.2
11294.2
11180.1
11237.6 | 94883
94832
94795
94832
94795
94772
94795
94772 | 103737
103668
103618
103737
103668
103737
103668 | 8
6
4
6
4
2
4
2 | 6
4
2
6
4
2
6
4 | 0.117
0.0920
0.0726
0.0270
0.475
0.0731
0.00302
0.00746 | 0.168
0.118
0.0697
0.0510
0.0903
0.140
0.00849
0.0282 | 50.0
26.3
10.4
11.3
13.4
10.4
1.25
2.09 | $\begin{array}{c} 0.129 \\ -0.151 \\ -0.554 \\ -0.515 \\ -0.442 \\ -0.553 \\ -1.469 \\ -1.248 \end{array}$ | C+
C+
C+
C+
C+
C+ | ls
ls
ls
ls
ls
ls | | 46 | | ⁴ P° – ⁴ P
(27) | 12217 | 95511 | 103694 | 12 | 12 | 0.076 | 0.171 | 83 | 0.312 | С | 6, ca | | | | (=-/ | 12186.9
12232.9
[12280]
12288.0
[12307]
12128.6
12203.4 | 95533
95495
95477
95533
95495
95495
95477 | 103737
103668
103618
103668
103618
103737
103668 | 6
4
2
6
4
4
2 | 6
4
2
4
2
6
4 | 0.054
0.0101
0.0125
0.0336
0.062
0.0233
0.0318 | 0.119
0.0226
0.0282
0.051
0.070
0.077
0.142 | 28.7
3.64
2.28
12.3
11.4
12.3
11.4 | $\begin{array}{c} -0.146 \\ -1.044 \\ -1.249 \\ -0.52 \\ -0.55 \\ -0.51 \\ -0.55 \end{array}$ | C C C C C C | ls
ls
ls
ls
ls | | 47 | $2p^23p - 2p^2(^3P)5s$ | ⁴ D° – ⁴ P | 6644.0 | 94839 | 109886 | 20 | 12 | 0.0389 | 0.0154 | 6.8 | -0.51 | С | 6, <i>ca</i> | | | 2ρ-(°F)38 | (20) | 6644.96
6653.46
6656.51
6622.54
6636.94
6646.51
[6606.3] | 94883
94832
94795
94832
94795
94772
94795
94772 | 109928
109858
109814
109928
109858
109814
109928
109858 | 8
6
4
6
4
2
4 | 6
4
2
6
4
2
6
4 | 0.0071 0.0125 0.0194 7.9×10^{-4} | $\begin{array}{c} 0.0154 \\ 0.0108 \\ 0.0064 \\ 0.00465 \\ 0.0083 \\ 0.0128 \\ 7.8 \times 10^{-4} \\ 0.00259 \end{array}$ | 2.70
1.42
0.56
0.61
0.72
0.56
0.068
0.113 | $\begin{array}{c} -0.91 \\ -1.188 \\ -1.59 \\ -1.55 \\ -1.481 \\ -1.59 \\ -2.51 \\ -2.286 \end{array}$ | C C C C C C C C | ls
ls
ls
ls
ls
ls | NI. Allowed Transitions—Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | g_k |
$A_{ki}(10^8~{ m sec^{-1}})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|------------------------|--|--|----------------------------------|--------------------------------------|------------------|------------------|---|---|------------------------------------|--|---------------|----------------------| | 48 | | ⁴ P° – ⁴ P
(29) | 6954.6 | 95511 | 109886 | 12 | 12 | 0.0212 | 0.0154 | 4.22 | -0.73 | C | 6, ca | | | | | 6945.22
[6960.4]
[6973.0]
6979.10 | 95533
95495
95477
95533 | 109928
109858
109814
109858 | 6
4
2
6 | 6
4
2
4 | 0.0149
0.00281
0.00350
0.0094 | 0.0108
0.00204
0.00255
0.00459 | 1.48
0.187
0.117
0.63 | $ \begin{array}{r} -1.189 \\ -2.088 \\ -2.293 \\ -1.56 \end{array} $ | CCCC | ls
ls
ls
ls | | | | | [6981.8]
6926.90
[6951.7] | 95495
95495
95477 | 109814
109928
109858 | 4
4
2 | 2
6
4 | 0.0174
0.0064
0.0088 | 0.0064
0.0069
0.0128 | 0.59
0.63
0.59 | $ \begin{array}{r} -1.59 \\ -1.56 \\ -1.59 \end{array} $ | C
C
C | ls
ls
ls | | 49 | $2p^23p - 2p^2(^3P)5d$ | 2S°-2P | 5200.5 | 93582 | 112806 | 2 | 6 | 0.023 | 0.028 | 0.96 | -1.25 | D
D | 3n
ls | | | | | [5201.8]
[5197.8] | 93582
93582 | 112801
112816 | $\frac{2}{2}$ | 4
2 | 0.023
0.023 | 0.019
0.0094 | $0.64 \\ 0.32$ | $\begin{bmatrix} -1.43 \\ -1.73 \end{bmatrix}$ | D | ls | | 50 | $2p^23p - 2p^2(^3P)6s$ | ⁴ P° – ⁴ P
(32) | 5836.4 | 95511 | 112640 | 12 | 12 | 0.0092 | 0.00468 | 1.08 | -1.250 | С | 6, <i>ca</i> | | | | | 5829.53
5841.01
[5850.1]
5854.16 | 95533
95495
95477
95511 | 112683
112611
112566
112611 | 6
4
2
6 | 6
4
2
4 | 0.0064
0.00122
0.00152
0.00409 | 0.00328 6.2×10^{-4} 7.8×10^{-4} 0.00140 | 0.378
0.0480
0.0300
0.162 | $ \begin{array}{r} -1.71 \\ -2.60 \\ -2.81 \\ -2.075 \end{array} $ | 0000 | ls
ls
ls | | | | | [5856.3]
5816.48
[5834.7] | 95495
95495
95477 | 112566
112683
112611 | 4
4
2 | 2
6
4 | 0.0076
0.00278
0.00383 | 0.00195
0.00212
0.00390 | $0.150 \\ 0.162 \\ 0.150$ | $ \begin{array}{r r} -2.109 \\ -2.073 \\ -2.107 \end{array} $ | C
C
C | ls
ls
ls | For this ion we have performed the numerical calculations by utilizing Ufford and Gilmour's [1] values for the parameters ζ and η and empirical term intervals, and by employing the general expressions of Shortley, Aller, Baker, and Menzel [2] for the line strengths in the p^3 configuration (see also general introduction). For the electric quadrupole lines we have employed Garstang's [3] estimate of the quadrupole integral s_q . For the ${}^2D^{\circ}-{}^2D^{\circ}$ transition a difference between the transition probability quoted by Garstang [4] and the tabulated value will be noticed. This is due to a revised experimental value for the term interval as given by Bowen [5]. ### References - [1] Ufford, C. W., and Gilmour, R. M., Astrophys. J. 111, 580-581 (1950). - [2] Shortley, G. H., Aller, L. H., Baker, J. G., and Menzel, D. H., Astrophys. J. 93, 178-184 (1941). - [3] Garstang, R. H., Astrophys. J. 115, 506-508 (1952). - [4] Garstang, R. H., "The Airglow and the Aurora," p. 324 (ed. Armstrong and Dalgarno, Pergamon Press, New York, 1956). - [5] Bowen, I. S., Astrophys. J. 121, 306 (1955). ### N I. Forbidden Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | Type of
Transition | | S(at.u.) | Accu-
racy | Source | |-----|---------------------|---|--------------------------------------|-----------------------|--|------------------|------------------|-----------------------|--|---|------------------|------------------------| | 1 | $2p^3 - 2p^3$ | ⁴ S°- ² D°
(1 F) | 5200.7
5200.7
5198.5
5198.5 | 0
0
0
0 | 19223.9
19223.9
19233.1
19233.1 | 4
4
4
4 | 6
6
4
4 | m | 7.4×10^{-7} 6.2×10^{-6} 1.23×10^{-5} 4.0×10^{-6} | 2.32×10 ⁻⁸ 8.4×10 ⁻⁵ 2.55×10 ⁻⁷ 3.6×10 ⁻⁵ | C
D
C
D | 1
1, 2
1
1, 2 | | 2 | | ⁴ S° - ² P° (2 F) | 3466.4
3466.4
3466.4
3466.4 | 0
0
0 | 28840
28840
28840
28840 | 4
4
4
4 | 4 4 2 2 | e | 0.0062
3.4×10 ⁻⁸
0.00247
1.1×10 ⁻⁷ | $ \begin{vmatrix} 3.82 \times 10^{-5} \\ 4.1 \times 10^{-8} \\ 7.6 \times 10^{-6} \\ 6.4 \times 10^{-8} \end{vmatrix} $ | C
D
C
D | 1
1, 2
1
1, 2 | NI. Forbidden Transitions - Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gı | gk | Type of
Transi-
tion | $A_{ki}({ m sec}^{-1})$ | S(at.u.) | Accu-
racy | Source | |-----|---------------------|--|---|---|---|---------------------------------|---------------------------------|----------------------------|--|---|---------------|---| | 3 | | ² D°−2D° | $[10.9 imes 10^6] \ [10.9 imes 10^6]$ | 19223.9
19223.9 | 19233.1
19233.1 | 6 | 4 4 | m
e | $\begin{vmatrix} 1.25 \times 10^{-8} \\ 2.4 \times 10^{-22} \end{vmatrix}$ | $2.40 \\ 8.9 \times 10^{-5}$ | B
D | 1
1, 2 | | 4 | | ² D°- ² P° (3 F) | | | | | | | | | | | | | | (/ | 10395.4
10395.4
10395.4
10404.1
10404.1
10404.1
10404.1 | 19223.9
19223.9
19223.9
19233.1
19233.1
19233.1
19233.1 | 28840
28840
28840
28840
28840
28840
28840 | 6
6
6
4
4
4
4 | 4
4
2
4
4
2
2 | m e e m e m e | $\begin{array}{c} 9.3\times10^{-4}\\ 0.054\\ 0.0308\\ 0.00165\\ 0.0230\\ 0.00103\\ 0.0460 \end{array}$ | $\begin{array}{c} 1.55 \times 10^{-4} \\ 15.6 \\ 4.45 \\ 2.75 \times 10^{-4} \\ 6.7 \\ 8.6 \times 10^{-5} \\ 6.7 \end{array}$ | C C C C C C | 1
1, 2
1, 2
1
1, 2
1
1, 2 | ## N_{II} **Ground State** $1s^2 2s^2 2p^2 {}^3P_0$ Ionization Potential $29.593 \text{ eV} = 238751.1 \text{ cm}^{-1}$ ## **Allowed Transitions** ### List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |--------------------|-------------|----------------|-----|----------------|-----| | 529.343 | 10 | 745.836 | 6 | 2493.94 | 47 | | 529.405 | l io l | 746.976 | 8 | 2496.88 | 47 | | 529.481 | 10 | 775.957 | 4 [| 2520.27 | 46 | | 529.627 | 10 | 915.603 | 2 | 2520.85 | 46 | | 529.713 | 10 | 915.955 | 2 | 2522.27 | 46 | | 529.860 | 10 | 916.004 | 2 | 2522.46 | 46 | | 533.504 | 9 | 916.700 | 2 | 2524.49 | 46 | | 533.51 | 9 | 1083.98 | 1 | 2526.17 | 46 | | 533.577 | 9 | 1084.57 | 1 | 2709.82 | 49 | | 533.644 | 9 | 1085.5 | 1 1 | 2799.20 | 48 | | F22 7 26 | 9 | 1085.54 | 1 1 | 3006.86 | 38 | | 533.726 | 9 9 | 1085.70 | 1 | 3023.80 | 50 | | 533.809
572.07 | 13 | 1886.82 | 24 | 3311.4 | 39 | | 574.650 | 12 | 2206.10 | 44 | 3318.14 | 39 | | 574.050
582.150 | | 2316.46 | 45 | 3324.58 | 39 | | | 14 | 2316.65 | 45 | 3328.79 | 39 | | 635.180 | 14 | 2317.01 | 45 | 3330.30 | 39 | | 644.621 | 3
3
3 | 2317.01 | 45 | 3331.32 | 39 | | 644.825 | 3 | 2319.94 | 45 | 3437.16 | 20 | | 645.167 | 3 | 2321.05 | 45 | 3593.60 | 40 | | 660.280 | 5 | 2325.10 | 40 | 3373.00 | | | 671.014 | 7 | 2461.30 | 51 | 3609.09 | 40 | | 671.391 | 7 | 2488.12 | 47 | 3615.88 | 40 | | | 7 | 2488.75 | 47 | 3829.80 | 41 | | 671.629
671.770 | 7 | 2490.37 | 47 | 3838.39 | 41 | | 671.770
671.999 | 1 7 1 | 2493.16 | 47 | 3842.20 | 41 | List of tabulated lines—Continued | 0 | | | T | 9 - | | |---|----------------------------------|---|--|---|----------------------------------| | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | | 3847.38
3855.08
3856.07
3919.01
3995.00 | 41
41
41
26
19 | 5012.03
5016.39
5023.11
5025.67
5040.76 | 22
27
22
22
27
27
27 | 5941.67
5952.39
5954.28
5960.93
6114.6 | 31
31
60
31
52 | | 4026.08
4040.9
4124.08
4133.67
4145.76 | 62
61
23
23
23
23 | 5045.10
5104.45
5168.24
5170.08
5171.30 | 16
43
37
37
37 | 6136.89
6150.76
6167.82
6170.16
6173.40 | 52
52
52
52
52
52 | | 4176.16
4227.75
4239.4
4417.9
4427.97 | 63
42
64
65
65 | 5171.46
5172.32
5173.37
5174.46
5175.89 | 37
35
35
37
37 | 6242.52
6284.30
6318.80
6328.39
6340.57 | 59
34
55
55
55 | | 4431.82
4432.74
4433.48
4441.99
4447.03 | 65
65
65
65
25 | 5176.56
5177.06
5179.50
5179.50
5180.34 | 37
35
35
37
37
35 | 6346.86
6356.55
6357.57
6482.07
6491.79 | 55
55
55
18
54 | | 4459.96
4465.54
4475.8
4477.74
4488.15 |
29
29
29
29
29
29 | 5183.21
5184.96
5186.17
5190.42
5191.97 | 37
35
37
35
35
35 | 6504.61
6522.39
6532.55
6544.16
6545.53 | 54
54
54
54
54 | | 4507.56
4530.40
4552.54
4601.48
4607.16 | 29
67
66
17
17 | 5199.50
5313.43
5320.96
5327.45
5338.66 | 35
36
36
36
36 | 6554.47
6610.58
6629.80
6809.99
6834.09 | 54
33
53
58
58 | | 4613.87
4621.39
4630.54
4643.09
4677.93 | 17
17
17
17
17
68 | 5340.20
5351.21
5452.12
5454.26
5462.62 | 36
36
32
32
32
32 | 6847.24
6941.75
6966.81
6975.64
7003.0 | 58
57
57
57
57 | | 4774.22
4779.71
4781.17
4788.13
4793.66 | 28
28
28
28
28 | 5478.13
5480.10
5495.70
5526.26
5530.27 | 32
32
32
21
21 | 7013.98
7014.73
7138.87
7188.20
7214.6 | 57
57
56
56
56 | | 4803.27
4810.29
4987.38
4991.22
4994.36 | 28
28
30
22
22 | 5535.39
5540.16
5543.49
5551.95
5552.54 | 21
21
21
21
21
21 | 7215.06
7241.8
7256.53 | 56
56
56 | | 4994.36
4997.23
5001.13
5001.47
5002.69 | 30
22
27
27
27
16 | 5565.30
5666.64
5676.02
5679.56
5686.21 | 21
15
15
15
15 | | | | 5005.14
5005.14
5007.32
5010.62
5011.24 | 22
27
30
16
22 | 5710.76
5730.67
5927.82
5931.79
5940.25 | 15
15
31
31
31 | | | Data for the vacuum ultraviolet region of the spectrum are available from calculations of Bolotin et al. [1] and Kelly [2]. Bolotin et al. employ a "double configuration" approximation, i.e., they include to a first approximation the effects of configuration interaction which are expected to be drastic for these transitions. Kelly's calculations, in which these effects are neglected, are only used for some vacuum uv transitions for which configuration interaction is expected to be less pronounced. Nevertheless, his results may be quite uncertain. For higher excited lines, mainly in the visible, experimental work with a high current stabilized arc by Mastrup and Wiese [3] compares very well with approximate self-consistent field calculations by Kelly [4] and the Coulomb approximation. All these methods have been equally weighted in arriving at averaged values. However, the Coulomb approximation shows strong cancellation effects for 3s-4p and 3p-4d transitions and is not used there. Kelly's calculations, which seem to be less affected as judged from his fairly high ratios between the positive and negative contributions to the transition integrals, are exclusively used in these cases. For some multiplets with high azimuthal quantum numbers in the 3d-4f array (D-F and F-G) only multiplet values and no line values are listed, since intensity measurements by Eriksson [5] indicate considerable deviations from LS coupling and a transition to pair coupling. - [1] Bolotin, A. B., Levinson, I. B., and Levin, L. I., Soviet Phys. JETP 2, 391-395 (1956). - [2] Kelly, P. S., Astrophys. J. 140, 1247-1268 (1964). - [3] Mastrup, F., and Wiese, W., Z. Astrophys. 44, 259-279 (1958). - [4] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964). - [5] Eriksson, K. B. S., Arkiv Fysik 13, 303-329 (1958). NII. Allowed Transitions | | i — — · | | | | | | | | | | | r | | |-----|---------------------|--|---|--|--|----------------------------|----------------------------|---|--|---|---|-----------------------|----------------------------| | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8~{ m sec^{-1}})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | | 1 | $2s^22p^2-2s2p^3$ | ³ P - ³ D°
(luv) | 1085.1 | 89.3 | 92245 | 9 | 15 | 5.7 | 0.17 | 5.4 | 0.18 | E | 1 | | | | | 1085.70
1084.57
1083.98
1085.54
1084.57
[1085.5] | 131.3
49.1
0.0
131.3
49.1
131.3 | 92238
92251
92253
92251
92253
92253 | 5
3
1
5
3
5 | 7
5
3
5
3
3 | 5.7
4.3
3.2
1.4
2.4
0.16 | 0.14
0.13
0.17
0.025
0.042
0.0017 | 2.5
1.4
0.60
0.45
0.45
0.030 | $\begin{array}{c c} -0.15 \\ -0.42 \\ -0.77 \\ -0.90 \\ -0.90 \\ -2.07 \end{array}$ | E
E
E
E
E | ls
ls
ls
ls
ls | | 2 | | ³ P - ³ P° (2uv) | 916.34 | 89.3 | 109219 | 9 | 9 | 18 | 0.22 | 6.0 | 0.30 | E | 1 | | į | | | 916.700
916.004
916.700
915.955
916.004
915.603 | 131.3
49.1
131.3
49.1
49.1
0.0 | 109218
109218
109218
109225
109218
109218 | 5
3
5
3
1 | 5
3
1
5
3 | 13
4.4
7.3
18
4.4
5.9 | 0.17
0.055
0.055
0.074
0.093
0.22 | 2.5
0.50
0.84
0.67
0.84
0.67 | -0.08
-0.78
-0.56
-0.65
-0.56
-0.65 | E
E
E
E
E | ls
ls
ls
ls
ls | | 3 | | ³ P - ³ S° (4uv) | 644.99 | 89.3 | 155130 | 9 | 3 | 110 | 0.23 | 4.4 | 0.32 | E | 1 | | | | | 645.167
644.825
644.621 | 131.3
49.1
0.0 | 155130
155130
155130 | 5
3
1 | 3
3
3 | 62
37
12 | 0.23
0.23
0.23 | 2.4
1.5
0.49 | 0.06
-0.16
-0.64 | E
E
E | ls
ls
ls | | 4 | | ¹ D - ¹ D°
(7uv) | 775.957 | 15316 | 144189 | 5 | 5 | 49 | 0.45 | 5.7 | 0.35 | Е | 1 | | 5 | | ¹ D — ¹ P°
(9uv) | 660.280 | 15316 | 166766 | 5 | 3 | 77 | 0.30 | 3.3 | 0.18 | E | 1 | | 6 | | ¹ S - ¹ P°
(12uv) | 745.836 | 32687 | 166766 | 1 | 3 | 16 | 0.40 | 0.98 | -0.40 | E | 1 | N II. Allowed Transitions - Continued | No. | . Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8 { m sec}^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|--------------------------|--|---|--|--|----------------------------|----------------------------|---------------------------------------|--|--|--|----------------------------------|----------------------------| | 7 | 2p² —
2p(²P°)3s | 3P - 3P°
(3uv) | 671.48 | 89.3 | 149013 | 9 | 9 | 13 | 0.089 | 1.8 | -0.10 | E | 2 | | | | | 671.391
671.629
671.999
671.770
671.014
671.391 | 131.3
49.1
131.3
49.1
49.1
0.0 | 149077
148941
148941
148909
149077
148941 | 5
3
5
3
1 | 5
3
3
1
5
3 | 9.9
3.3
5.5
13
3.3
4.4 | 0.067
0.022
0.022
0.030
0.037
0.89 | 0.74
0.15
0.25
0.20
0.25
0.20 | -0.48
-1.18
-0.95
-1.05
-0.95
-1.05 | E
E
E
E | ls
ls
ls
ls
ls | | 8 | | ¹ D - ¹ P° (8uv) | 746.976 | 15316 | 149189 | 5 | 3 | 20 | 0.10 | 1.2 | -0.30 | E | 2 | | 9 | 2p² —
2p(²P°)3d | ³ P - ³ D°
(5uv) | 533.67 | 89.3 | 187472 | 9 | 15 | 36 | 0.26 | 4.1 | 0.37 | D- | 2 | | | | | 533.726
533.577
533.504
533.809
533.644
[533.51] | 131.3
49.1
0.0
131.3
49.1
0.0 | 187493
187462
187438
187462
187438
187438 | 5
3
1
5
3
5 | 7
5
3
5
3
3 | 36
27
20
9.1
15 | 0.22
0.19
0.26
0.039
0.065
0.0026 | 1.9
1.0
0.45
0.34
0.34
0.023 | 0.04
-0.23
-0.59
-0.71
-0.71
-1.89 | D-
D-
D-
D-
D-
D- | ls
ls
ls
ls
ls | | 10 | | 3P - 3P°
(6uv) | 529.68 | 89.3 | 188884 | 9 | 9 | 20 | 0.082 | 1.3 | -0.13 | D- | 2 | | | | | 529.860
529.481
529.713
529.405
529.627
529.343 | 131.3
49.1
131.3
49.1
49.1
0.0 | 188858
188910
188910
188938
188858
188858 | 5
3
5
3
1 | 5
3
1
5
3 | 15
4.9
8.1
20
4.9
6.5 | 0.062
0.020
0.021
0.027
0.034
0.082 | 0.54
0.11
0.18
0.14
0.18
0.14 | -0.51
-1.21
-0.99
-1.09
-0.99
-1.09 | D-
D-
D-
D-
D-
D- | ls
ls
ls
ls
ls | | 11 | | ¹ D - ¹ D°
(10uv) | 582.150 | 15316 | 187092 | 5 | 5 | 13 | 0.064 | 0.61 | -0.50 | D- | 2 | | 12 | | ¹D - ¹F°
(11uv) | 574.650 | 15316 | 189336 | 5 | 7 | 35 | 0.24 | 2.3 | 0.08 | D- | 2 | | 13 | | $^{1}D-^{1}P^{\circ}$ | [572.07] | 15316 | 190121 | 5 | 3 | 0.97 | 0.0029 | 0.0270 | -1.84 | D- | 2 | | 14 | | ¹ S - ¹ P° (13uv) | 635.180 | 32687 | 190121 | 1 | 3 | 18 | 0.32 | 0.68 | -0.49 | D- | 2 | | 15 | $2p3s - 2p(^2P^\circ)3p$ | ³ P°- ³ D | 5679.4 | 149013 | 166616 | 9 | 15 | 0.56 | 0.452 | 76 | 0.61 | С | 3, 4, ca | | - | | | 5679.56
5666.64
5676.02
5710.76
5686.21
5730.67 | 149077
148941
148909
149077
148941
149077 | 166679
166583
166522
166583
166522
166522 | 5
3
1
5
3
5 | 7
5
3
5
3
3 | 0.423
0.310
0.137
0.231 | 0.380
0.339
0.450
0.067
0.112
0.00448 | 35.5
19.0
8.4
6.3
6.3
0.423 | 0.278
0.008
-0.347
-0.475
-0.473
-1.65 | C C C C C C | ls
ls
ls
ls
ls | | 16 | | ³ P°- ³ S | 5028.8 | 149013 | 168893 | 9 | 3 | 0.76 | 0.097 | 14.4 | -0.061 | c | 3, 4, ca | | | | | 5045.10
5010.62
5002.69 | 149077
148941
148909 | 168893
168893
168893 | 5
3
1 | 3
3
3 | 0.268 |
0.094
0.101
0.095 | 7.8
5.0
1.57 | $ \begin{array}{r} -0.328 \\ -0.52 \\ -1.021 \end{array} $ | C
C
C | 3n $3n$ $3n$ | | 17 | | ³ P°- ³ P (5) | 4623.2 | 149013 | 170637 | 9 | 9 | 1.05 | 0.337 | 46.1 | 0.481 | C | 3, 4, <i>ca</i> | | | | | 4630.54
4613.87
4643.09
4621.39
4601.48
4607.16 | 149077
148941
149077
148941
148941
148909 | 170667
170609
170609
170573
170667
170609 | 5
3
5
3
1 | 5
3
1
5
3 | 0.196
0.466
0.90
0.270 | 0.269
0.063
0.090
0.096
0.143
0.325 | 20.5
2.85
6.9
4.37
6.5
4.93 | $0.129 \\ -0.73 \\ -0.345 \\ -0.54 \\ -0.368 \\ -0.488$ | CCCCC | 3n
3n
3n
3n
3n | N II. Allowed Transitions—Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8 { m \ sec^{-1}})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|---|--|---|--|--|--|--------------------------------------|--|---|---|---|---|----------------------------------| | 18 | | ¹ P° – ¹ P
(8) | 6482.07 | 149189 | 164612 | 3 | 3 | 0.365 | 0.230 | 14.7 | -0.162 | С | 4, ca | | 19 | | ¹ P° - ¹ D
(12) | 3995.00 | 149189 | 174213 | 3 | 5 | 1.58 | 0.63 | 24.8 | 0.276 | С | 4, ca | | 20 | | ¹ P°- ¹ S
(13) | 3437.16 | 149189 | 178274 | 3 | 1 | 2.40 | 0.142 | 4.82 | -0.371 | С | 4, ca | | 21 | $\begin{vmatrix} 2s2p^23s - \\ 2s2p^2(^4P)3p \end{vmatrix}$ | ⁵ P — ⁵ D° (63) | 5537.4 | 205677 | 223731 | 15 | 25 | 0.56 | 0.432 | 118 | 0.81 | С | ca | | | 232p (1)3p | (00) | 5535.39
5530.27
5526.26
5551.95
5543.49
5535.39
5565.30
5552.54
5540.16 | 205726
205656
205600
205726
205656
205600
205726
205656
205600 | 223787
223733
223690
223733
223690
223660
223660
223645 | 7
5
3
7
5
3
7
5
3
7
5
3 | 9
7
5
7
5
3
5
3 | 0.56
0.377
0.198
0.187
0.327
0.422
0.0370
0.140
0.56 | 0.334
0.242
0.151
0.086
0.151
0.194
0.0123
0.0387
0.086 | 42.6
22.0
8.3
11.0
13.8
10.6
1.57
3.54
4.71 | 0.368
0.083
-0.343
-0.219
-0.123
-0.235
-1.066
-0.71
-0.59 | 000000000 | ls ls ls ls ls ls ls ls ls | | 22 | | ⁵ P - ⁵ P° (64) | 5006.9 | 205677 | 225644 | 15 | 15 | 0.77 | 0.291 | 72 | 0.64 | С | ca | | | | | 5012.03
5005.14
4997.23
5023.11
5011.24
4994.36
4991.22 | 205726
205656
205600
205726
205656
205656
205600 | 225673
225629
225605
225629
225605
225673
225629 | 7
5
3
7
5
5
3 | 7
5
3
5
3
7
5 | 0.51
0.064
0.194
0.358
0.58
0.260
0.351 | 0.194
0.0242
0.073
0.097
0.131
0.136
0.218 | 22.4
2.00
3.59
11.2
10.8
11.2
10.8 | 0.132
-0.92
-0.66
-0.170
-0.185
-0.170
-0.184 | 000000 | ls ls ls ls ls ls ls | | 23 | | ⁵ P - ⁵ S° (65) | 4137.4 | 205677 | 229840 | 15 | 5 | 1.37 | 0.117 | 24.0 | 0.244 | С | ca | | | | | 4145.76
4133.67
4124.08 | 205726
205656
205600 | 229840
229840
229840 | 7
5
3 | 5
5
5 | 0.64
0.458
0.276 | 0.117
0.117
0.117 | 11.2
8.0
4.78 | $ \begin{array}{r} -0.087 \\ -0.232 \\ -0.453 \end{array} $ | C
C
C | ls
ls
ls | | 24 | $2p3s - 2p(^2P^\circ)4p$ | ¹ P° – ¹ P
(14uv) | 1886.82 | 149189 | 202170 | 3 | 3 | 0.52 | 0.028 | 0.52 | -1.08 | D | 4 | | 25 | $\begin{array}{c} 2p3p - \\ 2p(^2\mathbf{P}^{\circ})3d \end{array}$ | ¹ P — ¹ D° (15) | 4447.03 | 164612 | 187092 | 3 | 5 | 1.30 | 0.642 | 28.2 | 0.285 | C+ | 3, 4, ca | | 26 | | ¹ P – ¹ P ° (17) | 3919.01 | 164612 | 190121 | 3 | 3 | 1.00 | 0.231 | 8.93 | -0.160 | C+ | 3, 4, ca | | 27 | | ³ D − ³ F° (19) | 5004.5 | 166616 | 186593 | 15 | 21 | 1.22 | 0.639 | 158 | 0.982 | | 3, 4, ca | | | | (25) | 5005.14
5001.47
5001.13
5025.67
5016.39
5040.76 | 166679
166583
166522
166679
166583
166679 | 186653
186572
186512
186572
186512
186512 | 7
5
3
7
5
7 | 9
7
5
7
5
5 | 1.22
1.08
1.02
0.134
0.188
0.00525 | 0.588
0.568
0.640
0.0506
0.0710
0.00143 | 67.8
46.8
31.6
5.86
5.86
0.166 | $\begin{array}{c} 0.614 \\ 0.454 \\ 0.283 \\ -0.451 \\ -0.450 \\ -1.999 \end{array}$ | C + C + C + C + C + C + C + C + C + C + | ls
ls
ls
ls
ls | | 28 | | $^{3}D - ^{3}D^{\circ}$ (20) | 4793.5 | 166616 | 187472 | 15 | 15 | 0.356 | 0.123 | 29.0 | 0.264 | l | 3, 4, ca | | | | (20) | 4803.27
4788.13
4779.71
4810.29
4793.66
4781.17
4774.22 | 166679
166583
166522
166679
166583
166583 | 187493
187462
187438
187462
187438
187493
187462 | 7
5
3
7
5
5
3 | 7
5
3
5
3
7
5 | 0.313
0.248
0.269
0.0550
0.0889
0.0400
0.0540 | 0.108
0.0854
0.0921
0.0136
0.0184
0.0192
0.0308 | 12.0
6.73
4.35
1.51
1.45
1.51 | $\begin{array}{c} -0.120 \\ -0.370 \\ -0.558 \\ -1.021 \\ -1.037 \\ -1.018 \\ -1.035 \end{array}$ | C+
C+
C+
C+ | ls
ls
ls
ls
ls
ls | N II. Allowed Transitions - Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(10^8~{ m sec^{-1}})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|------------------------------|---|--------------------|-----------------------|-------------------------|--|-----------------------------------|------------------------------|-----------------------|----------|--|--|-----------| | 29 | | ³ D - ³ P° | 4489.4 | 166616 | 188884 | 15 | 9 | 0.0460 | 0.0083 | 1.85 | -0.90 | С | 4, ca | | | | (21) | 4507.56 | 166679 | 188858 | 7 | 5 | 0.0381 | 0.0083 | 0.86 | -1.237 | С | ls | | | | | 4477.74 | 166583 | 188910 | 5 | $\begin{bmatrix} 3 \end{bmatrix}$ | 0.0348 | 0.0063 | 0.463 | -1.50 | č | ls | | | | | 4459.96 | 166522 | 188938 | 3 | ĺ | 0.0468 | 0.00465 | 0.205 | -1.86 | Č | ls | | | 1 | | 4488.15 | 166583 | 188858 | 5 | 5 | 0.0069 | 0.00208 | 0.154 | -1.98 | C | ls | | | | | 4465.54 | 166522 | 188910 | 3 | 3 | 0.0117 | 0.00349 | 0.154 | -1.98 | l C | ls | | | } | 1 | [4475.8] | 166522 | 188858 | 3 | 5 | 4.65×10^{-4} | 2.33×10^{-4} | 0.0103 | -3.156 | С | ls | | 30 | | $^{3}S - ^{3}P^{\circ}$ (24) | 5000.8 | 168893 | 188884 | 3 | 9 | 0.75 | 0.84 | 41.4 | 0.401 | C | 3, 4, ca | | | | ` ′ | 5007.32 | 168893 | 188858 | 3 | 5 | 0.77 | 0.483 | 23.9 | 0.161 | C | 3n | | | | | 4994.36 | 168893 | 188910 | 3 | 3 | 0.74 | 0.276 | 13.6 | -0.082 | C | 3n | | | | 1 | 4987.38 | 168893 | 188938 | 3 | 1 | 0.63 | 0.078 | 3.83 | -0.63 | C | 3n | | 31 | | ³ P - ³ D° (28) | 5938.5 | 170637 | 187472 | 9 | 15 | 0.565 | 0.498 | 87.6 | 0.651 | C+ | 3, 4, ca | | | | (20) | 5941.67 | 170667 | 187493 | 5 | 7 | 0.564 | 0.418 | 40.9 | 0.320 | C+ | ls | | | | i i | 5931.79 | 170609 | 187462 | 3 | 5 | 0.425 | 0.374 | 21.9 | 0.050 | C+ | ls | | | | | 5927.82 | 170573 | 187438 | 1 | 3 | 0.315 | 0.498 | 9.72 | -0.303 | Č+ | ls | | | | | 5952.39 | 170667 | 187462 | 5 | 5 | 0.140 | 0.0745 | 7.30 | -0.429 | Č+ | ls | | | | | 5940.25 | 170609 | 187438 | 3 | 3 | 0.235 | 0.124 | 7.30 | -0.428 | Č+ | ls | | ĺ | | 1 1 | 5960.93 | 170667 | 187438 | 5 | 3 | 0.0155 | 0.00496 | 0.487 | -1.605 | C+ | ls | | 32 | | ³ P - ³ P° (29) | 5478.8 | 170637 | 188884 | 9 | 9 | 0.400 | 0.180 | 29.2 | 0.209 | С | 4, ca | | | | () | 5495.70 | 170667 | 188858 | 5 | 5 | 0.298 | 0.135 | 12.2 | -0.171 | C | 1. | | - 1 | | 1 | 5462.62 | 170609 | 188910 | 3 | 3 | 0.101 | 0.0450 | 2.43 | $-0.171 \\ -0.87$ | C | ls
ls | | | | | 5480.10 | 170667 | 188910 | 5 | 3 | 0.167 | 0.0450 | 4.06 | -0.65 | Č | ls | | [| | [[| 5454.26 | 170609 | 188938 | 3 | l | 0.405 | 0.060 | 3.24 | -0.74 | č | ls | | İ | | | 5478.13 | 170609 | 188858 | 3 | 5 | 0.100 | 0.075 | 4.06 | -0.65 | č | ls | | ľ | | | 5452.12 | 170573 | 188910 | 1 | 3 | 0.135 | 0.181 | 3.24 | -0.74 | C
C | ls | | 33 | | ¹ D ~ ¹ F° (31) | 6610.58 | 174213 | 189336 | 5 | 7 | 0.59 | 0.54 | 59 | 0.433 | С | 4, ca | | 34 | | ¹ D - ¹ P° | 6284.30 | 174213 | 190121 | 5 | 3 | 0.0188 | 0.0067 | 0.69 | -1.477 | С | 4, ca | | 35 | 2s2p ² 3p — | (32)
5D°-5F | 5177.8 | 223731 | กรอดรถ | 95 | 25 | 1.00 | 0.57 | 244 | | | -, | | | $2s2p^{2}(^{4}\mathrm{P})3d$ | (66) | ľ | ľ | 243039 | 25 | 35 | 1.02 | 0.57 | 244 | 1.154 | С | ca | | | | | 5179.50 | 223787 | 243088 | 9 | 11 | | 0.50 | 70 | 0.65 | C | ls | | | | İ | 5175.89 | 223733 | 243048 | 7 | 9 | | 0.440 | 52 | 0.488 | $\tilde{\mathbf{C}}$ | ls | | | | J | 5173.37
5172.32 | 223690
223660 | 243014 | 5 | 7 | 0.70 | 0.394 | 33.5 | 0.294 | C.] | ls | | | | 1 | 5172.32 | 223645 | 242989
242973 | 3 | 5 | 0.57 | 0.382 | 19.5 | 0.060 | C | ls | | 1 | | | 5190.42 | 223787 | 243048 | 1 9 | 3 | | 0.57 | | -0.242 | C | ls | | - 1 | | - 1 | 5184.96 | 223733 | 243014 | 7 | 7 | | 0.068
0.123 | 10.5 | -0.211 | $\stackrel{\circ}{C}$ |
ls. | | - 1 | 1 |) | 5180.34 | 223690 | 242989 | 5 | 5 | | 0.123 | 14.7 | -0.066 | Č | ls | | | | ļ | 5177.06 | 223660 | 242973 | 3 | 3 | | 0.191 | | $\begin{bmatrix} -0.087 \\ -0.242 \end{bmatrix}$ | $\stackrel{c}{c}$ | ls | | | ł | İ | 5199.50 | 223787 | 243014 | 9 | 7 | | 0.00454 | | $-0.242 \\ -1.388$ | Č | ls | | ĺ | ĺ | ĺ | 5191.97 | 223733 | 242989 | 7 | | | 0.0117 | | -1.088 | C | ls
Is | | | ļ | 1 | 5184.96 | 223690 | 242973 | 5 | | | 0.0163 | | -1.088 | č | ls
ls | | 36 | | ⁵ P°- ⁵ P
(69) | 5335.8 | 225644 | 244380 | 15 | 15 | | 0.178 | 46.8 | 0.427 | c | ca | | | | (0) | 5351.21 | 225673 | 244355 | 7 | 7 | 0.275 | 1110 | 14.6 | 0.000 | | | | | | } | 5327.45 | 225629 | 244393 | 5 | | | 0.118
0.0148 | | -0.082 | C | ļs | | | | | 5313.43 | 225605 | 244419 | $\check{3}$ | | | 0.0447 | | -1.129
-0.87 | C | ls | | | | | 5340.20 | 225673 | 244393 | $\begin{bmatrix} 3 \\ 7 \end{bmatrix}$ | | | 0.059 | | -0.87
-0.382 | Ç | ls | | | | 1 | 5320.96 | 225629 | 244419 | 5 | | | 0.080 | | | $\begin{bmatrix} C \\ C \end{bmatrix}$ | ls
ls | | | 1 | 1 | 5338.66 | 225629 | 944955 | | | | | | | u l | ιs | | - (| [| | 5320.96 | 225605 | 244355
244393 | 5 3 | | $0.139 \ 0.189 \ 0.189$ | 0.083 | 7.3 | -0.383 | c l | ls | ${f N}$ II. Allowed Transitions – Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(10^8 { m sec}^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|--------------------------|--|---|-------------------------|-------------------------|--------|--------|------------------------------|----------------------|-----------------|---|---------------|----------| | 37 | | ⁵ P° - ⁵ D
(70) | 5175.9 | 225644 | 244959 | 15 | 25 | 0.83 | 0.56 | 142 | 0.92 | С | ca | | | | (, | 5179.50 | 225673 | 244974 | 7 | 9 | 0.83 | 0.429 | 51 | 0.478 | С | ls | | j | Ì | 1 | 5171.46 | 225629 | 244960 | 5 | 7 | 0.56 | 0.312 | 26.5 | 0.193 | | ls | | | | | 5168.24 | 225605 | 244949 | 3 | 5 | 0.292 | 0.195 | 9.9 | -0.233 | C | ls | | | | | 5183.21 | 225673 | 244960 | 7 | 7 | 0.276 | 0.111 | 13.3 | -0.109 | C | ls | | | | | 5174.46 | 225629 | 244949 | 5 | 5 | 0.485 | 0.195 | 16.6 | -0.012 | C | ls | | | | | 5170.08 | 225605 | 244941 | 3 | 3 | 0.62 | 0.250 | 12.8 | -0.124 | C | ls | | | | | 5186.17
5176.56 | 225673
225629 | 244949
244941 | 7 | 5 | 0.055 | 0.0159 | 1.90 | -0.95 | C | ls | | | | | 5170.30 | 225605 | 244941 | 5 | 3
1 | 0.208
0.83 | 0.050 | 4.26 | -0.60 | C | ls. | | 38 | 222 - | 1P _ 1P° | | | | | | | 0.111 | 5.7 | -0.477 | C | ls | | | 2p3p -
2p(2P°)4s | (18) | 3006.86 | 164612 | 197859 | 3 | 3 | 0.54 | 0.073 | 2.17 | -0.66 | C | ca | | 39 | | ³ D - ³ P°
(22) | 3328.3 | 166616 | 196653 | 15 | 9 | 1.11 | 0.111 | 18.2 | 0.220 | C | ca | | | | | 3328.79 | 166679 | 196712 | 7 | 5 | 0.93 | 0.111 | 8.5 | -0.110 | C | ls | | | | [| 3331.32 | 166583 | 196593 | 5 | 3 | 0.83 | 0.083 | 4.55 | -0.382 | C | ls | | | | | 3330.30
3318.14 | 166522 | 196541 | 3 | 1 | 1.11 | 0.061 | 2.02 | -0.73 | C | ls
ls | | | | | 3324.58 | 166583
166522 | 196712
196593 | 5
3 | 5 3 | 0.169
0.279 | 0.0278
0.0463 | 1.52 | -0.86 | C
C
C | ls. | | | | | [3311.4] | 166522 | 196712 | 3 | 5 | 0.219 | 0.0403 | $1.52 \\ 0.101$ | $\begin{vmatrix} -0.86 \\ -2.033 \end{vmatrix}$ | C | ls
ls | | 40 | | ³ S - ³ P° | 3601.3 | 168893 | 196653 | 3 | 9 | 0.230 | 0.134 | 4.77 | -0.395 | C | ca | | | | (26) | 3593.60 | 168893 | 196712 | 3 | 5 | 0.231 | 0.075 | 2.65 | 0.65 | | , | | | | | 3609.09 | 168893 | 196593 | 3 | 3 | 0.231 | 0.073 | 1.59 | -0.65
-0.87 | C | ls | | | | | 3615.88 | 168893 | 196541 | 3 | i | 0.227 | 0.0148 | 0.53 | -0.87
-1.351 | č | ls
ls | | 41 | | ³P−3P° | 3842.7 | 170637 | 196653 | 9 | 9 | 0.69 | 0.153 | 17.4 | 0.138 | C | ca | | | | (30) | 3838.39 | 170667 | 196712 | 5 | 5 | 0.52 | 0.116 | 7.3 | -0.238 | С | ls | | l | | | 3847.38 | 170609 | 196593 | 3 | 3 | 0.172 | 0.0382 | 1.45 | -0.94 | C | ls | | | | | 3856.07 | 170667 | 196593 | 5 | 3 | 0.285 | 0.0381 | 2.42 | -0.72 | l C | ls | | | | | 3855.08 | 170609 | 196541 | 3 | 1 | 0.68 | 0.051 | 1.93 | -0.82 | C | ls | | | | | 3829.80 | 170609 | 196712 | 3 | 5 | 0.175 | 0.064 | 2.42 | -0.72 | C | ls | | | | | 3842.20 | 170573 | 196593 | 1 | 3 | 0.230 | 0.153 | 1.93 | -0.82 | C | ls | | 42 | | ¹ D - ¹ P° (33) | 4227.75 | 174213 | 197859 | 5 | 3 | 1.06 | 0.171 | 11.9 | -0.068 | С | ca | | 43 | | ¹ S - ¹ P° (34) | 5104.45 | 178274 | 197859 | 1 | 3 | 0.189 | 0.222 | 3.73 | -0.65 | С | ca | | 44 | $2p3p - 2p(^2P^\circ)4d$ | ¹ P - ¹ D°
(15uv) | 2206.10 | 164612 | 209927 | 3 | 5 | 0.49 | 0.060 | 1.3 | -0.75 | D- | 4 | | 45 | | ³ D - ³ F° (16uv) | 2317.1 | 166616 | 209761 | 15 | 21 | 0.56 | 0.063 | 7.2 | -0.03 | D- | 4 | | | | (1001) | 2317.01 | 166679 | 209825 | 7 | 9 | 0.56 | 0.058 | 3.1 | -0.39 | D- | ls | | | | | 2316.46 | 166583 | 209740 | 5 | 7 | 0.49 | 0.055 | 2.1 | -0.56 | D – | ls | | | | | 2316.65 | 166522 | 209675 | 3 | 5 | 0.46 | 0.061 | 1.4 | -0.74 | D- | ls | | Į | | | 2321.65 | 166679 | 209740 | 7 | 7 | 0.062 | 0.0050 | 0.27 | -1.45 | <u>D</u> – | ls | | | | | 2319.94 | 166583 | 209675 | 5 | 5 | 0.088 | 0.0071 | 0.27 | -1.45 | D- | ls | | | | | 2325.16 | 166679 | 209675 | 7 | 5 | 0.0024 | 1.4×10^{-4} | 0.0076 | -3.00 | D- | ls | | 46 | | ³ P - ³ D° (19uv) | 2521.9 | 170637 | 210278 | 9 | 15 | 0.33 | 0.052 | 3.9 | -0.33 | D- | 4 | | | | | 2522.27 | 170667 | 210302 | 5 | 7 | 0.32 | 0.043 | 1.8 | -0.66 | D- | ls | | | | | 2520.85 | 170609 | 210266 | 3 | 5 | 0.25 | 0.039
0.052 | $0.97 \\ 0.43$ | -0.93
-1.29 | D –
D – | ls ls | | | | | 2520.27 | 170573
170667 | 210240
210266 | 1
5 | 3
5 | 0.18
0.081 | 0.032 | $0.43 \\ 0.32$ | -1.41 | D- | ls
ls | | ļ | | | $\begin{array}{c} 2524.49 \\ 2522.46 \end{array}$ | 170609 | 210240 | 3 | 3 | 0.13 | 0.0077 | 0.32 | -1.41 | Ď- | ls | | J | | 1 | 2526.17 | 170667 | 210240 | 5 | | 0.0092 | 5.3×10^{-4} | 0.022 | | Ď- | ls | N II. Allowed Transitions - Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(cm^{-1})$ | $E_k(cm^{-1})$ | g_i | g | $A_{ki}(10^8~{ m sec}^{-1}$ |) fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|--|--------------------|------------------|------------------|--|-----|-----------------------------|-----------------------|----------|--|------------------------|-----------------| | 47 | | ³ P - ³ P° (20uv) | 2493.5 | 170637 | 210729 | 9 | g | 0.19 | 0.018 | 1.3 | -0.80 | D — | 4 | | | | (20uv) | 2496.88 | 170667 | 210705 | 5 | 5 | 0.14 | 0.013 | 0.54 | -1.18 | D- | 10 | | | | ĺ | 2490.37 | | 210752 | 3 | 3 | 0.048 | 0.0045 | 0.34 | $\begin{bmatrix} -1.16 \\ -1.87 \end{bmatrix}$ | D- | ls
ls | | | | | 2493.94 | | 210752 | 5 | | | 0.0044 | 0.18 | -1.66 | D- | ls | | | | } | 2488.75 | 170609 | 210777 | 3 | | | 0.0057 | 0.14 | -1.77 | B- | ls | | | | | 2493.16 | 170609 | 210705 | 3 | | | 0.0073 | 0.18 | -1.66 | $ \tilde{\mathbf{D}}-$ | ls | | | | | 2488.12 | 170573 | 210752 | 1 | | | 0.017 | 0.14 | -1.77 | $\tilde{\mathbf{p}}$ | ls | | 48 | | ¹ D - ¹ D° (21uv) | 2799.20 | 174213 | 209927 | 5 | 5 | 0.079 | 0.0093 | 0.43 | -1.33 | D- | 4 | | 49 | | ¹ D - ¹ F° (22uv) | 2709.82 | 174213 | 211031 | 5 | 7 | 0.35 | 0.054 | 2.4 | -0.57 | D- | 4 | | 50 | | ¹ S - ¹ P° (35) | 3023.80 | 178274 | 211336 | 1 | 3 | 0.14 | 0.057 | 0.57 | -1.24 | D- | 4 | | 51 | 2p3p -
2p(2P°)5s | ¹ D - ¹ P° (23uv) | 2461.30 | 174213 | 214828 | 5 | 3 | 0.353 | 0.0193 | 0.78 | -1.017 | С | 4, ca | | 52 | 2p3d —
2p(2P°)4p | ³ F° - ³ D (36) | 6168.1 | 186593 | 202801 | 21 | 15 | 0.363 | 0.148 | 63 | 0.492 | С | 4, ca | | | | | 6167.82 | 186653 | 202862 | 9 | 7 | 0.333 | 0.148 | 27.0 | 0.124 | С | ls | | ł | | | 6173.40
6170.16 | 186572 | 202766 | 7 | 5 | 0.320 | 0.131 | 18.6 | -0.039 | č | ls | | İ | | | 6136.89 | 186512
186572 | 202715 | 5 | 3 | 0.362 | 0.124 | 12.6 | -0.207 | С | ls | | - 1 | | | 6150.76 | 186512 | 202862
202766 | 7 | 7 | 0.0293 | 0.0165 | 2.34 | -0.94 | C | ls | | } | | | 6114.6 | 186512 | 202760 | 5 | 5 | 0.0407 | 0.0231 | 2.34 | -0.94 | C | ls
ls | | | | ! | 022110 | 100012 | 202002 | J | ١ ' | 8.4×10^{-4} | 6.6×10^{-4} | 0.066 | -2.48 | С | ls | | 53 | | ¹ D° – ¹ P
(41) | 6629.80 | 187092 | 202170 | 5 | 3 | 0.283 | 0.112 | 12.2 | -0.253 | С | 4, ca | | 54 | | ³ D°−3D
(45) | 6521.8 | 187472 | 202801 | 15 | 15 | 0.058 | 0.0373 | 12.0 | -0.253 | С | 4, ca | | Í | ĺ | | 6504.61 | 187493 | 202862 | 7 | 7 | 0.052 | 0.0332 | 4.98 | -0.63 | C | ١, | | | | | 6532.55 | 187462 | 202766 | 5 | 5 | 0.0404 | 0.0259 | 2.78 | -0.89 | č | ls | | ı | ĺ | | 6544.16 | 187438 | 202715 | 3 | 3 | 0.0434 | 0.0278 | 1.80 | -1.078 | č | ls
ls | | 1 | | | 6545.53 | 187493 | 202766 | 7 | 5 | 0.0090 | 0.00411 | 0.62 | -1.54 | č | ls
Is | | - 1 | | | 6554.47
6491.79 | 187462
187462 | 202715 | 5 | 3 | 0.0144 | 0.0056 | 0.60 | -1.56 | C | ls
ls | | 1 | ľ | i | 6522.39 | 187438 | 202862 | 5 | 7 | 0.0066 | 0.0058 | 0.62 | -1.54 | C
C | ls | | 1 | | J | 0322.39 | 10/456 | 202766 | 3 | 5 | 0.0088 | 0.0093 | 0.60 | -1.55 | C | ls | | 55 | | ³ D° - ³ P
(46) | 6345.8 | 187472 | | 15 | 9 | 0.306 | 0.111 | 34.7 | 0.220 | С | 4, ca | | - 1 | ĺ | J | 6340.57 | 187493 | 203260 | 7 | 5 | 0.258 | 0.111 | 16.2 | -0.110 | c | 1. | | | | | 6356.55
6357.57 | 187462 | 203189 | 5 | 3 | 0.229 | 0.083 | 8.7 | -0.381 | č | ls
ls | | | 1 | 4 | 6328.39 | 187438 | 203165 | 3 | 1 | 0.304 | 0.061 | 3.85 | -0.74 | \check{c} | $l_s^{\iota s}$ | | | [| ĺ | 6346.86 | 187462
187438 | 203260 | 5 | 5 | 0.0462 | 0.0277 | 2.89 | -0.86 | Č [| l_s^{is} | | | } | 1 | 6318.80 | 187438 | 203189
203260 |
$\begin{vmatrix} 3 \\ 3 \end{vmatrix}$ | 3 | 0.076 | 0.0461 | 2.89 | -0.86 | C | ls | | | İ | _ [| 3010.00 | 10.100 | 203200 | 9 | 5 | 0.00310 | 0.00310 | 0.193 | - 2.033 | C | ls | | 56 | } | ³ P° – ³ D (52) | 7183.5 | 188884 | 202801 | 9 | 15 | 0.00324 | 0.00418 | 0.89 | - 1.424 | С | 4, ca | | | | | 7138.87 | 188858 | 202862 | 5 | 7 | | 0.00355 | 0.417 | -1.75 | $_{\rm C}$ | 1. | | | ſ | ſ | 7215.06
7256.53 | 188910 | 202766 | 3 | 5 | 0.00242 | 0.00314 | 0.224 | -2.026 | č | ls
ls | | | - | | 7188.20 | 188938
188858 | 202715 | 1 | 3 | | 0.00414 | | -2.383 | č | l_s | | - 1 | | 1 | [7241.8] | 188910 | 202766 | 5 | | | 6.3×10^{-4} | 0.074 | -2.50 | č | l_s^{is} | | - 1 | | ſ | <u> </u> | 188858 | 202715
202715 | 3 | 3 | | 0.00103 | 0.074 | -2.51 | Č | l_s | | 57 | | 3P°-3P | | ì | ľ | | | J | 4.18×10^{-5} | 0.00497 | -3.68 | C | ls | | | | (53) | | 188884 | 203226 | 9 | 1 | 1 | 0.062 | 12.9 | -0.250 | C | 4, ca | | | | 1 | | 188858
188910 | 203260 | 5 | | | 0.0473 | | -0.63 | C | ls | | | | ļ | | 188858 | 203189
203189 | 3 | | | 0.0165 | 1.14 | - 1.306 | C | l_s | | ' | ļ | • | 02.0.UT | T00000 | 200109 | JI | 3 | 0.0356 | 0.0156 | 1.79 | -1.108 | c | ls | N II. Allowed Transitions - Continued | | | | | | | - | _ | | T T | | | | | |-----|---------------------|--|---|--|--|----------------------------|-----------------------|--|--|--|--|---------------|----------------------------| | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8~{ m sec^{-1}})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | | - | | | 7013.98
6966.81
7014.73 | 188910
188910
188938 | 203165
203260
203189 | 3
3
1 | 1
5
3 | 0.084
0.0215
0.0280 | 0.0206
0.0260
0.062 | 1.43
1.79
1.43 | -1.208
-1.108
-1.208 | C
C
C | ls
ls
ls | | 58 | | ³ P° – ³ S
(54) | 6824.5 | 188884 | 203533 | 9 | 3 | 0.355 | 0.083 | 16.7 | -0.129 | С | 4, ca | | | | (01) | 6809.99
6834.09
6847.24 | 188858
188910
188938 | 203533
203533
203533 | 5
3
1 | 3
3
3 | 0.199
0.118
0.0389 | 0.083
0.083
0.082 | 9.3
5.6
1.85 | $ \begin{array}{r r} -0.382 \\ -0.60 \\ -1.086 \end{array} $ | C
C
C | ls
ls
ls | | 59 | | ¹ F° - ¹ D
(57) | 6242.52 | 189336 | 205351 | 7 | 5 | 0.341 | 0.142 | 20.5 | -0.001 | С | 4, ca | | 60 | | ¹ P°- ¹ S
(60) | 5954.28 | 190121 | 206911 | 3 | 1 | 0.421 | 0.075 | 4.39 | -0.65 | C- | 4, ca | | 61 | 2p3d -
2p(2P°)4f | ³F°−³G
(39) | 4040.9 | 186593 | 211332 | 21 | 27 | 2.64 | 0.83 | 232 | 1.243 | С | 4, ca | | 62 | | ³ F° − ¹G
(40) | 4026.08 | 186572 | 211403 | 7 | 9 | 0.90 | 0.280 | 26.0 | 0.293 | c | | | | | | 4020.08 | 100372 | 211405 | ' | 9 | 0.90 | 0.200 | ∠0.0 | 0.293 | ا ر
ا | 3 | | 63 | | ¹ D° - ¹ F
(42) | 4176.16 | 187092 | 211031 | 5 | 7 | 2.19 | 0.80 | 55 | 0.60 | С | 4, ca | | 64 | | ³ D° − ³ F
(48) | 4239.4 | 187472 | 211053 | 15 | 21 | 2.14 | 0.81 | 169 | 1.083 | С | 4, ca | | 65 | | ³ P°−3D
(55) | 4434.6 | 188884 | 211428 | 9 | 15 | 1.84 | 0.91 | 119 | 0.91 | С | 4, ca | | | | (50) | 4432.74
4441.99
4433.48
4431.82
4427.97
[4417.9] | 188858
188910
188938
188858
188910
188858 | 211411
211416
211487
211416
211487
211487 | 5
3
1
5
3
5 | 7
5
3
5
3 | 1.86
1.38
1.02
0.461
0.77
0.052 | 0.77
0.68
0.90
0.136
0.226
0.0091 | 56
29.8
13.2
9.9
9.9
0.66 | 0.58 0.309 -0.044 -0.168 -0.168 -1.343 | C C C C C C | ls
ls
ls
ls
ls | | 66 | | ¹F° − ³G
(58) | 4552.54 | 189336 | 211296 | 7 | 9 | 0.76 | 0.305 | 32.0 | 0.329 | C | 3 | | 67 | | ¹F° — ¹G
(59) | 4530.40 | 189336 | 211290 | 7 | 9 | 1.69 | 0.67 | 70 | 0.67 | C | 3 | | 68 | | ¹ P° = ¹ D
(62) | 4677.93 | 190121 | 211491 | 3 | 5 | 1.65 | 0.90 | 41.8 | 0.434 | С | 4, ca | The adopted values represent, as in the case of CI, the work of Garstang [1], Naqvi [2], and Yamanouchi and Horie [3], who have independently done essentially the same calculations and arrived at very similar results. For the selection of values, the same considerations as for CI are applied. Garstang, R. H., Monthly Notices Roy. Astron. Soc. 111, 115-124 (1951). Naqvi, A. M., Thesis Harvard (1951). Yamanouchi, T., and Horie, H., J. Phys. Soc. Japan 7, 52-56 (1952). N II. Forbidden Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gı | gk | Type of
Transition | $A_{ki}(\sec^{-1})$ | S(at.u.) | Accu-
racy | Source | |-----|---------------------|--|--|---------------------------------------|---|-----------------------|-----------------------|-----------------------|---|--|------------------|------------------------------| | 1 | $2p^2-2p^2$ | ³P − ³P | | 0.0
0.0
49.1
49.1 | 49.1
131.3
131.3
131.3 | 1
1
3
3 | 3
5
5
5 | m
e
m
e | $\begin{array}{c} 2.13 \times 10^{-6} \\ 1.30 \times 10^{-12} \\ 7.48 \times 10^{-6} \\ 2.90 \times 10^{-13} \end{array}$ | 2.00
0.99
2.50
2.30 | B
C
B
C | 1, 2, 3
1
1, 2, 3
1 | | 2 | | ³ P - ¹ D
(1 F) | 6527.4
6548.1
6548.1
6583.6
6583.6 | 0.0
49.1
49.1
131.3
131.3 | 15315.7
15315.7
15315.7
15315.7
15315.7 | 1
3
3
5
5 | 5
5
5
5
5 | e
m
e
m
e | 4.2×10^{-7} 0.00103 1.4×10^{-6} 0.00303 9.4×10^{-6} | $\begin{array}{c} 1.5 \times 10^{-5} \\ 5.4 \times 10^{-5} \\ 5.0 \times 10^{-5} \\ 1.60 \times 10^{-4} \\ 3.5 \times 10^{-4} \end{array}$ | D
C
D
C | 1
1,2,3
1
1,2,3 | | 3 4 | | ³ P - ¹ S
(2 F) | 3063.0
3070.8 | 49.1
131.3 | 32687.1
32687.1 | 3 5 | 1 | m
e | 0.0340
1.6×10 ⁻⁴ | $3.62 \times 10^{-5} \\ 2.6 \times 10^{-5}$ | C
D | 1, 3
1 | | | | (3 F) | 5754.8 | 15315.7 | 32687.1 | 5 | 1 | e | 1.08 | 4.06 | С | 1 | # NIII **Ground State** $1s^2 2s^2 2p {}^2\mathbf{P}^{\circ}_{1/2}$ Ionization Potential $47.426 \text{ eV} = 382625.5 \text{ cm}^{-1}$ # **Allowed Transitions** # List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |----------------|---------------------|----------------|---------------|----------------|-----| | 374.204 | 11 | 772.93 | 6 | 1804.3 | 2.4 | | 374.44 | 11 | 772.975 | 6 | | 24 | | 374.441 | $ \overline{11} $ | 979.77 | | 1805.5 | 24 | | 451.869 | 10 | 979.842 | 5 | 1885.25 | 27 | | 452.226 | 10 | | 5
5 | 1908.11 | 28 | | 102.220 | 10 | 979.919 | 5 | 1917.7 | 29 | | 684.996 | 3 | 980.01 | 5 | 1918.7 | 20 | | 685.513 | 3 | 989.790 | 1 | | 29 | | 685.816 | 3 | 991.514 | 1 | 1919.5 | 29 | | 686.335 | . 3 ∥ | 991.579 | 1 | 1919.7 | 29 | | 763.340 | 3 2 | | $\frac{1}{7}$ | 1920.0 | 29 | | 100.040 | 2 | 1006.0 | 7 | 1920.86 | 29 | | 764.357 | 2 | 1183.03 | 9 | 1001.40 | 20 | | 771.544 | 4 | 1184.54 | | 1921.49 | 29 | | 771.901 | 4 | | 9 | 2063.50 | 30 | | 772.385 | | 1747.86 | 8 | 2063.99 | 30 | | | 4 | 1751.24 | 8 | 2068.25 | 30 | | 772.891 | 6 | 1751.75 | 8 | 2247.7 | 25 | List of tabulated lines - Continued | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |--------------------|----------|----------------|-----|----------------|-------| | 2247.92 | 25 | 3771.08 | 14 | 4527.86 | 22 | | 2248.88 | 25 | 3934.41 | 18 | 4530.84 | 13 | | 2453.85 | 26 | 3938.52 | 18 | 4534.57 | 13 | | 2459.2 | 26 | 3942.78 | 18 | 4535.11 | 22 | | 2462.56 | 26 | 3998.69 | 31 | 4546.36 | 22 | | | | | ļ | | | | 2462.9 | 26 | 4003.6 | 31 | 4547.34 | 13 | | 2466.3 | 26 | 4003.64 | 31 | 4858.74 | 20 | | 2468.36 | 26 | 4097.31 | 12 | 4858.88 | 20 | | 2469.1 | 26 | 4103.37 | 12 | 4861.33 | 20 | | 2471.2 | 26 | 4195.70 | 16 | 4867.18 | 20 | | 2072 (0 | 100 | 1000 | | į, | | | 2972.60 | 19 | 4200.02 | 16 | 4873.58 | 20 | | 2977.3 | 19 | 4215.69 | 16 | 4881.81 | 20 | | 2978.8 | 19 | 4321.37 | 21 | 4884.14 | 20 | | 2983.58 | 19 | 4323.93 | 21 | 4896.71 | 20 | | 3342.77 | 17 | 4328.15 | 21 | 6445.05 | 23 | | 3353.78 | 1.5 | 4000 14 | | | 20 | | 3354.29 | 15
15 | 4330.14 | 21 | 6450.78 | 23 | | 3354.29
3355.47 | | 4330.44 | 21 | 6453.95 | 23 | | 3358.72 | 17 | 4335.53 | 21 | 6463.03 | 23 | | | 15
15 | 4339.52 | 21 | 6466.86 | 23 | | 3361.90 | 15 | 4348.36 | 21 | 6468.77 | 23 | | 3365.79 | 15 | 4353.66 | 21 | 6478.69 | 92 | | 3367.36 | 15 | 4535.00 | 13 | | 23 23 | | 3374.06 | 15 | 4510.92 | 13 | 6487.55 | 45 | | 3745.83 | 14 | 4518.18 | 13 | | | | 3754.62 | 14 | 4518.18 | 13 | | 1 | | 3734.04 | 14 | 4523.00 | 13 | | | As in the case of analogous configurations, the data for the lower excited transitions, which are obtained from the calculations by Bolotin and Yutsis [1] and Kelly [2], are quite uncertain because of the strong effects of configuration interaction. The latter are either crudely taken into account (Bolotin and Yutsis) or entirely neglected (Kelly). For some higher excited transitions self-consistent field calculations by Kelly [3] including exchange affects are available and are averaged with the results of the Coulomb approximation. For other
prominent transitions the Coulomb approximation is applied whenever it is expected to give reliable results. ^[1] Bolotin, A. B., and Yutsis, A. P., Zhur. Eksptl. i Teoret. Fiz. 24, 537-543 (1953) (Translated in "Optical Transition Probabilities", Office of Technical Services, U.S. Department of Commerce, Washington, D.C.). ^[2] Kelly, P. S., Astrophys. J. 140, 1247-1268 (1964). ^[3] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964). N III. Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8 { m sec}^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|--|--|--------------------------------------|--------------------------------------|--|--|------------------------------|--------------------------------|-----------------------------|--|------------------|----------------------| | 1 | $2s^22p-2s2p^2$ | $^{2}P^{\circ}-^{2}D$ | 990.98 | 116.3 | 101027 | 6 | 10 | 7.3 | 0.18 | 3.5 | 0.03 | E | I | | | | (1 uv) | 991.579
989.790
991.514 | 174.5
0.0
174.5 | 101024
101032
101032 | 4
2
4 | 6
4
4 | 7.3
6.3
1.2 | 0.16
0.18
0.018 | 2.1
1.2
0.23 | -0.19
-0.43
-1.15 | E
E
E | ls
ls
ls | | 2 | | ² P° - ² S | 764.01 | 116.3 | 131004 | 6 | 2 | 39 | 0.11 | 1.7 | -0.17 | E | 1 | | | | (2 uv) | 764.357
763.340 | 174.5
0.0 | 131004
131004 | 4 2 | $\begin{bmatrix} 2\\2 \end{bmatrix}$ | 25
13 | 0.11
0.11 | 1.1
0.57 | -0.36 -0.64 | E
E | ls
ls | | 3 | | ² P° – ² P | 685.71 | 116.3 | 145950 | 6 | 6 | 64 | 0.45 | 6.1 | 0.43 | E | 1 | | ! | | (3 uv) | 685.816
685.513
686.335
684.996 | 174.5
0.0
174.5
0.0 | 145987
145876
145876
145987 | 4
2
4
2 | 4
2
2
4 | 53
44
21
11 | 0.38
0.31
0.075
0.15 | 3.4
1.4
0.68
0.68 | $\begin{array}{c c} 0.18 \\ -0.21 \\ -0.52 \\ -0.52 \end{array}$ | E
E
E
E | ls
ls
ls
ls | | 4 | $2s2p^2 - 2p^3$ | ⁴ P - ⁴ S° (8 uv) | 772.09 | 57283 | 186802 | 12 | 4 | 56 | 0.17 | 5.1 | 0.30 | E | 2 | | | | (0 41) | 772.385
771.901
771.544 | 57333
57252
57192 | 186802
186802
186802 | 6
4
2 | 4
4
4 | 29
19
9.4 | 0.17
0.17
0.17 | 2.6
1.7
0.85 | $ \begin{array}{r} 0.01 \\ -0.17 \\ -0.48 \end{array} $ | E
E
E | ls
ls
ls | | 5 | | ² D − ² D° | 979.89 | 101027 | 203079 | 10 | 10 | 14 | 0.20 | 6.6 | 0.31 | E | 2 | | 1 | | (12 uv) | 979.919
979.842
[979.77]
[980.01] | 101024
101032
101024
101032 | 203072
203089
203089
203072 | 6
4
6
4 | 6
4
4
6 | 13
13
1.4
0.93 | 0.19
0.19
0.013
0.020 | 3.7
2.4
0.26
0.26 | 0.06 -0.13 -1.09 -1.09 | E
E
E
E | ls
ls
ls
ls | | 6 | | ² D - ² P° | 772.91 | 101027 | 230408 | 10 | 6 | 16 | 0.086 | 2.2 | -0.06 | E | 2 | | j | | (13 uv) | 772.891
772.975
[772.93] | 101024
101032
101032 | 230409
230405
230409 | 6
4
4 | 4 2 4 | 14
16
1.6 | 0.085
0.072
0.015 | 1.3
0.73
0.15 | -0.29 -0.54 -1.23 | E
E
E | ls
ls
ls | | 7 | | ² S - ² P° (17 uv) | 1006.0 | 131004 | 230408 | 2 | 6 | 6.0 | 0.27 | 1.8 | -0.26 | E | 2 | | 8 | | ${}^{2}P - {}^{2}D^{\circ}$ (19 uv) | 1750.4 | 145950 | 203079 | 6 | 10 | 2.6 | 0.20 | 6.9 | 80.0 | E | 2 | | - | | (15 uv) | 1751.75
1747.86
1751.24 | 145987
145876
145987 | 203072
203089
203089 | 4
2
4 | 6
4
4 | 2.6
2.2
0.43 | 0.18
0.20
0.020 | 4.1
2.3
0.46 | -0.15 -0.40 -1.10 | E
E
E | ls
ls
ls | | 9 | | ² P – ² P° | 1184.0 | 145950 | 230408 | 6 | 6 | 8.5 | 0.18 | 4.2 | 0.03 | E | 2 | | | | (20 uv) | 1184.54
1183.03
1184.54
1183.03 | 145987
145876
145987
145876 | 230409
230405
230405
230409 | 4
2
4
2 | 4
2
2
4 | 7.0
5.7
2.9
1.4 | 0.15
0.12
0.030
0.060 | 2.3
0.93
0.47
0.47 | -0.23 -0.62 -0.92 -0.92 | E
E
E | ls
ls
ls
ls | | 10 | $2p - ({}^{1}S)3s$ | ² P°- ² S
(4 uv) | 452.11 | 116.3 | 221302 | 6 | 2 | 45 | 0.046 | 0.41 | -0.56 | E | 2 | | | | (4 41) | 452.226
451.869 | 174.5
0.0 | 221302
221302 | 4 2 | $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ | | 0.045
0.047 | 0.27
0.14 | -0.74 -1.03 | E
E | ls
ls | | 11 | $2p - ({}^{1}S)3d$ | $ \begin{array}{c c} ^2P^\circ - ^2D \\ (5 \text{ uv}) \end{array} $ | 374.36 | 116.3 | 267242 | 6 | 10 | 110 | 0.39 | 2.9 | 0.37 | D- | 2 | | | | (0 41) | 374.441
374.204
[374.44] | 174.5
0.0
174.5 | 267244
267239
267239 | 4
2
4 | 6
4
4 | 94 | 0.34
0.39
0.039 | 1.7
0.97
0.19 | $0.14 \\ -0.10 \\ -0.81$ | D-
D-
D- | ls
ls
ls | | 12 | $3s - (^{1}S)3p$ | ${}^{2}S - {}^{2}P^{\circ}$ | 4099.2 | 221302 | 245690 | 2 | 6 | 0.97 | 0.73 | 19.7 | 0.164 | С | 3, ca | | | | (1) | 4097.31
4103.37 | 221302
221302 | 245702
245666 | $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ | $\begin{vmatrix} 4 \\ 2 \end{vmatrix}$ | | 0.486
0.244 | 13.1
6.6 | $-0.013 \\ -0.311$ | C | ls
ls | ${f N}$ III. Allowed Transitions – Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(10^8~{ m sec^{-1}})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|-------------------------|---|--------------------|-------------------------|-------------------------|--------------------------------------|-----------|------------------------------|---|--------------|--|---------------|----------------| | 13 | 2s2p3s —
2s2p(3P°)3p | ⁴ P° – ⁴ D (3) | 4517.3 | 287646 | 309777 | 12 | 20 | 0.70 | 0.357 | 64 | 0.63 | С | ca | | | 232p(*1)3p | (3) | 4514.89 | 287714 | 309857 | 6 | 8 | 0.70 | 0.286 | 25.5 | 0.235 | C | ls | | | | | 4510.92 | 287598 | 309761 | 4 | 6 | 0.492 | 0.225 | 13.4 | -0.046 | C | ls | | | l l | Į. | 4510.92 | 287536 | 309698 | 2 | 4 | 0.293 | 0.179 | 5.3 | -0.446 | C | ls | | | 1 | } | 4534.57 | 287714 | 309761 | 6 | 6 | 0.208 | 0.064 | 5.7 | -0.416 |) C | ls | | | | | 4523.60 | 287598 | 309698 | 4 | 4 | 0.372 | 0.114 | 6.8 | -0.341 | CCC | ls | | | | | 4518.18 | 287536 | 309663 | 2 | 2 | 0.58 | 0.178 | 5.3 | -0.449 | C | ls | | | | | 4547.34 | 287714 | 309698 | 6 | 4 | 0.0344 | 0.0071 | 0.64 | -1.371 | Č | ls | | | | | 4530.84 | 287598 | 309663 | 4 | 2 | 0.116 | 0.0178 | 1.06 | -1.148 | С | ls | | 14 | | ⁴ P°- ⁴ S
(4) | 3761.4 | 287646 | 314224 | 12 | 4 | 1.24 | 0.088 | 13.1 | 0.024 | С | ca | | | | | 3771.08 | 287714 | 314224 | 6 | 4 | 0.61 | 0.087 | 6.5 | -0.282 | C | ls! | | | | | 3754.62 | 287598 | 314224 | $\begin{vmatrix} 4\\2 \end{vmatrix}$ | 4. | 0.416 | 0.088 | 4.35 | -0.454 | C | ls | | | | | 3745.83 | 287536 | 314224 | 2 | 4 | 0.209 | 0.088 | 2.17 | -0.75 | C | ls | | 15 | | ⁴ P° – ⁴ P
(5) | 3363.9 | 287646 | 317365 | 12 | 12 | 1.74 | 0.296 | 39.3 | 0.55 | С | ca | | | ļ | <u> </u> | 3367.36 | 287714 | 317402 | 6 | 6 | 1.22 | 0.207 | 13.8 | 0.094 | C | ls | | | | i | 3361.90 | 287598 | 317343 | 4 | 4 | 0.233 | 0.0395 | 1.75 | -0.80 | C | ls
ls | | | | | 3358.72 | 287536 | 317300 | 2 | 2 | 0.292 | 0.0494 | 1.09 | -1.005 | C | ls
ls
ls | | | | | 3374.06 | 287714 | 317343 | 6 | 4 | 0.78 | 0.089 | 5.9 | -0.273 | C | ls | | | | | 3365.79
3354.29 | 287598
287598 | 317300
317402 | 4 | 6 | 1.45
0.53 | 0.123
0.134 | 5.5 | -0.308 | C | ls. | | | | | 3353.78 | 287536 | 317343 | 2 | 4 | 0.53 | 0.134 | 5.9
5.5 | $\begin{vmatrix} -0.271 \\ -0.306 \end{vmatrix}$ | C | ls
ls | | 16 | | ² P°- ² D | 4199.6 | 297225 | 321030 | 6 | 10 | 1.00 | 0.442 | 36.7 | 0.424 | С | ca | | | | (6) | 4200.02 | 297263 | 321066 | 4 | 6 | 1.00 | 0.398 | 22.0 | 0.202 | С | ls | | | | | 4195.70 | 297150 | 320977 | 2 | 4. | 0.84 | 0.442 | 12.2 | -0.054 | č | ls | | | | | 4215.69 | 297263 | 320977 | 4 | 4 | 0.165 | 0.0440 | 2.44 | -0.75 | Č | ls | | 17 | | ² P°- ² S | 3351.1 | 297225 | 327057 | 6 | 2 | 2.00 | 0.112 | 7.4 | -0.173 | С | ca | | | | (7) | 3355.47 | 297263 | 327057 | 4 | 2 | 1.33 | 0.112 | 4.95 | -0.349 | С | ls | | | | | 3342.77 | 297150 | 327057 | 2 | $\bar{2}$ | 0.67 | 0.113 | 2.49 | -0.65 | Č | ls | | 18 | 2s2p3p —
2s2p(3P°)3d | ${}^{2}P - {}^{2}D^{\circ}$ (8) | 3937.4 | 309168 | 334558 | 6 | 10 | 0.96 | 0.372 | 28.9 | 0.349 | С | ca | | | | (-) | 3938.52 | 309186 | 334569 | 4 | 6 | 0.96 | 0.335 | 17.4 | 0.127 | C | ls | | | | | 3934.41 | 309133 | 334542 | 2 | 4 | 0.80 | 0.372 | 9.6 | -0.128 | C | ls | | | | | 3942.78 | 309186 | 334542 | 4 | 4 | 0.160 | 0.0372 | 1.93 | -0.83 | С | ls | | 19 | | ² P – ² P°
(25 uv) | 2979.9 | 309168 | 342717 | .6 | 6 | 1.38 | 0.184 | 10.8 | 0.043 | ŀ | ca | | | , | (== = ., | 2983.58 | 309186 | 342693 | 4 | 4 | 1.14 | 0.153 | 6.0 | -0.214 | C
C | ls | | | / | | 2972.60 | 309133 | 342764 | 2 | 2 | 0.93 | 0.123 | 2.40 | -0.61 | C | ls | | | ٠ | | [2977.3] | 309186 | 342764 | 4 | 2 | 0.461 | 0.0307 | 1.20 | -0.91 | Ç | ls. | | | | | [2978.8] | 309133 | 342693 | 2 | 4 | 0.230 | 0.061 | 1.20 | -0.91 | C | ls | | 20 | | ⁴ D - ⁴ F° (9) | 4864.8 | 309777 | 330327 | 20 | 28 | 0.63 | 0.312 | 100 | 0.80 | С | ca | | | | (-) | 4867.18 | 309857 | 330397 | 8 | 10 | 0.63 | 0.279 | 35.8 | 0.349 | C | ls | | | | | 4861.33 | 309761 | 330325 | 6 | 8 | 0.54 | 0.255 | 24.5 | 0.185 | 6 | ls | | | | | 4858.88 | 309698 | 330274 | 4 | 6 | 0.471 | 0.250 | 16.0 | 0.000 | CCC | ls | | | | | 4858.74 | 309663 | 330238 | 2 | 4 | 0.441 | 0.312 | 10.0
4.09 | -0.205 -0.59 | Č | ls
Is | | | | | 4884.14 | 309857 | 330325 | 8 |
8 | 0.089 | 0.0318 | 5.2 | -0.39
-0.490 | č | ls
ls | | | | | 4873.58 | 309761 | 330274 | 6 | 6 | 0.152
0.175 | 0.054 | 3.97 | -0.490 | č | ls | | | | | 4867.18
4896.71 | 309698
309857 | 330238
330274 | 8 | 6 | 0.0059 | 0.002 | 0.204 | -1.90 | C | ls | | | | | | 1 . 11703/ | | , 0 | | 10.000 | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.285 | -1.75 | C | | ${f N}$ III. Allowed Transitions – Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gk | $A_{ki}(10^8 \text{ sec}^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|-------------------------|---|----------------------|-------------------------|-----------------------|-----|-----|---|--|----------|---------|------------------|----------------------| | 21 | | ⁴ D - ⁴ D° | 4335.7 | 309777 | 332835 | 20 | 20 | 0.234 | 0.066 | 18.8 | 0.121 | С | ca | | | | (10) | 4348.36 | 309857 | 332860 | 8 | 8 | 0.198 | 0.056 | 6.4 | -0.349 | С | ls | | | | ì | 4335.53 | 309761 | 332832 | 6 | 6 | 0.134 | 0.0378 | 3.24 | -0.64 | C | ls | | | | | 4328.15 | 309698 | 332810 | 4 | 4 | 0.094 | 0.0263 | 1.50 | -0.98 | C | l s | | | | 1 | 4323.93 | 309663 | 332797 | 2 | 2 | 0.117 | 0.0329 | 0.94 | -1.182 | l C | ls | | | | | 4353.66 | 309857 | 332832 | 8 | 6 | 0.0436 | 0.0093 | 1.07 | -1.128 | C | ls | | | l | | 4339.52 | 309761 | 332810 | 6 | 4 | 0.081 | 0.0153 | 1.31 | -1.037 | C | ls | | | | J | 4330.44 | 309698 | 332797 | 4 | 2 | 0.117 | 0.0164 | 0.94 | - 1.183 | C | ls
ls
ls
ls | | | | | 4330.14 | 309761 | 332860 | 6 | 8 | 0.0334 | 0.0125 | 1.07 | -1.125 | C | ls | | | | | 4323.93 | 309698 | 332832 | 4 | 6 | 0.056 | 0.0236 | 1.34 | -1.025 | C | ls | | | | | 4321.37 | 309663 | 332810 | 2 | 4 | 0.059 | 0.0329 | 0.94 | -1.182 | C | ls | | 22 | | ⁴ S - ⁴ P° (13) | 4539.6 | 314224 | 336246 | 4 | 12 | 0.99 | 0.91 | 54 | 0.56 | С | ca | | | ' | (10) | 4546.36 | 314224 | 336213 | 4 | 6 | 0.99 | 0.456 | 27.2 | 0.261 | C | ls | | | | } | 4535.11 | 314224 | 336268 | 4 | 4 | 0.99 | 0.304 | 18.2 | 0.085 | C | ls | | | | | 4527.86 | 314224 | 336303 | 4 | 2 | 0.99 | 0.152 | 9.1 | -0.216 | C | ls | | 23 | | ⁴ P - ⁴ D° (14) | 6462.3 | 317365 | 332835 | 12 | 20 | 0.432 | 0.451 | 115 | 0.73 | С | ca | | | | ` ´ | 6466.86 | 317402 | 332860 | 6 | 8 | 0.432 | 0.361 | 46.1 | 0.336 | C | ls | | | | ł | 6453.95 | 317343 | 332832 | 4 | 6 | 0.304 | 0.285 | 24.2 | 0.057 | C
C
C
C | ls | | | | | 6445.05 | 317300 | 332810 | 2 | 4 | 0.181 | 0.226 | 9.6 | -0.345 | C | l ls | | | | | 6478.69 | 317402 | 332832 | 6 | 6 | 0.129 | 0.081 | 10.4 | -0.313 | C | ls | | | ! | | 6463.03 | 317343 | 332810 | 4 | 4 | 0.232 | 0.145 | 12.3 | -0.237 | č | ls
ls
ls | | | | | 6450.78 | 317300 | 332797 | 2 | 2 | 0.362 | 0.226 | 9.6 | -0.345 | C | ls | | | | | 6487.55 | 317402 | 332810 | 6 | 4 | 0.0214 | 0.0090 | 1.15 | -1.268 | C | ls
ls | | | | | 6468.77 | 317343 | 332797 | 4 | 2 | 0.072 | 0.0226 | 1.93 | -1.044 | С | ls | | 24 | $3p - (^{1}S)4s$ | ² P°- ² S
(22 uv) | 1805.1 | 245690 | 301088 | 6 | 2 | 6.8 | 0.110 | 3.93 | -0.180 | С | 3, ca | | | | | 1805.5 | 245702 | 301088 | 4 | 2 | 4.51 | 0.110 | 2.62 | -0.356 | C | ls | | | | | 1804.3 | 245666 | 301088 | 2 | 2 | 2.26 | 0.110 | 1.31 | -0.66 | C | ls | | 25 | $3d-(^{1}S)4p$ | $ \begin{array}{c c} ^2D - ^2P^{\circ} \\ (23 \text{ uv}) \end{array} $ | 2248.2 | 267242 | 311708 | 10 | 6 | 1.6 | 0.074 | 5.5 | -0.13 | D | 3, ca | | | | | 2247.92 | 267244 | 311716 | 6 | 4 | 1.5 | 0.074 | 3.3 | -0.35 | D | ls | | | | | 2248.88 | 267239 | 311691 | 4 | 2 | 1.6 | 0.062 | 1.8 | -0:61 | D | ls | | | | | [2247.7] | 267239 | 311716 | 4 | 4 | 0.16 | 0.012 | 0.37 | -1.30 | D | ls | | 26 | 2s2p3d-
2s2p(3P°)4p | ⁴ P°- ⁴ D
(28 uv) | 2460.4 | 336246 | 376877 | 12 | 20 | 0.014 | 0.0022 | 0.21 | -1.59 | D | ca | | | | | 2453.85 | 336213 | 376953 | 6 | 8 | 0.015 | 0.0018 | 0.085 | -1.98 | D | ls | | | ļ | | 2462.56 | 336268 | 376864 | 4 | 6 | 0.010 | 0.0014 | 0.046 | -2.25 | D | ls | | 1 | ĺ | ľ | 2468.36 | 336303 | 376803 | 2 | 4 | 0.0062 | 0.0011 | 0.018 | -2.65 | D | ls | | ļ | ļ | | [2459.2] | 336213 | 376864 | 6 | 6 | 0.0044 | 4.0×10^{-4} | 0.019 | -2.62 | D | ls | | 1 | | | [2466.3]
[2471.2] | 336268
336303 | 376803 | 4 | 4 | 0.0079 | 7.2×10^{-4} | 0.023 | -2.54 | D | l ls | | l | | } | [2462.9] | 336213 | 376757
376803 | 2 | 2 | 0.012 | 0.0011 | 0.018 | -2.64 | D | l ls | | | | ļ | [2462.9] | 336268 | 376757 | 6 4 | 4 2 | $\begin{array}{c c} 7.4 \times 10^{-4} \\ 0.0025 \end{array}$ | 4.5×10^{-5}
1.1×10^{-4} | 0.0022 | -3.57 | D | ls ls | | | | | | | | 4 | _ | 0.0025 | 1.1 × 10 , | 0.0037 | -3.34 | D | ls | | 27 | $3d - (^1S)4f$ | ² D - ² F° (24 uv) | 1885.25 | 267242 | 320285 | 10 | 14 | 11.9 | 0.89 | 55 | 0.95 | C | 3, ca | | 28 | 2s2p3d -
2s2p(3P°)4f | ² D°-2F
(27 uv) | 1908.11 | 334558 | 386965 | 10 | 14 | 11.0 | 0.84 | 53 | 0.92 | С | ca | N III. Allowed Transitions - Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8 { m \ sec^{-1}})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|---|----------|-------------------------|-------------------------|----|-------|--------------------------------|--------|----------|--------|---------------|--------| | 29 | | ⁴ P° – ⁴ D
(29 uv) | 1920.6 | 336246 | 388313 | 12 | 20 | 10.3 | 0.95 | 72 | 1.057 | С | ca | | | | (2) (1) | 1920.86 | 336213 | 388273 | 6 | 8 | 10.3 | 0.76 | 28.7 | 0.66 | С | ls | | | | | 1921.49 | 336268 | 388311 | 4 | 6 | 7.2 | 0.60 | 15.1 | 0.38 | C | ls | | Į | | | 1920.86 | 336303 | 388359 | 2 | 4 | 4.27 | 0.472 | 6.0° | -0.025 | C | ls | | | | \ | [1919.5] | 336213 | 388311 | 6 | 6 | 3.08 | 0.170 | 6.4 | 0.009 | / C | ls | | | | | [1919.7] | 336268 | 388359 | 4 | 4 | 5.5 | 0.302 | 7.6 | 0.082 | C | ls | | | | | [1920.0] | 336303 | 388387 | 2 | 2 | 8.5 | 0.471 | 6.0 | -0.026 | C | ls | | | | | [1917.7] | 336213 | 388359 | 6 | 4 | 0.51 | 0.0188 | 0.71 | -0.95 | C | ls | | | | | [1918.7] | 336268 | 388387 | 4 | 2 | 1.71 | 0.0471 | 1.19 | -0.72 | C | ls | | 30 | | ² F° - ² G
(30 uv) | 2063.8 | 339808 | 388246 | 14 | 18 | 11.3 | 0.93 | 88 | 1.115 | С | ca | | | | ` ′ | 2063.99 | 339856 | 388290 | 8 | 10 | 11.3 | 0.90 | 48.9 | 0.86 | C | ls | | | | | 2063.50 | 339744 | 388190 | 6 | 8 | 10.9 | 0.93 | 37.9 | 0.75 | C | ls | | | | | 2068.25 | 339856 | 388190 | 8 | 8 | 0.402 | 0.0258 | 1.41 | -0.69 | C | ls | | 31 | $4d - (^{1}S)5f$ | ² D - ² F° (16) | 4001.8 | 317770 | 342752 | 10 | 14 | 2.11 | 0.709 | 93.4 | 0.851 | C+ | ca | | | | (/ | 4003.64 | 317782 | 342752 | 6 | 8 | 2.10 | 0.674 | 53.3 | 0.609 | C+ | ls | | | | | 3998.69 | 317751 | 342752 | 4 | 6 | 1.98 | 0.710 | 37.4 | 0.454 | C+ | ls | | | | | [4003.6] | 317782 | 342752 | 6 | 6 | 0.140 | 0.0338 | 2.67 | -0.693 | C+ | ls | Naqvi's calculation [1] of the one possible transition in the ground state configuration 2p is the only available source. The line strength should be quite accurate, since it does not sensitively depend on the choice of the interaction parameters. #### Reference [1] Naqvi, A. M., Thesis Harvard (1951). N III. Forbidden Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | g_i | g_k | Type of
Transi-
tion | $A_{ki}(\sec^{-1})$ | S(at.u.) | Accu-
racy | Source | |-----|---------------------|-----------|-----------------------|-----------------------|-------------------------|-------|-------|----------------------------|-----------------------|----------|---------------|--------| | 1 | 2p-2p | 2P° — 2P° | $[57.29 \times 10^4]$ | 0 | 174.5 | 2 | 4 | m | 4.77×10^{-5} | 1.33 | В | 1 | Ionization Potential $77.450 \text{ eV} = 624851 \text{ cm}^{-1}$ #### **Allowed Transitions** #### List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |--|------------------------|---|----------------------------------|---|----------------------------------| | 225.025
225.098
225.13
225.136 | 10
10
10
10 | 923.211
923.669
924.274
955.335 | 3
3
3
5 | 4685.4
4723
4733
4740 | 20
20
20
20 | | 225.20
247.205
283.420
283.47
283.470
283.579 | 10
2
8
8
8 | 1718.52
3443
3445
3454
3461.34
3463.36 | 15
15
15
15
15
15 | 4752
4762
5073
5236
5245
5280.9 | 20
20
21
13
13
13 | | 283.59
322.503
322.570
322.724
335.050 | 8
6
6
6
9 | 3474.56
3478.69
3482.98
3484.90
3747.66 | 15
11
11
11
11 | 5281
5303.9
5349.8
5734
6383 | 13
13
13
19
12 | | 387.353
765.140
921.982
922.507
923.045 | 7
1
3
3
3 | 4057.80
4479
4495
4528
4678.6 | 17
14
14
14
20 | 7103.28
7109.48
7111.28
7123.10
7127.21
7129 | 18
18
18
18
18
18 | Values for the $2s^2-2s2p$ and $2s2p-2p^2$ transition arrays are taken from the self-consistent field calculations of Weiss [1]. These calculations do not include the important effects of configuration interaction; hence large uncertainties must be expected. The average of the dipole length and velocity approximations is adopted [1]. Accuracies within 50% are indicated by the following comparison: Weiss [1] has undertaken refined calculations, including configuration interaction, for the same transitions in Be I—the first member of this isoelectronic sequence—in addition to calculations of the type
done for this ion. In all cases the agreement with the average of the dipole length and velocity approximations is close. For the remaining low-lying transitions Kelly's approximate Hartree-Fock calculations [2] are adopted, while for the moderately excited transitions Kelly's values are averaged with the Coulomb approximation, with which they agree quite well. - [1] Weiss, A. W., private communication (1964). - [2] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964). N IV. Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | g_i | g_k | $A_{ki}(10^8 { m sec}^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|---|--|---|---|--|----------------------------|----------------------------|---|--|--|---|-----------------------|----------------------------| | 1 | $2s^2 - 2s(^2S)2p$ | ¹ S - ¹ P° (1 uv) | 765.140 | 0 | 130695 | 1 | 3 | 24 | 0.64 | 1.6 | -0.19 | D | 1 | | 2 | $2s^2 - 2s(^2\mathbf{S})3p$ | ¹ S - ¹ P° (2 uv) | 247.205 | 0 | 404521 | 1 | 3 | 200 | 0.55 | 0.45 | -0.26 | D | 2 | | 3 | $\begin{array}{c} 2s2p - \\ 2p^2 \end{array}$ | ³ P°-3P
(3 uv) | 923.15 | [67273] | [175598] | 9 | 9 | 17 | 0.21 | 5.8 | 0.28 | D | 1 | | | | | 923.211
923.045
924.274
923.669
921.982
922.507 | [67344]
[67200]
[67344]
[67200]
[67200]
[67136] | [175662]
[175537]
[175537]
[175464]
[175662]
[175537] | 5
3
5
3
1 | 5
3
1
5
3 | 13
4.2
6.9
17
4.2
5.6 | 0.16
0.053
0.053
0.071
0.089
0.21 | 2.4
0.49
0.81
0.65
0.81
0.65 | $\begin{array}{c} -0.10 \\ -0.80 \\ -0.58 \\ -0.67 \\ -0.57 \\ -0.67 \end{array}$ | D
D
D
D
D | ls
ls
ls
ls
ls | | 4 | | ¹ P°- ¹ D
(7 uv) | 1718.52 | 130695 | 188885 | 3 | 5 | 5.1 | 0.38 | 6.4 | 0.05 | D | 1 | | 5 | | ¹ P°- ¹ S
(8 uv) | 955.335 | 130695 | 235370 | 3 | 1 | 16 | 0.074 | 0.70 | -0.66 | D | 1 | | 6 | 2s2p —
2s(2S)3s | ³ P°- ³ S
(4 uv) | 322.65 | [67273] | [377206] | 9 | 3 | 113 | 0.059 | 0.56 | -0.278 | С | 2 | | | | | 322.724
322.570
322.503 | [67344]
[67200]
[67136] | [377206]
[377206]
[377206] | 5
3
1 | 3
3
3 | 62
37.6
12.5 | 0.059
0.059
0.058 | $0.311 \\ 0.187 \\ 0.062$ | | C
C
C | ls
ls
ls | | 7 | | ¹ P°- ¹ S
(9 uv) | 387.353 | 130695 | 388858 | 3 | 1 | 65 | 0.0489 | 0.187 | -0.83 | С | 2 | | 8 | $2s2p-2s(^2\mathrm{S})3d$ | ³ P°-3D
(5 uv) | 283.53 | [67273] | [419974] | 9 | 15 | 314 | 0.63 | 5.3 | 0.75 | С | 2 | | | | | 283.579
283.470
283.420
[283.59]
[283.47]
[283.59] | [67344]
[67200]
[67136]
[67344]
[67200]
[67344] | [419979]
[419971]
[419968]
[419971]
[419968]
[419968] | 5
3
1
5
3
5 | 7
5
3
5
3
3 | 311
235
172
78
130
8.6 | 0.52
0.471
0.62
0.094
0.156
0.0063 | 2.45
1.32
0.58
0.438
0.438
0.0292 | $\begin{array}{c} 0.419 \\ 0.151 \\ -0.207 \\ -0.329 \\ -0.329 \\ -1.50 \end{array}$ | C
C
C
C
C | ls
ls
ls
ls
ls | | 9 | | ¹ P°- ¹ D
(10 uv) | 335.050 | 130695 | 429158 | 3 | 5 | 189 | 0.53 | 1.75 | 0.200 | С | 2 | | 10 | $2s2p - 2s(^2S)4d$ | ³ P°- ³ D
(6 uv) | 225.17 | [67273] | [511382] | 9 | 15 | 92 | 0.117 | 0.78 | 0.022 | С | 2 | | | (-) | | 225.025
225.136
225.098
[225.20]
[225.13]
[225.20] | [67344]
[67200]
[67136]
[67344]
[67200]
[67344] | [511384]
[511376]
[511387]
[511376]
[511387]
[511387] | 5
3
1
5
3
5 | 7 5 3 5 3 3 | 92
69
52
23.1
38.5
2.56 | 0.098
0.088
0.117
0.0175
0.0292
0.00117 | 0.364
0.195
0.087
0.065
0.065
0.00433 | $\begin{array}{c} -0.309 \\ -0.58 \\ -0.93 \\ -1.057 \\ -1.057 \\ -2.234 \end{array}$ | C
C
C
C
C | ls
ls
ls
ls
ls | | 11 | 2s3s -
2s(2S)3p | ³ S - ³ P° (1) | 3480.8 | [377206] | [405927] | 3 | 9 | 1.16 | 0.634 | 21.8 | 0.279 | C+ | 2, ca | | | 20(S) Sp | | 3478.69
3482.98
3484.90 | [377206]
[377206]
[377206] | [405944]
[405909]
[405893] | 3
3
3 | 5
3
1 | 1.16
1.16
1.16 | 0.352
0.211
0.0703 | 12.1
7.27
2.42 | $ \begin{array}{r} 0.024 \\ -0.198 \\ -0.676 \end{array} $ | C+
C+ | ls
ls
ls | | 12 | | ¹ S - ¹ P° (2) | 6383 | 388858 | 404521 | 1 | 3 | 0.193 | 0.353 | 7.42 | -0.452 | C+ | 2, ca | | 13 | 2p3s - | ³ P°- ³ D | 5255.1 | [465382] | [484406] | 9 | 15 | 0.343 | 0.237 | 36.9 | 0.329 | С | ca | | | 2p(2P°)3p | (5) | 5245
5236
5281
[5280.9]
[5303.9]
[5349.8] | [465463]
[465301]
[465223]
[465463]
[465301]
[465463 | [484525]
[484394]
[484150]
[484394]
[484150]
[484150] | 5
3
1
5
3
5 | 7
5
3
5
3 | 0.345
0.261
0.188
0.085
0.139
0.0090 | 0.199
0.178
0.236
0.0354
0.059
0.00233 | 17.2
9.2
4.10
3.08
3.08
0.205 | | C
C
C
C
C | ls
ls
ls
ls
ls | NIV. Allowed Transitions - Continued | No. | Transition Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(10^8 \text{sec}^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|--------------------------|--|--|--|--|---------------------------------|---------------------------------|---|---|--|---|----------------------------|----------------------------------| | 14 | | 3P°-3S | 4511.4 | [465382] | [487542] | 9 | 3 | 0.56 | 0.056 | 7.5 | -0.295 | С | ca | | | | (6) | 4528
4495
4479 | [465463]
[465301]
[465223] | [487542]
[487542]
[487542] | 5
3
1 | 3 3 3 | 0.305
0.189
0.063 | 0.056
0.057
0.057 | 4.19
2.54
0.84 | $ \begin{array}{r} -0.55 \\ -0.77 \\ -1.245 \end{array} $ | C
C
C | ls
ls
ls | | 15 | | ³ P°- ³ P
(7) | 3456.7 | [465382] | [494303] | 9 | 9 | 1.27 | 0.227 | 23.2 | 0.310 | С | ca | | | | (*) | 3463.36
3454
3474.56
3461.34
3443
3445 | [465463]
[465301]
[465301]
[465223]
[465463]
[465301] | [494338]
[494240]
[494338]
[494240]
[494240]
[494320] | 5
3
3
1
5
3 | 5
3
5
3
1 | 0.94
0.316
0.311
0.420
0.53
1.28 | 0.170
0.057
0.094
0.226
0.057
0.076 | 9.7
1.93
3.22
2.58
3.22
2.58 | $\begin{array}{c} -0.072 \\ -0.77 \\ -0.55 \\ -0.65 \\ -0.55 \\ -0.64 \end{array}$ | 000000 | ls
ls
ls
ls
ls | | 16 | | ¹ P°- ¹ D (8) | 3747.66 | 473032 | 499708 | 3 | 5 | 1.06 | 0.371 | 13.7 | 0.047 | С | ca | | 17 | 2s3p -
2s(2S)3d | ¹ P°- ¹ D (3) | 4057.80 | 388858 | 429158 | 3 | 5 | 0.758 | 0.312 | 12.5 | -0.029 | C+ | 2, ca | | 18 | | ³ P° – ³ D | 7117.0 | [405927] | [419974] | 9 | 15 | 0.132 | 0.167 | 35.3 | 0.178 | C+ | 2, ca | | | | | 7123.10
7109.48
7103.28
7127.21
7111.28
7129 | [405944]
[405909]
[405893]
[405944]
[405909]
[405944] | [419979]
[419971]
[419968]
[419971]
[419968]
[419968] | 5
3
1
5
3
5 | 7
5
3
5
3
3 | 0.132
0.0995
0.0739
0.0329
0.0552
0.00365 | 0.141
0.126
0.168
0.0251
0.0419
0.00167 | 16.5
8.82
3.92
2.94
2.94
0.196 | $\begin{array}{c} -0.153 \\ -0.424 \\ -0.776 \\ -0.902 \\ -0.901 \\ -2.078 \end{array}$ | C+
C+
C+
C+
C+ | ls
ls
ls
ls
ls | | 19 | $2p3p - 2p(^2P^\circ)3d$ | ¹ P- ¹ D° (9) | 5734 | 480880 | 498315 | 3 | 5 | 0.178 | 0.146 | 8.3 | -0.359 | С | ca | | 20 | | ³ D- ³ D° | 4732.2 | [484406] | [505532] | 15 | 15 | 0.116 | 0.0389 | 9.1 | -0.234 | С | ca | | | | | 4752
4733
[4685.4]
4762
4740
4723
[4678.6] | [484525]
[484394]
[484150]
[484525]
[484394]
[484394]
[484150] | [505561]
[505518]
[505487]
[505518]
[505487]
[505561]
[505518] | 7
5
3
7
5
5
3 | 7
5
3
5
3
7
5 | 0.102
0.081
0.089
0.0177
0.0289
0.0130
0.0180 | 0.0344
0.0271
0.0294
0.00431
0.0058
0.0061
0.0098 | 3.77
2.11
1.36
0.473
0.455
0.473
0.455 | $\begin{array}{c c} -0.62 \\ -0.87 \\ -1.055 \\ -1.52 \\ -1.54 \\ -1.52 \\ -1.53 \end{array}$ | 000000 | ls
ls
ls
ls
ls
ls | | 21 | | ¹ D - ¹ P° (17) | 5073 | 499708 | 519414 | 5 | 3 | 0.0127 | 0.00295 | 0.246 | -1.83 | С | ca | Naqvi's calculations [1] are the only available source. The results for the ${}^3P^{\circ} - {}^3P^{\circ}$ transitions are essentially independent of the choice of the interaction parameters. For the ${}^3P^{\circ} - {}^1P^{\circ}$ transitions, Naqvi has used empirical term intervals, i.e., the effects of configuration interaction should be partially included. ## Reference [I] Naqvi, A. M., Thesis Harvard (1951). N IV. Forbidden Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk |
Type of
Transi-
tion | $A_{ki}(\sec^{-1})$ | S(at.u.) | Accu-
racy | Source | |-----|----------------------|-----------|--|-------------------------------------|----------------------------|-------------|-------------|----------------------------|---|---|---------------|-------------| | 1 | 2s2p -
2s (2S) 2p | 3P°-3P° | $[15.82 \times 10^{5}]$
$[69.33 \times 10^{4}]$ | [67136.4]
[67199.6] | [67199.6]
[67343.8] | 1 3 | 3
5 | m
m | $\begin{array}{c} 4.56 \times 10^{-6} \\ 4.05 \times 10^{-5} \end{array}$ | 2.00
2.50 | B
B | 1 | | 2 | | 3P° — 1P° | [1573.4]
[1574.9]
[1578.5] | [67136.4]
[67199.6]
[67343.8] | 130695
130695
130695 | 1
3
5 | 3
3
3 | m
m
m | 0.0118
5.5
0.0146 | $ \begin{vmatrix} 5.1 \times 10^{-6} \\ 0.00240 \\ 6.4 \times 10^{-6} \end{vmatrix} $ | CCC | 1
1
1 | Nv **Ground State** 1s2 2s 2S1/2 Ionization Potential $97.863 \text{ eV} = 789532.9 \text{ cm}^{-1}$ ## **Allowed Transitions** #### List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |--------------------|--|--------------------|-----|----------------|----------| | 162.562 | 3 | 266.375 | 4 | 5067 | 13 | | 186.070
186.153 | 6 | 1238.81
1242.80 | 1 | 5273
6719 | 11
16 | | 186.16 | 6 | 3161 | 9 | 7330 | 17 | | 209.270 | $\begin{vmatrix} & 0 \\ 2 & \end{vmatrix}$ | 4335 | 10 | 15088 | 8 | | 209.303 | 2 | 4603.83 | 7 | 15203 | 8 | | 247.563 | 5 | 4619.9 | 7 | 15258 | 8 | | 247.710 | 5 | 4751 | 12 | | | | 247.72 | 5 | 4933 | 14 | | | | 266.192 | 4 | 4952 | 15 | | l | The values taken from Weiss' calculations [1] are estimated to be accurate to within 10 percent because of the very close agreement between his dipole length and dipole velocity approximations. The values calculated with the length approximation are adopted. The Coulomb approximation should be quite reliable for the highly excited transitions and is given preference over Kelly's approximate Hartree-Fock calculations [2], with which it sometimes disagrees. ^[1] Weiss, A. W., Astrophys. J. 138, 1262-1276 (1963). ^[2] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117 (1964). NV. Allowed Transitions | No | . Transition
Array | Multiple | t λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | g | gk | $A_{ki}(10^8 \mathrm{sec}^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |----|-----------------------|--|--------------------------------|----------------------------|----------------------------|--------------------------------------|--|----------------------------------|-----------------------------|---|---|----------------|----------------| | 1 | 2s-2p | ² S - ² P° (1 uv) | 1240.1 | 0.0 | 80637 | 2 | 6 | 3.38 | 0.234 | 1.91 | -0.330 | A | 1 | | | | (1 uv) | 1238,81
1242.80 | 0.0 | 80723
80465 | $\begin{vmatrix} 2\\2 \end{vmatrix}$ | 4 2 | 3.38
3.36 | 0.156
0.0778 | 1.27
0.637 | -0.507
-0.808 | A
A | ls
ls | | 2 | 2s-3p | ² S - ² P° (2 uv) | 209.28 | 0.0 | 477826 | 2 | 6 | 120 | 0.235 | 0.324 | -0.327 | B+ | 1 | | | | (2 uv) | 209.270
209.303 | 0.0 | 477851
477777 | $\begin{vmatrix} 2\\2 \end{vmatrix}$ | 4 2 | 119
119 | 0.157
0.0784 | 0.216
0.108 | $ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | B +
B + | ls
ls | | 3 | 2s-4p | ² S - ² P° (3 uv) | 162.562 | 0.0 | 615150 | 2 | 6 | 56.3 | 0.0669 | 0.0716 | -0.874 | В | ca | | 4 | 2p-3s | $\begin{array}{c c} ^{2}P^{\circ}-^{2}S \\ (4 \text{ uv}) \end{array}$ | 266.31 | 80637 | 456134 | 6 | 2 | 90.9 | 0.0322 | 0.169 | -0.714 | . B + | 1 | | | | () | 266.375
266.192 | 80723
80465 | 456134
456134 | 4 2 | $\begin{bmatrix} 2\\2 \end{bmatrix}$ | 60.6
30.2 | 0.0322
0.0321 | 0.113
0.0563 | $ \begin{array}{r r} -0.890 \\ -1.192 \end{array} $ | B+
B+ | ls
ls | | 5 | 2p-3d | ² P° – ² D
(5 uv) | 247.66 | 80637 | 484417 | 6 | 10 | 429 | 0.658 | 3.22 | 0.596 | В+ | 1 | | | | , , | 247.710
247.563
[247.72] | 80723
80465
80723 | 484427
484403
484403 | 4
2
4 | 6
4
4 | 429
357
71.6 | 0.592
0.656
0.0659 | 1.93
1.07
0.215 | 0.374 0.118 -0.579 | B+
B+
B+ | ls
ls
ls | | 6 | 2p-4d | ² P° – ² D
(6 uv) | 186.13 | 80637 | 617905 | 6 | 10 | 140 | 0.121 | 0.445 | -0.139 | В | ca | | | | (0 4) | 186.153
186.070
[186.16] | 80723
80465
80723 | 617905
617905
617905 | 4
2
4 | 6
4
4 | 140
116
23.3 | 0.109
0.121
0.0121 | $\begin{array}{c} 0.267 \\ 0.148 \\ 0.0297 \end{array}$ | $ \begin{array}{r r} -0.361 \\ -0.617 \\ -1.315 \end{array} $ | B
B
B | ls
ls
ls | | 7 | 3s-3p | ${}^{2}S - {}^{2}P^{\circ}$ | 4608.7 | 456134 | 477826 | 2 | 6 | 0.413 | 0.395 | 12.0 | -0.103 | В | 1 | | | | (1) | 4603.83
4619.9 | 456134
456134 | 477851
477777 | 2 2 | $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$ | $0.415 \\ 0.411$ | 0.264
0.131 | 8.00
4.00 | $ \begin{array}{r} -0.278 \\ -0.580 \end{array} $ | B
B | ls
ls | | 8 | 3p-3d | ² P°- ² D | 15168 | 477826 | 484417 | 6 | 10 | 0.00946 | 0.0544 | 16.3 | -0.486 | В | l | | | | J | [15203]
[15088]
[15258] | 477851
477777
477851 | 484427
484403
484403 | 4
2
4 | 6
4
4 | 0.00940
0.00801
0.00155 | 0.0489
0.0547
0.00542 | 9.78
5.43
1.09 | -0.709 -0.961 -1.664 | B
B
B | ls
ls
ls | | 9 | 5p-6s | ² P°-2S (2) | 3161 | 678297 | [709947] | 6 | 2 | 3.06 | 0.153 | 9.55 | -0.037 | В | ca | | 10 | 6s-7p | ² S - ² P° (3) | 4335 | [709947] | 732993 | 2 | 6 | 0.376 | 0.318 | 9.08 | -0.197 | В | ca | | 11 | 6p-7s | ² P°-2S (4) | 5273 | 712464 | [731432] | 6 | 2 | 1.41 | 0.196 | 20.4 | 0.070 | В | ca | | 12 | 6p-7d | ² P°-2D (5) | 4751 | 712464 | [733516] | 6 | 10 | 0.963 | 0.543 | 51.0 | 0.513 | В | ca | | 13 | 6d-7p | ² D - ² P° (6) | 5067 | 713289 | 732993 | 10 | 6 | 0.423 | 0.0977 | 16.3 | -0.010 | В | ca | | 14 | 6d – 7f | ${}^{2}D - {}^{2}F^{\circ}$ | 4933 | 713289 | [733547] | 10 | 14 | 1.62 | 0.828 | 134 | 0.918 | В | ca | | 15 | 6f-7d | ² F°-2D (8) | 4952 | [713327] | [733516] | 14 | 10 | 0.161 | 0.0423 | 9.66 | -0.227 | В | ca | | 16 | 7s-8p | ² S- ² P° (11) | 6719 | [731432] | [746311] | 2 | 6 | 0.171 | 0.348 | 15.4 | -0.157 | В | ca | | 17 | 7p-8d | ² P° — ² D (12) | 7330 | 732993 | [746649] | 6 | 10 | 0.454 | 0.610 | 88.3 | 0.564 | В | ca | Ground State 1s² ¹S₀ Ionization Potential $551.925 \text{ eV} = 4452800 \text{ cm}^{-1}$ ## **Allowed Transitions** The results of extensive non-relativistic variational calculations by Weiss [1] are used. Values have been calculated in both the dipole length and dipole velocity approximations and agree to within 1%, except for the 3p $^{1}P^{\circ}-3d$ ^{1}D transition where agreement is not as good. The average of the two approximations is adopted [1]. #### Reference [1] Weiss, A. W., private communication (1964). **NVI.** Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g _k | $A_{ki}(10^8 \mathrm{sec^{-1}})$ | f_{ik} | S(at.u.) | log gf | Accuracy | Source | |-----|---------------------|---|----------|-----------------------|-------------------------|----|----------------|----------------------------------|----------|----------|---------|----------|--------| | 1 | $1s^2-1s2p$ | ¹ S - ¹ P° | [28.787] | o | 3473790 | 1 | 3 | 18100 | 0.674 | 0.0639 | -0.171 | A | 1 | | 2 | $1s^2 - 1s3p$ | ¹ S - ¹ P° | [24.898] | 0 | 4016390 | 1 | 3 | 5160 | 0.144 | 0.0118 | -0.842 | A | 1 | | 3 | 1s2s-1s2p | ¹ S - ¹ P° | [2914.6] | [3439490] | 3473790 | 1 | 3 | 0.206 | 0.0786 | 0.754 | -1.105 | A | 1 | | 4 | 1s2s - 1s3p | ¹S−¹P° | [173.34] | [3439490] | 4016390 | 1 | 3 | 269 | 0.364 | 0.208 | -0.439 | A | 1 | | 5 | 1s2p-1s3d | ¹P°−¹D | [185.09] | 3473790 | [4014057] | 3 | 5 | 825 | 0.706 | 1.29 | 0.326 | A | 1 | | 6 | 1s3d-1s3p | ¹D – ¹P° | [42850]? | [4014057] | 4016390 | 5 | 3 | 5.44×10^{-4} | 0.00899 | 6.34 | -1.347 | C+ | 1 | | 7 | 1s2s1s2p | 3S - 3P° | [1901.5] | [3385890] | [3438480] | 3 | 9 | 0.678 | 0.110 | 2.07 | - 0.481 | A | 1 | | 8 | 1s2s - 1s3p | $^{3}\mathrm{S} - ^{3}\mathrm{P}^{\circ}$ | [161.40] | [3385890] | [4005471] | 3 | 9 | 285 | 0.334 | 0.533 | 0.001 | A | 1 | | 9 | 1s2p-1s3d | ³P°−3D | [173.98] | [3438480] | [4013259] | 9 | 15 | 876 | 0.662 | 3.41 | 0.775 | A | 1 | | 10 | 1s3p-1s3d | 3P°-3D | [12837]? | [4005471] | [4013259] | 9 | 15 | 0.0102 | 0.0419 | 15.9 | -0.424 | A | 1 | ## **OXYGEN** O I Ground State $1s^2 2s^2 2p^{4 3}P_2$ Ionization Potential $13.614 \text{ eV} = 109836.7 \text{ cm}^{-1}$ ## **Allowed Transitions** ## List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |----------------------|--|----------------|-------|----------------|-----| | | | 5425.16 | 40 | 7943.15 | 14 | | 811.37 | 9 | 5435.16 | 40 | 7947.20 | 14 | | 877.804 | 9
5
5
5 | 5435.76 | 40 | 7947.56 | 14 | | 877.885 | 5 | 5436.83 | 1 1 | 7950.83 | 14 | | 878.979 | 5 | 6046.4 | 41 | 7952.18 | 14 | | 879.027 | 5 | 6106.5 | 34 | 1952.16 | 14 | | 879.108 | 5 | 6155.99 | 32 | 7981.97 | 27 | | 879.553 | 5
5 | 6156.78 | 32 | 7982.3 | 27 | | 936.011 | 10 | 6158.19 | 32 | 7982.41 | 27 | | 988.581 | 3 | 6242.5 | 15 | 7987.00 | 27 | | 988.658 | 3 | 6259.6 | 36 | 7987.34 | 27 | | | | (0(0.4 | 35 | 7995.12 | 27 | | 988.777 | 3 | 6269.4 | 35 37 | 8073.7 | 19 | | 990.132 | 3
3
3
3 | 6453.64 | | 8221.84
| 13 | | 990.120 | 3 | 6454.48 | 37 | | 13 | | 990.799 | | 6456.01 | 37 | 8227.64 | | | 999.494 | 6 | 6653.78 | 24 | 8230.01 | 13 | | 1025.77 | 8 | 7002.1 | 33 | 8232.99 | 13 | | 1027.42 | 8 | 7156.80 | 17 | 8235.31 | 13 | | 1028.16 | 8 | 7194.6 | 21 | 8446.5 | 12 | | 1152.16 | 8 4 | 7254.4 | 38 | 8508.63 | 22 | | 1217.64 | 7 | 7471.36 | 20 | 8820.45 | 16 | | 1909 17 | | 7473.23 | 20 | 9260.88 | 28 | | $1302.17 \\ 1304.87$ | $egin{pmatrix} 2 \\ 2 \\ 2 \\ 1 \end{pmatrix}$ | 7476.45 | 20 | 9262.73 | 28 | | | 2 | 7477.21 | 20 | 9265.99 | 28 | | 1306.04 | 2 | 7479.06 | 20 | 9391.2 | 18 | | 1355.61 | 1 1 | | 20 | 11287 | 29 | | 1358.52 | 1 | 7480.66 | 20 | 11201 | 49 | | 3947.29 | 25 | 7771.96 | 11 | 11295.0 | 30 | | 4368.30 | 26 | 7774.18 | 11 | 11297.5 | 30 | | 5328.98 | 39 | 7775.40 | 11 | 11302.2 | 30 | | 5329.59 | 39 | 7886.31 | 23 | 13164 | 31 | | 5330.66 | 39 | 7939.49 | 14 | | | The data for the ultraviolet lines are taken from the theoretical work by Garstang [1] and Kelly [2], with the exception of one multiplet where an experimental value by Prag and Clark [3] is available. Even though the agreement between theory and experiment is quite good in this case, namely within 25%, this may be accidental, since the extensive comparisons between theory and experiment for similar transitions of C I and N I reveal many strong discrepancies. As in the case of the other two atoms, one must again expect that the theoretical values are drastically affected by configuration interaction which is entirely neglected in the calculations. Thus, only the most prominent transitions are listed, with an accuracy rating of "E". Considerable material is available for the lines in the visible and near infrared region of the spectrum. The tabulated values are taken from Kelly's earlier self-consistent field calculations [4] (which include exchange effects in an approximate way), Vainshtein's semi-empirical calculations [5], the Coulomb approximation by Bates and Damgaard, and experimental work by Jürgens [6], Foster [7], Doherty [8], Buttrey and Gibson [9], Wiese and Shumaker [10], and Solarski and Wiese [11]. In all experiments the emission of thermal plasmas generated in stabilized arcs or shock tubes has been studied. The agreement between the various theoretical and experimental methods is often quite remarkable. This is particularly true for the multiplets at 6157, 6455, 6654, 7157, 7477, 7773, 7886, 8227, and 8446 Å for which the spread between the highest and lowest result is only 25% or less. Based on this good agreement, an accuracy of 10% for the averaged values is indicated. In arriving at best values, theoretical and experimental methods have usually been equally weighted, but among the experimental methods, the recent more advanced work [8, 9, 10, 11] is regarded as superseding the earlier work [6, 7]. For the multiplets of the moderately excited 3s-3p array, the advanced experimental methods are used exclusively, since the theoretical papers do not take into account the existence of weak intercombination lines from the upper levels. The theoretical methods are also not too reliable for two other multiplets at 3947 and 4368 Å, since cancellation in the transition integral occurs. In these cases, the experimental results are chosen. In the case of the strong multiplet $3p^{3}P - 3s'^{3}D^{\circ}$ at 7989 Å recourse is taken to a calculation by Petrie [12] because the use of approximate, hydrogen-like wave functions in this paper has given reasonable results for 3s-3p transitions, but appears to fail otherwise. #### References - [1] Garstang, R. H., Proc. Cambridge Phil. Soc. 57, 115-120 (1961). - [2] Kelly, P. S., Astrophys. J. 140, 1247-1268 (1964). - [3] Prag, A. B., and Clark, K. C., Phys. Rev. Letters 12, 34-35 (1964). - [4] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964). - [5] Vainshtein, L. A., Optika i Spektroskopiya 3, 313-321 (1957). - [6] Jürgens, G., Z. Physik 138, 613-622 (1954). - [7] Foster, E. W., Proc. Phys. Soc. London A 79, 94-104 (1962). - [8] Doherty, L. R., Thesis Michigan (1961). - [9] Buttrey, D. E., and Gibson, J. B., Technical Documentary Report No. RTD-TDR-63-3047 (1964). - [10] Wiese, W. L., and Shumaker, Jr., J. B., J. Opt. Soc. Am. 51, 937-942 (1961). - [11] Solarski, J., and Wiese, W. L., Phys. Rev. 135, A1236-A1241 (1964). - [12] Petrie, W., J. Geophys. Research 55, 143-151 (1950). ### O I. Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8 \mathrm{sec^{-1}})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|---|--|--|---|---|--------------------------------------|---------------------------------------|---|--|---|--|-----------------------|------------------------------| | 2 | 2p ⁴ —
2p ³ (⁴ S°)3s | ³ P - ⁵ S°
(1 uv)
³ P - ³ S°
(2 uv) | 1355.61
1358.52
1303.5
1302.17
1304.87 | 0.0
158.5
78.0
0.0
158.5 | 73768
73768
76795
76795
76795 | 5
3
9
5
3 | 5
5
3
3 | 1.3×10^{-5} 3.8×10^{-6} 3.8 2.1 1.3 | $3.6 \times 10^{-7} \\ 1.8 \times 10^{-7} \\ 0.031 \\ 0.031 \\ 0.032 \\ 0.031$ | 8.0×10^{-6} 2.4×10^{-6} 1.2 0.68 0.41 | $ \begin{array}{r} -5.74 \\ -6.27 \\ -0.54 \\ -0.80 \\ -1.02 \\ -1.50 \end{array} $ | E
E
D
D | 1
1,2,3
1n
1n
1n | | 3 | $2p^4 - 2p^3(^2\mathrm{D}^\circ)3s'$ | ³ P - ³ D°
(5 uv) | 989.46
988.777
990.210
990.799
988.658
990.132
988.581 | 226.5
78.0
0.0
158.5
226.5
0.0
158.5
0.0 | 76795
101143
101135
101147
101155
101147
101155
101155 | 1
9
5
3
1
5
3
5 | 3
15
7
5
3
5
3
3 | 0.41
2.3
2.3
1.7
1.2
0.58
0.95
0.066 | 0.031 0.056 0.047 0.042 0.054 0.0085 0.014 5.8×10^{-5} | 0.14
1.6
0.76
0.42
0.18
0.14
0.14
0.0094 | $ \begin{array}{r} -0.30 \\ -0.63 \\ -0.90 \\ -1.27 \\ -1.37 \\ -1.38 \\ -2.54 \end{array} $ | E
E
E
E
E | 1, 2 1n 1n 1n 1n 1n 1n | | 4 | | ¹ D - ¹ D°
(6 uv) | 1152.16 | 15868 | 102662 | 5 | 5 | 4.5 | 0.090 | 1.7 | -0.35 | E | 1, 2 | # O I. Allowed Transitions - Continued | | | T | T | | T | Т | Ī | | | T | Γ | T | | |-----|-------------------------------------|--|---|--|--|---------------------------------|---------------------------------|---|---|--|---|----------------------------|---| | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(10^8 \mathrm{sec}^{-1})$ | fik | S(at.u.) | log gf | Acc
rac | u- Source | | 5 | $2p^4 - 2p^3(^2P^\circ)3s''$ | ³P − ³P° | 878.45 | 78.0 | 113916 | 9 | 9 | 3.2 | 0.037 | 0.96 | -0.48 | E | 1, 2 | | | 2p ^o (*r)5s | | 877.885
879.027
877.804
878.979
879.108
879.553 | 0.0
158.5
0.0
158.5
158.5
226.5 | 113910
113921
113921
113927
113910
113921 | 5
3
5
3
3 | 5
3
3
1
5
3 | 2.4
0.79
1.3
3.2
0.83
1.1 | 0.027
0.0091
0.0092
0.012
0.016
0.038 | 0.39
0.079
0.13
0.11
0.14
0.11 | -0.87
-1.56
-1.34
-1.43
-1.32
-1.42 | E
E
E
E | $egin{array}{c} 1n \\ 1n \\ 1n \\ 1n \\ 1n \\ 1n \end{array}$ | | 6 | | ¹ D - ¹ P° (7 uv) | 999.494 | 15868 | 115918 | 5 | 3 | 3.9 | 0.035 | 0.57 | -0.76 | E | 1, 2 | | 7 | | ¹ S - ¹ P° (9 uv) | 1217.64 | 33792 | 115918 | 1 | 3 | 2.0 | 0.13 | 0.53 | -0.88 | Е | 1, 2 | | 8 | $2p^4 - 2p^3(^4S^\circ)3d$ | ³ P - ³ D°
(4 uv) | 1026.6 | 78.0 | 97488 | 9 | 15 | 0.39 | 0.010 | 0.31 | -1.04 | D- | 2 | | | | | 1025.77
1027.42
1028.16
1025.77
1027.42
1025.77 | 0.0
158.5
226.5
0.0
158.5
0.0 | 97488
97488
97488
97488
97488
97488 | 5
3
1
5
3
5 | 7
5
3
5
3
3 | 0.39
0.29
0.20
0.097
0.16
0.011 | $ \begin{vmatrix} 0.0086 \\ 0.0077 \\ 0.010 \\ 0.0015 \\ 0.0026 \\ 1.0 \times 10^{-4} \end{vmatrix} $ | 0.15
0.078
0.035
0.026
0.026
0.0017 | $\begin{array}{r} -1.36 \\ -1.65 \\ -1.98 \\ -2.12 \\ -2.12 \\ -3.29 \end{array}$ | D-
D-
D-
D-
D- | ls ls ls ls ls | | 9 | $2p^{4} - 2p^{3}(^{2}D^{\circ})3d'$ | ³ P – ³ P° | 811.37 | 78.0 | 123326 | 9 | 9 | 0.78 | 0.0077 | 0.18 | -1.16 | D- | 2 | | 10 | | ¹ D - ¹ F° | 936.011 | 15868 | 124326 | 5 | 7 | 0.83 | 0.015 | 0.23 | -1.12 | D- | 2 | | 11 | $2p^33s - 2p^3(^4S^{\circ})3p$ | ⁵ S°-5P
(1) | 7773.4 | 73768 | 86629 | 5 | 15 | 0.340 | 0.922 | 118 | 0.664 | В | 4, 5, 8,
11, ca | | | | · | 7771.96
7774.18
7775.40 | 73768
73768
73768 | 86631
86627
86625 | 5
5
5 | 7
5
3 | 0.340
0.340
0.340
 0.431
0.307
0.184 | 55.1
39.3
23.6 | $\begin{array}{c c} 0.333 \\ 0.186 \\ -0.035 \end{array}$ | B
B
B | ls ls ls | | 12 | | ³ S°- ³ P
(4) | 8446.5 | 76795 | 88631 | 3 | 9 | 0.280 | 0.898 | 74.9 | 0.430 | В | $\begin{bmatrix} 4, 8, 11, \\ ca \end{bmatrix}$ | | 13 | $2p^33s' - 2p^3(^2D^{\circ})3p'$ | ³ D°−3D
(34) | 8226.8 | 101143 | 113295 | 15 | 15 | 0.323 | 0.327 | 133 | 0.691 | В | 4, 6, ca | | | | | 8221.84
8230.01
8232.99
8221.84
8227.64
8230.01
8235.31 | 101135
101147
101155
101135
101147
101147 | 113294
113295
113298
113295
113298
113294
113295 | 7
5
3
7
5
5
3 | 7
5
3
5
3
7
5 | 0.292
0.211
0.261
0.0663
0.0834
0.0261
0.0432 | 0.296
0.214
0.266
0.0480
0.0508
0.0371
0.0732 | 56.1
29.0
21.6
9.09
6.88
5.03
5.95 | 0.316 0.029 -0.099 -0.474 -0.595 -0.732 -0.659 | B
B
B
B
B | ls
ls
ls
ls
ls
ls | | 14 | | ³ D°−3F
(35) | 7949.3 | 101143 | 113719 | 15 | 21 | 0.373 | 0.495 | 194 | 0.87 | С | 4,6,ca | | | | | 7947.56
7950.83
7952.18
7943.15
7947.20
7939.49 | 101135
101147
101155
101135
101147
101135 | 113714
113721
113727
113721
113727
113727 | 7
5
3
7
5
7 | 9
7
5
7
5
5 | 0.373
0.331
0.313
0.0417
0.058
0.00165 | 0.454
0.439
0.495
0.0394
0.055
0.00111 | 83
58
38.8
7.2
7.2
0.203 | 0.50 0.342 0.171 -0.56 -0.56 -2.109 | 000000 | ls
ls
ls
ls
ls | | 15 | | 3Do-3D | [6242.5]? | 101143 | [117158]? | 15 | 9 | 0.73 | 0.257 | 79 | 0.59 | С | 4 | | 16 | | ¹ D°- ¹ F (37) | 8820.45 | 102662 | 113996 | 5 | 7 | 0.261 | 0.426 | 62 | 0.328 | С | 4, ca | | 17 | | ¹ D° – ¹ D (38) | 7156.80 | 102662 | 116631 | 5 | 5 | 0.473 | 0.363 | 42.8 | 0.259 | В | 4, 11, ca | | 18 | | ¹ D°- ¹ P | [9391.2]? | 102662 | [113307]? | 5 | 3 | 0.215 | 0.171 | 26.4 | -0.069 | С | 4 | OI. Allowed Transitions - Continued | | | | | | | _= | | | | | | | | |-----|--|--|---|---|---|--------------------------------------|--------------------------------------|--|---|--|--|-----------------------|----------------------------| | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gk | $A_{ki}(10^8 { m sec}^{-1})$ | f_{ik} | S(at.u.) | $\log gf$ | Accu-
racy | Source | | 19 | | 3P°-3S | [8073.7]? | 113916 | [126298]? | 9 | 3 | 0.339 | 0.110 | 26.4 | -0.003 | С | 4 | | 20 | $egin{array}{c} 2p^33s''-\ 2p^3(^2 ext{P}^o)3p'' \end{array}$ | ³ P° – ³ D
(55) | 7477.3 | 113916 | 127286 | 9 | 15 | 0.408 | 0.570 | 126 | 0.710 | В | 4, 6, ca | | | 29 (1)09 | (05) | 7476.45
7479.06
7480.66
7473.23
7477.21
7471.36 | 113910
113921
113927
113910
113921
113910 | 127282
127288
127291
127288
127291
127291 | 5
3
1
5
3
5 | 7
5
3
5
3
3 | 0.408
0.306
0.226
0.102
0.170
0.0114 | 0.479
0.428
0.570
0.0856
0.143
0.00571 | 58.9
31.6
14.0
10.5
10.5
0.702 | $\begin{array}{c c} 0.379 \\ 0.108 \\ -0.244 \\ -0.369 \\ -0.369 \\ -1.545\end{array}$ | B
B
B
B | ls
ls
ls
ls
ls | | 21 | | 3P°-3P | [7194.6]? | 113916 | [127811]? | 9 | 9 | 0.478 | 0.371 | 79 | 0.52 | С | 4 | | 22 | | ¹P°−¹P | 8508.63 | 115918 | 127668 | 3 | 3 | 0.289 | 0.314 | 26.4 | -0.026 | С | 4 | | 23 | | ¹ P°- ¹ D
(64) | 7886.31 | 115918 | 128595 | 3 | 5 | 0.370 | 0.575 | 44.8 | 0.236 | В | 4, 6, ca | | 24 | | ¹ P°- ¹ S
(65) | 6653.78 | 115918 | 130943 | 3 | 1 | 0.600 | 0.133 | 8.72 | -0.400 | В | 4, 11, ca | | 25 | $2p^{3}3s - 2p^{3}(^{4}S^{\circ})4p$ | ⁵ S°- ⁵ P | 3947.29 | 73768 | 99095 | 5 | 15 | 0.00326 | 0.00229 | 0.149 | -1.94 | С | 4, 7 | | 26 | | ³ S°- ³ P
(5) | 4368.30 | 76795 | 99680 | 3 | 9 | 0.0066 | 0.0056 | 0.242 | -1.77 | С | 9, 11 | | 27 | $2p^{3}(^{4}\mathrm{S}^{\circ})3p - 2p^{3}(^{2}\mathrm{D}^{\circ})3s'$ | ³ P - ³ D° (19) | 7989.9 | 88631 | 101143 | 9 | 15 | 0.29 | 0.46 | 110 | 0.61 | D | 12 | | | | | 7995.12
7987.00
7982.41
7987.34
7981.97
[7982.3] | 88631
88630
88631
88631
88631 | 101135
101147
101155
101147
101155
101155 | 5
3
1
5
3
5 | 7
5
3
5
3
3 | 0.29
0.21
0.16
0.072
0.12
0.0080 | 0.38
0.34
0.46
0.068
0.11
0.0046 | 50
27
12
9.0
9.0
0.60 | 0.28 0.01 -0.34 -0.47 -0.47 -1.64 | D
D
D
D
D | ls
ls
ls
ls
ls | | 28 | $2p^{3}3p - 2p^{3}(^{4}S^{\circ})3d$ | ⁵ P - ⁵ D° | 9263.9 | 86629 | 97420 | 15 | 25 | 0.419 | 0.90 | 412 | 1.130 | С | 4, ca | | | | | 9265.99
9262.73
9260.88
9265.99
9262.73
9260.88
9265.99
9262.73
9260.88 | 86631
86627
86625
86631
86627
86625
86631
86627
86625 | 97420
97420
97420
97420
97420
97421
97420
97421
97421 | 7
5
3
7
5
3
7
5 | 9
7
5
7
5
3
5
3 | 0.419
0.280
0.147
0.140
0.245
0.315
0.0279
0.105
0.420 | 0.69
0.50
0.315
0.180
0.315
0.405
0.0257
0.081
0.0180 | 148
77
28.8
38.4
48.0
37.0
5.5
12.4
16.5 | 0.69
0.401
- 0.025
0.100
0.197
0.085
- 0.75
- 0.393
- 0.268 | 000000000 | ls ls ls ls ls ls ls ls ls | | 29 | | 3B-3D0 | 11287 | 88631 | 97488 | 9 | 15 | 0.235 | 0.75 | 250 | 0.83 | С | 4 | | 30 | $2p^{3}3p - 2p^{3}(^{4}S^{\circ})4s$ | ⁵ P- ⁵ S° (7) | 11299 | 86629 | 95476 | 15 | 5 | 0.272 | 0.173 | 97 | 0.415 | С | 4, ca | | | <u>μ</u> ρ (Ο)πο | (1) | 11302.2
11297.5
11295.0 | 86631
86627
86625 | 95476
95476
95476 | 7
5
3 | 5
5
5 | 0.127
0.091
0.054 | 0.173
0.173
0.173 | 45.1
32.2
19.3 | 0.084 -0.062 -0.284 | C
C
C | ls
ls
ls | | 31 | | ³ P- ³ S° | 13164 | 88631 | 96226 | 9 | 3 | 0.188 | 0.163 | 63 | 0.165 | C | 4, ca | # O I. Allowed Transitions - Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gk | $A_{ki}(10^8 \mathrm{sec}^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|--|---------------------------------------|---|---|--|---|---|---|---|--|---|----------------------------|--| | 32 | $\begin{vmatrix} 2p^33p - \\ 2p^{3(4}S^{\circ})4d \end{vmatrix}$ | ⁵ P - ⁵ D° (10) | 6157.3 | 86629 | 102865 | 15 | 25 | 0.0701 | 0.0664 | 20.2 | -0.001 | В | 4, 11, ca | | | | | 6158.19
6156.78
6155.99
6158.19
6156.78
6155.99
6158.19
6156.78
6155.99 | 86631
86627
86625
86631
86627
86625
86631
86627
86625 | 102865
102865
102865
102865
102865
102865
102865
102865 | 7
5
3
7
5
3
7
5
3 | 9
7
5
7
5
3
5
3
1 | 0.0468
0.0245
0.0234
0.0410
0.0527
0.00467
0.0175 | 0.0512
0.0372
0.0232
0.0133
0.0233
0.0299
0.00190
0.00598 | 7.27
3.77
1.41
1.89
2.36
1.82
0.269
0.606 | -0.445
-0.731
-1.158
-1.031
-0.934
-1.047
-1.877
-1.524 | B
B
B
B
B
B | ls ls ls ls ls ls | | 33 | | ³ P- ³ D° (21) | 7002.1 | 88631 | 102908 | 9 | 15 | 0.0702 | 0.0133 | 0.808
8.3 | -1.399 -0.446 | C B | ls
4, 6, ca | | 34 | $2p^{3}3p' - 2p^{3}(^{2}D^{\circ})4d'$ | ³ D - ³ F° (43) | [6106.5] | 113295 | [129667] | 15 | 21 | 0.0460 | 0.0360 | 10.9 | -0.268 | С | 4,6,ca | | 35 | | ³ F − ³ F° (48) | [6269.4] | 113719 | [129667] | 21 | 21 | 0.0198 | 0.0117 | 5.1 | -0.61 | С | 4, 6, ca | | 36 | | ³ F → ³ G° (50) | 6259.6 | 113719 | 129690 | 21 | 27 | 0.063 | 0.0475 | 20.6 | -0.001 | С | 4, 6, ca | | 37 | $2p^{3}3p - 2p^{3}(^{4}S^{\circ})5s$ | ⁵ P - ⁵ S° (9) | 6455.0 | 86629 | 102116 | 15 | 5 | 0.0710 | 0.0148 | 4.71 | - 0.654 | B 4 | 1, 11, ca | | ļ | | | 6456.01
6454.48
6453.64 | 86631
86627
86625 | 102116
102116
102116 | 7
5
3 | 5
5
5 | 0.0331
0.0237
0.0142 | 0.0148
0.0148
0.0148 | 2.20
1.57
0.942 | $ \begin{array}{c c} -0.985 \\ -1.131 \\ -1.353 \end{array} $ | B
B
B | ls
ls
ls | | 38 | | ³ P - ³ S° (20) | 7254.4 | 88631 | 102412 | 9 | 3 | 0.062 | 0.0162 | 3.48 | -0.84 | C | 4, 6, ca | | 39 | $2p^{3}3p - 2p^{3}(^{4}S^{\circ})5d$ | ⁵ P - ⁵ D° (12) | 5330.0 | 86629 | 105385 | 15 | 25 | 0.0197 | 0.0140 | 3.68 | -0.68 | С | 4, 6, 7, | | | | |
5330.66
5329.59
5328.98
5330.66
5329.59
5328.98
5330.66
5329.59
5328.98 | 86631
86627
86625
86631
86627
86625
86631
86627
86625 | 105385
105385
105385
105385
105385
105385
105385
105385
105385 | 7
5
3
7
5
3
7
5
3 | 9
7
5
7
5
3
5
3
1 | 0.0148
0.00131
0.00491 | $\begin{array}{c} 0.0107 \\ 0.0078 \\ 0.00490 \\ 0.00279 \\ 0.00489 \\ 0.0063 \\ 4.00 \times 10^{-4} \\ 0.00125 \\ 0.00279 \end{array}$ | 1.32
0.69
0.258
0.343
0.429
0.331
0.0491
0.110
0.147 | -1.124
-1.407
-1.83
-1.71
-1.61
-1.72
-2.55
-2.203
-2.077 | 00000000 | ca
ls
ls
ls
ls
ls
ls | | 40 | 2p ³ 3p -
2p ³ (⁴ S°)6s | ⁵ P - ⁵ S° (11) | 5436.1 | 86629 | 105019 | 15 | 5 | 0.0305 | 0.00450 | 1.21 | -1.170 | C | 4, 5, 6, | | | | | 5436.83
5435.76
5435.16 | 86631
86627
86625 | 105019
105019
105019 | 7
5
3 | 5 | 0.0102 | 0.00451
0.00450
0.00451 | 0.57
0.403
0.242 | $ \begin{array}{c c} -1.50 \\ -1.65 \\ -1.87 \end{array} $ | C
C
C | 7, ca
ls
ls
ls | | 41 | | ³ P - ³ S° (22) | 6046.4 | 88631 | 105165 | 9 | 3 | 0.0234 | 0.00427 | 0.77 | -1.415 | | 1, 6, ca | The list of forbidden lines for O I is a very interesting one since it contains some of the very few cases of experimental determinations of forbidden line strengths. This fortunate circumstance is due to the appearance of strong forbidden lines in the aurora, so that the latter could be used as a "light source." Extensive measurements by Omholt [1] have given, for the 5577 Å line, a transition probability of 1.43 sec⁻¹ ± 14%, whereas Garstang [2] with a refined calculation has obtained 1.25 sec⁻¹. For another case, namely the lifetime for the ¹D state, the averaged experimental result [3, 4] is approximately 160 sec, whereas the theory [5, 7] gives 135 sec. In both instances the mean value is adopted. Attempts have also been made in the laboratory to obtain experimental results, but they are all subject to some doubt and are therefore omitted in this compilation. Aside from applications in atmospheric physics, the importance of the above lines lies in the circumstance that the experimental determinations give a reliable indication of the uncertainties in the theory of forbidden line strengths which in itself does not allow error estimates. A number of other transitions in the p^4 configuration have been investigated by several authors. All electric quadrupole line strengths are taken from Garstang [6], since his estimate of the quadrupole integral s_q is the most advanced one available. Naqvi [5], and Yamanouchi and Horie [7], in their calculations of magnetic dipole line strengths, retain the spin-spin and spin-other-orbit parameter in the transformation coefficients, while Garstang neglects it. Thus, their values are used for the ${}^3P - {}^1D$ and ${}^3P - {}^1S$ transitions, where this gives an improvement of about 15%. For the latter line, however, only Yamanouchi and Horie's [7] data are employed, since Naqvi's treatment of configuration interaction effects, which are important for this line, appears to be inadequate (see also general introduction). #### References - [1] Omholt, A., Geofys. Publikasjoner Norske Videnskaps. Akad. Oslo 21, 1-38 (1959). - [2] Garstang, R. H., The Airglow and the Aurorae, 324-327 (ed. Armstrong and Dalgarno, Pergamon Press, New York, 1956). - [3] Stoffregen, W., and Derblom, H., Nature 185, 28-29 (1960). - [4] Omholt, A., Planetary and Space Science 2, 246-248 (1960). - [5] Nagvi, A. M., Thesis Harvard (1951). - [6] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 111, 115-124 (1951). - [7] Yamanouchi, T., and Horie, H., J. Phys. Soc. Japan 7, 52-56 (1952). #### **OI.** Forbidden Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gĸ | Type of
Transition | $A_{ki}(\sec^{-1})$ | S(at.u.) | Accu-
racy | Source | |-----|---------------------|--|---|---------------------------------------|---|--------------------|------------------|-----------------------|--|---|------------------|------------------------------------| | 1 | $2p^4 - 2p^4$ | 3P - 3P | $[63.07 \times 10^{4}]$ $[63.07 \times 10^{4}]$ $[44.14 \times 10^{4}]$ $[14.70 \times 10^{5}]$ | 0.0
0.0
0.0
158.5 | 158.5
158.5
226.5
226.5 | 5,5 5 3 | 3
1
1 | e
m
e
m | 1.30×10^{-11} 8.95×10^{-5} 1.00×10^{-10} 1.70×10^{-5} | 2.32
2.50
1.03
2.00 | C
B
C
B | 5, 6, 7
6
5, 6, 7 | | 2 | | ³ P - ¹ D
(1 F) | 6300.23
6300.23
6363.88
6363.88
[6391.6] | 0.0
0.0
158.5
158.5
226.5 | 15867.7
15867.7
15867.7
15867.7
15867.7 | 5
3
3 | 5
5
5
5 | e
m
e
m
e | $\begin{array}{c} 2.4\times10^{-5} \\ 5.1\times10^{-3} \\ 3.2\times10^{-6} \\ 1.64\times10^{-3} \\ 1.1\times10^{-6} \end{array}$ | 7.1×10^{-4} 2.37×10^{-4} 9.9×10^{-5} 7.9×10^{-5} 3.5×10^{-5} | D
C
D
C | 3, 4, 5, 7
6
3, 4, 5, 7
6 | | 3 | | ³ P - ¹ S
(2 F) | [2958.4]
2972.3 | 0.0
158.5 | 33792.4
33792.4 | 5 3 | 1 | e
m | 3.7×10 ⁻⁴
0.067 | 5.0×10^{-5}
6.5×10^{-5} | D
C | 6 7 | | 4 | | ¹ D - ¹ S
(3 F) | 5577.35 | 15867.7 | 33792.4 | 5 | 1 | e | 1.34 | 4.31 | C+ | 1, 2 | **Ground State** $1s^2 2s^2 2p^3 {}^4S^{\circ}_{3/2}$ Ionization Potential $35.108 \text{ eV} = 283244 \text{ cm}^{-1}$ # **Allowed Transitions** # List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |----------------|--------|----------------|----------|--------------------|----------| | 424.66 | 22 | 3007.4 | 84 | 3488.18 | 36 | | 429.918 | 10 | | | 3496.27 | 36 | | | | 3007.74 | 85 | | | | 430.041 | 10 | 3008.28 | 85 | 3712.75 | 25 | | 430.177 | 10 | 3008.8 | 84 | 3727.33 | 25 | | 440.58 | 18 | 3009.7 | 85 | 3729.34 | 73 | | 442.03 | 17 | 3009.81 | 85 | 3735.9 | 73 | | 445.62 | 16 | 3010.0 | 85 | 3735.94 | 73 | | 464.78 | 21 | 3010.5 | 85 | 3739.92 | 69 | | 468.77 | 20 | 3012.8 | 85 | 3749.49 | 25 | | 470.41 | 19 | 3013.0 | 85 | 3762.63 | 69 | | 481.66 | 1.0 | 2010.07 | 0.4 | 9555 | | | | 13 | 3013.37 | 84 | 3777.60 | 69 | | 483.752 | 12 | 3014.0 | 84 | 3794.48 | 70 | | 483.796 | 12 | 3019.8 | 84 | 3803.14 | 70 | | 484.03 | 12 | 3032.08 | 86 | 3821.68 | 70 | | 485.086 | 11 | 3032.50 | 86 | 3830.45 | 70 | | 485.47 | 11 | 3047.5 | 86 | 3833.10 | 43 | | 485.515 | 11 | 3113.71 | 66 | 3842.82 | 42 | | 515.498 | 15 | 3122.62 | 66 | 3843.58 | 43 | | 515.640 | 15 | 3124.02 | 66 | 3847.89 | 42 | | 517.937 | 14 | 3129.44 | 66 | 3850.81 | 42 | | E10 040 | 1,4 | 07.04.00 | | | | | 518.242 | 14 | 3134.32 | 66 | 3851.04 | 42 | | 539.086 | 5 | 3134.82 | 66 | 3851.47 | 43 | | 539.547 | 5
5 | 3138.44 | 66 | 3856.16 | 42 | | 539.853 | 5 | 3139.77 | 66 | 3857.18 | 43 | | 555.056 | 8 | 3270.9 | 71 | 3863.50 | 42 | | 555.121 | 8 | 3270.98 | 71 | 3864.13 | 41 | | 600.585 | 9 | 3273.52 | 71 | 3864.45 | 42 | | 616.291 | 6 | 3277.69 | 67 | 3864.68 | | | 616.363 | 6 | 3282.0 | | - | 42 | | 617.051 | 6 | 3287.59 | 39
67 | 3872.45
3874.10 | 41 | | | | 3207.39 | 07 | 3074.10 | 41 | | 644.148 | 4 | 3290.13 | 67 | 3875.82 | 43 | | 672.948 | 7 7 | 3295.13 | 67 | 3882.20 | 42 | | 673.768 | 7 | 3301.56 | 67 | 3882.45 | 41 | | 718.484 | 2 | 3305.15 | 67 | 3883.15 | 42 | | 718.562 | 2 2 | 3306.60 | 67 | 3893.53 | 42
41 | | 796.661 | 3 | 2277 90 | 20 | | | | 832.754 | | 3377.20 | 38 | 3896.30 | 41 | | | 1 | 3390.25 | 38 | 3907.45 | 41 | | 833.326 | 1 | 3407.38 | 72 | 3911.96 | 33 | | 834.462 | 1 | 3409.84 | 72 | 3912.09 | 33 | | 2733.34 | 65 | 3447.98 | 68 | 3919.29 | 33 | | 2747.46 | 65 | 3460.6 | 26 | 3926.58 | 41 | | 3000.1 | 84 | 3470.42 | 68 | | 41 | | 3002.2 | 84 | | | 3945.05 | 30 | | 3006.0 | | 3470.81 | 68 | 3954.37 | 30 | | | 84 | 3474.94 | 37 | 3967.44 | 47 | | 3007.08 | 85 | 3479.7 | 26 | 3973.26 | 30 | List of tabulated lines - Continued | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |----------------|-----|--------------------|----------|--------------------|-----------------| | 3982.72 | 30 | 4272.3 | 34 | 4596.17 | 31 | | 3985.46 | 47 | 4275.52 | 78 | 4598.2 | 50 | | 4060.8 | 82 | 4276.71 | 77 | 4602.11 | 81 | | 4069.64 | 40 | 4276.71 | 78 | 4002.11 | 01 | | 4069.64 | 40 | 4270.71 | 10 | 4609.42 | 81 | | 4009.70 | 40 | 4977.40 | [70 | | | | 4072.16 | 40 | 4277.40 | 78 | 4613.11 | 81 | | 4075.87 | 40 | 4277.90 | 78 | 4638.85 | 23 | | 4078.86 | 40 | 4281.40 | 77 | 4641.81 | 23 | | 4084.66 | 46 | 4282.82 | 77 | 4649.14 | 23 | | 4085.12 | 40 | 4282.96 | 78 | 4650.04 | 20 | | 1000.12 | 70 | 4283.13 | 78 | 4650.84 | 23 | | 4087.16 | 76 | 4283.75 | 78 | 4661.64
4673.75 | 23 | | 4089.30 | 76 | 4284.0 | 78 | 4676.23 | 23
23 | | 4092.94 | 40 | 4284.4 | 78 | | 23
69 | | 4094.18 | 40 | 4288.8 | 77 | 4690.97 | 62 | | 4095.63 | 76 | 4200.0 | '' | 4691,47 | 62 | | 2070100 | .0 | 4288.83 | 77 | 4696.36 | 23 | | 4096.18 | 76 | 4294.82 | 77 | 4698.48 | 60 | | 4096.54 | 46 | 4295.5 | 29 | 4699.21 | 49 | | 4097.26 | 45 | 4303.82 | 77 | 4699.21 | 60 | | 4097.26 | 76 | 4317.14 | 24 | 7077.21 | 00 | | 4103.02 | 45 | 102.12 | -* | 4701.23 | 62 | | | | 4319.63 | 24 | 4701.76 | 62 | | 4104.74 | 45 | 4319.93 | 63 | 4703.18 | 60 | | 4105.00 | 45 | 4325.77 | 24 | 4705.36 | 49 | | 4106.03 | 40 | 4328.62 | 63 | 4710.04 | 48 | | 4108.75 | 76 | 4329.0 | 29 | | | | 4109.3
| 76 | | | 4741.71 | 49 | | | | 4336.87 | 24 | 4751.34 | 48 | | 4109.8 | 59 | 4340.36 | 79 | 4752.70 | 48 | | 4110.20 | 59 | 4342.00 | 79 | 4845.0 | 54 | | 4110.80 | 45 | 4345.56 | 24 | 4856.49 | 53 | | 4112.03 | 46 | 4347.43 | 32 | | | | 4113.82 | 59 | | | 4856.76 | 53 | | | 1 | 4349.1 | [32] | 4861.03 | 61 | | 4114.4 | 76 | 4349.43 | 24 | 4864.95 | 53 | | 4119.22 | 45 | 4351.27 | 32 | 4871.58 | 61 | | 4120.28 | 45 | 4351.5 | 32 | 4872.2 | 61 | | 4120.55 | 45 | 4359.38 | 51 | | | | 4121.48 | 44 | 1055.00 | | 4890.93 | 52 | | | | 4366.90 | 24 | 4906.88 | 52 | | 4126.1 | 76 | 4369.28 | 51 | 4924.60 | 52 | | 4129.34 | 44 | 4371.3 | 79 | 4941.12 | 56 | | 4132.81 | 44 | 4395.95 | 51 | 4943.06 | 56 | | 4140.74 | 44 | 4406.02 | 51 | 1055 70 | E 4 | | 4141.96 | 64 | 4414.03 | 90 | 4955.78
5160.02 | 56
55 | | | | 4414.91 | 28 | 5176.00 | 55
55 | | 4142.08 | 64 | 4416.98 | 28 | 5176.00 | 55 | | 4142.24 | 64 | 4443.05 | 57 | 5206.73 | 55 | | 4143.4 | 64 | 4443.7 | 57 | 0200.73 | 33 | | 4143.52 | 64 | 4447.7 | 57 | 6627.62 | 75 | | 4143.77 | 64 | 4440.01 | [7 | 6640.90 | $\frac{13}{27}$ | | | | 4448.21 | 57
28 | 6666.94 | 75 | | 4145.6 | 64 | 4452.38 | 35 | 6678.19 | 75 | | 4145.90 | 64 | 4465.40 | 1 11 | 6718.1 | 75 | | 4146.09 | 64 | 4466.6 | 80
35 | 0.20.1 | | | 4153.30 | 44 | 4467.88 | 33 | 6721.35 | 27 | | 4156.54 | 44 | 4469.32 | 35 | 6810.6 | 74 | | | | 4409.32
4489.48 | 80 | 6844.1 | 74 | | 4169.23 | 44 | 4409.46 | 80 | 6846.97 | 74 | | 4185.46 | 58 | 4491.25
4539.6 | 50 | 6869.74 | 74 | | 4189.6 | 58 | 4539.6
4563.2 | 50 | 000,111 | | | 4189.79 | 58 | 4303.2 | 50 | 6885.07 | 74 | | 4253.9 | 83 | 4590.97 | 31 | 6895.29 | 74 | | Ī | | 4596.0 | 31 | 6906.54 | 74 | | 4263.2 | 77 | 4030.0 | | 6908.11 | 74 | | 2200.2 | | l . | ` | 6910.75 | 74 | Most data on the vacuum ultraviolet lines are taken from the self-consistent field calculations by Kelly [1] in which exchange effects have been considered. The data for the strong $2s^22p^3-2s2p^4$ and $2p^3-2p^23s$ transitions are probably quite uncertain since these are sensitively affected by configuration interaction which has not been taken into account. Two transitions of the $2s^22p^3-2s2p^4$ array could be taken, however, from the calculations of Levinson et al. [2] in which the effects of configuration interaction have been approximately included. For the multiplets in the visible four data sources have been selected: simplified self-consistent field calculations by Kelly [3] (with exchange effects approximately taken into account), the Coulomb approximation by Bates and Damgaard, emission measurements by Mastrup and Wiese [4], and intermediate coupling calculations by Garstang [5]. The absolute multiplet values have been obtained by averaging the results of the first three methods mentioned. The agreement is quite remarkable, often within 30%. For the breakdown of the multiplets into lines the intermediate coupling calculations by Garstang [5] and, whenever available, the experimental results by Mastrup and Wiese [4] are employed, both normalized to the absolute total multiplet values. The two sets of data agree very well, while LS-coupling values show large deviations for some multiplets of the 3p-3d array. The absolute values of the intercombination lines are obtained by normalizing Garstang's coupling calculations [5] to the Coulomb approximation, as he has proposed in his paper. - [1] Kelly, P. S., Astrophys. J. 140, 1247-1268 (1964). - [2] Levinson, I. B., Bolotin, A. B., and Levin, L. I., Trudy Vil'nyusskogo Univ. 5, 49-55 (1956). - [3] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964). - [4] Mastrup, F., and Wiese, W. L., Z. Astrophys. 44, 259-279 (1958). - [5] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 114, 118-133 (1954). O II. Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gk | $A_{ki}(10^8~{\rm sec}^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|----------------------------|--|--|----------------------------------|--------------------------------------|------------------|------------------|-------------------------------|--------------------------------|----------------------------|--|---------------|----------------| | 1 | $2s^22p^3 - 2s2p^4$ | ⁴ S°-4P
(1 uv) | 833.80 | 0.0 | 119933 | 4 | 12 | 14 | 0.43 | 4.7 | 0.23 | E | 1 | | | | | 834.462
833.326
832.754 | 0.0
0.0
0.0 | 119838
120001
120084 | 4
4
4 | 6
4
2 | 13
14
14 | 0.21
0.15
0.07 | 2.3
1.6
0.77 | $ \begin{array}{r} -0.08 \\ -0.23 \\ -0.55 \end{array} $ | E
E
E | ls
ls
ls | | 2 | | $^{2}D^{\circ} - ^{2}D$ (4 uv) | 718.54 | 26817 | 165991 | 10 | 10 | 32 | 0.25 | 5.9 | 0.40 | E | 1 | | | | | 718.484
718.562
718.484
718.562 | 26808
26829
26808
26829 | 165988
165996
165996
165988 | 6
4
6
4 | 6
4
4
6 | 30
29
3.1
2.1 | 0.23
0.22
0.016
0.024 | 3.3
2.1
0.23
0.23 | $ \begin{array}{r} 0.14 \\ -0.05 \\ -1.01 \\ -1.01 \end{array} $ | E
E
E | ls
ls
ls | | 3 | | ² P°- ² D
(11 uv) | 796.661 | 40467 | 165991 | 6 | 10 | 4.4 | 0.070 | 1.1 | -0.38 | E | 2 | | 4 | | ² P°- ² S
(13 uv) | 644.148 | 40467 | 195710 | 6 | 2 | 72 | 0.15 | 1.9 | -0.05 | Е | 2 | | 5 | $2p^{3} - 2p^{2}(^{3}P)3s$ | ⁴ S°- ⁴ P
(2 uv) | 539.37 | 0.0 | 185402 | 4 | 12 | 8.6 | 0.11 | 0.80 | -0.35 | E | 1 | | | -p (1)00 | (2 47) | 539.086
539.547
539.853 | 0.0
0.0
0.0 | 185499
185341
185235 | 4
4
4 | 6
4
2 | 8.6
8.6
8.6 | 0.056
0.037
0.019 | $0.40 \\ 0.27 \\ 0.13$ | $-0.65 \\ -0.82 \\ -1.13$ | E
E
E | ls
ls
ls | | 6 | | $ \begin{array}{c c} ^2D^\circ - ^2P \\ (5 \text{ uv}) \end{array} $ | 616.56 | 26817 | 189008 | 10 | 6 | 18 | 0.061 | 1.2 | -0.21 | E | 1 | | | | (<i>o</i> uv) | 616.291
617.051
616.363 | 26808
26829
26829 | 189068
188888
189068 | 6
4
4 | 4
2
4 | 16
18
1.8 | 0.061
0.051
0.010 | $0.74 \\ 0.41 \\ 0.083$ | -0.44 -0.69 -1.39 | E
E
E | ls
ls
ls | OII. Allowed Transitions—Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(10^8~{ m sec^{-1}})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|--|---|--|----------------------------------|--------------------------------------|------------------|--|------------------------------|--|--------------------------------|---|--------------------------|----------------------| | 7 | | ² P° – ² P
(12 uv) | 673.22 | 40467 | 189008 | 6 | 6 | 9.2 | 0.063 | 0.84 | -0.42 | E | 1 | | | | | 672.948
673.768
673.768
672.948 | 40467
40468
40467
40468 | 189068
188888
188888
189068 | 4
2
4
2 | $\begin{array}{ c c }\hline 4\\2\\2\\4\\\end{array}$ | 7.7
6.2
3.1
1.5 | 0.052
0.042
0.010
0.021 | 0.46
0.19
0.093
0.093 | $ \begin{array}{r r} -0.68 \\ -1.08 \\ -1.38 \\ -1.38 \end{array} $ | E
E
E | ls
ls
ls
ls | | 8 | $\begin{vmatrix} 2p^3 - 2p^2(^1\mathrm{D})3s' \end{vmatrix}$ | $^{2}D^{\circ}-^{2}D$ (6 uv) | 555.08 | 26817 | 206972 | 10 | 10 | 15 | 0.067 | 1.2 | -0.17 | E | 1 | | | 2p (B)63 | (0 uv) | 555.056
555.121
555.056
555.121 | 26808
26829
26808
26829 | 206971
206972
206972
206971 | 6
4
6
4 | 6
4
4
6 | 14
13
1.5
0.97 | 0.063
0.061
0.0045
0.0067 | 0.69
0.44
0.049
0.049 | $ \begin{array}{r r} -0.42 \\ -0.62 \\ -1.57 \\ -1.57 \end{array} $ | E
E
E | ls
ls
ls
ls | | 9 | | ² P°- ² D
(14 uv) | 600.585 | 40467 | 206972 | 6 | 10 | 4.3 | 0.039 | 0.46 | -0.63 | E | 1 | | 10 | $2p^3 - 2p^2(^3P)3d$ | 4S°-4P
(3 uv) | 430.09 | 0.0 | 232511 | 4 | 12 | 39 | 0.32 | 1.8 | 0.11 | D- | 1 | | | 2p (1)00 | (5 44) | 430.177
430.041
429.918 | 0.0
0.0
0.0 | 232463
232536
232603 | 4
4
4 | 6
4
2 | 39
39
39 | 0.16
0.11
0.054 | 0.91
0.61
0.31 | | D-
D-
D- | ls
ls
ls | | 11 | | ² D° – ² F
(8 uv) | 485.27 | 26817 | 232889 | 10 | 14 | 25 | 0.12 | 1.9 | 0.08 | D- | 1 | | | | (0 44) | 485.086
485.515
[485.47] | 26808
26829
26808 | 232959
232796
232796 | 6
4
6 | 8
6
6 | 25
23
1.6 | 0.12
0.12
0.0058 | 1.1
0.78
0.056 | $ \begin{array}{r} -0.16 \\ -0.31 \\ -1.46 \end{array} $ | D-
D-
D- | ls
ls
ls | | 12 | | ² D° – ² P | 483.91 | 26817 | 233468 | 10 | 6 | 0.84 | 0.0018 | 0.028 | -1.75 | D- | 1 | | | | (9 uv) | 483.976
483.752
[484.03] | 26808
26829
26829 | 233430
233544
233430 | 6
4
4 | 4
2
4 | 0.76
0.84
0.084 | 0.0018
0.0015
3.0 × 10 ⁻⁴ | 0.017
0.0094
0.0019 | -1.97 -2.23 -2.93 | D-
D-
D- | ls
ls
ls | | 13 | | ² D° - ² D
(10 uv) | 481.66 | 26817 | 234434 | 10 | 10 | 5.4 | 0.019 | 0.30 | -0.73 | D- | 1 | | 14 | | ² P° – ² P | 518.13 | 40467 | 233468 | 6 | 6 | 11 | 0.045 | 0.46 | - 0.57 | D- | 1 | | | | (16 uv) | 518.242
517.937
517.937
518.242 | 40467
40468
40467
40468 | 233430
233544
233544
233430 | 4
2
4
2 | 4
2
2
4 | 9.4
7.5
3.7
1.9 | 0.038
0.030
0.0075
0.015 | 0.26
0.10
0.051
0.051 | -0.82 -1.22 -1.52 -1.52 | D –
D –
D –
D – | ls
ls
ls | | 15 | | ² P°- ² D
(17 uv) | 515.55 | 40467 | 234434 | 6 | 10 | 15 | 0.097 | 0.98
| -0.24 | D — | 1 | | | | (11 uv) | 515.498
515.640
515.640 | 40467
40468
40467 | 234454
234402
234402 | 4
2
4 | 6
4
4 | 15
12
2.4 | 0.087
0.097
0.0097 | 0.59
0.33
0.066 | $ \begin{array}{r} -0.46 \\ -0.71 \\ -1.41 \end{array} $ | D –
D –
D – | ls
ls
ls | | 16 | $2p^3 - 2p^2(^1\mathrm{D})3d'$ | ² D°− ² F | 445.62 | 26817 | 251222 | 10 | 14 | 26 | 0.11 | 1.6 | 0.04 | D- | 1 | | 17 | - | ² D°−2D | 442.03 | 26817 | 253048 | 10 | 10 | 21 | 0.063 | 0.91 | -0.20 | D- | 1 | | 18 | | ² D° − ² P | 440.58 | 26817 | 253791 | 10 | 6 | 7.7 | 0.013 | 0.20 | -0.87 | D — | 1 | | 19 | | ² P°− ² D | 470.41 | 40467 | 253048 | 6 | 10 | 6.5 | 0.036 | 0.33 | -0.67 | D — | 1 | | 20 | | ² P°- ² P | 468.77 | 40467 | 253791 | 6 | 6 | 12 | 0.039 | 0.36 | -0.64 | D – | 1 | | 21 | | ² P°- ² S | 464.78 | 40467 | 255622 | 6 | 2 | 16 | 0.017 | 0.16 | -0.99 | D – | 1 | | 22 | $2p^{3} - 2p^{2}(^{1}\mathrm{S})3d''$ | ² P°- ² D | [424.66] | 40467 | [275951] | 6 | 10 | 19 | 0.086 | 0.72 | -0.29 | D- | 1 | # OII. Allowed Transitions—Continued | | | | | | | _ | | | | | | | | |-----|--|--|--------------------|-----------------------|-----------------------|-----------------|---|--|-------------------------|-------------------|--|--|-----------------| | No | Transition Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ |) g | i E | $A_{ki}(10^8~{ m sec}^2$ | -1) fik | S(at.u.) | log gf | Acci | Source | | 23 | $2p^23s - 2p^2(^3P)3p$ | 4P-4D° (1) | 4651.5 | 185402 | 206895 | 5 12 | $2 \mid 2$ | 0 1.02 | 0.55 | 101 | 0.82 | С | 3, 4, ca | | | 2p (1)0p | (1) | 4649.14 | 185499 | 207003 | $\mid \epsilon$ | 5 | 8 1.04 | 0.448 | 41.1 | 0.429 | C | 4n, 5n | | | | | 4641.81 | 185341 | 206878 | | - 1 | 6 0.79 | 0.381 | 23.3 | 0.183 | C | 4n, 5n | | | 1 | | 4638.85 | 185235 | 206786 | | | 4 0.422 | 0.272 | 8.3 | -0.264 | C | 4n, 5n | | | } | Ì | 4676.23 | 185499 | 206878 | | | 6 0.257 | 0.084 | 7.8 | -0.296 | Č | 4n, 5n | | | - | | 4661.64 | 185341 | 206786 | | | 4 0.52 | 0.169 | 10.4 | -0.169 | l č | 4n, 5n | | | 1 | | 4650.84 | 185235 | 206731 | | | 2 0.82 | 0.265 | 8.1 | -0.277 | Č | 4n, 5n | | | 1 | J | 4696.36 | 185499 | 206786 | | | 4 0.0372 | 0.0082 | 0.76 | -1.308 | Č | 4n, 5n | | | | | 4673.75 | 185341 | 206731 | | | 2 0.131 | 0.0214 | 1.32 | -1.067 | č | 4n, 5n | | 24 | | ⁴ P - ⁴ P° (2) | 4341.3 | 185402 | 208431 | 12 | : 1: | 2 1.05 | 0.297 | 51 | 0.55 | C | 3, 4, ca | | | | (2) | 4349.43 | 185499 | 208484 | | | 5 0.74 | 0.211 | 18.1 | 0.102 | C | 4n, 5n | | | } | 1 | 4336.87 | 185341 | 208392 | | | 1 0.164 | 0.0462 | 2.64 | -0.73 | Č | 4n, 5n | | | | | 4325.77 | 185235 | 208346 | | | | 0.0435 | 1.24 | -1.060 | Ċ | 4n, 5n | | | | [| 4366.90 | 185499 | 208392 | 6 | | 4 0.50 | 0.096 | 8.3 | -0.239 | C
C
C | 4n, 5n | | | } | 1 | 4345.56 | 185341 | 208346 | 4 | | | 0.125 | 7.2 | -0.300 | C | 4n, 5n | | | | | 4319.63 | 185341 | 208484 | 4 | | | 0.119 | 6.8 | -0.321 | C | 4n, 5n | | | 1 | | 4317.14 | 185235 | 208392 | 2 | 4 | 0.424 | 0.237 | 6.7 | -0.325 | C | 4n, 5n | | 25 | | $\begin{vmatrix} ^{4}\mathbf{P} - ^{4}\mathbf{S}^{\circ} \\ (3) \end{vmatrix}$ | 3735.9 | 185402 | 212162 | 12 | 4 | 1.77 | 0.123 | 18.2 | 0.170 | С | 3, 4, ca | | | | į. | 3749.49 | 185499 | 212162 | 6 | 4 | ⊦ 0.90 | 0.127 | 9.4 | -0.119 | С | 4n, 5n | | | | | 3727.33 | 185341 | 212162 | 4 | | 0.59 | 0.122 | 6.0 | -0.312 | Č | 4n, 5n | | 26 | l | 4P _ 2P° | 3712.75 | 185235 | 212162 | 2 | 4 | 0.280 | 0.116 | 2.83 | -0.64 | č | 4n, 5n | | | | 1 | [3479.7] | 185499 | 214229 | 6 | 4 | 0.00101 | 1.22×10^{-4} | 0.0084 | -3.135 | | | | | | | [3460.6] | 185341 | 214229 | 4 | | | 2.76×10^{-4} | 0.0126 | -2.96 | C | 5
5 | | 27 | | ² P - ² S° (4) | 6694.4 | 189008 | 203942 | 6 | 2 | 0.287 | 0.064 | 8.5 | -0.414 | C | 3, ca | | 1 | | | 6721.35 | 189068 | 203942 | 4 | 2 | 0.189 | 0.064 | 5.7 | -0.59 | C | , | | | | 1 | 6640.90 | 188888 | 203942 | 2 | 2 | | 0.065 | 2.83 | -0.89 | C | ls
ls | | 28 | | $^{2}P-^{2}D^{\circ}$ (5) | 4418.1 | 189008 | 211636 | 6 | 10 | 1.13 | 0.55 | 48.1 | 0.52 | С | 3, 4, ca | | | | | 4414.91 | 189068 | 211713 | 4 | 6 | 1.15 | 0.50 | 29.3 | 0.205 | С | 4 - | | | | | 4416.98 | 188888 | 211522 | 2 | 4 | | 0.55 | 16.1 | 0.305
0.044 | č | 4n, 5n | | | | | 4452.38 | 189068 | 211522 | 4 | 4 | | 0.0457 | 2.68 | $\begin{bmatrix} 0.044 \\ -0.74 \end{bmatrix}$ | č | 4n, 5n $4n, 5n$ | | 29 | | 2P-4S° | | | | | | | | | | | , 011 | | | | 1 | [4329.0] | 189068 | 212162 | 4 | 4 | 0.00157 | $ _{4.42\times10^{-4}}$ | 0.0050 | 0.55 | _ | | | | | | [4295.5] | 188888 | 212162 | 2 | 4 | | | 0.0252
0.00420 | -2.75 | Č | 5 | | 30 | | ² P- ² P° (6) | 3966.9 | 189008 | 214210 | 6 | 6 | 1.46 | 0.343 | 26.9 | 0.314 | $\begin{bmatrix} \mathbf{c} \\ \mathbf{c} \end{bmatrix}$ | 5 | | | | (0) | 3973.26 | 189068 | 214229 | 4 | 1 | 107 | | | | | 3, 4, ca | | { | | ſ | 3954.37 | 188888 | 214170 | 2 | $\begin{array}{c c} 4 \\ 2 \end{array}$ | 1.27 | 0.300 | j 15.7 | 0.080 | \mathbf{C} | 4n, 5n | | | | 1 | 3982.72 | 189068 | 214170 | 4 | $\frac{2}{2}$ | 0.95 | 0.222 | 5.8 | -0.353 | C | 4n, 5n | | | | | 3945.05 | 188888 | 214229 | 2 | 4 | $\left[egin{array}{c} 0.447 \ 0.217 \end{array} ight]$ | 0.053 | 2.79 | -0.67 | C | 4n, 5n | | 31 | 0_22.7 | ar area | | 1 | 211227 | - | '# | 0.217 | 0.101 | 2.63 | -0.69 | C | 4n, 5n | | 31 | $\begin{vmatrix} 2p^23s' - \\ 2p^2(^1\mathrm{D})3p' \end{vmatrix}$ | $^{2}D - ^{2}F^{\circ}$ (15) | 4593.2 | 206972 | 228737 | 10 | 14 | 1.11 | 0.490 | 74 | 0.69 | c | 3, 4, ca | | - 1 | 1 | } | 4590.97 | 206971 | 228747 | 6 | 8 | 1.11 | 0.466 | 42.3 | 0.447 | | - | | - 1 | - 1 | Ī | 4596.17 | 206972 | 228723 | 4 | 6 | 1.03 | 0.487 | 29.5 | 0.290 | $\frac{c}{c}$ | 5n | | | | | [4596.0] | 206971 | 228723 | 6 | 6 | 0.079 | 0.0251 | 2.28 | -0.82 | C | 5n
5n | | 32 | | $^{2}D - ^{2}D^{\circ}$ | 4349.7 | 206972 | 229955 | 10 | 10 | 1.04 | 0.204 | 40.4 | | | | | | | (16) | 4251 07 | 1 | 1 | - 1 | | - | 0.296 | 42.4 | 0.471 | C | 3, 4, ca | | | ĺ | 1 | 4351.27
4347.43 | 206971 | 229947 | 6 | 6 | 0.97 | 0.275 | 23.6 | 0.217 | c | 5n | | \ | | | [4349.1] | 206972
206971 | 229968 | 4 | 4 | 0.94 | 0.267 | 15.3 | 0.029 | č | 5n
5n | | ł | ì | | [4351.5] | | 229968 | 6 | 4 | 0.102 | 0.0192 | 1.65 | -0.94 | č | 5n | | 1 | 1 | 1 | [4001.0] | 206972 | 229947 | 4 | 6 | 0.075 | 0.0318 | | -0.90 | Č | 5n | | | | | | | | | | ' | | 4 | - 1 | i | J., | # O II. Allowed Transitions—Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(10^8~{ m sec}^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|---|--|--|--|--|--|--|--|--|---|--|---------------------|----------------------------------| | 33 | | ² D - ² P° (17) | 3914.4 | 206972 | 232511 | 10 | 6 | ĺ | 0.193 | 24.9 | 0.286 | С | 3, 4, ca | | | | | 3911.96
3919.29
3912.09 | 206971
206972
206972 | 232527
232480
232527 | 6 4 4 | 4
2
4 | 1.27
1.40
0.137 | 0.194
0.161
0.0314 | 15.0
8.3
1.62 | $ \begin{array}{r} 0.066 \\ -0.192 \\ -0.90 \end{array} $ | C
C
C | 5n
5n
5n | | 34 | $\begin{vmatrix} 2p^2 3s'' - \\ 2p^2 (^1S) 3p'' \end{vmatrix}$ | ² S − ² P° | [4272.3] | [226851] | [250251] | 2 | 6 | 1.08 | 0.89 | 25.0 | 0.250 | С | 3, ca | | 35 | $\begin{vmatrix} 2s2p^33s''' - \\ 2s2p^3(^5S^\circ) \\ 3p''' \end{vmatrix}$ | ⁶ S°-6P
(94) | 4467.2 | [245396] | [267775] | 6 | 18 | 0.92 | 0.83 | 73 | 0.70 | С | ca | | | op . | | 4465.40
4467.88
4469.32 | [245396]
[245396]
[245396] | [267783]
[267771]
[267763] | 6
6
6 | 8
6
4 | 0.92
0.92
0.92 | 0.367
0.275
0.184 | 32.4
24.3
16.2 | 0.343
0.218
0.042 | C
C
C | ls
ls
ls | | 36 | $2p^{2}3p - 2p^{2}(^{3}P)3d$ | ² S°-4P
(7) | 3496.27
3488.18 | 203942
203942 | 232536
232603 | 2 2 | 4 2 | 0.0111
0.0084 | 0.00408
0.00152 | 0.094
0.0350 | -2.088
-2.52 | C
C | 5
5 | | 37 | | ² S°-4D
(8) | 3474.94 | 203942 | 232712 | 2 | | 0.0085 | 0.00153 | 0.0351 | -2.51 | С | | | 38 | | ² S°- ² P | 3385.9 | 203942 | 233468 | 2 | 6 | 1.86 | 0.96 | 21.4 | 0.283 | C | 5
3, <i>ca</i> | | | | (9) | 3390.25
3377.20 | 203942
203942 | 233430
233544 | 2 2 | 4 2 | 1.86
1.88 | 0.64
0.321 | 14.3
7.1 | 0.108
- 0.193 | C | ls
ls | | 39 | | ² S°- ² D | [3282.0] | 203942 | 234402 | 2 | 4 | 0.0168 | 0.0054 | 0.117 | -1.97 | C | 5 | | 40 | | ⁴ D° - ⁴ F
(10) | 4074.8 | 206895 | 231429 | 20 | 28 | 1.98 | 0.69 | 185 | 1.140 | С | 3, ca | | | | (10) | 4075.87
4072.16
4069.90
4069.64
4092.94
4085.12
4078.86
4106.03
4094.18 | 207003
206878
206786
206731
207003
206878
206786
207003
206878 |
231530
231428
231350
231296
231428
231350
231296
231350
231296 | 8
6
4
2
8
6
4
8
6 | 10
8
6
4
8
6
4
6
4 | 1.70
1.49
1.39
0.278
0.478
0.55
0.0187 | 0.62
0.56
0.55
0.69
0.070
0.120
0.138
0.00354
0.0065 | 66
45.3
29.7
18.5
7.5
9.7
7.4
0.383
0.53 | $\begin{array}{c} 0.69 \\ 0.53 \\ 0.346 \\ 0.140 \\ -0.253 \\ -0.144 \\ -0.259 \\ -1.55 \\ -1.406 \end{array}$ | C C C C C C C C C C | ls ls ls ls ls ls ls ls | | 41 | | ⁴ D°- ⁴ P | 3902.7 | 206895 | 232511 | 20 | 12 | 0.063 | 0.0086 | 2.21 | -0.76 | С | 3, ca | | | | | 3926.58
3896.30
3872.45
3907.45
3882.45
3864.13
3893.53
3874.10 | 207003
206878
206786
206878
206786
206731
206786
206731 | 232463
232536
232603
232463
232536
232603
232463
232536 | 8
6
4
6
4
2
4
2 | 6
4
2
6
4
2
6
4 | 0.0397
0.0321
0.0113
0.0204
0.0323
0.00126 | $\begin{array}{c} 0.0085 \\ 0.0060 \\ 0.00361 \\ 0.00258 \\ 0.00462 \\ 0.0072 \\ 4.31 \times 10^{-4} \\ 0.00144 \end{array}$ | 0.88
0.464
0.184
0.199
0.236
0.184
0.0221
0.0368 | -1.165
-1.442
-1.84
-1.81
-1.73
-1.84
-2.76
-2.54 | C C C C C C C C | ls
ls
ls
ls
ls
ls | | 42 | | 4D°-4D | 3867.2 | 206895 | 232746 | 20 | 20 | 0.58 | 0.130 | 33.2 | 0.416 | С | 3, ca | | | | (12) | 3882.20
3864.45
3851.04
3847.89
3883.15
3864.68
3856.16
3863.50
3850.81
3842.82 | 207003
206878
206786
206731
207003
206878
206786
206786
206786
206731 | 232754
232748
232746
232712
232748
232746
232712
232754
232754
232748 | 8
6
4
2
8
6
4
6
4
2 | 8
6
4
2
6
4
2
8
6
4 | 0.334
0.236
0.295
0.109
0.204
0.293
0.083
0.137 | 0.111
0.075
0.052
0.066
0.0185
0.0304
0.0327
0.0248
0.0458
0.066 | 11.4
5.7
2.66
1.66
1.89
2.32
1.66
1.89
2.32
1.66 | $\begin{array}{c} -0.050 \\ -0.348 \\ -0.68 \\ -0.83 \\ -0.74 \\ -0.88 \\ -0.83 \\ -0.74 \\ -0.88 \end{array}$ | 0000000000 | ls ls ls ls ls ls ls ls ls | O II. Allowed Transitions - Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gi | $A_{ki}(10^8~{ m sec^{-1}})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|--|--|--|--|--------------------------------------|--------------------------------------|---|---|---|--|---------------------------------------|----------------------------------| | 43 | | ⁴ D° – ² F
(13) | 3851.47
3857.18
3875.82 | 207003
206878
207003 | 232959
232796
232796 | 8 6 8 | 6 | 0.0448 | 0.0050
0.0100
0.00161 | 0.50
0.76
0.164 | -1.402
-1.222
-1.89 | 00000 | 5
5
5
5
5 | | | | | 3833.10
3843.58 | 206878
206786 | 232959
232796 | 6
4 | | | 0.00279
0.0074 | 0.211
0.374 | -1.78
-1.53 | C | 5
5 | | 44 | | ⁴ P°− ⁴ P
(19) | 4151.7 | 208431 | 232511 | 12 | 12 | 1.01 | 0.261 | 42.8 | 0.496 | С | 3, 4 ca | | | | (12) | 4169.28
4140.74
4121.48
4156.54
4129.34
4153.30
4132.81 | 208484
208392
208346
208484
208392
208392
208346 | 232463
232536
232603
232536
232603
232463
232536 | 6
4
2
6
4
4
2 | 6 4 2 4 2 6 4 | 0.220
0.0236
0.93
0.157
0.150
0.77
0.84 | 0.057
0.0061
0.237
0.0270
0.0191
0.298
0.430 | 4.73
0.331
6.4
2.22
1.04
16.3
11.7 | -0.463
-1.61
-0.324
-0.79
-1.116
0.076
-0.066 | CCCCCC | 5n
5n
5n
5n
5n
5n | | 45 | | ⁴ P° - ⁴ D
(20) | 4111.4 | 208431 | 232746 | 12 | 20 | 1.49 | 0.63 | 102 | 0.88 | С | 3, ca | | | | (20) | 4119.22
4104.74
4097.26
4120.28
4105.00
4103.02
4120.55
4110.80 | 208484
208392
208346
208484
408392
208346
208484
208392 | 232754
232748
232746
232746
232746
232712
232746
232712 | 6
4
2
6
4
2
6
4 | 8
6
4
6
4
2
4
2 | 1.48
1.04
0.63
0.443
0.80
1.25
0.074
0.248 | 0.50
0.396
0.315
0.113
0.202
0.315
0.0125
0.0314 | 40.8
21.4
8.5
9.2
10.9
8.5
1.02
1.70 | $\begin{array}{c} 0.478 \\ 0.200 \\ -0.201 \\ -0.170 \\ -0.093 \\ -0.201 \\ -1.124 \\ -0.90 \end{array}$ | C C C C C C C C C C C C C C C C C C C | ls
ls
ls
ls
ls
ls | | 46 | | ⁴ P° – ² F
(21) | 4084.66
4096.54
4112.03 | 208484
208392
208484 | 232959
232796
232796 | 6 4 6 | 8 6 6 | 0.092 | 0.0216
0.0347
0.0275 | 1.74
1.87
2.23 | -0.89
-0.86
-0.78 | C
C
C | 5
5
5 | | 47 | | ⁴ P° – ² P (22) | 3967.44
3985.46 | 208346
208346 | 233544
233430 | 2 2 | 2 4 | 0.0133 | 0.00314
0.00400 | 0.082
0.105 | -2.203
-2.097 | CCC | 5
5 | | 48 | | ² D° - ⁴ D (24) | | | | | | | | | | | ŭ | | | | | 4751.34
4710.04
4752.70 | 211713
211522
211713 | 232754
232748
232748 | 6
4
6 | 8
6
6 | 0.170 | 0.0264
0.085
0.00300 | 2.48
5.3
0.281 | -0.80
-0.469
-1.75 | C
C
C | 5
5
5 | | 49 | | $^{2}D^{\circ} - {}^{2}F$ (25) | 4703.9 | 211636 | 232889 | 10 | 14 | 1.38 | 0.64 | 99 | 0.81 | C | 3, ca | | | | | 4705.36
4699.21
4741.71 | 211713
211522
211713 | 232959
232796
232796 | 6
4
6 | 8
6
6 | 1.29 | 0.61
0.64
0.0302 | 57
39.6
2.83 | 0.56
0.408
-0.74 | C
C
C | ls
ls
ls | | 50 | | ² D°−2P | 4579.2 | 211636 | 233468 | 10 | 6 | 0.0418 | 0.0079 | 1.19 | -1.103 | С | 3, ca | | | | | [4598.2]
[4539.6]
[4563.2] | 211713
211522
211522 | 233430
233544
233430 | 6
4
4 | 4
2
4 | 0.0430 | 0.0079
0.0066
0.00132 | 0.397 | -1.326
-1.58
-2.278 | CCC | ls
ls
ls | | 51 | | ² D° – ² D (26) | 4385.3 | 211636 | 234434 | 10 | 10 | 0.430 | 0.124 | 17.9 | 0.093 | c | 3, <i>ca</i> | | | | | 4395.95
4369.28
4406.02
4359.38 | 211713
211522
211713
211522 | 234454
234402
234402
234454 | 6
4
6
4 | 6
4
4
6 | 0.391
0.0424 | 0.115
0.112
0.0082
0.0125 | 6.4
0.72 | -0.161
-0.349
-1.307
-1.302 | C
C
C
C | ls
ls
ls | OII. Allowed Transitions - Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | g _k | $A_{ki}(10^8~{ m sec^{-1}})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|-------------------------------|--|--|--------------------------------------|--------------------------------------|------------------|--|----------------------------------|------------------------------------|--|--|------------------|--| | 52 | 52 | 4S° – 4P | 4913.0 | 212162 | 232511 | 4 | 12 | 0.67 | 0.73 | 47.3 | 0.466 | С | 3, ca | | | | (28) | 4924.60
4906.88
4890.93 | 212162
212162
212162 | 232463
232536
232603 | 4
4
4 | $\left \begin{array}{c} 6\\4\\2\end{array}\right $ | 0.67
0.68
0.68 | 0.365
0.245
0.122 | 23.7
15.8
7.9 | $ \begin{vmatrix} 0.165 \\ -0.011 \\ -0.310 \end{vmatrix} $ | C
C
C | ls
ls
ls | | 53 | | ⁴ S°- ⁴ D
(29) | | | | | | | | | | | | | | | | 4856.49
4856.76
4864.95 | 212162
212162
212162 | 232748
232746
232712 | 4
4
4 | 6 4 2 | 0.094
0.176
0.235 | 0.050
0.062
0.0417 | 3.19
3.97
2.67 | | C
C
C | 5
5
5 | | 54 | | ⁴ S° - ² F
(30) | 4045.0 | 010160 | 222704 | | | 0.0004 | 0.0050 | | | | | | 55 | | ² P°− ² P | 4845.0
5191.1 | 212162 | 232796 | 4 | 6 | 0.0094 | 0.0050 | 0.316 | -1.70 | C | 5 | | 55 | | (32) | 5206.73 | 214210
214229 | 233468 | 6 | 6 | 0.53 | 0.213 | 21.8 | 0.106 | C | 3, 4, ca | | | | | 5160.02
5176.00
5190.56 | 214229
214170
214229
214170 | 233430
233544
233544
233430 | 4
2
4
2 | 4
2
2
4 | 0.391
0.350
0.171
0.137 | 0.160
0.140
0.0343
0.111 | 10.9
4.75
2.34
3.78 | | CCCC | $ \begin{array}{c cccc} 4n, & 5n \\ 4n, & 5n \\ 4n, & 5n \\ 4n, & 5n \end{array} $ | | 56 | | ${}^{2}P^{\circ} - {}^{2}D$ (33) | 4943.2 | 214210 | 234434 | 6 | 10 | 1.07 | 0.65 | 64 | 0.59 | С | 3, 4, ca | | | | (33) | 4943.06
4941.12
4955.78 | 214229
214170
214229 | 234454
234402
234402 | 4
2
4 | 6
4
4 | 1.06
0.83
0.256 | 0.58
0.61
0.094 | 37.9
19.7
6.1 | 0.367 0.083 -0.424 | C
C
C | 5n
5n
5n | | 57 | | ² F°− ² F | 4446.1 | 228737 | 251222 | 14 | 14 | 0.59 | 0.176 | 36.0 | 0.391 | С | 3, 4, ca | | | $2\vec{p}^2(^1\mathrm{D})3d'$ | (35) | 4448.21
4443.05
[4447.7]
[4443.7] | 228747
228723
228747
228723 | 251221
251224
251224
251221 | 8
6
8
6 | 8
6
6
8 | 0.57
0.57
0.0282
0.0212 | 0.169
0.167
0.0063
0.0084 | 19.8
14.7
0.74
0 .7 4
| 0.131 0.002 -1.299 -1.299 | CCCC | ls
ls
ls | | 58 | | ² F°−³G
(36) | 4187.9 | 228737 | 252608 | 14 | 18 | 2.51 | 0.85 | 164 | 1.075 | С | 3, 4, ca | | | | | 4189.79
4185.46
[4189.6] | 228747
228723
228747 | 252608
252609
252609 | 8
6
8 | 10
8
8 | 2.51
2.43
0.090 | 0.83
0.85
0.0236 | 91
70
2.60 | $0.82 \\ 0.71 \\ -0.72$ | C
C
C | ls
ls
ls | | 59 | | ² F°- ² D (37) | 4112.3 | 228737 | 253048 | 14 | 10 | 0.132 | 0.0239 | 4.53 | -0.476 | C | 3, <i>ca</i> | | | | | 4113.82
4110.20
[4109.8] | 228747
228723
228723 | 253048
253046
253048 | 8
6
6 | 6 4 6 | 0.126
0.132
0.0063 | 0.0239
0.0223
0.00159 | 2.59
1.81
0.129 | -0.72 -0.87 -2.021 | C
C
C | ls
ls
ls | | 60 | | $^{2}D^{\circ} - {}^{2}F$ (40) | 4700.8 | 229955 | 251222 | 10 | 14 | 0.88 | 0.410 | 63 | 0.61 | С | 3, ca | | | | (40) | 4699.21
4703.18
4698.48 | 229947
229968
229947 | 251221
251224
251224 | 6
4
6 | 8
6
6 | 0.88
0.82
0.059 | 0.390
0.410
0.0195 | 36.2
25.4
1.81 | $0.369 \\ 0.215 \\ -0.93$ | C
C
C | ls
ls
ls | | 61 | | ${}^{2}P^{\circ}-{}^{2}D$ | 4868.I | 232511 | 253048 | 6 | 10 | 0.437 | 0.259 | 24.9 | 0.191 | С | 3, <i>ca</i> | | | | (57) | 4871.58
4861.03
[4872.2] | 232527
232480
232527 | 253048
253046
253046 | 4
2
4 | 6
4
4 | 0.435
0.366
0.073 | 0.232
0.259
0.0259 | 14.9
8.3
1.66 | - 0.032
- 0.285
- 0.99 | C
C
C | ls
ls
ls | | 62 | | 2P°-2P | 4698.0 | 232511 | 253791 | 6 | 6 | 1.05 | 0.347 | 33.2 | 0.319 | С | 3, <i>ca</i> | | | | (58) | 4701.23
4691.47
4701.76
4690.97 | 232527
232480
232527
232480 | 253792
253790
253790
253792 | 4
2
4
2 | 4
2
2
4 | 0.87
0.70
0.349
0.176 | 0.289
0.232
0.058
0.116 | 17.9
7.2
3.58
3.58 | $ \begin{array}{r} 0.063 \\ -0.334 \\ -0.64 \\ -0.64 \end{array} $ | C
C
C
C | ls
ls
ls | O.H. Allowed Transitions - Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gĸ | $A_{ki}(10^8~{ m sec^{-1}})$ |) fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|---|---|---|--|--|---|---|--|--|--|---|---------------|----------------------------------| | 63 | | $^{2}P^{\circ}-^{2}S$ (61) | 4325.7 | 232511 | 255622 | 6 | 2 | 1.81 | 0.170 | 14.5 | 0.008 | С | 3, ca | | | | (02) | 4328.62
4319.93 | 232527
232480 | 255622
255622 | 4 2 | 2 2 | 1.21
0.61 | 0.170
0.170 | 9.7
4.83 | $ \begin{array}{r r} -0.168 \\ -0.469 \end{array} $ | C | ls
ls | | 64 | $\begin{vmatrix} 2s2p^{3}3p''' - \\ 2s2p^{3}(^{5}S^{\circ}) \\ 3d''' \end{vmatrix}$ | ⁶ P - ⁶ D° (106) | 4144.4 | [267775] | [291897] | 18 | 30 | 0.211 | 0.090 | 22.2 | 0.211 | С | ca | | | | | 4146.09
4143.77
4142.24
4145.90
4143.52
4141.96
[4145.6]
[4143.4]
4142.08 | [267783]
[267771]
[267763]
[267783]
[267771]
[267763]
[267783]
[267771]
[267763] | [291896]
[291897]
[291898]
[291897]
[291898]
[291899]
[291898]
[291899]
[291900] | 8
6
4
8
6
4
8
6
4 | 10
8
6
8
6
4
6
4
2 | 0.210
0.135
0.066
0.075
0.129
0.148
0.0167
0.063
0.211 | 0.068
0.0464
0.0253
0.0194
0.0331
0.0380
0.00323
0.0108
0.0271 | 7.4
3.80
1.38
2.12
2.71
2.07
0.353
0.89
1.48 | -0.266
-0.55
-0.99
-0.81
-0.70
-0.82
-1.59
-1.186
-0.96 | 000000000 | ls ls ls ls ls ls ls ls ls | | 65 | $2p^23p - 2p^2(^3P)4s$ | ² S° - ² P
(20 uv) | 2738.0 | 203942 | 240454 | 2 | 6 | 0.36 | 0.12 | 2.2 | -0.61 | D | 3, ca | | | <i>Lp</i> (1) 13 | (20 01) | 2733.34
2747.46 | 203942
203942 | 240516
240329 | 2 2 | 4 2 | 0.37
0.36 | 0.082
0.041 | 1.5
0.74 | -0.79
-1.09 | D
D | ls
ls | | 66 | | ⁴ D° – ⁴ P
(14) | 3133.9 | 206895 | 238795 | 20 | 12 | 1.53 | 0.135 | 27.9 | 0.432 | С | 3, ca | | | | | 3134.82
3138.44
3139.77
3122.62
3129.44
3134.32
3113.71
3124.02 | 207003
206878
206786
206878
206786
206731
206786
206731 | 238893
238732
238626
238893
238732
238626
238893
238732 | 8 6 4 6 4 2 4 2 | 6 4 2 6 4 4 | | 0.136
0.095
0.056
0.0407
0.072
0.113
0.0068
0.0226 | 11.2
5.9
2.33
2.51
2.98
2.33
0.279
0.465 | 0.036
-0.246
-0.65
-0.61
-0.54
-0.65
-1.57
-1.345 | 0000000 | ls
ls
ls
ls
ls
ls | | 67 | | 4P° - 4P
(23) | 3292.4 | 208431 | 238795 | 12 | 12 | 0.85 | 0.138 | 18.0 | 0.220 | С | 3, ca | | | | | 3287.59
3295.13
3301.56
3305.15
3306.60
3277.69
3290.13 | 208484
208392
208346
208484
208392
208392
208346 | 238893
238732
238626
238732
238626
238893
238732 | 6
4
2
6
4
4
2 | 6
4
2
4
2
6
4 | 0.113
0.141
0.379
0.70
0.259 | 0.097
0.0184
0.0230
0.0414
0.057
0.063
0.115 | 6.3
0.80
0.50
2.70
2.50
2.70
2.50 | $\begin{array}{c} -0.235 \\ -1.132 \\ -1.337 \\ -0.61 \\ -0.64 \\ -0.60 \\ -0.64 \end{array}$ | 000000 | ls
ls
ls
ls
ls
ls | | 68 | | ² D° – ² P (27) | 3469.1 | 211636 | 240454 | 10 | 6 | 1.25 | 0.135 | 15.4 | 0.130 | С | 3, <i>ca</i> | | | | | 3470.81
3470.42
3447.98 | 211713
211522
211522 | 240516
240329
240516 | 6
4
4 | $\begin{bmatrix} 4 \\ 2 \\ 4 \end{bmatrix}$ | 1.24 | 0.135
0.112
0.0227 | 9.2
5.1
1.03 | $ \begin{array}{c c} -0.092 \\ -0.348 \\ -1.042 \end{array} $ | C
C
C | ls
ls
ls | | 69 | | ⁴ S° – ⁴ P
(31) | 3753.7 | 212162 | 238795 | 4 | 12 | 0.265 | 0.168 | 8.3 | -0.173 | C : | 3, 4, ca | | | | (02) | 3739.92
3762.63
3777.60 | 212162
212162
212162 | 238893
238732
238626 | 4
4
4 | 6
4
2 | 0.269 | 0.084
0.057
0.0269 | 2.83 | - 0.473
- 0.64
- 0.97 | CCC | 4n, ls
4n, ls
4n, ls | | 70 | } | ² P°-2P
(34) | 3809.3 | 214210 | 240454 | 6 | 6 | 0.65 | 0.142 | 10.7 | -0.069 | С | 3, <i>ca</i> | | | | (/ | 3803.14
3821.68
3830.45
3794.48 | 214230
214170
214230
214170 | 240516
240329
240329
240516 | 4
2
4
2 | 4
2
2
4 | 0.432
0.215 | 0.119
0.095
0.0236
0.0476 | 2.38
1.19 | -0.324
-0.72
-1.025
-1.021 | C C C C | ls
ls
ls
ls | O II. Allowed Transitions - Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gĸ | $A_{ki}(10^8~{ m sec^{-1}})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|--------------------------|--|--------------------|-------------------------|-----------------------|---------------|---------|------------------------------|------------------|--------------|---|---------------|----------------| | 71 | $2p^23p' - 2p^2(^1D)4s'$ | ² F° - ² D (39) | 3272.4 | 228737 | 259287 | 14 | 10 | 1.20 | 0.137 | 20.7 | 0.284 | С | 3, ca | | | 2p (D) 18 | (82) | 3273.52 | 228747 | 259286 | 8 | 6 | 1.14 | 0.137 | 11.8 | 0.039 | С | ls | | | | | 3270.98 | 228723 | 259287 | 6 | 4 | 1.20 | 0.128 | 8.3 | -0.114 | C | ls | | | · | | [3270.9] | 228723 | 259287 | 6 | 6 | 0.057 | 0.0091 | 0.59 | -1.261 | C | ls | | 72 | | ² D° – ² D
(44) | 3408.4 | 229956 | 259287 | 10 | 10 | 0.80 | 0.140 | 15.7 | 0.146 | С | 3, ca | | | | , , | 3407.38 | 229947 | 259286 | 6 | 6 | 0.75 | 0.131 | 8.8 | -0.106 | C | ls | | | | | 3409.84
3407.38 | 229968
229947 | 259287 | 4 | 4 | 0.72 | 0.126 | 5.7 | -0.298 | C | ls | | | | | 3407.36 | 229947 | 259287
259286 | 6 4 | 6 | 0.080
0.054 | 0.0093
0.0140 | 0.63
0.63 | -1.252 -1.252 | C | ls
ls | | 73 | | ² P°- ² D | 3733.9 | 232513 | 259287 | 6 | 10 | 0.416 | 0.145 | 10.7 | -0.060 | C | 3, ca | | | | (62) | 3735.94 | 232527 | 259286 | 4 | 6 | 0.416 | 0.130 | 6.4 | -0.282 | C | J | | | | | 3729.34 | 232480 | 259287 | 2 | 4 | 0.349 | 0.130 | 3.57 | $\begin{bmatrix} -0.282 \\ -0.54 \end{bmatrix}$ | č | ls
ls | | | | | [3735.9] | 232527 | 259287 | $\frac{1}{4}$ | 4 | 0.069 | 0.0145 | 0.71 | -1.237 | č | ls | | 74 | $2p^23d - 2p^2(^3P)4p$ | ⁴ F - ⁴ D°
(45) | 6897.5 | 231429 | 245923 | 28 | 20 | 0.333 | 0.170 | 108 | 0.68 | С | 3, ca | | | -p (1).p | (10) | 6895.29 | 231530 | 246029 | 10 | 8 | 0.298 | 0.170 | 38.6 | 0.231 | С | ls | | | | | 6906.54 | 231428 | 245903 | 8 | 6 | 0.272 | 0.146 | 26.5 | 0.067 | C | ls | | | | | 6910.75 | 231350 | 245816 | 6 | 4 | 0.267 | 0.127 | 17.4 | -0.117 | C | ls | | | | | 6908.11 | 231296
231428 | 245768 | 4 | 2
8 | 0.332 | 0.119 | 10.8 | -0.323 | C | ls
ls
ls | | | | | 6846.97
6869.74 | 231350 | 246029
245903 | 8 | 6 | 0.0347
0.059 | 0.0244
0.0415 | 4.40
5.6 | $\begin{bmatrix} -0.71 \\ -0.60 \end{bmatrix}$ | C | ls Is | | | | | 6885.07 | 231296 | 245816 | 4 | 4 | 0.067 | 0.0476 | 4.32 | -0.72 | č | l is | | | | | [6810.6] | 231350 | 246029 | 6 | 8 |
0.00180 | 0.00167 | 0.224 | -2.000 | č | ls | | | | | [6844.1] | 231296 | 245903 | 4 | 6 | 0.00325 | 0.00343 | 0.309 | -1.86 | C | ls | | 75 | | ² P- ² P° (85) | 6657.3 | 233468 | 248485 | 6 | 6 | 0.105 | 0.070 | 9.2 | -0.377 | С | 3, ca | | | | ` ′ | 6627.62 | 233430 | 248514 | 4 | 4, | 0.089 | 0.059 | 5.1 | -0.63 | C | ls | | | | | [6718.1] | 233544 | 248425 | 2 | 2 | 0.068 | 0.0461 | 2.04 | -1.035 | C | ls | | | | | 6678.19 | 233544 | 248514 | 2 | 4 | 0.0173 | 0.0232 | 1.02 | -1.334 | C | ls | | | | | 6666.94 | 233430 | 248425 | 4 | 2 | 0.0349 | 0.0116 | 1.02 | -1.333 | C | ls | | 76 | $2p^23d - 2p^2(^3P)4f$ | ⁴ F- ⁴ G° (48) | 4093.7 | 231429 | 255850 | 28 | 36 | 2.60 | 0.84 | 317 | 1.372 | С | 3, ca | | 1 | | | 4089.30 | 231530 | 255978 | 10 | 12 | 2.62 | 0.79 | 106 | 0.90 | C | ls | | [| | | 4097.26 | 231428
231350 | 255828
255759 | 8 | 10
8 | 2.37
2.23 | 0.75
0.75 | 81 | 0.78
0. 6 5 | C | ls
ls | | 1 | | | 4095.63
4087.16 | 231296 | 255756 | 6
4 | 6 | 2.24 | 0.73 | 61
45.3 | 0.63 | č | ls ls | | | | : | [4114.4] | 231530 | 255828 | 10 | 10 | 0.212 | 0.054 | 7.3 | -0.269 | č | ls | | 1 | | | 4108.75 | 231428 | 255759 | 8 | 8 | 0.349 | 0.088 | 9.6 | -0.151 | C | ls | | | | | 4096.18 | 231350 | 255756 | 6 | 6 | 0.359 | 0.090 | 7.3 | -0.267 | C | ls | | | | | [4126.1] | 231530 | 255759 | 10 | 8 | 0.0077 | 0.00158 | 0.214 | -1.80 | C | ls | | | | | [4109.3] | 231428 | 255756 | 8 | 6 | 0.0128 | 0.00244 | 0.264 | -1.71 | C | ls | | 77 | | ⁴ P - ⁴ D° (54) | 4293.8 | 232511 | 255794 | 12 | 20 | 1.98 | 0.91 | 155 | 1.040 | С | 3, ca | | | | (0.2) | 4303.82 | 232463 | 255691 | 6 | 8 | 1.97 | 0.73 | 62 | 0.64 | C | ls | | | ļ | [| 4294.82 | 232536 | 255813 | 4 | 6 | | 0.57 | 32.5 | 0.362 | C | ls
ls | | | | | [4288.8] | 232603 | 255913 | 2 | 4 | 0.83 | 0.457 | 12.9
13.9 | -0.039 -0.006 | C | ls | | | | | 4281.40 | 232463 | 255813
255913 | 6 4 | 6
4 | 0.60
1.06 | 0.164
0.293 | 16.5 | -0.068 | č | ls | | | [| | 4282.82
4288.83 | 232536
232603 | 255913 | 2 | 2 | 1.66 | 0.457 | 12.9 | -0.039 | Č | ls | | | | - | [4263.2] | 232463 | 255913 | 6 | 4 | 0.101 | 0.0184 | 1.55 | -0.96 | C | ls | | | | | 4276.71 | 232536 | 255912 | 4 | 2 | 0.334 | 0.0458 | 2.58 | -0.74 | C | ls | OII. Allowed Transitions - Continued | No | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(10^8~{\rm sec^{-1}})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |----|-----------------------------------|--|--|--|--|---|--|---|--|--|---|---------------|--| | 78 | | ⁴ D- ⁴ F° (67) | 4278.0 | 232746 | 256115 | 20 | 28 | 2.12 | 0.81 | 229 | 1.211 | С | 3, ca | | | | | 4275.52
4276.71
4282.96
4277.40
4277.90
4283.13
4283.75
[4284.4]
[4284.0] | 232754
232748
232746
232712
232754
232748
232746
232754
232754
232754 | 256136
256123
256088
256084
256123
256088
256084
256088
256084 | 6 | 10
8
6
4
8
6
4
6
4 | 2.12
1.82
1.58
1.49
0.302
0.51
0.59
0.0204
0.0421 | 0.73
0.66
0.65
0.82
0.083
0.141
0.162
0.00420
0.0077 | 82
56
36.8
23.0
9.3
11.9
9.2
0.474
0.65 | 0.76
0.60
0.417
0.213
-0.179
-0.074
-0.187
-1.474
-1.334 | 000000000 | ls
ls
ls
ls
ls
ls | | 79 | | $\frac{{}^{2}\mathbf{F} - {}^{2}\mathbf{G}^{\circ}}{(77)}$ | 4341.7 | 232889 | 255915 | 14 | 18 | 2.31 | 0.84 | 168 | 1.070 | С | 3, ca | | | | | 4342.00
4340.36
[4371.3] | 232959
232796
232959 | 255984
255829
255829 | 8
6
8 | 10
8
8 | 2.31
2.23
0.081 | 0.82
0.84
0.0232 | 93
72
2.67 | $\begin{bmatrix} 0.81 \\ 0.70 \\ -0.73 \end{bmatrix}$ | C
C
C | ls
ls
ls | | 80 | | ² P - ² D° (86) | 4488.9 | 233468 | 255739 | 6 | 10 | 1.81 | 0.91 | 81 | 0.74 | С | 3, ca | | | | | 4491.25
4489.48
[4466.6] | 233430
233544
233430 | 255690
255812
255812 | 4
2
4 | 6
4
4 | 1.81
1.51
0.307 | 0.82
0.91
0.092 | 48.6
27.0
5.4 | $\begin{bmatrix} 0.52 \\ 0.262 \\ -0.435 \end{bmatrix}$ | C
C
C | ls
ls
ls | | 81 | | ² D- ² F° (93) | 4606.6 | 234434 | 256136 | 10 | 14 | 1.82 | 0.81 | 123 | 0.91 | С | 3, <i>ca</i> | | | | | 4609.42
4602.11
4613.11 | 234454
234402
234454 | 256143
256126
256126 | 6
4
6 | 8
6
6 | 1.82
1.70
0.121 | 0.77
0.81
0.0385 | 70
49.2
3.51 | 0.67
0.51
-0.64 | C
C
C | ls
ls
ls | | 82 | $2p^23d' - 2p^2(^1\mathrm{D})4f'$ | ² F - ² G° (97) | 4060.8 | 251222 | 275841 | 14 | 18 | 2.20 | 0.70 | 131 | 0.99 | С | 3, ca | | 83 | | ² G - ² H° (101) | 4253.9 | 252608 | 276109 | 18 | 22 | 2.63 | 0.87 | 220 | 1.196 | С | 3, 4 ca | | 84 | $2p^{2}3d - 2p^{2}(^{3}P)5f$ | ⁴ P- ⁴ D° (56) | [3011.7] | 232511 | [265705] | 12 | 20 | 0.75 | 0.169 | 20.1 | 0.307 | С | 3, ca | | | | | 3013.37
[3014.0]
[3019.8]
[3007.4]
[3008.8]
[3006.0]
[3002.2]
[3000.1] | 232463
232536
232602
232463
232536
232602
232463
232536 | 265639
[265705]
[265762]
[265705]
[265762]
[265859]
[265859] | 6
4
2
6
4
2
6
4 | 8
6
4
6
4
2
4
2 | 0.52
0.311
0.225
0.398
0.63
0.0376 | 0.135
0.106
0.085
0.0305
0.054
0.085
0.00339
0.0085 | 8.0
4.22
1.68
1.81
2.14
1.68
0.201
0.335 | $\begin{bmatrix} -0.091 \\ -0.371 \\ -0.77 \\ -0.74 \\ -0.67 \\ -0.77 \\ -1.69 \\ -1.470 \end{bmatrix}$ | 0000000 | ls
ls
ls
ls
ls | | 85 | | ⁴ D- ⁴ F° (74) | [3008.4] | 232746 | [265977] | 20 | 28 | 0.84 | 0.160 | 31.7 | 0.51 | C | 3, ca | | | | | 3007.08
3007.74
3009.81
[3009.7]
3008.28
[3010.0]
[3012.8]
[3010.5]
[3013.0] | 232754
232748
232746
232712
232754
232748
232746
232754
232754
232748 | 265999
265985
[265961]
[265928]
265985
[265961]
[265928]
[265928] | 8
6
4
2
8
6
4
8
6 | 6
4
8
6
4
6 | 0.72
0.63
0.59
0.120
0.204
0.235
0.0081 | $\begin{array}{c} 0.143 \\ 0.130 \\ 0.128 \\ 0.159 \\ 0.0163 \\ 0.0278 \\ 0.0320 \\ 8.3 \times 10^{-4} \\ 0.00152 \end{array}$ | 11.3
7.8
5.1
3.16
1.29
1.65
1.27
0.066
0.090 | $\begin{array}{c} 0.057 \\ -0.106 \\ -0.289 \\ -0.496 \\ -0.89 \\ -0.78 \\ -0.89 \\ -2.180 \\ -2.040 \end{array}$ | 00000000 | ls
ls
ls
ls
ls
ls
ls | | 86 | | ² F - ² G° (83) | 3032.5 | 232889 | 265856 | 14 | 18 | 0.85 | 0.151 | 21.1 | 0.325 | С | 3, ca | | | | 1 | 3032.08
3032.50
[3047.5] | 232959
232796
232959 | 265930
265763
265763 | 8
6
8 | 8 | 0.82 | 0.147
0.151
0.00417 | 11.7
9.0
0.335 | 0.069
- 0.043
- 1.476 | CCC | ls
ls
ls | The adopted values are exclusively from Seaton and Osterbrock's calculations [1]. The important effects of configuration interaction are partially taken into account and a reliable estimate of the quadrupole integral is given (see also general introduction). ## Reference [1] Seaton, M. J., and Osterbrock, D. E., Astrophys. J. 125, 66-83 (1957). OII. Forbidden Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | g i | gk | Type of
Transi-
tion | $A_{ki}(\mathrm{sec}^{-1})$ | S(at.u.) | Accu-
racy | Source | |-----|---------------------|---|--|---|--|----------------------------|---------------------------------|----------------------------|---|---|------------------|----------------------------| | 1 | $2p^3 - 2p^3$ | ⁴ S°- ² D°
(1 F) | 3728.91
3728.91
3726.16
3726.16 | 0.0
0.0
0.0
0.0 | 26810.7
26810.7
26830.5
26830.5 | 4
4
4
4 | 6
6
4
4 | m
e
m
e | $7.4 \times 10^{-6} 4.1 \times 10^{-5} 1.43 \times 10^{-4} 2.7 \times 10^{-5}$ | $\begin{array}{c} 8.5 \times 10^{-8} \\ 1.1 \times 10^{-4} \\ 1.10 \times 10^{-6} \\ 4.5 \times 10^{-5} \end{array}$ | C
D
C
D | 1
1
1
1 | | 2 | | ⁴ S° – ² P° | [2470.4]
[2470.4]
[2470.3]
[2470.3] | 0.0
0.0
0.0
0.0 | 40466.9
40466.9
40468.4
40468.4 | 4
4
4
4 | 4
4
2
2 | m
e
m
e | $ \begin{vmatrix} 0.060 \\ 1.5 \times 10^{-7} \\ 0.0238 \\ 7.4 \times 10^{-7} \end{vmatrix} $ | $\begin{array}{c} 1.33 \times 10^{-4} \\ 3.3 \times 10^{-8} \\ 2.66 \times 10^{-5} \\ 8.1 \times 10^{-8} \end{array}$ | C
D
C
D | 1
1
1 | | 3 | | ² D° – ² D° | $[50.8 \times 10^{5}]$ $[50.5 \times 10^{5}]$ | 26810.7
26810.7 | 26830.5
26830.5 | 6
6 | 4
4 | m
e |
$\begin{array}{c} 1.26 \times 10^{-7} \\ 1.5 \times 10^{-19} \end{array}$ | 2.40
0.0012 | B
D | 1
1 | | 4 | | ² D° — ² P° (2 F) | 7319.4
7319.4
7318.6
7330.7
7330.7
7329.9
7329.9 | 26810.7
26810.7
26810.7
26830.5
26830.5
26830.5
26830.5 | 40466.9
40466.9
40468.4
40466.9
40468.4
40468.4 | 6
6
6
4
4
4 | 4
4
2
4
4
2
2 | m
e
e
m
e
m | 0.0091
0.106
0.0610
0.0160
0.0450
0.0103
0.0900 | 5.3×10^{-4}
5.30
1.52
9.3×10^{-4}
2.29
3.01×10^{-4}
2.27 | 000000 | 1
1
1
1
1
1 | | 5 | | ² P° — ² P° | $ \begin{bmatrix} 6.7 \times 10^{7} \\ 6.7 \times 10^{7} \end{bmatrix} $ | 40466.9
40466.9 | 40468.4
40468.4 | 4.4 | 2 2 | m
e | $\begin{vmatrix} 6.04 \times 10^{-11} \\ 4.9 \times 10^{-24} \end{vmatrix}$ | 1.33
5.0 × 10 ⁻⁴ | C +
D | 1
1 | Ground State $1s^2 2s^2 2p^2 {}^3P_0$ Ionization Potential $54.886 \text{ eV} = 442807 \text{ cm}^{-1}$ ## **Allowed Transitions** ## List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |----------------|---|----------------|-----------------|--------------------|----------------| | 302.34 | 14 | 2683,65 | 36 | 3284.57 | 27 | | 303.411 | ii | 2686.14 | 24 | 3299.36 | 17 | | 303.460 | ii | 2687.53 | 36 | 3305.77 | $\frac{1}{27}$ | | 303.515 | l ii l | 2695.49 | 36 | 3312.30 | 1 17 | | | | 2983.78 | 20 | | | | 303.621 | 11 | 2905.78 | 20 | 3326.16 | 40 | | 303.693 | 11 | 2992.11 | 28 | 3330.40 | 40 | | 303.799 | | 2996.51 | 28 | 3332.49 | 40 | | 305.596 | 10 | 2997.71 | 28 | 3333.00 | 23 | | 305.656 | 10 | 3004.35 | 28 | 3333.40 | 23 | | 305.703 | 10 | 3008.79 | 28 | 3336.78 | 23 | | 305.769 | 10 | 3017.63 | 28 | 3336.78 | 40 | | 305.836 | 10 | 3023.45 | 18 | 3340.74 | 17 | | 305.879 | 10 | 3024.36 | 28 | 3344.26 | 23 | | 320.979 | 13 | 3024.57 | 18 | 3344.26 | 40 | | 328.448 | 12 | 3035.43 | | 3348.05 | 40 | | 245 200 | 1 1 | 9049.00 | | 2072 60 | | | 345.309 | 15 | 3043.02 | 18 | 3350.68 | 23 | | 373.805 | 7 | 3047.13 | 18 | 3350.99 | 23 | | 374.005 | 7 | 3059.30 | 18 | 3355.92 | 40 | | 374.075 | 7 | 3065.01 | 38 | 3362.38 | 23 | | 374.165 | 7 | 3068.06 | 38 | 3376.4 | 39 | | 374.331 | 7 | 3068.48 | 38 | 3376.82 | 39 | | 374.436 | 7 | 3068.68 | 38 | 3377.3 | 39 | | 395.558 | 8 | 3074.15 | 38 | 3382.69 | 39 | | 434.975 | 9 | 3074.68 | 38 | 3383.5 | 39 | | 507.391 | 3 | 3075.19 | 38 | 3383.85 | 39
39 | | 507.683 | $oxed{3}$ | 3075.95 | 38 | 2204.05 | 00 | | 508.182 | | | | 3384.95 | 39 | | | 3 5 | 3083.65 | 38 | 3394.26 | 39 | | 525.795 | 5 | 3084.63 | 38 | 3395.5 | 39 | | 597.818 | 6 | 3088.04 | 38 | 3405.74 | 31 | | 599.598 | 4 | 3095.81 | 38 | 3408.13 | 31 | | 702.332 | 2 | 3115.73 | 29 | 3415.29 | 31 | | 702.822 | $\begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$ | 3121.71 | 29 | 3428.67 | 31 | | 702.899 | $\mid 2 \mid \mid$ | 3132.86 | 29 | 3430.60 | 31 | | 703.850 | 2 | 3198.2 | 42 | 3444.10 | 31 | | 832.927 | $ \overline{1} $ | 3200.95 | $\overline{42}$ | 3446.73 | 37 | | 833.742 | \parallel $_{1}$ | 3202.2 | 42 | 3447.22 | 27 | | 835.096 | l î | 3207.12 | 42 | 3448.05 | 37 | | 835.292 | $1 1 \parallel$ | 3210.2 | 42 | 3450.94 | 37 | | 2454.99 | $\begin{vmatrix} 21 \end{vmatrix}$ | 3215.97 | 42 | | 37 | | 2558.06 | 46 | 3221.2 | 42 | 3451.33
3454.90 | 37
37 | | 2597.69 | 45 | 3260.98 | 97 | 2455 10 | | | | 45 | | 27 | 3455.12 | 37 | | 2605.41 | 45 | 3265.46 | 27 | 3459.52 | 37 | | 2609.6 | 45 | 3267.31 | 27 | 3459.98 | 37 | | 2665.69 | 24 | 3279.97 | 47 | 3466.15 | 37 | | 2674.57 | 24 | 3281.94 | 27 | 3466.90 | 37 | List of tabulated lines—Continued | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |----------------|---|--------------------|---|----------------|-----| | 3475.2 | 37 | 3712.48 | 22 | 3816.75 | 34 | | 3520.7 | 26 | 3714.03 | 30 | 3961.59 | 33 | | 3530.7 | 26 | 3715.08 | 30 | 4072.3 | 25 | | 3532.8 | 26 | 3720.86 | 22 | 4073.90 | 25 | | 3534.3 | 26 | 3721.95 | 22 | 4081.10 | 25 | | 3555,3 | 26 | 3725.30 | 30 | 4088.5 | 25 | | 3556.92 | 26 | 3728.49 | 41 | 4103.8 | 25 | | 3638.70 | 44 | 3728.82 | 41 | 4118.6 | 25 | | 3645.20 | 44 | 3729.70 | 41 | 4440.1 | 43 | | 3646.84 | 44 | 3732.13 | 30 | 4447.82 | 43 | | 3649.20 | 44 | 3734.80 | 22 | 4461.56 | 43 | | 3650.70 | 44 | 3742.0 | 41 | 5268.06 | 35 | | 3653.00 | 44 | 3747.6 | 41 | 5500.11 | 32 | | 3695.37 | 22 | 3754.67 | 16 | 5592.37 | 19 | | 3698.70 | 22 | 3757.21 | 16 | 3392.31 | 19 | | 3702.75 | 30 | 3759.87 | 16 | | | | 3703.37 | 22 | 3761.2 | 16 | | | | 3704.73 | $\frac{22}{22}$ | 3774.00 | $\begin{array}{c c} & 41 \\ & 16 \end{array}$ | 1 | 1 | | 3707.24 | 30 | 1 | | | | | 3709.52 | $\begin{array}{c c} 30 \\ 22 \end{array}$ | 3791.26
3810.96 | 16
16 | | | Values for the strong $2s^2 2p^2 - 2s2p^3$ transitions, which are very sensitive to configuration interaction, are taken from the calculations of Bolotin et al. [1]. These authors have used analytical one-electron wave functions and include configuration interaction in a crude manner. Thus large uncertainties must be expected. This applies also for the $2p^2 - 2p3s$ and to a lesser extent to the $2p^2 - 2p3d$ transitions, for which only Kelly's self-consistent field calculations [2] are available. In these, configuration interaction has been entirely neglected. For many other transitions the simplified self-consistent field calculations by Kelly [3], in which exchange effects are approximately taken into account, are applied. The results agree within a few percent with the values of the Coulomb approximation and the averaged values are adopted. The accuracy rating of "C" is supported by the good agreement with relative f-value measurements of Berg et al. [4] done with a magnetically driven shock tube. - [1] Bolotin, A. B., Levinson, I. B., and Levin, L. I., Soviet Phys. JETP 2, 391-395 (1956). - [2] Kelly, P. S., Astrophys. J. **140**, 1247–1268 (1964). - [3] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964). - [4] Berg, H. F., Eckerle, K. L., Burris, R. W., and Wiese, W. L., Astrophys. J. 139, 751-757 (1964). **OIII.** Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g_k | $\begin{array}{c} A_{ki}(10^8 \\ \sec^{-1}) \end{array}$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|--|--------------------|--|---|--|---------------------------------|-----------------------------|--|--|---|---|--|----------------------------| | 1 | $\begin{array}{c} 2s^22p^2 -\\ 2s2p^3 \end{array}$ | 3P - 3D°
(1 uv) | 834.50
835.292
833.742
832.927
835.096
833.742
835.096 | 208.2
306.8
113.4
0.0
306.8
113.4
306.8 | 120041
120025
120053
120059
120053
120059
120059 | 9
5
3
1
5
3
5 | 15
7
5
3
5
3 | 8.4
8.4
6.3
4.7
2.1
3.5
0.23 | 0.15
0.12
0.11
0.15
0.022
0.036
0.0015 | 3.6
1.7
0.90
0.40
0.30
0.30
0.020 | $\begin{array}{c} 0.12 \\ -0.21 \\ -0.48 \\ -0.84 \\ -0.96 \\ -0.96 \\ -2.14 \end{array}$ | E
E
E
E
E
E
E
E
E
E | ls
ls
ls
ls
ls | # OIII. Allowed Transitions - Continued | No. | Transition
Array | Multiple | t λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gĸ | $\begin{array}{c} A_{ki}(10^8 \\ \text{sec}^{-1}) \end{array}$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|--|--|--|--|--|----------------------------|----------------------------|--|--|---|--|----------------------------------|----------------------------| | 2 | | $ \begin{cases} ^{3}P - ^{3}P^{\circ} \\ (2 \text{ uv}) \end{cases} $ | 703.36 | 208.2 | 142384 | 9 | 9 | 25 | 0.18 | 3.8 | 0.22 | E | 1 | | | | (2 uv) | 703.850
702.899
703.850
702.822
702.899
702.332 | 306.8
113.4
306.8
113.4
113.4
0.0 | 142382
142383
142383
142397
142382
142383 | 5
3
5
3
3
1 | 5
3
1
5
3 | 19
6.2
10
25
6.2
8.2 | 0.14
0.046
0.046
0.061
0.076
0.18 | 1.6
0.32
0.53
0.42
0.53
0.42 | $ \begin{vmatrix} -0.16 \\ -0.86 \\ -0.64 \\ -0.74 \\ -0.64 \\ -0.74 \end{vmatrix} $ | E
E
E
E
E | ls
ls
ls
ls
ls | | 3 | | $\begin{vmatrix} {}^{3}P - {}^{3}S^{\circ} \\ (3 \text{ uv}) \end{vmatrix}$ | 507.93 | 208.2 | 197087 | 9 | 3 | 150 | 0.19 | 2.9 | 0.24 | E | 1 | | | | (3 uv) | 508.182
507.683
507.391 | 306.8
113.4
0.0 | 197087
197087
197087 | 5
3
1 | 3 3 | 82
50
17 | 0.19
0.19
0.19 | 1.6
0.97
0.32 | | E
E
E | ls
ls
ls | | 4 | | $ \begin{array}{c c} ^{1}D - {}^{1}D^{\circ} \\ (7 \text{ uv}) \end{array} $ | 599.598 | 20271 |
187049 | 5 | 5 | 68 | 0.37 | 3.6 | 0.26 | E | 1 | | 5 | | ¹ D - ¹ P° (8 uv) | 525.795 | 20271 | 210459 | 5 | 3 | 100 | 0.25 | 2.2 | 0.10 | E | 1 | | 6 | | ¹ S - ¹ P° (13 uv) | 597.818 | 43184 | 210459 | 1 | 3 | 21 | 0.35 | 0.69 | -0.46 | E | 1 | | 7 | $2p^{2} - 2p(^{2}P^{\circ})3s$ | $\begin{array}{c} ^{3}P - ^{3}P^{\circ} \\ (4 \text{ uv}) \end{array}$ | 374.12 | 208.2 | 267505 | 9 | 9 | 38 | 0.081 | 0.90 | -0.14 | E | 2 | | | | | 374.075
374.165
374.436
374.331
373.805
374.005 | 306.8
113.4
306.8
113.4
113.4
0.0 | 267633
267376
267376
267257
267633
267376 | 5
3
5
3
1 | 5
3
1
5
3 | 29
9.6
16
38
9.6
13 | 0.061
0.020
0.020
0.027
0.034
0.081 | 0.37
0.075
0.12
0.10
0.12
0.10 | -0.52
-1.22
-0.99
-1.09
-0.99
-1.09 | EEE EEE | ls
ls
ls
ls | | 8 | | ¹ D - ¹ P°
(9 uv) | 395.558 | 20271 | 273080 | 5 | 3 | 68 | 0.096 | 0.62 | -0.32 | E | ls
2 | | 9 | | ¹ S - ¹ P° (14 uv) | 434.975 | 43184 | 273080 | 1 | 3 | 13 | 0.11 | 0.16 | -0.96 | E | 2 | | 10 | 2p ² — 2p(² P°)3d | ³ P - ³ D°
(5 uv) | 305.72 | 208.2 | 327302 | 9 | 15 | 180 | 0.43 | 3.9 | 0.58 | D- | 2 | | | | | 305.769
305.656
305.596
305.836
305.703
305.879 | 306.8
113.4
0.0
306.8
113.4
306.8 | 327351
327277
327228
327277
327228
327228 | 5
3
1
5
3
5 | 7
5
3
5
3
3 | 180
140
100
46
76
5.1 | 0.36
0.32
0.43
0.064
0.11
0.0043 | 1.8
0.97
0.43
0.32
0.32
0.022 | $ \begin{array}{c c} 0.25 \\ -0.02 \\ -0.37 \\ -0.49 \\ -0.49 \\ -1.67 \end{array} $ | D-
D-
D-
D-
D-
D- | ls
ls
ls
ls
ls | | 1 | | ³ P - ³ P°
(6 uv) | 303.66 | 208.2 | 329525 | 9 | 9 | 100 | 0.14 | 1.3 | 0.10 | $\mathbf{D}-$ | 2 | | | | | 303.799
303.515
303.693
303.460
303.621
303.411 | 306.8
113.4
306.8
113.4
113.4
0.0 | 329468
329582
329582
329643
329468
329582 | 5
3
5
3
1 | 5
3
3
1
5
3 | 76
26
42
100
25
34 | 0.11
0.035
0.035
0.047
0.059
0.14 | 0.53
0.11
0.18
0.14
0.18
0.14 | -0.28
-0.97
-0.75
-0.85
-0.75
-0.85 | D-
D-
D-
D-
D- | ls
ls
ls
ls
ls | | 2 | | ¹ D- ¹ D° (10 uv) | 328.448 | 20271 | 324734 | 5 | 5 | 61 | 0.099 | 0.53 | -0.31 | D- | 2 | | 3 | | ¹ D - ¹ F° (11 uv) | 320.979 | 20271 | 331820 | 5 | 7 | 190 | 0.41 | 2.2 | 0.31 | D- | 2 | | 4 | } | ¹ D- ¹ P° | [302.34] | 20271 | 332777 | 5 | 3 | 6.4 | 0.0052 | 0.026 | -1.58 | D- | 2 | O III. Allowed Transitions—Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8 { m sec}^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|---|---|---|--|--|---|--------------------------------------|--|---|---|--|-----------------------|---------------------------------------| | 15 | | ¹ S – ¹ P°
(15 uv) | 345.309 | 43184 | 332777 | 1 | 3 | 98 | 0.53 | 0.60 | -0.28 | D | 2 | | 16 | $egin{array}{c} 2p3s - \ 2p(^2\mathbf{P}^{\mathbf{o}})3p \end{array}$ | ³ P° - ³ D (2) | 3762.3 | 267505 | 294077 | 9 | 15 | 1.07 | 0.377 | 42.0 | 0.53 | С | 3, ca | | | 2 p (1)0 p | | 3759.87
3754.67
3757.21
3791.26
3774.00
3810.96 | 267633
267376
267257
267633
267376
267633 | 294222
294002
293865
294002
293865
293865 | 5
3
1
5
3
5 | 7
5
3
5
3 | 1.07
0.80
0.59
0.260
0.440
0.0284 | 0.317
0.283
0.378
0.056
0.094
0.00371 | 19.6
10.5
4.67
3.50
3.50
0.233 | 0.200
-0.071
-0.423
-0.55
-0.55
-1.73 | C
C
C
C
C | ls ls ls ls ls ls ls ls ls | | 17 | | $^{3}P^{\circ} - ^{3}S$ | 3326.6 | 267505 | 297558 | 9 | 3 | 1.56 | 0.086 | 8.5 | -0.110 | С | 3, ca | | | | (0) | 3340.74
3312.30
3299.36 | 267633
267376
267257 | 297558
297558
297558 | 5
3
1 | 3 3 3 | 0.85
0.52
0.177 | 0.085
0.086
0.087 | 4.70
2.82
0.94 | -0.369
-0.59
-1.063 | C
C
C | ls
ls
ls | | 18 | | ³ P° - ³ P (4) | 3041.5 | 267505 | 300374 | 9 | 9 | 2.04 | 0.283 | 25.5 | 0.406 | С | 3, ca | | | | \ -7 | 3047.13
3035.43
3059.30
3043.02
3023.45
3024.57 | 267633
267376
267633
267376
267376
267257 | 300441
300310
300310
300228
300441
300310 | 5
3
5
3
3 | 5
3
1
5
3 | 1.52
0.51
0.84
2.03
0.52
0.69 | 0.211
0.071
0.070
0.094
0.119
0.284 | 10.6
2.12
3.54
2.83
3.54
2.83 | 0.024
-0.67
-0.454
-0.55
-0.449
-0.55 | C
C
C
C
C | ls ls ls ls ls ls | | 19 | | ¹ P°-1P
(5) | 5592.37 | 273080 | 290957 | 3 | 3 | 0.328 | 0.154 | 8.5 | - 0.336 | С | 3, ca | | 20 | | ¹ P°- ¹ D (6) | 2983.78 | 273080 | 306585 | 3 | 5 | 2.24 | 0.499 | 14.7 | 0.175 | С | 3, ca | | 21 | | ¹ P° – ¹ S
(19 uv) | 2454.99 | 273080 | 313801 | 3 | 1 | 4.00 | 0.120 | 2.92 | -0.442 | C | 3, ca | | 22 | $2s2p^23s - 2s2p^2(^4P)3p$ | ⁵ P- ⁵ D° (21) | 3706.1 | 338741 | 365716 | 15 | 25 | 1.09 | 0.375 | 69 | 0.75 | C | ca | | | | ζ=-/ | 3703.37
3698.70
3695.37
3720.86
3712.48
3704.73
3734.80
3721.95
3709.52 | 338852
338690
338566
338852
338690
338566
338852
338690
338566 | 365846
365719
365619
365719
365619
365551
365519
365551 | 7
5
3
7
5
3
7
5
3 | 9
7
5
7
5
3
5
3 | 1.10
0.73
0.384
0.361
0.63
0.81
0.071
0.270
1.09 | 0.290
0.210
0.131
0.075
0.131
0.168
0.0106
0.0336
0.075 | 24.7
12.8
4.78
6.4
8.0
6.1
0.91
2.06
2.75 | 0.308
0.021
-0.406
-0.280
-0.184
-0.298
-1.130
-0.77
-0.65 | 00000000 | Ls Ls Ls Ls Ls Ls Ls Ls | | 23 | | 5P - 5P° | 3345.9 | 338741 | 368620 | 15 | 15 | 1.50 | 0.252 | 41.6 | 0.58 | C | ca | | | | (22) | 3350.99
3344.26
3336.78
3362.38
3350.68
3333.00
3333.40 | 338852
338690
338566
338852
338690
338566 | 368685
368584
368526
368584
368526
368685
368584 | 7
5
3
7
5
3 | 7
5
3
5
3
7
5 | 1.00
0.125
0.377
0.69
0.112
0.51
0.68 | 0.168
0.0210
0.063
0.084
0.113
0.118
0.189 | 13.0
1.16
2.08
6.5
6.2
6.5
6.2 | 0.070 -0.98 -0.72 -0.233 -0.248 -0.229 -0.246 | C C C C C C C | ls
ls
ls
ls
ls | | 24 | | ⁵ P- ⁵ S°
(22 uv) | 2678.2 | 338741 | 376068 | 15 | 5 | 2.99 | 0.107 | 14.2 | 0.206 | C | ca | | | | (22 uv) | 2686.14
2674.57
2665.69 | 338852
338690
338566 | 376068
376068
376068 | 7
5
3 | 5
5
5 | 1.38
1.00
0.60 | 0.107
0.107
0.107 | 6.6
4.71
2.82 | -0.126 -0.272 -0.494 | C
C
C | ls
ls
ls | OIII. Allowed Transitions—Continued | | | , | | | , = = = = | | | | | | | 7 | | |-----|-------------------------------------|---------------------------------------|--------------------|-----------------------|-------------------------|--|--|---|------------------|-----------------|--|---------------|--------------| | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g _k | $\begin{vmatrix}A_{ki}(10^8\\\sec^{-1})\end{vmatrix}$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | | 25 | | ³ P - ³ D° (23) | 4081.0 | 350212 | 374709 | 9 | 15 | 0.94 | 0.391 | 47.3 | 0.55 | С | ca | | ĺ | | [(=0) | 4081.10 | 350302 | 374799 | 5 | 7 | 0.94 | 0.329 | 22.1 | 0.217 | C | ls | | | | | 4073.90 | 350123 | 374663 | 3 | 5 | 0.71 | 0.294 | 11.8 | -0.055 | l C | ls | | | |] | [4072.3] | 350026 | 374575 | 1 | 3 | 0.52 | 0.392 | 5.2 | -0.407 | l C | ls | | - 1 | | ł | [4103.8] | 350302 | 374663 | 5 | 5 | 0.232 | 0.058 | 3.95 | -0.53 | C | ls
ls | | - | | i | [4088.5] | 350123 | 374575 | 3 | 3 | 0.389 | 0.098 | 3.94 | -0.53 | CCC | ls | | | | | [4118.6] | 350302 | 374575 | 5 | 3 | 0.0254 | 0.00388 | 0.263 | -1.71 | C | ls
ls | | 26 | | ³ P - ³ P° (24) | 3544.6 | 350212 | 378416 | 9 | 9 | 1.46 | 0.274 | 28.8 | 0.392 | С | ca | | - | | (21) | 3556.92 | 350302 | 378409 | 5 | 5 | 1.08 | 0.205 | 12.0 | 0.010 | C | ls | | | | | [3532.8] | 350123 | 378421 | 3 | 3 | 0.367 | 0.069 | 2.39 | -0.69 | C | ls | | | | | [3555.3] | 350302 | 378421 | 5 | 3 | 0.60 | 0.068 | 4.00 | -0.467 | CCCC | ls | | - 1 | | | [3530.7] | 350123 | 378438 | 3 | 1 | 1.47 | 0.092 | 3.19 | -0.56 | Č | ls | |] | | | [3534.3] | 350123 | 378409 | 3 | 5 | 0.366 | 0.114 | 3.99 | -0.465 | Č | ls | | | | | [3520.7] | 350026 | 378421 | 1 | 3 | 0.493 | 0.275 | 3.19 | -0.56 | C | ls | | 27 | $2p3p - 2p(^2\mathbf{P}^{\circ})3d$ | $^{3}D - {}_{3}F^{\circ}$ | 3265.9 | 294007 | 324688 | 15 | 21 | 2.08 | 0.465 | 75 | 0.84 | С | 3, <i>ca</i> | | l | | | 3265.46 | 294222 | 324836 | 7 | 9 | 2.07 | 0.425 | 32.0 | 0.474 | C | ls | | | | | 3260.98 | 294002 | 324658 | 5 | 7 | 1.84 | 0.412 | 22.1 |
0.314 | C | ls | | | | | -3267.31 | 293865 | 324462 | 3 | 5 | 1.73 | 0.462 | 14.9 | 0.142 | C | ls | | | | | 3284.57 | 294222 | 324658 | 7 | 7 | 0.226 | 0.0366 | 2.77 | -0.59 | C | ls
ls | | } | ļ | · | 3281.94
3305.77 | 294002
294222 | 324462
324462 | 5 7 | 5
5 | $0.317 \\ 0.0093$ | 0.051
0.00109 | 2.77
0.083 | -0.59
-2.118 | 000000 | ls
ls | | 28 | | ³ D - ³ D° (10) | 3002.6 | 294007 | 327302 | 15 | 15 | 0.68 | 0.092 | 13.6 | 0.139 | c | 3, <i>ca</i> | | | | (10) | 3017.63 | 294222 | 327351 | 7 | 7 | 0.59 | 0.081 | 5.6 | -0.249 | C | ls | | ĺ | | | 3004.35 | 294002 | 327277 | 5 | 5 | 0.472 | 0.064 | 3.16 | -0.496 | č | ls | | J | | | 2996.51 | 293865 | 327228 | 3 | 3 | 0.51 | 0.069 | 2.04 | -0.68 | č | ls | | ł | | | 3024.36 | 294222 | 327277 | 7 | 5 | 0.104 | 0.0102 | 0.71 | -1.147 | č | ls | | - } | ļ | | 3008.79 | 294002 | 327228 | 5 | 3 | 0.134 | 0.0109 | 0.54 | -1.264 | č | ls | | - | | | 2997.71 | 294002 | 327351 | 5 | 7 | 0.076 | 0.0144 | 0.71 | -1.143 | 00000 | ls | | | | | 2992.11 | 293865 | 327277 | 3 | 5 | 0.082 | 0.0183 | 0.54 | -1.261 | č | ls | | 29 | | ³ S - ³ P° (12) | 3127.3 | 297558 | 329525 | 3 | 9 | 1.37 | 0.60 | 18.6 | 0.257 | С | 3, ca | | - 1 | | 1 | 3132.86 | 297558 | 3 29468 | 3 | 5 | 1.36 | 0.333 | 10.3 | -0.001 | C | ls | | | | | 3121.71 | 297558 | 329582 | 3 | 3 | 1.38 | 0.201 | 6.2 | -0.220 | č | ls | | | | | 3115.73 | 297558 | 329643 | 3 | 1 | 1.39 | 0.067 | 2.07 | -0.70 | č | ls | | 30 | | ³ P - ³ D° (14) | 3712.5 | 300374 | 327302 | 9 | 15 | 1.10 | 0.379 | 41.7 | 0.53 | c | 3,ca | | | | | 3715.08 | 300441 | 327351 | 5 | 7 | 1.10 | 0.319 | 19.5 | 0.203 | C | ls | | ĺ | | | 3707.24 | 300310 | 327277 | 3 | 5 | 0.83 | 0.284 | 10.4 | [-0.070] | \ddot{c} | ls | | ĺ | | | 3702.75 | 300228 | 327228 | 1 | 3 | 0.62 | 0.380 | 4.63 | -0.420 | č | l_s | | 1 | | ļ | 3725.30 | 300441 | 327277 | 5 | 5 | 0.273 | 0.057 | 3.48 | -0.55 | \check{c} | ls | | | | | 3714.03
3732.13 | 300310
300441 | 327228
327228 | $\begin{vmatrix} 3 \\ 5 \end{vmatrix}$ | $\begin{bmatrix} 3 \\ 3 \end{bmatrix}$ | 0.459
0.0301 | 0.095
0.00378 | $3.48 \\ 0.232$ | $\begin{bmatrix} -0.55 \\ -1.72 \end{bmatrix}$ | CC | ls
ls | | 31 | | ³ P - ³ P° (15) | 3429.4 | 300374 | 329525 | 9 | 9 | 0.79 | 0.140 | 14.2 | 0.100 | C | 3, <i>ca</i> | | | | 1 | 3444.10 | 300441 | 329468 | 5 | 5 | 0.59 | 0.104 | 5.9 | -0.284 | C | 1. | | | 1 | | 3415.29 | 300310 | 329582 | 3 | 3 | 0.200 | 0.0350 | 1.18 | -0.284 | č | ls
ls | | | 1 | | 3430.60 | 300441 | 329582 | 5 | 3 | 0.330 | 0.0349 | 1.97 | -0.76 | č | ls | | | l | | 3408.13 | 300310 | 329643 | 3 | 1 | 0.81 | 0.0469 | 1.58 | $\begin{bmatrix} -0.85 \\ -0.85 \end{bmatrix}$ | č | ls | | | 1 | İ | 3428.67 | 300310 | 329468 | 3 | 5 | 0.198 | 0.058 | 1.97 | -0.76 | č | ls | | | | | 3405.74 | 300228 | 329582 | 1 | 3 | 0.270 | 0.141 | 1.58 | -0.85 | č | ls | | 32 | | ¹ D - ¹ D° (16) | 5500.11 | 306585 | 324734 | 5 | 5 | 0.112 | 0.051 | 4.58 | -0.60 | С | 3, ca | | 33 | | ¹ D - ¹ F° | 3961.59 | 306585 | 331820 | 5 | 7 | 1.28 | 0.422 | 27.5 | 0.324 | С | 3,ca | **O III.** Allowed Transitions—Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gĸ | $A_{ki}(10^8 m sec^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|---|---|---|--|--|--|--|--|---|---|--|---|--| | 34 | | ¹ D - ¹ P° (18) | 3816.75 | 306585 | 332777 | 5 | 3 | 0.0402 | 0.0053 | 0.331 | -1.58 | С | 3, ca | | 35 | | ¹ S - ¹ P° (19) | 5268.06 | 313801 | 332777 | 1 | 3 | 0.311 | 0.389 | 6.7 | -0.411 | С | 3, ca | | 36 | $\begin{vmatrix} 2s2p^23p - \\ 2s2p^2(^4P)3d \end{vmatrix}$ | ³ S° – ³ P
(23 uv) | 2691.5 | 363267 | 400410 | 3 | 9 | 2.10 | 0.68 | 18.2 | 0.312 | С | ce | | | 20-10 (1)00 | (25 21) | 2695.49
2687.53
2683.65 | 363267
363267
363267 | 400355
400465
400518 | 3
3
3 | 5
3
1 | 2.09
2.11
2.12 | 0.379
0.229
0.076 | 10.1
6.1
2.02 | $ \begin{array}{r} 0.056 \\ -0.163 \\ -0.64 \end{array} $ | C
C
C | | | 37 | | ⁵ D° – ⁵ F
(25) | 3453.0 | 365716 | 394668 | 25 | 35 | 1.68 | 0.420 | 119 | 1.021 | С | ce | | | | | 3455.12
3450.94
3448.05
3446.73
3447.22
3466.15
3459.98
3454.90
3451.33
[3475.2]
3466.90
3459.52 | 365846
365719
365619
365551
365516
365846
365719
365619
365551
365846
365719
365619 | 394780
394688
394613
394555
394516
394688
394613
394555
394613
394555
394516 | 9
7
5
3
1
9
7
5
3
9
7
5 | 11
9
7
5
3
9
7
5
3
7
5
3
7 | 1.67
1.40
1.15
0.94
0.78
0.276
0.496
0.67
0.78
0.0234
0.066
0.111 | 0.365
0.321
0.287
0.279
0.419
0.0497
0.089
0.120
0.140
0.00330
0.0085
0.0119 | 37.4
25.5
16.3
9.5
4.76
5.1
7.1
6.8
4.76
0.340
0.68
0.68 | 0.52
0.351
0.157
- 0.077
- 0.377
- 0.350
- 0.205
- 0.223
- 0.378
- 1.53
- 1.225
- 1.224 | 000000000000000000000000000000000000000 | ls l | | 38 | | ⁵ D° + ⁵ D
(26) | 3081.0 | 365716 | 398164 | 25 | 25 | 0.62 | 0.089 | 22.5 | 0.345 | С | ca | | | | | 3088.04
3083.65
3075.19
3068.48
3095.81
3084.63
3074.68
3068.06
3075.95
3074.15
3068.68
3065.01 | 365846
365719
365619
365551
365846
365719
365619
365719
365619
365551
365516 | 398219
398137
398127
398131
398137
398127
398131
398135
398137
398137
398131 | 9
7
5
3
9
7
5
3
7
5
3
1 | 9
7
5
3
7
5
3
1
9
7
5
3 | 0.52
0.311
0.157
0.234
0.132
0.248
0.365
0.63
0.104
0.180
0.220
0.210 | 0.074
0.0443
0.0222
0.0330
0.0147
0.0253
0.0310
0.0296
0.0190
0.0355
0.052
0.089 | 6.8
3.15
1.12
0.225
1.35
1.80
1.57
0.90
1.35
1.80
1.57 | -0.178
-0.51
-0.95
-1.004
-0.88
-0.75
-0.81
-1.052
-0.88
-0.75
-0.81
-1.051 | 000000000000 | ls l | | 39 | | ⁵ P° – ⁵ D | 3383.8 | 368620 | 398164 | 15 | 25 | 1.45 | 0.416 | 69 | 0.80 | С | co | | | | (27) | 3384.95
3382.69
[3377.3]
3394.26
3383.85
3376.82
[3395.5]
[3383.5]
[3376.4] | 368685
368584
368526
368685
368584
368526
368685
368584
368526 | 398219
398137
398127
398137
398127
398131
398127
398131
398135 | 7
5
3
7
5
3
7
5
3 | 9
7
5
7
5
3
5
3 | 1.45
0.97
0.51
0.480
0.85
1.09
0.096
0.363
1.46 | 0.321
0.233
0.146
0.083
0.145
0.187
0.0118
0.0374
0.083 | 25.0
13.0
4.85
6.5
8.1
6.2
0.93
2.08
2.77 | 0.351
0.066
-0.360
-0.237
-0.139
-0.251
-1.082
-0.73
-0.60 | 0000000000 | L. L | | 40 | | 5P°-5P | 3343.6 | 368620 | 398519 | 15 | 15 | 0.84 | 0.140 | 23.1 | 0.322 | C | ce | | | | (28) | 3355.92
3336.78
3326.16
3348.05
3332.49
3344.26
3330.40 | 368685
368584
368526
368685
368584
368584
368526 | 398474
398544
398583
398544
398583
398474
398544 | 7
5
3
7
5
5
3 | 7
5
3
5
3
7
5 | 0.55
0.070
0.212
0.388
0.63
0.278
0.379 | 0.093
0.0117
0.0352
0.0466
0.063
0.065
0.105 | 7.2
0.64
1.16
3.60
3.47
3.59
3.45 | $ \begin{vmatrix} -0.187 \\ -1.233 \\ -0.98 \\ -0.487 \\ -0.50 \\ -0.487 \\ -0.50 \end{vmatrix} $ | C C C C C C C | | # O III. Allowed Transitions - Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $\begin{array}{c} A_{ki}(10^8 \\ \sec^{-1}) \end{array}$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|---|---|----------------------|-----------------------|-------------------------|-----|----|--|------------------|---|-----------------|---------------|--------------| | 41 | | ³D°-3F | 3730.1 | 374709 | 401510 | 15 | 21 | 1.58 | 0.460 | 85 | 0.84 | С | ca | | | | (30) | 0700.00 | 374799 | 401609 | 7 | 9 | 1.58 | 0.424 | 36.4 | 0.472 | c | ls | | Ì | | | 3728.82
3728.49 | 374799 | 401475 | 5 | 7 | 1.41 | 0.411 | 25.2 | 0.312 | C
C
C | ls | | | | | 3728.49 | 374575 | 401379 | 3 | 5 | 1.33 | 0.461 | 17.0 | 0.141 | C | ls | | | | | [3747.6] | 374799 | 401475 | 7 | 7 | 0.174 | 0.0366 | 3.16 | -0.59 | C | ls | | | | | [3742.0] | 374663 | 401379 | 5 | 5 | 0.244 | 0.051 | 3.16 | -0.59 | C | ls | | | | | [3761.2] | 374799 | 401379 | 7 | 5 | 0.0072 | 0.00108 | 0.094 | -2.120 | С | ls | | 42 | | ³ D°- ³ D (31) |
3210.2 | 374709 | 405851 | 15 | 15 | 0.66 | 0.102 | 16.2 | 0.186 | С | ca | | | | (31) | 3215.97 | 374799 | 405883 | 7 | 7 | 0.58 | 0.091 | 6.7 | -0.198 | C | ls | | | | | 3207.12 | 374663 | 405834 | 5 | 5 | 0.460 | 0.071 | 3.74 | -0.451 | C
C
C | ls | | | | | 3200.95 | 374575 | 405805 | 3 | 3 | 0.499 | 0.077 | 2.42 | -0.64 | <u>C</u> | ls | | | | | [3221.2] | 374799 | 405834 | 7 | 5 | 0.102 | 0.0113 | 0.84 | -1.102 | C | ls | | | | i | [3210.2] | 374663 | 405805 | 5 | 3 | 0.165 | 0.0153 | 0.81 | -1.117 | C
C
C | ls | | | | | [3202.2] | 374663 | 405883 | 5 | 7 | 0.074 | 0.0159 | 0.84 | -1.099 | | ls | | | | | [3198.2] | 374575 | 405834 | 3 | 5 | 0.100 | 0.0256 | 0.81 | -1.115 | ' | ls | | 43 | | ⁵ S°- ⁵ P | 4452.9 | 376068 | 398519 | 5 | 15 | 0.490 | 0.437 | 32.0 | 0.340 | C | ca | | | | ` ′ | 4461.56 | 376068 | 398474 | 5 | 7 | 0.486 | 0.203 | 14.9 | 0.007 | C | ls | | | | | 4447.82 | 376068 | 398544 | 5 | 5 | 0.492 | 0.146 | 10.7 | -0.137 | C | ls ls | | | | | 4440.1 | 376068 | 398583 | 5 | 3 | 0.495 | 0.088 | 6.4 | -0.358 | C | ls | | 44 | | ³ P°- ³ D
(35) | 3643.9 | 378416 | 405851 | 9 | 15 | 1.39 | 0.461 | 49.8 | 0.62 | С | ca | | | | | 3638.70 | 378409 | 405883 | 5 | 7 | 1.40 | 0.388 | 23.2 | 0.288 | C | ls | | | | | 3646.84 | 378421 | 405834 | 3 | 5 | 1.04 | 0.345 | 12.4 | 0.015 | C | ls | | 1 | | | 3653.00 | 378438 | 405805 | 1 | 3 | 0.77 | 0.460 | 5.5 | -0.337 | č | ls | | | | | 3645.20 | 378409 | 405834 | 5 | 5 | 0.347 | 0.069 | 4.15 | -0.462 | Ę | ls | | | | | $3650.70 \\ 3649.20$ | 378421
378409 | 405805
405805 | 3 5 | 3 | 0.58
0.0384 | 0.115
0.00460 | $\begin{vmatrix} 4.15 \\ 0.276 \end{vmatrix}$ | -0.462
-1.64 | C
C
C | ls
ls | | 45 | 2p3d- | ³P°-3S | 2601.6 | 329525 | 367952 | 9 | 3 | 1.73 | 0.059 | 4.52 | -0.278 | C | 3, ca | | | $2p(^{2}\mathrm{P}^{\circ})4p$ | (20 uv) | | | | | | | | | | |] | | | F () I | | 2597.69 | 329468 | 367952 | 5 | 3 | 0.97 | 0.059 | 2.51 | -0.53 | C | ls | | | | | 2605.41 | 329582 | 367952 | 3 | 3 | 0.58 | 0.059 | 1.51 | -0.75 | Č | ls | | | | | [2609.6] | 329643 | 367952 | 1 | 3 | 0.190 | 0.058 | 0.50 | -1.235 | C | ls | | 46 | | ¹ F°- ¹ D (21 uv) | 2558.06 | 331820 | 370901 | 7 | 5 | 1.16 | 0.081 | 4.79 | -0.245 | С | 3, <i>ca</i> | | 47 | $\begin{array}{c} 2p4p - \\ 2p(^{2}\mathrm{P}^{\circ})5d \end{array}$ | ¹ S - ¹ P° (29) | 3279.97 | 373046 | 403526 | 1 | 3 | 0.241 | 0.117 | 1.26 | -0.93 | С | 3, ca | The adopted values represent, as in the case of C I, the work of Garstang [1], Naqvi [2], and Yamanouchi and Horie [3], who have independently done essentially the same calculations and arrived at very similar results. For the selection of values, the same considerations as for C I have been applied. (Yamanouchi and Horie's result for the ${}^{3}P_{1}-{}^{1}D_{2}$ transition apparently contains a numerical error and is not used). - [1] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 111, 115-124 (1951). - [2] Naqvi, A. M., Thesis Harvard (1951). - [3] Yamanouchi, T., and Horie, H., J. Phys. Soc. Japan 7, 52-56 (1952). O III. Forbidden Transitions | No. | Tran sition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | Type of
Transi-
tion | $A_{ki}(\mathrm{sec^{-1}})$ | S(at.u.) | Accu-
racy | Source | |-----|----------------------|---|--|----------------------------------|---|------------------|-----------------------|----------------------------|--|--|------------------|---| | 1 | $2p^2 - 2p^2$ | 3P = 3P | | 113.4
113.4
0
0 | 306.8
306.8
306.8
113.4 | 3
3
1
1 | 5
5
5
3 | m
e
e
m | $\begin{array}{c} 9.75 \times 10^{-5} \\ 7.8 \times 10^{-12} \\ 3.50 \times 10^{-11} \\ 2.62 \times 10^{-5} \end{array}$ | 2.50
0.086
0.383
2.00 | B
C
C
B | $ \begin{array}{c c} 1, 2, 3 \\ 1 \\ 1 \\ 1, 2, 3 \end{array} $ | | 2 | | ³ P- ¹ D
(1 F) | 5006.84
5006.84
4958.91
4958.91
4931.8 | 306.8
306.8
113.4
113.4 | 20271
20271
20271
20271
20271 | 5
5
3
3 | 5
5
5
5
5 | m
e
m
e
e | $\begin{array}{c} 0.0210 \\ 4.1 \times 10^{-5} \\ 0.0071 \\ 6.2 \times 10^{-6} \\ 1.9 \times 10^{-6} \end{array}$ | 4.88×10^{-4} 3.8×10^{-4} 1.61×10^{-4} 5.5×10^{-5} 1.7×10^{-5} | C
D
C
D | 1, 2, 3
1
1, 2
1 | | 3 | | ³ P- ¹ S | [2331.6]
[2321.1] | 306.8
113.4 | 43183.5
43183.5 | 5
3 | 1
1 | e
m | $\begin{vmatrix} 7.1 \times 10^{-4} \\ 0.230 \end{vmatrix}$ | $\begin{array}{ c c c c c }\hline 2.9 \times 10^{-5} \\ 1.07 \times 10^{-4} \\ \hline \end{array}$ | D
C | 1
1, 3 | | 4 | | ¹ D- ¹ S
(2 F) | 4363.21 | 20271 | 43183.5 | 5_ | 1 | e | 1.60 | 1.51 | C | 1 | $1s^2 2s^2 2p {}^2P_{1/2}^{\circ}$ **Ground State** Ionization Potential $77.394 \text{ eV} = 624396.5 \text{ cm}^{-1}$ #### **Allowed Transitions** List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |----------------|-----------------------|----------------|-----|----------------|-----| | 238.361 | 6 | 3216.31 | 14 | 3774.38 | 13 | | 238.573 | 6 | 3348.08 | 9 | 3930.63 | 17 | | 238.58 | 6 | 3349.11 | 9 | 3942.14 | 17 | | 279.633 | 5 | 3354.31 | 15 | 3945.29 | 17 | | 279.937 | 6
5
5 | 3362.63 | 15 | 3956.82 | 17 | | 553.328 | 3 | 3375.50 | 15 | 3974.66 | 17 | | 554.074 | 3 | 3378.09 | 9 | 3977.10 | 17 | | 554.514 | 3
3
3
3
2 | 3381.28 | 8 | 3995.17 | 17 | | 555.262 | 3 | 3381.33 | 8 | 4568 | 21 | | 608.395 | 2 | 3385.55 | 8 | 4652.5 | 20 | | 609.829 | 2 | 3390.37 | 8 | 4685.4 | 20 | | 624.617 | 2 4 | 3396.83 | 8 | 4772.57 | 16 | | 625.130 | 4 | 3403.58 | 12 | 4779.09 | 16 | | 625.852 | 4 | 3405.97 | 8 | 4783.43 | 16 | | 787.710 | 1 | 3409.75 | 8 | 4794.22 | 16 | | 790.103 | 1 | 3411.76 | 12 | 4798.25 | 16 | | 790.203 | ī | 3413.71 | 12 | 4800.77 | 16 | | 2494.8 | 10 | 3425.57 | 8 | 4813.07 | 16 | | 2511.4 | 10 | 3489.84 | 11 | 4823.93 | 16 | | 3063.46 | 7 | 3492.2 | 11 | 5290.1 | 18 | | 3071.66 | 7 | 3492.24 | 11 | 5305.3 | 18 | | 3177.80 | 14 | 3560.42 | 19 | 5362.4 | 18 | | 3180.72 | 14 | 3563.36 | 19 | 5378.3 | 18 | | 3180.98 | 14 | 3593.1 | 19 | | | | 3185.72 | 14 | 3725.81 | 13 | | | | 3188.17 | 14 | 3729.03 | 13 | | | | 3188.65 | 14 | 3736.78 | 13 | | | | 3194.75 | 14 | 3744.73 | 13 | | | | 3199.53 | 14 | 3755.82 | 13 | | | | 3209.64 | 14 | 3758.45 | 13 | | | Values for the $2s^22p-2s2p^2$ transitions are taken from the calculations of Bolotin and Yutsis [1] who employ analytical one-electron wave functions and include configuration interaction with a relatively crude approximation. For these as well as the $2s2p^2-2p^3$ and 2p-3s transitions large uncertainties must be expected because they are very sensitive to the effects of configuration interaction. For several other transitions Kelly's self-consistent field calculations [2, 3] (which include exchange effects) are available. In the case of the highly excited lines, they agree within a few percent with the results of the Coulomb approximation and the averaged values are adopted. ^[1] Bolotin, A. B., and Yutsis, A. P., Zhur. Eksptl. i Teoret. Fiz. 24, 537-543 (1953). (Translated in "Optical Transition Probabilities," Office of Technical Services, U.S. Department of Commerce, Washington, D.C.) ^[2] Kelly, P. S., Astrophys. J. 140, 1247-1268 (1964). ^[3] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964). OIV. Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gk | $\begin{array}{c} A_{ki}(10^8 \\ \sec^{-1}) \end{array}$ | fik | S(at.u.) | $\log gf$ | Accu-
racy | Source | |-----|---------------------------|--|--|--|--|---|--------------------------------------|--|--|--|---|------------------|----------------------| | 1 | 2s ² 2p — | ²P° − ²D | 789.36 | 257.7 | 126942 | 6 | 10 | 9.5 | 0.15 | 2.3 | -0.05 | E | 1 | | | $2\hat{s}(^{1}S)2p^{2}$ | (1 uv) | 790.203
787.710
790.103 | 386.5
0.0
386.5 | 126936
126950
126950 | 4 2 4 | 6 4 4 | 9.6
8.0
1.5 | 0.13
0.15
0.014 | 1.4
0.77
0.15 | $ \begin{array}{r r} -0.27 \\ -0.53 \\ -1.24 \end{array} $ | E
E
E | ls
ls
ls | | 2 | | ² P°- ² S
(2 uv) | 609.35 | 257.7 | 164367 | 6 | 2 | 54 | 0.10 | 1.2 | -0.22 | E | 1 | | | | (2 47) | 609.829
608.395 | 386.5
0.0 | 164367
164367 | $\begin{vmatrix} 4\\2 \end{vmatrix}$ | $\frac{2}{2}$ | 36
18 | 0.10
0.10 | 0.80
0.40 | $ \begin{array}{r r} -0.40 \\ -0.70 \end{array} $ | E
E | ls
ls | | 3 | | ² P°− ² P | 554.37 | 257.7 | 180644 | 6 | 6 | 83 | 0.38 | 4.2 | 0.36 | E | 1 | | | | (3 uv) | 554.514
554.074
555.262
553.328 | 386.5
0.0
386.5
0.0 | 180725
180481
180481
180725 | 4
2
4
2 | 4
2
2
4 | 68
55
28
14 | 0.31
0.25
0.064
0.13 | 2.3
0.93
0.47
0.47 | 0.10
-0.29
-0.59
-0.59 | E
E
E
E | ls
ls
ls
| | 4 | $2s2p^2-2p^3$ | ⁴ P - ⁴ S°
(6 uv) | 625.41 | [71379] | [231275] | 12 | 4 | 72 | 0.14 | 3.5 | 0.23 | E | 2 | | | | (0 uv) | 625.852
625.130
624.617 | [71493]
[71308]
[71177] | [231275]
[231275]
[231275] | 6
4
2 | 4
4
4 | 37
25
12 | 0.15
0.15
0.14 | 1.8
1.2
0.58 | -0.06
-0.23
-0.55 | E
E
E | ls
ls
ls | | 5 | $2p - (^{1}S)3s$ | ² P°- ² S | 279.83 | 257.7 | 357615 | 6 | 2 | 130 | 0.050 | 0.28 | -0.52 | E | 2 | | | | (4 uv) | 279.937
279.633 | 386.5
0.0 | 357615
357615 | 4 2 | 2 2 | 85
43 | 0.050
0.050 | 0.19
0.092 | -0.70
-1.00 | E
E | ls
ls | | 6 | $2p - (^{1}S)3d$ | ² P°- ² D | 238.50 | 257.7 | 419544 | 6 | 10 | 350 | 0.50 | 2.4 | 0.48 | D- | 2 | | | | (5 uv) | 238.573
238.361
[238.58] | 386.5
0.0
386.5 | 419550
419534
419534 | 4
2
4 | 6
4
4 | 350
300
59 | 0.45
0.50
0.050 | 1.4
0.79
0.16 | 0.26
0.00
-0.70 | D-
D-
D- | ls
ls
ls | | 7 | $3s - (^1S)3p$ | ² S - ² P° | 3066.2 | 357615 | 390219 | 2 | 6 | 1.48 | 0.62 | 12.6 | 0.096 | С | 3, ca | | | | (1) | 3063.46
3071.66 | 357615
357615 | 390248
390161 | $\begin{vmatrix} 2\\2 \end{vmatrix}$ | 4 2 | 1.48
1.47 | 0.416
0.208 | 8.4
4.20 | $ \begin{array}{r r} -0.079 \\ -0.382 \end{array} $ | C | ls
ls | | 8 | 2s2p3s - | ⁴ P°- ⁴ D | 3374.3 | [438698] | [468325] | 12 | 20 | 1.07 | 0.303 | 40.4 | 0.56 | С | ca | | | 2s(³ P°)2p3p | (3) | 3385.55
3381.28
3381.33
3409.75
3396.83
3390.37
3425.57
3405.97 | [438589]
[438724]
[438971]
[438589]
[438724]
[438971]
[438589]
[438724] | [468499]
[468290]
[468154]
[468290]
[468154]
[468075]
[468154]
[468075] | 6
4
2
6
4
2
6
4 | 8
6
4
6
4
2
4
2 | 1.06
0.74
0.442
0.310
0.56
0.88
0.051
0.172 | 0.242
0.191
0.151
0.054
0.096
0.151
0.0060
0.0149 | 16.2
8.5
3.37
3.64
4.31
3.37
0.404
0.67 | 0.162
-0.117
-0.52
-0.489
-0.414
-0.52
-1.446
-1.224 | C C C C C C | ls ls ls ls ls ls ls | | 9 | | ² P°- ² D | 3350.7 | 452985 | 482821 | 6 | 10 | 1.23 | 0.346 | 22.9 | 0.317 | C | ca | | | | (4) | 3349.11
3348.08
3378.09 | 453073
452808
453073 | 482923
482668
482668 | 4
2
4 | 6
4
4 | 1.23
1.03
0.201 | 0.311
0.345
0.0344 | 13.7
7.6
1.53 | $\begin{array}{r} 0.094 \\ -0.162 \\ -0.86 \end{array}$ | C
C
C | ls
ls
ls | | 10 | | ² P°- ² S | 2505.8 | 452985 | 492880 | 6 | 2 | 3.04 | 0.095 | 4.72 | -0.243 | С | ca | | | | (5) | [2511.4]
[2494.8] | 453073
452808 | 492880
492880 | 4 2 | 2 2 | 2.01
1.02 | 0.095
0. 0 96 | 3.15
1.57 | $ \begin{array}{r r} -0.420 \\ -0.72 \end{array} $ | C | ls
ls | | 11 | 2s2p3s' - | ² P°- ² D | 3490.9 | 518688 | 547326 | 6 | 10 | 0.99 | 0.301 | 20.8 | 0.257 | c | ca | | | 2s2p(¹ P°)3p' | (14) | 3489.84
3492.24
[3492.2] | 518690
518684
518684 | 547336
547311
547311 | $\begin{vmatrix} 4\\2\\4 \end{vmatrix}$ | 6
4
4 | 0.99
0.82
0.165 | 0.272
0.300
0.0302 | 12.5
6.9
1.39 | $\begin{array}{c c} 0.037 \\ -0.222 \\ -0.92 \end{array}$ | CCC | ls
ls
ls | O IV. Allowed Transitions-Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | g | i gk | $\begin{vmatrix} A_{ki}(10^8 \\ \sec^{-1}) \end{vmatrix}$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|-------------------------|---|--|--|--|--|--|--|--|--|---|---------------|----------------------------------| | 12 | $3p - (^{1}S)3d$ | ² P° – ² D
(2) | 3409.1 | 390219 | 419544 | 6 | 10 | 1.15 | 0.334 | 22.5 | 0.302 | c | 3, ca | | | | | 3411.76
3403.58
3413.71 | 390248
390161
390248 | 419550
419534
419534 | $\begin{vmatrix} 4\\2\\4 \end{vmatrix}$ | 4 | 1.15
0.96
0.191 | 0.300
0.335
0.0334 | 13.5
7.5
1.50 | $ \begin{array}{r} 0.080 \\ -0.174 \\ -0.87 \end{array} $ | C
C
C | ls
ls
ls | | 13 | 2s2p3p —
2s2p(3P°)3d | ⁴ D — ⁴ F° (6) | 3733.4 | [468325] | [495103] | 20 | 28 | 0.80 | 0.235 | 58 | 0.67 | C | ca | | | | | 3736.78
3729.03
3725.81
3725.81
3758.45
3744.73
3736.78
3774.38
3755.82 | [468499]
[468290]
[468154]
[468075]
[468499]
[468290]
[468154]
[468075]
[468290] | [495253]
[495099]
[494986]
[494908]
[495099]
[494986]
[494908]
[494908] | 8
6
4
2
8
6
4
8
6 | 10
8
6
4
8
6
4
6
4 | 0.80
0.69
0.61
0.57
0.112
0.194
0.224
0.0075
0.0158 | 0.209
0.193
0.190
0.236
0.0237
0.0407
0.0469
0.00121
0.00222 | 20.6
14.2
9.3
5.8
2.35
3.01
2.31
0.120
0.165 | $\begin{array}{c} 0.224 \\ 0.063 \\ -0.120 \\ -0.325 \\ -0.72 \\ -0.61 \\ -0.73 \\ -2.015 \\ -1.87 \end{array}$ | 00000000 | ls | | 14 | ļ | ⁴ D− ⁴ D° (7) | 3197.4 | [468325] | [499591] | 20 | 20 | 0.338 | 0.052 | 10.9 | 0.015 | C | ca | | | | | 3209.64
3194.75
3185.72
3180.72
3216.31
3199.53
3188.65
3188.17
3180.98
3177.80 | [468499]
[468290]
[468154]
[468075]
[468499]
[468290]
[468154]
[468290]
[468154]
[468075] | [499647]
[499582]
[499535]
[499506]
[499582]
[499535]
[499647]
[499582]
[499535] | 8
6
4
2
8
6
4
6
4
2 | 8
6
4
2
6
4
2
8
6
4 | 0.286
0.194
0.136
0.173
0.063
0.118
0.172
0.0485
0.080 | 0.0442
0.0296
0.0207
0.0263
0.0073
0.0120
0.0131
0.0098
0.0181
0.0263 | 3.74
1.87
0.87
0.55
0.62
0.76
0.55
0.62
0.76
0.55 | -0.451
-0.75
-1.081
-1.280
-1.232
-1.142
-1.281
-1.229
-1.139
-1.279 | 0000000000 | ls
ls
ls
ls
ls
ls | | 15 | 4 | $S - {}^{4}P^{\circ}$ (8) | 3367.6 | [474218] | [503904] | 4 | 12 | 0.69 | 0.350 | 15.5 | 0.146 | C | ca | | | | | 3375.50
3362.63
3354.31 | [474218]
[474218]
[474218] | [503835]
[503948]
[504022] | 4
4
4 | 6
4
2 | 0.68
0.69
0.69 | 0.175
0.117
0.058 | 7.8
5.2
2.58 | $ \begin{array}{c c} -0.154 \\ -0.328 \\ -0.63 \end{array} $ | C
C
C | ls
ls
ls | | 16 | 4 | (9) | 4792.5 | [478731] | [499591] | 12 | 20 | 0.303 | 0.174 | 32.9 | 0.320 | С | ca | | - | | 2 | 4823.93 | [478811] | [499647]
[499582]
[499535]
[499582]
[499535]
[499506]
[499535] | 6
4
2
6
4
2
6
4 | 8
6
4
6
4
2
4
2 | 0.303
0.213
0.128
0.090
0.161
0.254
0.0148
0.050 | 0.139
0.110
0.087
0.0311
0.056
0.087
0.00345
0.0087 | 13.2
6.9
2.74
2.96
3.51
2.74
0.329
0.55 | -0.078
-0.358
-0.76
-0.73
-0.65
-0.76
-1.68
-1.46 | ccccccc | ls
ls
ls
ls
ls
ls | | 17 | 4] | $\begin{array}{c c} P-4P^{\circ} & \vdots \\ (10) & \end{array}$ | 3971.4 | [478731] | [503904] | 12 | 12 | 0.314 | 0.074 | 11.6 | -0.050 | c | ca | | | | | 3956.82
3930.63
3977.10
3945.29
3974.66 | [478682]
[478588]
[478811]
[478682]
[478682] | [503835]
[503948]
[504022]
[503948]
[504022]
[503835]
[503948] | 6
4
2
6
4
4
2 | 6
4
2
4
2
6
4 | 0.215
0.0425
0.053
0.140
0.266
0.094
0.133 | 0.051
0.0100
0.0124
0.0221
0.0310
0.0332
0.062 | 4.06
0.52
0.322
1.74
1.61
1.74
1.61 | -0.51
-1.399
-1.61
-0.88
-0.91
-0.88
-0.91 | CCCCCCC | ls
ls
ls
ls
ls | | 18 | _ | $\begin{array}{c c} \mathbf{D}^{-2} \mathbf{D}^{\circ} & 5 \\ (11) & 5 \end{array}$ | 5339.5 | 482821 | 501544 | 10 | 10 | 0.075 | 0.0319 | 5.6 | -0.497 | c | ca | | | | 5
5
[5 | 378.3] | 482923 | 501566
501511
501511
501566 | 6
4
6
4 | 6 4 4 6 | 0.069
0.069
0.0074
0.0052 | 0.0299
0.0291
0.00213
0.00324 | 2.03
0.226 | -0.75
-0.93
-1.89
-1.89 | C C C | ls
ls
ls | O IV. Allowed Transitions - Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8 \text{ sec}^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|---------------------------------------|--------------------------------|----------------------------|----------------------------|-------------|-------------|---------------------------------|--------------------------|----------------------|---|---------------|----------------| | 19 | | ² D - ² F° (12) | 3563.0 | 482821 | 510879 | 10 | 14 | 1.15 | 0.306 | 35.9 | 0.486 | С | ca | | 1 | | (12) | 3563.36
3560.42
[3593.1] | 482923
482668
482923 | 510979
510746
510746 | 6
4
6 | 8
6
6 | 1.15
1.08
0.075 | 0.291
0.307
0.0145 | 20.5
14.4
1.03 | $\begin{array}{r} 0.242 \\ 0.089 \\ -1.060 \end{array}$ | C | ls
ls
ls | | 20 | | ² S - ²
P° (13) | 4674.4 | 492880 | 514267 | 2 | 6 | 0.297 | 0.292 | 9.0 | -0.234 | С | ca | | | | (13) | [4685.4]
[4652.5] | 492880
492880 | 514217
514368 | 2 2 | 4 2 | 0.295
0.301 | 0.194
0.098 | 6.0
2.99 | $ \begin{array}{r r} -0.411 \\ -0.71 \end{array} $ | C | ls
ls | | 21 | 5f-(1S)6d | ² F° - ² D (15) | 4568 | 552490 | [574375] | 14 | 10 | 0.124 | 0.0278 | 5.9 | -0.410 | С | ca | Naqvi's calculation [1] of the one possible transition in the ground state configuration 2p is the only available source. The line strength should be quite accurate, since it does not sensitively depend on the choice of the interaction parameters. #### Reference [1] Naqvi, A. M., Thesis Harvard (1951). O IV. Forbidden Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | Type of
Transi-
tion | $A_{ki}(\sec^{-1})$ | S(at.u.) | Accu-
racy | Source | |-----|---------------------|-----------------------------------|--------------------------|-------------------------|-------------------------|----|----|----------------------------|-----------------------|----------|---------------|--------| | 1 | 2p-2p | ² P° — ² P° | [25.87×10 ⁴] | 0 | 386.5 | 2 | 4 | m | 5.18×10 ⁻⁴ | 1.33 | В | 1 | **Ground State** Ionization Potential $113.873 \text{ eV} = 918702 \text{ cm}^{-1}$ #### **Allowed Transitions** List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |----------------|-----------------------|----------------|-----|----------------|----------| | 172.168 | 2 | 3230 | 18 | 5114 | 10 | | 192.751 | 8 | 3239 | 12 | 5343 | 21 | | 192.80 | 8 | 3245 | 18 | 5352 | 21 | | 192.800 | 8
8
8 | 3249 | 18 | 5376 | 21
21 | | 192.906 | 8 | 3264 | 18 | 5417 | 21 | | 192.91 | 8 | 3275.67 | 12 | 5432 | 21 | | 192.92 | 8 | 3298 | 18 | 5473 | 21 | | 215.034 | 8
8
6 | 3692 | 17 | 5573 | 15 | | 215.104 | 6 | 3701 | 17 | 5582 | 15 | | 215.245 | 6 | 3703 | 17 | 5584 | 15 | | 220.352 | 9 | 3717 | 17 | 5600 | 15 | | 248.459 | 9
7
1
3
3 | 3726 | 17 | 5606 | 15 | | 629.732 | i | 3747 | 17 | 5608 | 15
22 | | 758.677 | 3 | 3762 | 17 | 6329 | 22 | | 759.440 | 3 | 4120 | 11 | 6767 | 20 | | 760.229 | 3 | 4121.7 | 19 | 6790 | 20 | | 760.445 | 3
3
3
5 | 4123 | 11 | 6819 | 20 | | 761.131 | 3 | 4123.90 | 11 | 6830 | 20 | | 762.001 | 3 | 4135.9 | 19 | 6878 | 20 | | 774.522 | 5 | 4151 | 11 | 6909 | 20 | | | | 4150 56 | 10 | 7438 | 24 | | 1371.29 | 4. | 4158.76 | 19 | | | | 3058.68 | 13 | 4179 | 11 | | | | 3144.68 | 14 | 4211 | 11 | | | | 3222 | 12 | 4522 | 23 | | | | 3222 | 18 | 4554.28 | 16 | | _ | Values for the $2s^2-2s2p$ and $2s2p-2p^2$ transition arrays are taken from the self-consistent field calculations of Weiss [1]. These calculations do not include the important effects of configuration interaction; hence large uncertainties must be expected. The average of the dipole length and velocity approximations is adopted [1]. Accuracies within 50 percent are indicated by the following comparison: Weiss [1] has undertaken refined calculations, including configuration interaction, for the same transitions in Be I—the first member of this isoelectronic sequence—in addition to calculations of the type done for this ion. In all cases the agreement with the average of the dipole length and velocity approximations is close. For the remaining low-lying transitions Kelly's approximate Hartree-Fock calculations [2] are adopted, while for the moderately excited transitions Kelly's values are averaged with the Coulomb approximation, with which they agree quite well. ^[1] Weiss, A. W., private communication (1964). ^[2] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964). Ov. Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(10^8~{ m sec}^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|---|--|---|--|--|----------------------------|----------------------------|---|---|---|---|-----------------------|----------------------------| | 1 | $2s^2 - 2s(^2S)2p$ | ¹ S - ¹ P° (1 uv) | 629.732 | 0 | 158798 | 1 | 3 | 30 | 0.53 | 1.1 | -0.28 | D | 1 | | 2 | $\begin{vmatrix} 2s^2 - \\ 2s(^2S)3p \end{vmatrix}$ | ¹ S - ¹ P° (2 uv) | 172.168 | 0 | 580826 | 1 | 3 | 450 | 0.59 | 0.34 | -0.23 | D | 2 | | 3 | $2s2p-2p^2$ | ³ P° – ³ P
(3 uv) | 760.36 | [82413] | [213929] | 9 | 9 | 21 | 0.18 | 4.1 | 0.21 | D | 1 | | | | (3 44) | 760.445
760.229
762.001
761.131
758.677
759.440 | [82564]
[82258]
[83564]
[82258]
[82258]
[82121] | [214066]
[213797]
[213797]
[213642]
[214066]
[213797] | 5
3
5
3
1 | 5
3
1
5
3 | 16
5.2
8.6
21
5.2
6.9 | 0.14
0.045
0.045
0.060
0.075
0.18 | 1.7
0.34
0.56
0.45
0.56
0.45 | $\begin{array}{c} -0.17 \\ -0.87 \\ -0.65 \\ -0.75 \\ -0.65 \\ -0.74 \end{array}$ | D
D
D
D
D | ls
ls
ls
ls
ls | | 4 | | ¹ P° – ¹ D
(7 uv) | 1371.29 | 158798 | 231722 | 3 | 5 | 6.7 | 0.32 | 4.3 | -0.03 | D | 1 | | 5 | | ¹ P°- ¹ S
(8 uv) | 774.522 | 158798 | 287909 | 3 | 1 | 21 | 0.062 | 0.48 | -0.73 | D | 1 | | 6 | $2s2p - 2s(^2S)3s$ | ³ P° – ³ S
(4 uv) | 215.18 | [82413] | [547150] | 9 | 3 | 211 | 0.0488 | 0.311 | -0.358 | C | 2 | | | 25(2)65 | (1 21) | 215.245
215.104
215.034 | [82564]
[82258]
[82121] | [547150]
[547150]
[547150] | 5
3
1 | 3
3
3 | 117
71
23.5 | 0.0488
0.0490
0.0489 | 0.173
0.104
0.0346 | $ \begin{array}{r} -0.61 \\ -0.83 \\ -1.311 \end{array} $ | C
C
C | ls
ls
ls | | 7 | | ¹ P°- ¹ S
(9 uv) | 248.459 | 158798 | 561278 | 3 | 1 | 137 | 0.0424 | 0.104 | -0.90 | С | 2 | | 8 | $\begin{vmatrix} 2s2p - \\ 2s(^2S)3d \end{vmatrix}$ | ³ P°- ³ D
(5 uv) | 192.85 | [82413] | [600943] | 9 | 15 | 680 | 0.64 | 3.63 | 0.76 | C | 2 | | | 23(-3)04 | (S uv) | 192.906
192.800
192.751
[192.91]
[192.80]
[192.92] | [82564]
[82258]
[82121]
[82564]
[82258]
[82564] | [600956]
[600936]
[600926]
[600936]
[600926] | 5
3
1
5
3
5 | 7
5
3
5
3
3 | 680
510
380
171
286
19.0 | 0.53
0.478
0.64
0.095
0.159
0.0064 | 1.69
0.91
0.403
0.303
0.303
0.0202 | 0.425
0.157
-0.197
-0.321
-0.321
-1.498 | CCCC | ls
ls
ls
ls
ls | | 9 | | ¹ P°- ¹ D
(10 uv) | 220.352 | 158798 | 612617 | 3 | 5 | 458 | 0.56 | 1.21 | 0.222 | C | 2 | | 10 | $\begin{vmatrix} 2s3s - \\ 2s(^2S)3p \end{vmatrix}$ | ¹ S- ¹ P° (1) | 5114 | 547150 | 580826 | 1 | 3 | 0.253 | 0.298 | 5.01 | -0.526 | | 2, ca | | 11 | $2p3s - 2p(^{2}P^{\circ})3p$ | $ \begin{vmatrix} ^3P^{\circ} - ^3D \\ (4) \end{vmatrix} $ | 4130.4 | [653435] | [677639] | 9 | 15 | 0.483 | 0.206 | 25.2 | 0.268 | | ca | | | 2p(1)op | | 4123.90
4120
4123
4179
4151
4211 | [653605]
[653262]
[653100]
[653605]
[653262]
[653605] | [677847]
[677532]
[677333]
[677532]
[677333]
[677333] | 5
3
1
5
3
5 | 7
5
3
5
3
3 | 0.487
0.365
0.270
0.117
0.198
0.0127 | 0.174
0.155
0.206
0.0305
0.051
0.00202 | 11.8
6.3
2.80
2.10
2.10
0.140 | -0.061
-0.333
-0.69
-0.82
-0.81
-1.99 | CCCCC | ls
ls
ls
ls
ls | | 12 | | 3P°-3S | 3257.5 | [653435] | [684124] | 9 | 3 | 1.01 | 0.053 | 5.2 | -0.318 | | ca | | | | (5) | 3275.67
3239
3222 | [653605]
[653262]
[653100] | [684124]
[684124]
[684124] | 5
3
1 | 3
3
3 | 0.55
0.342
0.116 | 0.053
0.054
0.054 | 2.87
1.72
0.57 | $ \begin{array}{r r} -0.57 \\ -0.79 \\ -1.268 \end{array} $ | i | ls
ls
ls | | 13 | | ¹ P°- ¹ D (6) | 3058.68 | 664486 | 697170 | 3 | 5 | 1.30 | 0.305 | 9.2 | -0.039 | C | ca | | 14 | $\begin{vmatrix} 2s3p - \\ 2s(^2S)3d \end{vmatrix}$ | ¹ P°- ¹ D | 3144.68 | 580826 | 612617 | 3 | 5 | 1.05 | 0.258 | 8.02 | -0.111 | C+ | 2, ca | # Ov. Allowed Transitions - Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gk | $A_{ki}(10^8 { m sec}^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|---------------------------------------|--|--|--|---------------------------------|---------------------------------|---|---|--|---|---------------------|----------------------------| | 15 | | ³ P° – ³ D | 5590.0 | [583059] | [600943] | 9 | 15 | 0.176 | 0.138 | 22.8 | 0.093 | C+ | 2, ca | | | | (3) | 5600
5582
5573
5606
5584
5608 | [583097]
[583020]
[582984]
[583097]
[583020]
[583097] | [600956]
[600936]
[600926]
[600926]
[600926] | 5
3
1
5
3
5 | 7
5
3
5
3
3 |
0.175
0.133
0.0987
0.0437
0.0737
0.00486 | 0.115
0.103
0.138
0.0206
0.0345
0.00138 | 10.6
5.70
2.53
1.90
1.90
0.127 | -0.240
-0.508
-0.861
-0.987
-0.986
-2.163 | C + C + C + C + C + | ls
ls
ls
ls
ls | | 16 | 2p3p —
2p(2P°)3d | ¹ P- ¹ D° (7) | 4554.28 | 672965 | 694646 | 3 | 5 | 0.233 | 0.121 | 5.4 | -0.440 | С | ca | | 17 | • ` ′ | ³ D - ³ D° | 3727.5 | [667639] | [704459] | 15 | 15 | 0.155 | 0.0323 | 6.0 | -0.314 | С | ca . | | | | (6) | 3747
3717
3701
3762
3726
3703
3692 | [677847]
[677532]
[677333]
[677847]
[677532]
[677532]
[677333] | [704527]
[704424]
[704360]
[704424]
[704360]
[704527]
[704424] | 7
5
3
7
5
5
3 | 7
5
3
5
3
7
5 | 0.136
0.109
0.119
0.0235
0.0388
0.0176
0.0239 | 0.0286
0.0226
0.0244
0.00356
0.00484
0.0051
0.0081 | 2.47
1.38
0.89
0.309
0.297
0.309
0.297 | $\begin{array}{c} -0.70 \\ -0.95 \\ -1.135 \\ -1.60 \\ -1.62 \\ -1.60 \\ -1.61 \end{array}$ | 000000 | ls
ls
ls
ls
ls | | 18 | | ³ D — ³ P° | 3268.4 | [677639] | [708226] | 15 | 9 | 0.0264 | 0.00254 | 0.410 | -1.419 | С | ca | | | | | 3298
3249
3222
3264
3230
3245 | [677847]
[677532]
[677333]
[677532]
[677333] | [708154]
[708296]
[708379]
[708154]
[708296]
[708379] | 7
5
3
5
3
3 | 5
3
1
5
3
5 | $\begin{array}{c} 0.0216 \\ 0.0201 \\ 0.0276 \\ 0.00397 \\ 0.0068 \\ 2.70 \times 10^{-4} \end{array}$ | $\begin{array}{c} 0.00251 \\ 0.00191 \\ 0.00143 \\ 6.3 \times 10^{-4} \\ 0.00107 \\ 7.1 \times 10^{-5} \end{array}$ | 0.191
0.102
0.0455
0.0341
0.00228 | $ \begin{array}{r} -1.75 \\ -2.021 \\ -2.368 \\ -2.499 \\ -2.494 \\ -3.67 \end{array} $ | C C C C C | ls
ls
ls
ls
ls | | 19 | | ³ S - ³ P° (11) | 4147.9 | [684124] | [708226] | 3 | 9 | 0.259 | 0.200 | 8.2 | -0.222 | С | ca | | | | | 4158.76
4135.9
4121.7 | [684124]
[684124]
[684124] | [708154]
[708296]
[708379] | 3 3 | 5
3
1 | 0.257
0.261
0.264 | 0.111
0.067
0.0224 | 4.56
2.73
0.91 | | CCC | ls
ls
ls | | 20 | | ³ P - ³ D° (12) | 6816.6 | [689793] | [704459] | 9 | 15 | 0.075 | 0.088 | 17.7 | -0.103 | C | ca | | | | | 6830
6790
6767
6878
6819
6909 | [689890]
[689700]
[689586]
[689890]
[689700]
[689890] | [704527]
[704424]
[704360]
[704424]
[704360]
[704360] | 5
3
1
5
3
5 | 7
5
3
5
3
3 | 0.075
0.057
0.0430
0.0183
0.0313
0.00201 | $\begin{array}{c} 0.073 \\ 0.066 \\ 0.088 \\ 0.0130 \\ 0.0218 \\ 8.6 \times 10^{-4} \end{array}$ | 8.3
4.42
1.97
1.47
1.47
0.098 | $\begin{array}{c} -0.435 \\ -0.70 \\ -1.053 \\ -1.188 \\ -1.184 \\ -2.364 \end{array}$ | 000000 | ls
ls
ls
ls
ls | | 21 | | ³ P - ³ P° (13) | 5423.6 | [689793] | [708226] | 9 | 9 | 0.87 | 0.384 | 62 | 0.54 | С | ca | | | | | 5473
5376
5432
5352
5417
5343 | [689890]
[689700]
[689890]
[689700]
[689700]
[689586] | [708154]
[708296]
[708296]
[708379]
[708154]
[708296] | 5
3
5
3
1 | 5
3
1
5
3 | 0.64
0.223
0.361
0.91
0.218
0.304 | 0.285
0.097
0.096
0.130
0.160
0.390 | 25.7
5.1
8.6
6.9
8.6
6.9 | $\begin{array}{c} 0.154 \\ -0.54 \\ -0.320 \\ -0.410 \\ -0.318 \\ -0.409 \end{array}$ | CCCCCC | ls
ls
ls
ls
ls | | 22 | | ¹ D - ¹ F° (14) | 6329 | 697170 | 712967 | 5 | 7 | 0.136 | 0.114 | 11.9 | -0.243 | С | ca | | 23 | | ¹ D - ¹ P° (15) | 4522 | 697170 | 719277 | 5 | 3 | 0.0110 | 0.00203 | 0.151 | -1.99 | С | ca | | 24 | 2s4s —
2s(2S)4p | ³ S - ³ P° (17) | 7438 | [722666] | [736107] | 3 | 9 | 0.287 | 0.715 | 52.5 | 0.331 | C+ | 2, ca | Naqvi's calculations [1] are the only available source. The results for the ${}^3P^{\circ}-{}^3P^{\circ}$ transitions are essentially independent of the choice of the interaction parameters. For the ${}^3P^{\circ}-{}^1P^{\circ}$ transitions, Naqvi has used empirical term intervals, i.e., the effects of configuration interaction should be partially included. #### Reference [1] Naqvi, A. M., Thesis Harvard (1951). ## OV. Forbidden Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | Type of Transition | $A_{ki}(\sec^{-1})$ | S(at.u.) | Accuracy | Source | |-----|---------------------|-----------|--|-------------------------------------|-------------------------|-------------|-------------|--------------------|---|--|----------|--------| | 1 | 2s2p —
2s(2S)2p | 3P°-3P° | $ \begin{bmatrix} 73.13 \times 10^4 \\ 32.65 \times 10^4 \end{bmatrix} $ | [82121.2]
[82257.9] | | | 3
5 | m
m | $\begin{array}{c} 4.60 \times 10^{-5} \\ 3.87 \times 10^{-4} \end{array}$ | | B
B | 1 1 | | 2 | | 3P° — 1P° | [1304.2]
[1306.5]
[1311.8] | [82121.2]
[82257.9]
[82564.1] | | 1
3
5 | 3
3
3 | m
m
m | 0.064
16.9
0.078 | $ \begin{array}{c c} 1.57 \times 10^{-5} \\ 0.00420 \\ 1.96 \times 10^{-5} \end{array} $ | Č | 1 1 | $\mathbf{O}\mathbf{V}\mathbf{I}$ **Ground State** $1s^2 2s {}^2S_{1/2}$ Ionization Potential $138.080 \text{ eV} = 1113999.5 \text{ cm}^{-1}$ #### **Allowed Transitions** #### List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |--|-----------------------|--|-------------------------|--------------------------------------|----------------------------| | 129.786
129.87
129.872
150.088
150.124 | 5
5
5
2
2 | 1031.95
1037.63
3068
3314
3426 | 1
1
8
10
12 | 4751
5112
5279
5298
5410 | 14
16
18
19
17 | | 172.935
173.082
173.09
183.937
184.117 | 4
4
4
3
3 | 3438
3509
3622
3811.35
3834.24 | 13
11
9
6
6 | 5602
11744
11892
11964 | 15
7
7
7 | The values taken from Weiss' calculations [1] are estimated to be accurate to within 10% because of the very close agreement between his dipole length and dipole velocity approximations. The values calculated with the length approximation are adopted. The Coulomb approximation should be quite reliable for the highly excited transitions and is given perference over Kelly's approximate Hartree-Fock calculations [2], with which it sometimes disagrees. ^[1] Weiss, A. W., Astrophys. J. 138, 1262-1276 (1963). ^[2] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964). **OVI.** Allowed Transitions | No | . Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | g | i gk | $A_{ki}(10^8 \text{ sec}^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |----|-----------------------|---|--------------------------------|----------------------------|----------------------------|--------------------------------------|--|---------------------------------|-----------------------------|--------------------------|---|----------------|----------------| | 1 | 2s-2p | 2S-2P° | 1033.8 | 0.0 | 96730 | 2 | 6 | 4.08 | 0.196 | 1.33 | -0.407 | A | 1 | | | | (1 uv) | 1031.95
1037.63 | 0.0
0.0 | 96908
96375 | $\begin{vmatrix} 2\\2 \end{vmatrix}$ | $\begin{vmatrix} 4 \\ 2 \end{vmatrix}$ | 4.09
4.02 | 0.131
0.0648 | 0.887
0.443 | -0.583
-0.887 | A
A | ls
ls | | 2 | 2s-3p | ² S- ² P° | 150.10 | 0.0 | 666218 | 2 | 6 | 259 | 0.262 | 0.259 | -0.281 | B+ | 1 | | | | (2 uv) | 150.088
150.124 | | 666270
666113 | 2 2 | 4 2 | 259
259 | 0.175
0.0874 | 0.173
0.0864 | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | B+
B+ | ls
ls | | 3 | 2p-3s | ² P°- ² S
(3 uv) | 184.06 | 96730 | 640040 | 6 | 2 | 170 | 0.0287 | 0.104 | -0.764 | B+ | 1 | | | | (3 44) | 184.117
183.937 | 96908
96375 | 640040
640040 | 4 2 | 2 2 | 113
56.7 | 0.0287
0.0287 | 0,093
0.0347 | -0.939 -1.241 | B+
B+ | ls
ls | | 4 | 2p-3d | $ \begin{array}{c} ^{2}P^{\circ}-^{2}D\\ (4 \text{ uv}) \end{array} $ | 173.03 | 96730 | 674657 | 6 | 10 | 884 | 0.662 | 2.26 | 0.599 | B+ | 1 | | | | (4 41) | 173.082
172.935
[173.09] | 96908
96375
96908 | 674677
674626
674626 | 4
2
4 | 6
4
4 | 886
737
147 | 0.597
0.661
0.0662 | 1.36
0.753
0.151 | 0.378 0.121 -0.577 | B+
B+
B+ | ls
ls
ls | | 5 | 2p-4d | $^{2}P^{\circ}-^{2}D$ (5 uv) | 129.84 | 96730 | 866893 | 6 | 10 | 287 | 0.121 | 0.310 | -0.139 | В | ca | | | | (8 4.1) | 129.872
129.786
[129.87] | 96908
96375
96908 | 866902
866880
866880 | 4
2
4 | 6
4
4 | 285
239
47.6 | 0.108
0.121
0.0120 | 0.185
0.103
0.0206 | $ \begin{array}{r r} -0.364 \\ -0.618 \\ -1.317 \end{array} $ | B
B
B | ls
ls
ls | | 6 | 3s-3p | ² S - ² P° (1) | 3818.9 | 640040 | 666218 | 2 | 6 | 0.510 | 0.335 | 8.41 | -0.175 | В | 1 | | | | (1) | 3811.35
3834.24 | 640040
640040 | 666270
666113 | 2 2 | 4 2 | 0.513
0.503 | 0.224
0.111 | 5.61
2.80 | $-0.350 \\ -0.654$ | B
B | ls
ls | | 7 | 3p-3d | $^{2}P^{\circ}-^{2}D$ | 11847 | 666218 | 674657 | 6 | 10 | 0.0137 | 0.0481 | 11.3 | -0.540 | В | 1 | | | | | [11892]
[11744]
[11964] | 666270
666113
666270 | 674677
674626
674626 | 4
2
4 | 6
4
4 | $0.0136 \\ 0.0118 \\ 0.00223$ | 0.0433
0.0488
0.00478 | 6.78
3.77
0.753 | $
\begin{array}{r r} -0.762 \\ -1.011 \\ -1.719 \end{array} $ | B
B
B | ls
ls
ls | | 8 | 6s-7p | ${}^{2}S - {}^{2}P^{\circ}$ (2) | 3068 | 1000080 | 1032630 | 2 | 6 | 0.874 | 0.370 | 7.47 | -0.131 | В | ca | | 9 | 6p-7s | ² P°- ² S | 3622 | 1003130 | 1030780 | 6 | 2 | 2.72 | 0.178 | 12.7 | 0.029 | В | ca | | 10 | 6p-7d | ² P°- ² D | 3314 | 1003130 | 1033324 | 6 | 10 | 2.02 | 0.554 | 36.3 | 0.522 | В | ca | | 11 | 6d-7p | ² D - ² P° (5) | 3509 | 1004178 | 1032630 | 10 | 6 | 0.860 | 0.0952 | 11.0 | -0.021 | В | ca | | 12 | 6d – 7f | ${}^{2}D - {}^{2}F^{\circ}$ (6) | 3426 | 1004178 | [1033382] | 10 | 14 | 3.34 | 0.824 | 92.9 | 0.916 | В | ca | | 13 | 6f-7d | ² F °− ² D (7) | 3438 | [1004265] | 1033324 | 14 | 10 | 0.337 | 0.0426 | 6.75 | -0.225 | В | ca | | 14 | 7s — 8p | ² S - ² P° (10) | 4751 | 1030780 | 1051724 | 2 | 6 | 0.423 | 0.429 | 13.4 | -0.067 | В | ca | | 15 | 7p-8s | ² P°- ² S | 5602 | 1032630 | [1050543] | 6 | 2 | 1.38 | 0.216 | 23.9 | 0.113 | В | ca | ## OVI. Allowed Transitions - Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(10^8 { m sec}^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|--|------|-------------------------|-------------------------|----|----|------------------------------|--------|----------|--------|---------------|------------| | 16 | 7p-8d | ² P° - ² D
(12) | 5112 | 1032630 | 1052296 | 6 | 10 | 0.923 | 0.603 | 60.9 | 0.559 | В | c a | | 17 | 7d-8p | ² D- ² P° (13) | 5410 | 1033324 | 1051724 | 10 | 6 | 0.491 | 0.129 | 23.0 | 0.111 | В | ca | | 18 | 7d-8f | ² D - ² F° (14) | 5279 | 1033324 | [1052280] | 10 | 14 | 1.64 | 0.960 | 167 | 0.982 | В | ca | | 19 | 7f-8d | ² F° - ² D (15) | 5298 | [1033382] | 1052296 | 14 | 10 | 0.255 | 0.0766 | 18.7 | 0.030 | В | 2 | ## $\mathbf{O}^{\mathsf{T}}\mathbf{V}^{\mathsf{T}}\mathbf{I}$ **Ground State** $1s^2 {}^1S_0$ **Ionization Potential** $739.114 \text{ eV} = 5963000 \text{ cm}^{-1}$ ## **Allowed Transitions** The results of extensive non-relativistic variational calculations by Weiss [1] are used. Values have been calculated in both the dipole length and dipole velocity approximations and agree to within 1 percent, except for the 3p $^1P^{\circ} - 3d$ 1D transition where agreement is not as good. The average of the two approximations is adopted [1]. #### Reference [1] Weiss, A. W., private communication (1964). ## **O VII.** Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gk | $A_{ki}(10^8 \mathrm{sec}^{-1})$ | f_{ik} | S(at. u.) | log gf | Accu-
racy | Source | |-----|---------------------|----------------------------------|----------|-----------------------|-----------------------|----|----|----------------------------------|----------|-----------|---------|---------------|--------| | 1 | $1s^2 - 1s2p$ | 1S-1P° | [21.602] | 0 | 4629200 | 1 | 3 | 33000 | 0.694 | 0.0494 | -0.158 | A | 1 | | 2 | $1s^2-1s3p$ | ¹S−¹P° | [18.627] | 0 | 5368550 | 1 | 3 | 9370 | 0.146 | 0.00897 | - 0.835 | A | 1 | | 3 | 1s2s-1s2p | .1S-1P° | [2475.4] | [4588814] | 4629200 | 1 | 3 | 0.246 | 0.0679 | 0.553 | -1.168 | A | 1 | | 4 | 1s2s-1s3p | ¹ S- ¹ P° | [128.25] | [4588814] | 5368550 | 1 | 3 | 504 | 0.373 | 0.158 | -0.428 | A | 1 | | 5 | 1s2p-1s3d | ¹P°-¹D | [135.77] | 4629200 | [5365734] | 3 | 5 | 1530 | 0.705 | 0.945 | 0.325 | A | 1 | | 6 | 1s3d - 1s3p | ¹ D - ¹ P° | [35500]? | [5365734] | 5368550 | 5 | 3 | 6.99×10^{-4} | 0.00792 | 4.62 | -1.402 | C+ | 1 | | | | | | | | | | | | | | | _ | | 7 | 1s2s-1s2p | 3S - 3P° | [1630.3] | 4525270 | [4586610] | 3 | 9 | 0.794 | 0.0949 | 1.53 | - 0.546 | A | 1 | | 8 | 1s2s - 1s3p | 3S - 3P° | [120.33] | 4525270 | 5356300 | 3 | 9 | 533 | 0.347 | 0.413 | 0.018 | A | 1 | | 9 | 1s2p-1s3d | ³ P∞ − ³ D | [128.46] | [4586610] | 5365070 | 9 | 15 | 1620 | 0.666 | 2.54 | 0.778 | A | 1 | | 10 | 1s3p - 1s3d | 3P°-3D | [11399]? | 5356300 | 5365070 | 9 | 15 | 0.0113 | 0.0367 | 12.4 | -0.481 | A | 1 | # **FLUORINE** FI. **Ground State** Ionization Potential $1s^22s^22p^5 {}^2P_{3/2}^{\circ}$ $17.418 \text{ eV} = 140524.5 \text{ cm}^{-1}$ ## Allowed Transitions List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |---|-----------------------|---|-----------------------|---|-----------------------| | 6239.64
6348.50
6413.66
6708.27
6773.97 | 3
3
3
2
2 | 6909.82
6966.35
7037.45
7127.88
7202.37 | 2
6
6
6
6 | 7489.14
7514.93
7552.24
7573.41
7607.17 | 5
1
1
1
4 | | 6795.52
6834.26
6856.02
6870.22
6902.46 | 2
2
2
2
2 | 7311.02
7331.95
7398.68
7425.64
7482.72 | 5
1
1
1 | 7754.70
7800.22 | 4 | Since there are no numerical data available for this spectrum, values for the prominent lines have been calculated from the Coulomb approximation by Bates and Damgaard. This method is expected to give fairly reliable results as judged from other atomic systems of similar complexity, where comparison data have been available. FI. Allowed Transitions | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gk | $\begin{bmatrix} A_{ki}(10^8\\ \sec^{-1}) \end{bmatrix}$ | f_{ik} | S(at.u.) | log g∱ | Accu-
racy | Source | |-----|---|--------------------------------------|--|--|--|--|--|--|---|---|--|---------------------------------|----------------------------------| | 1 | 2p ⁴ 3s —
2p ⁴ (³ P)3p | 4P — 4P°
(1) | 7490.3
7398.68
7482.72
7514.93
7331.95
7425.64
7552.24
7573.41 | 102571
102407
102681
102841
102407
102681
102681
102841 | 115918
115919
116042
116144
116042
116144
115919
116042 | 12
6
4
2
6
4
4
2 | 12
6
4
2
4
2
6
4 | 0.35
0.25
0.047
0.058
0.17
0.30
0.10
0.14 | 0.29
0.21
0.039
0.049
0.089
0.12
0.13
0.24 | 86
30
3.9
2.4
13
12
13
12 | 0.54
0.09
-0.81
-1.01
-0.27
-0.31
-0.28
-0.31 | D
D
D
D
D
D | ca
ls
ls
ls
ls
ls | | 2 | | ⁴ P — ⁴ D° (2) | 6859.2
6856.02
6902.46
6909.82
6773.97
6834.26
6870.22
6708.27
6795.52 | 102571
102407
102681
102841
102407
102681
102407
102681 | 117146
116988
117165
117309
117165
117309
117393
117309
117393 | 12
6
4
2
6
4
2
6
4 | 20
8
6
4
6
4
2
4
2 | 0.45
0.45
0.31
0.18
0.14
0.24
0.38
0.024
0.077 | 0.53
0.42
0.33
0.26
0.095
0.17
0.27
0.011
0.027 | 140
57
30
12
13
15
12
1.4
2.4 | 0.80
0.40
0.12
-0.28
-0.24
-0.17
-0.27
-1.19
-0.97 | D
D
D
D
D
D
D | ca ls ls ls ls ls ls ls ls | ## Allowed Transitions - Continued | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | g | g_k | $A_{ki}(10^8 { m sec}^{-1})$ | f_{ik} | S(at.u.) | $\log gf$ | Accu-
racy | Source | |-----|---------------------|---|--|--------------------------------------|--------------------------------------|--|------------------|---------------------------------|-------------------------------|------------------------|--|---------------|----------------------| | 3 | | ⁴ P- ⁴ S° (3) | 6304.2 | 102571 | 118429 | 12 | 4 | 0.56 | 0.11 | 28 | 0.12 | D | ca | | | | (0) | 6239.64
6348.50
6413.66 | 102407
102681
102841 | 118429
118429
118429 | 6
4
2 | 4
4
4 | 0.29
0.18
0.090 | 0.11
0.11
0.11 | 14
9.3
4.7 | $ \begin{array}{r} -0.18 \\ -0.35 \\ -0.65 \end{array} $ | D
D
D | ls
ls
ls | | 4 | <u> </u> | ² P- ² D° | 7759.4 | 104840 | 117724 | 6 | 10 | 0.35 | 0.53 | 80 | 0.50 | D | ca | | | | (-/ | 7754.70
7800.22
7607.17 | 104732
105057
104732 | 117624
117874
117874 | 4
2
4 | 6
4
4 | 0.35
0.29
0.061 | 0.47
0.53
0.053 | 48
27
5.3 | $0.27 \\ 0.02 \\ -0.67$ | D
D
D | ls
ls
ls | | 5 | | ² P- ² S° (5) | 7369.3 | 104840 | 118406 | 6 | 2 | 0.40 | 0.11 | 16 | -0.18 | D | ca | | | | (0) | 7311.02
7489.14 | 104732
105057 | 118406
118406 | 4 2 | 2
2 | 0.27
0.13 | 0.11
0.11 | 11
5.4. | -0.36 -0.66 | D
D | ls
ls | | 6 | | ² P - ² P°
(6) | 7067.02 | 104840 | 118986 | 6 | 6 | 0.46 | 0.34 | 48 | 0.31 | D | ca | | | | | 7037.45
7127.88
6966.35
7202.37 | 104732
105057
104732
105057 | 118938
119083
119083
118938 | $\begin{bmatrix} 4 \\ 2 \\ 4 \\ 2 \end{bmatrix}$ | 4
2
2
4 | $0.38 \\ 0.30 \\ 0.16 \\ 0.072$ | 0.28
0.23
0.056
0.11 | 26
11
5.2
5.3 | 0.05
- 0.35
- 0.65
- 0.65 | D
D
D |
ls
ls
ls
ls | ## Forbidden Transitions Naqvi's calculation [1] of the one possible transition in the ground state configuration $2p^5$ is the only available source. The line strength should be quite accurate, since it does not sensitively depend on the choice of the interaction parameters. ## Reference [1] Naqvi, A. M., Thesis Harvard (1951). FI. Forbidden Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g_k | Type of
Transition | $A_{ki}(\sec^{-1})$ | S(at. u.) | Accu-
racy | Source | |-----|---------------------|-----------------------------------|--------------------------|-------------------------|-------------------------|----|-------|-----------------------|---------------------|-----------|---------------|--------| | 1 | $2p^5 - 2p^5$ | ² P° — ² P° | [24.75×10 ⁴] | 0.0 | 404.0 | 4 | 2 | m | 0.00118 | 1.33 | В | 1 | $1s^22s^22p^4$ ³P₂ **Ionization Potential** $34.98 \text{ eV} = 282190.2 \text{ cm}^{-1}$ #### **Allowed Transitions** #### List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |----------------------|-----|----------------|------------------|---------------------|------------------| | 605.67 | 1 | 3535.2 | 5 | 4103.09 | 9 | | 606.27 | 1 1 | 3536.84 | 5
5
5
5 | 4103.3 | 9 | | 606.81 | 1 1 | 3538.6 | 5 | 4103.53 | 9 | | 606.95 | 1 1 | 3541.77 | 5 | 1100.00 | _ | | | 1 1 | 3541.11 | | 4103.72 | 9 | | 607.48 | 1 1 | 3544.5 | 5 | 4103.87 | 9 | | 608.06 | 1 | 3546.1 | 5
5 | 4104.1 | ģ | | | 1/7 | 3640.89 | 10 | 4109.17 | 4 | | $3202.74 \\ 3501.42$ | 8 | 3640.9 | 10 | 4112.7 | 44 | | + | 8 | 3641.99 | 10 | 7112.1 | • | | 3501.5 | 8 | 3041.99 | 10 | 4113.1 | 4 | | 3501.6 | ° | 3642.80 | 10 | 4116.55 | | | 3502.9 | 8 | 3847.09 | | 4117.1 | 4
4
4
4 | | 3502.9
3502.95 | 8 | 3849.99 | 2 | 4118.8 | 4 | | 3503.10 | 8 | 3851.67 | 2
2
2
3 | 4119.22 | 4 | | 3505.10
3505.4 | 8 | 4024.73 | 2 | 4119.22 | * | | 3505.4
3505.6 | 8 | 4024.73 | 3 | 4246.16 | 11 | | 5505.0 | 0 | 4025.01 | ي | 4240.10 | 6 | | 3505.61 | 8 | 4025.50 | 3 3 | 4446.9 | 12 | | 10.6066 | 0 | 4023.30 | ٥ | 1411 0.7 | 12 | For one of the strongest ultraviolet transitions a value calculated by Varsavsky [1] from a screening approximation is available and listed. Because the strong effects of configuration interaction have been neglected, this number should be quite uncertain. (In general, Varsavsky's values have a tendency to be too large.) Values obtained with the Coulomb approximation are presented for all prominent transitions in the visible and near ultraviolet. The indicated accuracies are estimated from extrapolation with equivalent transitions of O I, for which experimental and theoretical comparison data are available. #### Reference [1] Varsavsky, C. M., Astrophys. J. Suppl. Ser. 6, 75-108 (1961). FII. Allowed Transitions | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(10^8 m sec^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|--|---|--|--------------------------------------|--|-----------------------|-----------------------|-----------------------------------|--|---|--|-----------------------|----------------------------| | 1 | $2s^{2}2p^{4} - 2s^{2}p^{5}$ | ³ P - ³ P°
(1 uv) | 606.85 | 169 | 164955 | 9 | 9 | 100 | 0.56 | 10 | 0.70 | E | 1 | | | 2 0 2 p | (1 41) | 606.81
606.95
605.67
606.27
608.06
607.48 | 342
0
342
342
342
491 | 164798
165107
165107
165281
164798
165107 | 5
3
5
3
1 | 5
3
1
5
3 | 78
26
43
100
25
33 | 0.43
0.14
0.14
0.18
0.23
0.55 | 4.3
0.86
1.4
1.1
1.4
1.1 | $\begin{array}{c c} 0.33 \\ -0.37 \\ -0.15 \\ -0.26 \\ -0.16 \\ -0.26 \end{array}$ | E
E
E
E
E | ls
ls
ls
ls
ls | | 2 | $\begin{bmatrix} 2p^3 3s - \\ 2p^3 (^4S^{\circ}) 3p \end{bmatrix}$ | ⁵ S°- ⁵ P
(<u>1</u>) | 3848.9
3847.09
3849.99 | [176654]
[176654]
[176654] | [202628]
[202641]
[202621] | 5
5
5 | 15
7
5 | 1.3
1.3
1.3
1.3 | 0.84
0.39
0.28
0.17 | 54
25
18
11 | 0.62 0.29 0.15 -0.08 | D
D
D
D | ca
ls
ls | FII. Allowed Transitions—Continued | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | <i>8</i> k | $A_{ki}(10^8 \text{ sec}^{-1})$ | f_{ik} | S(at.u.) | $\log gf$ | Accu-
racy | Source | |-----|--|---|----------------------|-----------------------|-----------------------|--------|---------------|---------------------------------|-------------------|---------------|--|---------------|----------| | 3 | | ³ S°- ³ P | 4025.0 | 182865 | 207703 | 3 | 9 | 1.2 | 0.90 | 36 | 0.43 | D | ca | | | | } | 4024.73 | 182865 | 207705 | 3 | 5 | 1.2 | 0.50 | 20 | 0.18 | D | ls | | | | | 4025.50
4025.01 | 182865
182865 | 207700 207703 | 3 | $\frac{3}{1}$ | 1.2 | 0.30 | 12 4.0 | -0.04 | D | \ ls | | | | | | | | 1 | _ | | 0.10 | 4.0 | -0.52 | D | ls | | 4 | $2p^{3}3s' - 2p^{3}(^{2}D^{\circ})3p'$ | $^{3}D^{\circ} - ^{3}D$ | 4113.7 | 211881 | 236183 | 15 | 15 | 1.8 | 0.45 | 92 | 0.83 | D | ca | | | | | 4109,17
4116.55 | 211867
211888 | 236196
236173 | 5 | 7
5 | $1.6 \\ 1.2$ | $0.40 \\ 0.32$ | 38
21 | $0.45 \\ 0.20$ | D | ls | | | | | 4119.22 | 211901 | 236170 | 3 | 3 | 1.3 | 0.34 | 14 | 0.20 | D | ls
ls | | | | | [4113.1] | 211867 | 236173 | 7 | 3
5 | 0.28 | 0.050 | 4.8 | -0.45 | l b | ls | | | | | [4117.1] | 211888 | 236170 | 5 | $\frac{3}{7}$ | 0.45 | 0.068 | 4.6 | -0.47 | D | ls | | | | | [4112.7]
[4118.8] | 211888
211901 | 236196
236173 | 5 3 | 7
5 | 0.20 | 0.071 | 4.8 | -0.45 | D | ls | | | : | | [4116.6] | 211901 | 230173 | 3 | - 5 | 0.27 | 0.11 | 4.6 | -0.47 | D | ls | | 5 | | ³ D° – ³ P | 3539.8 | 211881 | 240123 | 15 | 9 | 2.1 | 0.23 | 40 | 0.54 | D | ca | | | | | 3541.77 | 211867 | 240093 | 7 | 5 | 1.7 | 0.23 | 19 | 0.21 | D | ls | | | | | 3536.84 | 211888
211901 | 240153 | 5 | 3 | 1.5 | 0.17 | 10 | -0.06 | D | ls | | | | | [3535.2]
[3544.5] | 211901 | 240180
240093 | 3
5 | 1
5 | 2.1
0.31 | 0.13
0.058 | 4.5
3.4 | $\begin{bmatrix} -0.42 \\ -0.54 \end{bmatrix}$ | D | ls
ls | | | | | [3538.6] | 211901 | 240153 | 3 | 3 | 0.51 | 0.096 | 3.4 | -0.54 | D
D | ls | | | | | [3546.1] | 211901 | 240093 | 3 | 5 | 0.021 | 0.0064 | 0.23 | -1.71 | Ď | ls | | 6 | | ¹ D° – ¹ F
(7) | 4299.18 | 215070 | 238324 | 5 | 7 | 1.7 | 0.64 | 45 | 0.51 | D | ca | | 7 | | ¹ D° — ¹ D (8) | 3202.74 | 215070 | 246284 | 5 | 5 | 1.4 | 0.21 | 11 | 0.02 | D | ca | | 8 | $2p^{3}3p - 2p^{3}(^{4}S^{\circ})3d$ | ⁵ P - ⁵ D° (3) | 3504.0 | [202628] | [231159] | 15 | 25 | 2.86 | 0.88 | 152 | 1.120 | С | ca | | | 2p (3)3u | (3) | 3505.61 | [202641] | [231158] | 7 | 9 | 2.86 | 0.68 | 55 | 0.68 | С | ls | | | | | 3503.10 | [202621] | [231159] | 5 | 7 | 1.91 | 0.491 | 28.3 | 0.390 | l C | ls | | | | | [3501.6] | [202610] | [231160] | -3 | 5 | 1.00 | 0.307 | 10.6 | -0.036 | Č | ls | | | | | [3505.6]
3502.95 | [202641]
[202621] | [231159] | 7
5 | 7
5 | 0.95
1.67 | 0.175
0.307 | 14.2
17.7 | 0.089
0.186 | C | ls | | . | | | [3501.5] | [202621] | [231161] | 3 | 3 | 2.15 | 0.307 | 13.7 | 0.180 | C | ls
ls | | | | | [3505.4] | [202641] | [231160] | 7 | 5 | 0.190 | 0.0251 | 2.02 | -0.76 | č | ls | | Ì | | | [3502.9] | [202621] | [231161] | 5 | 3 | 0.72 | 0.079 | 4.55 | -0.404 | C | ls | | | | | 3501.42 | [202610] | [231161] | 3 | 1 | 2.86 | 0.175 | 6.1 | -0.279 | С | ls | | 9 | | $^{3}P - ^{3}D^{\circ}$ (4) | 4103.4 | 207703 | 232066 | 9 | | 2.05 | 0.86 | 105 | 0.89 | C | ca | | | | | 4103.53 | 207705 | 232067 | 5 | 7 | 2.05 | 0.72 | 48.8
26.2 | 0.56
0.287 | C C | ls
ls | | | | | 4103.09
4103.72 | 207700
207703 | 232065
232064 | 3 | 5
3 | 1.54
1.14 | 0.65
0.86 | 11.6 | -0.267 | C
C | ls | | ĺ | | | 4103.72 | 207705 | 232065 | 5 | 5 | 0.51 | 0.129 | 8.7 | -0.190 | č | ls | | | | | [4103.3] | 207700 | 232064 | 3 | 3 | 0.85 | 0.215 | 8.7 | -0.190 | C | ls | | | | | [4104.1] | 207705 | 232064 | 5 | 3 | 0.057 | 0.0086 | 0.58 | -1.366 | С | ls | | 10 | $2p^{3}3p' - 2p^{3}(^{2}D^{\circ})3d'$ | ³ F − ³ F° (11) | 3641.7 | 237509 | 264961 | 21 | 21 | 0.147 | 0.0292 | 7.3 | -0.213 | Ç- | ca | | | 2p (D)00 | (±.=2 | 3640.89 | 237508 | 264966 | 9 | 9 | 0.137 | 0.0273 | 2.95 | -0.61 | C- | ls | | | | | 3641.99 | 237509 | 264959 | 7 | 7 | 0.123 | 0.0245 | 2.06 | $\begin{bmatrix} -0.77 \\ -0.99 \end{bmatrix}$ | C- | ls
ls | | ١ | | | 3642.80 | 237509 | 264953 | 5 | 5 | 0.130
0.0118 | 0.0259
0.00182 | 1.55
0.197 | -0.89
-1.79 | C- | ls | | | | | 3641.99 | 237508
237509 | 264959
264953 | 9 7 | 7
5 | 0.0118 | 0.00182 | 0.197 | -1.79 | Č- | ls | | ļ | | | 3642.80
[3640.9] | 237509 | 264966 | 7 | 9 | 0.0092 | 0.00234 | 0.196 | -1.79 | C | ls | | | | | 3641.99 | 237509 | 264959 | 5 | 7 | 0.0116 | 0.00324 | 0.194 | -1.79 | C- | ls | | 11 | $2p^{3}3d - 2p^{3}(^{4}S^{\circ})4f$ | ⁵ D° — ⁵ F
(9) | 4246.16 | [231159] | [254703] | 25 | 25 | 2.47 | 0.93 | 326 | 1.368 | C | ca | | | -r (=) 5 | | 4445.0 | 940000 | 054547 | 15 | 91 | 2.35 | 0.97 | 214 | 1.165 | С | ca | | 12 | | $^{3}D^{\circ} - {}^{3}F$ (10) | 4446.9 | 232066 | 254547 | 15 | 21 | 2.33 | 0.71 | | | | | The adopted values represent the results of
calculations by Garstang [1] and Naqvi [2], which are very similar in character. Garstang's evaluation of the quadrupole integral s_q is considered the more refined one; therefore, the quadrupole line strengths are taken from his paper. Naqvi, in his calculations of magnetic dipole lines, retains the spin-spin and spin-other-orbit integral in the transformation coefficients, while Garstang neglects it. Thus, Naqvi's values are chosen, whenever this becomes significant. When this refinement is not sensitive, the two authors agree. For the $^3P-^1S$ transition the important effects of configuration interaction are most appropriately taken into account by Garstang's method, so that his values are used. (Further explanations are found in the general introduction.) #### References - [1] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 111, 115-124 (1951). - [2] Naqvi, A. M., Thesis Harvard (1951). Fig. Forbidden Transitions | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | g_i | g_k | Type of
Transition | $A_{ki}(\mathrm{sec^{-1}})$ | S(at.u.) | Accu-
racy | Source | |-----|---------------------|--|--|---------------------------------------|---|------------------|------------------|-----------------------|---|---|-----------------------|------------------------| | 1 | $2p^4 - 2p^4$ | 3P -3P | | 0.0
0.0
0.0
341.8 | 341.8
341.8
490.6
490.6 | 5
5
5
3 | 3
3
1
1 | m
e
c
m | $\begin{array}{c} 8.97\times 10^{-4}\\ 2.30\times 10^{-10}\\ 1.80\times 10^{-9}\\ 1.78\times 10^{-4} \end{array}$ | 2.50
0.88
0.376
2.00 | B
C
C
B | 1, 2
1
1
1, 2 | | 2 | | ³ P - ¹ D
(1 F) | 4789.5
4789.5
4869.3
4869.3
[4904.8] | 0.0
0.0
341.8
341.8
490.6 | 20873
20873
20873
20873
20873 | 5
5
3
3 | 5
5
5
5 | m
e
m
e
e | $\begin{array}{c} 3.81 \\ 9.6 \times 10^{-5} \\ 0.0121 \\ 1.3 \times 10^{-5} \\ 4.1 \times 10^{-6} \end{array}$ | 7.8×10^{-4} 7.2×10^{-4} 2.59×10^{-4} 1.1×10^{-4} 3.5×10^{-5} | C
D
C
D
D | 2
1
2
1
1 | | 3 | | 3P-1S | [2225.5]
[2246.6] | 0.0
341.8 | 44919
44919 | 5
3 | 1
1 | e
m | 0.0016
0.490 | 5.2×10^{-5}
2.06×10^{-4} | D
C | 1
1 | | 4 | | ¹ D- ¹ S
(2 F) | 4157.5 | 20873 | 44919 | 5 | 1 | e | 2.10 | 1.55 | C | 1 | #### FIII. **Ground State** $1s^22s^22p^3\ ^4{\rm S}^{\circ}_{3/2}$ **Ionization Potential** $62.646 \text{ eV} = 505410 \text{ cm}^{-1}$ ## **Allowed Transitions** After having written introductory remarks for 9.2 elements, we must confess that this becomes a rather cumbersome exercise in style. Since we expect that this introduction will share the fate of most introductions (namely be ignored) and since there is nothing new to say on this ion (for scientific content see F I) we might as well give the few readers of this introduction some good advice: If there is no other data source, Use the Coulomb approximation, of course. The results should be certainly fine For any moderately or highly excited line. F III. Allowed Transitions | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gk | $A_{ki}(10^8 { m sec}^{-1})$ | f_{ik} | S(at.u.) | $\log gf$ | Accu-
racy | Source | |-----|-------------------------------------|--|-------------------------------|----------------------------|----------------------------|-------------|--|---|--------------------------|---|--|---------------|----------------| | 1 | $2p^23s - 2p^2(^3P)3p$ | ⁴ P - ⁴ D° (1) | 3124.4 | 317043 | 349040 | 12 | 20 | 1.6 | 0.40 | 48 | 0.67 | D | ca | | | 2p (1)0 p | | 3121.52
3115.67
3113.58 | 317238
316919
316707 | 349264
349005
348815 | 6 4 2 | 8
6
4 | 1.6
1.1
0.67 | 0.31
0.25
0.19 | 19
10
4.0 | $ \begin{array}{c c} 0.27 \\ -0.01 \\ -0.41 \end{array} $ | D
D
D | ls
Is
Is | | | | | 3146.96
3134.21
3124.76 | 317238
316919
316707 | 349005
348815
348701 | 6
4
2 | 6
4
2 | $0.47 \\ 0.84 \\ 1.3$ | 0.070
0.12
0.19 | 4.3
5.1
4.0 | $ \begin{array}{r r} -0.38 \\ -0.30 \\ -0.41 \end{array} $ | D
D
D | ls
ls
ls | | | | | 3165.86
3145.54 | 317238
316919 | 348815
348701 | 6 4 | $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$ | $\begin{bmatrix} 0.077 \\ 0.26 \end{bmatrix}$ | 0.0077
0.019 | 0.48
0.80 | -1.34 -1.11 | D
D | ls
ls | | 2 | | $^{2}P - ^{2}D^{\circ}$ (2) | 3176.9 | 324746 | 356214 | 6 | 10 | 1.7 | 0.42 | 26 | 0.40 | D | ca | | | | | 3174.13
3174.73
3213.97 | 324874
324490
324874 | 356370
355980
355980 | 4
2
4 | 6
4
4 | $egin{array}{c} 1.7 \\ 1.4 \\ 0.27 \end{array}$ | $0.38 \\ 0.42 \\ 0.041$ | 16
8.7
1.8 | $ \begin{array}{r} 0.18 \\ -0.08 \\ -0.78 \end{array} $ | D
D
D | ls
ls
ls | | 3 | $2p^23p' - 2p^2({}^1\mathbf{D})3d'$ | $^{2}D^{\circ} - ^{2}F$ (3) | 3039.3 | 380265 | 413158 | 10 | 14 | 2.75 | 0.53 | 53 | 0.73 | С | ca | | | (| | 3039.25
3039.75
3034.54 | 380243
380299
380243 | 413136
413187
413187 | 6
4
6 | 8
6
6 | 2.75
2.56
0.184 | 0.51
0.53
0.0254 | $ \begin{array}{c c} 30.4 \\ 21.3 \\ 1.52 \end{array} $ | $0.483 \\ 0.329 \\ -0.82$ | C
C
C | ls
ls
ls | | 4 | | $ \begin{vmatrix} ^2P^\circ - ^2D \\ (4) \end{vmatrix} $ | 3150.6 | 384440 | 416171 | 6 | 10 | 1.39 | 0.344 | 21.4 | 0.315 | С | ca | | | | (*) | 3154.39
3142.78
3156.11 | 384485
384351
384485 | 416178
416161
416161 | 4
2
4 | 6
4
4 | 1.38
1.16
0.230 | 0.309
0.344
0.0344 | 12.9
7.1
1.43 | 0.093 -0.162 -0.86 | C
C
C | ls
ls
ls | Naqvi's [1] calculations are the only available source. The values should not be quite as reliable as for other ions of the p^3 configuration (O II, Ne IV) since the important configuration interaction effects (see general introduction) are neglected. #### Reference [1] Naqvi, Λ . M., Thesis Harvard (1951). F III. Forbidden Transitions | | | | | | | _ | _ | | | T | | | |-----|---------------------|-----------------------------------|--|---------------------|----------------------------------|------------------|------------------|-----------------------|---|---|--------------------------|------------------| | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i({ m cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g_k | Type of
Transition | $A_{ki}(\mathrm{sec^{-1}})$ | S(at.u.) | Accu-
racy | Source | | 1 | $2p^3-2p^3$ | ⁴ S°- ² D° | [2933.1]
[2933.1]
[2930.0]
[2930.0] | 0
0
0
0 | 34084
34084
34120
34120 | 4
4
4
4 | 6
6
4
4 | m
e
m
e | $\begin{array}{c} 1.08 \times 10^{-5} \\ 1.2 \times 10^{-4} \\ 0.00134 \\ 7.5 \times 10^{-5} \end{array}$ | | C -
D -
C - | 1
1
1
1 | | 2 | | ⁴ S°- ² P° | [1939.6]
[1939.6]
[1939.6]
[1939.6] | 0
0
0 | 51558
51558
51558
51558 | 4
4
4
4 | 4
4
2
2 | m
e
m
e | $\begin{array}{c} 0.256 \\ 2.7 \times 10^{-8} \\ 0.102 \\ 7.4 \times 10^{-7} \end{array}$ | $ \begin{vmatrix} 2.77 \times 10^{-4} \\ 1.8 \times 10^{-9} \\ 5.5 \times 10^{-5} \\ 2.4 \times 10^{-8} \end{vmatrix} $ | C -
D -
C -
D - | 1
1
1
1 | | 3 | | ² D° – ² D° | $[27.8 \times 10^{5}]$
$[27.8 \times 10^{5}]$ | 34084
34084 | 34120
34120 | 6 | 4
4 | m
e | $\begin{vmatrix} 7.55 \times 10^{-7} \\ 1.8 \times 10^{-18} \end{vmatrix}$ | $\begin{array}{ c c c c c }\hline 2.40 \\ 7.2 \times 10^{-4} \\ \end{array}$ | B
D- | 1 | FIII. Forbidden Transitions - Continued | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | g_i | g_k | Type of
Transition | $A_{ki}(\sec^{-1})$ | S(at.u.) | Accu-
racy | Source | |-----|---------------------|---------------------------------------|--|---|---|-------------|---------------------------------|----------------------------|--|---|-------------------|----------------------------| | 4 | | ² D°- ² P° (1F) | 5721.2
5721.2
[5721.2]
5733.0
5733.0
[5733.0]
[5733.0] | 34084
34084
34084
34120
34120
34120
34120 | 51558
51558
51558
51558
51558
51558
51558 | 6 6 4 4 4 4 | 4
4
2
4
4
2
2 | m
e
e
m
e
m | 0.0280
0.15
0.088
0.0494
0.065
0.0309
0.13 | 7.8×10^{-4} 2.2 0.64 0.00138 0.96 4.32×10^{-4} 0.96 | C - D C - D C - D | 1
1
1
1
1
1 | FIV. Ground State Ionization Potential $1s^22s^22p^2$ ³P₀ $87.14 \text{ eV} = 703020 \text{
cm}^{-1}$ ## **Allowed Transitions** The results of calculations by Bolotin et al. [1] are listed. These authors have employed relatively simple wave functions and include the important effects of configuration interaction in a crude manner. Thus, their results should be quite uncertain, but they are nevertheless included since these transitions are expected to be among the strongest for this ion. #### Reference [1] Bolotin, A. B., Levinson, I. B., and Levin, L. I., Soviet Phys. - JETP 2, 391-395 (1956). F IV. Allowed Transitions | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g _k | $\begin{array}{c} A_{ki}(10^8 \\ \sec^{-1}) \end{array}$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|----------------------------------|--|--------------------------------------|--|----------------------------|----------------------------|--|---|--|---|-----------------------|----------------------------| | 1 | $2s^22p^2 - 2s2p^3$ | ³ P - ³ D° | 678.18 | 416 | 147870 | 9 | 15 | 11 | 0.13 | 2.6 | 0.07 | E | 1 | | | 2029 | | [679.21]
[677.21]
[676.12]
[679.00]
[677.15]
[678.94] | 613
225
0
613
225
613 | 147842
147889
147902
147889
147902
147902 | 5
3
1
5
3
5 | 7
5
3
5
3
3 | 11
8.5
6.3
2.8
4.8
0.30 | 0.11
0.097
0.13
0.020
0.033
0.0013 | 1.2
0.65
0.29
0.22
0.22
0.014 | $\begin{array}{c c} -0.27 \\ -0.54 \\ -0.89 \\ -1.01 \\ -1.01 \\ -2.20 \end{array}$ | E
E
E
E
E | ls
ls
ls
ls
ls | | 2 | | 3P - 3P° | 572.00 | 416 | 175242 | 9 | 9 | 32 | 0.16 | 2.7 | 0.16 | E | 1 | | | | | [572.66]
[571.37]
[572.64]
[571.30]
[571.39]
[570.64] | 613
225
613
225
225
0 | 175237
175242
175242
175264
175237
175242 | 5
3
5
3
1 | 5
3
3
1
5
3 | 24
8.3
14
33
8.3
11 | 0.12
0.041
0.040
0.053
0.067
0.16 | 1.1
0.23
0.38
0.30
0.38
0.30 | $\begin{array}{c c} -0.23 \\ -0.91 \\ -0.70 \\ -0.80 \\ -0.69 \\ -0.80 \end{array}$ | EEEEEE | ls
ls
ls
ls
ls | | 3 | | ³ P- ³ S° | 420.38 | 416 | 238297 | 9 | 3 | 180 | 0.16 | 2.0 | 0.16 | E | 1 | | | | | [420.73]
[420.04]
[419.64] | 613
225
0 | 238297
238297
238297 | 5
3
1 | 3 3 | 100
61
20 | 0.16
0.16
0.16 | 1.1
0.67
0.22 | $ \begin{array}{r} -0.10 \\ -0.31 \\ -0.80 \end{array} $ | E
E
E | ls
ls
ls | | 4 | | ¹ D- ¹ D° | [491.00] | 25241 | 228908 | 5 | 5 | 86 | 0.31 | 2.5 | 0.19 | E | 1 | | 5 | | ¹ D- ¹ P° | [430.76] | 25241 | 257390 | 5 | 3 | 130 | 0.21 | 1.5 | 0.02 | E | . 1 | | 6 | | ¹ S - ¹ P° | [490.57] | 53544 | 257390 | 1 | 3 | 27 | 0.30 | 0.48 | -0.53 | E | -1 | The adopted values represent the results of calculations by Garstang [1] and Naqvi [2], which are very similar in character. Garstang's evaluation of the quadrupole integral s_q is considered the more refined one; therefore, the quadrupole line strengths are taken from his paper. The results for the magnetic dipole lines agree, except for the $^3P-^1S$ transition. For this line, the important effects of configuration interaction are more appropriately taken into account by Garstang's approach of using the experimental term intervals, so that his values are used. (Further explanations are found in the general introduction.) #### References - [1] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 111, 115-124 (1951). - [2] Naqvi, A. M., Thesis Harvard (1951). F IV. Forbidden Transitions | | | | | 7 | , | , | _ | , | | | | | |-----|---------------------|---|--|---|--|-----------------------|-----------------------|-----------------------|--|---|------------------|------------------------| | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | g_i | g_k | Type of
Transition | $A_{ki}(\sec^{-1})$ | S(at.u.) | Accu: | Source | | 1 | $2p^2 - 2p^2$ | 3P _3P | | 0.0
0.0
225.2
225.2 | 225.2
613.4
613.4
613.4 | 1
1
3
3 | 3
5
5
5 | m
e
m
e | $\begin{array}{c} 2.05 \\ 5.0 \times 10^{-10} \\ 7.89 \times 10^{-4} \\ 1.20 \times 10^{-10} \end{array}$ | 2.00
0.171
2.50
0.405 | B
C
B
C | 1, 2
1
1, 2
1 | | 2 | | ³ P- ¹ D
(1 F) | [3960.7]
3996.3
3996.3
4059.3
4059.3 | 0.0
225.2
225.2
613.4
613.4 | 25241
25241
25241
25241
25241
25241 | 1
3
3
5
5 | 5
5
5
5
5 | e
m
e
m
e | $\begin{array}{c} 6.4\times10^{-6} \\ 0.0342 \\ 2.1\times10^{-5} \\ 0.098 \\ 1.3\times10^{-4} \end{array}$ | $\begin{array}{c} 1.9 \times 10^{-5} \\ 4.05 \times 10^{-4} \\ 6.4 \times 10^{-5} \\ 0.00122 \\ 4.3 \times 10^{-5} \end{array}$ | D C D C D | 1
1, 2
1
1, 2 | | 3 | | 3P_1S | [1875.5]
[1889.3] | 225.2
613.4 | 53544
53544 | 3 5 | 1
1 | m
e | 1.10
0.0023 | $\begin{array}{ c c c c c }\hline 2.69 \times 10^{-4} \\ 3.3 \times 10^{-5} \\\hline \end{array}$ | C
D | 1 1 | | 4 | | ¹ D- ¹ S
(2 F) | 3532.2 | 25241 | 53544 | 5 | 1 | e | 2.10 | 0.69 | С | 1 | FV. Ground State $1s^2 2s^2 2p \,^2 P_{1/2}^{\circ}$ Ionization Potential $114.214 \text{ eV} = 921450 \text{ cm}^{-1}$ ## **Allowed Transitions** The two available sources are quantum mechanical calculations by Bolotin and Yutsis [1] and Naqvi and Victor [2]. The important transitions covered by Bolotin and Yutsis are very sensitive to the effects of configuration interaction, which are only approximately included in their calculations. For the result of Naqvi and Victor, obtained from the charge expansion method, an accuracy within 25 percent is indicated from comparisons of this work with other material for equivalent transitions within this isoelectronic sequence. #### References - [1] Bolotin, A. B., and Yutsis, A. P., Zhur. Eksptl. i Teoret. Fiz. 24, 537-543 (1953) (Translated in "Optical Transition Probabilities," Office of Technical Services, U.S. Department of Commerce, Washington, D.C.). - [2] Naqvi, A. M., and Victor, G. A., Technical Documentary Report No. RTD TDR-63-3118 (1964). F v. Allowed Transitions | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gk | $\begin{vmatrix}A_{ki}(10^8\\\sec^{-1})\end{vmatrix}$ | fik | S(at.u.) | $\log gf$ | Accu-
racy | Source | |-----|---------------------|---------------------------------|--|-------------------------|--------------------------------------|------------------|------------------|---|----------------------------|-----------------------------|--|---------------|----------------------| | 1 | $2s^22p - 2s2p^2$ | ² P°- ² D | 656.22
[657.33] | 497
746 | 152885
152876 | 6 | 10 | 12
12 | 0.13
0.12 | 1.7 | -0.10 -0.34 | E
E | ls | | | | | [654.03]
[657.24] | 0
746 | 152898
152898 | 2
4 | 4 4 | $\begin{array}{c} 12 \\ 10 \\ 2.0 \end{array}$ | 0.12
0.13
0.013 | 0.57
0.11 | $ \begin{array}{r r} -0.54 \\ -0.58 \\ -1.29 \end{array} $ | E
E
E | ls
ls | | 2 | | ² P°- ² S | 507.44 | 497 | 197565 | 6 | 2 | 67 | 0.086 | 0.86 | -0.29 | E | 1 | | 1 | | | [508.08]
[506.16] | 746
0 | 197565
197565 | 4 2 | 2
2 | 44
23 | 0.085
0.087 | $0.57 \\ 0.29$ | $-0.47 \\ -0.76$ | E
E | ls
ls | | 3 | | ² P°− ² P | 465.78 | 497 | 215192 | 6 | 6 | 100 | 0.33 | 3.0 | 0.29 | E | 1 | | | | | [465.98]
[465.37]
[467.00]
[464.36] | 746
0
746
0 | 215348
214881
214881
215348 | 4
2
4
2 | 4
2
2
4 | 85
67
33
17 | 0.28 0.22 0.054 0.11 | 1.7
0.67
0.33
0.33 | 0.04 -0.36 -0.67 -0.67 | E
E
E | ls
Is
Is
Is | | 4 | $3s - (^{1}S)3p$ | $^{2}S-^{2}P^{\circ}$ | 2454.2 | 524751 | 565485 | 2 | 6 | 2.24 | 0.61 | 9.8 | 0.084 | С | 2 | | | | | [2450.7]
[2461.3] | 524751
524751 | 565544
565367 | 2 2 | 4 2 | 2.24
2.22 | 0.403
0.202 | 6.5
3.27 | -0.094 -0.394 | C | ls
ls | ## Forbidden Transitions Naqvi's calculation [1] of the one possible transition in the ground state configuration 2p is the only available source. The line strength should be quite accurate, since it does not sensitively depend on the choice of the interaction parameters. #### Reference [1] Naqvi, A. M., Thesis Harvard (1951). F V. Forbidden Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | Type of
Transition | $A_{ki}(\mathrm{sec^{-1}})$ | S(at. u.) | Accu-
racy | Source | |-----|---------------------|---------------------|-----------------------|-------------------------|-------------------------|----|----|-----------------------|-----------------------------|-----------|---------------|--------| | 1 | 2p-2p | ² P°_2P° | 13.40×10 ⁴ | 0 | 746 | 2 | 4 | m | 0.00373 | 1.33 | В | 1 | Ground State $1s^22s^2$ 1S_0 Ionization Potential $157.117 \text{ eV} = 1267581 \text{ cm}^{-1}$ ####
Allowed Transitions The results of the charge expansion calculations by Naqvi and Victor [1] are utilized whenever comparison of this work with other data in the isoelectronic sequence indicates a fair reliability of this material. Values for the $2s2p-2p^2$ transition array are available from the self-consistent field calculations by Weiss [2]. These calculations do not include the important effects of configuration interaction; hence, fairly large uncertainties must be expected. The average of the dipole length and velocity approximations [2] is adopted and accuracies within 50 percent are indicated from comparisons possible for the first member of this isoelectronic sequence. #### References - [1] Naqvi, A. M., and Victor, G. A., Technical Documentary Report No. RTD TDR-63-3118 (1964). - [2] Weiss, A. W., private communication (1964). Fvi. Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g_k | $A_{ki}(10^{8} { m sce}^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|---------------------------------|--|----------------------------------|--|-----------------------|----------------------------|-------------------------------------|--|---|---|-----------------------|----------------------------| | 1 | $2s^2 - 2s(^2S)2p$ | ¹S−¹P° | [535.21] | 0 | 186841 | 1 | 3 | 48 | 0.62 | 1.1 | -0.20 | E | 1 | | 2 | $2s^2 - 2s(^2S)3p$ | ¹ S- ¹ P° | [126.93] | 0 | 787833 | 1 | 3 | 660 | 0.48 | 0.20 | -0.32 | E | 1 | | 3 | $2s2p-2p^2$ | ³ P°− ³ P | 646.27 | 97152 | 251886 | 9 | 9 | 25 | 0.16 | 3.0 | 0.15 | D | 2 | | | | | [646.38]
[646.10]
[648.52]
[647.33]
[643.98]
[645.02] | 96861
97437
96861
96861 | 252145
251635
251635
251341
252145
251635 | 5
3
5
3
1 | 5
3
3
1
5
3 | 18
6.3
10
25
6.4
8.3 | 0.11
0.039
0.039
0.052
0.066
0.16 | 1.2
0.25
0.42
0.33
0.42
0.33 | $\begin{array}{c} -0.25 \\ -0.93 \\ -0.71 \\ -0.81 \\ -0.70 \\ -0.81 \end{array}$ | D
D
D
D
D | ls
ls
ls
ls
ls | | 4 | i | ¹P°−¹D | [1139.5] | 186841 | 274597 | 3 | 5 | 8.2 | 0.27 | 3.0 | -0.10 | D | 2 | | 5 | | ¹ P°- ¹ S | [651.11] | 186841 | 340424 | 3 | 1 | 26 | 0.054 | 0.35 | -0.79 | D | 2 | | 6 | $2s3s - 2s(^2S)3p$ | ¹ S- ¹ P° | [4264.8] | 764392 | 787833 | 1 | 3 | 0.326 | 0.267 | 3.75 | -0.57 | С | 1 | #### Forbidden Transitions Naqvi's calculations [1] are the only available source. The results for the ${}^3P^{\circ} - {}^3P^{\circ}$ transitions are essentially independent of the choice of the interaction parameters. For the ${}^3P^{\circ} - {}^1P^{\circ}$ transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included. #### Reference [1] Naqvi, A. M., Thesis Harvard (1951). Fvi. Forbidden Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(m cm^{-1})$ | gi | g_k | Type of
Transition | $A_{ki}({ m sec}^{-1})$ | S(at. u.) | Accu-
racy | Source | |-----|---------------------|-----------|---|-------------------------|----------------------------|-------------|-------------|-----------------------|---|--|---------------|-------------| | 1 | 2s2p -
2s(2S)2p | 3P°-3P° | $[38.5 \times 10^{4}]$
$[17.36 \times 10^{4}]$ | 96601
96861 | 96861
97437 | 1 3 | 3
5 | m
m | $\begin{array}{c} 3.16 \times 10^{-4} \\ 0.00258 \end{array}$ | 2.00
2.50 | B
B | 1 | | 2 | | | [1108.2]
[1111.4]
[1118.5] | 96601
96861
97437 | 186841
186841
186841 | 1
3
5 | 3
3
3 | | 0.268
44.2.
0.324 | $\begin{array}{c} 4.05 \times 10^{-5} \\ 0.0068 \\ 5.1 \times 10^{-5} \end{array}$ | C
C
C | 1
1
1 | ### F VII. **Ground State** $1s^22s$ $^2S_{1/2}$ Ionization Potential $185.139 \text{ eV} = 1493656 \text{ cm}^{-1}$ #### **Allowed Transitions** #### List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |------------------|---------------|-------------------|--------|--------------------|------| | 86.732
97.262 | 3
6 | 127.81
134.71 | 5
4 | 890.762 | 1 | | 97.354
112.94 | $\frac{6}{2}$ | 134.88 | 4 | $3246.6 \\ 3276.6$ | 7 7 | | 112.98 | 2 | 335.17
391.73 | 8 | 7958.9
9524.8 | 11 9 | | 127.65
127.80 | 5
5 | 392.16
883.097 | 10 | 9702.3 | 9 | | 127.00 | 3 | 000.091 | 1 | 9787.8 | 9 | For F VII, an ion of the Lithium sequence, theoretical data from the self-consistent field calculations by Weiss [1] and the variational calculations by Flannery and Stewart [2], both done in the dipole length and velocity approximations, as well as an experimental result from the lifetime measurement of Berkner et al. [3], are available. The agreement for the 2s-2p transition, which is covered by all three methods, is within an impressive 10 percent. Errors smaller than 25 percent are estimated from the close agreement between the dipole length and velocity approximations. The dipole length values are chosen. - [1] Weiss, A. W., Astrophys. J. 138, 1262-1276 (1963). - [2] Flannery, M. R., and Stewart, A. L., Monthly Notices Roy. Astron. Soc. 126, 387-392 (1963). - [3] Berkner, K. H., Cooper, W. L., Kaplan, S. N., and Pyle, R. V., Phys. Letters 16, 35 (1965). F vII. Allowed Transitions | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | g_i | g_k | $A_{ki}(10^8 m sec^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|------------------------|---|----------------------------------|----------------------------|----------------------------|--|--|-------------------------------|-----------------------------|------------------------|---|---------------|----------------| | 1 | 2s-2p | ² S - ² P° | 885.64 | 0 | 112913 | 2 | 6 | 4.77 | 0.168 | 0.981 | -0.473 | В | 1, 2, 3 | | | | | 883.097
890.762 | 0 | 113238
112263 | $\frac{2}{2}$ | 4 2 | 4.81
4.69 | 0.112
0.0558 | 0.654
0.327 | $ \begin{array}{r} -0.648 \\ -0.953 \end{array} $ | B
B | ls
ls | | 2 | 2s-3p | ² S- ² P° | 112.95 | 0 | 885324 | 2 | 6 | 499 | 0.286 | 0.213 | -0.242 | B+ | 1, 2 | | | | | [112.94]
[112.98] | 0 | 885418
885136 | $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ | 4 2 | 499
499 | 0.191
0.0954 | 0.142
0.0710 | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | B+
B+ | ls
ls | | 3 | 2s-4p | 2S-2P° | [86.732] | 0 | 1152977 | 2 | 6 | 214 | 0.0725 | 0.0414 | -0.839 | C+ | 2 | | 4 | 2p-3s | $^{2}P^{\circ}-^{2}S$ | 134.82 | 112913 | 854625 | 6 | 2 | 264 | 0.0240 | 0.0638 | -0.842 | C+ | 1, 2 | | | | | [134.88]
[134.71] | 113238
112263 | 854625
854625 | 4 2 | $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ | 175
88.3 | 0.0239
0.0240 | 0.0425
0.0213 | $-1.019 \\ -1.319$ | C+ | ls
ls | | 5 | 2p-3d | ²P°−²D | 127.75 | 112913 | 895686 | 6 | 10 | 1630 | 0.666 | 1.68 | 0.602 | В | 1 | | | | | [127.80]
[127.65]
[127.81] | 113238
112263
113238 | 895722
895632
895632 | 4
2
4 | 6
4
4 | 1630
1360
272 | 0.600
0.666
0.0665 | 1.01
0.560
0.112 | $0.380 \\ 0.125 \\ -0.575$ | B
B
B | ls
ls
ls | | 6 | 2p-4s | ² P°- ² S | 97.323 | 112913 | 1140416 | 6 | 2 | 99 | 0.00468 | 0.0090 | -1.55 | С | 2 | | | | | [97.354]
[97.262] | 113238
112263 | 1140416
1140416 | 4
2 | $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ | 66
33.0 | 0.00468
0.00468 | 0.0060
0.00300 | $\begin{bmatrix} -1.73 \\ -2.028 \end{bmatrix}$ | C
C | ls
ls | | 7 | 3s-3p | $^{2}S-^{2}P^{\circ}$ | 3256.5 | 854625 | 885324 | 2 | 6 | 0.604 | 0.288 | 6.18 | -0.239 | B+ | 1, 2 | | | | | [3246.6]
[3276.6] | 854625
854625 | 885418
885136 | $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ | 4 2 | 0.610
0.593 | 0.193
0.0955 | 4.12
2.06 | $ \begin{array}{r r} -0.414 \\ -0.719 \end{array} $ | B+
B+ | ls
ls | | 8 | 3s-4p | $^{2}\mathrm{S}-^{2}\mathrm{P}^{\circ}$ | [335.17] | 854625 | 1152977 | 2 | 6 | 63.7 | 0.322 | 0.710 | -0.192 | В | 2 | | 9 | 3 <i>p</i> -3 <i>d</i> | $^{2}\mathrm{P}^{\circ}-^{2}\mathrm{D}$ | 9648.0 | 885324 | 895686 | 6 | 10 | 0.0186 | 0.0432 | 8.23 | -0.587 | В | 1 | | | | | [9702.3]
[9524.8]
[9787.8] | 885418
885136
885418 | 895722
895632
895632 | 4
2
4 | 6
4
4 | $0.0183 \\ 0.0161 \\ 0.00297$ | 0.0387
0.0437
0.00426 | 4.94
2.74
0.549 | $ \begin{array}{c c} -0.811 \\ -1.059 \\ -1.769 \end{array} $ | B
B
B | ls
ls
ls | | 10 | 3 <i>p</i> -4 <i>s</i> | ² P°− ² S | 392.02 | 885324 | 1140416 | 6 | 2 | 58.3 | 0.0448 | 0.347 | -0.571 | В | 2 | | | | | [392.16]
[391.73] | 885418
885136 | 1140416
1140416 | 4 2 | 2 2 | 38.8
19.5 | 0.0447
0.0450 | 0.231
0.116 | $ \begin{array}{r r} -0.747 \\ -1.046 \end{array} $ | B
B | ls
Is | | 11 | 4s-4p | ² S – ² P° | [7958.9] | 1140416 | 1152977 | 2 | 6 | 0.140 | 0.399 | 20.9 | -0.098 | В | 2 | **Ground State** **Ionization Potential** $953.60 \text{ eV} = 7693400 \text{ cm}^{-1}$ ## **Allowed Transitions** The results of extensive non-relativistic variational calculations by Weiss [1] are used. Values have been calculated in both the dipole length and dipole velocity approximations and agree to within 1 percent, except for the 3p $^1P^{\circ}-3d$
1D transition where agreement is not as good. The average of the two approximations is adopted [1]. #### Reference [1] Weiss, A. W., private communication (1964). FvIII. Allowed Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(cm^{-1})$ | gi | gk | $A_{ki}(10^8~{\rm sec^{-1}})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|---|---------------------------------|----------|-----------------------|----------------|----|----|-------------------------------|---------|----------|---------|---------------|--------| | 1 | $1s^2 -$ | ¹ S- ¹ P° | [16.807] | 0 | 5949900 | 1 | 3 | 5.59×10 ⁴ | 0.710 | 0.0393 | -0.149 | A | 1 | | 2 | $1s2p$ $1s^2-$ | ¹ S- ¹ P° | [14.458] | o | 6916590 | 1 | 3 | 1.57×10^{4} | 0.148 | 0.00704 | -0.830 | A | 1 | | 3 | 1s3p
1s2s — | ¹ S- ¹ P° | [2149.9] | [5903400] | 5949900 | 1 | 3 | 0.288 | 0.0599 | 0.424 | - 1.223 | A | 1 | | 4 | 1s2p
1s2s - | ¹ S- ¹ P° | [98.698] | [5903400] | 6916590 | 1 | 3 | 867 | 0.380 | 0.123 | -0.420 | A | 1 | | 5 | -·· | ¹P°−¹D | [103.80] | 5949900 | [6913300] | 3 | 5 | 2610 | 0.703 | 0.721 | 0.324 | A | 1 | | 6 | 1s3d $1s3d$ $1s3p$ | ¹ D- ¹ P° | [30390]? | [6913300] | 6916590 | 5 | 3 | 8.52×10^{-4} | 0.00708 | 3.54 | - 1.451 | C+ | 1 | | 7 | 1s2s -
1s2p | 3S-3P° | [1422.9] | [5829640] | [5899920] | 3 | 9 | 0.915 | 0.0833 | 1.17 | -0.602 | A | 1 | | 8 | 1s2s — | 3S-3P° | [93.213] | [5829640] | [6902450] | 3 | 9 | 914 | 0.357 | 0.329 | 0.030 | A | 1 | | 9 | | 3P°-3D | [98.756] | [5899920] | 6912520 | 9 | 15 | 2750 | 0.669 | 1.96 | 0.780 | A | 1 | | 10 | $ \begin{array}{c c} 1s3d \\ 1s3p - \\ 1s3d \end{array} $ | ³ P°- ³ D | [9927.8] | [6902450] | 6912520 | 9 | 15 | 0.0133 | 0.0327 | 9.62 | -0.531 | A | 1 | ### Ne I. **Ground State** $1s^22s^22p^{6}$ 1S_0 Ionization Potential $21.559 \text{ eV} = 173932 \text{ cm}^{-1}$ ## **Allowed Transitions** List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |----------------|------------------|----------------|-----------|----------------|-----| | 735.89 | 2 | 6717.04 | 6 | 23709 | 14 | | 743.70 | $\frac{2}{1}$ | 6929.47 | 6 | 23956 | 16 | | 3454.19 | 7 | 7032.41 | 3 | 24249 | 16 | | 3472.57 | 7 | 7173.94 | 6 | 24339 | 13 | | 3520.47 | 8 | 7245.17 | '4 | 24365 | 14 | | 5852.49 | 6 | 7438.90 | 5 | 25524 | 13 | | 5881.90 | 3 | 7488.87 | 9 | 25855 | 16 | | 5944.83 | 6
3
3
3 | 8377.61 | 10 | 26861 | 14 | | 5975.53 | | 8495.36 | 11 | 27521 | 15 | | 6030.00 | 4 | 8654.38 | 12 | 28533 | 16 | | 6074.34 | 4 | 18210 | 14 | 28744 | 16 | | 6096.16 | 4 | 19577 | 13 | 29714 | 16 | | 6128.45 | 4 | 19772 | 13 | 31860 | 15 | | 6143.06 | 3
5 | 20350 | 14 | 33511 | 16 | | 6163.59 | 5 | 20354 | 14 | | | | 6217.28 | 3
5 | 20565 | 14 | | | | 6266.50 | 5 | 21041 | 16 | 1 | | | 6304.79 | 4 | 21708 | 14 | | | | 6334.43 | 3 | 22530 | 13 | | | | 6382.99 | 4 | 22662 | 13 | | | | 6402.25 | 3 | 23100 | 15 | | | | 6506.53 | 4 | 23260 | 13 | II I | | | 6532.88 | 5 | 23373 | 15 | | | | 6598.95 | 6 | 23565 | 14 | | | | 6678.28 | 6 | 23636 | 13 | 1. | | In the vacuum uv region data are available for the two transitions of the 2p-3s array. They have been obtained experimentally from lifetime measurements by Schütz [1], Phelps [2], Korolev et al. [3], and theoretically from SCF calculations including exchange effects by Gold and Knox [4]. In the experiments only one of the two lines is obtained directly whereas the other one is derived using Shortley's [5] calculated intensity ratio. Since the total spread between the results is within a factor of two, uncertainties within 25 percent (class C) are estimated for the averaged values. Extensive experimental work [6, 7] has been done on the lines of the prominent 3s-3p transition array. Ladenburg and Levy, and Pery-Thorne and Chamberlain have used the method of anomalous dispersion; Doherty and Friedrichs measured absolute emission intensities, the former with a conventional shock tube, the latter with a stabilized arc; with a discharge tube Garbuny determined relative intensities in emission and Krebs in absorption. Relative f-values have been obtained from the following procedure: the results of the three emission experiments (by Garbuny, Doherty, and Friedrichs) have been employed to obtain the line strengths within the groups of lines with the same upper but different lower levels, since for these cases errors are obviously minimized. Analogously, the absorption measurements of Krebs and the anomalous dispersion measurements of Ladenburg and Levy, and Pery-Thorne and Chamberlain have supplied the most accurate relative f-values for lines starting with the same lower level but ending in different upper levels. The averaged emission and absorption data have then been combined in a least squares fit procedure to obtain a best set of relative data. It turns out that this set fits most of the original data and the J-file sum rule within 10 percent, but a few deviations of 30 percent are encountered. Absolute values have been obtained by employing the results of recent extensive lifetime measurements of the 3p levels undertaken by Klose [7] with a delayed coincidence technique. An averaged conversion factor has been obtained from fitting the levels p_1 , p_2 , p_5 , p_6 , p_7 , p_8 , and p_9 which were measured by Klose with a high degree of precision. The averaged conversion factor has a standard deviation of only 6 percent. Accuracies within 10 percent for most absolute f-values are indicated (a) from the high experimental precision obtained by Klose which is usually within 4 percent, (b) from the good consistency of the data with the f-file sum rule, (c) from the excellent agreement of the total line strength for this transition array, which is 224, with a value of 230 obtained from the Coulomb approximation, and (d) from the very good agreement of Klose's lifetime results with some preliminary lifetime data by Bennett et al. [8]. For a few lines of the 3s-4p array, Klose's lifetime data for 4p levels could be utilized to derive transition probabilities. However, these cannot be considered as accurate as before because the contribution of the respective 4s-4p transition to the lifetimes could be only approximately taken into account using the data discussed immediately below. The Coulomb approximation has been applied for obtaining an absolute scale for the 4s-4p array. For the breakdown into individual lines the intermediate coupling calculations of Ufford [10] are available. The latter are estimated to be not too reliable, since similar calculations by Shortley [5] for the 3s-3p array, as judged from the many experimental comparisons, have had only a fair degree of success. From Doherty's [9] shock tube experiment some further material is available for the 3p-3d array. His absolute values have been renormalized by using the same conversion factor as that for his values of the 3s-3p array. - [1] Schütz, W., Ann. Physik 18, 705-720 (1933). - [2] Phelps, A. V., Phys. Rev. 100, 1230 (1955). - [3] Korolev, F. A., Odintsov, V. I., and Fursova, E. V., Optics and Spectroscopy (U.S.S.R.) 16, 304-305 (1964). - [4] Gold, A. and Knox, R. S., Phys. Rev. 113, 834-839 (1959). - [5] Shortley, G. H., Phys. Rev. 47, 295-300 (1935). - [6] Krebs, K., Z. Physik 101, 604-642 (1936). - Ladenburg, R. and Levy, S., Z. Physik 88, 461-468 (1934). - Pery-Thorne, A. and Chamberlain, J. E., Proc. Phys. Soc. London A 82, 133-141 (1963). - Doherty, L. R., Thesis Michigan (1961). - Garbuny, M., Z. Physik 107, 362-368 (1937). - Friedrichs, H., Z. Astrophys. 60, 176-183 (1964). - [7] Klose, J. Z., Phys. Rev. 141, 181-186 (1966). - [8] Bennett, Jr., W. R., Kindlmann, P. J., and Mercer, G. N., Applied Optics Supplement 2 of Chemical Lasers, 34-57 (1965) - [9] Doherty, L. R., Thesis Michigan (1961). - [10] Ufford, C. W., Astrophys, J. 85, 249-250 (1937). Ne I. Allowed Transitions | No. | Transition
Array | Transition | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | g_k | $\begin{array}{c} A_{ki}(10^8 \\ \sec^{-1}) \end{array}$ | f_{ik} | S(at.u.) | $\log gf$ | Accu-
racy | Source | |-----|--|--|--|--------------------------------------|--------------------------------------|------------------|------------------|--|------------------------------------|------------------------------|--|---------------------|----------------------------------| | 1 | $2p^6 - 2p^5(^2\mathbf{P_{1/2}^{\circ}})3s$ | ¹ S-[1 ¹ / ₂]° (1 uv) | 743.70 | 0 | 134461 | 1 | 3 | 0.476 | 0.0118 | 0.0290 | -1.93 | С | 1, 2, 3, 4, 5 | | 2 | $\frac{2p^6-}{2p^5(^2\mathrm{P}^{\circ}_{1/2})}3s'$ | ¹ S -[½]°
(2 uv) | 735.89 | 0 | 135891 | 1 | 3 | 6.64 | 0.162 | 0.392 | -0.79 | С | 1, 2, 3, 4, 5 | | 3 | $\begin{vmatrix} 2p^53s - \\ 2p^5(^2\mathbf{P}_{1^{1/2}}^{\circ})3p \end{vmatrix}$ | [1½]°-[½] | 7032.41 | 134044 | 148260 | 5 | 3 | 0.192 | 0.0854 | 9.89 | -0.370 | В- | 6n, 7 | | | $(1) \frac{2p(1_1 y_2) 3p}{(1)}$ | $ \begin{bmatrix} 1^{1}/2]^{\circ} - [2^{1}/2] \\ [1^{1}/2]^{\circ} - [1^{1}/2] \\ [1^{1}/2]^{\circ} - [1^{1}/2] \\ [1^{1}/2]^{\circ} - [1^{1}/2] \end{bmatrix} $ | 6402.25
6334.43
6217.28
6143.06 | 134044
134044
134044
134044 | 149659
149826
150124
150318 | 5
5
5
5 | 7
5
3
5 |
0.433
0.136
0.0777
0.216 | 0.373
0.0818
0.0270
0.122 | 39.3
8.53
2.76
12.4 | $\begin{array}{ c c c c c }\hline 0.270 \\ -0.388 \\ -0.869 \\ -0.214 \\ \hline \end{array}$ | B B - B - B - | 6n, 7
6n, 7
6n, 7
6n, 7 | | | $\begin{array}{c} 2p^{5(^{2}\mathrm{P}_{1}^{\mathrm{o}}{}_{1})}3s - \\ 2p^{5(^{2}\mathrm{P}_{1/_{2}}^{\mathrm{o}})}3p' \\ (1) \end{array}$ | $\begin{bmatrix} 1^{1/2}]^{\circ} - [1^{1/2}] \\ [1^{1/2}]^{\circ} - [1^{1/2}] \\ [1^{1/2}]^{\circ} - [1^{1/2}] \end{bmatrix}$ | 5975.53
5944.83
5881.90 | 134044
134044
134044 | 150774
150860
151040 | 5
5
5 | 3
5
3 | 0.0433
0.105
0.128 | 0.0139
0.0556
0.0398 | 1.37
5.44
3.86 | -1.158 -0.556 -0.701 | B-
C+
B- | 6n, 7
6n, 7
6n, 7 | | 4 | $2p^{5}3s - 2p^{5}(^{2}P_{1^{1}/2}^{\circ})3p$ | [1½]°-[½] | 7245.17 | 134461 | 148260 | 3 | 3 | 0.0977 | 0.0769 | 5.50 | -0.637 | В- | 6n, 7 | | | (3) | $ \begin{array}{c} [1^{1}/2]^{\circ} - [2^{1}/2] \\ [1^{1}/2]^{\circ} - [1^{1}/2] \\ [1^{1}/2]^{\circ} - [1^{1}/2] \\ [1^{1}/2]^{\circ} - [1^{1}/2] \end{array} $ | 6506.53
6382.99
6304.79
6074.34 | 134461
134461
134461
134461 | 149826
150124
150318
150919 | 3 3 3 | 5
3
5
1 | 0.232
0.279
0.0507
0.617 | 0.245
0.170
0.0504
0.114 | 15.8
10.7
3.14
6.83 | -0.133 -0.291 -0.821 -0.467 | B-
B-
C+ | 6n, 7
6n, 7
6n, 7
6n, 7 | | | $\begin{array}{c} 2p^{5(^{2}\mathrm{P}_{1/2}^{\circ})}3s - \\ 2p^{5(^{2}\mathrm{P}_{1/2}^{\circ})}3p' \\ (3) \end{array}$ | $ \begin{bmatrix} 1^{1}/2 \end{bmatrix}^{\circ} - \begin{bmatrix} 1^{1}/2 \end{bmatrix} \\ \begin{bmatrix} 1^{1}/2 \end{bmatrix}^{\circ} - \begin{bmatrix} 1^{1}/2 \end{bmatrix} \\ \begin{bmatrix} 1^{1}/2 \end{bmatrix}^{\circ} - \begin{bmatrix} 1^{1}/2 \end{bmatrix} $ | 6128.45
6096.16
6030.00 | 134461
134461
134461 | 150774
150860
151040 | 3 3 3 | 3
5
3 | 0.0327
0.169
0.0627 | 0.0184
0.157
0.0342 | 1.11
9.45
2.04 | -1.258 -0.327 -0.989 | B-
C+
B- | 6n, 7
6n, 7
6n, 7 | | 5 | $\begin{array}{c} 2p^{5}(^{2}\mathrm{P}_{^{1}\!\!/_{2}}^{\circ})3s' - \\ 2p^{5}(^{2}\mathrm{P}_{1^{1}\!\!/_{2}}^{\circ})3p \\ (5) \end{array}$ | $\begin{bmatrix} 1/2 \\ 2 \end{bmatrix}^{\circ} - \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}^{\circ} - \begin{bmatrix} 11/2 \\ 1/2 \end{bmatrix}$ | 7438.90
6532.88 | 134821
134821 | 148260
150124 | 1 | 3 | 0.0292
0.128 | 0.0727
0.246 | 1.78
5.28 | -1.139 -0.610 | B-
B- | 6n, 7
6n, 7 | | | $\begin{array}{c} 2p^{5}3s' - \\ 2p^{5}(^{2}P^{\circ}_{_{1/_{2}}})3p' \\ (5) \end{array}$ | $\begin{bmatrix} 1/2 \\ 0 \end{bmatrix}^{\circ} - \begin{bmatrix} 11/2 \\ 1/2 \end{bmatrix}^{\circ} - \begin{bmatrix} 11/2 \\ 1/2 \end{bmatrix}$ | 6266.50
6163.59 | 134821
134821 | 150774
151040 | 1 | 3
3 | 0.223
0.160 | 0.394
0.273 | 8.13
5.55 | -0.405
-0.563 | B-
B- | 6n, 7
6n, 7 | | 6 | $\begin{array}{c} 2p^{5(^{2}\mathbf{P}_{1/2}^{\circ})}3s' - \\ 2p^{5(^{2}\mathbf{P}_{1/2}^{\circ})}3p \\ (6) \end{array}$ | $\begin{bmatrix} 1/2 \\ 2 \end{bmatrix}^{\circ} - \begin{bmatrix} 2^{1}/2 \\ 1/2 \end{bmatrix}^{\circ} - \begin{bmatrix} 1^{1}/2 \end{bmatrix}$ | 7173.94
6929.47 | 135891
135891 | 149826
150318 | 3 3 | 5
5 | 0.0365
0.190 | 0.0469
0.228 | 3.33
15.6 | $-0.851 \\ -0.165$ | B-
B- | 6n, 7
6n, 7 | | | $\begin{array}{c} 2p^{5}3s' - \\ 2p^{5}(^{2}P^{\circ}_{1/2})3p' \\ (6) \end{array}$ | $\begin{bmatrix} 1/2 \\ 0 \end{bmatrix}^{\circ} - \begin{bmatrix} 11/2 \\ 1/2 \end{bmatrix}^{\circ} - \begin{bmatrix} 11/2 \\ 1 \end{bmatrix}^{\circ} - \begin{bmatrix} 11/2 \\ 1/2 \end{bmatrix}^{\circ} - \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}^{\circ} - \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$ | 6717.04
6678.28
6598.95
5852.49 | 135891
135891
135891
135891 | 150774
150860
151040
152973 | 3
3
3 | 3
5
3
1 | 0.234
0.238
0.251
0.719 | 0.158
0.265
0.164
0.123 | 10.5
17.5
10.7
7.11 | -0.323 -0.099 -0.308 -0.433 | B-
C+
B-
B | 6n, 7
6n, 7
6n, 7
6n, 7 | | 7 | | $ \begin{bmatrix} 1^{1/2}]^{\circ} - [2^{1/2}] \\ [1^{1/2}]^{\circ} - [^{1/2}] \end{bmatrix} $ | 3472.57
3454.19 | 134044
134461 | 162833
163403 | 5 3 | 7
1 | 0.099
0.085 | 0.0251
0.0051 | 1.44
0.173 | $-0.90 \\ -1.82$ | C | 7
7 | | 8 | $\begin{array}{c} (2) \\ 2p^{5}3s' - \\ 2p^{5}(^{2}\mathbf{P}^{\circ}_{1/2})4p' \\ (7) \end{array}$ | [½]°-[½] | 3520.47 | 135891 | 164288 | 3 | 1 | 0.073 | 0.00449 | 0.156 | -1.87 | С | 7 | Ne I. Allowed Transitions - Continued | No. | Transition
Array | Transition | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ |) g | i gi | $\begin{vmatrix} A_{ki}(10^8 \\ \sec^{-1}) \end{vmatrix}$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|--|---|---|--|--|------------------|--|---|---|-------------------------------|--|-------------------|---| | 9 | $\begin{array}{c c} 2p^53p - \\ 2p^5(^2\mathbf{P}_{1/2}^{\circ})3d \end{array}$ | [½]-[1½]° | 7488.87 | 148260 | 161609 | 3 | 5 | 0.349 | 0.489 | 36.2 | 0.166 | C | 9 <i>n</i> | | 10 | | $\begin{bmatrix} 2^{1/2} \\ -[3^{1/2}]^{\circ} \\ (12) \end{bmatrix}$ | 8377.61 | 149659 | 161592 | 7 | 9 | 0.51 | 0.69 | 134 | 0.69 | С | 9n | | 11 | | $[2^{1/2}]$ $-[3^{1/2}]^{\circ}$ (18) | 8495.36 | 149826 | 161594 | 5 | 7 | 0.357 | 0.54 | 76 | 0.432 | С | 9n | | 12 | $2p^{5}3p' - 2p^{5}(^{2}\mathbf{P}^{\circ}_{\frac{1}{2}})3d'$ | [1 ¹ / ₂]~[2 ¹ / ₂]° (33) | 8654.38 | 150860 | 162412 | 5 | 7 | 0.445 | 0.70 | 100 | 0.54 | С | 9 <i>n</i> | | 13 | $\begin{array}{l} 2p^{5}4s - \\ 2p^{5}(^{2}P_{1}^{\circ})4p \end{array}$ | $ \begin{bmatrix} 1^{1}/_{2}]^{\circ} - [& 1/_{2}] \\ 1^{1}/_{2}]^{\circ} - [2^{1}/_{2}] \\ [1^{1}/_{2}]^{\circ} - [2^{1}/_{2}] \\ [1^{1}/_{2}]^{\circ} - [1^{1}/_{2}] \\ [1^{1}/_{2}]^{\circ} - [1^{1}/_{2}] $ | [25524]
[23636]
[23260]
[22662]
[22530] | 158603
158603
158603
158603
158603 | 162520
162833
162901
163015
163040 | 5
5
5
5 | 3
7
5
3
5 | 0.012
0.057
0.0025
0.0058
0.037 | 0.073
0.67
0.020
0.027
0.28 | 31
260
7.8
10
100 | | D
D+
D
D | 10n, ca
10n, ca
10n, ca
10n, ca
10n, ca | | | $\begin{array}{c} 2p^{5(^{2}\mathrm{P}_{1}^{\alpha})_{2}})4s - \\ 2p^{5(^{2}\mathrm{P}_{1/_{2}}^{\alpha})}4p' \end{array}$ | $ \begin{array}{l} [1^{1}/_{2}]^{\circ} - [1^{1}/_{2}] \\ [1^{1}/_{2}]^{\circ} - [1^{1}/_{2}] \\ [1^{1}/_{2}]^{\circ} - [1^{1}/_{2}] \end{array} $ | [19772]
[24339]
[19577] | 158603
158603
158603 | 163659
163711
163710 | 5
5
5 | 3
5
3 | 0.0052
0.021
0.058 | 0.018
0.18
0.20 | 5.9
73
64 | $ \begin{array}{c c} -1.04 \\ -0.04 \\ -0.00 \end{array} $ | D
D
D | 10n, ca
10n, ca
10n, ca | | 14 | $2p^{5}(^{2}P_{11/2}^{0})4p$ | $ \begin{bmatrix} 1^{1}/_{2} \\ 1^{1}/_{2} \end{bmatrix}^{\circ} - \begin{bmatrix} 1/_{2} \\ 1^{1}/_{2} \end{bmatrix}^{\circ} - \begin{bmatrix} 1^{1}/_{2} \\ 1^{1}/_{2} \end{bmatrix}^{\circ} - \begin{bmatrix} 1^{1}/_{2} \\ 1^{1}/_{2} \end{bmatrix}^{\circ} - \begin{bmatrix} 1^{1}/_{2} \\ 1^{1}/_{2} \end{bmatrix}^{\circ} - \begin{bmatrix} 1^{1}/_{2} \end{bmatrix} $ | [26861]
[24365]
[23709]
[23565]
[21708] | 158798
158798
158798
158798
158798 | 162520
162901
163015
163040
163403 | 3
3
3
3 | 3
5
3
5
1 | 0.015
0.0015
0.0019
0.021
0.068 | 0.16
0.022
0.016
0.29
0.16 | 43
5.2
3.1
68
34 | $ \begin{array}{c c} -0.31 \\ -1.19 \\ -1.32 \\ -0.06 \\ -0.32 \end{array} $ | D
D
D
D+ | 10n, ca
10n, ca
10n, ca
10n, ca
10n, ca | | | $2p^{5}(^{2}\mathrm{P}_{^{1}\!/_{2}}^{o})4p'$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | [20565]
[20350]
[20354]
[18210] | 158798
158798
158798
158798 | 163659
163711
163710
164289 | 3
3
3 | 3
5
3
1 | 0.026
0.054
0.025
0.0087 | 0.16
0.56
0.15
0.014 | 33
110
31
2.6 | $ \begin{array}{c c} -0.31 \\ 0.22 \\ -0.34 \\ -1.36 \end{array} $ | D
D
D
D | 10n, ca
10n, ca
10n, ca
10n, ca | | 15 | $2p^{5(^{2}\mathrm{P}_{^{1}\!/_{2}}^{\circ})}4s' - 2p^{5(^{2}\mathrm{P}_{^{1}\!/_{2}}^{\circ})}4p$ | 1/2]° -[1/2]
1/2]° -[11/2] | [31860]
[27521] | 159382
159382 | | | $\begin{bmatrix} 3 \\ 3 \end{bmatrix}$ | 0.0054
0.0075 | 0.25
0.26 | 26
23 | $ \begin{array}{c c} -0.61 \\ -0.59 \end{array} $ | D
D | 10n, ca $10n, ca$ | | 12 | $2p^{5}4s' - 2p^{5}(^{2}P^{\circ}_{1/2})4p'$ | $[1/2]^{\circ} - [11/2]$
$[1/2]^{\circ} - [1/2]$ | [23373]
[23100] | 159382
159382 | | | 3 3 | 0.027
0.0055 | 0.67
0.13 | 52
10 | $ \begin{array}{c c} -0.17 \\ -0.88 \end{array} $ | D
D | 10n, ca $10n, ca$ | | | | $[1/2]^{\circ} - [21/2]$
$[1/2]^{\circ} - [11/2]$
$[1/2]^{\circ} - [11/2]$ | [33511]
[29714]
[28744]
[28533]
[25855] | 159537
159537
159537
159537
159537 |
162901
163015
163040 | 3
3
3 | 3 5 5 5 1 | 0.0020
0.027
0.021
0.0023
0.0030 | 0.034
0.59
0.26
0.046
0.010 | 170
74
13 | $ \begin{array}{c c} -0.99 \\ 0.25 \\ -0.11 \\ -0.86 \\ -1.52 \end{array} $ | D
D
D
D | 10n, ca
10n, ca
10n, ca
10n, ca
10n, ca | | | $2p^{5}4s' - 2p^{5}(^{2}P_{_{1\!/_{2}}}^{\circ})4p'$ | ¹ / ₂]° -[¹ / ₂] | [24249]
[23956]
[21041] | 159537
159537
159537 | 163710 | 3 3 | 3 3 1 | 0.0095
0.0029
0.075 | 0.084
0.025
0.17 | 20 5.9 | $ \begin{array}{c c} -0.60 \\ -1.12 \end{array} $ | D
D
D+ | 10n, ca
10n, ca
10n, ca | **Ground State** $1s^22s^22p^5$ $^2\mathrm{P}^{\circ}_{3/2}$ Ionization Potential # $41.07~eV = 331350~cm^{-1}$ # **Allowed Transitions** # List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |------------------|-----------------|--------------------|----------|--------------------|----------| | 460.725 | 1 | 3166.2 | 4 | 3357.90 | 24 | | 462.338 | l î l | 3169.30 | 28 | 3360.63 | 3 | | 2846.4 | 23 | 3173.58 | 25 | 3362.89 | 24 | | 2853.5 | 7 | 3176.16 | 28 | 3367.05 | 24 | | 2858.0 | 22 | 3187.60 | 4 | 3367.20 | 31 | | 9070 0 | 10 | | 26 | 2271.07 | 24 | | 2870.0
2873.0 | 19
22 | 3188.74 | 26 | 3371.87
3374.10 | 34
24 | | 2876.4 | 22 22 | 3190.86
3194.61 | 25
28 | 3378.28 | 13 | | 2876.5 | 19 | 3198.62 | 25 | 3379.39 | 24 | | 2010.0 | 17 | 3198.88 | 25 | 3386.24 | 24 | | 0070.1 | 23 | 2200.2 | 27 | 3388.46 | 31 | | 2878.1
2888.4 | 19 | 3208.3
3208.99 | 27
26 | 3390.56 | 24 | | 2889.0 | 20 | 3209.38 | 28 | 3392.7 | 34 | | 2891.5 | 22 | 3213.70 | 25 | 3392.78 | 13 | | 2895.0 | 19 | 3214.38 | 26 | 3393.2 | 33 | | 2896.3 | 7 | 3217.4 | 28 | 3397.5 | 31 | | 2897.1 | 19 | 3218.21 | 25 | 3414.82 | 32 | | 2906.8 | 22 | 3220.0 | 27 | 3416.87 | 33 | | 2907.7 | 20 | 3230.16 | 16 | 3417.71 | 32 | | 2910.4 | 19 | 3230.5 | 16 | 3453.10 | 33 | | 2916.2 | 21 | 3231.97 | 16 | 3456.68 | 40 | | 2925.7 | 22 | 3232.3 | 28 | 3463.1 | 12 | | 2933.7 | $\frac{1}{21}$ | 3232.38 | 16 | 3475.25 | 46 | | 2934.3 | $\overline{20}$ | 3243.34 | 27 | 3477.69 | 33 | | 2935.3 | 21 | 3244.15 | 26 | 3479.5 | 17 | | 2951.1 | 21 | 3248.15 | 27 | 3480.8 | 17 | | 2953.0 | 21 | 3255.39 | 35 | 3481.96 | 11 | | 2955.7 | 6 | 3263.43 | 27 | 3503.61 | 40 | | 3001.65 | 6 | 3269.86 | 27 | 3522.72 | 46 | | 3015.7 | 5 | 3270.79 | 3 | 3538.3 | 12 | | 3017.34 | 18 | 3297.74 | 3 | 3542.90 | 45 | | 3027.04 | 18 | 3309.78 | 13 | 3544.2 | 30 | | 3028.7 | 18 | 3310.55 | 35 | 3546.22 | 39 | | 3028.84 | 6 | 3311.30 | 3 | 3551.2 | 37 | | 3034.48 | 18 | 3314.60 | 34 | 3554.39 | 30 | | 3037.73 | 18 | 3319.75 | 15 | 3557.84 | 11 | | 3045.58 | 18 | 3320.29 | 24 | 3561.23 | 42 | | 3047.57 | 18 | 3323.75 | 13 | 3565.84 | 45 | | 3054.69 | 18 | 3327.16 | 3 | 3568.53 | 14 | | 3097.5 | 29 | 3329.20 | 24 | 3571.26 | 42 | | 3118.02 | 28 | 3330.78 | 31 | 3574.23 | 14
39 | | 3132.22 | 25 | 3334.8 | 34 | 3574.3 | | | 3135.8 | 29 | 3334.87 | 3 | 3574.64 | 14
43 | | 3135.82 | 4 | 3344.43 | 3 | 3590.47 | 43
45 | | 3136.5 | 4 | 3345.49 | 15 | 3594.18 | 45 | | 3151.16 | 28 | 3345.88 | 24 | 3612.35 | 38 | | 3154.82 | 26 | 3345.88 | 15 | 3628.06 | 51 | | 3160.0 | 29 | 3353.36 | 35 | 3632.75 | 44 | | 3164.46 | 25 | 3355.05
3356.35 | 3 | 3643.89
3644.86 | 10
51 | | | 25 | | 32 | | | Allowed Transitions - Continued | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |----------------|----------------|----------------|-----------------|----------------|------------| | 3659.93 | 44 | 3790.96 | 41 | 4290.40 | -54 | | 3664.09 | 2 | 3800.02 | 49 | 4323.3 | 53 | | 3679.80 | 51 | 3806.30 | 41 | 4346.9 | 54 | | 3694.22 | 2 | 3818.44 | 49 | 4365.72 | 54 | | 3697.09 | 51 | 3829.77 | 49 | 4369.77 | 53 | | 3701.81 | 50 | 3903.9 | 9 | 4379.50 | 53 | | | 2 | 3942.3 | 9 | 4385.00 | 53 | | 3709.64 | | | 9 | 4391.94 | 54 | | 3713.09 | 10 | 3999.5 | | 4397.94 | 53 | | 3721.86 | 47 | 4217.15 | 52 | ,, | 53
54 | | 3726.9 | 50 | 4219.76 | 52 | 4409.30 | 34 | | 3727.08 | 10 | 4220.92 | 52 | 4413.20 | 54 | | 3732.7 | 47 | 4224.75 | 52 | 4428.54 | 54 | | 3734.94 | 1 2 1 | 4231.60 | 52 | 4430.90 | 53 | | 3744.66 | 50 | 4234.3 | 52 | 4441.1 | 8 | | 3751.26 | 2 | 4239.95 | $\overline{52}$ | 4442.67 | 53 | | 3753.83 | 48 | 4242.20 | 52 | 4446.46 | 53 | | 3754.9 | | 4249.2 | 5 <u>4</u> | 4492.4 | 54 | | | 36 | 4250.68 | 52 | 4502.52 | 53 | | 3766.29 | $\frac{2}{41}$ | 4257.82 | 52
52 | 4502.52 | <i>5</i> 5 | | 3776.9 | 41 | | 52
53 | [[| | | 3777.16 | 2 | 4280.3 | 33 | | | Aside from the multiplet $2s^22p^5$ $^2P^\circ - 2s^2p^6$ 2S in the vacuum uv for which a quantum mechanical calculation (screening approximation) has been carried out by Varsavsky [1], the main source of theoretical information on the spectrum are the extensive calculations by Carstang [2] for lines of the 3s-3p and 3p-3d arrays. He has calculated the relative line strengths under the assumption of intermediate coupling and has used the Coulomb approximation to obtain the transition integrals for the absolute values. However, for the 3s-3p array Koopman's [3] relative line strengths obtained from intensity measurements with an electrically driven shock tube agree with LS-coupling better than with the intermediate coupling values. Therefore, Koopman's relative values are averaged with LS-coupling results and put on an absolute scale by using the Coulomb approximation. On the other hand, comparison with the very incomplete experimental intensity data [3] for the 3p-3d array indicates that intermediate coupling fits much better here than LS-coupling and gives in may cases drastic improvements. Thus Garstang's results are exclusively used for this array as well as for all intercombination lines. Some lines marked D- should be considered inferior in quality to the rest, since Garstang finds them very sensitive to the choice of parameters. In addition, the f-values for the three strongest multiplets of the 3d-4f array have been calculated with the Coulomb approximation using LS-coupling for the multiplet components. ^[1] Varsavsky, C. M., Astrophys. J. Suppl. Ser. 6, No. 53, 75-108 (1961). ^[2] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 114, 118-133 (1954). ^[3] Koopman, D. W., J. Opt. Soc. Am. 54, 1354-1358 (1964). Ne II. Allowed Transitions | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8 m sec^{-1})$ | f_{ik} | S(at.u.) | $\log gf$ | Accu- | Source | |-----|---------------------------|--------------------------------------|--|--|--|--------------------------------------|--------------------------------------|---|---|---|---|----------------------------|--| | | $\frac{2s^22p^5-}{2p^5-}$ | ² P°- ² S | 461.28 | 260.07 | 217050 | 6 | 2 | 310 | 0.33 | 3.0 | 0.29 | E | 1 | | | $2s^2p^6$ | (1 uv) | 460.725
462.388 | 0.00
782 | 217050
217050 | 4 2 | 2 2 | 210
100 | 0.33
0.33 | 2.0
1.0 | $0.12 \\ -0.18$ | E
E | ls
ls | | 2 | $2p^43s - 2p^4(^3P)3p$ | 4P_4P° (1) | 3717.2 | 219442 | 246337 | 12 | 12 | 1.3 | 0.27 | 39 | 0.50 | D | ca | | | -p (2) op | (1) | 3694.22
3734.94
3751.26
3664.09
3709.64
3766.29
3777.16 | 219133
219651
219950
219133
219651
219651
219950 | 246195
246417
246600
246417
246600
246195
246417 | 6
4
2
6
4
4
2 | 6
4
2
4
2
6
4 | 0.96
0.20
0.19
0.67
1.1
0.32
0.43 | 0.20
0.041
0.039
0.090
0.11
0.10
0.18 | 14
2.0
0.98
6.6
5.6
5.0
4.6 | $\begin{array}{c} 0.07 \\ -0.78 \\ -1.10 \\ -0.27 \\ -0.34 \\ -0.39 \\ -0.43 \end{array}$ | D
D
D
D
D
D | 3, ls
3, ls
3, ls
3, ls
3, ls
3, ls
3, ls | | 3 | | ⁴ P - ⁴ D° (2) | 3336.8 | 219442 | 249402 | 12 | 20 | 1.8 | 0.51 | 67 | 0.79 | D | ca | | | | | 3334.87
3355.05
3360.63
3297.74
3327.16
3344.43
3270.79
3311.30 | 219133
219651
219950
219133
219651
219950
219133
219651 | 249111
249448
249698
249448
249618
249842
249698
249842 | 6
4
2
6
4
2
6
4 | 8
6
4
6
4
2
4
2 | 1.8
1.3
0.73
0.53
0.98
1.5
0.12
0.30 | 0.41
0.33
0.25
0.087
0.17
0.25
0.013
0.023 | 27
15
5.5
5.7
7.0
5.6
0.85
1.0 | 0.39
0.13
-0.30
-0.28
-0.17
-0.30
-1.11
-1.04 | D D D D D D D D | 3, ls
3, ls
3, ls
3, ls
3, ls
3, ls
3, ls
3, ls | | 4 | | ⁴ P - ² D° (3) | | | | | | | | | | | į | | | | (3) | 3135.82
[3136.5]
3187.60
[3166.2] | 219133
219651
219651
219950 | 251013
251525
251013
251525 | 6
4
4
2 | 6
4
6
4 | 0.0065
0.0049
0.016
0.0042 | $\begin{array}{c} 9.6 \times 10^{-4} \\ 7.2 \times 10^{-4} \\ 0.0036 \\ 0.0013 \end{array}$ | 0.059
0.030
0.15
0.026 | $ \begin{array}{r rrrr} -2.24 \\ -2.54 \\ -1.84 \\ -2.60 \end{array} $ | D
D
D | 2
2
2
2
2 | | 5 | | 4P-2S° | [3015.7] | 219651 | 252801 | 4 | 2 | 0.013 | 9.1×10 ⁻⁴ | 0.036 | -2.44 | D | 2 | | 6 | | 4P_4S° | 2982.94 | 219442 | 252956 | 12 | 4 | 2.5 | 0.11 | 13 | 0.12 | D | ca | | | | (4) | [2955.7]
3001.65
3028.84 | 219133
219651
219950 | 252956
252956
252956 | 6 4 2 |
4
4
4 | 1.2
0.78
0.57 | 0.10
0.11
0.16 | 5.9
4.2
3.1 | $ \begin{array}{r} -0.22 \\ -0.37 \\ -0.50 \end{array} $ | D
D
D | 3, <i>ls</i>
3, <i>ls</i>
3, <i>ls</i> | | 7 | | ⁴ P − ² P° | [2853.5]
[2896.3] | 219133
219651 | 254167
254167 | 6 4 | 4 4 | 0.025
0.020 | 0.0020
0.0025 | 0.12
0.096 | -1.91 -2.00 | D
D | 2
2 | | 8 | | ² P _ ⁴ P° | [4441.1] | 224089 | 246600 | 4 | 2 | 0.0034 | 5.1×10^{-4} | 0.030 | -2.69 | D | 2 | | 9 | | ² P - ⁴ D° | [3942.3]
[3903.9]
[3999.5] | 224089
224089
224702 | 249448
249698
249698 | 4 4 2 | 6 4 4 | $ \begin{vmatrix} 0.012 \\ 8.4 \times 10^{-4} \\ 0.0037 \end{vmatrix} $ | 0.0041
1.9×10 ⁻⁴
0.0018 | 0.21
0.0099
0.046 | -1.79 -3.11 -2.45 | D
D
D | 2
2
2
2 | | 10 | | ² P - ² D° | 3713.0 | 224293 | 251218 | 6 | 10 | 1.3 | 0.45 | 33 | 0.43 | D | ca | | | | (5) | 3713.09
3727.08
3643.89 | 224089
224702
224089 | 251013
251525
251525 | 4
2
4 | 6
4
4 | 1.3
1.0
0.23 | 0.40
0.43
0.046 | 20
11
2.2 | $ \begin{array}{r} 0.21 \\ -0.07 \\ -0.74 \end{array} $ | D
D
D | 3, <i>ls</i>
3, <i>ls</i>
3, <i>ls</i> | | 11 | | ² P- ² S° | 3506.9 | 224293 | 252801 | 6 | 2 | 1.5 | 0.095 | 6.6 | -0.25 | D | ca | | | | (6) | 3481.96
3557.84 | 224089
224702 | 252801
252801 | 4
2 | $\begin{vmatrix} 2\\2 \end{vmatrix}$ | 1.2
0.37 | 0.11
0.070 | 5.0
1.6 | $-0.36 \\ -0.85$ | D
D | 3, ls
3, ls | $\textbf{Ne II.} \quad \textbf{Allowed Transitions} - \textbf{Continued}$ | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | g_i | gk | $\begin{array}{c c} A_{ki}(10^8 \\ \sec^{-1}) \end{array}$ | fik | S(at.u.) | $\log gf$ | Accu-
racy | Source | |-----|---|---------------------------------------|---|--|--|--|--------------------------------------|--|--|--|--|-----------------------|--| | 12 | | ² P- ⁴ S° | [3463.1]
[3538.3] | 224089
224702 | 252956
252956 | 4 2 | 44 | 0.028
0.0090 | 0.0051
0.0034 | 0.23
0.079 | -1.69
-2.17 | D
D | $\frac{2}{2}$ | | 13 | | ² P - ² P° | 3341.8 | 224293 | 254209 | 6 | 6 | 1.8 | 0.30 | 19 | 0.25 | D | ca | | | | (7) | 3323.75
3378.28
3309.78
3392.78 | 224089
224702
224089
224702 | 254167
254294
254294
254167 | 4
2
4
2 | 4
2
2
4 | 1.4
1.3
0.46
0.29 | 0.24
0.23
0.037
0.098 | 11
5.1
1.6
2.2 | $ \begin{array}{r} -0.02 \\ 0.34 \\ -0.83 \\ -0.71 \end{array} $ | D
D
D
D | 3, <i>ls</i>
3, <i>ls</i>
3, <i>ls</i>
3, <i>ls</i> | | 14 | $2p^{4}3s' - 2p^{4}(^{1}D)3p'$ | ² D− ² F° (9) | 3571.1 | 246398 | 274392 | 10 | 14 | 4.3 | 0.36 | 42 | 0.56 | D | ca | | | 2p (B)0p | () | 3568.53
3574.64
3574.23 | 246397
246400
246397 | 274411
274367
274367 | 6
4
6 | 8
6
6 | 1.3
1.3
0.092 | 0.33
0.37
0.018 | 24
18
1.3 | $0.30 \\ 0.17 \\ -0.97$ | D
D
D | 3, <i>ls</i>
3, <i>ls</i>
3, <i>ls</i> | | 15 | | $^{2}D - ^{2}P^{\circ}$ (10) | 3336.9 | 246398 | 276357 | 10 | 6 | 1.7 | 0.17 | 19 | 0.23 | D | $\dot{c}\dot{a}$ | | | : | (=0) | 3345.49
3319.75
3345.88 | 246397
246400
246400 | 276279
276514
276279 | 6
4
4 | 4
2
4 | 1.5
1.7
0.17 | 0.17
0.14
0.028 | 11
6.2
1.3 | $ \begin{array}{c c} 0.01 \\ -0.24 \\ -0.95 \end{array} $ | D
D
D | 3, <i>ls</i>
3, <i>ls</i>
3, <i>ls</i> | | 16 | | ² D → ² D° (11) | 3231:1 | 246398 | 277339 | 10 | 10 | 1.9 | 0.29 | 31 | 0.47 | D | ca | | | | | 3230.16
3232.38
3231.97
[3230.5] | 246397
246400
246397
246400 | 277346
277328
277328
277346 | 6
4
6
4 | 6
4
4
6 | 1.8
1.7
0.19
0.13 | 0.27
0.26
0.020
0.029 | 18
11
1.3
1.3 | 0.22 0.02 -0.93 -0.93 | D
D
D | 3, <i>ls</i>
3, <i>ls</i>
3, <i>ls</i>
3, <i>ls</i> | | 17 | $2p^{4}3s'' - 2p^{4}(^{1}S)3p''$ | ² S – ² P° | 3480.3 | 276678 | 305403 | 2 | 6 | 1.6 | 0.86 | 20 | 0.24 | D | ca | | | | | [3480.8]
[3479.5] | 276678
276678 | 305399
305409 | $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ | 4 2 | 1.6
1.6 | 0.58
0.29 | 13
-6.6 | $\begin{bmatrix} 0.06 \\ -0.24 \end{bmatrix}$ | D
D | 2
2 | | 18 | $\begin{bmatrix} 2p^43p - \\ 2p^4(^3P)3d \end{bmatrix}$ | ⁴ P°- ⁴ D (8) | 3039.3 | 246337 | 279230 | 12 | 20 | 3.2 | 0.74 | 89 | 0.95 | D | ca | | | | | 3034.48
3047.57
3054.69
3027.04
3037.73
3045.58
3017.34
[3028.7] | 246195
246417
246600
246195
246417
246600
246195
246417 | 279139
279221
279327
279221
279327
279425
279327
279425 | 6
4
2
6
4
2
6
4 | 8
6
4
6
4
2
4
2 | 3.1
1.8
0.93
1.5
2.0
2.5
0.35
0.84 | 0.57
0.37
0.26
0.20
0.28
0.35
0.032
0.058 | 34
15
5.2
12
11
7.0
1.9
2.3 | 0.53
0.17
-0.28
0.08
0.05
-0.15
-0.72
-0.64 | D D D D D D D D D | 2
2
2
2
2
2
2
2 | | 19 | | 4P°−4F | [9907 11 | 946105 | 200700 | | | 0.040 | | | | | _ | | | | | [2897.1]
[2870.0]
[2876.5]
[2888.4]
[2895.0]
[2910.4] | 246195
246195
246195
246417
246417
246600 | 280703
281028
280950
281028
280950
280950 | 6
6
4
4
2 | 8
6
4
6
4 | 0.042
0.11
0.18
0.015
0.016
0.43 | 0.0071
0.014
0.015
0.0029
0.0021
0.11 | 0.41
0.77
0.86
0.11
0.079
2.1 | $ \begin{array}{c c} -1.37 \\ -1.09 \\ -1.04 \\ -1.94 \\ -2.08 \\ -0.66 \end{array} $ | D
D
D
D
D | 2
2
2
2
2
2 | | 20 | | 4P°_2F | [2934.3]
[2907.7]
[2889.0] | 246195
246417
246195 | 280264
280799
280799 | 6 4 6 | 6 | 0.0030
0.039
0.015 | $5.1 \times 10^{-3} \\ 0.0075 \\ 0.0019$ | 0.030
0.29
0.11 | - 2.51
- 1.52
- 1.94 | D
D
D | $\begin{array}{c}2\\2\\2\\2\end{array}$ | | 21 | | •P° – 2D | [2933.7]
[2916.2]
[2953.0]
[2935.3]
[2951.1] | 246195
246195
246417
246417
246600 | 280271
280476
280271
280476
280476 | 6
6
4
4
2 | 4
6
4 | 0.068
0.047
0.012
0.032
0.023 | 0.0087
0.0040
0.0023
0.0041
0.0061 | 0.51
0.23
0.089
0.16
0.12 | $\begin{array}{c c} -1.28 \\ -1.62 \\ -2.04 \\ -1.79 \\ -1.92 \end{array}$ | D
D
D
D | 2
2
2
2
2
2 | Ne II. Allowed Transitions—Continued | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gĸ | $A_{ki}(10^8 m sec^{-1})$ | f_{ik} | S(at.u.) | $\log gf$ | Accu-
racy | Source | |-----|---------------------|--|--|--|--|--|--|---|--|--|--|--|---| | 22 | | 4P°-4P | 2880.2 | 246337 | 281046 | 12 | 12 | 1.7 | 0.21 | 24 | 0.40 | D | ca | | | | | [2858.0]
[2891.5]
[2925.7]
[2873.0]
[2906.8]
[2876.4]
[2906.8] | 246195
246417
246600
246195
246417
246417
246600 | 281174
280992
280770
280992
280770
281174
280992 | 6
4
2
6
4
4
2 | 6
4
2
4
2
6
4 | 0.91
0.097
0.52
0.46
1.6
0.84
0.75 | 0.11
0.012
0.067
0.038
0.10
0.16
0.19 | 6.3
0.47
1.3
2.2
3.9
5.9
3.6 | $\begin{array}{c c} -0.18 \\ -1.31 \\ -0.87 \\ -0.64 \\ -0.39 \\ -0.21 \\ -0.42 \end{array}$ | D
D
D
D
D
D | 2
2
2
2
2
2
2
2
2 | | 23 | | ⁴ P°_2P | [2878.1]
[2846.4] | 246600
246600 | 281335
281722 | 2 2 | 2 4 | 0.067
0.035 | 0.0083
0.0084 | 0.16
0.16 | $-1.78 \\ -1.77$ | D
D | 2 2 | | 24 | | ⁴ D° – ⁴ D (12) | 3351.7 | 249402 | 279230 | 20 | 20 | 0.79 | 0.13 | 29 | 0.42 | D | ca | | | | (12) | 3329.20
3357.90
3374.10
3379.39
3320.29
3345.88
3362.89
3367.05
3386.24
3390.56 | 249111
249448
249698
249842
249111
249448
249698
249448
249698
249842 | 279139
279221
279327
279425
279221
279327
279425
279139
279221
279327 | 8
6
4
2
8
6
4
6
4
2 | 8
6
4
2
6
4
2
8
6
4 | 0.87
0.55
0.38
0.35
0.13
0.22
0.30
0.035
0.067
0.078 | 0.15
0.093
0.065
0.060
0.017
0.024
0.025
0.0079
0.017
0.027 |
13
6.1
2.9
1.3
1.5
1.6
1.1
0.53
0.77
0.60 | $\begin{array}{c} 0.07 \\ -0.26 \\ -0.59 \\ -0.92 \\ -0.87 \\ -0.83 \\ -0.99 \\ -1.32 \\ -1.16 \\ -1.27 \end{array}$ | D D D D D D D D D D D D D D D D D D D | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | | 25 | | ⁴ D°- ⁴ F
(13) | 3202.5 | 249402 | 280619 | 20 | 28 | 2.5 | 0.55 | 120 | 1.04 | D | ca | | | | (19) | 3218.21
3198.62
3190.86
3213.70
3164.46
3165.70
3198.88
3132.22
3173.58 | 249111
249448
249698
249842
249111
249448
249698
249111
249448 | 280174
280703
281028
280950
280703
281028
280950
281028
280950 | 8
6
4
2
8
6
4
8
6 | 10
8
6
4
8
6
4
6
4 | 3.6
2.2
0.73
1.8
0.22
0.19
0.59
0.022
0.0017 | $\begin{array}{c} 0.70 \\ 0.45 \\ 0.17 \\ 0.56 \\ 0.033 \\ 0.028 \\ 0.090 \\ 0.0024 \\ 1.7 \times 10^{-4} \end{array}$ | 59
29
7.0
12
2.7
1.7
3.8
0.20
0.011 | $\begin{array}{c} 0.75 \\ 0.44 \\ -0.18 \\ 0.05 \\ -0.58 \\ -0.78 \\ -0.44 \\ -1.72 \\ -2.98 \end{array}$ | D
D
D
D
D-
D-
D-
D- | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | | 26 | | ⁴ D° – ² F
(14) | 3208.99
3188.74
3154.82
3244.15
3214.38 | 249111
249448
249111
249448
249698 | 280264
280799
280799
280264
280799 | 8
6
8
6
4 | 8 | 0.12
0.32
0.0022
1.1
1.6 | $\begin{array}{c} 0.018 \\ 0.048 \\ 2.5 \times 10^{-4} \\ 0.22 \\ 0.38 \end{array}$ | 1.5
3.0
0.021
14
16 | -0.84 -0.54 -2.70 0.13 0.18 | D
D-
D-
D | 2
2
2
2
2
2 | | 27 | | ⁴ D°- ² D (15) | | | | | | | | | | | | | | | (10) | 3243.34
3248.15
3269.86
3263.43
[3222,0]
[3208.3] | 249448
249698
249698
249842
249448
249111 | 280271
280476
280271
280476
280476
280271 | 6
4
4
2
6
8 | 6
4
6
4
4
6 | 0.18
0.14
0.48
0.36
0.020
0.0091 | 0.029
0.022
0.12
0.12
0.0020
0.0010 | 1.8
0.94
5.0
2.5
0.13
0.089 | $\begin{array}{c} -0.76 \\ -1.06 \\ -0.33 \\ -0.64 \\ -1.92 \\ -2.07 \end{array}$ | D-
D-
D-
D | 2
2
2
2
2
2
2
2 | | 28 | | ⁴ D°- ⁴ P | 3159.3 | 249402 | 281046 | 20 | 12 | 0.39 | 0.035 | 7.2 | -0.16 | D | ca | | | | (16) | 3118.02
3169.30
[3217.4]
3151.16
3194.61
[3232.3]
3176.16
3209.38 | 249111
249448
249698
249448
249698
249842
249698
249842 | 281174
280992
280770
281174
280992
280770
281174
280992 | 8
6
4
6
4
2
4
2 | 6
4
2
6
4
2
6
4 | 0.11
0.17
0.13
0.066
0.14
0.033
0.034
0.51 | 0.013
0.017
0.0098
0.0016
0.021
0.0051
0.0078
0.16 | 1.0
1.1
0.42
0.099
0.088
0.11
0.33
3.3 | $\begin{array}{c} -0.99 \\ -0.99 \\ -1.41 \\ -2.02 \\ -1.08 \\ -1.99 \\ -1.50 \\ -0.50 \end{array}$ | D
D
D
D
D
D
D | 2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 | $\textbf{Ne II.} \quad \textbf{Allowed Transitions} - \textbf{\textit{Continued}}$ | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gi | $A_{ki}(10^8 { m sec}^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|--|--|--------------------------------------|--------------------------------------|--|--|---|------------------------------------|----------------------------|---|-------------------|--| | 29 | | ⁴ D°− ² P | [3135.8]
[3160.0]
[3097.5] | 249842
249698
249448 | 281722
281335
281722 | 2
4
6 | 4
2
4 | 0.020
0.019
0.015 | 0.0058
0.0014
0.0015 | 0.12
0.059
0.089 | $\begin{vmatrix} -1.94 \\ -2.25 \\ -2.06 \end{vmatrix}$ | D
D
D | 2
2
2
2 | | 30 | | ² D° - ⁴ D (18) | 3554.39
[3544.2] | 251013
251013 | 279139
279221 | 6 6 | 8 6 | 0.013
0.0037 | 0.0034
7.0×10 ⁻⁴ | 0.24
0.049 | -1.69 -2.38 | D
D | $egin{array}{c} 2 \\ 2 \end{array}$ | | 31 | | ² D° – ⁴ F
(19) | 3367.20
3388.46
3330.78
[3397.5] | 251013
251525
251013
251525 | 280703
281028
281028
280950 | 6
4
6
4 | 8
6
6
4 | 1.0
2.0
0.12
0.049 | 0.24
0.51
0.020
0.0084 | 16
23
1.3
0.38 | 0.15 0.31 -0.93 -1.47 | D
D
D
D | $egin{array}{c} 2 \ 2 \ 2 \ 2 \ 2 \end{array}$ | | 32 | | ² D°-2F | 3414.9 | 251218 | 280493 | 10 | 14 | 1.4 | 0.34 | 38 | 0.53 | D | ca | | | | (20) | 3417.71
3414.82
3356.35 | 251013
251525
251013 | 280264
280799
280799 | 6
4
6 | 8
6
6 | $\begin{bmatrix} 2.0 \\ 0.41 \\ 0.11 \end{bmatrix}$ | 0.47
0.11
0.019 | 32
4.8
1.3 | $ \begin{array}{r} 0.45 \\ -0.37 \\ -0.93 \end{array} $ | D
D-
D- | 2
2
2 | | 33 | | ² D°−2D | 3431.3 | 251218 | 280353 | 10 | 10 | 0.85 | 0.15 | 17 | 0.18 | D | ca | | | | (21) | 3416.87
3453.10
[3393.2]
3477.69 | 251013
251525
251013
251525 | 280271
280476
280476
280271 | 6
4
6
4 | 6
4
4
6 | 0.67
0.59
0.022
0.34 | 0.12
0.11
0.0025
0.091 | 7.9
4.8
0.17
4.2 | $ \begin{array}{r} -0.15 \\ -0.38 \\ -1.82 \\ -0.44 \end{array} $ | D
D
D
D- | 2
2
2
2 | | 34 | | ² D°- ⁴ P | | | | | | | | | | | | | | | (22) | 3314.60
3371.87
[3392.7]
[3334.8] | 251013
251525
251525
251013 | 281174
281174
280992
280992 | 6
4
4
6 | 6
6
4
4 | 0.026
0.12
0.14
0.030 | 0.0042
0.032
0.025
0.0033 | 0.28
1.4
1.1
0.22 | $ \begin{array}{c c} -1.60 \\ -0.89 \\ -1.00 \\ -1.70 \end{array} $ | D
D
D | 2
2
2
2 | | 35 | | ² D°- ² P (23) | 3291.6 | 251218 | 281590 | 10 | 6 | 0.098 | 0.0095 | 1.0 | -1.02 | D | ca | | | | (23) | 3255.39
3353.63
3310.55 | 251013
251525
251525 | 281722
281335
281722 | 6
4
4 | 2 | 0.12
0.048
0.0061 | 0.013
0.0040
0.0010 | 0.81
0.18
0.044 | $ \begin{array}{c c} -1.12 \\ -1.79 \\ -2.40 \end{array} $ | D
D
D | 2
2
2 | | 36 | | 2S°-4D | [3754.9] | 252801 | 279425 | 2 | 2 | 0.0095 | 0.0020 | 0.050 | -2.40 | D | 2 | | 37 | | ² S°- ⁴ F (24) | 3551.52 | 252801 | 280950 | 2 | | 0.055 | 0.021 | 0.49 | | D | | | 38 | • | $^{2}S^{\circ}-^{2}D$ (26) | 3612.35 | 252801 | 280476 | 2 | | 0.22 | 0.021 | 2.1 | -1.38 | | 2 | | 39 | }: | ² S°- ⁴ P | 3312.00 | | 200 110 | - | T | 0.22 | 0.007 | 2.1 | -0.76 | D | 2 | | | | (27) | 3546.22
[3574.3] | 252801
252801 | 280992
280770 | $\begin{bmatrix} 2\\2 \end{bmatrix}$ | | 0.021
0.046 | 0.0081
0.0088 | 0.19
0.21 | | D
D | $\frac{2}{2}$ | | 40 | : | ² S°- ² P (28) | 3472.5 | 252801 | 281590 | 2 | 6 | 1.3 | 0.70 | 16 | 0.15 | D | ca | | | | (23) | 3456.68
3503.61 | 252801
252801 | 281722
281335 | $\begin{vmatrix} 2 \\ 2 \end{vmatrix}$ | $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$ | 1.0 | 0.36
0.34 | 8.2
7.9 | $ \begin{array}{c c} -0.14 \\ -0.16 \end{array} $ | D
D | 2
2 | Ne II. Allowed Transitions - Continued | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | g_i | gk | $A_{ki}(10^8 m sec^{-1})$ | f_{ik} | S(at.u.) | $\log gf$ | Accu-
racy | Source | |-----|---------------------|---|--------------------------------|----------------------------|----------------------------|---|-------------|----------------------------|--|--------------------------|---|---------------|---| | 41 | | ⁴ S°- ⁴ D
(30) | | | : | | | | | | | | | | |
 | (30) | 3806.30
3790.96
[3776.9] | 252956
252956
252956 | 279221
279327
279425 | 4
4
4 | 6
4
2 | 0.013
0.017
0.0074 | 0.0043
0.0036
8.0×10 ⁻⁴ | 0.22
0.18
0.040 | $ \begin{array}{r} -1.76 \\ -1.85 \\ -2.50 \end{array} $ | D
D
D | 2 2 2 | | 42 | | ⁴ S°- ⁴ F
(31) | 3561.23 | 252054 | 201.020 | | , | 0.11 | 0.021 | ,,, | 0.01 | n | | | | | | 3571.26 | 252956
252956 | 281028
280950 | 44 | 6 4 | 0.11
0.43 | 0.031
0.083 | 1.5
3.9 | $\begin{bmatrix} -0.91 \\ -0.48 \end{bmatrix}$ | D
D- | 2 2 | | 43 | | ⁴ S°- ² F
(32) | 3590.47 | 252956 | 280799 | 4 | 6 | 0.087 | 0.025 | 1.2 | -0.99 | D- | 2 | | 44 | | ⁴ S°- ² D (33) | | | | | | | | | | | | | | | (33) | 3659.93
3632.75 | 252956
252956 | 280271
280476 | 4 4 | 6
4 | 0.11
0.090 | 0.033
0.018 | 1.6
0.85 | -0.88
-1.15 | D-D | 2 2 | | 45 | | ⁴ S° <u>-</u> ⁴ P
(34) | 3559.0 | 252956 | 281046 | 4 | 12 | 1.1 | 0.63 | 30 | 0.40 | D | ca | | | | , , | 3542.90
3565.84
3594.18 | 252956
252956
252956 | 281174
280992
280770 | 4
4
4 | 6
4
2 | 1.3
0.82
1:3 | 0.35
0.16
0.12 | 16
7.3
5.9 | $ \begin{array}{r} 0.15 \\ -0.20 \\ -0.30 \end{array} $ | D
D
D | 2 2 2 | | 46 | | ⁴ S°- ² P (35) | | | | | | | | | | | | | | | (00) | 3475.25
3522.72 | 252956
252956 | 281722
281335 | 44 | 4 2 | 0.0047
0.011 | 8.5×10^{-4}
0.0011 | 0.039
0.050 | $-2.47 \\ -2.37$ | D
D | $\frac{2}{2}$ | | 47 |
 | ² P°_4F
(37) | 3721.86 | 254167 | 281028 | 4 | 6 | 0.036 | 0.011 | 0.55 | -1.35 |
D- | | | | | | [3732.7] | 254167 | 280950 | 4 | 4 | 0.030 | 0.0062 | 0.31 | -1.60 | D D | 2 2 | | 48 | | ² P°-2F
(38) | | 25.43.65 | | | | 0.55 | 0.70 | | | , | | | 49 | | ² P°_2D | 3753.83
3824.0 | 254167
254209 | 280799
280353 | 6 | 6
10 | 0.55 | 0.18
0.35 | 8.7
26 | -0.15 0.32 | D D | $\begin{array}{ c c } \hline & 2 \\ & ca \\ \hline \end{array}$ | | • | | (39) | 3829.77 | 254167 | 280271 | 4 | 6 | 0.88 | 0.29 | 15 | 0.06 | D | 2 | | | | | 3818.44 3800.02 | 254294
254167 | 280476
280476 | 4 | 4 | 0.69 | 0.30
0.076 | 7.6
3.8 | $ \begin{array}{c} -0.22 \\ -0.52 \end{array} $ | D | 2 2 | | 50 | · | ² P° – ⁴ P
(40) | | 1 | | | | | 0.0== | 0.5 | ٥٠٠ | | | | | | | 3701.81
3744.66
[3726.9] | 254167
254294
254167 | 281174
280992
280992 | $\begin{vmatrix} 4\\2\\4 \end{vmatrix}$ | 6
4
4 | 0.25
0.22
0.092 | 0.077
0.091
0.019 | 3.7
2.2
0.94 | $ \begin{array}{r} -0.51 \\ -0.74 \\ -1.12 \end{array} $ | D
D | $\begin{array}{c c} 2\\2\\2\\2\end{array}$ | | 51 | | ² P°_ ² P | 3651.2 | 254209 | 281590 | 6 | 6 | 1.2 | 0.24 | 17 | 0.15 | D | ca | | | | (41) | 3628.06
3697.09
3679.80 | 254167
254294
254167 | 281722
281335
281335 | 4 2 4 | 4 2 2 | 0.57
0.34
0.36 | 0.11
0.070
0.037
0.34 | 5.3
1.7
1.8
8.2 | $ \begin{array}{r} -0.35 \\ -0.86 \\ -0.83 \\ -0.17 \end{array} $ | D
D
D | 2
2
2
2 | | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | g_i | g_k | $A_{ki}(10^8 m sec^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|-----------------------|---------------------------------------|--|--|--|--|--|--|---|---|---|---------------------------------------|----------------------------------| | 52 | 2p43d- | ⁴D — ⁴D° | 4229.6 | 279230 | 302866 | 20 | 20 | 0.39 | 0.10 | 29 | 0.32 | D | ca | | | 2p ⁴ 6P)4f | (52) | 4219.76
4231.60
4239.95
4242.20
4217.15
4220.92
4224.57
[4234.3]
4250.68 | 279139
279221
279327
279425
279139
279221
279327
279221
279327 | 302831
302846
302905
302991
302846
302991
302831
302846
302905 | 8
6
4
2
8
6
4
6
4 | 8
6
4
2
6
4
2
8
6
4 | 0.33
0.22
0.15
0.19
0.074
0.14
0.19
0.055
0.090 | 0.089
0.060
0.042
0.052
0.015
0.024
0.026
0.020
0.036
0.052 | 9.8
5.0
2.3
1.5
1.6
2.0
1.4
1.7
2.0
1.5 | -0.15
-0.45
-0.78
-0.98
-0.93
-0.84
-0.99
-0.84
-0.98 | D
D
D
D
D
D | ls | | 53 | | ⁴ F - ⁴ F° (56) | 4257.82
4394.5
4397.94
4379.50
4385.00
4430.90
[4280.3]
[4323.3]
4446.46
4502.52 | 279425
280619
280174
280703
281028
280950
280174
280703
281028
280703 | 303368
302906
303531
303827
303512
303531
303827
303512
302906 | 28
10
8
6
4
10
8
6
8 | 28
10
8
6
4
8
6
4
10 | 0.26
0.24
0.20
0.18
0.21
0.028
0.048
0.052
0.021 | 0.076
0.070
0.058
0.053
0.062
0.0062
0.010
0.010
0.0081 | 31
10
6.7
4.6
3.6
0.88
1.2
0.91
0.96 | 0.33
-0.16
-0.33
-0.50
-0.61
-1.21
-1.09
-1.21
-1.19 | D
D
D
D
D
D | ca ls ls ls ls ls ls ls | | 54 | | ⁴F—⁴G°
(57) | 4442.67
4369.77
4360.8
4290.40
4391.94
4409.30
4413.20
[4292.4]
[4346.9]
4428.54
[4249.2]
4365.72 | 281028
280950
280619
280174
280703
281028
280950
280174
280703
281028
280174
280703 | 303531
303827
303544
303476
303465
303701
303602
303465
303701
303602
303701
303602 | 28
10
8
6
4
10
8
6
10
8 | 36
12
10
8
6
10
8
6
8
6 | 0.035
0.035
2.4
2.5
2.2
2.0
2.0
0.20
0.33
0.33
0.0073
0.012 | 0.014
0.015
0.89
0.83
0.79
0.79
0.89
0.056
0.093
0.096
0.0016
0.0026 | 1.2
0.88
360
120
91
69
52
7.9
11
8.4
0.22
0.30 | -1.08
-1.21
1.39
0.92
0.80
0.68
0.55
-0.25
-0.13
-0.24
-1.80
-1.68 | D D D D D D D D D D D D D D D D D D D | ls ca ls ls ls ls ls ls ls ls | Naqvi's calculation [1] of the one possible transition in the ground state configuration $2p^5$ is the only available source. The line strength should be quite accurate, since it does not sensitively depend on the choice of the interaction parameters. ### Reference [1] Naqvi, A. M., Thesis Harvard (1951). Ne II. Forbidden Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | ģi | gk | Type of
Transition | $A_{ki}(\mathrm{sec^{-1}})$ | S(at.u.) | Accu-
racy | Source | |-----|---------------------|-----------|--------------------------|-------------------------|-----------------------|----|----|-----------------------|-----------------------------|----------|---------------|--------| | 1 | $2p^5 - 2p^5$ | 2P° 2P° | [12.78×10 ⁴] | 0 | 782 | 4 | 2 | m | 0.00859 | 1.33 | В | 1 | $1s^22s^22p^4$ ³P₂ Ground State Ionization Potential $63.5~{\rm eV} = 512312~{\rm cm}^{-1}$ ## **Allowed Transitions** List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |--------------------|------------------|----------------|---------------|----------------|-----| | | | | | | | | 227.24 | 13 | 283.894 | 5 | 2163.5 | 17 | | 227.42 | 12 | 301.124 | 7 | 2163.7 | 17 | | 227.49 | 12 | 308.559 | 9 | 2163.77 | 17 | | 227.57 | 13 | 313.048 | 4 | 2412.73 | 18 | | 227.72 | 13 | 313.677 | 4 | 2412.94 | 18 | | 227.73 | 12 | 313.92 | 4 | 2413.18 | 18 | | 227.76 | 12 | 379.308 | $\frac{2}{3}$ | 2413.54 | 18 | | 227.82 | 12 | 427.840 | 3 | 2413.78 | 18 | | 227.90 | 12 | 488.103 | 1 | 2590.04 | 14 | | 228.85 | 11 | 488.868 | 1 | 2593.60 | 14 | | 228.88 | 11 | 489.501 | 1 | 2595.68 | 14 | | 228.91 | ii | 489.641 | $\bar{1}$ | 2610.03 | 16 | | 229.19 | ii l | 490.310 | 1 | 2611.42 | 16 | | 229.22 | ii | 491.050 | 1 | 2612.5 | 16 | | 229.34 | 11 | 2086.96 | 19 | 2613.41 | 16 | | 251.145 | 10 | 2087.44 | 19 | 2614.51 | 16 | | 251.558 | 10 | 2088.92 | <u>19</u> | 2615.87 | 16 | | 251.726 | 10 | 2089.43 | 19 | 2677.90 | 15 | | 267.059 | 6 | 2092.44 | 19 | 2678.64 | 15 | | 267.516 | 6 | 2095.54 | 19 | | | | 247.700 | | 2159.44 | 17 | | | | 267.709 | 6 | 2159.60 | 17 | į. | | | 282.50 | 8
5
5
5 | 2160.88 | 17 l | į | | | 283.178 | ا ع | 2161.04 | 17 | | | | 283.206
283.690 | 5 | 2161.22 | 17 | ľ | | The values for the majority of the transitions are taken from the self-consistent field calculations (with exchange) by Weiss[1]. These calculations do not include the important effects of configuration interaction; hence, fairly large uncertainties must be expected in most cases. The average of the dipole length and velocity approximations is adopted [1]. For the $2s^22p^4$ $^1S-2s2p^5$ $^1P^\circ$ transition a value is available from the calculations of Bolotin et al. [2] which include configuration interaction in a limited way. Again, large uncertainties are to be expected. #### References [1] Weiss, A. W., private communication (1965). ^[2] Bolotin, A. B., Shironas, I. I., and Braiman, M. Yu., Vilniaus Valstybinio v. Kapsuko vardo universiteto Mokslo Darbai, 33, matematika, fizika, 9, 107-112 (1960). Ne III. Allowed Transitions | No | . Transition Array | Multi-
plet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gk | $A_{ki}(10^8 m sec^{-1})$ | | S(at.u.) | $\log gf$ | Accu-
racy | Source | |----|---|--|--|--------------------------------------|--|----------------------------|----------------------------|-------------------------------------|--|--|---|--|----------------------------| | 1 | $ 2s^2 2p^4 - \\ 2s 2p^5 $ | ³ P - ³ P° (1 uv) | 489.54 | 317 | 204589 | 9 | | 71 | 0.26 | 3.7 | 0.36 | E | l
1 | | | | | 489.501
489.641
488.103
488.868
491.050
490.310 | 0
643
0
643
643
927 | 204292
204879
204879
205204
204292
204879 | 5
3
5
3
1 | 5
3
1
5
3 | 52
18
30
71
17
23 | 0.19
0.064
0.063
0.085
0.11
0.25 | 1.5
0.31
0.51
0.41
0.51
0.41 | $ \begin{array}{r} -0.03 \\ -0.72 \\ -0.50 \\ -0.59 \\ -0.50 \\ -0.60 \end{array} $ | E
E
E
E
E
E | ls
ls
ls
ls
ls | | 2 | | ^t D - ¹ P° (6 uv) | 379.308 | 25841 | 289479 | 5 | 3 | 210 | 0.27 | 1.7 | 0.13 | E |
1 | | 3 | | ¹ S - ¹ P° (9 uv) | 427.840 | 55747 | 289479 | 1 | 3 | 16 | 0.13 | 0.19 | -0.87 | E | 2 | | 4 | $2p^{4} - 2p^{3}(^{4}S^{\circ})3s$ | ³ P - ³ S°
(2 uv) | 313.35 | 317 | 319445 | 9 | 3 | 81 | 0.040 | 0.37 | -0.45 | E | 1 | | | | | 313.048
313.677
313.92 | 0
643
927 | 319445
319445
319445 | 5
3
1 | 3
3
3 | 46
26
9.0 | 0.041
0.039
0.040 | $\begin{array}{ c c } 0.21 \\ 0.12 \\ 0.041 \end{array}$ | $ \begin{array}{r} -0.69 \\ -0.93 \\ -1.40 \end{array} $ | E
E
E | ls
ls
ls | | 5 | $2p^4 - 2p^3(^2D^\circ)3s'$ | $\begin{array}{c c} & ^{3}P - ^{3}D^{\circ} \\ & (3 \text{ uv}) \end{array}$ | 283.41 | 317 | 353167 | 9 | 15 | 28 | 0.057 | 0.48 | -0.29 | E | 1 | | | | | 283.206
283.690
283.894
283.178
283.690
283.178 | 0
643
927
0
643
0 | 353148
353177
353197
353177
353197
353197 | 5
3
1
5
3
5 | 7
5
3
5
3 | 28
21
16
7.1
12
0.80 | $ \begin{vmatrix} 0.047 \\ 0.043 \\ 0.057 \\ 0.0086 \\ 0.014 \\ 5.8 \times 10^{-4} \end{vmatrix} $ | 0.22
0.12
0.053
0.040
0.040
0.0027 | $\begin{array}{r} -0.63 \\ -0.89 \\ -1.25 \\ -1.37 \\ -1.37 \\ -2.54 \end{array}$ | E
E
E
E
E | ls
ls
ls
ls
ls | | 6 | $2p^4 - 2p^3(^2\mathrm{P}^\circ)3s''$ | ³ P - ³ P°
(4 uv) | 267.29 | 317 | 374448 | 9 | 9 | 32 | 0.034 | 0.27 | -0.51 | E | 1 | | | 2p (1)03 | | 267.059
267.516
267.059
267.516
267.516
267.709 | 643
0
643
643
643
927 | 374434
374461
374461
374478
374434
374461 | 5
3
5
3
1 | 5
3
1
5
3 | 23
8.1
13
32
8.0
11 | 0.025
0.0087
0.0086
0.011
0.014
0.034 | 0.11
0.023
0.038
0.030
0.038
0.030 | $ \begin{array}{r} -0.90 \\ -1.58 \\ -1.36 \\ -1.47 \\ -1.37 \\ -1.47 \end{array} $ | E
E
E
E
E | ls
ls
ls
ls
ls | | 7 | $2p^4 - 2p^3(^2D^\circ)3s'$ | ¹ D - ¹ D°
(7 uv) | 301.124 | 25841 | 357930 | 5 | 5 | 71 | 0.097 | 0.48 | -0.32 | E | 1 | | 8 | $2p^4 - 2p^3(^2\mathbf{P}^{\circ})3s''$ | ¹ D- ¹ P°
(8 uv) | 282.50 | 25841 | 379834 | 5 | 3 | 45 | 0.032 | 0.15 | -0.79 | E | 1 | | 9 | $2p^4 - 2p^3(^2\mathbf{P}^{\circ})3s''$ | ¹ S - ¹ P°
(10 uv) | 308.559 | 55747 | 379834 | 1 | 3 | 32 | 0.14 | 0.14 | -0.86 | E | 1 | | 10 | $2p^4 - 2p^3(^4S^{\circ})3d$ | ³P ~ ³D°
(5 uv) | 251.33 | 317 | 398203 | 9 | 15 | 140 | 0.21 | 1.6 | 0.29 | D — | 1 | | | | | 251.145
251.558
251.726
251.145
251.558
251.145 | 0
643
927
0
643
0 | 398211
398197
398193
398197
398193
398193 | 5
3
1
5
3
5 | 7
5
3
5
3 | 140
100
76
33
55
3.8 | 0.18
0.16
0.22
0.031
0.052
0.0022 | 0.75
0.40
0.18
0.13
0.13
0.0089 | $ \begin{array}{c c} -0.04 \\ -0.32 \\ -0.66 \\ -0.80 \\ -0.80 \\ -1.97 \end{array} $ | D -
D -
D -
D -
D -
D - | ls
ls
ls
ls
ls | | 11 | $2p^4 - 2p^3(^2\mathrm{D}^\circ)3d'$ | ³ P − ³ D° | 229.06 | 317 | [| 9 | 15 | 73 | 0.096 | 0.65 | -0.06 | D- | 1 | | | | | [228.91]
[229.22]
[229.34]
[228.88]
[229.19]
[228.85] | 927
0
643 | 436914
436959
436914
436959 | 5
3
1
5
3
5 | 7
5
3
5
3
3 | 72
54
40
18
30
2.0 | $ \begin{array}{c} 0.080 \\ 0.071 \\ 0.095 \\ 0.014 \\ 0.024 \\ 9.6 \times 10^{-4} \end{array} $ | 0.30
0.16
0.072
0.054
0.054
0.0036 | $\begin{array}{c c} -0.40 \\ -0.67 \\ -1.02 \\ -1.14 \\ -1.15 \\ -2.32 \end{array}$ | D -
D -
D -
D -
D -
D - | ls
ls
ls
ls
ls | Ne III. Allowed Transitions - Continued | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g_k | $\begin{array}{c c} A_{ki}(10^8 \\ \sec^{-1}) \end{array}$ | f_{ik} | S(at.u.) | $\log gf$ | Accu-
racy | Source | |-----|--|--|--|--|--|--------------------------------------|--------------------------------------|--|--|---|--|---|--| | 12 | | 3P – 3P° | 227.62 | 317 | 439646 | 9 | 9 | 160 | 0.12 | 0.83 | 0.04 | D- | 1 | | | | | [227.49]
[227.76]
[227.42]
[227.73]
[227.82]
[227.90] | 0
643
0
643
643
927 | 439586
439708
439708
439760
439586
439708 | 5
3
5
3
3
1 | 5
3
1
5
3 | 120
39
69
160
41
52 | 0.093
0.031
0.032
0.041
0.053
0.12 | $ \begin{vmatrix} 0.35 \\ 0.069 \\ 0.12 \\ 0.092 \\ 0.12 \\ 0.092 \end{vmatrix} $ | $\begin{array}{c} -0.33 \\ -1.04 \\ -0.80 \\ -0.91 \\ -0.80 \\ -0.91 \end{array}$ | D-
D-
D-
D- | ls
ls
ls
ls
ls | | 13 | | ³ P- ³ S° | 227.40 | 317 | 440065 | 9 | 3 | 210 | 0.055 | 0.37 | -0.31 | D- | 1 | | | | | [227.24]
[227.57]
[227.72] | 0
643
927 | 440065
440065
440065 | 5
3
1 | 3
3
3 | 120
69
23 | 0.056
0.053
0.055 | 0.21
0.12
0.041 | $ \begin{array}{r} -0.55 \\ -0.80 \\ -1.26 \end{array} $ | D-
D-
D- | ls
ls
ls | | 14 | $2p^33s - 2p^3(^4S^{\circ})3p$ | ⁵ S°- ⁵ P
(11 uv) | 2592.3 | [314148] | [352712] | 5 | 15 | 2.5 | 0.76 | 32 | 0.58 | D | ca | | | -F (-)-F | (== 1,) | 2590.04
2593.60
2595.68 | [314148]
[314148]
[314148] | [352746]
[352693]
[352662] | 5
5
5 | 7
5
3 | 2.5
2.5
2.5 | 0.36
0.25
0.15 | 15
11
6.5 | $0.25 \\ 0.10 \\ -0.12$ | D
D
D | ls
ls
ls | | 15 | | ³ S°- ³ P
(12 uv) | 2678.2 | 319445 | 356773 | 3 | 9 | 2.4 | 0.78 | 20 | 0.37 | D | ca | | | | (12 11) | 2677.90
2678.64
2677.90 | 319445
319445
319445 | 356777
356766
356777 | 3
3
3 | 5
3
1 | 2.4
2.4
2.4 | 0.43
0.26
0.086 | 11
6.8
2.3 | $ \begin{array}{r} 0.11 \\ -0.11 \\ -0.59 \end{array} $ | D
D
D | ls
ls
ls | | 16 | $2p^33s' - 2p^3(^2D^0)3p'$ | ³D°−3F | 2612.4 | 353167 | 391435 | 15 | 21 | 2.4 | 0.34 | 44 | 0.71 | D | ca | | | -P (-)-P | | 2610.03
2613.41
2615.87
2611.42
2614.51
[2612.5] | 353148
353177
353197
353148
353177
353148 | 391450
391430
391414
391430
391414
391414 | 7
5
3
7
5
7 | 9
7
5
7
5
5 | 2.4
2.1
2.0
0.27
0.37
0.011 | $ \begin{vmatrix} 0.32 \\ 0.31 \\ 0.34 \\ 0.027 \\ 0.038 \\ 7.8 \times 10^{-4} \end{vmatrix} $ | 19
13
8.9
1.6
1.6
0.047 | 0.34 0.18 0.01 -0.72 -0.72 -2.26 | D
D
D
D
D | ls
ls
ls
ls
ls | | 17 | $2p^{3}3p - 2p^{3}(^{4}S^{\circ})3d$ | 5P — 5D° | 2163.77
2161.22
2159.60
[2163.7]
2161.04
2159.44
[2163.5]
2160.88 | [352746]
[352693]
[352662]
[352746]
[352693]
[352662]
[352746]
[352693] | [398947]
[398949]
[398952]
[398949]
[398952]
[398956]
[398956] | 7
5
3
7
5
3
7
5 | 9
7
5
7
5
3
5
3 | 6.5
4.36
2.30
2.25
3.82
4.92
0.450
1.64 | 0.59
0.428
0.268
0.158
0.267
0.344
0.0227
0.069 | 29.4
15.2
5.7
7.9
9.5
7.3
1.12
2.45 | $\begin{array}{c} 0.62 \\ 0.330 \\ -0.096 \\ 0.044 \\ 0.126 \\ 0.014 \\ -0.80 \\ -0.464 \end{array}$ | C – C – C – C – C – C – C – C – C – C – | ca, ls | | 18 | | ³ P - ³ D° | 2413.0 | 356773 | 398203 | 9 | 15 | 4.87 | 0.71 | 51 | 0.80 | Ç — | ca | | | | | 2412.73
2412.94
2413.78
2413.54
2413.18
2413.78 | 356777
356766
356777
356777
356766
356777 | 398212
398197
398193
398197
398193
398193 | 5
3
1
5
3
5 | 7
5
3
5,
3 | 4.87
3.65
2.70
1.22
2.03
0.135 | 0.59
0.53
0.71
0.106
0.177
0.0071 | 23.6
12.7
5.6
4.22
4.22
0.281 | $\begin{array}{c} 0.473 \\ 0.202 \\ -0.150 \\ -0.275 \\ -0.275 \\ -1.451 \end{array}$ | C-
C-
C-
C-
C- | ls
ls
ls
ls
ls | | 19 | $2p^{3}3p' - 2p^{3}(^{2}D^{\circ})3d'$ | 3D - 3D° | 2091.7 | 389099 | 436891 | 15 | 15 | 3.92 | 0.257 | 26.6 | 0.59 | C- | ca | | | 2p (υ)3 u | | 2095.54
2089.43
2086.96
2092.44
2087.44
2092.44
2088.92 | 389139
389069
389058
389139
389069
389069
389058 | 436845
436914
436959
436914
436959
436845
436914 | 7
5
3
7
5
5
3 | 7
5
3
5
3
7
5 | 3.47
2.73
2.96
0.61
0.99
0.435
0.59 | 0.228
0.179
0.194
0.0286
0.0387
0.0400
0.064 | 11.0
6.2
3.99
1.38
1.33
1.38
1.33 | $\begin{array}{c} 0.204 \\ -0.048 \\ -0.236 \\ -0.70 \\ -0.71 \\ -0.70 \\ -0.71 \end{array}$ | C-
C-
C-
C-
C- | ls
ls
ls
ls
ls | The adopted values represent, as in the case of FII, the work of Garstang [1] and Naqvi [2], who independently have done essentially the same calculations and have arrived at very similar results. For the selection of values, the same considerations as for FII have been applied. - [1] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 111, 115-124 (1951). - [2] Naqvi, A. M., Thesis Harvard (1951). Ne III. Forbidden Transitions | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | Type of
Transition
 $A_{ki}(\sec^{-1})$ | S(at.u.) | Accu-
racy | Source | |-----|---------------------|--|---|---|--|------------------|-----------------------|-----------------------|---|---|-----------------------|------------------------| | 2 | -1 | ³ P - ¹ D | $[15.55 \times 10^{4}]$ $[15.55 \times 10^{4}]$ $[10.79 \times 10^{4}]$ $[36.19 \times 10^{4}]$ | $\begin{array}{c} 0 \\ 0 \\ 0 \\ 642.9 \end{array}$ | 642.9
642.9
927
927 | 5
5
5
3 | 3
3
1
1 | m
e
e
e
m | $\begin{array}{c} 0.00599 \\ 2.60 \times 10^{-9} \\ 2.03 \times 10^{-8} \\ 0.00115 \end{array}$ | 2.50
0.422
0.176
2.00 | B
C
C
B | 1, 2
1
1
1, 2 | | 3 | | (1 F)
³ P- ¹ S | 3868.74
3868.74
3967.51
3967.51
[4012.7] | 0
0
642.9
642.9
927 | 25841
25841
25841
25841
25841
55747 | 5 5 3 3 1 | 5
5
5
5
1 | m
e
m
e
e | $\begin{array}{c} 0.170 \\ 3.0 \times 10^{-4} \\ 0.052 \\ 3.8 \times 10^{-5} \\ 1.2 \times 10^{-5} \\ 0.0051 \end{array}$ | $\begin{array}{c} 0.00182 \\ 7.7 \times 10^{-4} \\ 6.1 \times 10^{-4} \\ 1.1 \times 10^{-4} \\ 3.7 \times 10^{-5} \\ \\ 5.6 \times 10^{-5} \end{array}$ | C
D
C
D
D | 2
1
2
1
1 | | 4 | | ¹ D – ¹ S
(2 F) | 3342.9 | 642.9
25841 | 55747 | 5 | 1 | т
. е | 2.80 | 4.87×10^{-4} 0.70 | С | 1 | Ionization Potential $97.02 \text{ eV} = 782768 \text{ cm}^{-1}$ # **Allowed Transitions** ### List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |--|--|--|---|---|---| | 208.485
208.734
208.899
212.556
357.831
358.70
387.13
388.23
421.584
469.77
469.817
469.865
521.730
521.74
521.810 | 7
7
7
8
3
6
6
5
2
2
2
4
4
4 | 541.124
542.076
543.884
2018.44
2022.19
2029.2
2033.5
2174.4
2176.1
2188.0
2192.6
2203.88
2206.4
2220.81
2258.02 | 1
1
1
13
13
13
13
10
10
10
10
10
10
10
10 | 2262.08
2264.54
2285.79
2293.14
2293.49
2350.84
2352.52
2357.96
2362.68
2363.28
2365.49
2372.16
2384.20
2384.95
2404.28 | 14
14
12
12
12
12
9
9
9
11 | The values for several of the transitions are taken from the self-consistent field calculations (with exchange) by Weiss [1]. These calculations do not include the important effects of configuration interaction; hence, fairly large uncertainties must be expected. The average of the dipole length and velocity approximations is adopted [1]. For the $2s^22p^3$ ²P° $-2s2p^4$ ²D, ²S transitions values are available from the calculations of Levinson et al. [2] which include configuration interaction in a limited way. Again, large uncertainties are to be expected. #### References [1] Weiss, A. W., private communication (1965). ^[2] Levinson, I. B., Bolotin, A. B., and Levin, L. I., Trudy Vil'nyusskogo un. 5, 49-55 (1956). Ne IV. Allowed Transitions | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | gk | $\begin{array}{ c c c c }\hline A_{ki}(10^8\\ \sec^{-1}) \\ \end{array}$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|---|---|--|--|--|--------------------------------------|---------------------------------|--|--|---|--|-----------------|----------------------------------| | | $2s^{2}2p^{3}-$ | 4S°-4P | 542.82 | 0 | 184222 | 4 | 12 | 25 | 0.34 | 2.4 | 0.13 | E | 1 | | | 2s2p4 | (1 uv) | 543.884
542.076
541.124 | 0
0
0 | 183860
184477
184799 | 4
4
4 | 6 4 2 | 25
25
25 | 0.17
0.11
0.056 | 1.2
0.80
0.40 | $ \begin{array}{r r} -0.17 \\ -0.35 \\ -0.65 \end{array} $ | E
E
E | ls
ls
ls | | 2 | | $^{2}\mathrm{D}^{\circ}-^{2}\mathrm{D}$ | 469.84 | [40968] | [253808] | 10 | 10 | 51 | 0.17 | 2.6 | 0.23 | E | 1 | | | | (4 uv) | 469.817
469.817
[469.77]
469.865 | [40950]
[40995]
[40950]
[40995] | [253799]
[253822]
[253822]
[253799] | 6
4
6
4 | 6
4
4
6 | 49
46
4.9
3.3 | 0.16
0.15
0.011
0.016 | 1.5
0.94
0.10
0.10 | $ \begin{array}{r} -0.01 \\ -0.22 \\ -1.19 \\ -1.19 \end{array} $ | E
E
E | ls
ls
ls
ls | | 3 | | $^{2}\mathrm{D}^{\circ}-^{2}\mathrm{P}$ | 358.40 | [40968] | [319985] | 10 | 6 | 150 | 0.18 | 2.1 | 0.25 | E | 1 | | | | (5 uv) | 358.70
357.831
358.70 | [40950]
[40995]
[40995] | [319751]
[320452]
[319751] | 6
4
4 | 4 2 4 | 140
150
15 | 0.18
0.15
0.030 | $egin{array}{c} 1.3 \ 0.70 \ 0.14 \end{array}$ | $ \begin{array}{r} 0.04 \\ -0.23 \\ -0.93 \end{array} $ | E
E
E | ls
ls
ls | | 4 | | ² P°- ² D
(8 uv) | 521.78 | [62155] | [253808] | 6 | 10 | 7.7 | 0.052 | 0.54 | - 0.50 | E | 2 | | | | (o uv) | 521.810
521.730
[521.74] | [62157]
[62150]
[62157] | [253799]
[253822]
[253822] | 4
2
4 | 6
4
4 | 7.6
6.4
1.3 | $\begin{array}{c} 0.047 \\ 0.052 \\ 0.0052 \end{array}$ | 0.32
0.18
0.036 | $ \begin{array}{r} -0.73 \\ -0.98 \\ -1.68 \end{array} $ | E
E
E | ls
ls
ls | | 5 | | ² P°- ² S
(9 uv) | 421.584 | [62155] | [299351] | 6 | 2 | 120 | 0.11 | 0.92 | -0.18 | E | 2 | | 6 | | ² P°-2P
(10 uv) | 387.85 | [62155] | [319985] | 6 | 6 | 75 | 0.17 | 1.3 | 0.01 | E | 1 | | | | (== 21) | 388.23
387.13
387.13
388.23 | [62157]
[62150]
[62157]
[62150] | [319751]
[320452]
[320452]
[319751] | 4
2
4
2 | 4
2
2
4 | 62
51
24
12 | 0.14
0.11
0.027
0.055 | 0.72
0.29
0.14
0.14 | $ \begin{array}{r} -0.25 \\ -0.64 \\ -0.96 \\ -0.96 \end{array} $ | E
E
E | ls
ls
ls
ls | | 7 | $2p^3 - 2p^2(^3P)3s$ | ⁴ S°- ⁴ P
(2 uv) | 208.63 | 0 | 479309 | 4 | 12 | 48 | 0.095 | 0.26 | -0.42 | E | I | | | 2p (1)03 | (2 uv) | 208.485
208.734
208.899 | 0
0
0 | 479662
479083
478701 | 4
4
4 | 6 4 2 | 48
48
48 | 0.047
0.032
0.016 | 0.13
0.087
0.043 | $ \begin{array}{r} -0.72 \\ -0.90 \\ -1.20 \end{array} $ | E
E
E | ls
ls
ls | | 8 | $\begin{array}{c c} 2p^3 - & \\ 2p^2(^1{\rm D})3s' \end{array}$ | $^{2}D^{\circ}-^{2}D$ (6 uv) | 212.556 | [40968] | [511681] | 10 | 10 | 74 | 0.050 | 0.35 | -0.30 | E | 1 | | 9 | $\begin{array}{c c} 2p^2 3s - \\ 2p^2 (^3P) 3p \end{array}$ | 4P-4D° | 2361.5 | 479309 | 521643 | 12 | 20 | 2.5 | 0.34 | 32 | 0.62 | D | ca | | | | | 2357.96
2352.52
2350.84
2384.95
2372.16
2362.68
2405.19
2384.20 | 479662
479083
478701
479662
479083
478701
479662
479083 | 522058
521578
521226
521578
521226
521013
521226
521013 | 6
4
2
6
4
2
6
4 | 8
6
4
6
4
2
4 | 2.5
1.7
1.0
0.72
1.3
2.0
0.12
0.40 | 0.28
0.22
0.17
0.061
0.11
0.17
0.0067
0.017 | 13
6.7
2.7
2.9
3.4
2.7
0.32
0.53 | 0.22
-0.06
-0.46
-0.43
-0.36
-0.47
-1.39
-1.17 | D D D D D D D D | ls
ls
ls
ls
ls
ls | | 10 | | 4P_4P° | 2197.5 | 479309 | 524802 | 12 | 12 | 3.1 | 0.23 | 20 | 0.43 | D | ca | | | | | 2203.88
[2192.6]
[2188.0]
2220.81
[2206.4]
[2176.1]
[2174.4] | 479662
479083
478701
479662
479083
479083
478701 | 525022
524677
524391
524677
524391
525022
524677 | 6
4
2
6
4
4
2 | 6
4
2
4
2
6
4 | 2.2
0.42
0.52
1.4
2.5
0.96
1.3 | 0.16
0.030
0.037
0.067
0.093
0.10
0.19 | 6.8
0.86
0.54
2.9
2.7
2.9
2.7 | $\begin{array}{c} -0.03 \\ -0.92 \\ -1.13 \\ -0.40 \\ -0.43 \\ -0.39 \\ -0.42 \end{array}$ | D D D D D D D | ls
ls
ls
ls
ls | Ne IV. Allowed Transitions - Continued | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g_k | $egin{array}{c} A_{ki}(10^8 \ m sec^{-1}) \end{array}$ | f_{ik} | S(at.u.) | $\log gf$ | Accu-
racy | Source | |-----|----------------------------|----------------------------------|--
--|--|------------------|------------------|---|--------------------------------|----------------------------|---|------------------|----------------------| | 11 | | ² P − ² D° | 2366.7 | [488934] | [531174] | 6 | 10 | 2.6 | 0.37 | 17 | 0.35 | D | ca | | , | | 1 | 2363.28
2365.49
2404.28 | [489161]
[488479]
[489161] | [531462]
[530741]
[530741] | 4 2 4 | 6
4
4 | 2.7
2.2
0.42 | 0.33
0.37
0.036 | 10
5.7
1.1 | $ \begin{array}{c c} 0.12 \\ -0.13 \\ -0.84 \end{array} $ | D
D
D | ls
ls
ls | | 12 | $2p^23s' - 2p^2(^1D)3p'$ | ² D− ² F° | 2289.1 | [511681] | [555353] | 10 | 14 | 2.8 | 0.30 | 23 | 0.48 | D | ca | | | - p (2)3p | | 2285.79
2293.49
2293.14 | [511678]
[511685]
[511678] | [555413]
[555273]
[555273] | 6 4 6 | 8
6
6 | 2.8
2.6
0.18 | 0.29
0.30
0.014 | 13
9.2
0.65 | $0.24 \\ 0.08 \\ -1.06$ | D
D
D | ls
ls
ls | | 13 | | ² D− ² D° | 2031.7 | [511681] | [560885] | 10 | 10 | 4.0 | 0.25 | 17 | 0.39 | D | ca | | | | | 2022.19
2018.44
[2029.2]
[2033.5] | [511678]
[511685]
[511678]
[511685] | [560846]
[560943]
[560943]
[560846] | 6
4
6
4 | 6
4
4
6 | 3.8
3.7
0.40
0.27 | 0.23
0.22
0.017
0.025 | 9.3
6.0
0.66
0.66 | 0.14 -0.05 -1.00 -1.00 | D
D
D
D | ls
ls
ls
ls | | 14 | $2p^23s'' - 2p^2(^1S)3p''$ | 6S−6P° | 2260.8 | [538500] | [582718] | 6 | 18 | 2.7 | 0.63 | 28 | 0.58 | D | ca | | | 2p (0)0p | | 2258.02
2262.08
2264.54 | [538500]
[538500]
[538500] | [582773]
[582693]
[582645] | 6
6
6 | 8
6
4 | 2.7
2.7
2.7 | 0.28
0.21
0.14 | 12
9.4
6.2 | $0.23 \\ 0.10 \\ -0.08$ | D
D
D | ls
ls
ls | Garstang's 1960 calculations [1] are exclusively used, since it is felt that the important effects of configuration interaction are partially taken into account in this work and a reliable estimate of the quadrupole integral is provided (see also general introduction). ### Reference [1] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 120, 201 (1960). Ne IV. Forbidden Transitions | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | g_k | Type of
Transition | $A_{ki}(\sec^{-1})$ | S(at.u.) | Accu-
racy | Source | |-----|---------------------|-----------------------------------|---|-------------------------|----------------------------------|------------------|------------------|-----------------------|---|--|------------------|------------------| | 1 | $2p^3 - 2p^3$ | ⁴ S° − ² D° | [2441.3]
[2441.3]
[2438.6]
[2438.6] | 0
0
0
0 | 40950
40950
40995
40995 | 4
4
4
4 | 6
6
4
4 | m
e
m
e | $ \begin{vmatrix} 1.80 \times 10^{-4} \\ 4.1 \times 10^{-4} \\ 0.0053 \\ 2.7 \times 10^{-4} \end{vmatrix} $ | 5.8×10^{-7} 1.3×10^{-4} 1.14×10^{-5} 5.5×10^{-5} | C
D
C
D | 1
1
1
1 | | 2 | | 4S° — 2P° | [1609.0]
[1609.0]
[1608.8]
[1608.8] | 0
0
0
0 | 62150
62150
62157
62157 | 4
4
4
4 | 2
2
4
4 | m
e
m
e | $\begin{array}{c} 0.53 \\ 8.6 \times 10^{-6} \\ 1.33 \\ 1.5 \times 10^{-7} \end{array}$ | 1.64×10^{-4} 1.1×10^{-7} 8.2×10^{-4} 3.8×10^{-9} | C
D
C | 1
1
1
1 | | 3 | | ² D° – ² D° | $[22.2 \times 10^{5}]$ $[22.2 \times 10^{5}]$ | 40950
40950 | 40995
40995 | 6 | 4 4 | m
e | $\begin{vmatrix} 1.48 \times 10^{-6} \\ 1.1 \times 10^{-17} \end{vmatrix}$ | $\frac{2.40}{0.0014}$ | D
C+ | 1
1 | Ne IV. Forbidden Transitions - Continued | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k({ m cm}^{-1})$ | gi | g_k | Type of
Transition | $A_{ki}(\sec^{-1})$ | S(at.u.) | Accu-
racy | Source | |-----|---------------------|--|---|---|---|---------------------------------|----------------------------|----------------------------|---|---|---------------|----------------------------| | 4 | | ² D° — ² P°
(1 F) | 4714.25
4715.61
4715.61
4724.15
4724.15
4725.62
4725.62 | 40950
40950
40950
40995
40995
40995
40995 | 62150
62157
62157
62157
62157
62150
62150 | 6
6
6
4
4
4
4 | 2
4
4
4
2
2 | e
m
e
m
e
m | 0.110
0.210
0.191
0.358
0.079
0.229
0.160 | 0.305
0.00327
1.06
0.0056
0.439
0.00179
0.446 | C C C C C C | 1
1
1
1
1
1 | | 5 | | ² P° — ² P° | $[15.6 \times 10^6]$
$[15.6 \times 10^6]$ | 62150
62150 | 62157
62157 | $\frac{2}{2}$ | 44 | m
e | $\begin{array}{c} 2.36 \times 10^{-9} \\ 2.6 \times 10^{-22} \end{array}$ | 1.33
5.7 × 10 ⁻⁴ | C + | 1 1 | Ne V. **Ground State** $1s^22s^22p^2\ ^3{\rm P_0}$ Ionization Potential $126.3 \text{ eV} = 1018634 \text{ cm}^{-1}$ ### **Allowed Transitions** #### List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |----------------|--------|----------------|--|----------------|-----| | 142.44 | 8 | 173.932 | 6 | 572.336 | 1 | | 142.52 | 8 | 357.955 | 3 | 2224.12 | 14 | | 142.58 | 8 | 358.472 | $\begin{bmatrix} 3 \\ 3 \end{bmatrix}$ | 2227.42 | 14 | | 142.66 | l š | 359.385 | 3 | 2232.41 | 14 | | 142.72 | 8
8 | 365.594 | 3
5 | 2236.29 | 14 | | 143.22 | 7 | 416,198 | 4 | 2245.48 | 14 | | 143.27 | 7 1 | 480,406 | | 2256.05 | 14 | | 143.30 | 7 | 481.281 | 2
2
2
2 | 2257.9 | 14 | | 143.34 | 7 | 481.361 | $\frac{1}{2}$ | 2259.57 | 13 | | 143.42 | 7 | 482.987 | $\frac{1}{2}$ | 2263.39 | 13 | | 143.45 | 7 | 568.418 | 1 1 | 2265.71 | 13 | | 147.13 | l ii l | 569.759 | i i II | 2274.54 | 14 | | 148.78 | 1 10 1 | 569.830 | i | 2282.61 | 13 | | 151.42 | 9 | 572.03 | î | 2306.31 | 13 | | 156.61 | 12 | 572.106 | i i | 2330.3 | 13 | For the $2s^22p^2-2s2p^3$ transition array, values are available from the calculations of Bolotin et al. [1] which include the important effects of configuration interaction only in a limited way. Hence, fairly large uncertainties must be expected. The values for several other transitions are taken from the self-consistent field calculations (with exchange) by Weiss [2]. These calculations neglect the effects of configuration interaction entirely. The average of the dipole length and the velocity approximations is adopted [2]. ^[1] Bolotin, A. B., Levinson, I. B., and Levin, L. I., Soviet Phys. - JETP 2, 391-395 (1956). ^[2] Weiss, A. W., private communication (1965). Ne V. Allowed Transitions | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $\begin{array}{c c} A_{ki}(10^8\\ \sec^{-1}) \end{array}$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|--|--|--|---|--|----------------------------|----------------------------|---|--|---|---|----------------------------------|-----------------------------| | 1 | $\begin{vmatrix} 2s^22p^2 - \\ 2s2p^3 \end{vmatrix}$ | ³ P - ³ D°
(1 uv) | 571.04 | 756 | 175876 | 9 | 15 | 14 | 0.11 | 1.9 | 0.00 | E | 1 | | | 282p | (1 uv) | 572.336
569.830
568.418
572.106
569.759
[572.03] | 1112
414
0
1112
414
1112 | 175834
175905
175927
175905
175927
175927 | 5
3
1
5
3
5 | 7
5
3
5
3
3 | 14
10
7.7
3.5
5.8
0.40 | 0.094
0.084
0.11
0.017
0.028
0.0012 | 0.89
0.47
0.21
0.16
0.16
0.011 | $\begin{array}{c c} -0.33 \\ -0.60 \\ -0.95 \\ -1.07 \\ -1.07 \\ -2.23 \end{array}$ | E
E
E
E
E | ls
ls
ls
ls
ls | | 2 | | $ \begin{array}{c c} ^{3}P - ^{3}P^{\circ} \\ (2 \text{ uv}) \end{array} $ | 482.15 | 756 | 208161 | 9 | 9 | 40 | 0.14 | 2.0 | 0.10 | E | 1 | | | | (= = 1) | 482.987
481.361
482.987
481.281
481.361
480.406 | 1112
414
1112
414
414
0 | 208157
208157
208157
208193
208157
208157 | 5
3
5
3
1 | 5
3
3
1
5
3 | 30
10
17
40
10
13 | 0.10
0.036
0.035
0.046
0.059
0.14 | 0.83
0.17
0.28
0.22
0.28
0.22 | -0.28
-0.97
-0.75
-0.86
-0.75
-0.86 | E
E
E
E
E | ls
ls
ls
ls*
ls | | 3 | | ³ P - ³ S° (3 uv) | 358.93 | 756 | 279365 | 9 | 3 | 220 | 0.14 | 1.5 | 0.10 | E | 1 | | | | (0 41) | 359.385
358.472
357.955 | 1112
414
0 | 279365
279365
279365 | 5
3
1 | 3
3
3 | 120
73
25 | 0.14
0.14
0.14 | 0.83
0.50
0.17 | $-0.15 \\ -0.37 \\ -0.84$ | E
E
E | ls
ls
ls | | 4 | | ¹ D - ¹
D°
(4 uv) | 416.198 | 30294 | 270564 | 5 | 5 | 110 | 0.28 | 1.9 | 0.14 | E | 1 | | 5 | | ¹ D - ¹ P° (5 uv) | 365.594 | 30294 | 303812 | 5 | 3 | 150 | 0.18 | 1.1 | -0.04 | E | 1 | | 6 | 2p ² —
2p(² P°)3s | ¹ D - ¹ P°
(6 uv) | 173.932 | 30294 | 605231 | 5 | 3 | 230 | 0.063 | 0.18 | -0.50 | E | 2 | | 7 | 2p ² - 2p(² P°)3d | 3P — 3D° | 143.32 | 756 | 698517 | 9 | 15 | 1200 | 0.61 | 2.6 | 0.74 | D- | 2 | | | 2p(*r)5a | | [143.34]
[143.27]
[143.22]
[143.42]
[143.30]
[143.45] | 1112
414
0
1112
414
1112 | 698735
698382
698231
698231
698231 | 5
3
1
5
3
5 | 7
5
3
5
3 | 1200
900
670
300
500
32 | 0.51
0.46
0.62
0.093
0.16
0.0059 | 1.2
0.65
0.29
0.22
0.22
0.014 | $\begin{array}{c} 0.41 \\ 0.14 \\ -0.21 \\ -0.33 \\ -0.33 \\ -1.53 \end{array}$ | D-
D-
D-
D-
D-
D- | ls
ls
ls
ls
ls | | 8 | | 3P-3P° | 142.61 | 756 | 701945 | 9 | 9 | 670 | 0.20 | 0.86 | 0.26 | D- | 2 | | | | | [142.72]
[142.52]
[142.66]
[142.44]
[142.58]
[142.44] | 1112
414
1112
414
414
0 | 701765
702074
702074
702459
701765
702074 | 5
3
5
3
1 | 5
3
1
5
3 | 500
170
280
670
170
220 | 0.15
0.051
0.051
0.068
0.085
0.20 | 0.36
0.072
0.12
0.096
0.12
0.096 | $\begin{array}{c} -0.12 \\ -0.81 \\ -0.59 \\ -0.69 \\ -0.59 \\ -0.69 \end{array}$ | D-
D-
D-
D-
D-
D- | ls
ls
ls
ls
ls | | 9 | , | ¹ D - ¹ D° | [151.42] | 30294 | 690691 | 5 | 5 | 400 | 0.14 | 0.34 | -0.17 | D- | 2 | | 10 | | ¹ D- ¹ P° | [148.78] | 30294 | 702412 | 5 | 3 | 37 | 0.0073 | 0.018 | -1.43 | D- | 2 | | 11 | | ¹ D - ¹ F° | [147.13] | 30294 | 709956 | 5 | 7 | 1300 | 0.58 | 1.4 | 0.46 | D- | 2 | | 12 | | ¹ S - ¹ P° | [156.61] | 63900 | 702412 | 1 | 3 | 690 | 0.76 | 0.39 | -0.12 | D- | 2 | Ne V. Allowed Transitions - Continued | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(10^8 m sec^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|---|----------------|---|--|--|--------------------------------------|----------------------------------|--|--|--|---|---------------------------------|--| | 13 | 2p3s —
2p(² P°)3p | 3P° — 3D | 2269.0
2265.71
2259.57
2263.39
2306.31
2282.61
[2330.3] | 597083
597523
596626
596254
597523
596626
597523 | 641142
641646
640868
640422
640868
640422
640422 | 9
5
3
1
5
3
5 | 15
7
5
3
5
3
3 | 2.2
2.2
1.7
1.2
0.52
0.89
0.056 | 0.28
0.24
0.21
0.28
0.042
0.070
0.0027 | 8.9
4.7
2.1
1.6
1.6
0.11 | 0.40
0.07
- 0.20
- 0.55
- 0.68
- 0.68
- 1.86 | D
D
D
D
D | ca
ls
ls
ls
ls | | 14 | 2s2p ² 3s —
2s2p ² (⁴ P)3p | 5P — 5D° | 2232.41
2227.42
2224.12
2256.05
2245.48
2236.29
2274.54
[2257.9] | 698504
697935
697507
698504
697935
697507
698504
697935 | 743285
742816
742455
742816
742455
742210
742455
742210 | 7
5
3
7
5
3
7
5 | 9
7
5
7
5
3
5 | 0.20
0.13
0.069
0.063
0.11
0.15
0.012
0.047 | | 0.96
0.50
0.19
0.25
0.31
0.24
0.036
0.080 | $\begin{array}{c} -0.88 \\ -1.17 \\ -1.59 \\ -1.47 \\ -1.37 \\ -1.49 \\ -2.32 \\ -1.97 \end{array}$ | D
D
D
D
D
D
D | ca, ls | The adopted values represent, as in the case of FIV, the work of Garstang [1] and Naqvi [2], who independently have done essentially the same calculations and have arrived at very similar results. For the selection of values, the same considerations as for FIV have been applied. - [1] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 111, 115-124 (1951). - [2] Naqvi, A. M., Thesis Harvard (1951). Ne V. Forbidden Transitions | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | Type of
Transition | $A_{ki}(\sec^{-1})$ | S(at.u.) | Accu-
racy | Source | |-----|---------------------|--|-------------------------|-----------------------|-------------------------|----|----|-----------------------|-----------------------|------------------------|--------------------|--------------| | 1 | $2p^2 - 2p^2$ | 3P_3P | | | | | | | | | | | | 1 | 2p 2p | 1 1 | $[24.15 \times 10^{4}]$ | 0 | 414 | 1 | 3 | m | 0.00129 | 2.00 | В | 1, 2 | | | | | $[8.990 \times 10^{4}]$ | - | 1112 | ĺî | 5 | e | 5.2×10^{-9} | 0.091 | Č | - ' ī | | | | | $[14.32 \times 10^4]$ | 414 | 1112 | 3 | 5 | m | 0.00459 | 2.50 | В | $1, \bar{2}$ | | | | 1 | $[14.32 \times 10^{4}]$ | 414 | 1112 | 3 | 5 | e | 1.10×10^{-9} | 0.197 | $\bar{\mathbf{c}}$ | <u>''</u> i | | 2 | | $^{3}P - ^{1}D$ $(1 F)$ | [111027110] | | | | | | | | | | | | | (11) | [3300.0] | 0 | 30294 | 1 | 5 | e | 1.9×10^{-5} | 2.2×10^{-5} | D | 1 1 | | | | | 3345.9 | 414 | 30294 | 3 | 5 | m | 0.138 | 9.6×10^{-4} | $\bar{\mathbf{c}}$ | $1, \bar{2}$ | | | | | 3345.9 | 414 | 30294 | 3 | 5 | e | 6.2×10^{-5} | 7.7×10^{-5} | D | -, <u>1</u> | | | Į. | | 3425.8 | 1112 | 30294 | 5 | 5 | m | 0.382 | 0.00285 | C | 1, 2 | | | | } | 3425.8 | 1112 | 30294 | 5 | 5 | e | 3.9×10^{-4} | 5.5×10^{-4} | D | ´ı | | 3 | | $^{3}P-^{1}S$ | | | | 1 | | 1 | ļ | | ļ | Į. | | _ | 1 | | [1575.2] | 414 | 63900 | 3 | 1 | m | 4.20 | 6.1 × 10 ⁻⁴ | C | 1 | | | | | [1592.7] | 1112 | 63900 | 5 | 1 | e | 0.0068 | 4.1×10^{-5} | D | 1 | | 4 | | ¹ D - ¹ S
(2 F) | [-374.1] | | | 1 | | | | | } | | | | | (21) | 2972 | 30294 | 63900 | 5 | 1 | e | 2.60 | 0.359 | C | 1 | Ground State $1s^2 2s^2 2p \,^2 P_{1/2}^{\circ}$ Ionization Potential $157.91 \text{ eV} = 1274000 \text{ cm}^{-1}$ ## **Allowed Transitions** ### List of tabulated lines: | Wavelength [Å] | No. | Wavelength [Å] | No. | Wavelength [Å] | No. | |--|-----------------------|---|-----------------------|--|-----------------------| | 122.49
122.69
138.39
138.64
399.82 | 9
9
8
8
3 | 440.404
440.46
440.60
451.843
452.745 | 5
5
5
4
4 | 571.00
637.90
638.19
641.26
641.55 | 6
7
7
7
7 | | 401.14
401.93
403.26
433.176
435.649 | 3
3
3
2
2 | 454.072
558.59
562.71
562.80
570.77 | 4
1
1
1
6 | 2042.38
2055.93
2213.1
2229.1 | 10
10
11
11 | The transition probabilities are taken from the self-consistent field calculations (with exchange) by Weiss [1]. These calculations neglect the effects of configuration interaction entirely. The average of the dipole length and velocity approximations is adopted [1]. ## Reference [1] Weiss, A. W., private communication (1965). # Ne VI. Allowed Transitions | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(10^8 m sec^{-1})$ | fik | S(at.u.) | log gf | Accu-
racy | Source | |-----|---------------------|---------------------------------|--|----------------------------------|--------------------------------------|------------------|--|---------------------------|--------------------------------|-----------------------------|---|------------------|----------------------| | 1 | $2s^22p-$ | ²P°−²D | 561.38 | 873 | 179004 | 6 | 10 | 17 | 0.14 | 1.5 | -0.09 | E | 1 | | _ | $2s2p^2$ | | [562.80]
[558.59]
[562.71] | 1310
0
1310 | 178992
179021
179021 | 4
2
4 | 6
4
4 | 17
15
2.8 | $0.12 \\ 0.14 \\ 0.013$ | 0.90
0.50
0.10 | -0.31 -0.57 -1.27 | E
E
E | ls
ls
ls | | 2 | ' | ² P°- ² S | 434.82 | 873 | 230853 | 6 | 2 | 32 | 0.030 | 0.26 | -0.74 | Е | 1 | | | | • • | 435.649
433.176 | 1310
0 | 230853
230853 | 4 2 | $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ | 21
11 | 0.030
0.031 | 0.17
0.087 | $-0.93 \\ -1.21$ | E
E | ls
ls | | 3 | | ²P° _ ²P | 401.66 | 873 | 249839 | 6 | 6 | 100 | 0.25 | 2.0 | 0.18 | Е | 1 | | 3 | | • | [401.93]
[401.14]
[403.26]
[399.82] | 1310
0
1310
0 | 250112
249292
249292
250112 | 4
2
4
2 | 4
2
2
4 | 86
69
34
17 | 0.21
0.17
0.041
0.084 | 1.1
0.44
0.22
0.22 | $ \begin{array}{r} -0.08 \\ -0.48 \\ -0.78 \\ -0.78 \end{array} $ | E
E
E
E | ls
ls
ls
ls | | | $2s2p^2-2p^3$ | 4P-4S° | 453.26 | [101204] | [321829] | 12 | 4 | 82 | 0.084 | 1.5 | 0.00 | E | 1 | | 4 | 2s2p2p | 1 5 | 454.072
452.745
451.843 | [101600]
[100954]
[100513] | [321829]
[321829] | 6 4 | 4
4
4 | 41
27
14 | 0.084
0.084
0.084 | 0.75
0.50
0.25 | $ \begin{array}{r} -0.30 \\ -0.47 \\ -0.77 \end{array} $ | E
E
E | ls
ls
ls | | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | gi | g_k | $A_{ki}(10^8 m
sec^{-1})$ | f_{ik} | S(at.u.) | $\log gf$ | Accu-
racy | Source | |-----|---------------------|----------------------------------|--|--------------------------------------|--------------------------------------|--|------------------|---------------------------|--|------------------------------|---|---------------|----------------------| | | | ² D – ² P° | 440.47 | 179004 | 406032 | 10 | 6 | 25 | 0.044 | 0.64 | -0.36 | E | 1 | | | | | 440.404
440.60
[440.46] | 178992
179021
179021 | 406056
405984
406056 | 6
4
4 | 4
2
4 | 23
25
25 | 0.044
0.036
0.0074 | 0.38
0.21
0.043 | -0.58 -0.84 -1.53 | E
E
E | ls
ls
ls | | 6 | | ² S - ² P° | 570.84 | 230853 | 406032 | 2 | 6 | 12 | 0.17 | 0.64 | - 0.47 | E | 1 | | | | 1 | [570.77]
[571.00] | 230853
230853 | 406056
405984 | 2 2 | 4 2 | 12
12 | 0.11
0.056 | 0.43
0.21 | - 0.64
- 0.95 | E
E | ls
ls | | 7 | | ² P – ² P° | 640.23 | 249839 | 406032 | 6 | 6 | 19 | 0.12 | 1.5 | -0.15 | E | 1 | | | | | [641.26]
[638.19]
[641.55]
[637.90] | 250112
249292
250112
249292 | 406056
405984
405984
406056 | 4
2
4
2 | 4
2
2
4 | 16
13
6.5
3.3 | 0.098
0.079
0.020
0.040 | 0.83
0.33
0.17
0.17 | $ \begin{array}{r} -0.41 \\ -0.80 \\ -1.09 \\ -1.09 \end{array} $ | E
E
E | ls
ls
ls
ls | | 8 | 2p-(1S)3s | ² P°− ² S | 138.55 | 873 | 722610 | 6 | 2 | 300 | 0.029 | 0.078 | - 0.77 | E | 1 | | | | ! | [138.64]
[138.39] | 1310
0 | $722610 \\ 722610$ | $\begin{vmatrix} 4 \\ 2 \end{vmatrix}$ | $\frac{2}{2}$ | 200
100 | 0.028
0.029 | 0.052
0.026 | - 0.94
- 1.24 | E
E | ls
ls | | 9 | $2p - (^{1}S)3d$ | ² P°− ² D | 122.62 | 873 | 816405 | 6 | 10 | 1400 | 0.54 | 1.3 | 0.51 | D | 1 | | | | | [122.69]
[122.49]
[122.69] | 1310
0
1310 | 816405
816405
816405 | 4
2
4 | 6
4
4 | 1400
1200
240 | 0.48
0.53
0.054 | 0.78
0.43
0.087 | $0.29 \\ 0.03 \\ -0.67$ | D
D
D | ls
ls
ls | | 10 | $3s - (^{1}S)3p$ | ² S – ² P° | 2046.9 | 722610 | 771449 | 2 | 6 | 2.72 | 0.51 | 6.9 | 0.010 | C | 1 | | | | <u>.</u> | 2042.38
2055.93 | 722610
722610 | 771557
771234 | 2 2 | 4 2 | 2.73
2.68 | 0.342
0.170 | 4.60
2.30 | - 0.165
- 0.469 | C | ls
ls | | 11 | $3p - (^{1}S)3d$ | ² P°−2D | 2223.7 | 771449 | 816405 | 6 | 10 | 1.82 | 0.225 | 9.9 | 0.131 | С | 1 | | | | | [2229.1]
[2213.1]
[2229.1] | 771557
771234
771557 | 816405
816405
816405 | 4
2
4 | 6
4
4 | 1.80
1.54
0.302 | $ \begin{vmatrix} 0.201 \\ 0.226 \\ 0.0225 \end{vmatrix} $ | 5.9
3.30
0.66 | -0.095 -0.344 -1.046 | C
C
C | ls
ls
ls | Naqvi's calculation [1] of the one possible transition in the ground state configuration 2p is the only available source. The line strength should be quite accurate, since it does not sensitively depend on the choice of the interaction parameters. ## Reference [1] Naqvi, A. M., Thesis Harvard (1951). Ne VI. Forbidden Transitions | No. | Transition
Array | Multiplet | λ(Å) | $E_i({ m cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | g_i | gk | Type of
Transition | $A_{ki}(\sec^{-1})$ | S(at.u.) | Accu-
racy | Source | |-----|---------------------|-----------|-----------------------|---------------------|-------------------------|-------|----|-----------------------|---------------------|----------|---------------|--------| | 1 | 2p-2p | 2P°-2P° | $[76.32 \times 10^3]$ | 0 | 1310 | 2 | 4 | m | 0.0202 | 1.33 | В | 1 | **Ground State** $1s^22s^2$ 1S_0 Ionization Potential $207.21 \text{ eV} = 1671700 \text{ cm}^{-1}$ ## **Allowed Transitions** The values are taken from the calculations of Veselov [1] who has used relatively simple wave functions and neglected the effects of configuration interaction entirely. Hence, large uncertainties are to be expected. #### Reference [1] Veselov, M. G., Zhur. Eksptl. i Teoret. Fiz. 19, 959-964 (1949). Ne VII. Allowed Transitions | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(10^8 { m sec}^{-1})$ | f_{ik} | S(at.u.) | log gf | Accu-
racy | Source | |-----|-----------------------|---------------------------------------|---|--|--|-----------------------|-----------------------|------------------------------------|--|---|---|-----------------------|----------------------------| | 1 | $2s^2 - 2s(^2S)2p$ | ¹ S - ¹ P° | 465.221 | 0 | 214952 | 1 | 3 | 58 | 0.57 | 0.87 | - 0.25 | E | 1 | | 2 | $2s2p - 2p^2$ | $^3\mathrm{P}^{\circ} - ^3\mathrm{P}$ | 561.59 | [112208] | [290273] | 9 | 9 | 33 | 0.16 | 2.6 | 0.14 | E | 1 | | | | | 561.728
561.378
564.529
562.992
558.61
559.947 | [112700]
[111706]
[112700]
[111706]
[111706]
[111251] | [290722]
[289839]
[289839]
[289328]
[290722]
[289839] | 5
3
5
3
1 | 5
3
1
5
3 | 25
8.2
14
32
8.6
11 | 0.12
0.039
0.040
0.051
0.067
0.15 | 1.1
0.21
0.37
0.28
0.37
0.28 | $\begin{array}{c} -0.23 \\ -0.94 \\ -0.70 \\ -0.81 \\ -0.70 \\ -0.81 \end{array}$ | E
E
E
E
E | ls
ls
ls
ls
ls | | 3 | 2s3s — | ³ S− ³ P° | 1987.0 | [978300] | [1028626] | 3 | 9 | 2.3 | 0.41 | 8.1 | 0.09 | D | ca | | | 2s(² S)3p | | 1981.97
1992.06
1997.35 | [978300] | [1028755]
[1028499]
[1028367] | 3 3 | 5
3
1 | 2.4
2.3
2.3 | 0.23
0.14
0.046 | 4.5
2.7
0.90 | $ \begin{array}{r} -0.16 \\ -0.38 \\ -0.86 \end{array} $ | D
D
D | ls
ls
ls | # Forbidden Transitions Naqvi's calculations [1] are the only available source. The results for the ${}^3P^{\circ}-{}^3P^{\circ}$ transitions are essentially independent of the choice of the interaction parameters. For the ${}^3P^{\circ}-{}^1P^{\circ}$ transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included. Reference [1] Naqvi, A. M., Thesis Harvard (1951). Ne VII. Forbidden Transitions | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\text{cm}^{-1})$ | g_i | g_k | Type of
Transition | $A_{ki}({ m sec}^{-1})$ | S(at.u.) | Accu-
racy | Source | |-----|---------------------------------|-----------------------------|---|----------------------------|----------------------------|-------------|--------|-----------------------|-------------------------|---|---------------|-------------| | 1 | 2s2p —
2s(² S)2p | 3 h ° = 3 h ° | $[21.97 \times 10^4]$ $[10.06 \times 10^4]$ | 111251
111706 | 111706
112700 | 1 3 | 3
5 | m
m | 0.00170
0.0132 | 2.00
2.50 | B
B | 1
1 | | 2 | | ³ P°−¹P° | [964.31]
[968.56]
[977.98] | 111251
111706
112700 | 214952
214952
214952 | 1
3
5 | 3 3 3 | m
m
m | 0.91
100
1.10 | 9.1×10^{-5}
0.0101
1.14×10^{-4} | C
C
C | 1
1
1 | ### Ne VIII. **Ground State** $1s^2 2s \, ^2S_{1/2}$ **Ionization Potential** $239 \text{ eV} = 1928000 \text{ cm}^{-1}$ (?) ## **Allowed Transitions** The extensive self-consistent field calculations including exchange by Weiss [1] are used for this ion. Values have been calculated in both the dipole length and velocity approximations and agree quite well. The dipole length values are chosen. For the 2s-2p transition an experimental result from the lifetime measurement of Berkner et al. [2] is available and agrees very well with Weiss' value. - [1] Weiss, A. W., Astrophys. J. 138, 1262-1276 (1963). - [2] Berkner, K. H., Cooper, W. L., Kaplan, S. N., and Pyle, R. V., Phys. Letters 16, 35 (1965). Ne VIII. Allowed Transitions | No. | Transition
Array | Multi-
plet | λ(Å) | $E_i(\text{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | g_i | gk | $A_{ki}(10^8 m sec^{-1})$ | f_{ik} | S(at.u.) | $\log gf$ | Accu-
racy | Source | |-----|---------------------|-------------------------|--------------------|-----------------------|-------------------------|---------------|-----|----------------------------|-----------------|----------------|------------------|---------------|----------| | 1 | 2s-2p | 2S – 2P° | 773.69 | .0 | 129251 | 2 | 6 | 5.64 | 0.152 | 0.774 | -0.517 | B+ | 1, 2 | | | | | 770.402
780.324 | 0 | 129801
128152 | $\frac{2}{2}$ | 4 2 | 5.72
5.50 | 0.102
0.0502 | 0.516
0.258 | -0.692
-0.998 | B+
B+ | ls
ls | | 2 | 2s-3p | $^{2}S - ^{2}P^{\circ}$ | [88.134] | 0 | [1134634] | 2 | 6 | 853 | 0.298 | 0.173 | -0.225 | В | 1 | | 3 | 2p-3s | $^{2}P^{\circ} - ^{2}S$ | [103.05] | 129251 | [1099681] | 6 | 2 | 462 | 0.0245 | 0.0499 | -0.833 | В | 1 | | 4 | 2p-3d | $^{2}P^{\circ}-^{2}D$ | [98.308] | 129251 | [1146459] | 6 | 10 | 2760 | 0.667 | 1.30 | 0.602 | В | 1 | | 5 | 3s-3p | $^{2}S-^{2}P^{o}$ | [2860.1] | [1099681] | [1134634] | 2 | 6 | 0.696 | 0.256 | 4.82 | - 0.291 | В | 1 | | 6 | 3p-3d | $^{2}P^{\circ} - ^{2}D$ | [8454.3] | [1134634] | [1146459] | 6 | 10 | 0.0214 | 0.0382 | 6.38 | -0.640 | В | 1 | Ground State **Ionization Potential** $1195 \text{ eV} = 9641000 \text{ cm}^{-1}$ (?) ## **Allowed Transitions** The results of extensive non-relativistic variational calculations by Weiss [1] are chosen. Values have been calculated in both the dipole length and dipole velocity
approximations and agree to within 1%, except for the 3p 1 P o -3d 1 D transition where agreement is not as good. The average of the two approximations is adopted [1]. #### Reference [1] Weiss, A. W., private communication (1964). ## Ne IX. Allowed Transitions | No. | Transition
Array | Multi-
plet | $\lambda(\mathring{A})$ | $E_i(\mathrm{cm}^{-1})$ | $E_k(\mathrm{cm}^{-1})$ | gi | gk | $A_{ki}(10^8\mathrm{sec^{-1}})$ | f_{ik} | S(at.u.) | $\log gf$ | Accu-
racy | Source | |-----|---------------------|----------------------------------|-------------------------|-------------------------|-------------------------|----|----|---------------------------------|----------|----------|-----------|---------------|--------| | 1 | $1s^2 - 1s2p$ | ¹ S - ¹ P° | [13.460] | 0 | [7429270] | 1 | 3 | 8.87×10 ⁴ | 0.723 | 0.0320 | -0.141 | A | 1 | | 2 | $1s^2 - 1s3p$ | ¹ S_ ¹ P° | [11.558] | 0 | [8652380] | 1 | 3 | 2.48×10^4 | 0.149 | 0.00567 | - 0.827 | A | 1 | | 3 | 1s2s - 1s2p | ¹ S - ¹ P° | [1901.5] | [7376680] | [7429270] | 1 | 3 | 0.329 | 0.0535 | 0.335 | -1.272 | A | 1 | | 4 | 1s2s —
1s3p | ¹ S - ¹ P° | [78.388] | [7376680] | [8652380] | 1 | 3 | 1400 | 0.386 | 0.0996 | -0.413 | A | 1 | | 5 | 1s2p-1s3d | ¹P°_ ¹D | [82.010] | [7429270] | [8648630] | 3 | 5 | 4180 | 0.703 | 0.569 | 0.324 | A | 1 | | 6 | $1s3d-\ 1s3p$ | ¹ D- ¹ P° | [26660]? | [8648630] | [8652380] | 5 | 3 | 9.99×10^{-4} | 0.00639 | 2.80 | -1.496 | C+ |] 1 | | 7 | 1s2s —
1s2p | $^{3}S - ^{3}P^{\circ}$ | [1297.5] | [7294740] | [7371810] | 3 | 9 | 0.980 | 0.0742 | 0.951 | - 0.653 | A | 1 | | 8 | 1s2s —
1s3p | $^{3}S - ^{3}P^{\circ}$ | [74.527] | [7294740] | [8636540] | 3 | 9 | 1460 | 0.365 | 0.269 | 0.039 | A | 1 | | 9 | 1s2p -
1s3d | 3P°-3D | [78.356] | [7371810] | [8648030] | 9 | 15 | 4380 | 0.672 | 1.56 | 0.782 | A | 1 | | 10 | 1s3p-1s3d | ³ P°- ³ D | [8700.8] | [8636540] | [8648030] | 9 | 15 | 0.0155 | 0.0294 | 7.58 | -0.577 | A | 1 | # List of Recent Additional Material (New material which would have been employed if received before cut-off date) | Spectrum | Keferences | Spectrum | References | |----------------------|----------------------|------------------------------|---------------------| | He I | D, H, K | N II
N III | L
C, L | | Liı | A, B | N IV
N v | I
B, E | | Ве I
Ве II | I
B | Оп | G, J
F | | В I
В II
В III | C, L
L
B | O III
O IV
O V
O VI | F
C
I
B, E | | C 1
C 11 | L
C | Fv | C | | C III
C IV
N I | I
B, E
C, J, L | Ne I
Ne II
Ne VI | D
F
C | ### References and Comments - A. Anderson, E. M., and Zilitis, V. A., Optics and Spectroscopy (U.S.S.R.) 16, 211-214 (1963). - Semi-empirical calculations. Extensive tabulations, in fair agreement with our adopted values except for some of the high-lying transitions, especially those of the resonance series where these values are as much as 50% lower. B. Flannery, M. R., and Stewart, A. L., Monthly Notices Roy. Astron. Soc. 126, 387-392 (1963). - Li I, Be II, B III, C IV, N V, O VI. Variational calculations. Good agreement with tabulated values, usually within 10-25%, except for cases where cancellation occurs. Some transitions are covered for which we have no values. Has been used for F VII. C. Nikitin, A. A., and Yakubovskii, O. A., Soviet Phys. -Doklady 9, 409-411 (1964). - В I, С II, N III, O IV, F V, Ne VI. - Quantum mechanical calculations for forbidden transitions. Values are presented for quadrupole transitions in sp² configurations. We have no values for these transitions. - D. Bennett, Jr., W. R., Kindlmann, P. J., and Mercer, G. N., Applied Optics Supplement 2 of Chemical Lasers pp. 34-57, (1965). He I, Ne I. - Lifetime determinations. The results for Ne agree within 25% with the adopted values and with the experimental results of Klose. The He results have been incorporated from an earlier paper which was referenced in this tabulation. - E. Berkner, K., Cooper III, W. S., Kaplan, S. N., and Pyle, R. V., Physics Letters 16, 35-36 (1965). - Lifetime determinations using the accelerator technique. Agrees with Weiss' extensive calculations within the stated experimental and theoretical error limits. Has been used for F VII and Ne VIII. - F. Froese, C., Phys. Rev. **137**, A1644–A1648 (1965). О п, О п, Ne п. - Self-consistent field calculations. Excellent agreement with the adopted values of Kelly, Mastrup, and Wiese, and the Coulomb approximation. Tends to be a few percent high in all cases except one and should be used in preference to the Coulomb approximation. - G. Morse, F. A., and Kaufman, F., J. Chem. Phys. 42, 1785-1790 (1965). N 1, O 1. - Absorption of resonance radiation. The lower limit given for N I is considerably lower than the values from the arc experiment of Labuhn and the lifetime determination of Lawrence and Savage (See ref. L), but is closer to the value of Prag, Fairchild, and Clark (See ref. J). For Ot the values are in excellent agreement with the tabulated values. H. Pendleton, W. R., and Hughes, R. H., Phys. Rev. 138, A683-A687 (1965). - - Lifetime determination. Supports the theory quite well and usually agrees with other referenced lifetime experiments within the stated error limits. - Pfennig, H., Steele, R., and Trefftz, E., J. Quant. Spectrosc. Radiat. Transfer 5, 335-357 (1965). - Be I, C III, N IV, O V. - Self-consistent field calculations. Good agreement with tabulated values of Weiss; fair agreement with Kelly and the Coulomb approximation, with better agreement for the visible lines where Kelly and the Coulomb approximation have been averaged. Large divergences may occur where cancellation is significant. Prag. A. B., Fairchild, C. E., and Clark, K. C., Phys. Rev. 137, A1358-A1363 (1965). - - Absorption of resonance radiation. For NI, disagrees by as much as a factor of 3-4 (low) with the adopted values (arc experiment by Labuhn) and with the lifetime experiment of Lawrence and Savage (See ref. L). Agrees well for O I but this is to be expected because of the choice of "best" values. - K. Green, L. C., Kolchin, E. K., and Johnson, N. C., Submitted for publication in the Transactions of the International Astronomical Union Symposium, #26 (1965). He t. - Extensive variational calculations. Excellent agreement, within the assigned error limits, except for 11S-7, 81P. where the disagreement is 10-15% low. These new values should be used for 1'S-7, 8'P. - L. Lawrence, G. M., and Savage, B. D., (To be published in Phys. Rev.) - В і, іі, С і, N і, іі, ііі. - Lifetime experiment using the phase shift method. Supports the adopted results of Weiss and Bolotin and the arc experiments of Boldt and Labuhn. The lifetimes tend to be somewhat longer than the adopted values.