Atomic Transition Probabilities

Volume I Hydrogen Through Neon

A Critical Data Compilation

W. L. Wiese, M. W. Smith, and B. M. Glennon
Institute for Basic Standards
National Bureau of Standards
Washington, D.C.

NSRDS-NBS 4-National Standard Reference Data Series National Bureau of Standards 4

(Category 3 — Atomic and Molecular Properties)

Issued May 20, 1966

National Standard Reference Data System

The National Standard Reference Data System is a government-wide effort to give to the technical community of the United States optimum access to the quantitative data of physical science, critically evaluated and compiled for convenience. This program was established in 1963 by the President's Office of Science and Technology, acting upon the recommendation of the Federal Council for Science and Technology. The National Bureau of Standards has been assigned responsibility for administering the effort. The general objective of the System is to coordinate and integrate existing data evaluation and compilation activities into a systematic, comprehensive program, supplementing and expanding technical coverage when necessary, establishing and maintaining standards for the output of the participating groups, and providing mechanisms for the dissemination of the output as required.

The NSRDS is conducted as a decentralized operation of nation-wide scope with central coordination by NBS. It comprises a complex of data centers and other activities, carried on in government agencies, academic institutions, and nongovernmental laboratorics. The independent operational status of existing crictical data projects is maintained and encouraged. Data centers that are components of the NSRDS produce compilations of critically evaluated data, critical reviews of the state of quantitative knowledge in specialized areas, and computations of useful functions derived from standard reference data.

For operational purposes, NSRDS compilation activities are organized into seven categories as listed below. The data publications of the NSRDS, which may consist of monographs, looseleaf sheets, computer tapes, or any other useful product, will be classified as belonging to one or another of these categories. An additional "General" category of NSRDS publications will include reports on detailed classification schemes, lists of compilations considered to be Standard Reference Data, status reports, and similar material. Thus, NSRDS publications will appear in the following eight categories:

Category	Title
1	General
2	Nuclear Properties
3	Atomic and Molecular Properties
4	Solid State Properties
5	Thermodynamic and Transport Properties
6	Chemical Kinetics
7	Colloid and Surface Properties
8	Mechanical Properties of Materials

Within the National Bureau of Standards publication program a new series has been established, called the National Standard Reference Data Series. The present report, which is in Category 3 of the above list, is Volume I of Number 4 of the new series and is designated NSRDS-NBS 4 Vol. I.

A. V. ASTIN, Director.

Contents

General Introduction

REFEREN APPENDI	NCES	DOPINI	ENTS		VI
					VI
APPENDI					y
MI I LINDI	X B				Y
		List of	Tables		
Spectrum		Page	Spectrum		Pa
Hvdrogen	H 1*	1	Oxygen	О і	7
Helium	Не 1	9		О п	8
Lithium	Li 1	16		О ш	ç
	Li II	19		O IV	10
Beryllium	Be I	22		O v	10
	Ве и	23		O vi	11
	Ве III	24		O vii	11
Boron	В т	25	Fluorine	F 1	11
	В п	27		F 11	11
	В ш	28		F III	11
	B IV	29		F IV	11
Carbon	C I	30		F v	12
	С и	37		F vi	12
	C III	41		F VII	12
	C IV	45	N.T	F vIII	12
N.T.*.	C V	47	Neon	Ne I	12
Nitrogen	N I	48		Ne II	13
	N II	56 65		Ne III	13
	N III	03 71		Ne IV	14
	N IV N v	74		Ne v	14 14
	N VI	74 76		Ne vi Ne vii	$\frac{14}{15}$
	11 VI	70			15 15
				Ne viii Ne ix	19

^{*}I = spectrum of neutral atom, II = spectrum of singly ionized atom, etc.

•			
•			

ATOMIC TRANSITION PROBABILITIES*

(A critical data compilation)

Volume I

Elements Hydrogen through Neon

W. L. Wiese, M. W. Smith, and B. M. Glennon

Atomic transition probabilities for about 4,000 spectral lines of the first ten elements, based on all available literature sources, are critically compiled. The data are presented in separate tables for each element and stage of ionization. For each ion the transitions are arranged according to multiplets, supermultiplets, transition arrays, and increasing quantum numbers. Allowed and forbidden transitions are listed separately. For each line the transition probability for spontaneous emission, the absorption oscillator strength, and the line strength are given along with the spectroscopic designation, the wavelength, the statistical weights, and the energy levels of the upper and lower states. In addition, the estimated accuracy and the source are indicated. In short introductions, which precede the tables for each ion, the main justifications for the choice of the adopted data and for the accuracy rating are discussed. A general introduction contains a critical review of the major data sources.

A. INTRODUCTORY REMARKS

After a long period of limited activity in atomic spectroscopy, the last half dozen years have brought rapid growth to this field. This has been sparked largely by urgent needs from areas in which basic atomic data are employed, namely plasma physics, astrophysics, and space research. As part of these developments, the pace and scope of determining atomic transition probabilities has greatly increased, so that the amount of accumulated material appears now to be sufficiently large to make a critical data compilation worthwhile and desirable. To realize this idea, a data center on atomic transition probabilities was established at the National Bureau of Standards in 1960. As a first step of the program, a search for the widely scattered literature references was undertaken. This phase of the work was essentially completed in 1962 with the publication of a "Bibliography on Atomic Transition Probabilities" (NBS Monograph 50) [1]. After that, only the monitoring of the current literature had to be kept up, and the emphasis of the work therefore could be shifted to the critical evaluation of the literature and the tabulation of the numerical data. Since the lightest ten elements have been of dominant interest, and on the other hand, the largest amount of data are available for them, it was decided to concentrate on these and publish their "best" values as the first part of a general compilation. pilation.

When the present tabulation was started, it was hoped that sufficient reliable material was available for a fairly comprehensive list, which would contain data for at least all the strong prominent transitions. This hope materialized only partially. A number of gaps and large discrepancies were found, and the theoretical and experimental efforts of several members of the Plasma Spectroscopy Section at NBS were needed to remedy the most critical

situations. Furthermore, the Coulomb approximation of Bates and Damgaard [2] was extensively applied to obtain additional data. Although this unforeseen extra work delayed the publication of this compilation somewhat, we feel that we are now able to present a more useful and substantial collection of data.

B. SCOPE OF THE TABLES

In the present compilation the "best" available transition probabilities of allowed (i.e., electric dipole) and forbidden (i.e., electric quadrupole and magnetic dipole) lines of the first ten elements, including their ions, are tabulated. The hydrogen-like ions are excluded; their transition probabilities may be obtained by scaling the hydrogen values according to the formulas given in table I. Furthermore, f-values or absorption coefficients for continua, i.e., bound-free transitions are not listed. As source material all the literature given in Ref. [1] plus later articles obtained from continuous scanning of the current literature are available.

It is our opinion that a tabulation of the present kind must contain fairly reliable values for at least all the stronger, characteristic lines of the various ions in order to be of general usefulness. We have tried to adhere to this goal from the start. More specifically, we have felt that for most atoms and ions at least the "prominent" half of the multiplets listed in the "Revised Multiplet Table" [3], and the "Ultraviolet Multiplet Table" [4] should be included in the tabulation, and uncertainties should be smaller than 50 percent. A number of gaps in the data and inferior values were noticed at the start, and—as already mentioned—it has been largely due to the efforts of some

^{*}This research is a part of project DEFENDER, sponsored by the Advanced Research Projects Agency, Department of Defense, through the Office of Naval Research.

¹Hereafter, we shall use the equivalent terms "transition probability, oscillator strength or f-value, and line strength" on an interchangeable basis. The numerical relationships between these quantities are given in table III.

members of the Plasma Spectroscopy Section at NBS and the availability of the Coulomb approximation [2] that the most glaring defects could be eliminated. Although we still must compromise in some cases by including inferior material (marked in the accuracy column as "E") we feel that waiting for these improvements would unduly delay the publication of the table.

Aside from this objective of including at least all the stronger lines, we have listed all additional available material with uncertainties smaller than 50 percent. We have deviated from this scheme only in a few instances: In these cases we have excluded data for very highly excited transitions, because these transitions have never been observed (no experimental wavelengths are available) and are of little practical interest. However, we have listed this additional material by spectrum in table II.

Most final tabulations were undertaken during 1964. Thus the literature through 1963 and in some cases even later work could be included. However, a few 1963 articles, which have been found in abstracting journals, came to our attention too late. These are listed, together with other recent material, in the list of additions at the end of the tables.

C. REVIEW OF THE DATA SOURCES

The present status of our knowledge of atomic transition probabilities must be considered as being far from ideal. The available material leaves much to be desired in quality as well as quantity [5]. This becomes especially evident if comparison is made with the other most important quantity of a spectral line, its wavelength. The only transition probabilities known with an accuracy comparable to that for wavelengths are available for hydrogen and hydrogenlike ions and a few lines of helium. For all other elements more or less reliable values have been obtained from various experimental and theoretical approaches. While experimental work has provided, with very high accuracy, practically all the data for the wavelengths of lines, it could not accomplish nearly the same in the case of transition probabilities. The measurement techniques are quite complicated and laborious, and it has proved to be very difficult to obtain accuracies of 10 percent or better. On the other hand, advanced theoretical approximations have been quite successful for the light, relatively simple atomic systems, and large amounts of data have been obtained from their applications. But the theoretical methods have the shortcoming that they do not permit estimates of the size of the errors as do the experiments.

In view of this reliability problem it is very important to discuss in detail how the accuracy ratings for the tabulated values have been obtained. For this purpose, a brief discussion is given in the individual introductions for each ion. Furthermore, to provide a better background and understanding for these short explanations, we include the following discussion of those major experimental and theoretical methods from which the bulk of the material for the lightest ten elements has been obtained.

1. Experimental Sources

a. Measurements in Emission

Experimentally, the largest number of f-values has been obtained from measurements of the intensities of spectral lines which are emitted from plasmas under known conditions. With this method the first and second spectra

of carbon, nitrogen, and oxygen, the third spectrum of oxygen, and the first spectrum of neon have been studied. The plasma sources are various types of stabilized arcs, and, to a lesser extent, shock-tubes. In brief, the method [6] is as follows: The transition probability for spontaneous emission from upper state k to lower state i, A_{ki} , is related to the total intensity I_{ki} of a line of frequency ν_{ik} by

$$I_{ki} = \frac{1}{4\pi} A_{ki} h \nu_{ik} N_k \tag{1}$$

where h is Planck's constant and N_k the population of state k. A_{ki} may therefore be obtained from the measurement of I_{ki} and the determination of N_k .

The experimental conditions are chosen so that the plasma is approximately in a state of local thermodynamic equilibrium (LTE), because N_k is then a function of temperature and total density of the species only, and may be determined from the application of equilibrium and conservation equations and measurements of the temperature and electron density. The measurements have always been done spectroscopically from the determinations of the intensities of lines and continua of known transition probabilities and absorption coefficients, or by measuring line profiles and utilizing the results of line broadening theory in plasmas.

Checks for the existence of LTE have been made repeatedly. It appears to be always closely approximated, except in the high-temperature magnetically driven shocktubes where only partial LTE exists [7]. Also, the investigated lines have generally been checked for self-absorption. A demixing effect in arcs [8, 9] has introduced uncertainties into the results of some earlier arc experiments with gas mixtures, in which the mixture ratio was employed for the analysis. Since primarily the densities are affected, larger uncertainties in the absolute f-value scale are likely, but the relative f-values should be still quite accurate. However, this effect has been circumvented in most of the recent arc experiments used for this data compilation. Significant errors in emission experiments may arise from difficulties in determining the continuous background, from neglecting intensity contributions of the distant line wings [10], from uncertainties in the calibration of standard light sources, and from uncertainties in the high-density corrections in plasmas [11]. Applications of wall-stabilized arcs [12, 13] have given the most accurate results of all emission measurements.

The best absolute f-values obtained from emission experiments are estimated to be accurate within 15 percent, but for the bulk of the tabulated data errors between 20 to 50 percent must be expected. It should finally be noted that absorption measurements (only one is encountered in the case of Ne I) are quite analogous to the above mentioned emission experiments.

b. Lifetime Determinations

The direct measurement of lifetimes of excited atomic states has important applications for helium and neon. The method [6, 14] employed here consists essentially of exciting atoms by radiation or electron impact in short bursts and of observing the subsequent depopulation of excited levels by studying the time decay of the emitted radiation (delayed coincidence technique). The population N_k of an excited state k decays according to

$$N_k = N_{o,k} \exp(-\gamma_k t) \tag{2}$$

where $N_{\theta, k}$ is the population at time t = 0 and γ_k the decay

constant. Thus, an exponential decay in the radiation is observed. The mean lifetime $\tau_k = \gamma_k^{-1}$ of the atomic state is related to the transition probability A_{ki} for spontaneous emission by

$$\tau_k^{-1} = \sum_i A_{ki} + Q \tag{3}$$

neglecting absorption and induced emission. Q denotes a term for collisional population and depopulation rates. In order to obtain $\sum_{i} A_{ki}$, one has to choose experimental

conditions such that the collisional term Q (as well as the less critical absorption and induced emission) becomes negligible. This condition is achieved at very low densities.

It is seen that from lifetime measurements generally the sum of all probabilities for transitions to lower levels i is obtained, and individual transition probabilities may be obtained explicitly only in the following two cases: (a) The sum reduces to a single term, i.e., only transitions to the ground state are possible. This is, for example, the case for resonance lines. (b) The sum is dominated by one strong term (this is likely if it contains a transition of comparatively high frequency $\nu_{ik}(A_{ki}$ is proportional to ν_{ik}^3), or if all transitions but one are "forbidden", i.e., have very small transition probabilities). Furthermore, one may use lifetime experiments to normalize available relative transition probabilities to an absolute scale, if all relative probabilities contributing to the sum are known.

The lifetime method is, therefore, limited to only a few lines per spectrum, namely those originating from the lowest excited levels. But the results should be very accurate, with uncertainties less than 10 percent, since the method is simple and the instrumentation is by now well developed [14]. The major uncertainties arise from radiative cascading from higher levels, which repopulates the initial level, and from depopulation by collisions.

c. Measurement of f-values from the Anomalous Dispersion at the Edges of Spectral Lines

This method has found applications for lines of neutral lithium and neon. It is based on the following relation: In the neighborhood of a spectral line the index of refraction n varies according to

$$n-1 = \frac{e^2 N_i f_{ik}}{4\pi m_e c^2} \frac{\lambda_0^3}{\lambda - \lambda_0} \left(1 - \frac{N_k g_i}{N_i g_k} \right)$$
 (4)

Here g denotes the statistical weight; λ the wavelength; N_i the population of the lower state i; and e, m_e , c are the usual natural constants. The experimental conditions are chosen such that the excited states are populated according to the Boltzmann formula, so that generally $N_k << N_i$, and the term $N_k g_i/N_i g_k$ may be neglected. For the determination of $N_{i}f_{ik}$ the index of refraction n at the wavelength distance $\lambda - \lambda_0$ from the center of the line, λ_0 , has to be measured. This can be done most precisely with the "hook" method developed by Rozhdestvenskii [15] and recently reviewed by Penkin [16]. In this method the gas to be studied fills a tube, which is part (one arm) of a Jamin or Mach-Zehnder interferometer. The tube must be at an elevated temperature to achieve sufficient population of the excited levels. Light from the continuum source penetrates the tube as well as an evacuated comparison tube of the same length, and the resulting interference fringes are sent into a spectrograph. On either side of an absorption line the interference fringes are characteristically bent due to the rapid change in the index of refraction. By introducing a thick glass plate into the compensating arm of the interferometer, a tilting of the fringes and the formation of the hooks is accomplished. The measurement of the wavelength distance between the extrema then permits a precise determination of the index of refraction. In the three experiments encountered for this compilation, the absolute number densities for the lower states N_i could not be determined, so that only relative f-values for lines originating from the same lower levels were measured. Uncertainties in the relative values should not exceed 10 to 20 percent. In the original papers, absolute f-values were then obtained from applications of the Thomas-Kuhn-Reiche f-sum rule, but for this compilation we have normalized the relative values to different scales, which are based on other, more accurate material.

2. Theoretical Sources

a. The Coulomb Approximation

Under the assumption of Russell-Saunders (or LS-) coupling, which is generally very well fulfilled for the first ten elements, the line strength S may be expressed as the product of three factors [2]

$$S = \mathfrak{S}(\mathfrak{M})\mathfrak{S}(\mathfrak{L})\sigma^2. \tag{5}$$

(The relations of S with A and f are given in table III.) The first two factors in eq (5) represent the strength of the multiplet $(\mathfrak{S}(\mathfrak{A}))$ and the fractional strength of the spectral line within the multiplet $(\mathfrak{S}(\mathfrak{A}))$. The numerical values for these may be obtained from tables by Goldberg [17], and White and Eliason [18], which have also been reproduced by Allen [19].

The difficult problem is the evaluation of the transition integral σ . Bates and Damgaard [2] showed that for most transitions the main contribution to the integral comes from a region in which the deviation of the potential of an atom or ion from its asymptotic Coulomb form is so small that it may be replaced by the latter. Since for the Coulomb potential the transition integral may be expressed analytically, it is possible to calculate σ^2 as a function of the observed term value and the azimuthal quantum number. Bates and Damgaard have thus compiled tables with numerical values of σ^2 for s-p, p-d, and d-f transitions.²

The Coulomb approximation is restricted to transitions between levels having the same parent term. It gives the best results if the degree of cancellation in the transition integral is small, i.e., if σ^2 is not too close to zero, and if the upper and lower levels of the excited electron are in a shell which contains no other electrons. This is true for the moderately and highly excited levels. But even if the lower level is in a shell which contains other electrons, the results often agree fairly well with those obtained by other methods.

On the whole, the Coulomb approximation has given impressive results and has proved to be of great value. In most cases where comparisons are available—there are several hundred of them for the first ten elements—the results agree within 20-40 percent with those from advanced theoretical and experimental methods. We have therefore made extensive use of this approximation 3 to supplement

² The customary spectroscopic notations are used throughout.
³ We have been fortunate in obtaining a computer program for the calculation of Bates-Damgaard values from H. R. Griem to whom we would like to express our special thanks.

the available material. However, we have restricted ourselves to the medium-strong or stronger lines (as judged from the intensity data supplied in the multiplet tables) for which experimental wavelength and energy level data are available and for which the lower state is significantly above the ground state. If the need for f-values of other higher excited lines should arise, we strongly recommend the application of the Coulomb approximation.

On the basis of many comparisons, the uncertainties of the Bates-Damgaard values have been estimated as follows: For transitions between excited states in the spectra of neutral helium, lithium, beryllium, boron, and their isoelectronic sequences they do not exceed 25 percent and in favorable situations may be as low as 10 percent. For the more complex atoms among the first ten elements, namely carbon, nitrogen, oxygen, fluorine, and their equivalent ions, we have estimated the uncertainties to be within 50 percent for the moderately excited transitions including 3s-3p and within 25 percent for the medium and highly excited lines, i.e., transitions of the types 3p-3d, 3d-4f, etc. A few of the tabulated values may be much more uncertain than the stated error limit because of cancellation in the transition integral which we did not check in each case.

It is worth noting that in many instances the results of the Coulomb approximation appear to be as good as those from other, more elaborate theoretical treatments, such as the self-consistent field approximation with exchange. This is primarily indicated from comparisons with the most advanced theoretical and experimental methods.

b. Calculations Based on the Self-Consistent Field (SCF) Approximation

This method has found, in varying degrees of refinement, widespread use for the calculation of f-values. It provides a set of wave functions for the atomic electrons which produce an approximately self-consistent electric field. The transition probabilities are then determined by integration over the radial parts of these wave functions. A short outline of the procedure, developed by Hartree, and extensively described by him [20], is given below:

It is assumed that the charge density distribution of the atomic system is spherically symmetric, i.e., the potentials of the electrons depend only on their radial positions. Correlations between the electrons are at first neglected; all are supposed to move independently in the central field, experiencing only the averaged charge distribution of the other electrons and the nucleus. With these simplifications the motions of the individual electrons can be calculated by assuming trial wave functions for the others, and from the resulting wave functions the charge density distribution is computed and compared with the initial one obtained with the trial functions. If self-consistency is not achieved, the new, computed wave functions are used as trial functions, and the procedure is repeated until initial and final charge distributions are identical, i.e., the field is self-consistent.

This basic procedure was improved by Fock [21], who included exchange effects between the electrons, by Trefftz et al. [22], and Biermann and Lübeck [23] who in the special cases of He I and C II took into account other correlations between the electrons. More recently, large-scale computations were made possible after the introduction of elaborate computer programs by Roothaan and co-workers [24].

An assessment of the errors resulting from the various approximations in the calculations has not been feasible. But a number of comparisons with experimental results and with more accurate variational calculations, as well as con-

sistency checks made by applying the dipole length and dipole velocity representations of the matrix element have shown that for simple atomic systems accurate transition probabilities with uncertainties smaller than 10 percent may be obtained when a refined procedure including exchange effects is applied. This is particularly true for He I and Li I and their isoelectronic sequences, for which the extensive calculations by Weiss [25], and Trefftz et al. [22] are available. The large-scale computations by Kelly [26] for lines of nitrogen and oxygen contain the exchange effects only in an approximate way (the exchange term is replaced by an averaged potential) and errors of about 20 percent must be expected for most of the moderately excited transitions as judged from many comparisons. In a few cases, the positive and negative contributions to the transition integral are almost equal to each other (the ratios are listed by Kelly); i.e., cancellations are encountered and a much lower accuracy must be expected. In these cases we have given preference to available experimental results.

For the breakdown of the transition integrals into multiplet and line values we have used the LS-coupling strengths [19] unless special results have been available, as for example for O II. We have generally avoided using SCF calculations if they were done without considering exchange effects, but have had to make an exception for some important lines of B I because no other comparable material is available.

Large uncertainties in the SCF calculations as well as other theoretical treatments are expected for transitions where configuration interaction becomes important. For the first ten elements these transitions are of the type $1s^22s^m2p^n \rightarrow 1s^22s^{m-1}2p^{n+1}$. Only a few attempts have yet been made to take configuration interaction into account. Very recently, Weiss [27] has undertaken limited calculations for some CI and BeI lines and Yutsis, Bolotin and co-workers have for some time employed a "many configuration approximation," [28] as they call it. The Russian group has greatly simplified its approach by including only one interacting term for the lower state, which is always the ground state ("double configuration approximation") and none for the upper state. In addition to this simplification, relatively crude wave functions have been employed, namely analytical one-electron wave functions or SCF functions without exchange. Unfortunately, practically all these transitions are in the far ultraviolet; only two experimental investigations by Boldt [29] and Labuhn [30], both done with a wall-stabilized arc, are available for a detailed comparison. From the experimental results one must judge that the success of the many-configuration method in its present form is only fair. Errors of factors of two or more must be expected. This seems to be also the case for Weiss' somewhat more elaborate treatment of configuration interaction (up to three interacting terms for the lower state). Thus, the transition probabilities for the $1s^22s^m2p^n \rightarrow 1s^22s^{m-1}2p^{n+1}$ transitions are among the least well known for the lightest ten elements, and further improvements for these lines are urgently needed.

c. Quantum Mechanical Calculations of Forbidden Transitions

We have considered as forbidden lines all magnetic dipole and electric quadrupole lines. The extensive calculations by Garstang [31, 32, 33] and Naqvi [34], and—to a lesser extent—the papers by Seaton and Osterbrock [35], Yamanouchi and Horie [36], and Ufford and Gilmour [37], have been principal sources. All these calculations have as a common starting point the general expressions for the line

strengths of forbidden lines in the p^2 , p^3 , and p^4 configurations, which were given algebraically and tabulated by Shortley et al. [38], and later extended by Naqvi to the few transitions of the sp, p, and p^5 configurations.

The principal differences between the various calculations are the approaches chosen to determine the most important

parameters:

(a) The "spin-orbit," and "spin-spin and spin-other-orbit" integrals, usually designated by ζ and η , have been determined either empirically or by using available wave functions. Garstang has compared the empirical and theoretical values for some ions—the latter obtained from SCF functions with exchange—and has found differences of up to 20 percent for ζ and up to 30 percent for η . When a choice is available, we have given preference to the empirical values.

(b) The term intervals. Here one has the choice between using exclusively experimental energy values or combining some of these with the results of the Slater theory [39] for inter-multiplet separations, that is, by employing the Slater parameters F_2 . Differences between the two approaches arise mainly due to the effects of configuration interaction. These are neglected in all calculations and may cause deviations up to a factor of two. A study by Garstang [40] in 1956 led to the result that the exclusive use of observational material partially includes, at least in simple cases, the effects of configuration interaction, when the latter is otherwise not taken into account. Thus the work based on experimental term intervals has been

adopted whenever available.

Naqvi used in his calculations essentially the second of the above-mentioned approaches. He compared empirically determined Slater parameters F₂ for the various term intervals with theoretically derived values, and selected the one experimental parameter which was in best agreement with theory. Then he employed this particular F_2 and the Slater theory for the determination of all other term intervals. In view of the above mentioned study by Garstang we have used from Naqvi's work only the transition probabilities based entirely on this initial parameter, i.e., based exclusively on observational material. Consequently, his data for the p3 configuration have not been applied, with the exception of the ion FIII, since in this case his work was the only available source. On the other hand. Naqvi's calculations for the simpler sp-configuration are all based on the empirical value for the one term interval there and should, therefore, take the effects of configuration interaction partially into account.

- (c) Transformation coefficients. The atoms and ions under consideration are most closely represented by the intermediate coupling scheme, but for the calculations of transition probabilities the actual wave functions are more conveniently expressed in terms of LS-coupling wave functions. The transformation coefficients were first derived by Shortley et al. [38] and were later refined by several others, in particular by Naqvi [34]. Thus, Naqvi's results have been adopted whenever the choice of the transformation coefficients became important and when he accounted for the effects of configuration interaction in the abovementioned manner. It is especially worth noting that by including the effects of spin-spin and spin-other-orbit interactions on the transformation coefficients of the p^4 configuration some results are improved by about 10 percent.
- (d) The integral s_q for electric quadrupole transitions. This depends principally on the quality of the employed wave functions. We have preferred calculations with SCF wave functions over those with hydrogenic functions or

screening constants and, among SCF calculations, we have preferred those with exchange effects included over those without exchange. The improvement with SCF wave functions is estimated to be of the order of 20 percent. In general, the electric quadrupole transitions are not as accurate as the magnetic dipole values for transitions of the same general type because of the additional uncertainty in the determination of s_q . This uncertainty should generally be in the neighborhood of 20 percent.

A good assessment of the uncertainties in the calculated values for forbidden lines is possible due to the fortunate circumstance that some forbidden lines of O I have been determined experimentally. These lines appear strongly in the aurora, which has been utilized as a "light source". The transition probabilities could be accurately determined via a measurement of the lifetimes of the upper atomic states. Extensive auroral observations by Omholt [41] gave for the 'D-'S transition a transition probability of 1.43 sec⁻¹, while the best calculated value is 1.25 sec⁻¹. For another case, namely the lifetime of the 'D state, the averaged experimental result is approximately 160 sec, while the theory gives 135 sec.

The theoretical transition probabilities involved in this comparison depend sensitively on the choice of some parameters, particularly s_q and ζ . The good agreement with the observations indicates that uncertainties no greater than 25

to 50 percent have to be generally expected.

For a number of magnetic dipole transitions, the uncertainties should be even smaller, since the results are almost independent of the choice of the parameters. In the p^2 and p^4 configurations these are the transitions ${}^3P_2 - {}^3P_1$ and ${}^3P_1 - {}^3P_0$, which have, near LS-coupling, the strengths of 2 and 2.5 respectively. In the p^3 configuration one encounters the transitions ${}^2P_{3/2}^{\circ} - {}^2P_{1/2}^{\circ}$ with a strength of 1.33 and the transition ${}^2D_{5/2}^{\circ} - {}^2D_{3/2}^{\circ}$ with a strength of 2.4, again near LS-coupling. For all these lines the effects of configuration interaction and deviations from LS-coupling do not enter sensitively into the results. Thus, these transition probabilities should be considered accurate to within 10 percent, while all other magnetic dipole lines are uncertain within about 25 percent.

Analogously, the transition probabilities for a number of electric quadrupole lines depend essentially only on the quadrupole integral s_q . These are the transitions ${}^1S_0 - {}^1D_2$, ${}^3P_2 - {}^3P_1$, and ${}^3P_2 - {}^3P_0$ for the p^2 and p^4 configurations and ${}^2D_{5/2}^{\circ} - {}^2P_{3/2}^{\circ}$, ${}^2D_{3/2}^{\circ} - {}^2P_{3/2}^{\circ}$, ${}^2D_{5/2}^{\circ} - {}^2P_{1/2}^{\circ}$, and ${}^2D_{3/2}^{\circ} - {}^2P_{1/2}^{\circ}$ for the p^3 configuration. Within a given spectrum these should be the best available quadrupole lines and they have been estimated to be accurate within 25 percent, while the rest of the quadrupole transitions should be accurate within 50 percent. On the whole, electric quadrupole lines have been rated to be of lower accuracy than magnetic dipole lines, since the uncertainties in the quadrupole integral must be added to the other uncertainties already present for the magnetic dipole lines.

Further details on the calculations of forbidden line strengths may be found in the recent review article by

Garstang [42].

D. METHOD OF EVALUATION

We shall now discuss the general steps in the evaluation of the data: The literature, as taken from the files of our data center, has first been screened for outdated and superseded material. The remaining articles have then been individually studied and the results collected in comparison tables. Additional values have been computed by employing the Coulomb approximation by Bates and Damgaard [2] whenever this has been considered necessary and useful. When large discrepancies or odd values have appeared in the comparison tables, we have searched for likely sources of numerical errors, and have also communicated in many instances with the respective authors.

The evaluation and final selection of the sets of best values depends so much on the particular material available for each ion that the main justifications for the selections has to be delegated to the individual introductions. Only a few general rules on the selection may be given now:

Thus, self-consistent field calculations with exchange effects have been regarded as superseding those not including these effects4; the Coulomb approximation is generally not employed when the transition is very far from being hydrogen-like, e.g., when the lower state is the ground state or when it contains two or more electrons of the same principal quantum number; experiments employing photoelectric techniques are preferred over similar experiments utilizing photographic detection; measurements with wallstabilized arc sources are considered superseding analogous measurements with fluid- or gas-stabilized arc sources because of the stability problems of the latter. For forbidden lines, the calculations based on empirical term intervals are preferred to those based on the Slater theory for intermultiplet separations, since a theoretical study [40] shows that the effects of configuration interaction, which are often important, are at least partially taken into account by the first approach.

When several methods of comparable quality are available, the results are averaged to obtain the best value. If one method appears clearly better than the others, only those results are employed.

The final step in the evaluation is the estimate of the uncertainties. At the present status of our knowledge, we find it impossible to assign specific numerical error limits to each transition. Instead we have introduced a classification scheme with several classes of accuracy, and assigned each transition probability to a certain class. We have used the following arbitrary notation:

AAfor uncertainties within	1%
Ado	3%
Bdo	10%
Cdo	25%
Ddo	50%
E for uncertainties larger than	. 50%

The word uncertainty is being used in the meaning "extent of possible error" or "possible deviation from the true value". We are aware that this is far from being a precise definition of error, but, considering the multitude of approaches to the error discussions in the various papers (or the lack of them), it seems impossible to find a better common denominator. Uncertainties of class "AA", i.e., values that are essentially exact, are found only in hydrogen and a few transitions of helium. Going to the other extreme, we have included class "E" data, i.e., very uncertain values, only in those special cases, when for the most important and most characteristic lines of a spectrum no better data are available, so that otherwise these lines would

have to be omitted. Occasionally, we have made a further differentiation in the classification scheme by assigning plus or minus signs to some transitions. This serves to indicate that these lines are significantly better or worse than the average values, but do no quite belong into the next higher or lower class. They should be therefore the first or last choice among similar lines.

Since the theoretical treatments essentially do not permit error estimates per se, these have to be obtained from comparisons with experimental and other theoretical determinations or from general consistency checks, such as applications of f-sum rules, etc. A few rather audacious extrapolations have had to be undertaken, when no reliable comparison material was available. On the other hand, the errors given by the experimentalists are sometimes only indications of their precision, and no allowance is made for systematic errors. Therefore, we have generally been more conservative with our error estimates, and hope that we have arrived at a realistic and consistent error presentation.

E. ARRANGEMENT AND EXPLANATION OF COLUMNS

We have adopted the present arrangement of the tables after consulting with a number of physicists working in three fields from which—it is anticipated—most of the users of this compilation will come, i.c., spectroscopy, astrophysics, and plasma physics.

We feel that of the multitude of units in which transition probabilities are expressed, the adopted combination of the transition probability for spontaneous emission A_{ki} (in \sec^{-1}), the absorption oscillator strength f_{ik} (dimensionless), the log gf (a further discussion of the statistical weight g is given in Appendix B) and the line strength S (in atomic units) gives a very adequate representation. The other units are either not commonly used or, in case of gf and gA, may be obtained by simply multiplying two columns of the table. The units that are only occasionally used are:

1. The transition probability of absorption B_{ik} (i = lower, k = upper state) which is related to A_{ki} by

$$B_{ik} = 6.01 \ \lambda^3 \frac{g_i}{g_i} A_{ki} \tag{6}$$

(λ is the wavelength in Angstrom units, and g_i , g_k are the statistical weights, further discussed in Appendix B)

2. The transition probability of induced emission B_{ki} , which is related to A_{ki} by

$$B_{ki} = 6.01 \ \lambda^3 \ A_{ki}.$$
 (7)

3. The emission oscillator strength f_{ki} , which is related to the absorption oscillator strength f_{ik} by

$$f_{ki} = -\frac{g_i}{g_k} f_{ik}. \tag{8}$$

In addition, some authors have introduced still other quantities, but these have not found general acceptance and will not be considered further.

The conversion factors between the tabulated quantities A_{ki} , f_{ik} , and S are listed in table III, as reproduced from reference [1]. (For the case of hydrogen, we have employed the reduced mass and other appropriate constants in the conversion factors.)

⁴Fortunately, most of the selected self-consistent field calculations include exchange effects in varying degrees of refinement.

The general arrangement of the tables according to increasing atomic number and stage of ionization needs no further comments. The material for the individual ions is further subdivided into sections for allowed (electric dipole) and forbidden transitions. As forbidden transitions we have considered all magnetic dipole and electric quadrupole lines. Intercombination lines, although they are forbidden in the case of pure LS-coupling, are listed under allowed transitions, since they are electric dipole transitions.

The tabulations for each ion start out with listings of the ground state configuration and the ionization potential, both taken from ref. [43]. In all cases, where we have tabulated more than 20 allowed lines per ion, we have then assembled a "finding list," i.e., we have arranged the lines in order of increasing wavelength and indicated their position in the main tables—which are arranged according to spectroscopic notation—by listing their running numbers. The latter are given in front of the spectroscopic notation in the tables. These finding lists should, for many applications, permit one to find out quickly which lines are covered in the present tabulation.

Each table is then preceded by a short introduction containing in brief the major reasons which have led to the selection of the presented data and their classification in terms of accuracy. This is followed by a reference list of

the selected articles.

It remains to discuss the columns of the main tables: The first part of the tables contains data connected with the identification of lines, i.e., spectroscopic notation, wavelength, and energy levels. All these data have been taken from the compilations by Mrs. Moore-Sitterly, i.e., the "Revised Multiplet Table" [3], the "Ultraviolet Multiplet Tables" [4], and "Atomic Energy Levels," Vol. I, and addenda in Vols. II and III, recent reports of the Triple Commission for Spectroscopy [44], and from newer material generously furnished by her. All designations, as usual, are written in terms of the absorption process, i.e., the lower (initial) state first. For the classification of the lines we have employed the standard spectroscopic notation for LScoupling, with the exception of Ne I, where we have used the jl-coupling notation, all in accordance with the above mentioned "Atomic Energy Levels" tables. In listing the transition arrays, we have presented only the electrons in the unfilled shells. Furthermore, to distinguish between the different supermultiplets, we have inserted the parent terms in the notation. If they are given only once, as is generally the case, then no change occurs from lower to

For all spectra with pronounced multiplet structure, i.e., for Be I through Ne I and their isoelectronic sequences, we have arranged the lines according to a configurational order: They are grouped to multiplets, supermultiplets, transition arrays, and increasing quantum numbers. Within the transition arrays, the multiplets are in order of increasing lower energy levels. Individual lines within the multiplets are listed whenever the total wavelength spread amounts to more than 0.01 percent. This arrangement is convenient for the application of f-sum rules⁵ and to the similar one used in the "Revised Multiplet Table" [3] and "Ultraviolet Multiplet Tables" [4]. At first we attempted to copy and extend these older arrangements, but this would have meant that many new multiplets had to be inserted. Therefore, we abandoned this plan. We have, however, made reference to

the two multiplet lists by including the multiplet numbers in the present tabulation. The numbers are given in parentheses under the multiplet designation. The letters "uv" are added if the numbers are from the "Ultraviolet Multiplet Tables."

For the He I isoelectronic sequence we have changed the arrangement slightly by listing the singlets and triplets separately.

For hydrogen we have made several changes in the arrangement to adapt the tables to the very divergent applications in theory and experiment: The tables are split into four separate parts: In table A we list the "average" transition probabilities, etc., for the transitions between lower state of principal quantum number n_i and upper state n_k .

These are defined by the following relations:

$$A_{n_k, n_i}^* = \sum_{l_k, l_i} \frac{2l_k + 1}{n_k^2} A_{(nl)_k, (nl)_i}$$
 (9)

$$f_{n_i, n_k}^* = \sum_{l_k, l_i} \frac{2l_i + 1}{n_i^2} f_{(nl)_i, (nl)_k}$$
 (10)

$$S_{n_i, n_k}^* = \sum_{l_k, l_i} S_{(nl)_i, (nl)_k}.$$
 (11)

These "average" values are applicable to most problems in plasma spectroscopy and astrophysics. This is due to the circumstance that states with the same principal (n), but different orbital (l) quantum numbers fall practically together ("degeneracy"), so that only a single line is observed for all the possible combinations between states of different principal quantum numbers. The only assumption entering into the application of "average" values is that the atomic substates must be occupied according to their statistical weights [45]. The above assumption is fulfilled for any reasonably dense plasma, where the excited atoms undergo many collisions during their lifetimes.

In table B the probabilities for transitions between the various sublevels $(nl)_i - (nl)_k$ are listed. This table should be useful primarily for theoretical applications. Tables C and D, finally, contain the most important fine structure $[(nlj)_i - (nlj)_k]$ and hyperfine structure lines $[(nljf)_i - (nljf)_k]$ of hydrogen (j = inner) or total electronic angular momentum quantum number; f = total atomic angular momentum quantum number). For these two special tables we have made a further change by presenting frequencies and energy differences rather than the usual wavelengths and energy levels.

In all other tables, the energy levels are given (in units of cm^{-1}) relative to the ground state with $E_0=0$. We have limited the numerical values to six digits which should be more than sufficient for all applications. The same limitation was imposed on the wavelengths.

In a number of cases we have had to calculate wavelengths from energy level differences. These are given in brackets to distinguish them from the presumably more accurate observed material. However, hydrogen is an obvious exception. Also given in brackets are all energy levels which are not derived from the analysis of spectra, but are extrapolated or obtained from approximate wave function calculations. We have included in this category those energy levels derived from observational material that are shifted by an unknown amount indicated by an

⁵ It should be mentioned, that for allowed transitions the strengths S of lines in a multiplet add up to the total multiplet strength (see also appendix B), and that for forbidden transitions the total transition probability is obtained by adding the electric quadrupole and magnetic dipole probabilities.

"x" or "y" in ref. [43]. Those calculated or extrapolated values which we expect to be quite uncertain have been indicated, in addition to the brackets, by a question mark.

The averaged energy levels for a multiplet have been obtained by weighting the component levels according to their statistical weights, and the multiplet wavelength is calculated from the averaged energy levels, taking the refraction of air into account for wavelengths longer than 2000 A [42]. These averaged values are indicated by italics.

The statistical weights g have been included in this tabulation because of their importance in applications involving line intensities. They have been obtained from the inner quantum numbers J listed in the "Atomic Energy Levels" by applying the relations given in Appendix B.

The second part of the table contains the data proper. The numerical values contain as many digits as are consistent with the estimated accuracy of the data.6

The numbers in the source column refer to the references listed after the individual introductions. If two or more references are listed, we have given each source equal weight in arriving at the averaged value. If the data for all lines of a multiplet are given, then these are either obtained from the relationships listed in Appendix B and from LScoupling tables [17-19], which is indicated in the source column by "ls", or they are obtained directly from the literature. In the latter case they are sometimes marked "n", if they are normalized to a basis which is different from the one chosen originally by the authors. Similarly, the multiplet values sometimes have been renormalized and have been marked "n".

For the forbidden lines, a few small changes in the arrangement have been made. First, we have indicated the type of transition, i.e., we have listed an "m" for magnetic dipole and "e" for electric quadrupole lines. Furthermore, the log gf and f_{ik} columns are omitted, since these units are not used for forbidden lines. (The line strength S, which now has different atomic units (see table III), is also used infrequently). It should be noted that the total transition probabilities of forbidden lines are obtained by adding the magnetic dipole and electric quadrupole values.

We finally would like to mention that we have assembled and explained in Appendix A all abbreviations appearing in the tabulations.

F. FUTURE PLANS AND ACKNOWLEDGEMENTS

It is our plan to extend this critical compilation to all other elements and make revisions whenever necessary. The present tables should therefore be regarded as the first volume of a larger work spanning all elements. However, realization of this large project in a systematic fashion, say, in order of increasing atomic number, does not appear feasible at the present time, since there are relatively few reliable data available for many heavier elements, and essentially none for higher stages of ionization. As an interim solution, we probably shall attempt to assemble, in an irregular fashion, tables of best values for the spectra of those heavier elements and ions for which extensive and worthwhile data are presently at hand. These will be primarily the heavier noble gases, some of the wellknown metals, the alkalis, and the alkaline earths. Also, the third period of the periodic table appears to be promising.

Finally, it is our wish and hope that this compilation may stimulate further work on the lightest ten elements, since many gaps and unreliable data are evident on closer inspection of the tables. The two areas that merit the highest attention are the higher ions and those lower excited transitions that are subject to the effects of configuration interaction.

It is our pleasure to acknowledge the help and collaboration of many workers in this field. In particular, we would like to thank P. S. Kelly and B. H. Armstrong for sending us preprints of their extensive SCF-calculations on nitrogen and oxygen, H. R. Griem for supplying us with a computer program to calculate Bates-Damgaard values; and R. H. Garstang and A. M. Nagvi for extensive discussions and some re-calculations of transition probabilities for forbidden lines.

We also express our sincere gratitude to the students who have worked during the past summers on the prelimiary aspects of this compilation: These are Mary Des Jardins, Maureen Zagronic, Berry Cobb, Don Hall, and Paul Voigt.

We would finally like to thank several of our collegues at NBS; especially A.W. Weiss for many useful discussions and for carrying out many SCF-calculations when serious gaps in the data showed up; Mrs. C. E. Moore-Sitterly for generously furnishing us with new material on energy levels and wavelengths; and J. Z. Klose for undertaking a lifetime study for important excited states of Ne I.

It is also a pleasure to acknowledge the competent help of Miss Jean Bates and Mrs. Marilyn Duffany in typing and proofreading the manuscript.

References

- Glennon, B. M. and Wiese, W. L., National Bureau of Standards Monograph 50 (1962) (U.S. Government Printing Office, Washington,
- [2] Bates, D. R. and Damgaard, A., Phil. Trans. Roy. Soc. London A242, 101 (1949).
- [3] Moore, C. E., "A Multiplet Table of Astrophysical Interest, Revised Edition," National Bureau of Standards Tech. Note 36 (1959) (U.S. Government Printing Office, Washington, D.C.).
 [4] Moore, C. E., "An Ultraviolet Multiplet Table," National Bureau of Standards Circular 488, Sec. 1 (1950) (U.S. Government Printing
- Office, Washington, D.C.).

 [5] Wiese, W. L. in "Proceedings Xth Colloq. Spectrosc. Internat.," p. 37, (Spartan Books, Washington, D.C., 1963).

 [6] Foster, E. W., Repts. Prog. in Physics, XXVII, 469 (1964).

 [7] Berg, H. F., Eckerle, K. L. Burris, R. W., and Wiese, W. L., Astrophys. J. 139, 751 (1964).

- J. 139, 781 (1994).
 Richter, J., Z. Astrophysik 53, 262 (1961).
 Frie, W. and Maecker, H., Z. Physik 162, 69 (1961).
 Wiese, W. L., Chapter VI in "Plasma Diagnostics," (edited by Huddlestone, R. H. and Leonard, S. L., Academic Press, New York, 1965).
- Griem, H. R., Phys. Rev. 128, 997 (1962).
- Shumaker, Jr., J. B., Rev. Sci. Instr. 32, 65 (1961). Maecker, H., Z. Naturforsch. 11, 457 (1956). Bennett, Jr., W. R., Kindlmann, P. J., and Mercer, G. N., Applied Optics, Supplement 2 of Chemical Lasers, 34 (1965).

- Opucs, Supplement 2 of Chemical Lasers, 34 (1965).

 [15] Rozhdestvenskii, D., Ann. Physik 39, 307 (1912).

 [16] Penkin, N. P., J. Quant. Spectrosc. Radiat. Transfer 4, 41 (1964).

 [17] Goldberg, L., Astrophys J. 82, 1 (1935) and 84, 11 (1936).

 [18] White, H. E. and Eliason, A. Y., Phys. Rev. 44, 753 (1933).

 [19] Allen, C. W., "Astrophysical Quantities," 2d Ed. (The Athlone Press, London 1963)
- London, 1963).
 [20] Hartree, D. R., "The Calculation of Atomic Structures," (John Wiley and Sons, New York, 1956). Fock, V., Z. Physik 61, 126 (1930).
- [22] Trefftz, E., Schlüter, A., Dettmar, K. H., and Jörgens, K., Z. Astrophysik 44, 1 (1957).
- [23] Biermann, L. and Lübeck, K., Z. Astrophysik 25, 325 (1948).
 [24] Roothaan, C. C. J. and Bagus, P. S., in "Methods in Computational Physics", Vol. II p. 47 (Academic Press, New York, 1963).
- [25] Weiss, A. W., Astrophys. J. 138, 1262 (1963).

⁶ During the computations and conversions all digits were retained and finally rounded off. Thus it may sometimes occur that the line strengths do not exactly add up to the multiplet strength.

Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117 (1964).

[26] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117 (1904).
[27] Weiss, A. W., private communication (1964).
[28] Yutsis, A. P., Zhur. Eksptl. i Teoret. Fiz. 23, 129 (1952).
[29] Boldt, G., Z. Naturforsch. 18A, 1107 (1963).
[30] Labuhn, F., to be published in Z. Naturforsch.
[31] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 111, 115 (1951).
[32] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 120, 201 (1960).
[33] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 120, 201 (1960).
[34] Naqvi, A. M., Thesis Harvard (1951).

Naqvi, A. M., Thesis Harvard (1951).
Seaton, M. J. and Osterbrock, D. E., Astrophys. J. 125, 66 (1957).
Yamanouchi, T. and Horie, H., J. Phys. Soc. Japan 7, 52 (1952).
Ufford, C. W. and Gilmour, R. M., Astrophys. J. 111, 580 (1950).

[38] Shortley, G. H., Aller, L. H., Baker, J. G., and Menzel, D. H., Astrophys. J. **93**, 178 (1941).

[39] Slater, J. C., Phys. Rev. 34, 1293 (1929).

[40] Garstang, R. H., Proc. Cambridge Phil. Soc. 52, 107 (1956).

Omholt, A., Geofys. Publikasjoner Norske Videnskaps. - Akad. Oslo **21,** 1 (1959).

[42] Garstang, R. H., Chapter I in "Atomic and Molecular Processes",

[42] Garstang, R. H., Chapter I in Atomic and Molecular Processes, (edited by Bates, D. R., Academic Press, New York, 1962).
[43] Moore, C. E., "Atomic Energy Levels", National Bureau of Standards Circular 467; Vol. I (1949); Vol. II (1952); Vol. III (1958) (U.S. Government Printing Office, Washington, D.C.).
[44] Reports of the Thick Commission for Spectroscopy I Out See Am

[44] Reports of the Triple Commission for Spectroscopy, J. Opt. Soc. Am. 52, 476 (1962); 52, 583 (1962); 53, 885 (1963).

[45] Bethe, H. A. and Salpeter, E. E., "Quantum Mechanics of One-and Two-Electron Atoms", (Academic Press, New York, 1957).
[46] Coleman, C. D., Bozman, W. R., and Meggers, W. F., National Bureau

of Standards Monograph 3 (1960) (U.S. Government Printing Office, Washington, D.C.).

Table 1.

Relationships between the quantities for hydrogen, indicated by H, and hydrogen-like ions of charge Z (the other symbols are explained in Sec. E).

$$f_{\rm Z} = f_{\rm H}$$
 $S_{\rm Z} = Z^{-2}S_{\rm H}$ $A_{\rm Z} = Z^4A_{\rm H}$

Table II.

Reference list of additional material which is considered to be quite reliable but not covered in the table because of its very limited use (the quantum numbers are given in their customary notation).

Spectrum	Transitions	Author
Н1	$2 \rightarrow n \text{ for } 41 \le n \le 60$ $n_i l_i \rightarrow n_k l_k \text{ for}$ $5 \le n_i \le 20, 6 \le n_k \le 20,$ and all possible <i>l</i> -values $2l \rightarrow nl \text{ for } 21 \le n \le 60$	Green, L. C., Rush, P. P., and Chandler, C. D., Astrophys. J. Suppl. Ser. 3, 37 (1957).
Н1	$\begin{array}{l} \text{ls} \rightarrow np \text{ for } 7 \leqslant n \leqslant 50 \\ 2l \rightarrow nl \text{ for } 7 \leqslant n \leqslant 50 \\ \text{and all possible } l\text{-values} \\ 3l \rightarrow nl \text{ for } 7 \leqslant n \leqslant 50 \\ \text{and all possible } l\text{-values} \\ 4l \rightarrow nl \text{ for } 7 \leqslant n \leqslant 50 \\ \text{and all possible } l\text{-values} \\ \end{array}$	Harriman, J. M., Phys. Rev. 101, 594 (1956) and Document No. 4705, American Docu- mentation Institute Auxiliary Publica- tions Project, Photoduplication Service, Library of Congress, Washington, D. C.
NΙ	$s-p, p-d, \text{ and } d-f \text{ for } 2 \le n \le 11; \text{ with } 1s^22s^22p^2 \text{ core } s-p, p-d, \text{ and } d-f \text{ for } 2 \le n \le 8; \text{ with } 1s^22s \ 2p^3 \text{ and } 1s^22p^4 \text{ cores}$	Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964).
N II, О III	$s-p, p-d$, and $d-f$ for $2 \le n \le 8$; with $1s^2 2s^2 2p$ core	Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117–148 (1964).
N III, O IV	$s-p, p-d$, and $d-f$ for $2 \le n \le 8$; with $1s^2 2s^2$ core	Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117–148 (1964).
N IV, O V	$s-p$, $p-d$, and $d-f$ for $2 \le n \le 8$; with $1s^2 2s$ core	Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117–148 (1964).
N v, O vi	$s-p, p-d, \text{ and } d-f \text{ for } 2 \le n \le 8; \text{ with } 1s^2 \text{ core}$	Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117–148 (1964).
01	$s-p$, $p-d$, and $d-f$ for $2 \le n \le 8$; with $1s^2 2s^2 2p^3$ core	Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117–148 (1964).
Оп	$s-p, p-d$, and $d-f$ for $2 \le n \le 8$; with $1s^2 2s^2 2p^2$ core	Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117–148 (1964).

Table III.

Conversion factors. The factor in each box converts by multiplication the quantity above it into the one at its left.

	A_{ki}	f_{ik}	S
			$E_d = \frac{2.026_1 \times 10^{18}}{g_k \lambda^3}$
A_{ki}	1	$\frac{6.670_2 \times 10^{15}}{\lambda^2} \frac{g_i}{g_k}$	$\frac{E_q}{\frac{1.679_8 \times 10^{18}}{g_k \lambda^5}}$
			$\frac{M_d}{\frac{2.697_2 \times 10^{13}}{g_k \lambda^3}}$
			E_d $\frac{303.7_5}{g_i\lambda}$
f_{ik}	$1.4992 \times 10^{-16} \lambda^2 rac{g_k}{g_i}$	1	$E_q = \frac{251.8}{g_i \lambda^3}$
		E_q M_d	M_d $\frac{4.043_6 \times 10^{-3}}{g_i \lambda}$
	E_d 4.935 ₆ ×10 ⁻¹⁹ $g_k \lambda^3$	E_d $3.292_1 \times 10^{-3} g_i \lambda$	
\boldsymbol{S}	E_q 5.953 × 10 ⁻¹⁹ $g_k \lambda^5$	$E_q = 3.971 \times 10^{-3} g_i \lambda^3$	1
	$M_d = 3.707_6 \times 10^{-14} g_k \lambda^3$	M_d 247.3 ₀ g_i λ	

The line strength is given in atomic units, which are: For electric dipole transitions (allowed—denoted by E_d):

$$a_0^2e^2 = 6.459_4 \times 10^{-36} \text{ cm}^2 \text{ esu}^2$$
;

for electric quadrupole transitions (forbidden-denoted by E_q):

$$a_0^4 e^2 = 1.808_8 \times 10^{-52} \text{ cm}^4 \text{ esu}^2;$$

for magnetic dipole transitions (forbidden-denoted by M_d):

$$e^2h^2/16\pi^2m_e^2c^2 = 8.599 \times 10^{-41} \text{ erg}^2 \text{ gauss}^{-2}$$
.

The transition probability is in units \sec^{-1} , and the f-value is dimensionless. The wavelength λ is given in Angstrom units, and g_i and g_k are the statistical weights of the lower and upper state, respectively.

APPENDIX A

Key to abbreviations and symbols used in the tables (A) Symbols for indication of accuracy:

1) Зу	AAuncertainties within	1%
	Ado	3%
	B do	10%
	C do	25%
	D do	50%

50% E.... uncertainties larger than (B) Abbreviations appearing in the source column of allowed transitions

ls = LS-coupling

ca = Coulomb approximation

n = normalized to a different scale

(C) Types of forbidden lines e = electric quadrupole linem = magnetic dipole line

> (Total transition probabilities of forbidden lines are obtained by adding the e- and m-values).

(D) Special symbols used in the wavelength and energy level columns.

Number in parentheses under multiplet notation refers to running number of ref. [3] (Revised Multiplet Table) If letters "uv" are added, reference is made to running number in ref. [4] (Ultraviolet Multiplet Table)

Numbers in italics indicate multiplet values, i.e., weighted averages of line values.

Numbers in square brackets approximate calculated or extrapolated values.

Question marks indicate rather uncertain values.

APPENDIX B

(A) Statistical Weights:

The statistical weights are related to the inner quantum number J_L (in one-electron spectra j) of a level (initial and final states of a line) by

$$g_L = 2J_L + 1$$
,

and to the quantum numbers of a term (initial and final states of a multiplet) by

$$g_M = (2L+1)(2S+1).$$

(The "multiplet" values g_M may also be obtained by summing over all possible "line" values g_L . S is the resultant spin.) (B) Relations between the strengths of lines and the total multiplet strength:

1. Line strength S:

$$S(i,\ k) = \sum_{J_i,\ J_k} S(J_i,\ J_k)$$

or
$$S(Multiplet) = \sum S(line)$$

(k denotes the upper and i the lower term).

2. Absorption oscillator strength:

$$f_{ik}^{\text{multiplet}} = \frac{1}{\overline{\lambda}_{ik} \sum_{J_i} (2J_i + 1)} \sum_{J_k, J_i} (2J_i + 1) \times \lambda(J_i, J_k) \times f(J_i, J_k)$$

The mean wavelength for the multiplet $\bar{\lambda}_{ik}$ may be obtained from the weighted energy levels. Usually the wavelength differences for the lines within a multiplet are very small, so that the wavelength factors may be neglected.

3. Transition probabilities

$$A_{k!}^{\text{multiplet}} = \frac{1}{(\bar{\lambda}_{ik})^3 \sum\limits_{J_k} (2J_k+1)} \sum\limits_{J_i,\,J_k} (2J_k+1) \times \lambda(J_i,J_k)^3 \times A(J_k,J_i)$$

Relative strengths $S(J_i, J_k)$ of the components of a multiplet are listed in refs. [17-19] for the case of LS-coupling.

HYDROGEN

H

Ground State

 $1s \, {}^{2}S_{1/2}$

Ionization Potential

 $13.595 \text{ eV} = 109678.758 \text{ cm}^{-1}$

Allowed Transitions

For hydrogen a special tabular arrangement is used. In Table A the "average" transition probabilities for transitions between lower states of principal quantum number $(n)_i$ to upper states $(n)_k$ are listed. They are taken from extensive calculations by Green, Rush, and Chandler; Harriman; Herdan and Hughes; Karzas and Latter; and Menzel and Pekeris [1]. These values are applicable to most problems in plasma spectroscopy and astrophysics (see general introduction, Sec. E). Table B contains the probabilities for transitions between the various sublevels $(nl)_i - (nl)_k$. This table should be useful primarily for theoretical applications. Both tables include only four significant figures since relativistic effects, which are of the order of α^2 , have been neglected in the calculations (α is the fine structure constant). It should be noted that Green, Rush, and Chandler; and Harriman list more transitions, but these, not being of any practical importance, are omitted.

Table C contains the values for nine fine structure lines as calculated from the work of Wild [2]. The effect of the Lamb shift has been taken into account by using his equation (4a) to calculate the line strength and then by using the energy levels given in NBS Circular 467 (Atomic Energy Levels) for conversion into the other quantities.

The values for the transition between the two hyperfine structure components of the $1s^2S_{1/2}$ level are also taken from Wild [2] and are given in Table D. This magnetic dipole transition has a statistical weight of 2f+1, where f is $j\pm 1/2$ for hydrogen.

The metastable $2s \, ^2S_{1/2}$ level gives rise to transitions to the ground state only by means of two-photon emission. This process was studied in particular by Shapiro and Breit [3]. Their calculation of the transition probability for the $1s \, ^2S_{1/2} - 2s \, ^2S_{1/2}$ transition gives a value of 8.23 sec⁻¹ with an estimated accuracy of better than 3 percent. The transition itself gives rise to a continuum; hence no f or S values are given.

Finally, it should be mentioned that in the conversion factors used for hydrogen the reduced mass and other appropriate constants are taken into account.

References

- [1] Green, L. C., Rush, P. P., and Chandler, C. D., Astrophys. J. Suppl. Ser. 3, 37-50 (1957); Harriman, J. M., Phys. Rev. 101, 594-598 (1956) and Document No. 4705, American Documentation Institute Auxiliary Publications Project, Photoduplication Service, Library of Congress, Washington, D. C.; Herdan, R., and Hughes, T. P., Astrophys. J. 133, 294-298 (1961); Karzas, W. J., and Latter, R., Astrophys. J. Suppl. Ser. 6, 167-212 (1961); Menzel, D. H., and Pekeris, C. L., Monthly Notices Roy. Astron. Soc. 96, 77-111 (1935).
- [2] Wild, J. P., Astrophys. J. 115, 206-221 (1952).
- [3] Shapiro, J., and Breit, G., Phys. Rev. 113, 179-181 (1959).

H-Table A. $(n)_i$ - $(n)_k$ Transitions (Average Values)

Transition	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	g_k	$A_{ki}(\sec^{-1})$	f_{ik}	S(at.u.)	log gf	Accu-	Source
$1-2 (L_{\alpha})$	1215.67	0	82259	2	8	4.699×10^{8}	0.4162	3.330	-0.0797	AA	1
$1-3$ (L _{β})	1025.72	0	97492	2	18	5.575×10^{7}	7.910×10^{-2}	0.5339	-0.8008	AA	1
$1-4 (L_{\gamma})$	792.537	0	102824	2	32	1.278×10^{7}	2.899×10^{-2}	0.1855	-1.2367	AA]]
$1-5$ (L _{δ})	949.743	0	105292	2	50	4.125×10^{6}	1.394×10^{-2}	8.711×10^{-2}	-1.5548	ΛA	
$1-6 (L_{\epsilon})$	937.803	0	106632	2	72	1.644×10^{6}	7.799×10^{-3}	4.813×10^{-2}	-1.8069	AA	1
1-7	930.748	0	107440	2	98	7.568×10^{5}	4.814×10^{-3}	2.948×10^{-2}	-2.0165	AA	1
1-8 1-9	926.226	0	107965	2	128	3.869×10^{5}	3.183×10^{-3}	1.940×10^{-2}	-2.1961	AA	1
1-9 1-10	923.150 920.963	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	108325	2	162	2.143×10^{5}	2.216×10^{-3}	1.346×10^{-2}	-2.3534	AA	1
1-11	919.352	0	108582 108772	$\begin{vmatrix} 2\\2 \end{vmatrix}$	200 242	$\begin{array}{ c c c }\hline 1.263 \times 10^5 \\ 7.834 \times 10^4 \end{array}$	$\begin{array}{c c} 1.605 \times 10^{-3} \\ 1.201 \times 10^{-3} \end{array}$	9.729×10^{-3}	-2.4934	AA	1 1
				•			1.201 × 10 °	7.263 × 10^{-3}	-2.6196	AA	1
1 - 12	918.129	0	108917	2	288	5.066×10^{4}	9.214×10^{-4}	5.567×10^{-3}	-2.7345	AA	1
1 - 13 $1 - 14$	917.181 916.429	0	109030	2	338	3.393×10^{4}	7.227×10^{-4}	4.362×10^{-3}	-2.8400	AA	1
1 - 14 $1 - 15$	910.429	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	109119 109191	$\begin{vmatrix} 2\\2 \end{vmatrix}$	392	2.341×10^{4}	5.774×10^{-4}	3.482×10^{-3}	-2.9375	AA	1
1 - 16	915.329		109191	$\frac{2}{2}$	450 512	1.657×10^{4} 1.200×10^{4}	$\begin{array}{ c c c c c }\hline 4.686 \times 10^{-4} \\ 3.856 \times 10^{-4} \\\hline \end{array}$	$\begin{array}{c} 2.824 \times 10^{-3} \\ 2.323 \times 10^{-3} \end{array}$	$\begin{bmatrix} -3.0281 \\ -3.1129 \end{bmatrix}$	AA AA	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$
		"			312	1.200 × 10	5.630 × 10 ·	2.525 × 10 ⁻⁶	- 5.1129	AA	1
1-17	914.919	0	109299	2	578	8858	3.211×10^{-4}	1.933×10^{-3}	-3.1924	AA	1
$ \begin{array}{r} 1 - 18 \\ 1 - 19 \end{array} $	914.576	0	109340	2	648	6654	2.702×10^{-4}	1.626×10^{-3}	-3.2673	AA	1
$1-19 \\ 1-20$	914.286 914.039	0	109375	2	722	5077	2.296×10^{-4}	1.381×10^{-3}	-3.3381	AA	1
$1-20 \\ 1-21$	914.039	0	109405 109430	$\begin{vmatrix} 2\\2 \end{vmatrix}$	800 882	3928 3077	1.967×10^{-4}	1.183×10^{-3}	-3.4052	AA	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$
		"	109430	2	002	3077	1.698×10 ⁻⁴	1.021×10^{-3}	-3.4691	AA	1
1 - 22	913.641	0	109452	2	968	2438	1.476×10^{-4}	8.874×10^{-4}	-3.5299	AA	1
1-23	913.480	0	109471	2	1058	1952	1.291×10^{-4}	7.761×10^{-4}	-3.5880	AA	1
$1-24 \\ 1-25$	913.339 913.215	0	109488	2	1152	1578	1.136×10^{-4}	6.827×10^{-4}	-3.6436	AA	1
1-26	913.213	0	109503 109517	2 2	1250 1352	1286 1057	1.005×10^{-4} 8.928×10^{-5}	$\begin{array}{c} 6.037 \times 10^{-4} \\ 5.364 \times 10^{-4} \end{array}$	$\begin{array}{r r} -3.6970 \\ -3.7482 \end{array}$	AA AA	
		-									
$\begin{array}{c} 1-27 \\ 1-28 \end{array}$	913.006 912.918	0	109528	2	1458	875.3	7.970×10^{-5}	4.788×10^{-4}	-3.7975	AA	1
1-26 $1-29$	912.918	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	109539 109548	$\begin{vmatrix} 2\\2 \end{vmatrix}$	1568	729.7	7.144×10^{-5}	4.292×10^{-4}	-3.8450	AA	
1-30	912.768	0	109548	$\frac{2}{2}$	1682 1800	612.2 516.7	$egin{array}{ccc} 6.429 imes 10^{-5} \ 5.806 imes 10^{-5} \end{array}$	3.862×10^{-4} 3.487×10^{-4}	-3.8908 -3.9351	AA AA	1 1
1 - 31	912.703	0	109565	$\frac{2}{2}$	1922	438.6	5.261×10^{-5}	3.160×10^{-4}	-3.9779	AA	i
1 - 32	912.645	0	109572	2	2048	374.2	4.782×10^{-5}	2.872×10^{-4}	-4.0193	AA	1
1 - 33	912.592	ŏ	109578	2	2178	320.8	4.360×10^{-5}	2.618×10^{-4}	-4.0595	AA	ī
1 - 34	912.543	0	109584	2	2312	276.3	3.986×10^{-5}	2.394×10^{-4}	-4.0985	AA	1
1 - 35	912.499	0	109589	2	2450	239.0	3.653×10^{-5}	2.194×10^{-4}	-4.1363	AA	1
1-36	912.458	0	109594	2	2592	207.6	3.357×10^{-5}	2.016×10^{-4}	-4.1730	AA	1
1 - 37	912.420	0	109599	2	2738	181.0	3.092×10^{-5}	1.856×10^{-4}	-4.2088	AA	1
1 - 38	912.385	0	109603	2	2888	158.4	2.854×10^{-5}	1.713×10^{-4}	-4.2436	AA	1
1-39	912.353	0	109607	2	3042	139.1	2.640×10^{-5}	1.585×10^{-4}	-4.2774	AA	1
1 - 40	912.324	0	109610	2	3200	122.6	2.446×10^{-5}	1.469×10^{-4}	-4.3105	AA	1
$2-3$ (H _{α})	6562.80	82259	97492	8	18	4.410×10^{7}	0.6407	110.7	0.7098	AA	1
$2-4~(H_{\beta})$	4861.32	82259	102824	8	32	8.419×10^{6}	0.1193	15.27	-0.0202	AA	1
$2-5(H_{\lambda})$	4340.46	82259	105292	8	50	2.530×10^{6} 9.732×10^{5}	$4.467 \times 10^{-2} \ 2.209 \times 10^{-2}$	5.105 2.386	-0.4469 -0.7527	AA AA	1
$\frac{2-6}{2}$ (H _δ)	4101.73	82259 82259	106632 107440	8	72 98	9.732×10^{5} 4.389×10^{5}	1.270×10^{-2}	1.328	-0.7327 -0.9929	AA	ĺi
$2-7~(\mathrm{H}_{\epsilon})$	3970.07	82239	107440	0	90	4.569 \ 10					_
2 - 8	3889.05	82259	107965	8	128	2.215×10^{5}	8.036×10^{-3}	$0.8228 \\ 0.5482$	-1.1919	AA	1 1
2-9	3835.38	82259	108325	8	162	1.216×10^{5} 7.122×10^{4}	5.429×10^{-3} 3.851×10^{-3}	0.5482 0.3851	-1.3622 -1.5114	AA AA	1
$\frac{2-10}{2}$	3797.90	82259 82259	108582 108772	8	$200 \\ 242$	4.397×10^{4}	2.835×10^{-3}	0.2815	-1.5114 -1.6443	AA	î
$ \begin{array}{c} 2 - 11 \\ 2 - 12 \end{array} $	3770.63 3750.15	82259 82259	108772	8	288	2.834×10^{4}	2.151×10^{-3}	0.2124	-1.7643	AA	1
4-14	3130.13	}	}								1
2 - 13	3734.37	82259	109030	8	338	1.893×10^4	1.672×10^{-3} 1.326×10^{-3}	$0.1644 \\ 0.1300$	-1.8737 -1.9743	AA AA	ì
2 - 14	3721.94	82259	109119	8	392	1.303×10^{4} 9210	1.326×10^{-3} 1.070×10^{-3}	0.1300	-1.9743 -2.0674	AA	i
2-15	3711.97	82259 82259	109191 109250	8	450 512	6658	8.764×10^{-4}	8.547×10^{-2}	-2.1542	AA	1
$ \begin{array}{r} 2 - 16 \\ 2 - 17 \end{array} $	3703.85 3697.15	82259 82259	109250	8		4910	7.270×10^{-4}	7.077×10^{-2}	-2.2354	AA	1
2-11	1 3071.13	02207	1 20/2//	, ,	. 510						

H-Table A. $(n)_i-(n)_k$ Transitions (Average Values)- Continued

Transition	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	g_k	$A_{ki}(\sec^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
$ \begin{array}{r} 2 - 18 \\ 2 - 19 \\ 2 - 20 \\ 2 - 21 \\ 2 - 22 \end{array} $	3691.55 3686.83 3682.81 3679.35 3676.36	82259 82259 82259 82259 82259	109340 109375 109405 109430 109452	8 8 8 8 8	648 722 800 882 968	3685 2809 2172 1700 1347	$\begin{array}{c} 6.099 \times 10^{-4} \\ 5.167 \times 10^{-4} \\ 4.416 \times 10^{-4} \\ 3.805 \times 10^{-4} \\ 3.302 \times 10^{-4} \end{array}$	$\begin{array}{c} 5.928 \times 10^{-2} \\ 5.016 \times 10^{-2} \\ 4.283 \times 10^{-2} \\ 3.686 \times 10^{-2} \\ 3.196 \times 10^{-2} \end{array}$	$\begin{array}{r} -2.3117 \\ -2.3837 \\ -2.4518 \\ -2.5165 \\ -2.5781 \end{array}$	AA AA AA AA	1 1 1 1 1
$ \begin{array}{r} 2 - 23 \\ 2 - 24 \\ 2 - 25 \\ 2 - 26 \\ 2 - 27 \end{array} $	3673.76 3671.48 3669.46 3667.68 3666.10	82259 82259 82259 82259 82259	109471 109488 109503 109517 109528	8 8 8 8	1058 1152 1250 1352 1458	1078 870.7 709.6 583.0 482.6	$\begin{array}{c} 2.884 \times 10^{-4} \\ 2.534 \times 10^{-4} \\ 2.238 \times 10^{-4} \\ 1.987 \times 10^{-4} \\ 1.772 \times 10^{-4} \end{array}$	$\begin{array}{c} 2.790\times 10^{-2} \\ 2.449\times 10^{-2} \\ 2.163\times 10^{-2} \\ 1.919\times 10^{-2} \\ 1.711\times 10^{-2} \end{array}$	-2.6369 -2.6931 -2.7470 -2.7987 -2.8484	AA AA AA AA	1 1 1 1 1
$ \begin{array}{r} 2 - 28 \\ 2 - 29 \\ 2 - 30 \\ 2 - 31 \\ 2 - 32 \end{array} $	3664.68 3663.40 3662.26 3661.22 3660.28	82259 82259 82259 82259 82259	109539 109548 109557 109565 109572	8 8 8 8	1568 1682 1800 1922 2048	402.2 337.4 284.7 241.6 206.1	$\begin{array}{c} 1.587\times 10^{-4}\\ 1.427\times 10^{-4}\\ 1.288\times 10^{-4}\\ 1.167\times 10^{-4}\\ 1.060\times 10^{-4} \end{array}$	$\begin{array}{c} 1.532 \times 10^{-2} \\ 1.377 \times 10^{-2} \\ 1.242 \times 10^{-2} \\ 1.125 \times 10^{-2} \\ 1.021 \times 10^{-2} \end{array}$	-2.8962 -2.9424 -2.9869 -3.0300 -3.0717	AA AA AA AA	1 1 1 1 1
$ \begin{array}{r} 2 - 33 \\ 2 - 34 \\ 2 - 35 \\ 2 - 36 \\ 2 - 37 \end{array} $	3659.42 3658.64 3657.92 3657.27 3656.66	82259 82259 82259 82259 82259	109578 109584 109589 109594 109599	8 8 8 8	2178 2312 2450 2592 2738	176.7 152.2 131.6 114.3 99.66	$\begin{array}{c} 9.658 \times 10^{-5} \\ 8.825 \times 10^{-5} \\ 8.086 \times 10^{-5} \\ 7.427 \times 10^{-5} \\ 6.837 \times 10^{-5} \end{array}$	$\begin{array}{c} 9.305\times 10^{-3} \\ 8.501\times 10^{-3} \\ 7.788\times 10^{-3} \\ 7.152\times 10^{-3} \\ 6.583\times 10^{-3} \end{array}$	$\begin{array}{r} -3.1120 \\ -3.1512 \\ -3.1892 \\ -3.2261 \\ -3.2620 \end{array}$	AA AA AA AA	1 1 1 1
$ \begin{array}{r} 2 - 38 \\ 2 - 39 \\ 2 - 40 \end{array} $	3656.11 3655.59 3655.12	82259 82259 82259	109603 109607 109610	8 8 8	2888 3042 3200	87.20 76.57 67.46		$ \begin{vmatrix} 6.073 \times 10^{-3} \\ 5.615 \times 10^{-3} \\ 5.202 \times 10^{-3} \end{vmatrix} $	$ \begin{array}{r} -3.2969 \\ -3.3310 \\ -3.3641 \end{array} $	AA AA AA	1 1 1
$\begin{array}{l} 3-4 \ (P_{\alpha}) \\ 3-5 \ (P_{\beta}) \\ 3-6 \ (P_{\gamma}) \\ 3-7 \ (P_{\delta}) \\ 3-8 \ (P_{\epsilon}) \end{array}$	18751.0 12818.1 10938.1 10049.4 9545.98	97492 97492 97492 97492 97492	102824 105292 106632 107440 107965	18 18 18 18 18	32 50 72 98 128	$\begin{array}{c} 8.986 \times 10^{6} \\ 2.201 \times 10^{6} \\ 7.783 \times 10^{5} \\ 3.358 \times 10^{5} \\ 1.651 \times 10^{5} \end{array}$	$\begin{array}{c} 0.8421 \\ 0.1506 \\ 5.584 \times 10^{-2} \\ 2.768 \times 10^{-2} \\ 1.604 \times 10^{-2} \end{array}$	935.4 114.3 36.18 16.48 9.069	1.1806 0.4331 0.0022 -0.3025 -0.5396	AA AA AA AA	1 1 1 1 1
3-9 $ 3-10 $ $ 3-11 $ $ 3-12 $ $ 3-13$	9229.02 9014.91 8862.79 8750.47 8665.02	97492 97492 97492 97492 97492	108582 108772 108917	18 18 18 18 18	162 200 242 288 338	$\begin{array}{c} 8.905 \times 10^4 \\ 5.156 \times 10^4 \\ 3.156 \times 10^4 \\ 2.021 \times 10^4 \\ 1.343 \times 10^4 \end{array}$	$\begin{array}{c} 1.023\times10^{-2}\\ 6.980\times10^{-3}\\ 4.996\times10^{-3}\\ 3.711\times10^{-3}\\ 2.839\times10^{-3} \end{array}$	5.595 3.728 2.623 1.924 1.457	$\begin{array}{c c} -0.7347 \\ -0.9009 \\ -1.0461 \\ -1.1752 \\ -1.2916 \end{array}$	AA AA AA AA	1 1 1 1
3-14 3-15 3-16 3-17 3-18 3-19 3-20	8598.39 8545.39 8502.49 8467.26 8437.96 8413.32 8392.40	97492 97492 97492 97492 97492 97492	109191 109250 109299 109340 109375	18 18 18 18 18 18	392 450 512 578 648 722 800	9211 6490 4680 3444 2580 1964 1517	$\begin{array}{c} 2.224\times10^{-3}\\ 1.776\times10^{-3}\\ 1.443\times10^{-3}\\ 1.188\times10^{-3}\\ 9.916\times10^{-4}\\ 8.361\times10^{-4}\\ 7.118\times10^{-4} \end{array}$	1.133 0.8992 0.7267 0.5963 0.4957 0.4167 0.3539	-1.3977 -1.4952 -1.5855 -1.6696 -1.7484 -1.8225 -1.8924	AA AA AA AA AA AA	1 1 1 1 1 1
4-5 4-6 4-7 4-8 4-9	40512.0 26252.0 21655.0 19445.6 18174.1	102824 102824 102824 102824 102824	106632 107440 107965	32 32 32 32 32 32	50 72 98 128 162	$\begin{array}{c} 2.699 \times 10^{6} \\ 7.711 \times 10^{5} \\ 3.041 \times 10^{5} \\ 1.424 \times 10^{5} \\ 7.459 \times 10^{4} \end{array}$	$\begin{array}{c} 1.038 \\ 0.1793 \\ 6.549 \times 10^{-2} \\ 3.230 \times 10^{-2} \\ 1.870 \times 10^{-2} \end{array}$	4428 495.6 149.4 66.14 35.79	1.5212 0.7586 0.3213 0.0143 -0.2230	AA AA AA AA	1 1 1 1
4-10 4-11 4-12 4-13 4-14	17362.1 16806.5 16407.2 16109.3 15880.5	102824 102824 102824 102824 102824	108772 108917 109030	32 32 32 32 32 32	200 242 288 338 392	4.235×10^{4} 2.556×10^{4} 1.620×10^{4} 1.069×10^{4} 7288	$\begin{array}{c} 1.196 \times 10^{-2} \\ 8.187 \times 10^{-3} \\ 5.886 \times 10^{-3} \\ 4.393 \times 10^{-3} \\ 3.375 \times 10^{-3} \end{array}$	21.87 14.49 10.17 7.452 5.645	$\begin{array}{c} -0.4171 \\ -0.5817 \\ -0.7250 \\ -0.8521 \\ -0.9665 \end{array}$	AA AA AA AA	1 1 1 1
4-15 4-16 4-17 4-18 4-19 4-20	15700.7 15556.5 15438.9 15341.8 15260.6 15191.8	102824 102824 102824 102824 102824 102824	109250 109299 109340 109375	32 32 32 32 32 32 32 32	450 512 578 648 722 800	5110 3671 2693 2013 1529 1178	$\begin{array}{c} 2.656 \times 10^{-3} \\ 2.131 \times 10^{-3} \\ 1.739 \times 10^{-3} \\ 1.439 \times 10^{-3} \\ 1.204 \times 10^{-3} \\ 1.019 \times 10^{-3} \end{array}$	4.392 3.492 2.827 2.324 1.936 1.631	$\begin{array}{c} -1.0706 \\ -1.1662 \\ -1.2547 \\ -1.3370 \\ -1.4141 \\ -1.4865 \end{array}$	AA AA AA AA AA	1 1 1 1 1

 $\mathbf{H} - \text{Table A.}$ $(n)_i - (n)_k$ Transitions (Average Values) - Continued

Transition	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(\mathrm{sec^{-1}})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
5-6 5-7 5-8 5-9 5-10	74578 46525 37395 32961 30384	105292 105292 105292 105292 105292	106632 107440 107965 108325 108582	50 50 50 50 50	72 98 128 162 200	$\begin{array}{c} 1.025\times10^{6} \\ 3.253\times10^{5} \\ 1.388\times10^{5} \\ 6.908\times10^{4} \\ 3.800\times10^{4} \end{array}$	$\begin{array}{c} 1.231 \\ 0.2069 \\ 7.448 \times 10^{-2} \\ 3.645 \times 10^{-2} \\ 2.104 \times 10^{-2} \end{array}$	1.511×10^{4} 1584 458.3 197.7 105.2	1.7893 1.0147 0.5710 0.2607 0.0219	AA AA AA AA	1 1 1 1 1
5-11 5-12 5-13 5-14 5-15	28722 27575 26744 26119 25636	105292 105292 105292 105292 105292	108772 108917 109030 109119 109191	50 50 50 50 50	242 288 338 392 450	$\begin{array}{c} 2.246\times10^{4} \\ 1.402\times10^{4} \\ 9148 \\ 6185 \\ 4308 \end{array}$	$\begin{array}{c} 1.344\times 10^{-2} \\ 9.209\times 10^{-3} \\ 6.631\times 10^{-3} \\ 4.959\times 10^{-3} \\ 3.821\times 10^{-3} \end{array}$	63.55 41.79 29.18 21.32 16.12	$\begin{array}{c} -0.1725 \\ -0.3368 \\ -0.4794 \\ -0.6056 \\ -0.7189 \end{array}$	AA AA AA AA	1 1 1 1
5-16 $5-17$ $5-18$ $5-19$ $5-20$	25254 24946 24693 24483 24307	105292 105292 105292 105292 105292	109250 109299 109340 109375 109405	50 50 50 50 50	512 578 648 722 800	3079 2249 1675 1268 975.1	$\begin{array}{c} 3.014\times10^{-3}\\ 2.425\times10^{-3}\\ 1.984\times10^{-3}\\ 1.646\times10^{-3}\\ 1.382\times10^{-3} \end{array}$	12.53 9.957 8.062 6.631 5.528	-0.8218 -0.9162 -1.0035 -1.0846 -1.1605	AA AA AA AA	1 1 1 1
6-7 6-8 6-9 6-10 6-11	123680 75005 59066 51273 46712	106632 106632 106632 106632 106632	107440 107965 108325 108582 108772	72 72 72 72 72 72	98 128 162 200 242	$\begin{array}{c} 4.561 \times 10^{5} \\ 1.561 \times 10^{5} \\ 7.065 \times 10^{4} \\ 3.688 \times 10^{4} \\ 2.110 \times 10^{4} \end{array}$	$\begin{array}{c} 1.424 \\ 0.2340 \\ 8.315 \times 10^{-2} \\ 4.038 \times 10^{-2} \\ 2.320 \times 10^{-2} \end{array}$	4.173×10^{4} 4160 1164 490.6 256.8	2.0108 1.2266 0.7772 0.4635 0.2227	AA AA AA AA	
6-12 $6-13$ $6-14$ $6-15$ $6-16$	43753 41697 40198 39065 38184	106632 106632 106632 106632 106632	108917 109030 109119 109191 109250	72 72 72 72 72 72	288 338 392 450 512	$\begin{array}{c} 1.288 \times 10^{4} \\ 8271 \\ 5526 \\ 3815 \\ 2707 \end{array}$	$\begin{array}{c} 1.479 \times 10^{-2} \\ 1.012 \times 10^{-2} \\ 7.289 \times 10^{-3} \\ 5.455 \times 10^{-3} \\ 4.207 \times 10^{-3} \end{array}$	153.3 100.0 69.43 50.50 38.07	$\begin{array}{c c} 0.0273 \\ -0.1374 \\ -0.2800 \\ -0.4059 \\ -0.5186 \end{array}$	AA AA AA AA	1 1 1 1
6-17 $6-18$ $6-19$ $6-20$	37484 36916 36449 36060	106632 106632 106632 106632	109299 109340 109375 109405	72 72 72 72 72	578 648 722 800	1966 1457 1099 842.4	3.324×10^{-3} 2.679×10^{-3} 2.196×10^{-3} 1.825×10^{-3}	29.53 23.44 18.96 15.59	-0.6209 -0.7146 -0.8011 -0.8815	AA AA AA	1 1 1 1
7-8 $7-9$ $7-10$ $7-11$ $7-12$	190570 113060 87577 75061 67701	107440 107440 107440 107440 107440	107965 108325 108582 108772 108917	98 98 98 98 98	128 162 200 242 288	$\begin{array}{c} 2.272\times10^5\\ 8.237\times10^4\\ 3.905\times10^4\\ 2.117\times10^4\\ 1.250\times10^4 \end{array}$	$\begin{array}{c} 1.616 \\ 0.2609 \\ 9.163 \times 10^{-2} \\ 4.416 \times 10^{-2} \\ 2.525 \times 10^{-2} \end{array}$	9.931×10^{4} 9514 2588 1069 551.3	2.1996 1.4077 0.9533 0.6363 0.3935	AA AA AA AA	1 1 1 1
7-13 7-14 7-15 7-16 7-17	62902 59552 57099 55237 53783	107440 107440 107440 107440 107440	109030 109119 109191 109250 109299	98 98 98 98 98	338 392 450 512 578	7845 5156 3516 2471 1781	$ \begin{array}{c} 1.605\times 10^{-2} \\ 1.097\times 10^{-2} \\ 7.891\times 10^{-3} \\ 5.905\times 10^{-3} \\ 4.556\times 10^{-3} \end{array}$	325.7 210.6 145.3 105.2 79.03	$\begin{array}{c} 0.1967 \\ 0.0313 \\ -0.1116 \\ -0.2376 \\ -0.3502 \end{array}$	AA AA AA AA	1 1 1 1
7-18 $7-19$ $7-20$	52622.5 51679 50899	107440 107440 107440	109340 109375 109405	98 98 98	648 722 800	1312 984.9 751.7	$\begin{array}{c} 3.602 \times 10^{-3} \\ 2.905 \times 10^{-3} \\ 2.383 \times 10^{-3} \end{array}$	61.13 48.43 39.13	$ \begin{array}{r} -0.4522 \\ -0.5456 \\ -0.6316 \end{array} $	AA AA AA	1 1 1
8-9 8-10 8-11 8-12 8-13	277960 162050 123840 105010 93894	107965 107965 107965 107965 107965	108325 108582 108772 108917 109030	128 128 128 128 128	162 200 242 288 338	$\begin{array}{c} 1.233\times10^5\\ 4.676\times10^4\\ 2.301\times10^4\\ 1.287\times10^4\\ 7804 \end{array}$	$\begin{array}{c} 1.807 \\ 0.2876 \\ 0.1000 \\ 4.787 \times 10^{-2} \\ 2.724 \times 10^{-2} \end{array}$	$\begin{array}{c} 2.116 \times 10^5 \\ 1.964 \times 10^4 \\ 5217 \\ 2117 \\ 1077 \end{array}$	2.3642 1.5661 1.1072 0.7873 0.5424	AA AA AA AA	1 1 1 1
8-14 8-15 8-16 8-17 8-18 8-19 8-20	86621 81527 77782 74930 72696 70908 69448	107965 107965 107965 107965 107965 107965	109119 109191 109250 109299 109340 109375 109405	128 128 128 128 128 128 128	392 450 512 578 648 722 800	5010 3359 2331 1664 1216 906.9 688.6	$\begin{array}{c} 1.726\times10^{-2}\\ 1.177\times10^{-2}\\ 8.456\times10^{-3}\\ 6.323\times10^{-3}\\ 4.877\times10^{-3}\\ 3.856\times10^{-3}\\ 3.112\times10^{-3} \end{array}$	629.8 404.1 277.1 199.6 149.4 115.2 91.04	$ \begin{array}{c} 0.3442 \\ 0.1778 \\ 0.0344 \\ -0.0919 \\ -0.2046 \\ -0.3066 \\ -0.3998 \end{array} $	AA AA AA AA AA AA	1 1 1 1 1 1

 \mathbf{H} -Table A. $(n)_i-(n)_k$ Transitions (Average Values) - Continued

Transition	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g_k	$A_{ki}(\sec^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
9-10 $9-11$ $9-12$ $9-13$ $9-14$	388590 223340 168760 141790 125840	108325 108325 108325 108325 108325	108582 108772 108917 109030 109119	162 162 162 162 162 162	200 242 288 338 392		1.999 0.3143 0.1083 5.152 × 10 ⁻² 2.918 × 10 ⁻²	$\begin{array}{c} 4.141 \times 10^{5} \\ 3.742 \times 10^{4} \\ 9746 \\ 3895 \\ 1958 \end{array}$	2.5103 1.7068 1.2442 0.9215 0.6746	AA AA AA AA AA	1 1 1 1 1
9-15 $9-16$ $9-17$ $9-18$ $9-19$ $9-20$	115360 108010 102580 98443 95191 92579	108325 108325 108325 108325 108325 108325	109191 109250 109299 109340 109375 109405	162 162 162 162 162 162 162	450 512 578 648 722 800	3325 2268 1598 1156 855.5 645.2	$\begin{array}{c} 1.843\times 10^{-2} \\ 1.254\times 10^{-2} \\ 8.995\times 10^{-3} \\ 6.719\times 10^{-3} \\ 5.180\times 10^{-3} \\ 4.094\times 10^{-3} \end{array}$	1134 721.9 492.0 352.7 262.9 202.1		AA AA AA AA AA	1 1 1 1 1 1
10-11 10-12 10-13 10-14 10-15	525200 298310 223250 186100 164070	108582 108582 108852 108582 108582	108772 108917 109030 109119 109191	200 200 200 200 200 200	242 288 338 392 450	4.377×10^{4} 1.774×10^{4} 9231 5417 3424	$\begin{array}{c} 2.190 \\ 0.3408 \\ 0.1166 \\ 5.513 \times 10^{-2} \\ 3.109 \times 10^{-2} \end{array}$		2.6415 1.8335 1.3676 1.0424 0.7937	AA AA AA AA	1 1 1 1
10-16 10-17 10-18 10-19 10-20	149580 139380 131840 126080 121530	108582 108582 108582 108582 108582	109250 109299 109340 109375 109405	200 200 200 200 200 200	512 578 648 722 800	2280 1578 1127 825.2 617.3	$\begin{array}{c} 1.958 \times 10^{-2} \\ 1.328 \times 10^{-2} \\ 9.515 \times 10^{-3} \\ 7.099 \times 10^{-3} \\ 5.468 \times 10^{-3} \end{array}$	1927 1219 825.8 589.2 437.4	0.5928 0.4243 0.2794 0.1522 0.0389	AA AA AA AA	1 1 1 1
11-12 11-13 11-14 11-15 11-16	690500 388320 288230 238620 209150	108772 108772 108772 108772 108772	108917 109030 109119 109191 109250	242 242 242 242 242 242	288 338 392 450 512	2.799×10^{4} 1.163×10^{4} 6186 3699 2377	$\begin{array}{c} 2.381 \\ 0.3673 \\ 0.1248 \\ 5.872 \times 10^{-2} \\ 3.298 \times 10^{-2} \end{array}$	$\begin{array}{c} 1.310\times10^{6} \\ 1.136\times10^{5} \\ 2.865\times10^{4} \\ 1.116\times10^{4} \\ 5495 \end{array}$	2.7606 1.9489 1.4800 1.1526 0.9021	AA AA AA AA	1 1 1 1
11-17 11-18 11-19 11-20	189730 176030 165900 158120	108772 108772 108772 108772	109299 109340 109375 109405	242 242 242 242 242	578 648 722 800	1606 1127 814.1 602.6	$\begin{array}{c} 2.070 \times 10^{-2} \\ 1.402 \times 10^{-2} \\ 1.002 \times 10^{-2} \\ 7.468 \times 10^{-3} \end{array}$	3129 1965 1324 940.5	0.6999 0.5304 0.3848 0.2570	AA AA AA	1 1 1
12-13 $12-14$ $12-15$ $12-16$ $12-17$	887300 494740 364610 300020 261610	108917 108917 108917 108917 108917	109030 109119 109191 109250 109299	288 288 288 288 288	338 392 450 512 578	1.857×10^{4} 7884 4271 2596 1693	$\begin{array}{c} 2.572 \\ 0.3938 \\ 0.1330 \\ 6.228 \times 10^{-2} \\ 3.486 \times 10^{-2} \end{array}$	$\begin{array}{c} 2.163 \times 10^{6} \\ 1.847 \times 10^{5} \\ 4.596 \times 10^{4} \\ 1.771 \times 10^{4} \\ 8644 \end{array}$	2.8697 2.0547 1.5832 1.2538 1.0017	AA AA AA AA	1 1 1 1
12 - 18 $12 - 19$ $12 - 20$	236260 218360 205090	108917 108917 108917	109340 109375 109405	288 288 288	648 722 800	1159 822.3 600.5	$\begin{array}{c} 2.182 \times 10^{-2} \\ 1.474 \times 10^{-2} \\ 1.052 \times 10^{-2} \end{array}$	4886 3050 2045	0.7982 0.6278 0.4814	AA AA AA	1 1 1
13-14 13-15 13-16 13-17 13-18 13-19 13-20	1118000 619000 453290 371000 322000 289640 266740	109030 109030 109030 109030 109030 109030 109030	109119 109191 109250 109299 109340 109375 109405	338 338 338 338 338 338 338	392 450 512 578 648 722 800	1.271×10^{4} 5496 3026 1866 1232 853.2 611.9	$\begin{array}{c} 2.763 \\ 0.4202 \\ 0.1412 \\ 6.584 \times 10^{-2} \\ 3.672 \times 10^{-2} \\ 2.292 \times 10^{-2} \\ 1.545 \times 10^{-2} \end{array}$	3.438×10^{6} 2.894×10^{5} 7.119×10^{4} 2.717×10^{4} 1.316×10^{4} 7386 4584	2.9703 2.1524 1.6787 1.3474 1.0939 0.8892 0.7178	AA AA AA AA AA	1 1 1 1 1 1
14-15 14-16 14-17 14-18	1386000 762300 555200 452220	109119 109119 109119 109119	109191 109250 109299 109340	392 392 392 392	450 512 578 648	8933 3926 2192 1369	$\begin{array}{c} 2.954 \\ 0.4467 \\ 0.1494 \\ 6.938 \times 10^{-2} \end{array}$	5.284×10^{6} 4.393×10^{5} 1.070×10^{5} 4.048×10^{4}	3.0637 2.2433 1.7675 1.4345	AA AA AA	1 1 1 1

 \mathbf{H} -Table A. $(n)_i$ - $(n)_k$ Transitions (Average Values)-Continued

Transition	λ(Å)	$E_i({ m cm}^{-1})$	$E_k(\text{cm}^{-1})$	g_i	g_k	$A_{ki}(\mathrm{sec^{-1}})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
14 - 19 $14 - 20$	390880 350300	109119 109119	109375 109405	392 392	722 800	914.4 639.7	$3.858 \times 10^{-2} \ 2.402 \times 10^{-2}$	$1.946 \times 10^{4} \\ 1.086 \times 10^{4}$	1.1796 0.9738	AA AA	1
15-16 $15-17$ $15-18$ $15-19$ $15-20$	1694000 926100 671200 544400 468760	109191 109191 109191 109191 109191	109250 109299 109340 109375 109405	450 450 450 450 450 450	512 578 648 722 800	6429 2864 1620 1023 690.3	$\begin{array}{c} 3.145 \\ 0.4731 \\ 0.1575 \\ 7.292 \times 10^{-2} \\ 4.043 \times 10^{-2} \end{array}$	7.889×10^{6} 6.489×10^{5} 1.566×10^{5} 5.879×10^{4} 2.807×10^{4}	3.1509 2.3281 1.8505 1.5160 1.2599	AA AA AA AA	1 1 1 1
16-17 16-18 16-19 16-20	2044000 1112000 802300 648200	109250 109250 109250 109250	109299 109340 109375 109405	512 512 512 512 512	578 648 722 800	4720 2130 1217 776.7	$\begin{array}{c} 3.336 \\ 0.4995 \\ 0.1657 \\ 7.644 \times 10^{-2} \end{array}$	$\begin{array}{c} 1.149 \times 10^{7} \\ 9.358 \times 10^{5} \\ 2.240 \times 10^{5} \\ 8.349 \times 10^{4} \end{array}$	3.2325 2.4078 1.9285 1.5926	AA AA AA AA	1 1 1 1
17 - 18 $17 - 19$ $17 - 20$	2438000 1321000 949200	109299 109299 109299	109340 109375 109405	578 578 578	648 722 800	3530 1610 929.6	3.527 0.5259 0.1738	$\begin{array}{c} 1.636 \times 10^{7} \\ 1.321 \times 10^{6} \\ 3.139 \times 10^{5} \end{array}$	3.3094 2.4828 2.0020	AA AA AA	1 1 1
18-19 18-20	2882000 1554000	109340 109340	109375 109405	648 648	722 800	2680 1235	3.718 0.5523	2.285×10^{7} 1.831×10^{6}	3.3819 2.5537	AA AA	1 1
<u>19-20</u>	3374000	109375	109405	722	800	2067	3.909	3.134×10^{7}	3.4506	AA	1

H-Table B. $(nl)_i - (nl)_k$ Transitions

Transition	λ(Å)	$E_i(em^{-1})$	$E_k(cm^{-1})$	gi	gk	$A_{ki}(\sec^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
	1015 (5		00070				0.4169	0.000	0.0707	AA	,
$ \begin{array}{c} 1s-2p\\1s-3p \end{array} $	1215.67	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	82259	$\begin{vmatrix} 2\\2 \end{vmatrix}$	6	$\begin{array}{ c c c c c }\hline 6.265 \times 10^8 \\ 1.672 \times 10^8 \\ \hline \end{array}$	$\begin{array}{c} 0.4162 \\ 7.910 \times 10^{-2} \end{array}$	3.330 0.5339	-0.0797 -0.8008	AA	1
1s-3p	1025.72	0	97492	$\frac{2}{2}$	6	6.818×10^{7}	2.899×10^{-2}	0.3339	-1.2367	$\Lambda \Lambda$	1
1s-4p	972.537		102824 105292	$\frac{1}{2}$	6	3.437×10^7	1.394×10^{-2}	8.711×10^{-2}	-1.5548	AA	i
1s-5p	949.743	0	105292	$\frac{2}{2}$	6	1.973×10^7	7.800×10^{-3}	4.813×10^{-2}	-1.8069	AA	l î
1s-6p	937.804	1	100032	4		1.975 × 10	7.000 \ 10	4.013 \(10 \)	1.000	1111	1
9 9	6562.86	82259	97492	6	2	6.313×10^{6}	1.359×10^{-2}	1.761	-1.0886	AA	1
2p-3s	4861.35	82259	102824	6	2	2.578×10^{6}	3.045×10^{-3}	0.2923	-1.7383	AA	1
2p-4s	4340.48	82259	102024	6	2	1.289×10^{6}	1.213×10^{-3}	0.1040	-2.1379	AA	1
2p-5s	4101.75	82259	106632	6	$\frac{5}{2}$	7.350×10^{5}	6.180×10^{-4}	5.006×10^{-2}	-2.4309	AA	1
2p-6s	4101.73	02207	100032		-	1.000 / 10	0.200	9,000			
20 20	6562,74	82259	97492	2	6	2.245×10^{7}	0.4349	18.79	-0.0606		1
2s-3p	4861.29	82259	102824	$\frac{1}{2}$	6	9.668×10^{6}	0.1028	3.288	-0.6871	AA	1
2s-4p 2s-5p	4340.44	82259	105292	$\frac{1}{2}$	6	4.948×10^{6}	4.193×10^{-2}	1.198	-1.0764	AA	1
2s-5p 2s-6p	4101.71	82259	106632	2	6	2.858×10^{6}	2.163×10^{-2}	0.5840	-1.3639	AA	1
2s - 0p	1101.11	0	10000						1		
2p-3d	6562.81	82259	97492	6	10	6.465×10^7	0.6958	90.17	0.6206	AA	1
2p-3d 2p-4d	4861.33	82259	102824	6	10	2.062×10^7	0.1218	11.69	-0.1362	AA	1
2p-4a 2p-5d	4340.47	82259	105292	6	10	9.425×10^{6}	4.437×10^{-2}	3.803	-0.5748	AA	1 1
2p-3a 2p-6d	4101.74	82259	106632	6	10	5.145×10^{6}	2.163×10^{-2}	1 1.752	-0.8868	l AA	1

 $\mathbf{H} - \mathbf{Table} \ \mathbf{B}. \ (nl)_i - (nl)_k \ \mathbf{Transitions.} - Continued$

Transition	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	g_i	g_k	$A_{ki}(\sec^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
3s-4p $3s-5p$ $3s-6p$	18750.8 12818.0 10938.0	97492 97492 97492	102824 105292 106632	$\begin{vmatrix} 2\\2\\2 \end{vmatrix}$	6 6 6	3.065×10^{6} 1.638×10^{6} 9.551×10^{5}	$\begin{array}{c} 0.4847 \\ 0.1210 \\ 5.139 \times 10^{-2} \end{array}$	59.83 10.21 3.700	-0.0135 -0.6161 -0.9881	AA AA AA	1 1 1
3p-4s 3p-5s 3p-6s	18751.1 12818.1 10938.1	97492 97492 97492	102824 105292 106632	6 6 6	2 2 2	$\begin{array}{c c} 1.835 \times 10^{6} \\ 9.046 \times 10^{5} \\ 5.071 \times 10^{5} \end{array}$	$ \begin{vmatrix} 3.225 \times 10^{-2} \\ 7.428 \times 10^{-3} \\ 3.032 \times 10^{-3} \end{vmatrix} $	11.94 1.880 0.6550	$ \begin{array}{r r} -0.7133 \\ -1.3510 \\ -1.7401 \end{array} $	AA AA AA	1 1 1
$\begin{array}{c} 3p - 4d \\ 3p - 5d \\ 3p - 6d \end{array}$	18750.9 12818.0 10938.1	97492 97492 97492	102824 105292 106632	6 6 6	10 10 10	$ \begin{vmatrix} 7.037 \times 10^6 \\ 3.391 \times 10^6 \\ 1.878 \times 10^6 \end{vmatrix} $	$ \begin{vmatrix} 0.6183 \\ 0.1392 \\ 5.614 \times 10^{-2} \end{vmatrix} $	228.9 35.24 12.13	$0.5693 \\ -0.0781 \\ -0.4726$	AA AA AA	1 1 1
$3d-4p \ 3d-5p \ 3d-6p$	18751.2 12818.2 10938.1	97492 97492 97492	102824 105292 106632	10 10 10	6 6 6	$\begin{array}{c c} 3.475 \times 10^5 \\ 1.495 \times 10^5 \\ 7.824 \times 10^4 \end{array}$	$ \begin{vmatrix} 1.099 \times 10^{-2} \\ 2.210 \times 10^{-3} \\ 8.420 \times 10^{-4} \end{vmatrix} $	6.783 0.9324 0.3031	$ \begin{array}{r} -0.9589 \\ -1.6556 \\ -2.0747 \end{array} $	AA AA AA	1 1 1
$\begin{array}{c} 3d-4f \\ 3d-5f \\ 3d-6f \end{array}$	18751.1 12818.1 10938.1	97492 97492 97492	102824 105292 106632	10 10 10	14 14 14	$\begin{array}{c} 1.379 \times 10^{7} \\ 4.542 \times 10^{6} \\ 2.146 \times 10^{6} \end{array}$	1.018 0.1566 5.389×10 ⁻²	628.0 66.08 19.40	$1.0075 \\ 0.1949 \\ -0.2685$	AA AA AA	1 1 1
4s - 5p $4s - 6p$	40511 26251	102824 102824	105292 106632	$\frac{2}{2}$	6 6	$7.372 \times 10^{5} \\ 4.456 \times 10^{5}$	0.5442 0.1381	145.1 23.87	$0.0368 \\ -0.5587$	AA AA	1 1
$\begin{array}{c} 4p - 5s \\ 4p - 6s \end{array}$	40512 26251	102824 102824	105292 106632	6 6	$\frac{2}{2}$	$6.450 \times 10^{5} 3.582 \times 10^{5}$	5.291×10^{-2} 1.234×10^{-2}	42.33 6.396	-0.4983 -1.1306	AA AA	1 1
4p-5d $4p-6d$	40511 26251	102824 102824	$\frac{105292}{106632}$	6 6	10 10	$1.486 \times 10^{6} \ 8.622 \times 10^{5}$	0.6093 0.1485	487.4 76.96	$0.5630 \\ -0.0502$	AA AA	1 1
4d-5p 4d-6p	40512 26252	102824 102824	105292 106632	10 10	6 6	1.884×10^{5} 9.416×10^{4}	$\begin{array}{c} 2.782 \times 10^{-2} \\ 5.837 \times 10^{-3} \end{array}$	37.10 5.044	$-0.5556 \\ -1.2338$	AA AA	1 I
4d-5f $4d-6f$	40512 26252	102824 102824	105292 106632	10 10	14 14	$\begin{array}{c} 2.584 \times 10^{6} \\ 1.287 \times 10^{6} \end{array}$	0.8903 0.1862	1187 160.8	0.9495 0.2699	AA AA	1
4f-5d $4f-6d$	40512 26252	102824 102824	105292 106632	14 14	10 10	$\begin{array}{c} 5.047 \times 10^{4} \\ 2.145 \times 10^{4} \end{array}$	$\begin{array}{c} 8.871 \times 10^{-3} \\ 1.583 \times 10^{-3} \end{array}$	16.56 1.915	- 0.9059 - 1.6544	AA AA	1 1
4f-5g 4f-6g	40512 26252	102824 102824	105292 106632	14 14	18 18	$\begin{array}{l} 4.254 \times 10^{6} \\ 1.373 \times 10^{6} \end{array}$	1.346 0.1824	2512 220.6	$1.2751 \\ 0.4070$	AA AA	1 1
5s-6p	74577	105292	106632	2	6	2.430×10^{5}	0.6078	298.4	0.0848	AA	1
5p-6s	74578	105292	106632	6	2	2.682×10^{5}	7.454×10^{-2}	109.8	-0.3495	AA	1
5p-6d	74578	105292	106632	6	10	$4.495 imes 10^5$	0.6247	920.0	0.5738	AA	1
5d-6p	74579	105292	106632	10	6	9.593×10^{4}	4.800×10^{-2}	117.8	-0.3188	AA	1
5d-6f	74578	105 2 92	106632	10	14	7.232×10^{5}	0.8443	2072	0.9265	AA	1
5f-6d	74579	105292	106632	14	10	3.908×10^{4}	2.328×10^{-2}	79.98	-0.4870	AA	1
5f-6g	74578	105292	106632	14	18	1.106×10^6	1.185	4073	1.2200	AA	1
5g-6f	74579	105292	106632	18	14	$1.137\!\times\!10^{4}$	7.376×10^{-3}	32.59	-0.8769	AA	1
5g-6h	74578	105292	106632	18	22	1.645×10^{6}	1.676	7406	1.4796	AA	1

$\mathbf{H} - \text{Table C.}$ $(nlj)_i - (nlj)_k$ Transitions (Fine Structure Lines)

Transition	ν(Mc/sec)	$\Delta E(\text{cm}^{-1})$	g_i	gk	$A_{ki}(\sec^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
$2s {}^{2}\mathrm{S}_{1/2} - 2p {}^{2}\mathrm{P}^{\circ}_{3/2}$	9884	0.3297	2	4	6.54×10^{-7}	1.80×10^{-5}	36.0	-4.443	A	2
$3s {}^{2}S_{1/2} - 3p {}^{2}P^{\circ}_{3/2}$	2944	0.0982	2	4	1.04×10^{-7}	3.22×10^{-5}	216	-4.191	A	2
$3p {}^{2}\mathrm{P}^{\circ}{}_{1/2} - 3d {}^{2}\mathrm{D}_{3/2}$	3244	0.1082	2	4	8.67×10^{-8}	2.22×10^{-5}	135	-4.353	A	2
$3p {}^{2}\mathrm{P}^{\circ}_{3/2} - 3d {}^{2}\mathrm{D}_{5/2}$	1082	0.0361	4	6	3.86×10^{-9}	6.67×10^{-6}	243	- 4.574	A	2
$4s\ ^2\mathrm{S}_{1/2} - 4p\ ^2\mathrm{P}^{\circ}_{3/2}$	1247	0.0416	2	4	2.63×10^{-8}	4.55×10^{-5}	720	-4.041	A	2
$4p\ ^2{ m P}^{\circ}{}_{1/2} - 4d\ ^2{ m D}_{3/2}$	1367	0.0456	2	4	2.77×10^{-8}	3.99×10^{-5}	576	- 4.098	A	2
$4p\ ^2{ m P}^{\circ}_{3/2} - 4d\ ^2{ m D}_{5/2}$	456	0.0152	4	6	1.23×10^{-9}	1.20×10^{-5}	1040	-4.320	A	2
$4d{}^2\mathrm{D}_{3/2}\!-\!4f{}^2\mathrm{F}^{\circ}_{5/2}$	456	0.0152	4	6	7.18×10^{-10}	6.98×10^{-6}	605	-4.554	A	2
$4d{}^2\mathrm{D}_{5/2} - 4f{}^2\mathrm{F}^{\circ}{}_{7/2}$	228	0.0076	6	8	9.61×10^{-11}	3.33×10^{-6}	864	-4.700	A	2

H-Table D. $(nljf)_i-(nljf)_k$ Transition (Hyperfine Structure Line, Magnetic Dipole Transition)

Transition	ν(Mc/sec)	$\Delta E(\text{cm}^{-1})$	gi	gk	$A_{ki}(\mathrm{sec^{-1}})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
$1s^2 S_{1/2} (f = 0 \rightarrow f = 1)$	1420.4	0.04738	1	3	2.87×10^{-15}	5.75×10^{-12}	3.00	- 11.241	A	2

HELIUM

He I

Ground State

 $1s^2 {}^1S_0$

Ionization Potential

 $24.580 \text{ eV} = 198305 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
506 900	71	4207.02	20	10542	105
506.200	11	4387.93	29	19543	105
506.570	10	4437.55	23	20425	113
507.058	9	4471.5	86	20581.3	12
507.718	8	4713.2	80	21120	97
508.643	7	4921.93	28	21132.0	39
509.998	6	5015.68	13	21494	116
512.098	5 4 3	5047.74	22	21608	126
515.617	4.	5875.7	85	21617	67
522.213	3	6678.15	27	21841	60
537.030	2	7065.19	79	22284	57
584.334	1	7065.71	79	23063	54
2677.1	78	7281.35	$2\dot{1}$	24727	120
2696.1	77	8361.77	96	26113	63
2723.2	76	9463.57	90 95	26185	
2763.8	75			16	125
2105.8	19	9603.42	38	26198	66
2829.07	74	9702.66	100	26248	69
2945.10	73	10311	104	26251	128
3187.74	72	10667.6	99	26531	59
3231.27	20	10829.1	70	26671	122
3258.28	19	10830.2	70	26881	115
3296.77	18	10830.3	70	27600	56
3354.55	17	10902.2	48	28542	112
3447.59	16	10912.9	110	33299	53
3554.4	92	10917.0	51	37026	119
3562.95	84	10996.6	107	40053	62
3587.3	91	11013.1	37	40365	124
3613.64	15	11045.0	44	40396	65
3634.2	90	11225.9	41	40536	68
3652.0	83	11969.1	103		
3705.0	89	12528	94	40550 41216	127 58
3819.6	88	12755.7	47	42430	121
3833.55	34	12785	109	42497	93
3867.5	82	12790.3	50	46053	55
3871.79	33	12846	98	46936	114
3888.65	71	12968.4	43	74351	35
3926.53	32	12985	106	108800	111
3935.91	26	13411.8	40	180950	52
3964.73	14	15083.7	36	186200	101
4009.27	31	17002	102	439440	118
4023.97	25	18555.6	46	957600	45
4026.2	07	10404	100	2 16 × 108	
4026.2	87	18686	108	2.16×10^{6}	61
4120.8 4143.76	81	18696.9	49	1.39×10^{7}	123
	30	19063	117	1.82×10^{7}	64
4168.97	24	19089.4	42		t

Aside from hydrogen, extremely precise f-values exist only for a few lines of helium. These are the result of extensive variational calculations (up to 220 parameter wave functions) of Schiff and Pekeris, [1] which give an agreement of 1% or less between the dipole length, velocity, and acceleration forms of the transition matrix element. Similar calculations have been undertaken for a few other transitions by Weiss, [2] but are not quite as refined (up to 54 parameter wave functions) and the agreement between the different forms of the matrix element is not quite as good.

For transitions to higher excited states, recourse has to be taken to somewhat less elaborate theoretical approximations. The following work has been used: Calculations by Low and Stewart (unpublished, but results quoted by Dalgarno and Stewart [3]) with variational wave functions for the ground state and modified hydrogenic wave functions for the excited states; similar calculations by Körwien [6]; self-consistent field calculations, including exchange and correlation effects, by Trefftz, Schlüter, Dettmar, and Jörgens [4]; and applications of various sum rules to modify calculated values by Dalgarno and Lynn [5], and Dalgarno and Kingston [7]. Furthermore, the results of Goldberg [8], who employed screened hydrogenic wave functions, and Hylleraas [9], who employed variational wave functions have been used in a few instances. (Hylleraas' work has not been extensively used, since it probably contains quite a number of numerical errors.) Finally, for all other tabulated transitions, the Coulomb approximation (see general introduction) has been employed, and is expected to give reliable results for this simple atom (uncertainties within 10%). It should be noted that all above-mentioned calculations are nonrelativistic.

For some important helium lines reliable experimental data [10-13] are also available. They all result from determinations of lifetimes of excited states and agree generally quite closely, often within 10%, with the tabulated theoretical results, which are considered more accurate in these cases.

References

- [1] Schiff, B., and Pekeris, C. L., Phys. Rev. 134, A638-A640 (1964).
- [2] Weiss, A. W., private communication (1962).
- [3] Dalgarno, A., and Stewart, A. L., Proc. Phys. Soc. London A 76, 49-55 (1960).
- [4] Trefftz, E., Schlüter, A., Dettmar, K. H., and Jörgens, K., Z. Astrophys. 44, 1-17 (1957).
- [5] Dalgarno, A., and Lynn, N., Proc. Phys. Soc. London A 70, 802-808 (1957).
- [6] Körwien, H., Z. Physik 91, 1-36 (1934).
- [7] Dalgarno, A., and Kingston, A. E., Proc. Phys. Soc. London A 72, 1053-1060 (1958).
- [8] Goldberg, L., Astrophys. J. 90, 414-428 (1939).
- [9] Hylleraas, E. A., Z. Physik 106, 395-404 (1937).
- [10] Heron, S., McWhirter, R. W. P., and Rhoderick, E. H., Proc. Roy. Soc. London A 234, 565-582 (1956).
- [11] Osherovich, A. L., and Savich, J. G., Optika i Spektroskopiya 4, 715-718 (1958) (Translated in "Optical Transition Probabilities," Office of Technical Services, U.S. Department of Commerce, Washington, D.C.)
- [12] Bennett, R. G., and Dalby, F. W., J. Chem. Phys. 31, 434-441 (1959).
- [13] Kindlmann, P. J., and Bennett, W. R., Jr., Bull. Am. Phys. Soc. II 8, 87 (1963).

He I. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g_k	$A_{ki}(10^8~{ m sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$1s^2-1s2p$	¹ S - ¹ P° (2 uv)	584.334	0	171135	1	3	17.99	0.2762	0.5313	-0.5588	AA	1
2	$1s^2-1s3p$	¹ S _ ¹ P° (3 uv)	537.030	0	186210	1	3	5.66	0.0734	0.1298	-1.1343	AA	1
3	$1s^2-1s4p$	¹ S_ ¹ P° (4 uv)	522.213	0	191493	1	3	2.46	0.0302	0.0519	-1.520	A	2
4	$1s^2 - 1s5p$	¹ S - ¹ P° (5 uv)	515.617	0	193943	1	3	1.28	0.0153	0.0260	-1.815	B+	3
5	$1s^2 - 1s6p$	¹ S - ¹ P° (6 uv)	512.098	0	195275	1	3	0.719	0.00848	0.0143	-2.072	B+	3, 4
6	$1s^2-1s7p$	¹ S- ¹ P° (7 uv)	509.998	0	196079	1	3	0.507	0.00593	0.00995	-2.227	В	5, 6
7	$1s^2-1s8p$	¹ S - ¹ P° (8 uv)	508.643	0	196602	1	3	0.343	0.00399	0.00668	-2.399	В	5, 6
8	$1s^2 - 1s9p$	¹ S- ¹ P° (9 uv)	507.718	0	196960	1	3	0.237	0.00275	0.00459	-2.561	В	5, 6
9	$1s^2 - 1s10p$	¹ S - ¹ P° (10 uv)	507.058	0	197216	1	3	0.181	0.00209	0.00349	-2.680	В	5, 6
10	$1s^2-1s11p$	¹ S- ¹ P°	506.570	0	197406	1	3	0.130	0.00150	0.00250	-2.824	В	6
11	$1s^2 - 1s12p$	1S-1P°	506.200	0	197550	1	3	0.104	0.00119	0.00199	-2.923	В	6
12	1s2s-1s2p	¹ S- ¹ P°	20581.3	166278	171135	1	3	0.01976	0.3764	25.50	-0.4244	AA	1
13	1s2s-1s3p	¹ S- ¹ P° (4)	5015.68	166278	186210	1	3	0.1338	0.1514	2.500	-0.8199	AA	1
14	1s2s - 1s4p	¹ S_ ¹ P° (5)	3964.73	166278	191493	1	3	0.0717	0.0507	0.662	-1.295	A	2
15	1s2s-1s5p	¹ S_ ¹ P° (6)	3613.64	166278	193943	1	3	0.0376	0.0221	0.263	-1.656	В	7
16	1s2s-1s6p	¹ S- ¹ P° (7)	3447.59	166278	195275	1	3	0.0239	0.0128	0.145	-1.894	A	4
17	1s2s-1s7p	¹ S- ¹ P° (8)	3354.55	166278	196079	1	3	0.0130	0.00660	0.0729	-2.180	В	7
18	1s2s-1s8p	¹ S_ ¹ P° (9)	3296.77	166278	196602	1	3	0.00901	0.00440	0.0478	-2.356	В	7
19	ls2s - ls9p	¹S−¹P°	3258.28	166278	196960	1	3	0.00650	0.00310	0.0333	9.500		_
20	1s2s-1s10p	¹ S- ¹ P°	3231.27	166278	197216	1	3	0.00490	0.00230	0.0333	-2.508 -2.638	В	7
21	1s2p-1s3s	¹ P°- ¹ S (45)	7281.35	171135	184865	3	1	0.181	0.0480	3.45	-2.638 -0.842	B A	7 2
22	1s2p-1s4s	¹ P°- ¹ S (47)	5047.74	171135	190940	3	1	0.0655	0.00834	0.416	-1.602	A	4
23	1s2p-1s5s	¹ P°- ¹ S (50)	4437.55	171135	193663	3	1	0.0313	0.00308	0.135	-2.034	В	ca
24	1s2p-1s6s	¹ P°- ¹ S (52)	4168.97	171135	195115	3	1	0.0176	0.00153	0.0630	-2.338	A	4

He I. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	$A_{ki}(10^8~{ m sec}^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
25	1s2p-1s7s	¹ P°_1S (54)	4023.97	171135	195979	3	1	0.0109	8.81×10^{-4}	0.0350	- 2.578	B+	4
26	1s2p - 1s8s	¹ P°- ¹ S (57)	3935.91	171135	196535	3	1	0.00718	5.56 × 10 ⁻⁴	0.0216	-2.778	B+	4.
27	1s2p-1s3d	¹ P°- ¹ D (46)	6678.15	171135	186105	3	5	0.638	0.711	46.9	0.329	A	2
28	1s2p-1s4d	¹ P°- ¹ D (48)	4921.93	171135	191447	3	5	0.202	0.122	5.95	-0.435	A	4
29	1s2p-1s5d	¹ P°- ¹ D (51)	4387.93	171135	193918	3	5	0.0907	0.0436	1.89	-0.883	A	4
30	1s2p-1s6d	¹ P°- ¹ D (53)	4143.76	171135	195261	3	5	0.0495	0.0213	0.870	-1.195	В	ca
31	1s2p-1s7d	¹ P°- ¹ D	4009.27	171135	196070	3	5	0.0279	0.0112	0.444	-1.473	C+	8
32	1s2p-1s8d	(55) ¹ P° – ¹ D (58)	3926.53	171135	196596	3	5	0.0195	0.00750	0.291	-1.648	A	4
33	1s2p-1s9d	¹ P°- ¹ D (60)	3871.79	171135	196956	3	5	0.0126	0.00471	0.180	-1.850	C+	8
34	1s2p-1s10d	¹ P°- ¹ D (62)	3833.55	171135	197213	3	5	0.00971	0.00357	0.135	-1.971	A	4
35	1s3s-1s3p	¹ S- ¹ P°	[74351]	184865	186210	1	3	0.00253	0.629	154	-0.201	A	2
36	1s3s - 1s4p	¹ S- ¹ P°	15083.7	184865	191493	1	3	0.0137	0.140	6.95	-0.854	В	2
37	1s3s — 1s5p	¹ S- ¹ P° (70)	11013.1	184865	193943	1	3	0.00956	0.0521	1.89	-1.283	В	ca
38	1s3s — 1s6p	¹ S - ¹ P° (71)	9603.42	184865	195275	1	3	0.00564	0.0234	0.739	- 1.631	В	9
39	1s3p — 1s4s	¹P°-¹S	21132.0	186210	190940	3	1	0.0459	0.103	21.4	-0.512	В	ca
40	1s3p - 1s5s	¹P°-¹S	[13411.8]	186210	193664	3	1	0.0202	0.0182	2.41	-1.263	В	ca
41	1s3p — 1s6s	¹ P°- ¹ S (87)	11225.9	186210	195115	3	1	0.0110	0.00690	0.765	-1.684	В	ca
42	1s3p-1s4d	¹P°−¹D	19089.4	186210	191447	3	5	0.0711	0.647	122	0.288	В	ca
43	1s3p-1s5d	¹P°−¹D	12968.4	186210	193918	3	5	0.0331	0.139	17.8	-0.380	В	ca
44	1s3p-1s6d	¹ P°- ¹ D (88)	11045.0	186210	195261	3	5	0.0181	0.0553	6.03	-0.780	В	ca
45	1s3d-1s3p	¹ D- ¹ P°	[957600]	186105	186210	5	3	1.68×10^{-6}	0.0139	219	-1.158	В	2
46	1s3d-1s4p	¹D-¹P°	18555.6	186105	191447	5	3	0.00277	0.00858	2.62	-1.368	C+	2
47	1s3d-1s5p	¹D-¹P°	12755.7	186105	193943	5	3	0.00127	0.00186	0.390	-2.032	В	ca
48	1s3d-1s6p	¹ D- ¹ P°	10902.2	186105	195275	5	3	9.23×10^{-4}	9.86×10^{-4}	0.177	-2.307	В	9
49	1s3d-1s4f	¹ D- ¹ F°	18696.9	186105	191452	5	7	0.138	1.01	312	0.705	В	ca
50	1s3d-1s5f	¹D−¹F°	12790.3	186105	193921	5	7	0.0461	0.158	33.3	-0.102	В	ca
51	1s3d-1s6f	¹ D- ¹ F° (84)	10917.0	186105	195263	5	7	0.0212	0.0529	9.51	— 0.577	В	ca

He I. Allowed Transitions - Continued

No.	Transition Array	Multiple	λ(Å)	E((cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$) g	i é	$A_{ki}(10^8 \ { m sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
52	$\begin{vmatrix} 1s4s - 1s4p \end{vmatrix}$	1S_1P°	[180950]	190940	191493			5.79×10^{-4}	0.853	508	-0.069	В	ca
53	$\begin{array}{ c c c c c c }\hline 1s4s - 1s5p \\ \hline \end{array}$	1S-1P°	[33299]	190940	193943				0.151	16.5	-0.822	В	ca
54	1s4s-1s6p	¹S−¹P°	[23063]	190940	195275	1	3		0.0599	4.55	-1.222	В	ca
55	1s4p-1s5s	1P°-1S	[46053]	191493	193664	3	1	0.0150	0.159	72.2	-0.322	В	ca
56	1s4p - 1s6s	¹P°-¹S	[27600]	191493	195115	3	1	0.00721	0.0274	7.48	-1.085	В	ca
57	1s4p-1s7s	¹P°-¹S	[22284]	191493	195979	3	1	0.00438	0.0109	2.39	-1.487	В	ca
58	1s4p-1s5d	1P°-1D	[41216]	191493	193918	3	5	0.0153	0.649	264	0.289	В	ca
59	1s4p-1s6d	¹P°-¹D	[26531]	191493	195261	3	5	0.00861	0.152	39.7	-0.342	В	ca
60	1s4p - 1s7d	¹ P°- ¹ D	[21841]	191493	196070	3	5	0.00533	0.0635	13.7	-0.720	В	ca
61	1s4d-1s4p	¹D−¹P°	[2.16×10	⁵] 191447	191493	5	3	5.70×10^{-7}	0.0240	856	-0.920	В	ca
62	1s4d-1s5p	¹D−¹P°	[40053]	191447	193943	5	3	0.00166	0.0240	15.8	-0.922	В	ca
63	1s4d-1s6p	¹D−¹P°	[26113]	191447	195275	5	3	7.85×10^{-4}	0.00482	2.07	-1.618	В	ca
64	1s4d-1s4f	¹D_¹F°	$[1.82 \times 10^{3}]$	7] 191447	191452	5	7	3.63×10^{-10}	0.00253	757	-1.899	В	ca
65	1s4d-1s5f	¹D−¹F°	[40396]	191447	193921	5	7	0.0259	0.887	590	0.647	В	ca
66	1s4d-1s6f	¹D-¹F°	[26198]	191447	195263	5	7	0.0130	0.187	80.7	-0.029	В	ca
67	1s4d-1s7f	¹D-¹F°	[21617]	191447	196071	5	7	0.00734	0.0719	25.6	-0.444	В	ca
68	1s4f - 1s5d	¹F°−¹D	[40536]	191452	193918	7	5	5.20×10^{-4}	0.00915	8.55	- 1.193	В	ca
69	1s4f - 1s6d	¹F°−¹D	[26248]	191452	195261	7	5	2.49×10 ⁻⁴	0.00184	1.11	- 1.891	В	ca
70	1s2s-1s2p	³ S- ³ P° (1)	10830	159856	169087	3	9	0.1022	0.5391	57.66	0.2088	AA	1
		(1)	10830.3 10830.2 10829.1	159856 159856 159856	169087 169087 169088	3 3 3	5 3 1	0.1022 0.1022 0.1022	0.2994 0.1797 0.05990	32.03 19.22 6.407	$ \begin{array}{r} -0.0466 \\ -0.2684 \\ -0.7454 \end{array} $	AA AA AA	ls ls ls
71	1s2s-1s3p	${}^{3}S - {}^{3}P^{\circ}$ (2)	3888.65	159856	185565	3	9	0.09478	0.06446	2.476	-0.7136	AA	1
72	1s2s-1s4p	³ S - ³ P° (3)	3187.74	159856	191217	3	9	0.0505	0.0231	0.727	-1.159	В	2
73	1s2s-1s5p	³ S - ³ P° (11 uv)	2945.10	159856	193801	3	9	0.0293	0.0114	0.332	-1.465	В	7
74	1s2s-1s6p	³ S - ³ P° (12 uv)	2829.07	159856	195193	3	9	0.0169	0.00608	0.170	-1.739	В	7
75	1s2s-1s7p	³ S− ³ P°	2763.8	159856	196027	3	9	0.0111	0.00381	0.104	-1.942	В	7
76	1s2s-1s8p	³ S - ³ P°	2723.2	159856	196567	3	9	0.00780	0.00260		-2.108	B	7
77	1s2s-1s9p	³ S - ³ P°	2696.1	159856	196935	3	9	0.00550	0.00180		-2.268	В	7
78	1s2s-1s10p	³ S - ³ P°	2677.1	159856	197198	3	9	0.00404	0.00130	1	-2.409	В	7
79	1s2p-1s3s	³ P°- ³ S	7065.3	169087	183237	9	3	0.278	0.0693	14.5	-0.205	A	2
i	I	(10)	7065.19 7065.19 7065.71	169087 169087 169088	183237 183237 183237	5 3 1	3 3 3	0.154 0.0925 0.0308	0.0693 0.0692 0.0692	8.06 4.83 1.61	-0.460 -0.683 -1.160	A A A	ls ls ls

He I. Allowed Transitions - Continued

			, — 		inowed 1				r				
No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g_k	$A_{ki}(10^8 \ { m sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
80	1s2p - 1s4s	³ P°- ³ S (12)	4713.2	169087	190298	9	3	0.106	0.0118	1.65	-0.973	В	4
81	1s2p-1s5s	³ P°- ³ S (16)	4120.8	169087	193347	9	3	0.0430	0.00365	0.446	-1.483	В	ca
82	1s2p - 1s6s	³ P°- ³ S (20)	3867.5	169087	194936	9	3	0.0236	0.00176	0.202	-1.800	В	ca
83	1s2p-1s8s	³ P°- ³ S (27)	3652.0	169087	196461	9	3	0.0108	7.21×10^{-4}	0.0780	-2.188	В	4
84	s2p-1s10s	³ P°- ³ S (33)	3562.95	169087	197145	9	3	0.00543	3.45×10^{-4}	0.0364	-2.508	В	4
8 5	1s2p-1s3d	³ P°- ³ D (11)	5875.7	169087	186102	9	15	0.706	0.609	106	0.739	A	2
86	1s2p-1s4d	³ P°- ³ D (14)	4471.5	169087	191445	9	15	0.251	0.125	16.6	0.052	A	4
87	1s2p-1s5d	³ P°- ³ D (18)	4026.2	169087	193917	9	15	0.117	0.0474	5.66	-0.370	A	4
88	1s2p-1s6d	³ P°- ³ D (22)	3819.6	169087	195260	9	15	0.0589	0.0215	2.43	-0.714	В	ca
89	1s2p-1s7d	³ P°- ³ D (25)	3705.0	169087	196070	9	15	0.0444	0.0152	1.67	-0.864	C+	8
90	1s2p-1s8d	³ P°-3D (28)	3634.2	169087	196595	9	15	0.0261	0.00862	0.928	-1.110	A	4
91	1s2p-1s9d	³ P°- ³ D (31)	3587.3	169087	196955	9	15	0.0205	0.00660	0.702	-1.226	C+	8
92	1s2p - 1s10d	³ P°- ³ D (34)	3554.4	169087	197213	9	15	0.0131	0.00414	0.436	-1.429	A	4
93	1s3s - 1s3p	3S-3P°	[42947]	183237	185565	3	9	0.0108	0.896	380	0.429	A	2
94	1s3s - 1s4p	3S-3P°	12528	183237	191217	3	9	0.00608	0.0429	5.31	-0.890	В	2
95	1s3s - 1s5p	³ S - ³ P° (67)	9463.57	183237	193801	3	9	0.00608	0.0245	2.29	-1.134	В	ca
96	1s3s-1s6p	³ S – ³ P° (68)	8361.77	183237	195193	3	9	7.16×10^{-4}	0.00225	0.186	-2.170	В	9
97	1s3p - 1s4s	³P°-3S	21120	185565	190298	9	3	0.0652	0.145	91.0	0.117	В	ca
98	1s3p - 1s5s	³P°_3S	12846	185565	193347	9	3	0.0269	0.0222	8.45	-0.699	В	ca
99	1s3p - 1s6s	³ P°- ³ S (73)	10667.6	185565	194936	9	3	0.0142	0.00810	2.56	-1.137	В	ca
100	1s3p - 1s7s	³ P°- ³ S (75)	9702.66	185565	195868	9	3	0.00858	0.00404	1.16	-1.440	В	ca
101	1s3p-1s3d	³ P°- ³ D	[186200]	185565	186102	9	15	1.28×10^{-4}	0.111	613	0.000	A	2
102	1s3p - 1s4d	3P°-3D	17002	185565	191445	9	15	0.0668	0.482	243	0.638	В	ca
103	_	³ P°- ³ D (72)	11969.1	185565	193917	9	15	0.0343	0.123	43.5	0.043	В	ca

He I. Allowed Transitions—Continued

-	T	T	Ţ			7	T	 		T		Ţ	
No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	$A_{ki}(10^8 \ { m sec}^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
104	1s3p - 1s6d	³ P°- ³ D (74)	10311	185565	195260	9	15	0.0197	0.0524	16.0	-0.327	В	ca
105	1s3d-1s4p	³ D ~ ³ P°	19543	186102	191217	15	9	0.00597	0.0205	19.8	-0.512	C+	2
106	1s3d-1s5p	3D-3P°	12985	186102	193801	15	9	0.00274	0.00415	2.66	-1.206	В	ca
107	1s3d-1s6p	³ D ~ ³ P° (78)	10996.6	186102	195193	15	9	5.67×10^{-4}	6.17×10 ⁻⁴	0.335	-2.034	В	9
108	1s3d - 1s4f	³ D- ³ F°	18686	186102	191452	15	21	0.139	1.02	937	1.183	В	ca
109	1s3d-1s5f	³ D- ³ F°	12785	186102	193921	15	21	0.0462	0.158	100	0.376	В	ca
110	1s3d – 1s6f	³ D~ ³ F° (79)	10912.9	186102	195263	15	21	0.0212	0.0531	28.6	-0.099	В	ca
111	1s4s - 1s4p	3S-3P°	[108800]	190298	191217	3	9	0.00227	1.21	1300	0.560	В	ca
112	1s4s - 1s5p	3S _3P°	[28542]	190298	193801	3	9	0.00128	0.0468	13.2	-0.852	В	ca
113	1s4s - 1s6p	3S-3P°	[20425]	190298	195193	3	9	0.00147	0.0276	5.57	-1.082	В	ca
114	1s4p - 1s5s	³P°_3S	[46936]	191217	193347	9	3	0.0202	0.223	310	0.302	В	ca
115	1s4p - 1s6s	³P°-3S	[26881]	191217	194936	9	3	0.00925	0.0334	26.6	-0.522	В	ca
116	1s4p - 1s7s	³P°-3S	[21494]	191217	195868	9	3	0.00543	0.0125	7.99	-0.947	В	ca
117	1s4p - 1s8s	³P°-3S	[19063]	191217	196461	9	3	0.00340	0.00618	3.49	-1.255	В	ca
118	1s4p-1s4d	3P°-3D	[439440]	191217	191445	9	15	4.15×10^{-5}	0.200	2610	0.256	В	ca
119	1s4p - 1s5d	³ P°- ³ D	[37026]	191217	193917	9	15	0.0129	0.442	485	0.600	В	ca
120	1s4p-1s6d	3P°-3D	[24727]	191217	195260	9	15	0.00795	0.121	89.0	0.039	В	ca
121	1s4d-1s5p	³D−³P°	[42430]	191445	193801	15	9	0.00333	0.0539	113	-0.092	В	ca
122	1s4d-1s6p	3D-3P°	[26671]	191445	195193	15	9	0.00160	0.0102	13.5	-0.813	В	ca
123	1s4d-1s4f	³D−3F°	$[1.39 \times 10^7]$	191445	191452	15	21	8.15×10^{-10}	0.00331	2270	-1.305	В	ca
124	1s4d-1s5f	³D−3F°	[40365]	191445	193921	15	21	0.0260	0.888	1770	1.125	В	ca
125	ls4d-1s6f	³D−3F°	[26185]	191445	195263		21	0.0130	0.187	242	0.448	B	ca
126	1s4d-1s7f	³D − 3F°	[21608]	191445	196071		21	0.00734	0.0720	76.8	0.033	В	ca
127	1s4f-1s5d	³F°−3D	[40550]	191452	193917	21	15	5.25×10^{-4}	0.00924	25.9	-0.712	В	
128	1s4f-1s6d	³F°−³D	[26251]	191452	- 1	21	15	2.51×10^{-4}	0.00924		$\begin{bmatrix} -0.712 \\ -1.410 \end{bmatrix}$	В	ca ca
		<u></u>	1				!			0.00	1.410	Ь	

LITHIUM

LiI

Ground State

 $1s^2 2s \, ^2S_{1/2}$

Ionization Potential

 $5.390 \text{ eV} = 43487.19 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
2333.94	12	10510.6	28	28417	38
2340.16	11	10792.1	21	38081	40
2348.22	10	10919.1	33	40294	45
2358.92	9	11032.1	24	40562	47
2373.55	8	12237.7	27	41791	42
2394.36	7	12793.3	32	47804	50
2425.41	6	12928.9	30	54633	37
2475.06	5	13557.8	23	68592	34
2562.31	4	17546.1	26	70319	53
2741.19	3	18586.8	36	74379	56
3232.63	2	18703.1	31	75010	57
3985.5	16	19274.8	29	77145	54
4132.6	19	24464.7	22	102850	51
4273.1	15	24971	35	139610	49
4602.9	18	25197	41	279490	25
4071.7	14	26201	46	650000	39
4971.7	17	26260	48	1261000	52
6103.6	1 1	26536	43	1.04×10^{7}	55
$6707.8 \\ 8126.4$	13	26877.8	20	1.47×10^{7}	44

The transition probabilities for the 2s-2p, 2p-3s, 2p-3d, 3s-3p, and 3p-3d transitions are taken from the dipole length calculations of Weiss [1]. The values for the 2s - np (n = 3 . . . 13)transitions are selected from the anomalous dispersion measurements of Filippov [2] normalized to Weiss' f-value for the resonance transition 2s-2p. For this series, preference is given to Filippov's experimental values since the theoretical methods show strong cancellation effects in the transition integral. Uncertainties of not more than 10% are indicated by the very good agreement of the selected material with other determinations.

References

[1] Weiss, A. W., Astrophys. J. 138, 1262-1276 (1963).

 ^[2] Filippov, A. N., Z. Physik 69, 526-547 (1931); Zhur. Eksptl. i Teoret. Fiz. 2, 24-41 (1932) (translated in "Optical Transition Probabilities," Office of Technical Services, U.S. Department of Commerce, Washington, D.C.).

Li I. Allowed Transitions

													
No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g_i	g_k	$A_{ki}(\sec^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
1	2s-2p	² S - ² P° (1)	6707.8	0.00	14903.9	2	6	3.72×10^7	0.753	33.3	0.178	A	1
2	2s-3p	² S - ² P° (2)	3232.63	0.00	30925.4	2	6	1.17×10^6	0.00552	0.117	-1.957	В	2
3	2s-4p	² S - ² P° (1 uv)	2741.19	0.00	36469.6	2	6	1.42×10^6	0.00480	0.0866	-2.018	В	2
4	2s-5p	² S - ² P° (2 uv)	2562.31	0.00	39015.6	2	6	1.07×10^{6}	0.00316	0.0533	-2.199	В	2
5	2s-6p	² S - ² P° (3 uv)	2475.06	0.00	40390.8	2	6	6.97×10^{5}	0.00192	0.0313	-2.416	В	2
6	2s-7p	² S - ² P° (4 uv)	2425.41	0.00	41217.4	2	6	4.84×10^{5}	0.00128	0.0204	-2.592	В	2
7	2s-8p	² S - ² P° (5 uv)	2394.36	0.00	41751.6	2	6	3.55×10^{5}	9.16×10^{-4}	0.0144	-2.737	В	2
8	2s-9p	2S – 2P°	2373.55	0.00	42118.3	2	6	2.68×10^{5}	6.79×10^{-4}	0.0106	-2.867	В	2
9	2s-10p	² S – ² P°	2358.92	0.00	42379.2	2	6	2.09×10^{5}	5.22×10^{-4}	0.00811	-2.981	В	2
10	2s-11p	² S− ² P°	2348.22	0.00	42569.1	2	6	1.65×10 ⁵	4.08×10^{-4}	0.00631	-3.088	В	2
11	2s-12p	2S-2P°	2340.16	0.00	42719.1	2	6	1.34×10^{5}	3.29×10^{-4}	0.00507	-3.182	В	2
12	2s-13p	² S – ² P°	2333.94	0.00	42832.9	2	6	1.09×10^{5}	2.67×10^{-4}	0.00410	-3.273	В	2
13	2p-3s	² P°- ² S (3)	8126.4	14903.9	27206.1	6	2	3.49×10^7	0.115	18.5	-0.160	B+	1
14	2p-4s	² P°- ² S (5)	4971.7	14903.9	35012.1	6	2	1.01×10^7	0.0125	1.23	-1.126	В	ca
15	2p-5s	²P°−2S	4273.1	14903.9	38299.5	6	2	4.60×10^{6}	0.00420	0.355	-1.599	В	ca
16	2p-6s	2P°-2S	3985.5	14903.9	39987.6	6	2	2.50×10^{6}	0.00198	0.156	-1.924	В	ca
17	2p-3d	² P°- ² D (4)	6103.6	14903.9	31283.1	6	10	7.16×10^7	0.667	80.4	0.602	B+	1
18	2p-4d	² P°- ² D (6)	4602.9	14903.9	36623.4	6	10	$2.30 imes 10^7$	0.122	11.1	-0.137	В	ca
19	2p-5d	²P°−²D	4132.6	14903.9	39094.9	6	10	$1.06 imes 10^7$	0.0453	3.70	-0.566	В	ca
20	3s-3p	$^{2}S-^{2}P^{\circ}$	26877.8	27206.1	30925.4	2	6	3.77×10^6	1.23	217	0.389	B+	1
21	3s-4p	² S- ² P°	[10792.1]	27206.1	36469.6	2	6	3.69×10^3	1.93×10 ⁻⁴	0.0137	-3.413	В	ca
22	3p-4s	² P°- ² S	24464.7	30925.4	35012.1	6	2	7.46 × 10 ⁶	0.223	108	0.127	В	ca
23	3p-5s	² P°- ² S	13557.8	30925.4	38299.5	6	2	2.76×10^{6}	0.0254	6.80	-0.817	В	ca
24	3p-6s	² P°- ² S	11032.1	30925.4	39987.6	6	2	1.44×10^6	0.00874	1.90	-1.280	В	ca
25	3p-3d	² P°- ² D	[279490]	30925.4	31283.1	6	10	3.81×10^3	0.0743	410	-0.351	В	1
26	3p-4d	² P°− ² D	17546.1	30925.4	36623.4	6	10	6.85×10^{6}	0.527	183	0.500	В	ca
27	3p-5d	² P°− ² D	12237.7	30925.4	39094.9	6	10	3.41×10^6	0.128	30.9	-0.116	В	ca
28	3p-6d	² P°- ² D	10510.6	30925.4	40437.3	6	10	1.94×10^6	0.0534	11.1	-0.494	В	ca

Li I. Allowed Transitions – Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	g_i	g_k	$A_{ki}(\mathrm{sec^{-1}})$	fik	S(at.u.)	log gf	Accu- racy	Source
29	3d-4p	² D- ² P°	19274.8	31283.1	36469.6	10	6	5.52×10 ⁵	0.0184	11.7	-0.734	В	ca
30	3d-5p	² D- ² P°	[12928.9]	31283.1	39015.6	10	6	2.31×10^{5}	0.00348	1.48	-1.459	В	ca
31	3d-4f	² D- ² F°	18703.1	31283.1	36630.2	10	14	1.38×10^{7}	1.01	625	1.006	В	ca
32	3d-5f	² D− ² F°	12793.3	31283.1	39104.5	10	14	4.63×10^{6}	0.159	67.0	0.201	В	ca
33	3d-6f	²D−²F°	[10919.1]	31283.1	[40439.0]	10	14	2.11×10^{6}	0.0529	19.0	-0.277	В	ca
34	4s-4p	² S- ² P°	[68592]	35012.1	36469.6	2	6	7.72×10^{5}	1.63	737	0.514	В	ca
35	4s 5p	² S- ² P°	[24971]	35012.1	39015.6	2	6	2.07×10^{3}	5.81×10^{-4}	0.0955	-2.935	В	ca
36	4s-6p	² S - ² P°	[18586.8]	35012.1	40390.8	2	6	8.38×10^{3}	0.00130	0.159	-2.585	В	ca
37	4p-5s	² P°- ² S	[54633]	36469.6	38299.5	6	2	2.25×10^{6}	0.335	362	0.303	В	ca
38	4p-6s	² P°- ² S	[28417]	36469.6	39987.6	6	2	9.22×10^{5}	0.0372	20.9	-0.651	В	ca
39	4p-4d	² P°- ² D	[650000]	36469.6	36623.4	6	10	1.28×10^{3}	0.135	1740	-0.091	В	ca
40	4p-5d	² P°- ² D	[38081]	36469.6	39094.9	6	10	1.36×10 ⁶	0.494	372	0.472	В	ca
41	4p-6d	² P°- ² D	[25197]	36469.6	40437.3	6	10	8.19×10^{5}	0.130	64.6	-0.108	В	ca
42	4d-5p	² D- ² P°	[41791]	36623.4	39015.6	10	6	2.86×10^{5}	0.0450	61.9	-0.347	В	ca
43	4d-6p	² D- ² P°	[26536]	36623.4	40390.8	10	6	1.39×10 ⁵	0.00879	7.67	-1.056	В	ca
44	4d-4f	² D− ² F°	$[1.47 \times 10^7]$	36623.4	36630.2	10	14	6.90×10^{-2}	0.00313	1520	-1.504	В	ca
45	4d-5f	² D- ² F°	[40294]	36623.4	39104.5	10	14	2.58×10^{6}	0.878	1160	0.944	В	ca
46	4d-6f	$^{2}D-^{2}F^{\circ}$	[26201]	36623.4	[40439.0]	10	14	1.30×10 ⁶	0.187	161	0.272	В	ca
47	4f-5d	² F°- ² D	[40562]	36630.2	39094.9	14	10	5.23×10 ⁴	0.00922	17.2	-0.889	В	ca
48	4f-6d	² F°− ² D	[26260]	36630.2	40437.3	14	10	2.50×10^{4}	0.00185	2.24	-1.587	В	ca
49	5s-5p	² S - ² P°	[139610]	38299.5	39015.6	2	6	2.33×10^5	2.05	1880	0.612	В	ca
50	5s-6p	² S - ² P°	[47804]	38299.5	40390.8	2	6	1.72×10^3	0.00177	0.557	-2.451	В	ca
51	5p-6s	² P°- ² S	[102850]	39015.6	39987.6	6	2	8.48×10^{5}	0.448	911	0.430	В	ca
52	5p-5d	² P°- ² D	[1261000]	39015.6	39094.9	6	10	$4.78 imes 10^2$	0.190	4730	0.057	В	ca
53	5p-6d	² P°- ² D	[70319]	39015.6	40437.3	6	10	3.98×10^{5}	0.491	683	0.470	В	ca
54	5d - 6p	² D − ² P°	[77145]	39094.9	40390.8	10	6	$1.42 imes 10^5$	0.0758	192	-0.121	В	ca
55	5d-5f	² D- ² F°	$[1.04 \times 10^7]$	39094.9	39104.5	10	14	0.696	0.0159	5440	-0.800	В	ca
56	5 <i>d</i> -6 <i>f</i>	²D−²F°	[74379]	39094.9	[40439.0]	10	14	7.22×10^5	0.838	2050	0.924	В	ca
57	5 <i>f</i> – 6 <i>d</i>	² F°− ² D	[75010]	39104.5	40437.3	14	10	4.19×10^{4}	0.0252	87.3	-0.452	В	ca

 $1s^2 {}^1S_0$

Ionization Potential

 $75.619 \text{ eV} = 610079 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
178.015	2	1653.2	31	3306.5	17
199.282	ī	1681.8	10	3684.1	39
861.36	30	1755.5	6	4156.3	14
944.72	29	2605.1	47	4325.7	45
972.30	34	2657.3	43	4637.8	23
1018.0	37	2674.43	40	4671.8	50
1031.9	33	2728.4	52	4678.4	24
1044.3	9	2730.7	26	4787.5	19
1093.2	5	2767.1	21	4840.8	48
1102.6	12	2790.5	18	4881.3	41
1109.0	8	2952.5	15	5038.7	16
1132.0	36	3029.1	46	5484.8	27
1166.7	32	3155.4	42	9562.2	3 38
1198.3	28	3195.8	51	21091	38
1237.4	11	3199.4	25	33661	13
1253.5	7	3235.7	49	57324	44
1420.7	4	3250.1	20	211360	22
1493.2	35				

The values are selected from Weiss' calculations [1] or, when not available, from the Coulomb approximation. The transition probabilities determined by Weiss are the result of extensive non-relativistic variational calculations. Values have been determined in both the dipole length and dipole velocity approximations and agree to within 1%, except for the 3p $^{1}P^{\circ}-3d$ ^{1}D transition where agreement is not as good. The average of the two approximations is adopted [1].

Reference

[1] Weiss, A. W., private communication (1964).

Li II. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	<i>E</i> _i (cm ⁻¹)	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(\sec^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$1s^2-1s2p$	¹ S- ¹ P° (1 uv)	199.282	0	501816	1	3	256	0.457	0.300	-0.340	A	I
2	$1s^2-1s3p$	¹ S - ¹ P° (2 uv)	178.015	0	561749	1	3	77.9	0.111	0.0651	-0.955	A	1
3	1s2s - 1s2p	1S-1P°	[9562.2]	491361	501816	1	3	0.0518	0.213	6.71	-0.672	A	1
4	1s2s - 1s3p	1S-1P°	[1420.7]	491361	561749	1	3	2.82	0.256	1.20	-0.592	A	1
5	1s2s - 1s4p	¹ S- ¹ P°	[1093.2]	491361	582832	1	3	1.32	0.0712	0.256	- 1.147	В	ca
6	1s2p-1s3s	¹ P°- ¹ S	[1755.5]	501816	558779	3	1	2.04	0.0314	0.544	-1.026	В	ca
7	1s2p-1s4s	¹P°-¹S	[1253.5]	501816	581590	3	1	0.776	0.00609	0.0754	-1.738	В	ca
8	1s2p-1s5s	¹P°-¹S	[1109.0]	501816	591984	3	1	0.382	0.00235	0.0257	-2.152	В	ca
9	1s2p - 1s6s	¹P°-¹S	[1044.3]	501816	597574	3	1	0.214	0.00117	0.0120	-2.456	В	ca
10	1s2p-1s3d	¹P°−¹D	[1681.8]	501816	561276	3	5	10.1	0.714	11.9	0.331	A	1
11	1s2p-1s4d	¹P°−¹D	[1237.4]	501816	582631	3	5	3.10	0.119	1.45	-0.448	В	ca
12	1s2p-1s5d	¹P°−¹D	[1102.6]	501816	592508	3	5	1.37	0.0415	0.452	-0.905	В	ca
13	1s3s - 1s3p	'S-'P°	[33661]	558779	561749	1	3	0.00710	0.362	40.1	-0.442	В	ca
14	1s3s - 1s4p	¹ S- ¹ P° (3)	4156.3	558779	582832	1	3	0.343	.0.267	3.65	-0.574	В	ca
15	1s3s-1s5p	¹ S- ¹ P°	[2952.5]	558779	592639	1	3	0.202	0.0791	0.769	-1.102	В	ca
16	1s3p - 1s4s	¹ P°- ¹ S	[5038.7]	561749	581590	3	1	0.541	0.0687	3.42	-0.686	В	ca
17	1s3p - 1s5s	¹P°-¹S	[3306.5]	561749	591984	3	1	0.252	0.0138	0.449	-1.384	В	ca
18	1s3p-1s6s	¹ P°- ¹ S	[2790.5]	561749	597574	3	1	0.139	0.00542	0.149	-1.789	В	ca
19	1s3p-1s4d	¹ P°- ¹ D	[4787.5]	561749	582631	3	5	1.14	0.654	30.9	0.293	В	ca
20	1s3p - 1s5d	¹P°−¹D	[3250.1]	561749	592508	3	5	0.528	0.139	4.48	-0.379	В	ca
21	1s3p - 1s6d	¹P°−¹D	[2767.1]	561749	597877	3	5	0.289	0.0552	1.51	-0.781	В	ca
22	1s3d - 1s3p	¹ D- ¹ P°	[211360]	561276	561749	5	3	3.98×10^{-5}	0.0160	55.7	-1.097	В	1
23	1s3d-1s4p	¹ D- ¹ P°	[4637.8]	561276	582832	5	3	0.0471	0.00911	0.695	-1.342	В	ca
24	1s3d - 1s4f	¹D - ¹F°	[4678.4]	561276	582645	5	7	2.21	1.02	78.2	0.706	В	ca
25	1s3d-1s5f	¹D-1F°	[3199.4]	561276	592523	5	7	0.736	0.158	8.33	-0.102	В	ca
26	1s3d - 1s6f	¹D - ¹F°	[2730.7]	561276	597886	5	7	0.338	0.0528	2.38	-0.578	В	ca
27	1s2s - 1s2p	³ S- ³ P° (1)	5484.8	476046	494273	3	9	0.228	0.308	16.7	-0.034	A	1
28	1s2s - 1s3p	3S-3P°	[1198.3]	476046	559501	3	9	2.88	0.186	2.20	-0.253	A	1
29	1s2s-1s4p	3S-3P°	[944.72]	476046	581897	3	9	1.39	0.0558	0.521	-0.776	В	ca
30	1s2s — 1s5p	3S - 3P°	[861.36]	476046	592141	3	9	0.722	0.0241	0.205	-1.141	В	ca
31	1s2p-1s3s	³P°-3S	[1653.2]	494273	554761	9	3	2.85	0.0390	1.91	-0.455	В	ca
32	1s2p - 1s4s	³P°3S	[1166.7]	494273	579982	9	3	1.02	0.00697	0.241	-1.202	В	ca

Li H. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	$A_{ki}(\sec^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
33	1s2p-1s5s	3P°_'3S	[1031.9]	494273	591184	9	3	0.490	0.00261	0.0797	-1.630	В	ca
34	1s2p-1s6s	³P°−3S	[972.30]	494273	597122	9	3	0.270	0.00128	0.0368	-1.939	В	ca
35	1s2p-1s3d	3P°-3D	[1493.2]	494273	561245	9	15	11.2	0.625	27.7	0.750	A	1
36	1s2p-1s4d	³P°-3D	[1132.0]	494273	582612	9	15	3.80	0.122	4.08	0.039	В	ca
37	1s2p-1s5d	³ P°- ³ D	[1018.0]	494273	592505	9	15	1.78	0.0461	1.39	-0.382	В	ca
38	1s3s - 1s3p	³ S - ³ P°	[21091]	554761	559501	3	9	0.0254	0.509	106	0.184	В	ca
39	1s3s - 1s4p	³ S- ³ P° (2)	3684.1	554761	581897	3	9	0.309	0.189	6.86	-0.248	В	ca
40	1s3s - 1s5p	$^{3}S - ^{3}P^{\circ}$ $(4 uv)$	2674.43	554761	592141	3	9	0.192	0.0617	1.63	-0.733	В	ca
41	1s3p-1s4s	³ P°- ³ S (4)	4881.3	559501	579982	9	3	0.714	0.0850	12.3	-0.116	В	ca
42	1s3p - 1s5s	³P°-3S	[3155.4]	559501	591184	9	3	0.318	0.0158	1.48	-0.846	В	ca
43	1s3p - 1s6s	3P°-3S	[2657.3]	559501	597122	9	3	0.172	0.00606	0.477	-1.263	В	ca
44	1s3p - 1s3d	3P°-3D	[57324]	559501	561245	9	15	0.00110	0.0904	154	-0.090	A	1
45	1s3p-1s4d	³ P°- ³ D (5)	4325.7	559501	582612	9	15	1.09	0.508	65.1	0.660	В	ca
46	1s3p-1s5d	³P°−3D	[3029.1]	559501	592505	9	15	0.549	0.126	11.3	0.054	В	ca
47	1s3p - 1s6d	3P°-3D	[2605.1]	559501	597876	9	15	0.312	0.0530	4.09	-0.322	В	ca
48	1s3d-1s4p	3D-3P°	[4840.8]	561245	581897	15	9	0.0941	0.0198	4.74	-0.527	В	ca
49	1s3d-1s5p	3D-3P°	[3235.7]	561245	592141	15	9	0.0391	0.00369	0.589	-1.257	В	ca
50	1s3d-1s4f	3D – 3F°	[4671.8]	561245	582644	15	21	2.21	1.01	234	1.182	В	ca
51	1s3d — 1s5f	³D-3F°	[3195.8]	561245	592527	15	21	0.739	0.158	25.0	0.376	В	ca
52	1s3d — 1s6f	³D−3F°	[2728.4]	561245	597886	15	21	0.339	0.0530	7.14	-0.100	В	ca
		I				l						<u> </u>	+

BERYLLIUM

BeI

Ground State

 $1s^22s^2$ 1S_0

Ionization Potential

 $9.320 \text{ eV} = 75192.29 \text{ cm}^{-1}$

Allowed Transitions

The results taken from Weiss' self-consistent field calculations [1] are estimated to be accurate to 10-25 percent because of the good agreement between the dipole length and velocity approximations and because of the inclusion of configuration interaction. The average of the two approximations is adopted [1]. For the resonance line the adopted value is within 10 percent of the result of calculations of Bolotin and Yutsis [2], who include configuration interaction in a more limited way. The Coulomb approximation, employed for the other transitions, is not considered to be very reliable here since the lower state has the same principal quantum number as the ground state.

References

- [1] Weiss, A. W., private communication (1964).
- [2] Bolotin, A. B., and Yutsis, A. P., Zhur. Eksptl. i Teoret. Fiz. 24, 537-543 (1953) (Translated in "Optical Transition Probabilities," Office of Technical Services, U.S. Department of Commerce, Washington, D.C.).

Be I. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g_i	g_k	$A_{ki}(10^8~{ m sec^{-1}})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
1	$2s^2 - 2s2p(^2S)2p$	¹ S- ¹ P° (1 uv)	2348.61	0.0	42565.3	1	3	5.47	1.36	10.5	0.133	C +	1
2	$2s2p-2p^2$	³ P°- ³ P (2 uv)	2650.6	21980.1	59695.8	9	9	4.42	0.466	36.6	0.623	C +	1
3		¹P°-¹S	[3455.2]	42565.3	71498.9	3	1	2.21	0.132	4.50	-0.403	С	1
4	2s2p — 2s(2S)3s	³ P°- ³ S (1)	3321.2	21980.1	52080.9	9	3	0.62	0.034	3.4	-0.51	D	ca
5	` ´	¹ P°- ¹ S (2)	8254.10	42565.3	54677.2	3	1	0.38	0.13	11	-0.41	D	ca
6	2s2p — 2s(2S)3d	³ P°- ³ D (3 uv)	2494.6	21980.1	62053.6	9	15	1.0	0.16	12	0.15	D	ca
7		¹ P°- ¹ D	4572.67	42565.3	64428.2	3	5	0.37	0.19	8.6	-0.24	D	ca
8	2s2p — 2s(2S)4s	P°-1S (4)	4407.91	42565.3	65245.4	3	1	0.090	0.0087	0.38	-1.58	D	ca
9	2s2p - 2s(2S)4d	¹ P°- ¹ D (5)	3813.40	42565.3	68781.2	3	5	0.23	0.084	3.2	-0.60	D	ca
10	$2s2p - 2s(^{2}S)5s$	¹ P°- ¹ S (6)	3736.28	42565.3	69322.3	3	1	0.038	0.0027	0.099	-2.10	D	ca
11	2s2p - 2s(2S)5d	¹ P°- ¹ D (7)	3515.54	42565.3	71002.3	3	5	0.13	0.041	1.4	-0.91	D	ca

Naqvi's calculations [1] are the only available source. The results for the ${}^3P^{\circ}-{}^3P^{\circ}$ transitions are essentially independent of the choice of the interaction parameters. For the ${}^3P^{\circ}-{}^1P^{\circ}$ transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Beil. Forbidden Transitions

No.	Transition Array	Multiplet	$\lambda(\mathring{A})$	$E_i(cm^{-1})$	$E_k(cm^{-1})$	gi	gk	Type of Transi- tion	$A_{ki}({ m sec}^{-1})$	S(at.u.)	Accu- racy	Source
1	$2s2p - 2s(^2S)2p$	³ P°- ³ P°	$[14.7 \times 10^7]$ $[42.6 \times 10^6]$	21978.25 21979.93	21979.93 21981.28	1 3	3 5	m m	$5.66 \times 10^{-12} \\ 1.74 \times 10^{-10}$	2.00 2.50	B B	1 1
2		3P°-1P°	[4856.1] [4856.5] [4856.8]	21978.3 21979.9 21981.3	42565.3 42565.3 42565.3	1 3 5	3 3 3	m m m	$\begin{array}{c} 9.6 \times 10^{-7} \\ 0.0092 \\ 1.19 \times 10^{-6} \end{array}$	1.22×10^{-8} 1.17×10^{-4} 1.52×10^{-8}	C C C	1 1 1

Be II

Ground State

1s22s 2S1/2

Ionization Potential

 $18.206 \text{ eV} = 146881.7 \text{ cm}^{-1}$

Allowed Transitions

The values taken from Weiss' calculations [1] are estimated to be accurate to within 10 percent because of the very close agreement between his dipole length and dipole velocity approximations, except for the case of the 3p-3d transition where somewhat larger divergencies occur. The values calculated with the dipole length approximation are adopted.

Reference

[1] Weiss, A. W., Astrophys. J. 138, 1262-1276 (1963).

Be II. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g_k	$A_{ki}(10^8 { m sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	2s-2p	² S- ² P° (1)	3130.6	0.0	31933.2	2	6	1.15	0.505	10.4	0.004	A	1
2	2s-3p	² S - ² P° (1 uv)	1036.27	0.0	96497.6	2	6	1.66	0.0804	0.549	-0.794	В	,1
3	2p-3s	² P°- ² S (3 uv)	1776.2	31933.2	88231.2	6	2	4.22	0.0665	2.33	-0.399	B+	1
4	2p-3d	² P°- ² D (4 uv)	1512.4	31933.2	98053.2	6	10	11.4	0.652	19.5	0.592	B+	1
5	3s-3p	2S −2P°	12094	88231.2	96497.6	2	6	0.128	0.839	66.8	0.225	В	1
6	3s-4p	² S - ² P° (2)	3274.64	88231.2	118760	2	6	0.143	0.0691	1.49	-0.860	В	ca
7	3p-4s	² P°- ² S (3)	5270.7	96497.6	115465	6	2	0.969	0.134	14.0	-0.093	В	ca
8	3p-5s	² P°- ² S (5)	3247.7	96497.6	127336	6	2	0.410	0.0216	1.38	-0.888	В	ca
9	3p-3d	²P°−²D	64266	96497.6	98053.2	6	10	7.83×10 ⁻⁴	0.0808	103	-0.314	В	1
10	3p-4d	² P°- ² D (4)	4360.9	96497.6	119422	6	10	1.09	0.519	44.7	0.493	Ŕ	ca
11	3d-4f	² D - ² F° (6)	4673.46	98053.2	119445	10	14	2.21	1.01	156	1.006	В	ca

BeIII

Ground State

 $1s^2 {}^1S_0$

Ionization Potential

 $153.850 \text{ eV} = 1241255 \text{ cm}^{-1}$

Allowed Transitions

The results of extensive non-relativistic variational calculations by Weiss [1] are chosen. Values have been calculated in both the dipole length and dipole velocity approximations and agree to within 1 percent, except for the 3p $^1P^{\circ}-3d$ 1D transition where agreement is not as good. The average of the two approximations is adopted [1].

Reference

[1] Weiss, A. W., private communication (1964).

BeIII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	$A_{ki}(10^8 { m sec}^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
1	$1s^2 - 1s2p$	¹ S- ¹ P°	[100.25]	0	997466	1	3	1220	0.552	0.182	-0.258	A	1
2	$1s^2-1s3p$	1S-1P°	[88.314]	0	1132323	1	3	362	0.127	0.0369	-0.896	A	1
3	1s2s - 1s2p	¹ S- ¹ P°	[6141.2]	981187	997466	1	3	0.0877	0.149	3.02	-0.827	A	1
4	1s2s-1s3p	¹S−¹P°	[398.19]	981187	1132323	1	3	42.8	0.305	0.400	-0.516	A	1
5	1s2p - 1s3d	¹P°_¹D	[746.70]	997466	[1131389]	3	5	51.0	0.711	5.24	0.329	A	l
6	1s3d-1s3p	¹ D- ¹ P°	[107000]?	[1131389]	1132323	5	3	$1.32 imes10^{-4}$	0.0136	24.0	-1.168	C+	1
7	1s2s-1s2p	3S-3P°	[3721.8]	[956496]	[983357]	3	9	0.342	0.213	7.83	-0.195	A	I
8	1s2s-1s3p	3S-3P°	[583.01]	[956496]	[1128020]	3	9	16.5	0.252	1.45	-0.122	A	1
9	1s2p-1s3d	³P°-3D	[675.66]	[983357]	[1131360]	9	15	56.1	0.640	12.8	0.760	A	1
10	1s3p - 1s3d	³P°-3D	[29930]?	[1128020]	[1131360]	9	15	0.00318	0.0712	63.1	-0.193	A	1

BORON

 $\mathbf{B}\mathbf{I}$

Ground State

 $1s^22s^22p \ ^2{\rm P}^{\circ}_{1/2}$

Ionization Potential

 $8.296 \text{ eV} = 66930 \text{ cm}^{-1}$

Allowed Transitions

The values for the $2s^22p - 2s2p^2$ ($^2P^\circ - ^2D$, 2S , 2P) transitions are taken from the calculations of Bolotin and Yutsis [1], who employ analytical one-electron wave functions. Self-consistent field calculations of Tsiunaitis and Yutsis [2] have been adopted for the 2p $^2P^\circ - 3s$ 2S transition. Since both determinations take into account the important effects of configuration interaction only in a limited way, large uncertainties are expected.

References

[2] Tsiunaitis, G. K., and Yutsis, A. P., Soviet Phys. -JETP 1, 358-363 (1955).

^[1] Bolotin, A. B., and Yutsis, A. P., Zhur. Eksptl. i Teoret. Fiz. 24, 537-543 (1953) (Translated in "Optical Transition Probabilities," Office of Technical Services, U.S. Department of Commerce, Washington, D.C.).

BI. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(10^8 { m sec}^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p - 2s2p^2$	$^{2}P^{\circ}-^{2}D$ (2 uv)	2089.3	10	47857	6	10	2.2	0.24	9.7	0.15	Е	1
į		(= 4.)	2089.57 2088.84 [2089.6]	15 0 15	47857 47857 47857	4 2 4	6 4 4	2.1 1.8 0.36	$0.21 \\ 0.23 \\ 0.024$	5.8 3.2 0.65	-0.07 -0.33 -1.02	E E E	ls ls ls
2	'	2P°-2S	1573.5	10	63561	6	2	13	0.16	5.1	-0.01	E	1
			[1573.7] [1573.3]	15 0	63561 63561	4 2	2 2	8.8 4.4	0.16 0.16	3.4 1.7	-0.18 -0.48	E E	ls ls
3		² P° – ² P	1378.7	10	72543	6	6	23	0.66	18	0.60	E	1
			[1378.7] [1378.6] [1378.9] [1378.4]	15 0 15 0	72547 72535 72535 72547	4 2 4 2	4 2 2 4	19 15 7.7 3.9	0.55 0.44 0.11 0.22	10 4.0 2.0 2.0	0.34 -0.05 -0.36 -0.36	E E E E	ls ls ls
4	$2p - (^{1}S)3s$	² P°- ² S (1 uv)	2497.4	10	40040	6	2	3.6	0.11	5.5	-0.17	D	2
			2497.72 2496.77	15 0	40040 40040	4 2	2 2	2.4 1.2	0.11 0.11	3.7 1.8	-0.35 -0.66	D D	ls ls
5	$3s - (^{1}S)3p$	² S - ² P°	11661	40040	48613	2	6	0.174	1.07	82	0.330	С	ca
			11660 11662	40040 40040	48613 48612	$\frac{2}{2}$	4 2	0.174 0.174	0.71 0.355	54 27.2	$0.152 \\ -0.149$	C	ls ls
6	$3p - (^{1}S)3d$	2P°−2D	16243	48613	54768	6	10	0.138	0.90	291	0.73	С	ca
			16245 16240 16245	48613 48612 48613	54768 54768 54768	4 2 4	6 4 4	$0.138 \\ 0.115 \\ 0.0230$	0.82 0.91 0.091	175 97 19.4	0.51 0.259 0.440		ls ls ls
7	$3p - (^{1}S)4s$	²P°−2S	15628	48613	55010	6	2	0.154	0.188	58	0.052	C	ca
			15629 15625	48613 48612	55010 55010	4 2	2 2	0.103 0.051	0.188 0.188	38.8 19.4	-0.123 -0.424		ls ls
8	$3p - (^{1}S)5s$	² P°- ² S	8668.1	48613	60146	6	2	0.0486	0.0182	3.12	-0.96	С	ca
			8668.6 8667.2	48613 48612	60146 60146	4 2	2 2	0.0324 0.0162	0.0182 0.0182	2.08 1.04	-1.137 -1.438	C	ls ls

Naqvi's calculation [1] of the one possible transition in the ground state configuration 2p is the only available source. The line strength should be quite accurate, since it does not sensitively depend on the choice of the interaction parameters.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

BI. Forbidden Transitions

No. T	ransition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g_i	g_k	Type of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	2p-2p	² P°- ² P°	$[66.0 \times 10^5]$	0	15.15	2	4	m	3.15×10^{-8}	1.33	С	1

Ground State 1s²2s² ¹S₀

Ionization Potential

 $25.149 \text{ eV} = 202895 \text{ cm}^{-1}$

Allowed Transitions

Except for the 2s3d $^3D-2s4f$ 3F $^\circ$ transition, for which a Coulomb approximation is employed, the values are taken from Weiss' self-consistent field calculations [1]. The length and velocity approximations disagree noticeably—for the 2s2p 1P $^\circ-2p^2$ 1D transition by as much as a factor of three. The average of the two approximations is adopted [1]. Accuracies within 50 percent are indicated by the following comparison: Weiss [1] has undertaken refined calculations, including configuration interaction, for the same transitions in Be I—the first member of this isoelectronic sequence—in addition to calculations of the type done for this ion. In all cases the agreement with the average of the dipole length and velocity approximations is close.

Reference

[1] Weiss, A. W., private communication (1964).

BII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(10^8~{ m sec^{-1}})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^2 - 2s(^2S)2p$	¹ S- ¹ P° (1 uv)	1362.46	0.0	73396.7	1	3	13	1.1	4.9	0.04	D	1
2	$2s2p-2p^2$	³ P°- ³ P (3 uv)	[1624.0]	[37350.9]	[98925.5]	9	9	8.4	0.33	16	0.48	D	1
			1623.99 1623.99 1624.37 [1624.2] 1623.57 [1623.8]	[37356.4] [37340.0] [37356.4] [37340.0] [37340.0]	[98932.7] [98918.7] [98918.7] [98910.3] [98932.7] [98918.7]	5 3 5 3 1	5 3 3 1 5 3	6.3 2.0 3.5 8.5 2.1 2.8	$\begin{array}{c} 0.25 \\ 0.081 \\ 0.082 \\ 0.11 \\ 0.14 \\ 0.34 \end{array}$	6.7 1.3 2.2 1.8 2.2 1.8	0.10 -0.61 -0.39 -0.47 -0.39	D D D D D	ls ls ls ls ls
3		¹ P°- ¹ D (1)	3451.41	73396.7	102362	3	5	2.2	0.65	22	0.29	E	1
4		¹P°-¹S	[1842.8]	73396.7	127662	3	1	6.8	0.12	2.1	-0.46	D	1
5	2s3d — 2s(2S)4f	³ D− ³ F° (2)	4121.95	[150649]	[174903]	15	21	2.55	0.91	185	1.135	С	ca

Forbidden Transitions

Naqvi's calculations [1] are the only available source. The results for the ³P°-³P° transitions are essentially independent of the choice of the interaction parameters. For the ³P°-¹P° transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included.

Reference

^[1] Nagvi, A. M., Thesis Harvard (1951).

BII. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g_k	Type of Transi- tion	$A_{ki}(\mathrm{sec}^{-1})$	S(at.u.)	Accu- racy	Source
1	$2s2p - 2s(^2S)2p$	3P°_3P°	$[15.6 \times 10^{6}]$ $[61.0 \times 10^{5}]$	[37333.6] [37340.0]	[37340.0] [37356.4]		3 5	m m	4.74×10^{-9} 5.94×10^{-8}	2.00 2.50	C B	1
2		3P°_1P°	[2772.1] [2772.5] [2773.9]	[37333.6] [37340.0] [37356.4]	73396.7 73396.7 73396.7	1 3 5	3 3 3	m m m	$\begin{vmatrix} 8.5 \times 10^{-5} \\ 0.201 \\ 1.07 \times 10^{-4} \end{vmatrix}$	$ \begin{vmatrix} 2.02 \times 10^{-7} \\ 4.77 \times 10^{-4} \\ 2.53 \times 10^{-7} \end{vmatrix} $	C C C	1 1 1

BIII

Ground State

 $1s^2 2s \, ^2S_{1/2}$

Ionization Potential

 $37.920 \text{ eV} = 305931.1 \text{ cm}^{-1}$

Allowed Transitions

The values taken from Weiss' calculations [1] are estimated to be accurate to within 10 percent because of the very close agreement between his dipole length and dipole velocity approximations, except for the case of the 3p-3d transition where somewhat larger divergencies occur. The values calculated with the dipole length approximation are adopted.

Reference

[1] Weiss, A. W., Astrophys. J. 138, 1262-1276 (1963).

BIII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g_k	$A_{ki}(10^8 { m sec}^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
1	2s-2p	² S – ² P°	2066.3	0.0	48381.2	2	6	1.91	0.366	4.98	-0.136	A	1
2	2s-3p	2S-2P°	518.25	0.0	192956	2	6	12.5	0.151	0.515	-0.520	В	1
3	2p-3s	²P°−2S	758.60	48381.2	180202	6	2	16.3	0.0470	0.704	-0.550	B+	1
4	2p-3d	²P°−²D	677.09	48381.2	196071	6	10	56.8	0.651	8.71	0.592	B+	1
5	3s-3p	² S − ² P°	7838.5	180202	192956	2	6	0.222	0.614	31.7	0.089	В	1
6	3p-3d	²P°−²D	32094	192956	196071	6	10	0.00279	0.0719	45.6	-0.365	В	1
7	4p-5d	² P°- ² D (1)	4243.60	242832	266390	6	10	1.11	0.501	42.0	0.478	В	ca
8	4d-5f	² D− ² F° (2)	4487.46	244139	266417	10	14	2.10	0.887	131	0.948	В	ca

 $1s^2 \, {}^1S_0$

Ionization Potential

 $259.298 \text{ eV} = 2091960 \text{ cm}^{-1}$

Allowed Transitions

The results of extensive non-relativistic variational calculations by Weiss [1] are chosen. Values have been calculated in both the dipole length and dipole velocity approximations and agree to within 1 percent, except for the $3p^1P^\circ-3d^1D$ transition, where agreement is not as good. The average of the two approximations is adopted [1].

Reference

[1] Weiss, A. W., private communication (1964).

BIV. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gĸ	$A_{ki}(10^8~{ m sec^{-1}})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
1	$1s^2 - 1s2p$	¹S−¹P°	[60.313]	0	1658020	l	3	3720	0.609	0.121	-0.215	A	1
2	$1s^2 - 1s3p$	¹ S - ¹ P°	[52.682]	0	1898180	1	3	1080	0.135	0.0234	-0.870	A	1
3	1s2s-1s2p	¹ S - ¹ P°	[4499.4]	[1635801]	1658020	1	3	0.125	0.114	1.69	-0.943	A	1
4	1s2s - 1s3p	1S-1P°	[381.13]	[1635801]	1898180	1	3	51.0	0.333	0.418	-0.478	A	1
5	1s2p - 1s3d	¹ P°- ¹ D	[418.83]	1658020	[1896780]	3	5	162	0.709	2.93	0.328	A	1
6	1s3d - 1s3p	¹D — ¹P°	[71410]?	[1896780]	1898180	5	3	2.62×10^{-4}	0.0120	14.1	-1.222	C+	1
7	1s2s-1s2p	³ S − ³ P°	2823.4	1601505	1636913	3	9	0.455	0.163	4.55	-0.311	A	1
8	1s2s-1s3p	³ S − ³ P°	[344.19]	1601505	[1892046]	3	9	54.6	0.291	0.989	-0.059	A	1
9	1s2p - 1s3d	3P°-3D	[385.05]	1636913	[1896618]	9	15	175	0.650	7.42	0.767	A	1
10	1s3p-1s3d	3P°-3D	[21870]?	[1892046]	[1896618]	9	15	0.00484	0.0578	37.5	-0.284	A	1

CARBON

$\mathbf{C}\mathbf{I}$

Ground State

 $1s^22s^22p^2$ 3P_0

Ionization Potential

 $11.264 \text{ eV} = 90878.3 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

				· · · · · · · · · · · · · · · · · · ·	
Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
			_		
945.193	4	1657.00	5 5	9078.32	29
945.336	4	1657.37	5	9088.57	29
945,566	4	1657.89	5	9094.89	29
1260.75	13	1658.11	5	9111.85	29
1260.9	13	1751.9	20	9603.09	28
1200.7	10	1751.5	20	7000.07	20
1260.96	13	1764	24	9620.86	28
1261.12	13	1765	19	9658.49	28
1261.4	13	1930.93	6	10124	42
1261.56	13	2478.56	8	10548.0	48
1274.13	12	2582.90	7	10683.1	27
12/4.15	12	2302.90	' '	10005.1	21
1277.15	11	2902.1	26	10685.3	27
1277.27	11	2903.1	26	10691.2	27
1277.4	ii	2904.9	26	10707.3	27
1277.62	ii	2964.85	1 1	10729.5	$\overline{27}$
1277.77	11	2967.22	l î l	10754.0	27
1277.77	11	2901.22	1	10134.0	2.
1277.8	11	4268.99	39	11330.3	30
1279.25	10	4371.33	38	11330.4	41
	21	4762.41	34	11602.9	44
1279.90			34	11602.9	44
1280.15	21	4766.62			44
1280.34	21	4770.00	34	11619.0	44
1280.65	21	4771.72	34	11631.6	44
1280.89	21	4775.87	34	11638.6	44
		4812.84	33	11653	45
1328.82	3		33	11656.0	45
1329.10	3	4817.33			45
1329.58	3	4826.73	33	11667.1	40
1364.14	25	4932.00	37	11667.1	44
	9	5039.05	32	11677.0	44
1431.60	9	5041.66	32	11747.5	43
1432.12			32	11754.0	43
1432.54	9	5044.0			43
1459.05	18	5049.6	32	11778.0	45
1463.33	17	5052.12	36	11801.8	43
		5054.5	32	11820	49
1467.45	23		35	11824	43
1469	16	5380.24	40	11849.3	49
1470.20	15	5793.51			49
1472	22	5794.46	40	11863.0	49
1403 77] ,,	5794.8	40	11880.4	49
1481.77	14		40	11894.9	49
1560.31	2	5800.33	40	12551.0	46
1560.70	$\frac{1}{2}$	5801.17		I F	46
1561.29	2	5805.76	40	12565.0	46
1561.3	2	6587.75	50	12582.3	40
		0225 10	31	12602.6	46
1561.40	2	8335.19	29	12614.8	46
1656.26	5	9061.48	29	16890	47
1656.92	5	9062.53	29	10090	7'
		tl	L	<u> </u>	

The largest part of the data is from emission measurements with stabilized arc sources [2, 5, 6, 7]. In the vacuum ultraviolet, recent measurements by Boldt [2] are given preference over theoretical determinations by Weiss [4] and Bolotin et al. [3], with which the experiment is in marked disagreement (factors of 2-3). At present there are strong indications that the principal source of the disagreement is the relatively crude theoretical treatment of configuration interaction, which is very critical for these transitions. Thus, the theoretical results [3, 4] have been employed only for a few strong transitions for which no experimental data are available. But it should be noted that some experimental values may be quite unreliable due to uncertainties in the identification of the lines.

For the higher excited transitions in the visible several experimental investigations are available. Richter's work with a carbon dioxide plasma [6] is regarded as the most advanced one and his results are principally used. However, from an analysis of his method it appears very likely that the absolute scale is shifted due to a demixing effect in the arc source (see general introduction). This is further substantiated by a disagreement with the Coulomb approximation by an almost constant factor. Since the Coulomb approximation has given very reliable results for 3p-3d transitions of atoms of analogous structure, Richter's absolute values are renormalized to give the best agreement with the Coulomb approximation for these latter type transitions. The normalization factor of 1.30 is then applied to all of his other transitions. The work of Maecker [5] and Foster [7], which is used for a few transitions not covered by Richter, is expected to be also subject to demixing effects of the same order of magnitude or higher, since these authors have used more complicated gas mixtures. Thus, their results have been also fitted to the scale established by the Coulomb approximation. Normalization factors of 2.50 and 1.40 are used, respectively.

Finally, two intercombination lines are taken from a recent paper by Garstang [1], who performed intermediate coupling calculations and normalized the values to a scale obtained from the Coulomb approximation.

References

- [1] Garstang, R. H., The Observatory 82, 50-51 (1962).
- [2] Boldt, G., Z. Naturforsch. 18a, 1107-1116 (1963).
- [3] Bolotin, A. B., Levinson, I. B., and Levin, L. I., Soviet Phys. JETP 2, 391–395 (1956).
- [4] Weiss, A. W., private communication (1964).
- [5] Maecker, H., Z. Physik 135, 13-22 (1953).
- [6] Richter, J., Z. Physik 151, 114-123 (1958).
- [7] Foster, E. W., Proc. Phys. Soc. London A 80, 882-893 (1962).

CI. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	g_k	$A_{ki}(10^8~{ m sec^{-1}})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p^2 - 2s2p^3$	³ P - ⁵ S° (1 uv)			22-25	_	_					_	
1			2967.22 2964.85	44 16	33735 33735	5 3	5 5		3.2×10^{-8} 1.8×10^{-8}	1.6×10^{-6} 5.3×10^{-7}		E E	$\begin{array}{ c c } & 1 \\ & 1 \end{array}$
2		³ P - ³ D° (3 uv)	1561.0	30	64091	9	15	1.5	0.091	4.2	-0.09	D	2
\		(= 1.,	1561.40	44	64089	5	7	1.5	0.078	2.0	-0.41	D	ls
			1560.70	16	64093	3	5	1.1	0.065	1.0	-0.71	D	ls
			1560.31	0	64092	1	3	0.84	0.091	0.47	-1.04	D	ls
1	1		1561.29	44	64093	5	5	0.37	0.014	0.35	-1.67	D	ls
1			1560.70	16	64092	3	3	0.62	0.023	0.35	-1.67 -2.35	D	ls
ı		İ	[1561.3]	44	64092	5	3	0.041	8.9×10^{-4}	0.023	- 2.33	D	ls

$\textbf{C}|\textbf{I.} \quad \textbf{Allowed Transitions} - \textbf{Continued}$

_	· · · · · · · · · · · · · · · · · · ·				T			· · · · · · · · · · · · · · · · · · ·					
No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{kl}(10^8{ m sec}^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
3		3P-3P°	1329.3	30	75256	9	9	1.4	0.038	1.5	-0.47	D	2
		(4 uv)	1329.58 1329.10 1329.58 1329.10 1329.10 1328.82	44 16 44 16 16	75256 75256 75256 75256 75256 75256	5 3 5 3 1	5 3 1 5 3	1.1 0.37 0.60 1.5 0.36 0.49	0.029 0.0099 0.0096 0.013 0.016 0.039	0.63 0.13 0.21 0.17 0.21 0.17	$\begin{array}{c} -0.84 \\ -1.53 \\ -1.32 \\ -1.41 \\ -1.32 \\ -1.41 \end{array}$	D D D D D	ls ls ls ls ls
4		3P_3S°	945.44	30	105801	9	3	61	0.27	7.6	0.39	E	3
		(31 uv)	945.566 945.336 945.193	44 16 0	105801 105801 105801	5 3 1	3 3 3	34 20 6.7	0.27 0.27 0.27	4.2 2.5 0.84	$ \begin{array}{r} 0.13 \\ -0.10 \\ -0.57 \end{array} $	E E E	ls ls ls
5	$2p^2 - 2p(^2P^\circ)3s$	³ P- ³ P° (2 uv)	1657.2	30	60374	9	9	4.1	0.17	8.3	0.18	D	2
	- p(1)00	(2 41)	1657.00 1657.37 1658.11 1657.89 1656.26 1656.92	44 16 44 16 16	60394 60353 60353 60334 60394 60353	5 3 5 3 1	5 3 3 1 5 3	3.1 1.0 1.8 4.1 1.1 1.4	0.13 0.042 0.044 0.056 0.073 0.17	3.5 0.69 1.2 0.92 1.2 0.92	$\begin{array}{c} -0.19 \\ -0.90 \\ -0.66 \\ -0.77 \\ -0.66 \\ -0.77 \end{array}$	D D D D D D	ls ls ls ls ls
6		¹ D- ¹ P° (33 uv)	1930.93	10194	61982	5	3	2.4	0.082	2.6	-0.39	E	4
7		¹ S- ³ P° (60 uv)	2582.90	21648	60353	1	3	8.6×10^{-5}	2.6×10^{-5}	2.2×10^{-4}	-4.59	D	5n
8		¹ S- ¹ P° (61 uv)	2478.56	21648	61982	1	3	0.34	0.094	0.77	-1.03	E	4
9	$\begin{vmatrix} 2s2p^3 - \\ 2s2p^2(^4P)3s \end{vmatrix}$	⁵ S°- ⁵ P (65 uv)	1431.9	33735	103570	5	15	1.4	0.13	3.1	-0.19	D	2
	232p (1)03	(05 47)	1431.60 1432.12 1432.54	33735 33735 33735	103587 103563 103542	5 5 5	7 5 3	1.5 1.4 1.3	0.064 0.043 0.024	1.5 1.0 0.57	$ \begin{vmatrix} -0.49 \\ -0.67 \\ -0.92 \end{vmatrix} $	D D D	2 2 2
10	$\begin{array}{c} 2p^2 - \\ 2p(^2P^\circ)3d \end{array}$	³ P_ ³ F° (6 uv)	1279.25	44	78216	5	7	0.11	0.0038	0.080	-1.72	D	2
11		³P-3D°	1277.5	30	78310	9	15	1.6	0.063	2.4	-0.24	D	2
		(7 uv)	1277.62 1277.27 1277.15 1277.77 [1277.4] [1277.8]	44 16 0 44 16 44	78316 78307 78301 78307 78301 78301	5 3 1 5 3 5	7 5 3 5 3 3	1.5 1.2 0.88 0.39 0.65 0.042	$ \begin{array}{c} 0.052 \\ 0.048 \\ 0.064 \\ 0.0095 \\ 0.016 \\ 6.2 \times 10^{-4} \end{array} $	1.1 0.60 0.27 0.20 0.20 0.013	$\begin{array}{c} -0.58 \\ -0.85 \\ -1.19 \\ -1.32 \\ -1.32 \\ -2.51 \end{array}$	D D D D D	ls ls ls ls ls
12		³ P- ¹ F° (8 uv)		i.									
		(0 01)	1274.13	44	78531	5	7	0.0068	2.3×10^{-4}		-2.94	D	2
13		³ P- ³ P° (9 uv)	1261.3	30	79315	9	9	1.2	0.029	1.1	-0.58	D	2
			1261.56 1260.96 [1261.4] [1260.9] 1261.12 1260.75	44 16 44 16 16 0	79311 79319 79319 79323 79311 79319	5 3 5 3 1	5 3 1 5 3	0.93 0.31 0.50 1.2 0.30 0.40	0.022 0.0074 0.0072 0.0096 0.012 0.029	0.46 0.092 0.15 0.12 0.15 0.12	$\begin{array}{c} -0.96 \\ -1.65 \\ -1.44 \\ -1.54 \\ -1.54 \\ -1.54 \end{array}$	D D D D	ls ls ls ls ls

CI. Allowed Transitions - Continued

No	. Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	g_k	$A_{ki}(10^8~{ m sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
14		¹ D- ¹ D° (34 uv)	1481.77	10194	77681	5	5	0.33	0.011	0.27	-1.26	D	2
15		¹ D- ³ F° (35 uv)	1470.20	10194	78216	5	7	0.0088	4.0×10^{-4}	0.0097	-2.70	D	2
16		¹D-3D°	1469	10194	78301	5	3	0.019	3.6×10^{-4}	0.0087	-2.74	D	2
17		¹ D- ¹ F° (37 uv)	1463.33	10194	78531	5	7	2.1	0.093	2.2	-0.33	D	2
18		¹ D- ¹ P° (38 uv)	1459.05	10194	78728	5	3	0.37	0.0070	0.17	-1.46	D	2
19		¹ S- ³ D°	1765	21648	78301	1	3	0.0071	0.0010	0.0058	-3.00	D	2
20		¹ S - ¹ P° (62 uv)	1751.9	21648	78728	1	3	0.87	0.12	0.69	-0.92	D	2
21	$\begin{vmatrix} 2p^2 - \\ 2p(^2P^\circ)4s \end{vmatrix}$	³ P- ³ P° (5 uv)	1280.4	30	78133	9	9	0.82	0.020	0.76	-0.74	D	2
			1280.34 1280.34 1280.89 1280.65 1279.90 1280.15	44 16 44 16 16	78148 78117 78117 78105 78148 78117	5 3 5 3 3 1	5 3 1 5 3	0.62 0.20 0.35 0.81 0.21 0.27	0.015 0.0050 0.0052 0.0066 0.0087 0.020	0.32 0.063 0.11 0.084 0.11 0.084	$ \begin{array}{r} -1.12 \\ -1.83 \\ -1.58 \\ -1.70 \\ -1.58 \\ -1.70 \end{array} $	D D D D D	ls ls ls ls ls
22		¹D−³P°	1472	10194	78117	5	3	0.0051	1.0×10^{-4}	0.0024	- 3.30	D	2
23		¹ D- ¹ P° (36 uv)	1467.45	10194	78338	5	3	0.46	0.0089	0.21	-1.35	D	2
24		¹ S- ¹ P°	1764	21648	78338	1	3	0.022	0.0031	0.018	-2.51	D	2
25	$\begin{bmatrix} 2p^2 - \\ 2p(^2P^\circ)4d \end{bmatrix}$	¹ D – ¹ D° (39 uv)	1364.14	10194	83500	5	5	0.047	0.0013	0.029	-2.19	D	2
26	$2s^22p3p - 2s2p^3$	³ P - ³ S°	2903.9	71375	105801	9	3	0.044	0.0019	0.16	-1.78	D	5 <i>n</i>
			[2904.9] [2903.1] [2902.1]	71386 71365 71353	105801 105801 105801	5 3 1	3 3	0.022 0.017 0.0066	0.0017 0.0021 0.0025	0.079 0.061 0.024	$ \begin{array}{r} -2.08 \\ -2.20 \\ -2.60 \end{array} $	D D D	5n 5n 5n
27	$ \begin{array}{c c} 2p3s - \\ 2p(^2P^\circ)3p \end{array} $	³ P°- ³ D (1)	10695	60374	69722	9	15	0.18	0.50	160	0.66	D	6 <i>n</i>
		ļ	10691.2 10683.1 10685.3 10729.5 10707.3 10754.0	60394 60353 60334 60394 60353 60394	69744 69711 69690 69711 69690 69690	5 3 1 5 3 5	7 5 3 5 3	0.18 0.13 0.10 0.043 0.072 0.0048	0.43 0.38 0.51 0.074 0.12 0.0050	75 40 18 13 13 0.89	0.33 0.06 -0.29 -0.43 -0.43 -1.60	D D D D D	ls ls ls ls ls
28		³ P°- ³ S (2)	9640.6	60374	70744	9	3	0.22	0.10	29	-0.04	D	6n
		(-7	9658.49 9620.86 9603.09	60394 60353 60334	70744 70744 70744	5 3 1	3 3 3	0.12 0.074 0.024	0.10 0.10 0.10	16 9.7 3.2	$ \begin{array}{c c} -0.30 \\ -0.51 \\ -0.99 \end{array} $	D D D	ls ls ls

Ca. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(10^8~{ m sec^{-1}})$	f_{ik}	S(at.u.)	$\log gf$	Accu- racy	Source
29		3P°_3P	9087.6	60374	71375	9	9	0.25	0.31	83	0.44	D	6 <i>n</i>
	r	(3)	9094.89	60394	71386	5	5	0.19	0.23	35	0.07	D	ls
	}	l	9078.32	60353	71365	3	3	0.19	0.23	6.9	-0.64	D	
		Ì	9111.85	60394	71365	5	3	0.002	0.080	12	-0.40		ls
			9088.57	60353	71353	3	1	0.11	0.10	9.2	-0.51	D	ls
			9061.48	60353	71386	3	5	0.25	0.10	12	-0.40	D	ls
			9062.53	60334	71365	1	3	0.083	0.31	9.2	-0.51	D	ls ls
30		¹ P°- ¹ D (9)	11330.3	61982	72611	3	5	0.13	0.42	47	0.10	D	6 <i>n</i>
31		¹ P°- ¹ S (10)	8335.19	61982	73976	3	1	0.32	0.11	9.1	-0.48	D	6 <i>n</i>
32	$\begin{vmatrix} 2p3s - \\ 2p(^2P^\circ)4p \end{vmatrix}$	³ P°- ³ D (4)	5041.7	60374	80203	9	15	0.0039	0.0025	0.37	-1.65	D	6 <i>n</i>
	-P(~ /*P	(1)	5041.66	60394	80223	5	7	0.0038	0.0020	0.17	- 1.99	D	ls
			5039.05	60353	80192	3	5	0.0029	0.0020	0.092	-2.26	D	ls
			5039.05	60334	80173	ĺ	3	0.0022	0.0025	0.041	-2.61	Ď	ls
			[5049.6]	60394	80192	5	5	9.8×10^{-4}	3.7×10^{-4}	0.031	-2.73	Ď	ls
			5044.0	60353	80173	3	3	0.0016	6.2×10^{-4}	0.031	-2.73	l Ď	ls
			[5054.5]	60394	80173	5	3	$1.1 imes 10^{-4}$	$2.5 imes 10^{-5}$	0.0021	-3.90	Ď	ls
33		³ P°- ³ S (5)	4822.1	60374	81106	9	3	0.0084	9.8×10^{-4}	0.14	-2.05	D	7n
		(-)	4826.73	60394	81106	5	3	0.0047	9.8×10^{-4}	0.078	-2.31	D	ls
			4817.33	60353	81106	3	3	0.0028	9.9×10^{-4}	0.047	-2.53	l Ď	ls
			4812.84	60334	81106	1	3	9.7×10^{-4}	0.0010	0.016	-2.99	D	ls
34		³ P°_ ³ P (6)	4769.7	60374	81334	9	9	0.016	0.0053	0.75	-1.32	D	6n
	l		4771.72	60394	81344	5	5	0.012	0.0039	0.31	-1.70	D	ls
			4766.62	60353	81326	3	3	0.0039	0.0013	0.063	-2.40	D	ls
			4775.87	60394	81326	5	3	0.0062	0.0013	0.10	-2.20	D	ls
			4770.00	60353	81312	3	1	0.015	0.0018	0.083	-2.28	D	ls
			4762.41	60353	81344	3	5	0.0038	0.0021	0.10	-2.20	D	ls
			4762.41	60334	81326	1	3	0.0052	0.0053	0.083	-2.28	D	ls
35		¹ P°- ¹ P (11)	5380.24	61982	80564	3	3	0.016	0.0070	0.37	-1.68	D	6 <i>n</i>
36		¹P°-¹D	5052.12	61982	81770	3	5	0.017	0.011	0.54	-1.49	D	6 <i>n</i>
		(12)			{	1					1.70		
37		¹ P°- ¹ S (13)	4932.00	61982	82252	3	1	0.046	0.0055	0.27	-1.78	D	6n
38	$2p3s - 2p(^2\mathrm{P}^\circ)5p$	¹ P°-1P (14)	4371.33	61982	84852	3	3	0.0097	0.0028	0.12	-2.08	D-	ca
39	_	¹P°_¹D	4268.99	61982	85400	3	5	0.0032	0.0015	0.062	-2.36	D	7 n
		(16)	ļ										
40	$2s2p^3-$	3D°-3P	5797.8	64091	81334	15	9	0.0039	0.0012	0.34	-1.75	D	6 <i>n</i>
1	$2s^22p(^2\mathrm{P}^\circ)4p$	(18)	5702.53	64000	81344	7	5	0.0033	0.0012	0.16	-2.08	D	ls
			5793.51	64089	01044			0.0033	8.9×10^{-4}	0.10	-2.35	D	ls
			5801.17	64093	81326	5	3		6.6×10^{-4}		-2.35 -2.70		ls ls
			5805.76	64092	81312	3	1	0.0039	0.0×10^{-4}	0.038	-2.70 -2.83	D	ls
			5794.46	64093	81344	5	5	5.8×10^{-4}		0.028	-2.83 -2.83	D	ls
			5800.23	64092	81326	3	3	9.7×10^{-4}	4.9×10^{-4}	0.028		D	ls
			[5794.8]	64092	81344	3	5	4.0×10^{-5}	3.3×10^{-5}	0.0019	-4.00	D	ıs
41	$\begin{array}{c} 2p3p - \\ 2p(^2P^\circ)3d \end{array}$	¹ P- ¹ D° (19)	11330.4	68858	77681	3	5	0.198	0.63	71	0.280	С	6n, ca

CI. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	g_i	gk	$A_{ki}(10^8 { m \ sec^{-1}})$	fik	S(at.u.)	log gf	Accu- racy	Source
								0.171	0.262	26.2	-0.105	С	6n, ca
42		'P-'P°	10124	68858	78728	3	3	0.171	0.202	20.2	-0.103		
43		³ D− ³ F° (24)	11755	69722	78227	15	21	0.242	0.70	407	1.022	C	6n, ca
		(24)	11754.0	69744	78250	7	9	0.241	0.64	174	0.65	C	ls
			11754.0	69711	78216	5	7	0.216	0.63	121	0.495	C	ls
			11747.5	69690	78199	3	5	0.202	0.70	81	0.321	C	ls
			11801.8	69744	78216	7	7	0.0266	0.056	15.1	-0.411	C	ls
1			[11778]	69711	78199	5	5	0.0375	0.078	15.1	-0.410	C	ls ls
			[11824]	69744	78199	7	5	0.00104	0.00156	0.426	-1.96	С	ls
44		³D − ³D° (25)	11641	69722	78310	15	15	0.065	0.132	76	0.297	С	6n, ca
		(23)	11667.1	69744	78316	7	7	0.057	0.117	31.5	-0.086	С	ls
			11631.6	69711	78307	5	5	0.0453	0.092	17.6	-0.338		ls
			11609.9	69690	78301	3	3	0.0492	0.099	11.4	-0.53	CCC	ls
			11677.0	69744	78307	7	5	0.0101	0.0147	3.95	-0.99	l c	ls
			11638.6	69711	78301	5	š	0.0163	0.0198	3.80	-1.004	C	ls
- 1			11619.0	69711	78316	5	7	0.0073	0.0207	3.95	-0.99	C	ls
			11602.9	69690	78307	3	5		0.0332	3.80	-1.002	C	ls
45		3S-3P°	11664	70744	79315	3	9	0.157	0.96	111	0.461	С	6n, ca
		(29)	11667.1	70744	79311	3	5	0.158	0.54	62	0.208	С	ls
			11667.1	70744	79311	3	3	0.158	0.321	37.0	-0.208	Č	ls
			11656.0	1	79319	3	1		0.107	12.3	-0.010 -0.494	č	ls
ŀ			[11653]	70744	19323	'	1	0.137	0.101	12.0	-0.494		LS
46		³ P - ³ P° (30)	12591	71375	79315	9	9	0.105	0.249	93	0.351	C	6n, ca
		l ` ´	12614.8	71386	79311	5	5	0.078	0.186	38.7	-0.031	C	ls
			12565.0	71365	79319	3	3	0.0262	0.062	7.7	-0.73	C	ls
			12602.6	71386	79319	5	3	0.0435	0.062	12.9	-0.51	C	ls
			12565.0	71365	79323	3	1	0.105	0.083	10.3	-0.60	C	ls
I			12582.3	71365	79311	3	5	0.0262	0.104	12.9	-0.51	C	ls
			12551.0	71353	79319	1	3	0.0352	0.249	10.3	-0.60	C	ls
47		¹D-¹F°	16890	72611	78531	5	7	0.123	0.74	205	0.57	С	6n, ca
48	2p3p – 2p(2P°)4s	¹ P - ¹ P° (20)	10548.0	68858	78338	3	3	0.010	0.017	1.8	-1.29	D	6 <i>n</i>
49		³ D- ³ P° (23)	11886	69722	78133	15	9	0.11	0.14	85	0.34	D	6n
		(20)	11894.9	69744	78148	7	5	0.096	0.15	40	0.01	D	ls
			11894.9	69711	78117	5	3	0.084	0.11	21	-0.27	D	ls
			11880.4	69690	78105	3	ĭ		0.080	9.4	-0.62	D	ls
- 1		l	11849.3	69711	78148	5	5		0.036	7.1	-0.02 -0.74	D	1 -
		1	11863.0	69690	78117	3	3		0.061	7.1	-0.74 -0.74		ls
				69690	78148	3	5		0.001	0.47		D	ls
Ì			[11820]	09090	(0140	'	13	0.0012	0.0040	0.41	-1.92	D	ls
50	$2p3p - 2p(^{2}P^{\circ})4d$	¹ P - ¹ P° (22)	6587.75	68858	84032	3	3	0.024	0.015	1.0	-1.34	D	ca

The adopted values are selected from calculations by Garstang [1], Naqvi [2], and Yamanouchi and Horie [3], which are very similar in character. All electric quadrupole values are taken from Garstang [1], since his estimate of s_q appears to be the most advanced one. For most magnetic dipole lines, values could be taken from Garstang [1], as well as from Naqvi [2], and Yamanouchi and Horie [3], who all arrive at identical results. Only for the ${}^3P^{-1}S$ transition, for which configuration interaction is important, a difference occurs. In this case the results of Garstang [1], and Yamanouchi and Horie [3] are selected, since they represent, according to a later study by Garstang [4], the best available approximation (see also the general introduction).

References

- [1] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 111, 115-124 (1951).
- [2] Naqvi, A. M., Thesis Harvard (1951).
- [3] Yamanouchi, T. and Horie, H., J. Phys. Soc. Japan 7, 52-56 (1952).
- [4] Garstang, R. H., Proc. Cambridge Phil. Soc. 52, 107-113 (1956).

CI. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	Type of Transition	$A_{ki}(\mathrm{sec^{-1}})$	S(at.u.)	Accu- racy	Source
1	$2p^2 - 2p^2$	3P — 3P	$[61.0 \times 10^{5}]$ $[23.0 \times 10^{5}]$ $[36.9 \times 10^{5}]$ $[36.9 \times 10^{5}]$	0.0 0.0 16.4 16.4	16.4 43.5 43.5 43.5	1 1 3 3	3 5 5 5	m e m e	$7.93 \times 10^{-8} 2.00 \times 10^{-14} 2.68 \times 10^{-7} 4.20 \times 10^{-15}$	2.00 3.82 2.50 8.6	В С В С	1, 2, 3 1 1, 2, 3 1
2		³ P – ¹ D (1 F)	9808.9 9823.4 9823.4 9849.5 9849.5	0.0 16.4 16.4 43.5 43.5	10193.7 10193.7 10193.7 10193.7 10193.7	1 3 3 5 5	5 5 5 5 5	e m e m	5.5×10^{-8} 7.8×10^{-5} 1.7×10^{-7} 2.30×10^{-4} 1.2×10^{-6}	1.5×10^{-5} 1.37×10^{-5} 4.6×10^{-5} 4.08×10^{-5} 3.3×10^{-4}	D C D C D	$\begin{bmatrix} 1 \\ 1, 2, 3 \\ 1 \\ 1, 2, 3 \\ 1 \end{bmatrix}$
3		³ P- ¹ S (2 F)	4621.5 4627.3	16.4 43.5	21648.4 21648.4	3 5	1	m e	$0.00260 \\ 1.9 \times 10^{-5}$	$\begin{array}{c} 9.5 \times 10^{-6} \\ 2.4 \times 10^{-5} \end{array}$	C D	1, 3
4		¹ D- ¹ S (3 F)	8727.4	10193.7	21648.4	5	1	e	0.50	15.1	С	1

Ionization Potential

 $24.376 \text{ eV} = 196659.0 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
687.059	10	3360.9	27	4413.2	24
687.35	10 10	3361.09	27	4618.9	26
687.355	10	3361.75	27	4628.1	26
858.092	9	3581.80	18	5132.96	14
858.559	9	3584.98	18	5133.29	14
903.624	3	3585.83	18	5137.26	14
903.962	3 3	3587.68	18	5139.21	14
904.142	3	3588.92	18	5143.49	14
904.480	3	3589.67	18	5145.16	14
1009.85	4	3590.87	18	5151.08	14
1010.07	4	3876.05	22	5640.50	13
1010.37	4	3876.19	22	5648.08	13
1036.34	2 2	3876.41	22	5662.51	13
1037.02	2	3876.67	22	5889.4	20
1065.88	6	3878.22	22	5889.97	20
1065.9	6	3879.60	22	5891.65	20
1066.12	6 5	3880.59	22	6578.03	11
1323.9	5	3881.2	22	6582.85	11
1334.53	1	3883.8	22	6779.74	12
1335.66	1	3918.98	17	6780.27	12
1335.71	1	3920.68	17	6783.75	12
2173.8	15	4074.53	23	6787.09	12
2174.1	15	4076.00	23	6791.30	12
2509.11	7	4267.02	21	6798.04	12
2511.71	7	4267.2	21	6800.50	12
2512.03	7	4267.27	21	6812.19	12
2746.50	19	4371.59	25	7231.12	16
2747.3	19	4372.49	25	7236.19	16
2747.31	19	4374.28	25	7236.2	16
2836.71	8	4411.20	24	18895	29
2837.60	8	4411.52	24	18916	29
2992.6	28				1

Self-consistent field calculations by Weiss [1], and Biermann and Lübeck [3], and a high current arc experiment by Maecker [2] are utilized for the tabulation. The results for the lower and moderately excited transitions should be quite uncertain because in the calculations the strong effects of configuration interaction are essentially neglected, and the experimental work is subject to large systematic uncertainties.

References

^[1] Weiss, A. W., private communication (1964).

^[2] Maecker, H., Z. Physik 135, 13-22 (1953).

^[3] Biermann, L. and Lübeck, K., Z. Astrophys. 25, 325-339 (1948).

CII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g_i	gk	$A_{ki}(10^8 \; { m sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p - 2s2p^2$	² P°- ² D (1 uv)	1335.3	43	74932	6	10	6.0	0.27	7.0	0.20	E	1
		(1 uv)	1335.71 1334.53 1335.66	64 0 64	74931 74933 74933	4 2 4	6 4 4	6.0 4.9 1.0	$0.24 \\ 0.26 \\ 0.027$	4.2 2.3 0.47	$ \begin{array}{c c} -0.02 \\ -0.28 \\ -0.97 \end{array} $	E E E	ls ls ls
2		² P°- ² S (2 uv)	1036.8	43	96494	6	2	11	0.059	1.2	-0.45	E	1
			1037.02 1036.34	64 0	96494 96494	4 2	$\frac{2}{2}$	7.3 3.6	0.059 0.059	0.80 0.40	$\begin{bmatrix} -0.63 \\ -0.93 \end{bmatrix}$	E E	ls ls
3		² P°- ² P (3 uv)	904.09	43	110652	6	6	42	0.52	9.2	0.49	E	1
		(5 47)	904.142 903.962 904.480 903.624	64 0 64 0	110666 110625 110625 110666	4 2 4 2	4 2 2 4	35 27 14 6.9	0.43 0.34 0.084 0.17	5.1 2.0 1.0 1.0	$\begin{array}{c c} 0.23 \\ -0.17 \\ -0.47 \\ -0.47 \end{array}$	E E E E	ls ls ls ls
4	$2s2p^2-2p^3$	⁴ P - ⁴ S° (7 uv)	1010.2	43033	142024	12	4	32	0.16	6.5	0.29	E	1
		(1 uv)	1010.37 1010.07 1009.85	43051 43022 43000	142024 142024 142024	6 4 2	4 4 4	16 11 5.4	0.17 0.17 0.17	3.3 2.2 1.1	$ \begin{array}{r} 0.00 \\ -0.18 \\ -0.48 \end{array} $	E E E	ls ls ls
5	į	² D- ² D° (11 uv)	1323.9	74932	150465	10	10	8.7	0.23	10	0.36	E	1
6		² D - ² P° (12 uv)	1066.0	74932	168744	10	6	8.1	0.083	2.9	-0.08	E	1
			1065.88 1066.12 [1065.9]	74931 74933 74933	168750 168732 168750	6 4 4	4 2 4	7.1 8.1 0.79	0.081 0.069 0.014	1.7 0.97 0.19	$ \begin{array}{r} -0.31 \\ -0.56 \\ -1.27 \end{array} $	E E E	ls ls ls
7		² P- ² D° (14 uv)	2511.0	110652	150465	6	10	0.97	0.15	7.6	-0.04	E	2
		(11 41)	2512.03 2509.11 2511.71	110666 110625 110666	150463 150468 150468	4 2 4	6 4 4	0.96 0.83 0.17	0.14 0.16 0.016	4.5 2.6 0.52	-0.26 -0.50 -1.20	E E E	ls ls ls
8	$2s2p^2 - 2s^2({}^1S)3p$	² S - ² P° (13 uv)	2837.0	96494	131732	2	6	0.35	0.13	2.4	-0.59	E	2
	== (= /- F	(== == ,	2836.71 2837.60	96494 96494	131736 131725	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	4 2	0.36 0.35	$0.086 \\ 0.043$	1.6 0.80	-0.77 -1.07	E E	ls ls
9	2p-(1S)3s	² P°- ² S (4 uv)	858.41	43	116538	6	2	12	0.046	0.78	-0.56	D	1
		(4° uv)	858.559 858.092	64	116538 116538	4 2	2 2	8.3 4.2	0.046 0.046	0.52 0.26	-0.74 -1.04	D D	ls ls
10	$2p - (^{1}S)3d$	² P° – ² D (5 uv)	687.25	43	145551	6	10	22	0.26	3.5	0.19	D	1
		(3 uv)	687.355 687.059 [687.35]	64 0 64	145551 145550 145550	4 2 4	6 4 4	22 19 3.6	$0.23 \\ 0.27 \\ 0.025$	$\begin{array}{c} 2.1 \\ 1.2 \\ 0.23 \end{array}$	-0.03 -0.28 -0.99	D D D	ls ls ls
11	$3s - ({}^{1}S)3p$	² S - ² P°	6579.7	116538	131732	2	6	0.480	0.93	40.5	0.272	С	1, 3
		(2)	6578.03 6582.85	116538 116538	131736 131725	2 2	4 2	0.480 0.479	0.62 0.311	27.0 13.5	$-0.096 \\ -0.206$	C	ls ls
12	2s2p3s - 2s2p(3P°)3p	⁴ P°- ⁴ D (14)	6785.6	167007	181740	12	20	0.369	0.424	114	0.71	С	ca
	2 52 <i>p</i> (°Γ')5 <i>p</i>	(1 14)	6783.75 6779.74 6780.27 6800.50	167033 166988 166965 167033	181770 181734 181709 181734	6 4 2 6	8 6 4 6	0.370 0.258 0.154 0.110	0.340 0.267 0.212 0.076	45.6 23.8 9.5 10.2	0.310 0.029 -0.373 -0.341	C C C	ls ls ls ls

CII. Allowed Transitions—Continued

N	o. Transition	Multiple	t λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	g	i gi	$A_{ki}(10^8 { m sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
			6791.30 6787.09 6812.19 6798.04	166988 166965 167033 166988	181709 181695 181709 181695	$\begin{vmatrix} 2 \\ 6 \end{vmatrix}$	$\begin{vmatrix} 2 \\ 4 \end{vmatrix}$	0.307 0.0183	0.135 0.212 0.0085 0.0211	12.1 9.5 1.14 1.89	$ \begin{array}{r} -0.268 \\ -0.373 \\ -1.292 \\ -1.074 \end{array} $	C C C C	ls ls ls
13		⁴ P°- ⁴ S (15)	5653.9	167007	184689	12	4	0.65	0.104	23.2	0.096	С	ca
		(13)	5662.51 5648.08 5640.50	167033 166988 166965	184689 184689 184689	4	4	0.325 0.217 0.109	0.104 0.104 0.104	11.6 7.7 3.86	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C C C	ls ls ls
14		⁴ P°- ⁴ P (16)	5141.8	167007	186450	12	12	0.86	0.342	69	0.61	С	ca
		(10)	5145.16 5139.21 5137.26 5151.08 5143.49 5133.29 5132.96	167033 166988 166965 167033 166988 166988	186464 186441 186425 186441 186425 186464 186441	4 2 6 4 4	4 2 4 2 6	0.60 0.115 0.144 0.385 0.72 0.260 0.361	0.239 0.0456 0.057 0.102 0.142 0.154 0.285	24.3 3.09 1.93 10.4 9.6 10.4 9.6	$\begin{array}{c} 0.157 \\ -0.74 \\ -0.94 \\ -0.213 \\ -0.246 \\ -0.210 \\ -0.244 \end{array}$	0000000	ls ls ls ls ls ls
15	$3s - (^{1}S)4p$	² S- ² P°	2173.9	116538	162523	2	6	0.253	0.054	0.77	-0.97	C	3
			[2173.8] [2174.1]	116538 116538	162525 162519		$\begin{vmatrix} 4\\2 \end{vmatrix}$	$\begin{array}{c} 0.251 \\ 0.252 \end{array}$	0.0356 0.0179	0.51 0.256	-1.147 -1.447	C C	ls ls
16	$3p - (^{1}S)3d$	² P°- ² D (3)	7234.4	131732	145551	6	10	0.450	0.59	84	0.55	С	1
			7236.19 7231.12 [7236.2]	131736 131725 131736	145551 145550 145550	4 2 4	6 4 4	$0.446 \\ 0.375 \\ 0.075$	0.52 0.59 0.059	50 28.0 5.6	$0.322 \\ 0.071 \\ -0.63$	C C C	ls ls ls
17	$3p - (^{1}S)4s$	² P°- ² S (4)	3920.2	131732	157234	6	2	1.87	0.143	11.1	-0.066	С	3
		, ,	3920.68 3918.98	131736 131725	$\frac{157234}{157234}$	$\frac{4}{2}$	2 2	$\frac{1.24}{0.62}$	$0.143 \\ 0.143$	7.4 3.70	$\begin{bmatrix} -0.242 \\ -0.54 \end{bmatrix}$	C	ls ls
18	$2s2p3p - 2s2p(^{3}P^{\circ})4s$	⁴ D- ⁴ P° (23)	3589.3	181740	209593	20	12	0.92	0.107	25.3	0.330	С	ca
			3589.67 3590.87 3590.87 3584.98 3587.68 3588.92 3581.80 3585.83	181770 181734 181709 181734 181709 181695 181709 181695	209620 209574 209550 209620 209574 209550 209620 209574	8 6 4 6 4 2 4 2	6 4 2 6 4 2 6 4	0.74 0.58 0.465 0.166 0.295 0.466 0.0184 0.0426	0.107 0.075 0.0449 0.0319 0.057 0.090 0.0053 0.0178	10.1 5.3 2.12 2.26 2.69 2.13 0.250 0.420	$ \begin{array}{r} -0.068 \\ -0.347 \\ -0.75 \\ -0.72 \\ -0.64 \\ -0.74 \\ -1.67 \\ -1.450 \end{array} $	00000000	ls ls ls ls ls ls
19	$3p - (^{1}S)4d$	² P°- ² D (15 uv)	2747.0	131732	168124	6	10	0.466	0.088	4.77	-0.278	С	ca
			2747.31 2746.50 [2747.3]	131736 131725 131736	168124 168124 168124	$\begin{bmatrix} 4 \\ 2 \\ 4 \end{bmatrix}$	6 4 4	0.466 0.389 0.078	0.079 0.088 0.0088	2.86 1.59 0.318	$ \begin{array}{c c} -0.50 \\ -0.75 \\ -1.454 \end{array} $	CCC	ls ls ls
20	$3d-(^{1}S)4p$	² D- ² P° (5)	5890.4	145551	162523	10	6	0.337	0.105	20.4	0.022	С	ca
			5889.97 5891.65 [5889.4]	145551 145550 145550	162525 162519 162525	6 4 4	4 2 4	$\begin{array}{c} 0.302 \\ 0.337 \\ 0.0337 \end{array}$	0.105 0.088 0.0175	6.8	-0.201 -0.455 -1.154	C C C	ls ls ls
21	$3d - (^{1}S)4f$	² D - ² F° (6)	4267.2	145551	168979	10	14	2.46	0.94	132	0.97	c	ca
		į	4267.27 4267.02 [4267.2]	145551 145550 145551	168979 168979 168979	6 6	8 6 6	2.44 2.30 0.164	0.89 0.94 0.0447	75 53 3.77	0.73 0.58 -0.57	C C C	ls ls ls

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	g_k	$A_{ki}(10^8 { m sec}^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
22	$2s2p3d - 2s2p(^3P^\circ)4f$	⁴ F°− ⁴ G (33)	3876.7	195786	221574	28	36	2.66	0.77	275	1.333	С	ca
		(55)	3876.19	195812	221604	10	12	2.67	0.72	92	0.86	С	ls
	}		3876.41	195785	221575	8	10	2.43	0.69	70	0.74	Č	ls
	İ		3876.67 3876.05	195765 195751	221553 221543	6	8	2.30	0.69	53	0.62	C	ls
			3880.59	195751	221545	10	6 10	2.28 0.218	$0.77 \\ 0.0493$	39.3 6.3	0.489	Ç	ls
	}		3879.60	195785	221553	8	8	0.360	0.0493	8.3	$\begin{bmatrix} -0.307 \\ -0.187 \end{bmatrix}$	C	ls ls
			3878.22	195765	221543	6	6	0.365	0.082	6.3	-0.307	Č	ls ls
			[3883.8]	195812	221553	10	8	0.0080	0.00145	0.186	-1.84	č	ls
]		[3881.2]	195785	221543	8	6	0.0132	0.00224	0.229	-1.75	Č	ls
23		⁴ D° – ⁴ F (36)											
		(00)	4076,00	196581	221107	8	10	2.28	0.71	76	0.75	С	00.10
	1		4074.53	196571	221106	6	8	1.96	0.65	52	0.13	č	$\begin{array}{c c} ca, ls \\ ca, ls \end{array}$
24		² D°- ² F (39)	4411.4	198433	221095	10	14	2.11	0.86	125	0.93	С	ca
	[(0))	4411.52	198437	221099	6	8	2.09	0.81	71	0.69	C	ls
			4411.20	198426	221090	4	6	1.97	0.86	50	0.54	č	ls
			[4413.2]	198437	221090	6	6	0.140	0.0410	3.57	-0.61	Č	ls
25		⁴ P°- ⁴ D (45)										}	
		()	4374.28	198842	221697	6	8	1.99	0.76	66	0.66	C	ca, ls
			4372.49	198864	221727	4	6	1.40	0.60	34.5	0.380	C	ca, ls
			4371.59	198878	221746	2	4	0.83	0.475	13.7	-0.022	С	ca, ls
26		² F°− ² G (50)	4619.1	199966	221609	14	18	2.24	0.92	196	1.110	С	ca
		(/,	[4618.9]	199984	221628	8	10	2.24	0.90	109	0.86	C	ls
			[4618.9]	199941	221585	6	8	2.16	0.92	84	0.74	C	ls
	1		[4628.1]	199984	221585	8	8	0.079	0.0255	3.11	-0.69	Č	ls
27	$3d-(^{1}S)5p$	² D− ² P° (7)	3361.3	145551	175293	10	6	0.121	0.0123	1.36	-0.91	С	ca
		. ,	3361.09	145551	175295	6	4	0.109	0.0124	0.82	-1.130	C	ls
	[3361.75	145550	175288	4	2	0.121	0.0102	0.453	-1.388	C	ls
			[3360.9]	145550	175295	4	4	0.0121	0.00206	0.091	-2.085	Č	ls
28	$3d-(^{1}S)5f$	² D- ² F° (8)	2992.6	145551	178956	10	14	0.90	0.169	16.6	0.227	C	ca
29	$4s - (^1S)4p$	² S – ² P°	18902	157234	162523	2	6	0.074	1.18	147	0.373	С	3
			Г18895]	157234	162525	2	4	0.074	0.79	98	0.197	C	ls
			[18916]	157234	162519	$\frac{2}{2}$	2	0.073	0.393	49.0	-0.104	Ĭč	ls

Naqvi's calculation [1] of the one possible transition in the ground state configuration 2p is the only available source. The line strength should be quite accurate, since it does not sensitively depend on the choice of the interaction parameters.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

CII. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	g_k	Type of Transition	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	2p-2p	2P°_2P°	[15.6×10 ⁵]	0	64	2	4	m	2.36×10^{-6}	1.33	С	1

Ground State

Ionization Potential

 $47.864 \text{ eV} = 386213.9 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
310.171	3	3609.96	23	4673.91	15
371.694	11	3609.61	23	5244.5	14
371.72	1 11	3703.52	18	5249.6	26
371.72 371.747	1 11	3883.80	27	5253.55	14
371.784	1 11	3885.99	$\frac{1}{27}$	5272.56	14
3/1./64	11	3005.57		92.11.00	
371.80	11	3886.2	27	5696.0	17
386.203	2	3889.18	27	5857.9	20
459.462	9	3889.7	27	5862.8	20
459.521	9	3889.8	$\frac{1}{27}$	5871.6	20
459.633	9	4056.06	28	5871.8	20
407.000	1 ′	1000.00	-		
459.64	9	4122.05	24	5880.4	20
538.075	7	4325.70	16	5894.1	20
538.150	7	4379.97	25	6727.1	13
538.312	7	4383.24	25	6730.7	13
574.279	10	4388.24	25	6742.1	13
314.219	1 10	1000.21		3, 2, 2, 2, 2	
690.526	8	4516.02	22	6744.2	13
977.026	ì	4516.93	22	6762.2	13
1174.92	4	4647.40	12	6773.7	13
1175.25	4	4650.16	$\overline{12}$	6851.2	19
1175.57	4	4650.9	15	6853.1	19
1110.01	•	1000.5			
1175.70	4	4651.35	12	6857.3	19
1175.97	4	4651.8	15	6862.9	19
1176.35	4	4659.0	15	6869.1	19
1247.37	6	4663.53	15	6871.7	19
2296.89	5	4665.90	15	6881.4	19
2270.07	"		1 -	1	
3170.16	21			H	
0110.10	1			<u> </u>	

Values for the $2s^2-2s2p$ and $2s2p-2p^2$ transition arrays are taken from the self-consistent field calculations of Weiss [1]. These calculations do not include the important effects of configuration interaction; hence fairly large uncertainties must be expected. The average of the dipole length and velocity approximations is adopted [1]. Accuracies within 50 percent are indicated by the following comparison: Weiss [1] has undertaken refined calculations, including configuration interaction, for the same transitions in Be I—the first member of this isoelectronic sequence—in addition to calculations of the type done for this ion. In all cases the agreement with the average of the dipole length and velocity approximations is close.

Reference

[1] Weiss, A. W., private communication (1964).

CIII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g_k	$A_{ki}(10^8~{ m sec^{-1}})$	f_{ik}	S(at.u.)	$\log gf$	Accu- racy	Source
1	$2s^2 - 2s(^2S)2p$	¹ S- ¹ P°	977.026	0.0	102351	1	3	19	0.81	2.6	-0.09	D	1
2	$2s^2 - 2s(^2S)3p$	(1 uv) ¹ S - ¹ P° (2 uv)	386.203	0.0	258931	1	3	38	0.26	0.32	-0.59	D	ca
3	$2s^2 - 2s(^2S)4p$	¹ S - ¹ P° (3 uv)	310.171	0.0	322403	1	3	3.7	0.016	0.017	-1.79	D	ca
4	$2s2p-2p^2$	³ P°- ³ P (4 uv)	1175.7	52419	137478	9	9	13	0.26	9.1	0.37	D	1
		(* u*)	1175.70 1175.57 1176.35 1175.97 1174.92 1175.25	52447 52390 52447 52390 52390 52367	137502 137455 137455 137426 137502 137455	5 3 5 3 3	5 3 1 5 3	9.4 3.1 5.2 13 3.1 4.2	0.20 0.065 0.065 0.087 0.11 0.26	3.8 0.76 1.3 1.0 1.3 1.0	$\begin{array}{c} -0.01 \\ -0.71 \\ -0.49 \\ -0.58 \\ -0.49 \\ -0.58 \end{array}$	D D D D D	ls ls ls ls ls
5		¹ P°- ¹ D (8 uv)	2296.89	102351	145875	3	5	3.6	0.47	11	0.15	D	1
6		¹ P°- ¹ S (9 uv)	1247.37	102351	182520	3	1	12	0.090	1.1	-0.57	D	1
7	$2s2p - 2s(^{2}S)3s$	³ P°- ³ S (5 uv)	538.23	52419	238212	9	3	21	0.031	0.49	-0.55	D	ca
		(3 44)	538.312 538.150 538.075	52447 52390 52367	238212 238212 238212	5 3 1	3 3 3	7.1 2.3	0.031 0.031 0.031	0.27 0.16 0.054	$ \begin{array}{r r} -0.81 \\ -1.04 \\ -1.51 \end{array} $	D D D	ls ls ls
8		¹ P°- ¹ S (10 uv)	690.526	102351	247170	3	1	22	0.053	0.36	-0.80	D	ca
9	$2s2p - 2s(^2S)3d$		459.57	52419	270013	9	15	79	0.42	5.7	0.57	D	ca
		(6 uv)	459.633 459.521 459.462 459.633 459.521 [459.64]	52447 52390 52367 52447 52390 52447	270015 270011 270009 270011 270009 270009	5 3 1 5 3 5	7 5 3 5 3 3	79 59 44 20 33 2.2	0.35 0.31 0.42 0.063 0.10 0.0042	2.7 1.4 0.63 0.47 0.47 0.032	$\begin{array}{c} 0.24 \\ -0.03 \\ -0.38 \\ -0.51 \\ -0.50 \\ -1.68 \end{array}$	D D D D D	ls ls ls ls ls
10		¹ P°- ¹ D (11 uv)	574.279	102351	276483	3	5	63	0.52	2.9	0.19	D	ca
11	$2s2p - 2s(^{2}S)4d$	³ P°- ³ D (7 uv)	371.73	52419	321435	9	15	34	0.12	1.3	0.03	D	ca
	23(5) 14		371.747 371.694 371.694 371.784 [371.72] [371.80]	52447 52390 52367 52447 52390 52447	321450 321427 321411 321427 321411 321411	5 3 1 5 3 5	7 5 3 5 3 3	34 26 19 8.6 14 0.96	0.10 0.089 0.12 0.018 0.030 0.0012	0.61 0.33 0.15 0.11 0.11 0.0073	$\begin{array}{c c} -0.30 \\ -0.57 \\ -0.92 \\ -1.05 \\ -1.05 \\ -2.23 \end{array}$	D D D D D	ls ls ls ls ls
12	2s3s —	3S-3P°	4648.8	238212	259718	3	9	0.78	0.76	34.9	0.358	C	ca
	2s(2S)3p	(1)	4647.40 4650.16 4651.35	238212 238212 238212	259724 259711 259706	3 3 3	5 3 1	0.78 0.78 0.78	0.423 0.253 0.084	19.4 11.6 3.88	$ \begin{array}{r} 0.103 \\ -0.121 \\ -0.60 \end{array} $	CCC	ls ls ls
13	2p3s-	³ P°- ³ D	6740.8	308283	323114	9	15	0.267	0.303	61	0.436	С	ca
	2p(2P°)3p	(3)	6744.2 6730.7 6727.1 [6762.2] [6742.1] [6773.7]	308317 308248 308215 308317 308248 308317	323140 323101 323076 323101 323076 323076	5 3 1 5 3 5	7 5 3 5 3 3	0.266 0.201 0.149 0.066 0.111 0.0073	0.254 0.227 0.303 0.0453 0.076 0.00301	28.2 15.1 6.7 5.0 5.0 0.336	$ \begin{vmatrix} 0.104 \\ -0.167 \\ -0.52 \\ -0.65 \\ -0.64 \\ -1.82 \end{vmatrix} $	C C C C	ls ls ls ls ls ls

CIII. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(10^8 { m sec}^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
14		³ P°- ³ S	5263.1	308283	327277	9	3	0.58	0.080	12.5	-0.142	С	ca
		(4)	5272.56	308317	327277	5	3	0.320	0.080	7.0	-0.398	C	ls
	1	Ì	5253.55	308248	327277	3	3	0.194	0.080	4.17	-0.62	C	ls
			5244.5	308215	327277	1	3	0.065	0.081	1.39	-1.094	C	ls
15		³ P°- ³ P (5)	4662.7	308283	329724	9	9	0.84	0.273	37.7	0.390	С	ca
			4665.90	308317	329743	5	5	0.63	0.204	15.7	0.010	C	ls
			[4659.0] 4673.91	308248 308317	329706 329706	3 5	3 3	$0.210 \\ 0.347$	0.068 0.068	$\begin{array}{c} 3.14 \\ 5.2 \end{array}$	$\begin{bmatrix} -0.69 \\ -0.468 \end{bmatrix}$	C	ls ls
İ		Ì	4663.53	308248	329685	3	ĺ	0.84	0.000	4.19	-0.408	č	ls
- 1			[4650.9]	308248	329743	3	5	0.211	0.114	5.2	-0.466	C	ls ls
			[4651.8]	308215	329706	1	3	0.281	0.274	4.19	-0.56	С	ls
16		¹ P°- ¹ D (7)	4325.70	310005	333116	3	5	1.08	0.50	21.6	0.181	С	ca
17	$2s3p - 2s(^{2}S)3d$	¹ P°- ¹ D (2)	5696.0	258931	276483	3	5	0.50	0.407	22.9	0.087	С	ca
18	$\begin{array}{c} 2p3p - \\ 2p(^2P^\circ)3d \end{array}$	¹ P- ¹ P° (12)	3703.52	319719	346713	3	3	0.320	0.066	2.41	-0.70	С	ca
19	!	³ D- ³ D° (19)	6865.8	323114	337675	15	15	0.066	0.0469	15.9	-0.153	С	ca
		(22)	6871.7	323140	337688	7	7	0.059	0.0416	6.6	-0.54	С	ls
			6862.9	323101	337668	5	5	0.0463	0.0327	3.69	-0.79	C	ls
			6857.3 [6881.4]	323076 323140	337655 337668	3 7	3	0.050	0.0352	2.39	-0.98	C	ls
- 1		j	[6869.1]	323140	337655	5	5 3	0.0103 0.0166	$0.0052 \\ 0.0070$	0.83 0.80	-1.438 -1.450	C	ls
			[6853.1]	323101	337688	5	7	0.0074	0.0073	0.83	-1.430 -1.436	č	ls ls
İ		·	[6851.2]	323076	337668	3	5	0.0100	0.0117	0.80	-1.453	č	ls
20		³ D - ³ P° (20)	5880.4	323114	340115	15	9	0.0124	0.00385	1.12	-1.238	С	ca
			5894.1	323140	340101	7	5	0.0104	0.00385	0.52	-1.57	C	ls
		ĺ	5871.6 5857.9	323101 323076	340128 340142	5 3	3	0.0093 0.0126	0.00290	0.280	-1.84	C	ls
			[5880.4]	323101	340101	5	1 5	0.0126	0.00216 9.6×10^{-4}	$0.125 \\ 0.093$	$ \begin{array}{r} -2.188 \\ -2.317 \end{array} $	$\begin{bmatrix} c \\ c \end{bmatrix}$	ls
			[5862.8]	323076	340128	3	3	0.00313	0.00161	0.093	-2.317	č	ls ls
1			[5871.8]	323076	340101	3	5	1.25×10^{-4}	1.07×10^{-4}	0.0062	-3.492	\ddot{c}	ls
21	$2s4s - 2s(^2S)5p$	¹ S- ¹ P° (8)	3170.16	311721	343256	1	3	0.325	0.147	1.53	-0.83	С	ca
22	2s4p - 2s(2S)5s	³ P°- ³ S	4516.5	317798	339933	9	3	1.66	0.169	22.6	0.182	С	ca
	, ,		4516.93	317800	339933	5	3	0.92	0.169	12.6	-0.072	c	ls
	(4516.02	317795	339933	3	3	0.55	0.169	7.5	-0.295	č	ls
			4516.02	317795	339933	1	3	0.184	0.169	2.51	-0.77	C	ls
23	$\begin{array}{c} 2s4p - \\ 2s(^2S)5d \end{array}$	³ P°- ³ D (10)	3609.3	317798	345496	9	15	0.95	0.308	32.9	0.442	С	ca
]	3609.61	317800	345496	5	7	0.95	0.259	15.4	0.113	C	ls
			3608.96 3608.96	317795 317795	345496 345496	$\begin{bmatrix} 3 \\ 1 \end{bmatrix}$	5 3	0.71	0.231	8.2	-0.160	\mathbf{C}	ls
	İ	ĺ	3609.61	317800	345496	5	5	$0.53 \\ 0.236$	0.308 0.0461	$\frac{3.66}{2.74}$	-0.51	C	ls .
		{	3608.96	317795	345496	3	3	0.394	0.0401	2.74	$\begin{bmatrix} -0.64 \\ -0.64 \end{bmatrix}$	$\begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix}$	ls Is
		ľ	3608.96	317795	345496	3	5	0.0158	0.0051	0.183	-1.81	č	ls ls
24	ł	¹P°−¹D	4122.05	322403	346656	3	5	1.04	0.443	18.0	ł		
	ļ	(17)			3 10000	Ĭ	٠	*****	U.TET	10.0	0.124	C	ca

CIII. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g_i	g_k	$A_{ki}(10^8 { m sec}^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
25	2s4d — 2s(² S)5p	³ D - ³ P° (14)	4385.1 4388.24 4383.24 4379.97 4383.24 4379.97	321435 321450 321427 321411 321427 321411 321411	344233 344233 344233 344233 344233 344233	15 7 5 3 5 3 3	9 5 3 1 5 3 5	0.267 0.224 0.200 0.268 0.0401 0.067 0.00268	0.0463 0.0462 0.0346 0.0257 0.0115 0.0193 0.00129	10.0 4.67 2.50 1.11 0.83 0.83 0.056	-0.160 -0.491 -0.76 -1.114 -1.239 -1.238 -2.414	C C C C C C C C	ca ls ls ls ls
26		¹ D- ¹ P° (23)	5249.6	324212	343256	5	3	0.52	0.128	11.1	-2.414 -0.194	C	ls ca
27	2s4d – 2s(² S)5f	³ D – ³ F° (15)	3887.1 3889.18 3885.99 3883.80 [3889.7] [3886.2] [3889.8]	321435 321450 321427 321411 321450 321427 321450	347154 347155 347153 347151 347153 347151 347151	15 7 5 3 7 5 7	21 9 7 5 7 5 5	1.81 1.61 1.52 0.201 0.282 0.0079	0.58 0.53 0.51 0.57 0.0456 0.064 0.00128	47.2 32.6 22.0 4.09 4.09 0.115	0.93 0.57 0.406 0.236 - 0.496 - 0.495 - 2.047	0 00000	ca ls ls ls ls
28		¹ D - ¹ F° (24)	4056.06	324212	348860	5	7	1.45	0.50	33.4	0.398	С	ca

Naqvi's calculations [1] are the only available source. The results for the ³P°—³P° transitions are essentially independent of the choice of the interaction parameters. For the ³P°—¹P° transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

CIII. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	Type of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$2s2p - 2s(^{2}S)2p$	3P°-3P°	$[43.5 \times 10^{5}]$ $[17.6 \times 10^{5}]$	52366.7 52389.7	52389.7 52446.5	1 3	3 5	m m	$\begin{vmatrix} 2.18 \times 10^{-7} \\ 2.47 \times 10^{-6} \end{vmatrix}$	2.00 2.50	B B	1 1
2		3P°-1P°	[2000.0] [2000.9] [2003.2]	52366.7 52389.7 52446.5	102351 102351 102351	1 3 5	3 3 3	m m m	0.00142 1.35 0.00179	$1.26 \times 10^{-6} \\ 0.00120 \\ 1.60 \times 10^{-6}$	CCC	1 1 1

 $1s^2 2s \, ^2S_{1/2}$

Ground State
Ionization Potential

 $64.476 \text{ eV} = 520177.8 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
222,791	4	384.19	6	4647	19
244,907	3	419.525	5	4665	20
259,471	9	419.714	5	4737	22
259,542	9	1548.20	1	4789	18
289,143	8	1550.77	1	5021	16
289.230	8	2524.40	14	5023	16
296.857	7	2595.14	13	5801.51	10
296.951	7	2697.73	12	5812.14	10
312.418	2	2698.70	12	6592	21
312.455	2	3936	15	20694	11
384.032	6	4440.4	17	20780	11
384.178	6	4441.8	17	20828	11

The values taken from Weiss' calculations [1] are estimated to be accurate to within 10 percent because of the very close agreement between his dipole length and dipole velocity approximations. The values calculated with the length approximation are adopted.

Reference

[1] Weiss, A. W., Astrophys. J. 138, 1262-1276 (1963).

CIV. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g_i	gk	$A_{ki}(10^8~{ m sec^{-1}})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
1	2s-2p	$^{2}S - ^{2}P^{\circ}$ $(1 uv)$	1549.1	0.0	64555	2	6	2.65	0.286	2.91	-0.243	A	1
		,	1548.20 1550.77	0.0 0.0	64591 64484	2 2	4 2	2.65 2.63	0.190 0.0950	1.94 0.970	-0.420 -0.721	A A	ls ls
2	2s-3p	$^{2}S - ^{2}P^{\circ}$ (2 uv)	312.43	0.0	320070	2	6	45.6	0.200	0.412	-0.397	B+	1
			312.418 312.455	0.0 0.0	320080 320049	2 2	4 2	45.7 45.5	0.134 0.0666	$0.275 \\ 0.137$	-0.573 -0.876	B+ B+	ls ls
3	2s-4p	$^{2}S - ^{2}P^{\circ}$ (3 uv)	244.907	0.0	408318	2	6	22.1	0.0597	0.0963	-0.923	В	ca
4	2s-5p	² S - ² P° (4 uv)	222.791	0.0	448859	2	6	11.8	0.0263	0.0385	-1.280	В	ca
5	2p-3s	² P°- ² S (6 uv)	419.65	64555	302848	6	2	42.7	0.0376	0.312	-0.647	B+	1
		(0 41)	419.714 419.525	64591 64484	302848 302848	4 2	2 2	28.5 14.3	0.0376 0.0376	0.208 0.104	$-0.822 \\ -1.123$	B+ B+	ls ls
6	2p-3d	² P°- ² D (7 uv)	384.12	64555	324887	6	10	177	0.654	4.96	0.594	B+	1
		(7 uv)	384.178 384.032 [384.19]	64591 64484 64591	324891 324880 324880	4 2 4	6 4 4	177 148 29.6	0.589 0.653 0.0654	2.98 1.65 0.331	$\begin{array}{c c} 0.372 \\ 0.116 \\ -0.582 \end{array}$	B+ B+ B+	ls ls ls

CIV. Allowed Transitions—Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(10^8~{ m sec}^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
7	2p-4s	² P°- ² S (8 uv)	296.92	64555	401347	6	2	17.5	0.00772	0.0453	-1.334	В	ca
			296.951 296.857	64591 64484	401347 401347	4 2	$\begin{vmatrix} 2\\2 \end{vmatrix}$	11.7 5.85	0.00772 0.00773	$0.0302 \\ 0.0151$	$ \begin{array}{r r} -1.510 \\ -1.811 \end{array} $	B B	ls ls
8	2p-4d	² P°- ² D (9 uv)	289.20	64555	410336	6	10	58.1	0.121	0.694	-0.137	В	ca
			289.230 289.143 [289.23]	64591 64484 64591	410338 410334 410334	4 2 4	6 4 4	58.2 48.5 9.69	$0.109 \\ 0.122 \\ 0.0122$	0.417 0.231 0.0463	$ \begin{array}{r r} -0.359 \\ -0.614 \\ -1.313 \end{array} $	B B B	ls ls ls
9	2p-5d	² P°- ² D (10 uv)	259.52	64555	449887	6	10	22.8	0.0383	0.196	-0.639	В	ca
			259.542 259.471 259.542	64591 64484 64591	449887 449887 449887	4 2 4	6 4 4	22.8 18.9 3.80	0.0345 0.0382 0.00383	0.118 0.0653 0.0131	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	B B B	ls ls ls
10	3s-3p	² S- ² P° (1)	5804.9	302848	320070	2	6	0.318	0.481	18.4	-0.017	В	1
		(1)	5801.51 5812.14	302848 302848	320080 320049	2 2	4 2	0.319 0.316	0.322 0.160	12.3 6.13	-0.191 -0.494	B B	ls ls
11	3p-3d	² P°- ² D	20754	320070	324887	6	10	0.00579	0.0623	25.5	-0.427	В	1
			[20780] [20694] [20828]	320080 320049 320080	324891 324880 324880	4 2 4	6 4 4	$\begin{array}{c} 0.00576 \\ 0.00486 \\ 9.53 \times 10^{-4} \end{array}$	0.0559 0.0624 0.00620	15.3 8.50 1.70	-0.650 -0.904 -1.606	B B B	ls ls ls
12	4p-5s	² P°- ² S (12 uv)	2698.4	408318	445366	6	2	4.09	0.149	7.94	-0.049	В	ca
		(12 41)	2698.70 2697.73	408322 408309	445366 445366	4 2	$\frac{2}{2}$	2.73 1.37	0.149 0.149	5.29 2.65	$-0.225 \\ -0.525$	B B	ls ls
13	4d-5p	² D - ² P° (13 uv)	2595.14	410336	448859	10	6	0.746	0.0452	3.86	-0.345	В	ca
14	4d-5f	² D- ² F° (14 uv)	2524.40	410336	449938	10	14	7.44	0.995	82.7	0.999	В	ca
15	5s-6p	² S - ² P° (2)	3936	445366	470763	2	6	0.340	0.237	6.14	-0.325	В	ca
16	5p-6s	² P°- ² S	5022.2	448859	468765	6	2	1.40	0.176	17.5	0.024	В	ca
		(0)	5023 5021	448861 448854	468765 468765	$\begin{vmatrix} 4 \\ 2 \end{vmatrix}$	2 2	0.935 0.467	0.177 0.176	11.7 5.83	-0.150 -0.453	B B	ls ls
17	5p-6d	² P°- ² D (4)	4441.8	448859	471368	6	10	1.05	0.516	45.3	0.491	В	ca
		(-)	[4441.8] [4440.4] [4441.8]	448861 448854 448861	471368 471368 471368	$egin{array}{c} 4 \ 2 \ 4 \ \end{array}$	6 4 4	1.05 0.874 0.175	0.465 0.516 0.0516	27.2 15.1 3.02	$0.270 \\ 0.014 \\ -0.685$	B B B	ls ls ls
18	5d-6p	$^{2}D - ^{2}P^{\circ}$ (5)	4789	449887	470763	10	6	0.341	0.0704	11.1	-0.152	В	ca
19	5d-6f	$^{2}D - ^{2}F^{\circ}$ (6)	4647	449887	471403	10	14	1.85	0.837	128	0.923	В	ca
20	5f-6d	² F°- ² D (7)	4665	449938	471368	14	10	0.103	0.0241	5.18	-0.472	В	ca
21	6s - 7p	² S - ² P° (10)	6592	468765	483931	2	6	0.132	0.258	11.2	-0.288	В	ca
22	6d-8p	² D- ² P° (12)	4737	471368	492473	10	6	0.104	0.0210	3.27	-0.678	В	ca

Ground State

 $1s^2 \, {}^1S_0$

Ionization Potential

 $391.986 \text{ eV} = 3162450 \text{ cm}^{-1}$

Allowed Transitions

The results of extensive non-relativistic variational calculations by Weiss [1] are chosen. Values have been calculated in both the dipole length and dipole velocity approximations and agree to within 1 percent, except for the 3p $^{1}P^{\circ}-3d$ ^{1}D transition where agreement is not as good. The average of the two approximations is adopted [1].

Reference

[1] Weiss, A. W., private communication (1964).

Cv. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g_k	$A_{ki}(10^8 { m sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$1s^2 - 1s2p$	¹S-¹P°	[40.270]	0	2483240	1	3	8870	0.647	0.0858	-0.189	A	1
2	$1s^2 - 1s3p$	¹ S - ¹ P°	[34.973]	0	2859350	1	3	2550	0.141	0.0162	- 0.852	A	1
3	1s2s - 1s2p	¹ S – ¹ P°	[3540.8]	[2455006]	2483240	1	3	0.165	0.0931	1.09	-1.031	A	1
4	1s2s - 1s3p	¹ S- ¹ P°	[247.31]	[2455006]	2859350	1	3	128	0.351	0.286	-0.455	A	1
5	1s2p-1s3d	¹P°-¹D	[267.21]	2483240	[2857480]	3	5	396	0.707	1.87	0.327	A	1
6	1s3d-1s3p	¹D-¹P°	[53460]?	[2857480]	2859350	5	3	3.97 × 10 ⁻⁴	0.0102	8.98	-1.292	C+	1
7	1s2s-1s2p	³ S− ³ P°	2273.9	2411244	2455207	3	9	0.565	0.132	2.95	-0.404	A	1
8	1s2s - 1s3p	3S-3P°	[227.37]	2411244	[2851060]	3	9	136	0.316	0.710	-0.023	A	1
9	1s2p-1s3d	3P°-3D	248.71	2455207	2857286	9	15	425	0.657	4.84	0.772	A	1
10	1s3p-1s3d	³ P°- ³ D	[16057]?	[2851060]	2857286	9	15	0.00753	0.0485	23.1	-0.360	A	1

NITROGEN

NI

Ground State

 $1s^2 2s^2 2p^3 {}^4S_{3/2}^{\circ}$

Ionization Potential

 $14.53 \text{ eV} = 117214 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

				<u> </u>	
Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
1100 =		1000.10	20	((00.54	47
1100.7	19	4222.12	29	6622.54	47
1134.17	1 1	4223.04	29	6626.8	47
1134.42	1	4224.74	29	6636.94	47
1134.98	1 1	4230.35	29	6644.96	47
1163.87	10	4253.28	28	6646.51	47
1163.88	10	4254.7	28	6653.46	47
1164.31	10	4258.7	28	6656.51	47
1167.45	9	4261.2	28	6926.90	48
1168.42	9	4263.2	28	6945.22	48
1168.54	9	4264.7	28	6951.7	48
1169.69	8	4269.8	28	6960.4	48
			43	6973.0	48
1176.4	14	4384.4		6979.10	48
1176.6	14	4391.3	43		48
1177.7	14	4914.90	31	6981.8	
1199.55	2	4935.03	31	7423.64	23
1200.22	2	5170.0	18	7442.30	23
1200.71	2	5181.5	18	7468.31	23
1231.7	20	5186.9	18	8184.85	22
1243.17	5	5197.8	49	8188.01	22
1243.30	5	5201.8	49	8200.36	22
1243.31	5	5281.18	17	8210.71	22
			17	8216.32	22
1310.54	13	5292.9	17	8223.12	$\frac{22}{22}$
1310.97	13	5293.5		8242.37	22
1316.29	12	5305.0	17	8567.74	25
1319.04	11	5309.2	17	8507.74	
1319.72	11	5310.6	17	8590.01	25
1326.63	15	5314.8	17	8629.24	25
1327.96	15	5328.70	16	8655.87	25
1411.94	6	5344.4	16	8680.27	21
1492.62	3	5354.7	16	8683.40	21
1409.67	3	5356.77	16	8686.16	21
1492.67	3	= :	16	8703.26	21
1494.67	3	5367.1	16	8711.71	21
1742.72	4	5372.5		8718.84	$\frac{1}{21}$
1742.73	4	5372.66	16	8728.91	21
1745.25	4	5378.3	16	0120.91	
1745.26	4	5401.45	32	8747.36	21
4099.95	26	5411.88	32	9028.92	33
4099.95 4109.96	26	5816.48	50	9045.88	27
	26	5829.53	50	9049.47	27
4113.97 4137.63	30	5834.7	50	9049.89	27
			50	9060.72	33
4143.42	30	5841.01	50	9386.81	24
4151.46	30	5850.1	50	9392.79	24
			(C ()	n 9392.79	47
4214.73	29	5854.16	50		94
	29 29	5854.16 5856.3	50 50 47	9460.68 9776.90	24 35

List of tabulated lines-Continued

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
9786.79 9788.30 9798.57 9810.02	35 35 35 35	10563.3 10591.9 10596 10597.0 10623.2	39 44 44 44 38	11628.0 11656.0 11964 11997.9 12074.1	7 7 42 42 42
9814.03 9822.75 9834.62 9863.33 9872.16	35 35 35 35 35	10623.2 10644.0 10653.0 10675 10693.2	38 38 38 38 37	12107.4 12128.6 12186.9 12203.4	42 46 46 46
10105.1 10108.9 10112.5 10114.6	34 34 34 34	10713.6 10718.0 10730.5 10757.9	38 38 37 38	12232.9 12280 12288.0 12291	46 46 46 40
10128.3 10147.3 10164.8 10166.8	34 34 34 34	10775.0 10879.2 10884.6 11180.1	37 36 36 45	12307 12330 12384 12461.2 12467.8	46 40 40 41 41
10200.0 10500.3 10507.0 10513.4	34 39 39 39	11227.1 11237.6 11266.2 11291.7	45 45 45 45	12582.3	41
10520.6 10533.8 10539.6 10549.6	39 39 39 39	11294.2 11313.9 11323.3 11564.8	45 45 45 7		

The numerical values for the $2s^2 2p^3 - 2s 2p^4$, $2p^3 - 2p^2 3s$, and $2p^3 - 2p^2 3d$ transitions are taken exclusively from measurements with a wall-stabilized high current arc by Labuhn [1], since the available theoretical treatments for these transitions must be considered quite unreliable because of the strong effects of configuration interaction. However, even the experimental data should be considered with caution since they suffer, for example, from uncertainties in the identification of the lines.

The data for most higher excited transitions are taken from a stabilized-arc experiment by Richter [2], the Coulomb approximation, and approximate self-consistent field calculations by Kelly [6]. For about half of the 3p-3d transitions the numbers agree within an impressive 10 percent, and the results have been averaged. For most 3s-3p and 3s-4p transitions, strong cancellations in the calculations render the theoretical results unreliable. In these cases experimental results are exclusively used whenever available. The above material is supplemented by a few numbers obtained from a shock tube investigation by Doherty [5], a wall-stabilized arc study by Shumaker and Yokley [4], and work with a less refined arc source by Motschmann [3]. Motschmann's absolute values appear to be shifted by a constant factor due to a demixing effect in the arc and have been renormalized by applying a factor of 1.5, which has given the best fit with Richter's data.

References

- [1] Labuhn, F., to be published in Z. Naturforsch.
- [2] Richter, J., Z. Astrophys. 51, 177-186 (1961).
- [3] Motschmann, H., Z. Physik 143, 77-92 (1955).
- [4] Shumaker, Jr., J. P., and Yokley, C. R., Applied Optics 3, 83-87 (1964).
- [5] Doherty, L. R., Thesis Michigan (1961).
- [6] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964).

N I. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	$A_{ki}(10^8~{\rm sec^{-1}})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p^3 -$	4S°-4P	1134.6	0.0	88135	4	12	2.3	0.13	2.0	-0.27	D-	1
	2s2p4	(2 uv)	1134.98 1134.42 1134.17	0.0 0.0 0.0	88110 88153 88173	4 4	6 4 2	2.2 2.5 2.5	0.064 0.048 0.024	0.95 0.72 0.36	$ \begin{array}{c c} -0.59 \\ -0.71 \\ -1.02 \end{array} $	D- D- D-	1 1, <i>ls</i> 1, <i>ls</i>
2	$2p^{3} - 2p^{2}(^{3}P)3s$	4S°-4P (1 uv)	1199.9	0.0	83336	4	12	5.4	0.35	5.5	0.15	D-	1
			1199.55 1200.22 1200.71	0.0 0.0 0.0	83366 83319 83286	4 4 4	6 4 2	5.5 5.3 5.5	0.18 0.11 0.059	2.8 1.8 0.94	$ \begin{array}{r r} -0.15 \\ -0.34 \\ -0.62 \end{array} $	D- D- D-	1 1 1
3		² D° – ² P (4 uv)	1493.3	19228	86193	10	6	5.5	0.11	5.4	0.04	D	1
			1492.62 1494.67 1492.67	19224 19233 19233	86221 86138 86221	6 4 4	4 2 4	5.3 5.0 0.58	0.12 0.084 0.019	3.5 1.6 0.38	$ \begin{array}{c c} -0.15 \\ -0.48 \\ -1.11 \end{array} $	D D D	1, <i>ls</i> 1 1, <i>ls</i>
4	1	² P° - ² P (9 uv)	1743.6	28840	86193	6	6	2.0	0.091	3.1	-0.26	D	1
			1742.73 1745.25 1745.26 1742.72	28840 28840 28840 28840	86221 86138 86138 86221	4 2 4 2	4 2 2 4	1.8 1.3 0.65 0.35	0.082 0.059 0.015 0.032	1.9 0.68 0.34 0.37	-0.48 -0.93 -1.23 -1.20	D D D	1, ls 1, ls 1, ls 1, ls
5	$2p^3 - 2p^2(^1D)3s'$	$^{2}D^{\circ}-^{2}D$ (5 uv)	1243.3	19228	99663	10	10	4.6	0.11	4.4	0.03	D	1
	1 (=)-0		1243.17 1243.30 1243.17 1243.31	19224 19233 19224 19233	99663 99663 99663 99663	6 4 6 4	6 4 4 6	4.3 4.3 0.45 0.30	0.10 0.10 0.0070 0.010	2.4 1.6 0.17 0.17	-0.22 -0.40 -1.38 -1.38	D D D D	ls ls ls
6		² P°- ² D (10 uv)	1411.94	28840	99663	6	10	0.52	0.026	0.72	-0.8 1	D	1
7	$2s2p^4 - 2s^22p^2(^3P)3p$	⁴ P~ ⁴ S° (12)	11602	88135	96752	12	4	0.0405	0.0273	12.5	-0.485	С	2
	- -p (1)op	(12)	11564.8 11628.0 11656.0	88110 88153 88173	96752 96752 96752	6 4 2	4 4 4	0.0130	0.0280 0.0264 0.0267	6.4 4.04 2.05	$ \begin{array}{r} -0.77 \\ -0.98 \\ -1.272 \end{array} $	C C C	2, <i>ls</i> 2, <i>ls</i> 2, <i>ls</i>
8	$2p^3 - 2p^2(^3P)3d$	² D°-4F											l
			1169.69	19224	104718	6			8.2×10^{-4}	0.019	-2.31	D	1
9		² D° – ² F (6 uv)	1167.9	19228			14		0.034	1.3	-0.46	D	1
			1167.45 1168.54 1168.42	19224 19233 19224	104883 104811 104811	6 4 6	8 6 6	1.3	0.030 0.040 0.0019	0.69 0.61 0.045	$ \begin{array}{c c} -0.75 \\ -0.80 \\ -1.93 \end{array} $	D D D	1 1, <i>ls</i> 1, <i>ls</i>
10		$^{2}D^{\circ} - ^{2}D$ (7 uv)	1164.0	19228	105135	10	10	0.47	0.0095	0.37	-1.02	D	1
		(7 uv)	1163.88 1164.31 1164.31 1163.87	19224 19233 19224 19233	105144 105121 105121 105144	6 4 6 4	6 4 4 6	0.43 0.048	0.0087 0.0087 6.5×10^{-4} 9.7×10^{-4}	0.20 0.13 0.015 0.015	$ \begin{array}{c c} -1.28 \\ -1.46 \\ -2.41 \\ -2.41 \end{array} $	D D D	ls ls ls
11		² P°- ² P	1319.5	28840	104628	6	6	1.3	0.034	0.88	-0.69	D	1
		(12 uv)	1319.72 1319.04 1319.04 1319.72	28840 28840 28840 28840	104615 104655 104655 104615	$egin{array}{c} 4 \ 2 \ 4 \ 2 \end{array}$	2	0.85 0.42	0.029 0.022 0.0055 0.011	0.50 0.19 0.095 0.10	-0.94 -1.35 -1.66 -1.64	D D D	1, <i>ls</i> 1, <i>ls</i> 1, <i>ls</i> 1, <i>ls</i>

NI. Allowed Transitions - Continued

No	. Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	$A_{ki}(10^8~{\rm sec^{-1}}$) fik	S(at.u.)	log gf	Accu- racy	Source
12		² P° − ² F	1316.29	28840	104811	4	6	0.025	9.6×10 ⁻⁴	0.017	-2.42	D	1
13		2P°-2D	1310.7	28840	105135	6	10		0.056	1.4	-0.48	D	1
		(13 uv)	1310.54 1310.97 1310.97	28840 28840 28840	105144 105121 105121	4 2 4	6 4 4	1.3 1.1 0.23	0.050 0.057 0.0059	0.87 0.49 0.10	$\begin{vmatrix} -0.70 \\ -0.95 \\ -1.63 \end{vmatrix}$	D D D	ls ls ls
14	$2p^3-$	²D° - ²P	1176.9	19228	104199	10	6	1.1	0.014	0.53	-0.86	D	1
	2p ² (3P)4s		[1176.4] [1177.7] [1176.6]	19224 19233 19233	104227 104142 104227	6 4 4	4 2 4	0.95 1.3 0.11	0.013 0.014 0.0023	0.31 0.21 0.035	$\begin{vmatrix} -1.10 \\ -1.27 \\ -2.04 \end{vmatrix}$	D D D	1, <i>ls</i> 1 1, <i>ls</i>
15		² P°-2P (11 uv)	1327.0	28840	104199	6	6	0.20	0.0053	0.14	-1.50	D	1
		(11 uv)	1326.63 1327.96 1327.96 1326.63	28840 28840 28840 28840	104227 104142 104142 104227	4 2 4 2	4 2 2 4	0.15 0.17 0.085 0.030	0.0040 0.0045 0.0011 0.0016	0.069 0.039 0.020 0.014	-1.80 -2.05 -2.35 -2.50	D D D	1, ls 1, ls 1, ls 1, ls
16	$2s2p^4 - 2s^22p^2(^3P)4p$	⁴ P - ⁴ D° (13)	5349.0	88135	106825	12	20	0.00252	0.00180	0.380	-1.67	С	2
	• • • •		5328.70 5356.77 5372.66 [5344.4] [5367.1] [5378.3] [5354.7] [5372.5]	88110 88153 88173 88110 88153 88173 88110 88153	106871 106816 106780 106816 106780 106761 106780 106761	6 4 2 6 4 2 6 4	8 6 4 6 4 2 4 2	$ \begin{vmatrix} 0.00254 \\ 0.00189 \\ 0.00107 \\ 6.2 \times 10^{-4} \\ 0.00118 \\ 0.00210 \\ 1.35 \times 10^{-4} \\ 4.31 \times 10^{-4} \end{vmatrix} $	$ \begin{array}{c} 0.00144 \\ 0.00122 \\ 9.3 \times 10^{-4} \\ 2.64 \times 10^{-4} \\ 5.1 \times 10^{-4} \\ 9.1 \times 10^{-4} \\ 3.88 \times 10^{-5} \\ 9.3 \times 10^{-5} \end{array} $	0.152 0.086 0.0328 0.0279 0.0361 0.0323 0.00410 0.0066	-2.062 -2.312 -2.73 -2.80 -2.69 -2.74 -3.63 -3.428	00000000	3n, ls 3n, ls 3n, ls 3n, ls 3n, ls 3n, ls 3n, ls 3n, ls
17		⁴ P – ⁴ P° (14)	5294.9	88135	107016	12	12	0.00373	0.00157	0.328	-1.73	С	2
			5281.18 [5305.0] [5314.8] [5292.9] [5309.2] [5293.5] [5310.6]	88110 88153 88173 88110 88153 88153 88173	107039 106998 106983 106998 106983 107039 106998	6 4 2 6 4 4 2	6 4 2 4 2 6 4	$\begin{array}{c} 0.00282 \\ 5.3 \times 10^{-4} \\ 6.9 \times 10^{-4} \\ 0.00167 \\ 0.00273 \\ 0.00113 \\ 0.00137 \end{array}$	$\begin{array}{c} 0.00118 \\ 2.23 \times 10^{-4} \\ 2.91 \times 10^{-4} \\ 4.68 \times 10^{-4} \\ 5.8 \times 10^{-4} \\ 7.1 \times 10^{-4} \\ 0.00116 \end{array}$	0.123 0.0156 0.0102 0.0489 0.0403 0.0495 0.0404	$\begin{array}{r} -2.150 \\ -3.049 \\ -3.234 \\ -2.55 \\ -2.64 \\ -2.55 \\ -2.64 \end{array}$	C C C C C C	3n, ls 3n, ls 3n, ls 3n, ls 3n, ls 3n, ls 3n, ls
18		4P - 4S°	5176.7	88135	107447	12	4	0.00427	5.7×10^{-4}	0.117	-2.163	С	2
			[5170.0] [5181.5] [5186.9]	88110 88153 88173	107447 107447 107447	$egin{array}{c} 6 \ 4 \ 2 \end{array}$	4. 4. 4.	0.00144	5.6×10^{-4} 5.8×10^{-4} 5.9×10^{-4}	0.057 0.0395 0.0201	$ \begin{array}{r} -2.475 \\ -2.64 \\ -2.93 \end{array} $	C C C	3n, $ls3n$, $ls3n$, ls
19	$2p^{3} - 2p^{2}(^{3}P)5s$	² D°-2P	1100.7	19228	110082	10	6	0.33	0.0036	0.13	-1.44	D	1
20		² P° – ² P	[1231.7] [1231.7]	28840 28840	110029 110029	2 4	2 2		5.0×10^{-4} 1.3×10^{-4}	0.0041 0.0020	-2.99 -3.30	D D	1, <i>ls</i> 1, <i>ls</i>
21	$2p^23s - 2p^2(^3P)3p$	4P-4D°	8691.6	83337	94839	12	20	0.190	0.358	123	0.63	С	2
			8680.27 8683.40 8686.16 8718.84 8711.71 8703.26 8747.36 8728.91	83366 83319 83286 83366 83319 83286 83366 83319	94883 94832 94795 94832 94795 94772 94772	6 4 2 6 4 2 6 4	6	0.133 0.079 0.054 0.101 0.171 0.0079	0.287 0.226 0.178 0.062 0.115 0.194 0.0061 0.0171	49.2 25.8 10.2 10.6 13.2 11.1 1.05 1.97	$\begin{array}{c} 0.236 \\ -0.045 \\ -0.448 \\ -0.433 \\ -0.337 \\ -0.412 \\ -1.438 \\ -1.164 \end{array}$	0000000	2, ls 2, ls 2, ls 2, ls 2, ls 2, ls 2, ls 2, ls 2, ls

NI. Allowed Transitions-Continued

No.	Transition	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g_k	$A_{ki}(10^8 { m sec}^{-1})$	f_{ik}	S(at.u.)	log gf	1	Source
	Array						<u> </u>					racy	
22]	$^{4}P - ^{4}P^{\circ}$ (2)	8211.8	83337	95511	12	12	0.228	0.231	75	0.443	С	2, 5
			8216.32	83366	95533	6	6	0.160	0.162	26.3	-0.012	C	2n, ls
] .		8210.71	83319	95495	4	4	0.0363	0.0367	3.97	-0.83	C	2n, ls
			8200.36	83286	95477	2	2	0.0364	0.0367	1.98	-1.135	C	2n, ls
	}	1	8242.37	83366	95495	6	4	0.102	0.069	11.3	-0.381	/ C	2n, ls
			8223.12	83319	95477	4	2	0.202	0.103	11.1	-0.387	$\perp c$	2n, ls
			8184.85	83319	95533	4	6	0.063	0.096	10.3	-0.418	Č	2n, ls
			8188.01	83286	95495	2	4	0.092	0.185	10.0	-0.431	Č	2n, ls
23		⁴ P- ⁴ S° (3)	7452.2	83337	96752	12	4	0.318	0.088	26.0	0.025	С	2, 5
			7468.31	83366	96752	6	4	0.161	0.089	13.2	-0.270	C	2n, ls
			7442.30	83319	96752	4	4	0.106	0.088	8.6	-0.454	č	2n, ls
			7423.64	83286	96752	2	4.	0.052	0.086	4.21	-0.76	Ιč	2n, ls
						-	-	1	0.000	1.21	0.10	~	211, 13
24		$ \begin{array}{c c} ^{2}P-^{2}D^{\circ} \\ (7) \end{array} $	9395.3	86193	96834	6	10	0.217	0.478	89	0.458	С	2
			9392.79	86221	96864	4	6	0.218	0.432	53	0.237	C	2, ls
			9386.81	86138	96788	2	4	0.183	0.482	29.8	-0.016	C	2, <i>ls</i>
			9460.68	86221	96788	4	4	0.0334	0.0449	5.6	-0.75	C	$\frac{1}{2}$, ls
25		² P - ² P° (8)	8617.5	86193	97794	6	6	0.286	0.318	54	0.281	С	2
		(0)	8629.24	04 99 1	07006	1		Δ 020	0.000	20.0	0.007		
				86221	97806	4	4	0.238	0.266	30.2	0.027	C	2, ls
			8590.01	86138	97770	2	2	0.190	0.210	11.9	-0.376	C	2, ls
			8655.87	86221	97770	4	2	0.099	0.056	6.3	-0.65	C	2, <i>ls</i>
			8567.74	86138	97806	2	4	0.0458	0.101	5.7	-0.70	C	2, ls
26	$2p^{2(3}\mathrm{P})3s - 2p^{(1}\mathrm{D})3p'$	${}^{2}P - {}^{2}D^{\circ}$ (10)	4106.8	86193	110536	6	10	0.041	0.017	1.4	-0.98	D	3n
	2p(D)3p	(10)	4109.96	86221	110546	4	6	0.040	0.015	0.83	-1.21	n	,
				00221					0.013			D	ls
			4099.95	86138	110522	2	4	0.034	0.017	0.46	-1.47	D	ls
			4113.97	86221	110522	4	4	0.0068	0.0017	0.093	-2.16	D	ls
27	$2p^23s' - 2p^2(^1D)3p'$	² D − ² F°	9047.6	99663	110713	10	14	0.272	0.467	139	0.669	В	2, 6, ca
	- p (D) o p		9045.88	99663	110715	6	8	0.269	0.439	78.5	0.421	В	2n, ls
			9049.89	99663	110711	4	1	0.258	0.475	56.6		B	2n, ls
ľ	ĺ						6			l .	0.279		211, 18
			9049.47	99663	110711	6	6	0.0180	0.0222	3.96	-0.876	B	2n, ls
28	$2p^23s - 2p^2(^3P)4p$	⁴ P - ⁴ D° (4)	4256.3	83337	106825	12	20	0.020	0.0089	1.5	-0.97	E	6
	-p (1) ip	(1)	4253.28	83366	106871	6	8	0.020	0.0071	0.60	-1.37	E	1.
			4254.7	83319	106816	4	6	0.014	0.0057	0.32	-1.64	Ë	ls
			4254.7		106780	l		0.0079	0.0037	0.32	-2.07	1 – 1	ls
				83286		2	4					E	ls .
- 1			[4263.2]	83366	106816	6	6	0.0061	0.0017	0.14	-2.00	E	ls
- 1	İ		[4261.2]	83319	106780	4	4	0.010	0.0029	0.16	-1.94	E	ls
1			[4258.7]	83286	106761	2	2	0.016	0.0043	0.12	-2.07	<u>E</u>	ls
- 1			[4269.8]	83366	106780	6	4	9.8×10 ⁻⁴	1.8×10^{-4}	0.015	-2.97	E	ls
			[4264.7]	83319	106761	4	2	0.0033	4.5×10^{-4}	0.025	-2.75	E	ls
29		4P – 4P°	4222.0	83337	107016	12	12	0.073	0.020	3.3	-0.63	D	3n
	}	(5)	4000.04	00066	107020	_	_	0.051	0.014	1.1	-1.09	D	1.
			4223.04	83366	107039	6	6					D	ls
			4222.12	83319	106998	4	4	0.0098	0.0026	0.15	-1.98		ls
	1		4218.87	83286	106983	2	2	0.012	0.0033	0.091	-2.18	D	ls
1	Ì		4230.35	83366	106998	6	4		0.0059	0.49	-1.45	D	ls
			4224.74	83319	106983	4	2		0.0082	0.45	-1.49	D	ls
			4214.73	83319	107039	4	6	0.022	0.0088	0.49	-1.45	D	ls
			4215.92	83286	106998	2	4	0.031	0.016	0.45	-1.49	D	ls
30	į	4P – 4S°	4146.3	83337	107447	12	4	0.025	0.0021	0.35	-1.59	D	3n
		(6)					,	0.016	0.0000	0.10	_ 1 07	$ _{\mathbf{D}} $	9 1
			4151.46	83366	107447	6	4	***	0.0023	0.19	-1.87	D	3n, ls
			4143.42	83319	107447	4	4		0.0020	0.11	-2.09	D	3n, ls
	1		4137.63	83286	107447	2	4	0.0039	0.0020	0.055	-2.40	D	3n, ls
'	•												

N I. Allowed Transitions-Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	$A_{ki}(10^8 { m \ sec^{-1}})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
31		² P- ² S°	4928.2	86193	106479	6	2	0.0234	0.00285	0.277	-1.768	В	$\begin{bmatrix} 2,4 \end{bmatrix}$
		(9)	4935.03 4914.90	86221 86138	106479 106479	4 2	$\begin{vmatrix} 2\\2 \end{vmatrix}$	0.0158 0.00759	0.00289 0.00275	0.188 0.0889	-1.937 -2.260	B B	4n, ls 4n, ls
32	$\begin{vmatrix} 2p^2(^3P)3p - \\ 2p^2(^3P)3p - \end{vmatrix}$	²P°−2S	5408.4	97794	116279	6	2	0.0111	0.00162	0.173	-2.013	С	2
	$2p^{2(1S)}3s''$		5411.88 5401.45	97806 97770	116279 116279	4 2	2 2	0.0075 0.00369	0.00164 0.00161	0.117 0.057	$ \begin{array}{r} -2.183 \\ -2.491 \end{array} $	C C	2, <i>ls</i> 2, <i>ls</i>
33	$2p^23p - 2p^2(^3P)3d$	² S°- ² P (15)	9050.4	93582	104628	2	6	0.256	0.945	56.3	0.276	В	2, 6, ca
	2p-(-1)3u	(13)	9060.72 9028.92	93582 93582	104615 104655	2 2	4 2	0.257 0.255	0.634 0.311	37.8 18.5	$0.103 \\ -0.206$	B B	2n, ls 2n, ls
34		⁴ D° — ⁴ F (18)	10117	94839	104721	20	28	0.373	0.802	534	1.205	В	2, 6, ca
		(10)	10114.6 10112.5 10108.9 10105.1 10164.8 10147.3 10128.3 10200.0 10166.8	94883 94832 94795 94772 94883 94832 94795 94883 94832	104767 104718 104684 104665 104718 104684 104665 104684 104665	8 6 4 2 8 6 4 8 6	10 8 6 4 8 6 4 6 4	0.374 0.321 0.281 0.262 0.0523 0.0898 0.104 0.00353 0.00737	0.717 0.656 0.646 0.803 0.0811 0.139 0.160 0.00413 0.00762	191 131 86.0 53.4 21.7 27.8 21.4 1.11 1.53	0.759 0.595 0.412 0.206 -0.188 -0.080 -0.193 -1.481 -1.340	B B B B B B	ls ls ls ls ls ls
35		⁴ D°−⁴D (19)	9829.2	94839	105010	20	20	0.0992	0.144	93.0	0.458	В	2, 6, ca
			9863.33 9822.75 9798.57 9788.30 9872.16 9834.62 9810.02 9814.03 9786.79 9776.90	94883 94832 94795 94772 94883 94832 94795 94832 94795 94772	105020 105011 104998 104987 105011 104998 104987 105020 105011 104998	8 6 4 2 8 6 4 6 4 2	8 6 4 2 6 4 2 8 6 4	0.0144	0.147 0.0783 0.0498 0.0445 0.0243 0.0445 0.0300 0.0227 0.0311 0.0506	38.1 15.2 6.42 2.87 6.33 8.65 3.87 4.41 4.01 3.26	0.069 -0.328 -0.701 -1.050 -0.711 -0.573 -0.921 -0.865 -0.905 -0.995	B B B B B B B B B B B B B B B B B B B	2n, ls 2n 2n 2n, ls 2n, ls 2n, ls 2n, ls 2n, ls 2n, ls 2n, ls 2n, ls
36		⁴ P°− ⁴ F	10884.6 10879.2	95533 95495	104718 104684	6	8		0.00335 0.00426	0.72 0.61	-1.70 -1.77	CCC	2 2
37		⁴ P°− ² F								0,01	1		2
			10693.2 10730.5 10775.0	95533 95495 95533	104883 104811 104811	6 4 6	8 6 6	0.0170	0.0092 0.0440 0.0073	$ \begin{array}{c c} 1.94 \\ 6.2 \\ 1.56 \end{array} $	$ \begin{array}{r r} -1.259 \\ -0.75 \\ -1.357 \end{array} $	CCC	2 2 2
38		4P°-4P	10708	95511	104847	12	12	0.126	0.216	91.5	0.414		2, 6, ca
			10757.9 [10675] 10623.2 10718.0 10644.0 10713.6 10653.0	95533 95495 95477 95533 95495 95495 95477	104825 104860 104886 104860 104886 104825 104860	6 4 2 6 4 4 2	6 4 2 4 2 6 4	0.0169 0.0215 0.0564 0.107 0.0376	0.151 0.0289 0.0363 0.0647 0.0906 0.0971 0.181	32.0 4.06 2.54 13.7 12.7 13.7 12.7	$\begin{array}{c} -0.044 \\ -0.937 \\ -1.139 \\ -0.411 \\ -0.411 \\ -0.411 \\ -0.441 \end{array}$	B B B B B	ls ls ls ls ls
39		⁴ P° – ⁴ D (28)	10525	95511	105010	12	20	0.248	0.688	286	0.917	В	2, 6, ca
			10539.6 10507.0 10500.3 10549.6	95533 95495 95477 95533	105020 105011 104998 105011	6 4 2 6	6 4	0.132 0.0652	0.538 0.327 0.216 0.210	112 45.2 14.9 43.8	$\begin{array}{c} 0.509 \\ 0.116 \\ -0.366 \\ 0.101 \end{array}$	B B B	2n, ls $2n$ $2n$ $2n$ $2n$

NI. Allowed Transitions - Continued

		T		- Town	T	г —	ī		т	·			
No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	g_k	$A_{ki}(10^8~{ m sec^{-1}})$	fik	S(at.u.)	log gf	Accu- racy	Source
39	(con.)		10520.6 10513.4 10563.3 10533.8	95495 95477 95533 95495	104998 104987 104998 104987	4 2 6 4	4 2 4 2	0.162 0.174 0.0369 0.0405	0.269 0.289 0.0411 0.0337	37.2 20.0 8.58 4.67	$\begin{array}{r} 0.031 \\ -0.238 \\ -0.608 \\ -0.871 \end{array}$	B B B	2n 2n 2n 2n, ls
40		⁴ S° – ⁴ P (34)	12350	96752	104847	4	12	0.124	0.85	138	0.53	c	6, ca
			[12384] [12330] [12291]	96752 96752 96752	104825 104860 104886		6 4 2	0.123 0.124 0.125	0.423 0.283 0.142	69 46.0 23.0	$0.229 \\ 0.054 \\ -0.245$	CCC	ls ls ls
41		$^{2}D^{\circ} - {}^{2}F$ (36)	12469	96834	104852	10	14	0.216	0.71	290	0.85	С	6, ca
			12467.8 12461.2 12582.3	96864 96788 96864	104883 104811 104811	6 4 6	8 6 6	0.217 0.202 0.0141	0.67 0.71 0.0334	166 116 8.3	$\begin{array}{ c c c } 0.61 \\ 0.451 \\ -0.70 \end{array}$	C C C	ls ls ls
42		² D° - ² D (37)	12043	96834	105135	10	10	0.060	0.130	52	0.114	С	6, ca
	i		12074.1 11997.9 12107.4 [11964]	96864 96788 96864 96788	105144 105121 105121 105144	6 4 6 4	6 4 4 6	0.055 0.054 0.0059 0.00406	0.121 0.117 0.0086 0.0131	28.8 18.5 2.06 2.06	$\begin{array}{c c} -0.140 \\ -0.329 \\ -1.287 \\ -1.282 \end{array}$	C C C C	ls ls ls
43	$2p^{2(3}P)3p - 2p^{2(1}D)3d'$	² P°- ² S	4389.1	97794	120572	6	2	0.0153	0.00148	0.128	-2.053	С	2
	- F (=)		[4391.3] [4384.4]	97806 97770	120572 120572	4 2	2 2	0.0102 0.0052	0.00147 0.00151	0.085 0.0435	$ \begin{array}{r r} -2.231 \\ -2.52 \end{array} $	C	2, <i>ls</i> 2, <i>ls</i>
44	$2p^23p' - 2p^2(^1D)3d'$	2F°−2G	10595	110713	120149	14	18	0.338	0.731	357	1.010	В	2, 6, ca
	2p (D)3a		10597.0 10591.9 [10596]	110715 110711 110715	120149 120150 120150	8 6 8	10 8 8	0.337 0.326 0.0121	0.709 0.731 0.0204	198 153 5.68	0.754 0.642 -0.788	B B B	ls ls ls
45	$2p^23p - 2p^2(^3P)4s$	⁴ D° – ⁴ P (17)	11290	94839	103694	20	12	0.147	0.168	125	0.527	C+	2, 6, ca
	2p (1)+3	(11)	11291.7 11313.9 11323.2 11227.1 11266.2 11294.2 11180.1 11237.6	94883 94832 94795 94832 94795 94772 94795 94772	103737 103668 103618 103737 103668 103737 103668	8 6 4 6 4 2 4 2	6 4 2 6 4 2 6 4	0.117 0.0920 0.0726 0.0270 0.475 0.0731 0.00302 0.00746	0.168 0.118 0.0697 0.0510 0.0903 0.140 0.00849 0.0282	50.0 26.3 10.4 11.3 13.4 10.4 1.25 2.09	$\begin{array}{c} 0.129 \\ -0.151 \\ -0.554 \\ -0.515 \\ -0.442 \\ -0.553 \\ -1.469 \\ -1.248 \end{array}$	C+ C+ C+ C+ C+ C+	ls ls ls ls ls ls
46		⁴ P° – ⁴ P (27)	12217	95511	103694	12	12	0.076	0.171	83	0.312	С	6, ca
		(=-/	12186.9 12232.9 [12280] 12288.0 [12307] 12128.6 12203.4	95533 95495 95477 95533 95495 95495 95477	103737 103668 103618 103668 103618 103737 103668	6 4 2 6 4 4 2	6 4 2 4 2 6 4	0.054 0.0101 0.0125 0.0336 0.062 0.0233 0.0318	0.119 0.0226 0.0282 0.051 0.070 0.077 0.142	28.7 3.64 2.28 12.3 11.4 12.3 11.4	$\begin{array}{c} -0.146 \\ -1.044 \\ -1.249 \\ -0.52 \\ -0.55 \\ -0.51 \\ -0.55 \end{array}$	C C C C C C	ls ls ls ls ls
47	$2p^23p - 2p^2(^3P)5s$	⁴ D° – ⁴ P	6644.0	94839	109886	20	12	0.0389	0.0154	6.8	-0.51	С	6, <i>ca</i>
	2ρ-(°F)38	(20)	6644.96 6653.46 6656.51 6622.54 6636.94 6646.51 [6606.3]	94883 94832 94795 94832 94795 94772 94795 94772	109928 109858 109814 109928 109858 109814 109928 109858	8 6 4 6 4 2 4	6 4 2 6 4 2 6 4	0.0071 0.0125 0.0194 7.9×10^{-4}	$\begin{array}{c} 0.0154 \\ 0.0108 \\ 0.0064 \\ 0.00465 \\ 0.0083 \\ 0.0128 \\ 7.8 \times 10^{-4} \\ 0.00259 \end{array}$	2.70 1.42 0.56 0.61 0.72 0.56 0.068 0.113	$\begin{array}{c} -0.91 \\ -1.188 \\ -1.59 \\ -1.55 \\ -1.481 \\ -1.59 \\ -2.51 \\ -2.286 \end{array}$	C C C C C C C C	ls ls ls ls ls ls

NI. Allowed Transitions—Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	g_k	$A_{ki}(10^8~{ m sec^{-1}})$	fik	S(at.u.)	log gf	Accu- racy	Source
48		⁴ P° – ⁴ P (29)	6954.6	95511	109886	12	12	0.0212	0.0154	4.22	-0.73	C	6, ca
			6945.22 [6960.4] [6973.0] 6979.10	95533 95495 95477 95533	109928 109858 109814 109858	6 4 2 6	6 4 2 4	0.0149 0.00281 0.00350 0.0094	0.0108 0.00204 0.00255 0.00459	1.48 0.187 0.117 0.63	$ \begin{array}{r} -1.189 \\ -2.088 \\ -2.293 \\ -1.56 \end{array} $	CCCC	ls ls ls ls
			[6981.8] 6926.90 [6951.7]	95495 95495 95477	109814 109928 109858	4 4 2	2 6 4	0.0174 0.0064 0.0088	0.0064 0.0069 0.0128	0.59 0.63 0.59	$ \begin{array}{r} -1.59 \\ -1.56 \\ -1.59 \end{array} $	C C C	ls ls ls
49	$2p^23p - 2p^2(^3P)5d$	2S°-2P	5200.5	93582	112806	2	6	0.023	0.028	0.96	-1.25	D D	3n ls
			[5201.8] [5197.8]	93582 93582	112801 112816	$\frac{2}{2}$	4 2	0.023 0.023	0.019 0.0094	$0.64 \\ 0.32$	$\begin{bmatrix} -1.43 \\ -1.73 \end{bmatrix}$	D	ls
50	$2p^23p - 2p^2(^3P)6s$	⁴ P° – ⁴ P (32)	5836.4	95511	112640	12	12	0.0092	0.00468	1.08	-1.250	С	6, <i>ca</i>
			5829.53 5841.01 [5850.1] 5854.16	95533 95495 95477 95511	112683 112611 112566 112611	6 4 2 6	6 4 2 4	0.0064 0.00122 0.00152 0.00409	0.00328 6.2×10^{-4} 7.8×10^{-4} 0.00140	0.378 0.0480 0.0300 0.162	$ \begin{array}{r} -1.71 \\ -2.60 \\ -2.81 \\ -2.075 \end{array} $	0000	ls ls ls
			[5856.3] 5816.48 [5834.7]	95495 95495 95477	112566 112683 112611	4 4 2	2 6 4	0.0076 0.00278 0.00383	0.00195 0.00212 0.00390	$0.150 \\ 0.162 \\ 0.150$	$ \begin{array}{r r} -2.109 \\ -2.073 \\ -2.107 \end{array} $	C C C	ls ls ls

For this ion we have performed the numerical calculations by utilizing Ufford and Gilmour's [1] values for the parameters ζ and η and empirical term intervals, and by employing the general expressions of Shortley, Aller, Baker, and Menzel [2] for the line strengths in the p^3 configuration (see also general introduction). For the electric quadrupole lines we have employed Garstang's [3] estimate of the quadrupole integral s_q . For the ${}^2D^{\circ}-{}^2D^{\circ}$ transition a difference between the transition probability quoted by Garstang [4] and the tabulated value will be noticed. This is due to a revised experimental value for the term interval as given by Bowen [5].

References

- [1] Ufford, C. W., and Gilmour, R. M., Astrophys. J. 111, 580-581 (1950).
- [2] Shortley, G. H., Aller, L. H., Baker, J. G., and Menzel, D. H., Astrophys. J. 93, 178-184 (1941).
- [3] Garstang, R. H., Astrophys. J. 115, 506-508 (1952).
- [4] Garstang, R. H., "The Airglow and the Aurora," p. 324 (ed. Armstrong and Dalgarno, Pergamon Press, New York, 1956).
- [5] Bowen, I. S., Astrophys. J. 121, 306 (1955).

N I. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	Type of Transition		S(at.u.)	Accu- racy	Source
1	$2p^3 - 2p^3$	⁴ S°- ² D° (1 F)	5200.7 5200.7 5198.5 5198.5	0 0 0 0	19223.9 19223.9 19233.1 19233.1	4 4 4 4	6 6 4 4	m	7.4×10^{-7} 6.2×10^{-6} 1.23×10^{-5} 4.0×10^{-6}	2.32×10 ⁻⁸ 8.4×10 ⁻⁵ 2.55×10 ⁻⁷ 3.6×10 ⁻⁵	C D C D	1 1, 2 1 1, 2
2		⁴ S° - ² P° (2 F)	3466.4 3466.4 3466.4 3466.4	0 0 0	28840 28840 28840 28840	4 4 4 4	4 4 2 2	e	0.0062 3.4×10 ⁻⁸ 0.00247 1.1×10 ⁻⁷	$ \begin{vmatrix} 3.82 \times 10^{-5} \\ 4.1 \times 10^{-8} \\ 7.6 \times 10^{-6} \\ 6.4 \times 10^{-8} \end{vmatrix} $	C D C D	1 1, 2 1 1, 2

NI. Forbidden Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gı	gk	Type of Transi- tion	$A_{ki}({ m sec}^{-1})$	S(at.u.)	Accu- racy	Source
3		² D°−2D°	$[10.9 imes 10^6] \ [10.9 imes 10^6]$	19223.9 19223.9	19233.1 19233.1	6	4 4	m e	$\begin{vmatrix} 1.25 \times 10^{-8} \\ 2.4 \times 10^{-22} \end{vmatrix}$	$2.40 \\ 8.9 \times 10^{-5}$	B D	1 1, 2
4		² D°- ² P° (3 F)										
		(/	10395.4 10395.4 10395.4 10404.1 10404.1 10404.1 10404.1	19223.9 19223.9 19223.9 19233.1 19233.1 19233.1 19233.1	28840 28840 28840 28840 28840 28840 28840	6 6 6 4 4 4 4	4 4 2 4 4 2 2	m e e m e m e	$\begin{array}{c} 9.3\times10^{-4}\\ 0.054\\ 0.0308\\ 0.00165\\ 0.0230\\ 0.00103\\ 0.0460 \end{array}$	$\begin{array}{c} 1.55 \times 10^{-4} \\ 15.6 \\ 4.45 \\ 2.75 \times 10^{-4} \\ 6.7 \\ 8.6 \times 10^{-5} \\ 6.7 \end{array}$	C C C C C C	1 1, 2 1, 2 1 1, 2 1 1, 2

N_{II}

Ground State

 $1s^2 2s^2 2p^2 {}^3P_0$

Ionization Potential

 $29.593 \text{ eV} = 238751.1 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
529.343	10	745.836	6	2493.94	47
529.405	l io l	746.976	8	2496.88	47
529.481	10	775.957	4 [2520.27	46
529.627	10	915.603	2	2520.85	46
529.713	10	915.955	2	2522.27	46
529.860	10	916.004	2	2522.46	46
533.504	9	916.700	2	2524.49	46
533.51	9	1083.98	1	2526.17	46
533.577	9	1084.57	1	2709.82	49
533.644	9	1085.5	1 1	2799.20	48
F22 7 26	9	1085.54	1 1	3006.86	38
533.726	9 9	1085.70	1	3023.80	50
533.809 572.07	13	1886.82	24	3311.4	39
574.650	12	2206.10	44	3318.14	39
574.050 582.150		2316.46	45	3324.58	39
	14	2316.65	45	3328.79	39
635.180	14	2317.01	45	3330.30	39
644.621	3 3 3	2317.01	45	3331.32	39
644.825	3	2319.94	45	3437.16	20
645.167	3	2321.05	45	3593.60	40
660.280	5	2325.10	40	3373.00	
671.014	7	2461.30	51	3609.09	40
671.391	7	2488.12	47	3615.88	40
	7	2488.75	47	3829.80	41
671.629 671.770	7	2490.37	47	3838.39	41
671.770 671.999	1 7 1	2493.16	47	3842.20	41

List of tabulated lines—Continued

0			T	9 -	
Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
3847.38 3855.08 3856.07 3919.01 3995.00	41 41 41 26 19	5012.03 5016.39 5023.11 5025.67 5040.76	22 27 22 22 27 27 27	5941.67 5952.39 5954.28 5960.93 6114.6	31 31 60 31 52
4026.08 4040.9 4124.08 4133.67 4145.76	62 61 23 23 23 23	5045.10 5104.45 5168.24 5170.08 5171.30	16 43 37 37 37	6136.89 6150.76 6167.82 6170.16 6173.40	52 52 52 52 52 52
4176.16 4227.75 4239.4 4417.9 4427.97	63 42 64 65 65	5171.46 5172.32 5173.37 5174.46 5175.89	37 35 35 37 37	6242.52 6284.30 6318.80 6328.39 6340.57	59 34 55 55 55
4431.82 4432.74 4433.48 4441.99 4447.03	65 65 65 65 25	5176.56 5177.06 5179.50 5179.50 5180.34	37 35 35 37 37 35	6346.86 6356.55 6357.57 6482.07 6491.79	55 55 55 18 54
4459.96 4465.54 4475.8 4477.74 4488.15	29 29 29 29 29 29	5183.21 5184.96 5186.17 5190.42 5191.97	37 35 37 35 35 35	6504.61 6522.39 6532.55 6544.16 6545.53	54 54 54 54 54
4507.56 4530.40 4552.54 4601.48 4607.16	29 67 66 17 17	5199.50 5313.43 5320.96 5327.45 5338.66	35 36 36 36 36	6554.47 6610.58 6629.80 6809.99 6834.09	54 33 53 58 58
4613.87 4621.39 4630.54 4643.09 4677.93	17 17 17 17 17 68	5340.20 5351.21 5452.12 5454.26 5462.62	36 36 32 32 32 32	6847.24 6941.75 6966.81 6975.64 7003.0	58 57 57 57 57
4774.22 4779.71 4781.17 4788.13 4793.66	28 28 28 28 28	5478.13 5480.10 5495.70 5526.26 5530.27	32 32 32 21 21	7013.98 7014.73 7138.87 7188.20 7214.6	57 57 56 56 56
4803.27 4810.29 4987.38 4991.22 4994.36	28 28 30 22 22	5535.39 5540.16 5543.49 5551.95 5552.54	21 21 21 21 21 21	7215.06 7241.8 7256.53	56 56 56
4994.36 4997.23 5001.13 5001.47 5002.69	30 22 27 27 27 16	5565.30 5666.64 5676.02 5679.56 5686.21	21 15 15 15 15		
5005.14 5005.14 5007.32 5010.62 5011.24	22 27 30 16 22	5710.76 5730.67 5927.82 5931.79 5940.25	15 15 31 31 31		

Data for the vacuum ultraviolet region of the spectrum are available from calculations of Bolotin et al. [1] and Kelly [2]. Bolotin et al. employ a "double configuration" approximation, i.e., they include to a first approximation the effects of configuration interaction which are expected to be drastic for these transitions. Kelly's calculations, in which these effects are neglected, are only used for some vacuum uv transitions for which configuration interaction is expected to be less pronounced. Nevertheless, his results may be quite uncertain. For higher excited lines, mainly in the visible, experimental work with a high current stabilized arc by Mastrup and Wiese [3] compares very well with approximate self-consistent field calculations by Kelly [4] and the Coulomb approximation. All these methods have been equally weighted in arriving at averaged values. However, the Coulomb approximation shows strong cancellation effects for 3s-4p and 3p-4d transitions and is not used there. Kelly's calculations, which seem to be less affected as judged from his fairly high ratios between the positive and negative contributions to the transition integrals, are exclusively used in these cases. For some multiplets with high azimuthal quantum numbers in the 3d-4f array (D-F and F-G) only multiplet values and no line values are listed, since intensity measurements by Eriksson [5] indicate considerable deviations from LS coupling and a transition to pair coupling.

- [1] Bolotin, A. B., Levinson, I. B., and Levin, L. I., Soviet Phys. JETP 2, 391-395 (1956).
- [2] Kelly, P. S., Astrophys. J. 140, 1247-1268 (1964).
- [3] Mastrup, F., and Wiese, W., Z. Astrophys. 44, 259-279 (1958).
- [4] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964).
- [5] Eriksson, K. B. S., Arkiv Fysik 13, 303-329 (1958).

NII. Allowed Transitions

	i — — ·											r	
No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g_k	$A_{ki}(10^8~{ m sec^{-1}})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p^2-2s2p^3$	³ P - ³ D° (luv)	1085.1	89.3	92245	9	15	5.7	0.17	5.4	0.18	E	1
			1085.70 1084.57 1083.98 1085.54 1084.57 [1085.5]	131.3 49.1 0.0 131.3 49.1 131.3	92238 92251 92253 92251 92253 92253	5 3 1 5 3 5	7 5 3 5 3 3	5.7 4.3 3.2 1.4 2.4 0.16	0.14 0.13 0.17 0.025 0.042 0.0017	2.5 1.4 0.60 0.45 0.45 0.030	$\begin{array}{c c} -0.15 \\ -0.42 \\ -0.77 \\ -0.90 \\ -0.90 \\ -2.07 \end{array}$	E E E E E	ls ls ls ls ls
2		³ P - ³ P° (2uv)	916.34	89.3	109219	9	9	18	0.22	6.0	0.30	E	1
į			916.700 916.004 916.700 915.955 916.004 915.603	131.3 49.1 131.3 49.1 49.1 0.0	109218 109218 109218 109225 109218 109218	5 3 5 3 1	5 3 1 5 3	13 4.4 7.3 18 4.4 5.9	0.17 0.055 0.055 0.074 0.093 0.22	2.5 0.50 0.84 0.67 0.84 0.67	-0.08 -0.78 -0.56 -0.65 -0.56 -0.65	E E E E E	ls ls ls ls ls
3		³ P - ³ S° (4uv)	644.99	89.3	155130	9	3	110	0.23	4.4	0.32	E	1
			645.167 644.825 644.621	131.3 49.1 0.0	155130 155130 155130	5 3 1	3 3 3	62 37 12	0.23 0.23 0.23	2.4 1.5 0.49	0.06 -0.16 -0.64	E E E	ls ls ls
4		¹ D - ¹ D° (7uv)	775.957	15316	144189	5	5	49	0.45	5.7	0.35	Е	1
5		¹ D — ¹ P° (9uv)	660.280	15316	166766	5	3	77	0.30	3.3	0.18	E	1
6		¹ S - ¹ P° (12uv)	745.836	32687	166766	1	3	16	0.40	0.98	-0.40	E	1

N II. Allowed Transitions - Continued

No.	. Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	g_k	$A_{ki}(10^8 { m sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
7	2p² — 2p(²P°)3s	3P - 3P° (3uv)	671.48	89.3	149013	9	9	13	0.089	1.8	-0.10	E	2
			671.391 671.629 671.999 671.770 671.014 671.391	131.3 49.1 131.3 49.1 49.1 0.0	149077 148941 148941 148909 149077 148941	5 3 5 3 1	5 3 3 1 5 3	9.9 3.3 5.5 13 3.3 4.4	0.067 0.022 0.022 0.030 0.037 0.89	0.74 0.15 0.25 0.20 0.25 0.20	-0.48 -1.18 -0.95 -1.05 -0.95 -1.05	E E E E	ls ls ls ls ls
8		¹ D - ¹ P° (8uv)	746.976	15316	149189	5	3	20	0.10	1.2	-0.30	E	2
9	2p² — 2p(²P°)3d	³ P - ³ D° (5uv)	533.67	89.3	187472	9	15	36	0.26	4.1	0.37	D-	2
			533.726 533.577 533.504 533.809 533.644 [533.51]	131.3 49.1 0.0 131.3 49.1 0.0	187493 187462 187438 187462 187438 187438	5 3 1 5 3 5	7 5 3 5 3 3	36 27 20 9.1 15	0.22 0.19 0.26 0.039 0.065 0.0026	1.9 1.0 0.45 0.34 0.34 0.023	0.04 -0.23 -0.59 -0.71 -0.71 -1.89	D- D- D- D- D- D-	ls ls ls ls ls
10		3P - 3P° (6uv)	529.68	89.3	188884	9	9	20	0.082	1.3	-0.13	D-	2
			529.860 529.481 529.713 529.405 529.627 529.343	131.3 49.1 131.3 49.1 49.1 0.0	188858 188910 188910 188938 188858 188858	5 3 5 3 1	5 3 1 5 3	15 4.9 8.1 20 4.9 6.5	0.062 0.020 0.021 0.027 0.034 0.082	0.54 0.11 0.18 0.14 0.18 0.14	-0.51 -1.21 -0.99 -1.09 -0.99 -1.09	D- D- D- D- D- D-	ls ls ls ls ls
11		¹ D - ¹ D° (10uv)	582.150	15316	187092	5	5	13	0.064	0.61	-0.50	D-	2
12		¹D - ¹F° (11uv)	574.650	15316	189336	5	7	35	0.24	2.3	0.08	D-	2
13		$^{1}D-^{1}P^{\circ}$	[572.07]	15316	190121	5	3	0.97	0.0029	0.0270	-1.84	D-	2
14		¹ S - ¹ P° (13uv)	635.180	32687	190121	1	3	18	0.32	0.68	-0.49	D-	2
15	$2p3s - 2p(^2P^\circ)3p$	³ P°- ³ D	5679.4	149013	166616	9	15	0.56	0.452	76	0.61	С	3, 4, ca
-			5679.56 5666.64 5676.02 5710.76 5686.21 5730.67	149077 148941 148909 149077 148941 149077	166679 166583 166522 166583 166522 166522	5 3 1 5 3 5	7 5 3 5 3 3	0.423 0.310 0.137 0.231	0.380 0.339 0.450 0.067 0.112 0.00448	35.5 19.0 8.4 6.3 6.3 0.423	0.278 0.008 -0.347 -0.475 -0.473 -1.65	C C C C C C	ls ls ls ls ls
16		³ P°- ³ S	5028.8	149013	168893	9	3	0.76	0.097	14.4	-0.061	c	3, 4, ca
			5045.10 5010.62 5002.69	149077 148941 148909	168893 168893 168893	5 3 1	3 3 3	0.268	0.094 0.101 0.095	7.8 5.0 1.57	$ \begin{array}{r} -0.328 \\ -0.52 \\ -1.021 \end{array} $	C C C	3n $3n$ $3n$
17		³ P°- ³ P (5)	4623.2	149013	170637	9	9	1.05	0.337	46.1	0.481	C	3, 4, <i>ca</i>
			4630.54 4613.87 4643.09 4621.39 4601.48 4607.16	149077 148941 149077 148941 148941 148909	170667 170609 170609 170573 170667 170609	5 3 5 3 1	5 3 1 5 3	0.196 0.466 0.90 0.270	0.269 0.063 0.090 0.096 0.143 0.325	20.5 2.85 6.9 4.37 6.5 4.93	$0.129 \\ -0.73 \\ -0.345 \\ -0.54 \\ -0.368 \\ -0.488$	CCCCC	3n 3n 3n 3n 3n

N II. Allowed Transitions—Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g_k	$A_{ki}(10^8 { m \ sec^{-1}})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
18		¹ P° – ¹ P (8)	6482.07	149189	164612	3	3	0.365	0.230	14.7	-0.162	С	4, ca
19		¹ P° - ¹ D (12)	3995.00	149189	174213	3	5	1.58	0.63	24.8	0.276	С	4, ca
20		¹ P°- ¹ S (13)	3437.16	149189	178274	3	1	2.40	0.142	4.82	-0.371	С	4, ca
21	$\begin{vmatrix} 2s2p^23s - \\ 2s2p^2(^4P)3p \end{vmatrix}$	⁵ P — ⁵ D° (63)	5537.4	205677	223731	15	25	0.56	0.432	118	0.81	С	ca
	232p (1)3p	(00)	5535.39 5530.27 5526.26 5551.95 5543.49 5535.39 5565.30 5552.54 5540.16	205726 205656 205600 205726 205656 205600 205726 205656 205600	223787 223733 223690 223733 223690 223660 223660 223645	7 5 3 7 5 3 7 5 3 7 5 3	9 7 5 7 5 3 5 3	0.56 0.377 0.198 0.187 0.327 0.422 0.0370 0.140 0.56	0.334 0.242 0.151 0.086 0.151 0.194 0.0123 0.0387 0.086	42.6 22.0 8.3 11.0 13.8 10.6 1.57 3.54 4.71	0.368 0.083 -0.343 -0.219 -0.123 -0.235 -1.066 -0.71 -0.59	000000000	ls ls ls ls ls ls ls ls ls
22		⁵ P - ⁵ P° (64)	5006.9	205677	225644	15	15	0.77	0.291	72	0.64	С	ca
			5012.03 5005.14 4997.23 5023.11 5011.24 4994.36 4991.22	205726 205656 205600 205726 205656 205656 205600	225673 225629 225605 225629 225605 225673 225629	7 5 3 7 5 5 3	7 5 3 5 3 7 5	0.51 0.064 0.194 0.358 0.58 0.260 0.351	0.194 0.0242 0.073 0.097 0.131 0.136 0.218	22.4 2.00 3.59 11.2 10.8 11.2 10.8	0.132 -0.92 -0.66 -0.170 -0.185 -0.170 -0.184	000000	ls ls ls ls ls ls ls
23		⁵ P - ⁵ S° (65)	4137.4	205677	229840	15	5	1.37	0.117	24.0	0.244	С	ca
			4145.76 4133.67 4124.08	205726 205656 205600	229840 229840 229840	7 5 3	5 5 5	0.64 0.458 0.276	0.117 0.117 0.117	11.2 8.0 4.78	$ \begin{array}{r} -0.087 \\ -0.232 \\ -0.453 \end{array} $	C C C	ls ls ls
24	$2p3s - 2p(^2P^\circ)4p$	¹ P° – ¹ P (14uv)	1886.82	149189	202170	3	3	0.52	0.028	0.52	-1.08	D	4
25	$\begin{array}{c} 2p3p - \\ 2p(^2\mathbf{P}^{\circ})3d \end{array}$	¹ P — ¹ D° (15)	4447.03	164612	187092	3	5	1.30	0.642	28.2	0.285	C+	3, 4, ca
26		¹ P – ¹ P ° (17)	3919.01	164612	190121	3	3	1.00	0.231	8.93	-0.160	C+	3, 4, ca
27		³ D − ³ F° (19)	5004.5	166616	186593	15	21	1.22	0.639	158	0.982		3, 4, ca
		(25)	5005.14 5001.47 5001.13 5025.67 5016.39 5040.76	166679 166583 166522 166679 166583 166679	186653 186572 186512 186572 186512 186512	7 5 3 7 5 7	9 7 5 7 5 5	1.22 1.08 1.02 0.134 0.188 0.00525	0.588 0.568 0.640 0.0506 0.0710 0.00143	67.8 46.8 31.6 5.86 5.86 0.166	$\begin{array}{c} 0.614 \\ 0.454 \\ 0.283 \\ -0.451 \\ -0.450 \\ -1.999 \end{array}$	C + C + C + C + C + C + C + C + C + C +	ls ls ls ls ls
28		$^{3}D - ^{3}D^{\circ}$ (20)	4793.5	166616	187472	15	15	0.356	0.123	29.0	0.264	l	3, 4, ca
		(20)	4803.27 4788.13 4779.71 4810.29 4793.66 4781.17 4774.22	166679 166583 166522 166679 166583 166583	187493 187462 187438 187462 187438 187493 187462	7 5 3 7 5 5 3	7 5 3 5 3 7 5	0.313 0.248 0.269 0.0550 0.0889 0.0400 0.0540	0.108 0.0854 0.0921 0.0136 0.0184 0.0192 0.0308	12.0 6.73 4.35 1.51 1.45 1.51	$\begin{array}{c} -0.120 \\ -0.370 \\ -0.558 \\ -1.021 \\ -1.037 \\ -1.018 \\ -1.035 \end{array}$	C+ C+ C+ C+	ls ls ls ls ls ls

N II. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(10^8~{ m sec^{-1}})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
29		³ D - ³ P°	4489.4	166616	188884	15	9	0.0460	0.0083	1.85	-0.90	С	4, ca
		(21)	4507.56	166679	188858	7	5	0.0381	0.0083	0.86	-1.237	С	ls
			4477.74	166583	188910	5	$\begin{bmatrix} 3 \end{bmatrix}$	0.0348	0.0063	0.463	-1.50	č	ls
			4459.96	166522	188938	3	ĺ	0.0468	0.00465	0.205	-1.86	Č	ls
	1		4488.15	166583	188858	5	5	0.0069	0.00208	0.154	-1.98	C	ls
			4465.54	166522	188910	3	3	0.0117	0.00349	0.154	-1.98	l C	ls
	}	1	[4475.8]	166522	188858	3	5	4.65×10^{-4}	2.33×10^{-4}	0.0103	-3.156	С	ls
30		$^{3}S - ^{3}P^{\circ}$ (24)	5000.8	168893	188884	3	9	0.75	0.84	41.4	0.401	C	3, 4, ca
		` ′	5007.32	168893	188858	3	5	0.77	0.483	23.9	0.161	C	3n
			4994.36	168893	188910	3	3	0.74	0.276	13.6	-0.082	C	3n
		1	4987.38	168893	188938	3	1	0.63	0.078	3.83	-0.63	C	3n
31		³ P - ³ D° (28)	5938.5	170637	187472	9	15	0.565	0.498	87.6	0.651	C+	3, 4, ca
		(20)	5941.67	170667	187493	5	7	0.564	0.418	40.9	0.320	C+	ls
		i i	5931.79	170609	187462	3	5	0.425	0.374	21.9	0.050	C+	ls
			5927.82	170573	187438	1	3	0.315	0.498	9.72	-0.303	Č+	ls
			5952.39	170667	187462	5	5	0.140	0.0745	7.30	-0.429	Č+	ls
			5940.25	170609	187438	3	3	0.235	0.124	7.30	-0.428	Č+	ls
ĺ		1 1	5960.93	170667	187438	5	3	0.0155	0.00496	0.487	-1.605	C+	ls
32		³ P - ³ P° (29)	5478.8	170637	188884	9	9	0.400	0.180	29.2	0.209	С	4, ca
		()	5495.70	170667	188858	5	5	0.298	0.135	12.2	-0.171	C	1.
- 1		1	5462.62	170609	188910	3	3	0.101	0.0450	2.43	$-0.171 \\ -0.87$	C	ls ls
			5480.10	170667	188910	5	3	0.167	0.0450	4.06	-0.65	Č	ls
[[[5454.26	170609	188938	3	l	0.405	0.060	3.24	-0.74	č	ls
İ			5478.13	170609	188858	3	5	0.100	0.075	4.06	-0.65	č	ls
ľ			5452.12	170573	188910	1	3	0.135	0.181	3.24	-0.74	C C	ls
33		¹ D ~ ¹ F° (31)	6610.58	174213	189336	5	7	0.59	0.54	59	0.433	С	4, ca
34		¹ D - ¹ P°	6284.30	174213	190121	5	3	0.0188	0.0067	0.69	-1.477	С	4, ca
35	2s2p ² 3p —	(32) 5D°-5F	5177.8	223731	กรอดรถ	95	25	1.00	0.57	244			-,
	$2s2p^{2}(^{4}\mathrm{P})3d$	(66)	ľ	ľ	243039	25	35	1.02	0.57	244	1.154	С	ca
			5179.50	223787	243088	9	11		0.50	70	0.65	C	ls
		İ	5175.89	223733	243048	7	9		0.440	52	0.488	$\tilde{\mathbf{C}}$	ls
		J	5173.37 5172.32	223690 223660	243014	5	7	0.70	0.394	33.5	0.294	C.]	ls
		1	5172.32	223645	242989 242973	3	5	0.57	0.382	19.5	0.060	C	ls
1			5190.42	223787	243048	1 9	3		0.57		-0.242	C	ls
- 1		- 1	5184.96	223733	243014	7	7		0.068 0.123	10.5	-0.211	$\stackrel{\circ}{C}$	ls.
- 1	1)	5180.34	223690	242989	5	5		0.123	14.7	-0.066	Č	ls
		ļ	5177.06	223660	242973	3	3		0.191		$\begin{bmatrix} -0.087 \\ -0.242 \end{bmatrix}$	$\stackrel{c}{c}$	ls
	ł	İ	5199.50	223787	243014	9	7		0.00454		$-0.242 \\ -1.388$	Č	ls
ĺ	ĺ	ĺ	5191.97	223733	242989	7			0.0117		-1.088	C	ls Is
	ļ	1	5184.96	223690	242973	5			0.0163		-1.088	č	ls ls
36		⁵ P°- ⁵ P (69)	5335.8	225644	244380	15	15		0.178	46.8	0.427	c	ca
		(0)	5351.21	225673	244355	7	7	0.275	1110	14.6	0.000		
		}	5327.45	225629	244393	5			0.118 0.0148		-0.082	C	ļs
			5313.43	225605	244419	$\check{3}$			0.0447		-1.129 -0.87	C	ls
			5340.20	225673	244393	$\begin{bmatrix} 3 \\ 7 \end{bmatrix}$			0.059		-0.87 -0.382	Ç	ls
		1	5320.96	225629	244419	5			0.080			$\begin{bmatrix} C \\ C \end{bmatrix}$	ls ls
	1	1	5338.66	225629	944955							u l	ιs
- ([5320.96	225605	244355 244393	5 3		$0.139 \ 0.189 \ 0.189$	0.083	7.3	-0.383	c l	ls

 ${f N}$ II. Allowed Transitions – Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(10^8 { m sec}^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
37		⁵ P° - ⁵ D (70)	5175.9	225644	244959	15	25	0.83	0.56	142	0.92	С	ca
		(,	5179.50	225673	244974	7	9	0.83	0.429	51	0.478	С	ls
j	Ì	1	5171.46	225629	244960	5	7	0.56	0.312	26.5	0.193		ls
			5168.24	225605	244949	3	5	0.292	0.195	9.9	-0.233	C	ls
			5183.21	225673	244960	7	7	0.276	0.111	13.3	-0.109	C	ls
			5174.46	225629	244949	5	5	0.485	0.195	16.6	-0.012	C	ls
			5170.08	225605	244941	3	3	0.62	0.250	12.8	-0.124	C	ls
			5186.17 5176.56	225673 225629	244949 244941	7	5	0.055	0.0159	1.90	-0.95	C	ls
			5170.30	225605	244941	5	3 1	0.208 0.83	0.050	4.26	-0.60	C	ls.
38	222 -	1P _ 1P°							0.111	5.7	-0.477	C	ls
	2p3p - 2p(2P°)4s	(18)	3006.86	164612	197859	3	3	0.54	0.073	2.17	-0.66	C	ca
39		³ D - ³ P° (22)	3328.3	166616	196653	15	9	1.11	0.111	18.2	0.220	C	ca
			3328.79	166679	196712	7	5	0.93	0.111	8.5	-0.110	C	ls
		[3331.32	166583	196593	5	3	0.83	0.083	4.55	-0.382	C	ls
			3330.30 3318.14	166522	196541	3	1	1.11	0.061	2.02	-0.73	C	ls ls
			3324.58	166583 166522	196712 196593	5 3	5 3	0.169 0.279	0.0278 0.0463	1.52	-0.86	C C C	ls.
			[3311.4]	166522	196712	3	5	0.219	0.0403	$1.52 \\ 0.101$	$\begin{vmatrix} -0.86 \\ -2.033 \end{vmatrix}$	C	ls ls
40		³ S - ³ P°	3601.3	168893	196653	3	9	0.230	0.134	4.77	-0.395	C	ca
		(26)	3593.60	168893	196712	3	5	0.231	0.075	2.65	0.65		,
			3609.09	168893	196593	3	3	0.231	0.073	1.59	-0.65 -0.87	C	ls
			3615.88	168893	196541	3	i	0.227	0.0148	0.53	-0.87 -1.351	č	ls ls
41		³P−3P°	3842.7	170637	196653	9	9	0.69	0.153	17.4	0.138	C	ca
		(30)	3838.39	170667	196712	5	5	0.52	0.116	7.3	-0.238	С	ls
l			3847.38	170609	196593	3	3	0.172	0.0382	1.45	-0.94	C	ls
			3856.07	170667	196593	5	3	0.285	0.0381	2.42	-0.72	l C	ls
			3855.08	170609	196541	3	1	0.68	0.051	1.93	-0.82	C	ls
			3829.80	170609	196712	3	5	0.175	0.064	2.42	-0.72	C	ls
			3842.20	170573	196593	1	3	0.230	0.153	1.93	-0.82	C	ls
42		¹ D - ¹ P° (33)	4227.75	174213	197859	5	3	1.06	0.171	11.9	-0.068	С	ca
43		¹ S - ¹ P° (34)	5104.45	178274	197859	1	3	0.189	0.222	3.73	-0.65	С	ca
44	$2p3p - 2p(^2P^\circ)4d$	¹ P - ¹ D° (15uv)	2206.10	164612	209927	3	5	0.49	0.060	1.3	-0.75	D-	4
45		³ D - ³ F° (16uv)	2317.1	166616	209761	15	21	0.56	0.063	7.2	-0.03	D-	4
		(1001)	2317.01	166679	209825	7	9	0.56	0.058	3.1	-0.39	D-	ls
			2316.46	166583	209740	5	7	0.49	0.055	2.1	-0.56	D –	ls
			2316.65	166522	209675	3	5	0.46	0.061	1.4	-0.74	D-	ls
Į			2321.65	166679	209740	7	7	0.062	0.0050	0.27	-1.45	<u>D</u> –	ls
			2319.94	166583	209675	5	5	0.088	0.0071	0.27	-1.45	D-	ls
			2325.16	166679	209675	7	5	0.0024	1.4×10^{-4}	0.0076	-3.00	D-	ls
46		³ P - ³ D° (19uv)	2521.9	170637	210278	9	15	0.33	0.052	3.9	-0.33	D-	4
			2522.27	170667	210302	5	7	0.32	0.043	1.8	-0.66	D-	ls
			2520.85	170609	210266	3	5	0.25	0.039 0.052	$0.97 \\ 0.43$	-0.93 -1.29	D – D –	ls ls
			2520.27	170573 170667	210240 210266	1 5	3 5	0.18 0.081	0.032	$0.43 \\ 0.32$	-1.41	D-	ls ls
ļ			$\begin{array}{c} 2524.49 \\ 2522.46 \end{array}$	170609	210240	3	3	0.13	0.0077	0.32	-1.41	Ď-	ls
J		1	2526.17	170667	210240	5		0.0092	5.3×10^{-4}	0.022		Ď-	ls

N II. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(cm^{-1})$	$E_k(cm^{-1})$	g_i	g	$A_{ki}(10^8~{ m sec}^{-1}$) fik	S(at.u.)	log gf	Accu- racy	Source
47		³ P - ³ P° (20uv)	2493.5	170637	210729	9	g	0.19	0.018	1.3	-0.80	D —	4
		(20uv)	2496.88	170667	210705	5	5	0.14	0.013	0.54	-1.18	D-	10
		ĺ	2490.37		210752	3	3	0.048	0.0045	0.34	$\begin{bmatrix} -1.16 \\ -1.87 \end{bmatrix}$	D-	ls ls
			2493.94		210752	5			0.0044	0.18	-1.66	D-	ls
		}	2488.75	170609	210777	3			0.0057	0.14	-1.77	B-	ls
			2493.16	170609	210705	3			0.0073	0.18	-1.66	$ \tilde{\mathbf{D}}-$	ls
			2488.12	170573	210752	1			0.017	0.14	-1.77	$\tilde{\mathbf{p}}$	ls
48		¹ D - ¹ D° (21uv)	2799.20	174213	209927	5	5	0.079	0.0093	0.43	-1.33	D-	4
49		¹ D - ¹ F° (22uv)	2709.82	174213	211031	5	7	0.35	0.054	2.4	-0.57	D-	4
50		¹ S - ¹ P° (35)	3023.80	178274	211336	1	3	0.14	0.057	0.57	-1.24	D-	4
51	2p3p - 2p(2P°)5s	¹ D - ¹ P° (23uv)	2461.30	174213	214828	5	3	0.353	0.0193	0.78	-1.017	С	4, ca
52	2p3d — 2p(2P°)4p	³ F° - ³ D (36)	6168.1	186593	202801	21	15	0.363	0.148	63	0.492	С	4, ca
			6167.82	186653	202862	9	7	0.333	0.148	27.0	0.124	С	ls
ł			6173.40 6170.16	186572	202766	7	5	0.320	0.131	18.6	-0.039	č	ls
İ			6136.89	186512 186572	202715	5	3	0.362	0.124	12.6	-0.207	С	ls
- 1			6150.76	186512	202862 202766	7	7	0.0293	0.0165	2.34	-0.94	C	ls
}			6114.6	186512	202760	5	5	0.0407	0.0231	2.34	-0.94	C	ls ls
		!	022110	100012	202002	J	١ '	8.4×10^{-4}	6.6×10^{-4}	0.066	-2.48	С	ls
53		¹ D° – ¹ P (41)	6629.80	187092	202170	5	3	0.283	0.112	12.2	-0.253	С	4, ca
54		³ D°−3D (45)	6521.8	187472	202801	15	15	0.058	0.0373	12.0	-0.253	С	4, ca
Í	ĺ		6504.61	187493	202862	7	7	0.052	0.0332	4.98	-0.63	C	١,
			6532.55	187462	202766	5	5	0.0404	0.0259	2.78	-0.89	č	ls
ı	ĺ		6544.16	187438	202715	3	3	0.0434	0.0278	1.80	-1.078	č	ls ls
1			6545.53	187493	202766	7	5	0.0090	0.00411	0.62	-1.54	č	ls Is
- 1			6554.47 6491.79	187462 187462	202715	5	3	0.0144	0.0056	0.60	-1.56	C	ls ls
1	ľ	i	6522.39	187438	202862	5	7	0.0066	0.0058	0.62	-1.54	C C	ls
1		J	0322.39	10/456	202766	3	5	0.0088	0.0093	0.60	-1.55	C	ls
55		³ D° - ³ P (46)	6345.8	187472		15	9	0.306	0.111	34.7	0.220	С	4, ca
- 1	ĺ	J	6340.57	187493	203260	7	5	0.258	0.111	16.2	-0.110	c	1.
			6356.55 6357.57	187462	203189	5	3	0.229	0.083	8.7	-0.381	č	ls ls
	1	4	6328.39	187438	203165	3	1	0.304	0.061	3.85	-0.74	\check{c}	$l_s^{\iota s}$
	[ĺ	6346.86	187462 187438	203260	5	5	0.0462	0.0277	2.89	-0.86	Č [l_s^{is}
	}	1	6318.80	187438	203189 203260	$\begin{vmatrix} 3 \\ 3 \end{vmatrix}$	3	0.076	0.0461	2.89	-0.86	C	ls
	İ	_ [3010.00	10.100	203200	9	5	0.00310	0.00310	0.193	- 2.033	C	ls
56	}	³ P° – ³ D (52)	7183.5	188884	202801	9	15	0.00324	0.00418	0.89	- 1.424	С	4, ca
			7138.87	188858	202862	5	7		0.00355	0.417	-1.75	$_{\rm C}$	1.
	ſ	ſ	7215.06 7256.53	188910	202766	3	5	0.00242	0.00314	0.224	-2.026	č	ls ls
	-		7188.20	188938 188858	202715	1	3		0.00414		-2.383	č	l_s
- 1		1	[7241.8]	188910	202766	5			6.3×10^{-4}	0.074	-2.50	č	l_s^{is}
- 1		ſ	<u> </u>	188858	202715 202715	3	3		0.00103	0.074	-2.51	Č	l_s
57		3P°-3P		ì	ľ			J	4.18×10^{-5}	0.00497	-3.68	C	ls
		(53)		188884	203226	9	1	1	0.062	12.9	-0.250	C	4, ca
		1		188858 188910	203260	5			0.0473		-0.63	C	ls
		ļ		188858	203189 203189	3			0.0165	1.14	- 1.306	C	l_s
'	ļ	•	02.0.UT	T00000	200109	JI	3	0.0356	0.0156	1.79	-1.108	c	ls

N II. Allowed Transitions - Continued

						-	_		T T				
No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g_k	$A_{ki}(10^8~{ m sec^{-1}})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
-			7013.98 6966.81 7014.73	188910 188910 188938	203165 203260 203189	3 3 1	1 5 3	0.084 0.0215 0.0280	0.0206 0.0260 0.062	1.43 1.79 1.43	-1.208 -1.108 -1.208	C C C	ls ls ls
58		³ P° – ³ S (54)	6824.5	188884	203533	9	3	0.355	0.083	16.7	-0.129	С	4, ca
		(01)	6809.99 6834.09 6847.24	188858 188910 188938	203533 203533 203533	5 3 1	3 3 3	0.199 0.118 0.0389	0.083 0.083 0.082	9.3 5.6 1.85	$ \begin{array}{r r} -0.382 \\ -0.60 \\ -1.086 \end{array} $	C C C	ls ls ls
59		¹ F° - ¹ D (57)	6242.52	189336	205351	7	5	0.341	0.142	20.5	-0.001	С	4, ca
60		¹ P°- ¹ S (60)	5954.28	190121	206911	3	1	0.421	0.075	4.39	-0.65	C-	4, ca
61	2p3d - 2p(2P°)4f	³F°−³G (39)	4040.9	186593	211332	21	27	2.64	0.83	232	1.243	С	4, ca
62		³ F° − ¹G (40)	4026.08	186572	211403	7	9	0.90	0.280	26.0	0.293	c	
			4020.08	100372	211405	'	9	0.90	0.200	∠0.0	0.293	ا ر ا	3
63		¹ D° - ¹ F (42)	4176.16	187092	211031	5	7	2.19	0.80	55	0.60	С	4, ca
64		³ D° − ³ F (48)	4239.4	187472	211053	15	21	2.14	0.81	169	1.083	С	4, ca
65		³ P°−3D (55)	4434.6	188884	211428	9	15	1.84	0.91	119	0.91	С	4, ca
		(50)	4432.74 4441.99 4433.48 4431.82 4427.97 [4417.9]	188858 188910 188938 188858 188910 188858	211411 211416 211487 211416 211487 211487	5 3 1 5 3 5	7 5 3 5 3	1.86 1.38 1.02 0.461 0.77 0.052	0.77 0.68 0.90 0.136 0.226 0.0091	56 29.8 13.2 9.9 9.9 0.66	0.58 0.309 -0.044 -0.168 -0.168 -1.343	C C C C C C	ls ls ls ls ls
66		¹F° − ³G (58)	4552.54	189336	211296	7	9	0.76	0.305	32.0	0.329	C	3
67		¹F° — ¹G (59)	4530.40	189336	211290	7	9	1.69	0.67	70	0.67	C	3
68		¹ P° = ¹ D (62)	4677.93	190121	211491	3	5	1.65	0.90	41.8	0.434	С	4, ca

The adopted values represent, as in the case of CI, the work of Garstang [1], Naqvi [2], and Yamanouchi and Horie [3], who have independently done essentially the same calculations and arrived at very similar results. For the selection of values, the same considerations as for CI are applied.

Garstang, R. H., Monthly Notices Roy. Astron. Soc. 111, 115-124 (1951).
 Naqvi, A. M., Thesis Harvard (1951).
 Yamanouchi, T., and Horie, H., J. Phys. Soc. Japan 7, 52-56 (1952).

N II. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gı	gk	Type of Transition	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$2p^2-2p^2$	³P − ³P		0.0 0.0 49.1 49.1	49.1 131.3 131.3 131.3	1 1 3 3	3 5 5 5	m e m e	$\begin{array}{c} 2.13 \times 10^{-6} \\ 1.30 \times 10^{-12} \\ 7.48 \times 10^{-6} \\ 2.90 \times 10^{-13} \end{array}$	2.00 0.99 2.50 2.30	B C B C	1, 2, 3 1 1, 2, 3 1
2		³ P - ¹ D (1 F)	6527.4 6548.1 6548.1 6583.6 6583.6	0.0 49.1 49.1 131.3 131.3	15315.7 15315.7 15315.7 15315.7 15315.7	1 3 3 5 5	5 5 5 5 5	e m e m e	4.2×10^{-7} 0.00103 1.4×10^{-6} 0.00303 9.4×10^{-6}	$\begin{array}{c} 1.5 \times 10^{-5} \\ 5.4 \times 10^{-5} \\ 5.0 \times 10^{-5} \\ 1.60 \times 10^{-4} \\ 3.5 \times 10^{-4} \end{array}$	D C D C	1 1,2,3 1 1,2,3
3 4		³ P - ¹ S (2 F)	3063.0 3070.8	49.1 131.3	32687.1 32687.1	3 5	1	m e	0.0340 1.6×10 ⁻⁴	$3.62 \times 10^{-5} \\ 2.6 \times 10^{-5}$	C D	1, 3 1
		(3 F)	5754.8	15315.7	32687.1	5	1	e	1.08	4.06	С	1

NIII

Ground State

 $1s^2 2s^2 2p {}^2\mathbf{P}^{\circ}_{1/2}$

Ionization Potential

 $47.426 \text{ eV} = 382625.5 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
374.204	11	772.93	6	1804.3	2.4
374.44	11	772.975	6		24
374.441	$ \overline{11} $	979.77		1805.5	24
451.869	10	979.842	5	1885.25	27
452.226	10		5 5	1908.11	28
102.220	10	979.919	5	1917.7	29
684.996	3	980.01	5	1918.7	20
685.513	3	989.790	1		29
685.816	3	991.514	1	1919.5	29
686.335	. 3 ∥	991.579	1	1919.7	29
763.340	3 2		$\frac{1}{7}$	1920.0	29
100.040	2	1006.0	7	1920.86	29
764.357	2	1183.03	9	1001.40	20
771.544	4	1184.54		1921.49	29
771.901	4		9	2063.50	30
772.385		1747.86	8	2063.99	30
	4	1751.24	8	2068.25	30
772.891	6	1751.75	8	2247.7	25

List of tabulated lines - Continued

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
2247.92	25	3771.08	14	4527.86	22
2248.88	25	3934.41	18	4530.84	13
2453.85	26	3938.52	18	4534.57	13
2459.2	26	3942.78	18	4535.11	22
2462.56	26	3998.69	31	4546.36	22
			ļ		
2462.9	26	4003.6	31	4547.34	13
2466.3	26	4003.64	31	4858.74	20
2468.36	26	4097.31	12	4858.88	20
2469.1	26	4103.37	12	4861.33	20
2471.2	26	4195.70	16	4867.18	20
2072 (0	100	1000		į,	
2972.60	19	4200.02	16	4873.58	20
2977.3	19	4215.69	16	4881.81	20
2978.8	19	4321.37	21	4884.14	20
2983.58	19	4323.93	21	4896.71	20
3342.77	17	4328.15	21	6445.05	23
3353.78	1.5	4000 14			20
3354.29	15 15	4330.14	21	6450.78	23
3354.29 3355.47		4330.44	21	6453.95	23
3358.72	17	4335.53	21	6463.03	23
	15 15	4339.52	21	6466.86	23
3361.90	15	4348.36	21	6468.77	23
3365.79	15	4353.66	21	6478.69	92
3367.36	15	4535.00	13		23 23
3374.06	15	4510.92	13	6487.55	45
3745.83	14	4518.18	13		
3754.62	14	4518.18	13		1
3734.04	14	4523.00	13		

As in the case of analogous configurations, the data for the lower excited transitions, which are obtained from the calculations by Bolotin and Yutsis [1] and Kelly [2], are quite uncertain because of the strong effects of configuration interaction. The latter are either crudely taken into account (Bolotin and Yutsis) or entirely neglected (Kelly). For some higher excited transitions self-consistent field calculations by Kelly [3] including exchange affects are available and are averaged with the results of the Coulomb approximation. For other prominent transitions the Coulomb approximation is applied whenever it is expected to give reliable results.

^[1] Bolotin, A. B., and Yutsis, A. P., Zhur. Eksptl. i Teoret. Fiz. 24, 537-543 (1953) (Translated in "Optical Transition Probabilities", Office of Technical Services, U.S. Department of Commerce, Washington, D.C.).

^[2] Kelly, P. S., Astrophys. J. 140, 1247-1268 (1964).

^[3] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964).

N III. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	g_k	$A_{ki}(10^8 { m sec}^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p-2s2p^2$	$^{2}P^{\circ}-^{2}D$	990.98	116.3	101027	6	10	7.3	0.18	3.5	0.03	E	I
		(1 uv)	991.579 989.790 991.514	174.5 0.0 174.5	101024 101032 101032	4 2 4	6 4 4	7.3 6.3 1.2	0.16 0.18 0.018	2.1 1.2 0.23	-0.19 -0.43 -1.15	E E E	ls ls ls
2		² P° - ² S	764.01	116.3	131004	6	2	39	0.11	1.7	-0.17	E	1
		(2 uv)	764.357 763.340	174.5 0.0	131004 131004	4 2	$\begin{bmatrix} 2\\2 \end{bmatrix}$	25 13	0.11 0.11	1.1 0.57	-0.36 -0.64	E E	ls ls
3		² P° – ² P	685.71	116.3	145950	6	6	64	0.45	6.1	0.43	E	1
!		(3 uv)	685.816 685.513 686.335 684.996	174.5 0.0 174.5 0.0	145987 145876 145876 145987	4 2 4 2	4 2 2 4	53 44 21 11	0.38 0.31 0.075 0.15	3.4 1.4 0.68 0.68	$\begin{array}{c c} 0.18 \\ -0.21 \\ -0.52 \\ -0.52 \end{array}$	E E E E	ls ls ls ls
4	$2s2p^2 - 2p^3$	⁴ P - ⁴ S° (8 uv)	772.09	57283	186802	12	4	56	0.17	5.1	0.30	E	2
		(0 41)	772.385 771.901 771.544	57333 57252 57192	186802 186802 186802	6 4 2	4 4 4	29 19 9.4	0.17 0.17 0.17	2.6 1.7 0.85	$ \begin{array}{r} 0.01 \\ -0.17 \\ -0.48 \end{array} $	E E E	ls ls ls
5		² D − ² D°	979.89	101027	203079	10	10	14	0.20	6.6	0.31	E	2
1		(12 uv)	979.919 979.842 [979.77] [980.01]	101024 101032 101024 101032	203072 203089 203089 203072	6 4 6 4	6 4 4 6	13 13 1.4 0.93	0.19 0.19 0.013 0.020	3.7 2.4 0.26 0.26	0.06 -0.13 -1.09 -1.09	E E E E	ls ls ls ls
6		² D - ² P°	772.91	101027	230408	10	6	16	0.086	2.2	-0.06	E	2
j		(13 uv)	772.891 772.975 [772.93]	101024 101032 101032	230409 230405 230409	6 4 4	4 2 4	14 16 1.6	0.085 0.072 0.015	1.3 0.73 0.15	-0.29 -0.54 -1.23	E E E	ls ls ls
7		² S - ² P° (17 uv)	1006.0	131004	230408	2	6	6.0	0.27	1.8	-0.26	E	2
8		${}^{2}P - {}^{2}D^{\circ}$ (19 uv)	1750.4	145950	203079	6	10	2.6	0.20	6.9	80.0	E	2
-		(15 uv)	1751.75 1747.86 1751.24	145987 145876 145987	203072 203089 203089	4 2 4	6 4 4	2.6 2.2 0.43	0.18 0.20 0.020	4.1 2.3 0.46	-0.15 -0.40 -1.10	E E E	ls ls ls
9		² P – ² P°	1184.0	145950	230408	6	6	8.5	0.18	4.2	0.03	E	2
		(20 uv)	1184.54 1183.03 1184.54 1183.03	145987 145876 145987 145876	230409 230405 230405 230409	4 2 4 2	4 2 2 4	7.0 5.7 2.9 1.4	0.15 0.12 0.030 0.060	2.3 0.93 0.47 0.47	-0.23 -0.62 -0.92 -0.92	E E E	ls ls ls ls
10	$2p - ({}^{1}S)3s$	² P°- ² S (4 uv)	452.11	116.3	221302	6	2	45	0.046	0.41	-0.56	E	2
		(4 41)	452.226 451.869	174.5 0.0	221302 221302	4 2	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$		0.045 0.047	0.27 0.14	-0.74 -1.03	E E	ls ls
11	$2p - ({}^{1}S)3d$	$ \begin{array}{c c} ^2P^\circ - ^2D \\ (5 \text{ uv}) \end{array} $	374.36	116.3	267242	6	10	110	0.39	2.9	0.37	D-	2
		(0 41)	374.441 374.204 [374.44]	174.5 0.0 174.5	267244 267239 267239	4 2 4	6 4 4	94	0.34 0.39 0.039	1.7 0.97 0.19	$0.14 \\ -0.10 \\ -0.81$	D- D- D-	ls ls ls
12	$3s - (^{1}S)3p$	${}^{2}S - {}^{2}P^{\circ}$	4099.2	221302	245690	2	6	0.97	0.73	19.7	0.164	С	3, ca
		(1)	4097.31 4103.37	221302 221302	245702 245666	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	$\begin{vmatrix} 4 \\ 2 \end{vmatrix}$		0.486 0.244	13.1 6.6	$-0.013 \\ -0.311$	C	ls ls

 ${f N}$ III. Allowed Transitions – Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(10^8~{ m sec^{-1}})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
13	2s2p3s — 2s2p(3P°)3p	⁴ P° – ⁴ D (3)	4517.3	287646	309777	12	20	0.70	0.357	64	0.63	С	ca
	232p(*1)3p	(3)	4514.89	287714	309857	6	8	0.70	0.286	25.5	0.235	C	ls
			4510.92	287598	309761	4	6	0.492	0.225	13.4	-0.046	C	ls
	l l	Į.	4510.92	287536	309698	2	4	0.293	0.179	5.3	-0.446	C	ls
	1	}	4534.57	287714	309761	6	6	0.208	0.064	5.7	-0.416) C	ls
			4523.60	287598	309698	4	4	0.372	0.114	6.8	-0.341	CCC	ls
			4518.18	287536	309663	2	2	0.58	0.178	5.3	-0.449	C	ls
			4547.34	287714	309698	6	4	0.0344	0.0071	0.64	-1.371	Č	ls
			4530.84	287598	309663	4	2	0.116	0.0178	1.06	-1.148	С	ls
14		⁴ P°- ⁴ S (4)	3761.4	287646	314224	12	4	1.24	0.088	13.1	0.024	С	ca
			3771.08	287714	314224	6	4	0.61	0.087	6.5	-0.282	C	ls!
			3754.62	287598	314224	$\begin{vmatrix} 4\\2 \end{vmatrix}$	4.	0.416	0.088	4.35	-0.454	C	ls
			3745.83	287536	314224	2	4	0.209	0.088	2.17	-0.75	C	ls
15		⁴ P° – ⁴ P (5)	3363.9	287646	317365	12	12	1.74	0.296	39.3	0.55	С	ca
	ļ	<u> </u>	3367.36	287714	317402	6	6	1.22	0.207	13.8	0.094	C	ls
		i	3361.90	287598	317343	4	4	0.233	0.0395	1.75	-0.80	C	ls ls
			3358.72	287536	317300	2	2	0.292	0.0494	1.09	-1.005	C	ls ls ls
			3374.06	287714	317343	6	4	0.78	0.089	5.9	-0.273	C	ls
			3365.79 3354.29	287598 287598	317300 317402	4	6	1.45 0.53	0.123 0.134	5.5	-0.308	C	ls.
			3353.78	287536	317343	2	4	0.53	0.134	5.9 5.5	$\begin{vmatrix} -0.271 \\ -0.306 \end{vmatrix}$	C	ls ls
16		² P°- ² D	4199.6	297225	321030	6	10	1.00	0.442	36.7	0.424	С	ca
		(6)	4200.02	297263	321066	4	6	1.00	0.398	22.0	0.202	С	ls
			4195.70	297150	320977	2	4.	0.84	0.442	12.2	-0.054	č	ls
			4215.69	297263	320977	4	4	0.165	0.0440	2.44	-0.75	Č	ls
17		² P°- ² S	3351.1	297225	327057	6	2	2.00	0.112	7.4	-0.173	С	ca
		(7)	3355.47	297263	327057	4	2	1.33	0.112	4.95	-0.349	С	ls
			3342.77	297150	327057	2	$\bar{2}$	0.67	0.113	2.49	-0.65	Č	ls
18	2s2p3p — 2s2p(3P°)3d	${}^{2}P - {}^{2}D^{\circ}$ (8)	3937.4	309168	334558	6	10	0.96	0.372	28.9	0.349	С	ca
		(-)	3938.52	309186	334569	4	6	0.96	0.335	17.4	0.127	C	ls
			3934.41	309133	334542	2	4	0.80	0.372	9.6	-0.128	C	ls
			3942.78	309186	334542	4	4	0.160	0.0372	1.93	-0.83	С	ls
19		² P – ² P° (25 uv)	2979.9	309168	342717	.6	6	1.38	0.184	10.8	0.043	ŀ	ca
	,	(== = .,	2983.58	309186	342693	4	4	1.14	0.153	6.0	-0.214	C C	ls
	/		2972.60	309133	342764	2	2	0.93	0.123	2.40	-0.61	C	ls
	٠		[2977.3]	309186	342764	4	2	0.461	0.0307	1.20	-0.91	Ç	ls.
			[2978.8]	309133	342693	2	4	0.230	0.061	1.20	-0.91	C	ls
20		⁴ D - ⁴ F° (9)	4864.8	309777	330327	20	28	0.63	0.312	100	0.80	С	ca
		(-)	4867.18	309857	330397	8	10	0.63	0.279	35.8	0.349	C	ls
			4861.33	309761	330325	6	8	0.54	0.255	24.5	0.185	6	ls
			4858.88	309698	330274	4	6	0.471	0.250	16.0	0.000	CCC	ls
			4858.74	309663	330238	2	4	0.441	0.312	10.0 4.09	-0.205 -0.59	Č	ls Is
			4884.14	309857	330325	8	8	0.089	0.0318	5.2	-0.39 -0.490	č	ls ls
			4873.58	309761	330274	6	6	0.152 0.175	0.054	3.97	-0.490	č	ls
			4867.18 4896.71	309698 309857	330238 330274	8	6	0.0059	0.002	0.204	-1.90	C	ls
				1 . 11703/		, 0		10.000	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.285	-1.75	C	

 ${f N}$ III. Allowed Transitions – Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	$A_{ki}(10^8 \text{ sec}^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
21		⁴ D - ⁴ D°	4335.7	309777	332835	20	20	0.234	0.066	18.8	0.121	С	ca
		(10)	4348.36	309857	332860	8	8	0.198	0.056	6.4	-0.349	С	ls
		ì	4335.53	309761	332832	6	6	0.134	0.0378	3.24	-0.64	C	ls
			4328.15	309698	332810	4	4	0.094	0.0263	1.50	-0.98	C	l s
		1	4323.93	309663	332797	2	2	0.117	0.0329	0.94	-1.182	l C	ls
			4353.66	309857	332832	8	6	0.0436	0.0093	1.07	-1.128	C	ls
	l		4339.52	309761	332810	6	4	0.081	0.0153	1.31	-1.037	C	ls
		J	4330.44	309698	332797	4	2	0.117	0.0164	0.94	- 1.183	C	ls ls ls ls
			4330.14	309761	332860	6	8	0.0334	0.0125	1.07	-1.125	C	ls
			4323.93	309698	332832	4	6	0.056	0.0236	1.34	-1.025	C	ls
			4321.37	309663	332810	2	4	0.059	0.0329	0.94	-1.182	C	ls
22		⁴ S - ⁴ P° (13)	4539.6	314224	336246	4	12	0.99	0.91	54	0.56	С	ca
	'	(10)	4546.36	314224	336213	4	6	0.99	0.456	27.2	0.261	C	ls
		}	4535.11	314224	336268	4	4	0.99	0.304	18.2	0.085	C	ls
			4527.86	314224	336303	4	2	0.99	0.152	9.1	-0.216	C	ls
23		⁴ P - ⁴ D° (14)	6462.3	317365	332835	12	20	0.432	0.451	115	0.73	С	ca
		` ´	6466.86	317402	332860	6	8	0.432	0.361	46.1	0.336	C	ls
		ł	6453.95	317343	332832	4	6	0.304	0.285	24.2	0.057	C C C C	ls
			6445.05	317300	332810	2	4	0.181	0.226	9.6	-0.345	C	l ls
			6478.69	317402	332832	6	6	0.129	0.081	10.4	-0.313	C	ls
	!		6463.03	317343	332810	4	4	0.232	0.145	12.3	-0.237	č	ls ls ls
			6450.78	317300	332797	2	2	0.362	0.226	9.6	-0.345	C	ls
			6487.55	317402	332810	6	4	0.0214	0.0090	1.15	-1.268	C	ls ls
			6468.77	317343	332797	4	2	0.072	0.0226	1.93	-1.044	С	ls
24	$3p - (^{1}S)4s$	² P°- ² S (22 uv)	1805.1	245690	301088	6	2	6.8	0.110	3.93	-0.180	С	3, ca
			1805.5	245702	301088	4	2	4.51	0.110	2.62	-0.356	C	ls
			1804.3	245666	301088	2	2	2.26	0.110	1.31	-0.66	C	ls
25	$3d-(^{1}S)4p$	$ \begin{array}{c c} ^2D - ^2P^{\circ} \\ (23 \text{ uv}) \end{array} $	2248.2	267242	311708	10	6	1.6	0.074	5.5	-0.13	D	3, ca
			2247.92	267244	311716	6	4	1.5	0.074	3.3	-0.35	D	ls
			2248.88	267239	311691	4	2	1.6	0.062	1.8	-0:61	D	ls
			[2247.7]	267239	311716	4	4	0.16	0.012	0.37	-1.30	D	ls
26	2s2p3d- 2s2p(3P°)4p	⁴ P°- ⁴ D (28 uv)	2460.4	336246	376877	12	20	0.014	0.0022	0.21	-1.59	D	ca
			2453.85	336213	376953	6	8	0.015	0.0018	0.085	-1.98	D	ls
	ļ		2462.56	336268	376864	4	6	0.010	0.0014	0.046	-2.25	D	ls
1	ĺ	ľ	2468.36	336303	376803	2	4	0.0062	0.0011	0.018	-2.65	D	ls
ļ	ļ		[2459.2]	336213	376864	6	6	0.0044	4.0×10^{-4}	0.019	-2.62	D	ls
1			[2466.3] [2471.2]	336268 336303	376803	4	4	0.0079	7.2×10^{-4}	0.023	-2.54	D	l ls
l		}	[2462.9]	336213	376757 376803	2	2	0.012	0.0011	0.018	-2.64	D	l ls
		ļ	[2462.9]	336268	376757	6 4	4 2	$\begin{array}{c c} 7.4 \times 10^{-4} \\ 0.0025 \end{array}$	4.5×10^{-5} 1.1×10^{-4}	0.0022	-3.57	D	ls ls
						4	_	0.0025	1.1 × 10 ,	0.0037	-3.34	D	ls
27	$3d - (^1S)4f$	² D - ² F° (24 uv)	1885.25	267242	320285	10	14	11.9	0.89	55	0.95	C	3, ca
28	2s2p3d - 2s2p(3P°)4f	² D°-2F (27 uv)	1908.11	334558	386965	10	14	11.0	0.84	53	0.92	С	ca

N III. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g_k	$A_{ki}(10^8 { m \ sec^{-1}})$	fik	S(at.u.)	log gf	Accu- racy	Source
29		⁴ P° – ⁴ D (29 uv)	1920.6	336246	388313	12	20	10.3	0.95	72	1.057	С	ca
		(2) (1)	1920.86	336213	388273	6	8	10.3	0.76	28.7	0.66	С	ls
			1921.49	336268	388311	4	6	7.2	0.60	15.1	0.38	C	ls
Į			1920.86	336303	388359	2	4	4.27	0.472	6.0°	-0.025	C	ls
		\	[1919.5]	336213	388311	6	6	3.08	0.170	6.4	0.009	/ C	ls
			[1919.7]	336268	388359	4	4	5.5	0.302	7.6	0.082	C	ls
			[1920.0]	336303	388387	2	2	8.5	0.471	6.0	-0.026	C	ls
			[1917.7]	336213	388359	6	4	0.51	0.0188	0.71	-0.95	C	ls
			[1918.7]	336268	388387	4	2	1.71	0.0471	1.19	-0.72	C	ls
30		² F° - ² G (30 uv)	2063.8	339808	388246	14	18	11.3	0.93	88	1.115	С	ca
		` ′	2063.99	339856	388290	8	10	11.3	0.90	48.9	0.86	C	ls
			2063.50	339744	388190	6	8	10.9	0.93	37.9	0.75	C	ls
			2068.25	339856	388190	8	8	0.402	0.0258	1.41	-0.69	C	ls
31	$4d - (^{1}S)5f$	² D - ² F° (16)	4001.8	317770	342752	10	14	2.11	0.709	93.4	0.851	C+	ca
		(/	4003.64	317782	342752	6	8	2.10	0.674	53.3	0.609	C+	ls
			3998.69	317751	342752	4	6	1.98	0.710	37.4	0.454	C+	ls
			[4003.6]	317782	342752	6	6	0.140	0.0338	2.67	-0.693	C+	ls

Naqvi's calculation [1] of the one possible transition in the ground state configuration 2p is the only available source. The line strength should be quite accurate, since it does not sensitively depend on the choice of the interaction parameters.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

N III. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g_i	g_k	Type of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	2p-2p	2P° — 2P°	$[57.29 \times 10^4]$	0	174.5	2	4	m	4.77×10^{-5}	1.33	В	1

Ionization Potential

 $77.450 \text{ eV} = 624851 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
225.025 225.098 225.13 225.136	10 10 10 10	923.211 923.669 924.274 955.335	3 3 3 5	4685.4 4723 4733 4740	20 20 20 20
225.20 247.205 283.420 283.47 283.470 283.579	10 2 8 8 8	1718.52 3443 3445 3454 3461.34 3463.36	15 15 15 15 15 15	4752 4762 5073 5236 5245 5280.9	20 20 21 13 13 13
283.59 322.503 322.570 322.724 335.050	8 6 6 6 9	3474.56 3478.69 3482.98 3484.90 3747.66	15 11 11 11 11	5281 5303.9 5349.8 5734 6383	13 13 13 19 12
387.353 765.140 921.982 922.507 923.045	7 1 3 3 3	4057.80 4479 4495 4528 4678.6	17 14 14 14 20	7103.28 7109.48 7111.28 7123.10 7127.21 7129	18 18 18 18 18 18

Values for the $2s^2-2s2p$ and $2s2p-2p^2$ transition arrays are taken from the self-consistent field calculations of Weiss [1]. These calculations do not include the important effects of configuration interaction; hence large uncertainties must be expected. The average of the dipole length and velocity approximations is adopted [1]. Accuracies within 50% are indicated by the following comparison: Weiss [1] has undertaken refined calculations, including configuration interaction, for the same transitions in Be I—the first member of this isoelectronic sequence—in addition to calculations of the type done for this ion. In all cases the agreement with the average of the dipole length and velocity approximations is close.

For the remaining low-lying transitions Kelly's approximate Hartree-Fock calculations [2] are adopted, while for the moderately excited transitions Kelly's values are averaged with the Coulomb approximation, with which they agree quite well.

- [1] Weiss, A. W., private communication (1964).
- [2] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964).

N IV. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g_i	g_k	$A_{ki}(10^8 { m sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^2 - 2s(^2S)2p$	¹ S - ¹ P° (1 uv)	765.140	0	130695	1	3	24	0.64	1.6	-0.19	D	1
2	$2s^2 - 2s(^2\mathbf{S})3p$	¹ S - ¹ P° (2 uv)	247.205	0	404521	1	3	200	0.55	0.45	-0.26	D	2
3	$\begin{array}{c} 2s2p - \\ 2p^2 \end{array}$	³ P°-3P (3 uv)	923.15	[67273]	[175598]	9	9	17	0.21	5.8	0.28	D	1
			923.211 923.045 924.274 923.669 921.982 922.507	[67344] [67200] [67344] [67200] [67200] [67136]	[175662] [175537] [175537] [175464] [175662] [175537]	5 3 5 3 1	5 3 1 5 3	13 4.2 6.9 17 4.2 5.6	0.16 0.053 0.053 0.071 0.089 0.21	2.4 0.49 0.81 0.65 0.81 0.65	$\begin{array}{c} -0.10 \\ -0.80 \\ -0.58 \\ -0.67 \\ -0.57 \\ -0.67 \end{array}$	D D D D D	ls ls ls ls ls
4		¹ P°- ¹ D (7 uv)	1718.52	130695	188885	3	5	5.1	0.38	6.4	0.05	D	1
5		¹ P°- ¹ S (8 uv)	955.335	130695	235370	3	1	16	0.074	0.70	-0.66	D	1
6	2s2p — 2s(2S)3s	³ P°- ³ S (4 uv)	322.65	[67273]	[377206]	9	3	113	0.059	0.56	-0.278	С	2
			322.724 322.570 322.503	[67344] [67200] [67136]	[377206] [377206] [377206]	5 3 1	3 3 3	62 37.6 12.5	0.059 0.059 0.058	$0.311 \\ 0.187 \\ 0.062$		C C C	ls ls ls
7		¹ P°- ¹ S (9 uv)	387.353	130695	388858	3	1	65	0.0489	0.187	-0.83	С	2
8	$2s2p-2s(^2\mathrm{S})3d$	³ P°-3D (5 uv)	283.53	[67273]	[419974]	9	15	314	0.63	5.3	0.75	С	2
			283.579 283.470 283.420 [283.59] [283.47] [283.59]	[67344] [67200] [67136] [67344] [67200] [67344]	[419979] [419971] [419968] [419971] [419968] [419968]	5 3 1 5 3 5	7 5 3 5 3 3	311 235 172 78 130 8.6	0.52 0.471 0.62 0.094 0.156 0.0063	2.45 1.32 0.58 0.438 0.438 0.0292	$\begin{array}{c} 0.419 \\ 0.151 \\ -0.207 \\ -0.329 \\ -0.329 \\ -1.50 \end{array}$	C C C C C	ls ls ls ls ls
9		¹ P°- ¹ D (10 uv)	335.050	130695	429158	3	5	189	0.53	1.75	0.200	С	2
10	$2s2p - 2s(^2S)4d$	³ P°- ³ D (6 uv)	225.17	[67273]	[511382]	9	15	92	0.117	0.78	0.022	С	2
	(-)		225.025 225.136 225.098 [225.20] [225.13] [225.20]	[67344] [67200] [67136] [67344] [67200] [67344]	[511384] [511376] [511387] [511376] [511387] [511387]	5 3 1 5 3 5	7 5 3 5 3 3	92 69 52 23.1 38.5 2.56	0.098 0.088 0.117 0.0175 0.0292 0.00117	0.364 0.195 0.087 0.065 0.065 0.00433	$\begin{array}{c} -0.309 \\ -0.58 \\ -0.93 \\ -1.057 \\ -1.057 \\ -2.234 \end{array}$	C C C C C	ls ls ls ls ls
11	2s3s - 2s(2S)3p	³ S - ³ P° (1)	3480.8	[377206]	[405927]	3	9	1.16	0.634	21.8	0.279	C+	2, ca
	20(S) Sp		3478.69 3482.98 3484.90	[377206] [377206] [377206]	[405944] [405909] [405893]	3 3 3	5 3 1	1.16 1.16 1.16	0.352 0.211 0.0703	12.1 7.27 2.42	$ \begin{array}{r} 0.024 \\ -0.198 \\ -0.676 \end{array} $	C+ C+	ls ls ls
12		¹ S - ¹ P° (2)	6383	388858	404521	1	3	0.193	0.353	7.42	-0.452	C+	2, ca
13	2p3s -	³ P°- ³ D	5255.1	[465382]	[484406]	9	15	0.343	0.237	36.9	0.329	С	ca
	2p(2P°)3p	(5)	5245 5236 5281 [5280.9] [5303.9] [5349.8]	[465463] [465301] [465223] [465463] [465301] [465463	[484525] [484394] [484150] [484394] [484150] [484150]	5 3 1 5 3 5	7 5 3 5 3	0.345 0.261 0.188 0.085 0.139 0.0090	0.199 0.178 0.236 0.0354 0.059 0.00233	17.2 9.2 4.10 3.08 3.08 0.205		C C C C C	ls ls ls ls ls

NIV. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(10^8 \text{sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
14		3P°-3S	4511.4	[465382]	[487542]	9	3	0.56	0.056	7.5	-0.295	С	ca
		(6)	4528 4495 4479	[465463] [465301] [465223]	[487542] [487542] [487542]	5 3 1	3 3 3	0.305 0.189 0.063	0.056 0.057 0.057	4.19 2.54 0.84	$ \begin{array}{r} -0.55 \\ -0.77 \\ -1.245 \end{array} $	C C C	ls ls ls
15		³ P°- ³ P (7)	3456.7	[465382]	[494303]	9	9	1.27	0.227	23.2	0.310	С	ca
		(*)	3463.36 3454 3474.56 3461.34 3443 3445	[465463] [465301] [465301] [465223] [465463] [465301]	[494338] [494240] [494338] [494240] [494240] [494320]	5 3 3 1 5 3	5 3 5 3 1	0.94 0.316 0.311 0.420 0.53 1.28	0.170 0.057 0.094 0.226 0.057 0.076	9.7 1.93 3.22 2.58 3.22 2.58	$\begin{array}{c} -0.072 \\ -0.77 \\ -0.55 \\ -0.65 \\ -0.55 \\ -0.64 \end{array}$	000000	ls ls ls ls ls
16		¹ P°- ¹ D (8)	3747.66	473032	499708	3	5	1.06	0.371	13.7	0.047	С	ca
17	2s3p - 2s(2S)3d	¹ P°- ¹ D (3)	4057.80	388858	429158	3	5	0.758	0.312	12.5	-0.029	C+	2, ca
18		³ P° – ³ D	7117.0	[405927]	[419974]	9	15	0.132	0.167	35.3	0.178	C+	2, ca
			7123.10 7109.48 7103.28 7127.21 7111.28 7129	[405944] [405909] [405893] [405944] [405909] [405944]	[419979] [419971] [419968] [419971] [419968] [419968]	5 3 1 5 3 5	7 5 3 5 3 3	0.132 0.0995 0.0739 0.0329 0.0552 0.00365	0.141 0.126 0.168 0.0251 0.0419 0.00167	16.5 8.82 3.92 2.94 2.94 0.196	$\begin{array}{c} -0.153 \\ -0.424 \\ -0.776 \\ -0.902 \\ -0.901 \\ -2.078 \end{array}$	C+ C+ C+ C+ C+	ls ls ls ls ls
19	$2p3p - 2p(^2P^\circ)3d$	¹ P- ¹ D° (9)	5734	480880	498315	3	5	0.178	0.146	8.3	-0.359	С	ca
20		³ D- ³ D°	4732.2	[484406]	[505532]	15	15	0.116	0.0389	9.1	-0.234	С	ca
			4752 4733 [4685.4] 4762 4740 4723 [4678.6]	[484525] [484394] [484150] [484525] [484394] [484394] [484150]	[505561] [505518] [505487] [505518] [505487] [505561] [505518]	7 5 3 7 5 5 3	7 5 3 5 3 7 5	0.102 0.081 0.089 0.0177 0.0289 0.0130 0.0180	0.0344 0.0271 0.0294 0.00431 0.0058 0.0061 0.0098	3.77 2.11 1.36 0.473 0.455 0.473 0.455	$\begin{array}{c c} -0.62 \\ -0.87 \\ -1.055 \\ -1.52 \\ -1.54 \\ -1.52 \\ -1.53 \end{array}$	000000	ls ls ls ls ls ls
21		¹ D - ¹ P° (17)	5073	499708	519414	5	3	0.0127	0.00295	0.246	-1.83	С	ca

Naqvi's calculations [1] are the only available source. The results for the ${}^3P^{\circ} - {}^3P^{\circ}$ transitions are essentially independent of the choice of the interaction parameters. For the ${}^3P^{\circ} - {}^1P^{\circ}$ transitions, Naqvi has used empirical term intervals, i.e., the effects of configuration interaction should be partially included.

Reference

[I] Naqvi, A. M., Thesis Harvard (1951).

N IV. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	Type of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	2s2p - 2s (2S) 2p	3P°-3P°	$[15.82 \times 10^{5}]$ $[69.33 \times 10^{4}]$	[67136.4] [67199.6]	[67199.6] [67343.8]	1 3	3 5	m m	$\begin{array}{c} 4.56 \times 10^{-6} \\ 4.05 \times 10^{-5} \end{array}$	2.00 2.50	B B	1
2		3P° — 1P°	[1573.4] [1574.9] [1578.5]	[67136.4] [67199.6] [67343.8]	130695 130695 130695	1 3 5	3 3 3	m m m	0.0118 5.5 0.0146	$ \begin{vmatrix} 5.1 \times 10^{-6} \\ 0.00240 \\ 6.4 \times 10^{-6} \end{vmatrix} $	CCC	1 1 1

Nv

Ground State

1s2 2s 2S1/2

Ionization Potential

 $97.863 \text{ eV} = 789532.9 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
162.562	3	266.375	4	5067	13
186.070 186.153	6	1238.81 1242.80	1	5273 6719	11 16
186.16	6	3161	9	7330	17
209.270	$\begin{vmatrix} & 0 \\ 2 & \end{vmatrix}$	4335	10	15088	8
209.303	2	4603.83	7	15203	8
247.563	5	4619.9	7	15258	8
247.710	5	4751	12		
247.72	5	4933	14		
266.192	4	4952	15		l

The values taken from Weiss' calculations [1] are estimated to be accurate to within 10 percent because of the very close agreement between his dipole length and dipole velocity approximations. The values calculated with the length approximation are adopted. The Coulomb approximation should be quite reliable for the highly excited transitions and is given preference over Kelly's approximate Hartree-Fock calculations [2], with which it sometimes disagrees.

^[1] Weiss, A. W., Astrophys. J. 138, 1262-1276 (1963).

^[2] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117 (1964).

NV. Allowed Transitions

No	. Transition Array	Multiple	t λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g	gk	$A_{ki}(10^8 \mathrm{sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	2s-2p	² S - ² P° (1 uv)	1240.1	0.0	80637	2	6	3.38	0.234	1.91	-0.330	A	1
		(1 uv)	1238,81 1242.80	0.0	80723 80465	$\begin{vmatrix} 2\\2 \end{vmatrix}$	4 2	3.38 3.36	0.156 0.0778	1.27 0.637	-0.507 -0.808	A A	ls ls
2	2s-3p	² S - ² P° (2 uv)	209.28	0.0	477826	2	6	120	0.235	0.324	-0.327	B+	1
		(2 uv)	209.270 209.303	0.0	477851 477777	$\begin{vmatrix} 2\\2 \end{vmatrix}$	4 2	119 119	0.157 0.0784	0.216 0.108	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	B + B +	ls ls
3	2s-4p	² S - ² P° (3 uv)	162.562	0.0	615150	2	6	56.3	0.0669	0.0716	-0.874	В	ca
4	2p-3s	$\begin{array}{c c} ^{2}P^{\circ}-^{2}S \\ (4 \text{ uv}) \end{array}$	266.31	80637	456134	6	2	90.9	0.0322	0.169	-0.714	. B +	1
		()	266.375 266.192	80723 80465	456134 456134	4 2	$\begin{bmatrix} 2\\2 \end{bmatrix}$	60.6 30.2	0.0322 0.0321	0.113 0.0563	$ \begin{array}{r r} -0.890 \\ -1.192 \end{array} $	B+ B+	ls ls
5	2p-3d	² P° – ² D (5 uv)	247.66	80637	484417	6	10	429	0.658	3.22	0.596	В+	1
		, ,	247.710 247.563 [247.72]	80723 80465 80723	484427 484403 484403	4 2 4	6 4 4	429 357 71.6	0.592 0.656 0.0659	1.93 1.07 0.215	0.374 0.118 -0.579	B+ B+ B+	ls ls ls
6	2p-4d	² P° – ² D (6 uv)	186.13	80637	617905	6	10	140	0.121	0.445	-0.139	В	ca
		(0 4)	186.153 186.070 [186.16]	80723 80465 80723	617905 617905 617905	4 2 4	6 4 4	140 116 23.3	0.109 0.121 0.0121	$\begin{array}{c} 0.267 \\ 0.148 \\ 0.0297 \end{array}$	$ \begin{array}{r r} -0.361 \\ -0.617 \\ -1.315 \end{array} $	B B B	ls ls ls
7	3s-3p	${}^{2}S - {}^{2}P^{\circ}$	4608.7	456134	477826	2	6	0.413	0.395	12.0	-0.103	В	1
		(1)	4603.83 4619.9	456134 456134	477851 477777	2 2	$\begin{bmatrix} 4 \\ 2 \end{bmatrix}$	$0.415 \\ 0.411$	0.264 0.131	8.00 4.00	$ \begin{array}{r} -0.278 \\ -0.580 \end{array} $	B B	ls ls
8	3p-3d	² P°- ² D	15168	477826	484417	6	10	0.00946	0.0544	16.3	-0.486	В	l
		J	[15203] [15088] [15258]	477851 477777 477851	484427 484403 484403	4 2 4	6 4 4	0.00940 0.00801 0.00155	0.0489 0.0547 0.00542	9.78 5.43 1.09	-0.709 -0.961 -1.664	B B B	ls ls ls
9	5p-6s	² P°-2S (2)	3161	678297	[709947]	6	2	3.06	0.153	9.55	-0.037	В	ca
10	6s-7p	² S - ² P° (3)	4335	[709947]	732993	2	6	0.376	0.318	9.08	-0.197	В	ca
11	6p-7s	² P°-2S (4)	5273	712464	[731432]	6	2	1.41	0.196	20.4	0.070	В	ca
12	6p-7d	² P°-2D (5)	4751	712464	[733516]	6	10	0.963	0.543	51.0	0.513	В	ca
13	6d-7p	² D - ² P° (6)	5067	713289	732993	10	6	0.423	0.0977	16.3	-0.010	В	ca
14	6d – 7f	${}^{2}D - {}^{2}F^{\circ}$	4933	713289	[733547]	10	14	1.62	0.828	134	0.918	В	ca
15	6f-7d	² F°-2D (8)	4952	[713327]	[733516]	14	10	0.161	0.0423	9.66	-0.227	В	ca
16	7s-8p	² S- ² P° (11)	6719	[731432]	[746311]	2	6	0.171	0.348	15.4	-0.157	В	ca
17	7p-8d	² P° — ² D (12)	7330	732993	[746649]	6	10	0.454	0.610	88.3	0.564	В	ca

Ground State 1s² ¹S₀

Ionization Potential

 $551.925 \text{ eV} = 4452800 \text{ cm}^{-1}$

Allowed Transitions

The results of extensive non-relativistic variational calculations by Weiss [1] are used. Values have been calculated in both the dipole length and dipole velocity approximations and agree to within 1%, except for the 3p $^{1}P^{\circ}-3d$ ^{1}D transition where agreement is not as good. The average of the two approximations is adopted [1].

Reference

[1] Weiss, A. W., private communication (1964).

NVI. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g _k	$A_{ki}(10^8 \mathrm{sec^{-1}})$	f_{ik}	S(at.u.)	log gf	Accuracy	Source
1	$1s^2-1s2p$	¹ S - ¹ P°	[28.787]	o	3473790	1	3	18100	0.674	0.0639	-0.171	A	1
2	$1s^2 - 1s3p$	¹ S - ¹ P°	[24.898]	0	4016390	1	3	5160	0.144	0.0118	-0.842	A	1
3	1s2s-1s2p	¹ S - ¹ P°	[2914.6]	[3439490]	3473790	1	3	0.206	0.0786	0.754	-1.105	A	1
4	1s2s - 1s3p	¹S−¹P°	[173.34]	[3439490]	4016390	1	3	269	0.364	0.208	-0.439	A	1
5	1s2p-1s3d	¹P°−¹D	[185.09]	3473790	[4014057]	3	5	825	0.706	1.29	0.326	A	1
6	1s3d-1s3p	¹D – ¹P°	[42850]?	[4014057]	4016390	5	3	5.44×10^{-4}	0.00899	6.34	-1.347	C+	1
7	1s2s1s2p	3S - 3P°	[1901.5]	[3385890]	[3438480]	3	9	0.678	0.110	2.07	- 0.481	A	1
8	1s2s - 1s3p	$^{3}\mathrm{S} - ^{3}\mathrm{P}^{\circ}$	[161.40]	[3385890]	[4005471]	3	9	285	0.334	0.533	0.001	A	1
9	1s2p-1s3d	³P°−3D	[173.98]	[3438480]	[4013259]	9	15	876	0.662	3.41	0.775	A	1
10	1s3p-1s3d	3P°-3D	[12837]?	[4005471]	[4013259]	9	15	0.0102	0.0419	15.9	-0.424	A	1

OXYGEN

O I

Ground State $1s^2 2s^2 2p^{4 3}P_2$

Ionization Potential

 $13.614 \text{ eV} = 109836.7 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
		5425.16	40	7943.15	14
811.37	9	5435.16	40	7947.20	14
877.804	9 5 5 5	5435.76	40	7947.56	14
877.885	5	5436.83	1 1	7950.83	14
878.979	5	6046.4	41	7952.18	14
879.027	5	6106.5	34	1952.16	14
879.108	5	6155.99	32	7981.97	27
879.553	5 5	6156.78	32	7982.3	27
936.011	10	6158.19	32	7982.41	27
988.581	3	6242.5	15	7987.00	27
988.658	3	6259.6	36	7987.34	27
		(0(0.4	35	7995.12	27
988.777	3	6269.4	35 37	8073.7	19
990.132	3 3 3 3	6453.64		8221.84	13
990.120	3	6454.48	37		13
990.799		6456.01	37	8227.64	
999.494	6	6653.78	24	8230.01	13
1025.77	8	7002.1	33	8232.99	13
1027.42	8	7156.80	17	8235.31	13
1028.16	8	7194.6	21	8446.5	12
1152.16	8 4	7254.4	38	8508.63	22
1217.64	7	7471.36	20	8820.45	16
1909 17		7473.23	20	9260.88	28
$1302.17 \\ 1304.87$	$egin{pmatrix} 2 \\ 2 \\ 2 \\ 1 \end{pmatrix}$	7476.45	20	9262.73	28
	2	7477.21	20	9265.99	28
1306.04	2	7479.06	20	9391.2	18
1355.61	1 1		20	11287	29
1358.52	1	7480.66	20	11201	49
3947.29	25	7771.96	11	11295.0	30
4368.30	26	7774.18	11	11297.5	30
5328.98	39	7775.40	11	11302.2	30
5329.59	39	7886.31	23	13164	31
5330.66	39	7939.49	14		

The data for the ultraviolet lines are taken from the theoretical work by Garstang [1] and Kelly [2], with the exception of one multiplet where an experimental value by Prag and Clark [3] is available. Even though the agreement between theory and experiment is quite good in this case, namely within 25%, this may be accidental, since the extensive comparisons between theory and experiment for similar transitions of C I and N I reveal many strong discrepancies. As in the case of the other two atoms, one must again expect that the theoretical values are drastically affected by configuration interaction which is entirely neglected in the calculations. Thus, only the most prominent transitions are listed, with an accuracy rating of "E".

Considerable material is available for the lines in the visible and near infrared region of the spectrum. The tabulated values are taken from Kelly's earlier self-consistent field calculations [4] (which include exchange effects in an approximate way), Vainshtein's semi-empirical calculations [5], the Coulomb approximation by Bates and Damgaard, and experimental work by Jürgens [6], Foster [7], Doherty [8], Buttrey and Gibson [9], Wiese and Shumaker [10], and Solarski and Wiese [11]. In all experiments the emission of thermal plasmas generated in stabilized arcs or shock tubes has been studied. The agreement between the various theoretical and experimental methods is often quite remarkable. This is particularly true for the multiplets at 6157, 6455, 6654, 7157, 7477, 7773, 7886, 8227, and 8446 Å for which the spread between the highest and lowest result is only 25% or less. Based on this good agreement, an accuracy of 10% for the averaged values is indicated. In arriving at best values, theoretical and experimental methods have usually been equally weighted, but among the experimental methods, the recent more advanced work [8, 9, 10, 11] is regarded as superseding the earlier work [6, 7]. For the multiplets of the moderately excited 3s-3p array, the advanced experimental methods are used exclusively, since the theoretical papers do not take into account the existence of weak intercombination lines from the upper levels. The theoretical methods are also not too reliable for two other multiplets at 3947 and 4368 Å, since cancellation in the transition integral occurs. In these cases, the experimental results are chosen. In the case of the strong multiplet $3p^{3}P - 3s'^{3}D^{\circ}$ at 7989 Å recourse is taken to a calculation by Petrie [12] because the use of approximate, hydrogen-like wave functions in this paper has given reasonable results for 3s-3p transitions, but appears to fail otherwise.

References

- [1] Garstang, R. H., Proc. Cambridge Phil. Soc. 57, 115-120 (1961).
- [2] Kelly, P. S., Astrophys. J. 140, 1247-1268 (1964).
- [3] Prag, A. B., and Clark, K. C., Phys. Rev. Letters 12, 34-35 (1964).
- [4] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964).
- [5] Vainshtein, L. A., Optika i Spektroskopiya 3, 313-321 (1957).
- [6] Jürgens, G., Z. Physik 138, 613-622 (1954).
- [7] Foster, E. W., Proc. Phys. Soc. London A 79, 94-104 (1962).
- [8] Doherty, L. R., Thesis Michigan (1961).
- [9] Buttrey, D. E., and Gibson, J. B., Technical Documentary Report No. RTD-TDR-63-3047 (1964).
- [10] Wiese, W. L., and Shumaker, Jr., J. B., J. Opt. Soc. Am. 51, 937-942 (1961).
- [11] Solarski, J., and Wiese, W. L., Phys. Rev. 135, A1236-A1241 (1964).
- [12] Petrie, W., J. Geophys. Research 55, 143-151 (1950).

O I. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	g_k	$A_{ki}(10^8 \mathrm{sec^{-1}})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
2	2p ⁴ — 2p ³ (⁴ S°)3s	³ P - ⁵ S° (1 uv) ³ P - ³ S° (2 uv)	1355.61 1358.52 1303.5 1302.17 1304.87	0.0 158.5 78.0 0.0 158.5	73768 73768 76795 76795 76795	5 3 9 5 3	5 5 3 3	1.3×10^{-5} 3.8×10^{-6} 3.8 2.1 1.3	$3.6 \times 10^{-7} \\ 1.8 \times 10^{-7} \\ 0.031 \\ 0.031 \\ 0.032 \\ 0.031$	8.0×10^{-6} 2.4×10^{-6} 1.2 0.68 0.41	$ \begin{array}{r} -5.74 \\ -6.27 \\ -0.54 \\ -0.80 \\ -1.02 \\ -1.50 \end{array} $	E E D D	1 1,2,3 1n 1n 1n
3	$2p^4 - 2p^3(^2\mathrm{D}^\circ)3s'$	³ P - ³ D° (5 uv)	989.46 988.777 990.210 990.799 988.658 990.132 988.581	226.5 78.0 0.0 158.5 226.5 0.0 158.5 0.0	76795 101143 101135 101147 101155 101147 101155 101155	1 9 5 3 1 5 3 5	3 15 7 5 3 5 3 3	0.41 2.3 2.3 1.7 1.2 0.58 0.95 0.066	0.031 0.056 0.047 0.042 0.054 0.0085 0.014 5.8×10^{-5}	0.14 1.6 0.76 0.42 0.18 0.14 0.14 0.0094	$ \begin{array}{r} -0.30 \\ -0.63 \\ -0.90 \\ -1.27 \\ -1.37 \\ -1.38 \\ -2.54 \end{array} $	E E E E E	1, 2 1n 1n 1n 1n 1n 1n
4		¹ D - ¹ D° (6 uv)	1152.16	15868	102662	5	5	4.5	0.090	1.7	-0.35	E	1, 2

O I. Allowed Transitions - Continued

		T	T		T	Т	Ī			T	Γ	T	
No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(10^8 \mathrm{sec}^{-1})$	fik	S(at.u.)	log gf	Acc rac	u- Source
5	$2p^4 - 2p^3(^2P^\circ)3s''$	³P − ³P°	878.45	78.0	113916	9	9	3.2	0.037	0.96	-0.48	E	1, 2
	2p ^o (*r)5s		877.885 879.027 877.804 878.979 879.108 879.553	0.0 158.5 0.0 158.5 158.5 226.5	113910 113921 113921 113927 113910 113921	5 3 5 3 3	5 3 3 1 5 3	2.4 0.79 1.3 3.2 0.83 1.1	0.027 0.0091 0.0092 0.012 0.016 0.038	0.39 0.079 0.13 0.11 0.14 0.11	-0.87 -1.56 -1.34 -1.43 -1.32 -1.42	E E E E	$egin{array}{c} 1n \\ 1n \\ 1n \\ 1n \\ 1n \\ 1n \end{array}$
6		¹ D - ¹ P° (7 uv)	999.494	15868	115918	5	3	3.9	0.035	0.57	-0.76	E	1, 2
7		¹ S - ¹ P° (9 uv)	1217.64	33792	115918	1	3	2.0	0.13	0.53	-0.88	Е	1, 2
8	$2p^4 - 2p^3(^4S^\circ)3d$	³ P - ³ D° (4 uv)	1026.6	78.0	97488	9	15	0.39	0.010	0.31	-1.04	D-	2
			1025.77 1027.42 1028.16 1025.77 1027.42 1025.77	0.0 158.5 226.5 0.0 158.5 0.0	97488 97488 97488 97488 97488 97488	5 3 1 5 3 5	7 5 3 5 3 3	0.39 0.29 0.20 0.097 0.16 0.011	$ \begin{vmatrix} 0.0086 \\ 0.0077 \\ 0.010 \\ 0.0015 \\ 0.0026 \\ 1.0 \times 10^{-4} \end{vmatrix} $	0.15 0.078 0.035 0.026 0.026 0.0017	$\begin{array}{r} -1.36 \\ -1.65 \\ -1.98 \\ -2.12 \\ -2.12 \\ -3.29 \end{array}$	D- D- D- D- D-	ls ls ls ls ls
9	$2p^{4} - 2p^{3}(^{2}D^{\circ})3d'$	³ P – ³ P°	811.37	78.0	123326	9	9	0.78	0.0077	0.18	-1.16	D-	2
10		¹ D - ¹ F°	936.011	15868	124326	5	7	0.83	0.015	0.23	-1.12	D-	2
11	$2p^33s - 2p^3(^4S^{\circ})3p$	⁵ S°-5P (1)	7773.4	73768	86629	5	15	0.340	0.922	118	0.664	В	4, 5, 8, 11, ca
		·	7771.96 7774.18 7775.40	73768 73768 73768	86631 86627 86625	5 5 5	7 5 3	0.340 0.340 0.340	0.431 0.307 0.184	55.1 39.3 23.6	$\begin{array}{c c} 0.333 \\ 0.186 \\ -0.035 \end{array}$	B B B	ls ls ls
12		³ S°- ³ P (4)	8446.5	76795	88631	3	9	0.280	0.898	74.9	0.430	В	$\begin{bmatrix} 4, 8, 11, \\ ca \end{bmatrix}$
13	$2p^33s' - 2p^3(^2D^{\circ})3p'$	³ D°−3D (34)	8226.8	101143	113295	15	15	0.323	0.327	133	0.691	В	4, 6, ca
			8221.84 8230.01 8232.99 8221.84 8227.64 8230.01 8235.31	101135 101147 101155 101135 101147 101147	113294 113295 113298 113295 113298 113294 113295	7 5 3 7 5 5 3	7 5 3 5 3 7 5	0.292 0.211 0.261 0.0663 0.0834 0.0261 0.0432	0.296 0.214 0.266 0.0480 0.0508 0.0371 0.0732	56.1 29.0 21.6 9.09 6.88 5.03 5.95	0.316 0.029 -0.099 -0.474 -0.595 -0.732 -0.659	B B B B B	ls ls ls ls ls ls
14		³ D°−3F (35)	7949.3	101143	113719	15	21	0.373	0.495	194	0.87	С	4,6,ca
			7947.56 7950.83 7952.18 7943.15 7947.20 7939.49	101135 101147 101155 101135 101147 101135	113714 113721 113727 113721 113727 113727	7 5 3 7 5 7	9 7 5 7 5 5	0.373 0.331 0.313 0.0417 0.058 0.00165	0.454 0.439 0.495 0.0394 0.055 0.00111	83 58 38.8 7.2 7.2 0.203	0.50 0.342 0.171 -0.56 -0.56 -2.109	000000	ls ls ls ls ls
15		3Do-3D	[6242.5]?	101143	[117158]?	15	9	0.73	0.257	79	0.59	С	4
16		¹ D°- ¹ F (37)	8820.45	102662	113996	5	7	0.261	0.426	62	0.328	С	4, ca
17		¹ D° – ¹ D (38)	7156.80	102662	116631	5	5	0.473	0.363	42.8	0.259	В	4, 11, ca
18		¹ D°- ¹ P	[9391.2]?	102662	[113307]?	5	3	0.215	0.171	26.4	-0.069	С	4

OI. Allowed Transitions - Continued

						_=							
No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	$A_{ki}(10^8 { m sec}^{-1})$	f_{ik}	S(at.u.)	$\log gf$	Accu- racy	Source
19		3P°-3S	[8073.7]?	113916	[126298]?	9	3	0.339	0.110	26.4	-0.003	С	4
20	$egin{array}{c} 2p^33s''-\ 2p^3(^2 ext{P}^o)3p'' \end{array}$	³ P° – ³ D (55)	7477.3	113916	127286	9	15	0.408	0.570	126	0.710	В	4, 6, ca
	29 (1)09	(05)	7476.45 7479.06 7480.66 7473.23 7477.21 7471.36	113910 113921 113927 113910 113921 113910	127282 127288 127291 127288 127291 127291	5 3 1 5 3 5	7 5 3 5 3 3	0.408 0.306 0.226 0.102 0.170 0.0114	0.479 0.428 0.570 0.0856 0.143 0.00571	58.9 31.6 14.0 10.5 10.5 0.702	$\begin{array}{c c} 0.379 \\ 0.108 \\ -0.244 \\ -0.369 \\ -0.369 \\ -1.545\end{array}$	B B B B	ls ls ls ls ls
21		3P°-3P	[7194.6]?	113916	[127811]?	9	9	0.478	0.371	79	0.52	С	4
22		¹P°−¹P	8508.63	115918	127668	3	3	0.289	0.314	26.4	-0.026	С	4
23		¹ P°- ¹ D (64)	7886.31	115918	128595	3	5	0.370	0.575	44.8	0.236	В	4, 6, ca
24		¹ P°- ¹ S (65)	6653.78	115918	130943	3	1	0.600	0.133	8.72	-0.400	В	4, 11, ca
25	$2p^{3}3s - 2p^{3}(^{4}S^{\circ})4p$	⁵ S°- ⁵ P	3947.29	73768	99095	5	15	0.00326	0.00229	0.149	-1.94	С	4, 7
26		³ S°- ³ P (5)	4368.30	76795	99680	3	9	0.0066	0.0056	0.242	-1.77	С	9, 11
27	$2p^{3}(^{4}\mathrm{S}^{\circ})3p - 2p^{3}(^{2}\mathrm{D}^{\circ})3s'$	³ P - ³ D° (19)	7989.9	88631	101143	9	15	0.29	0.46	110	0.61	D	12
			7995.12 7987.00 7982.41 7987.34 7981.97 [7982.3]	88631 88630 88631 88631 88631	101135 101147 101155 101147 101155 101155	5 3 1 5 3 5	7 5 3 5 3 3	0.29 0.21 0.16 0.072 0.12 0.0080	0.38 0.34 0.46 0.068 0.11 0.0046	50 27 12 9.0 9.0 0.60	0.28 0.01 -0.34 -0.47 -0.47 -1.64	D D D D D	ls ls ls ls ls
28	$2p^{3}3p - 2p^{3}(^{4}S^{\circ})3d$	⁵ P - ⁵ D°	9263.9	86629	97420	15	25	0.419	0.90	412	1.130	С	4, ca
			9265.99 9262.73 9260.88 9265.99 9262.73 9260.88 9265.99 9262.73 9260.88	86631 86627 86625 86631 86627 86625 86631 86627 86625	97420 97420 97420 97420 97420 97421 97420 97421 97421	7 5 3 7 5 3 7 5	9 7 5 7 5 3 5 3	0.419 0.280 0.147 0.140 0.245 0.315 0.0279 0.105 0.420	0.69 0.50 0.315 0.180 0.315 0.405 0.0257 0.081 0.0180	148 77 28.8 38.4 48.0 37.0 5.5 12.4 16.5	0.69 0.401 - 0.025 0.100 0.197 0.085 - 0.75 - 0.393 - 0.268	000000000	ls ls ls ls ls ls ls ls ls
29		3B-3D0	11287	88631	97488	9	15	0.235	0.75	250	0.83	С	4
30	$2p^{3}3p - 2p^{3}(^{4}S^{\circ})4s$	⁵ P- ⁵ S° (7)	11299	86629	95476	15	5	0.272	0.173	97	0.415	С	4, ca
	<u>μ</u> ρ (Ο)πο	(1)	11302.2 11297.5 11295.0	86631 86627 86625	95476 95476 95476	7 5 3	5 5 5	0.127 0.091 0.054	0.173 0.173 0.173	45.1 32.2 19.3	0.084 -0.062 -0.284	C C C	ls ls ls
31		³ P- ³ S°	13164	88631	96226	9	3	0.188	0.163	63	0.165	C	4, ca

O I. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	$A_{ki}(10^8 \mathrm{sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
32	$\begin{vmatrix} 2p^33p - \\ 2p^{3(4}S^{\circ})4d \end{vmatrix}$	⁵ P - ⁵ D° (10)	6157.3	86629	102865	15	25	0.0701	0.0664	20.2	-0.001	В	4, 11, ca
			6158.19 6156.78 6155.99 6158.19 6156.78 6155.99 6158.19 6156.78 6155.99	86631 86627 86625 86631 86627 86625 86631 86627 86625	102865 102865 102865 102865 102865 102865 102865 102865	7 5 3 7 5 3 7 5 3	9 7 5 7 5 3 5 3 1	0.0468 0.0245 0.0234 0.0410 0.0527 0.00467 0.0175	0.0512 0.0372 0.0232 0.0133 0.0233 0.0299 0.00190 0.00598	7.27 3.77 1.41 1.89 2.36 1.82 0.269 0.606	-0.445 -0.731 -1.158 -1.031 -0.934 -1.047 -1.877 -1.524	B B B B B B	ls ls ls ls ls ls
33		³ P- ³ D° (21)	7002.1	88631	102908	9	15	0.0702	0.0133	0.808 8.3	-1.399 -0.446	C B	ls 4, 6, ca
34	$2p^{3}3p' - 2p^{3}(^{2}D^{\circ})4d'$	³ D - ³ F° (43)	[6106.5]	113295	[129667]	15	21	0.0460	0.0360	10.9	-0.268	С	4,6,ca
35		³ F − ³ F° (48)	[6269.4]	113719	[129667]	21	21	0.0198	0.0117	5.1	-0.61	С	4, 6, ca
36		³ F → ³ G° (50)	6259.6	113719	129690	21	27	0.063	0.0475	20.6	-0.001	С	4, 6, ca
37	$2p^{3}3p - 2p^{3}(^{4}S^{\circ})5s$	⁵ P - ⁵ S° (9)	6455.0	86629	102116	15	5	0.0710	0.0148	4.71	- 0.654	B 4	1, 11, ca
ļ			6456.01 6454.48 6453.64	86631 86627 86625	102116 102116 102116	7 5 3	5 5 5	0.0331 0.0237 0.0142	0.0148 0.0148 0.0148	2.20 1.57 0.942	$ \begin{array}{c c} -0.985 \\ -1.131 \\ -1.353 \end{array} $	B B B	ls ls ls
38		³ P - ³ S° (20)	7254.4	88631	102412	9	3	0.062	0.0162	3.48	-0.84	C	4, 6, ca
39	$2p^{3}3p - 2p^{3}(^{4}S^{\circ})5d$	⁵ P - ⁵ D° (12)	5330.0	86629	105385	15	25	0.0197	0.0140	3.68	-0.68	С	4, 6, 7,
			5330.66 5329.59 5328.98 5330.66 5329.59 5328.98 5330.66 5329.59 5328.98	86631 86627 86625 86631 86627 86625 86631 86627 86625	105385 105385 105385 105385 105385 105385 105385 105385 105385	7 5 3 7 5 3 7 5 3	9 7 5 7 5 3 5 3 1	0.0148 0.00131 0.00491	$\begin{array}{c} 0.0107 \\ 0.0078 \\ 0.00490 \\ 0.00279 \\ 0.00489 \\ 0.0063 \\ 4.00 \times 10^{-4} \\ 0.00125 \\ 0.00279 \end{array}$	1.32 0.69 0.258 0.343 0.429 0.331 0.0491 0.110 0.147	-1.124 -1.407 -1.83 -1.71 -1.61 -1.72 -2.55 -2.203 -2.077	00000000	ca ls ls ls ls ls ls
40	2p ³ 3p - 2p ³ (⁴ S°)6s	⁵ P - ⁵ S° (11)	5436.1	86629	105019	15	5	0.0305	0.00450	1.21	-1.170	C	4, 5, 6,
			5436.83 5435.76 5435.16	86631 86627 86625	105019 105019 105019	7 5 3	5	0.0102	0.00451 0.00450 0.00451	0.57 0.403 0.242	$ \begin{array}{c c} -1.50 \\ -1.65 \\ -1.87 \end{array} $	C C C	7, ca ls ls ls
41		³ P - ³ S° (22)	6046.4	88631	105165	9	3	0.0234	0.00427	0.77	-1.415		1, 6, ca

The list of forbidden lines for O I is a very interesting one since it contains some of the very few cases of experimental determinations of forbidden line strengths. This fortunate circumstance is due to the appearance of strong forbidden lines in the aurora, so that the latter could be used as a "light source." Extensive measurements by Omholt [1] have given, for the 5577 Å line, a transition probability of 1.43 sec⁻¹ ± 14%, whereas Garstang [2] with a refined calculation has obtained 1.25 sec⁻¹. For another case, namely the lifetime for the ¹D state, the averaged experimental result [3, 4] is approximately 160 sec, whereas the theory [5, 7] gives 135 sec. In both instances the mean value is adopted. Attempts have also been made in the laboratory to obtain experimental results, but they are all subject to some doubt and are therefore omitted in this compilation.

Aside from applications in atmospheric physics, the importance of the above lines lies in the circumstance that the experimental determinations give a reliable indication of the uncertainties in the theory of forbidden line strengths which in itself does not allow error estimates.

A number of other transitions in the p^4 configuration have been investigated by several authors. All electric quadrupole line strengths are taken from Garstang [6], since his estimate of the quadrupole integral s_q is the most advanced one available. Naqvi [5], and Yamanouchi and Horie [7], in their calculations of magnetic dipole line strengths, retain the spin-spin and spin-other-orbit parameter in the transformation coefficients, while Garstang neglects it. Thus, their values are used for the ${}^3P - {}^1D$ and ${}^3P - {}^1S$ transitions, where this gives an improvement of about 15%. For the latter line, however, only Yamanouchi and Horie's [7] data are employed, since Naqvi's treatment of configuration interaction effects, which are important for this line, appears to be inadequate (see also general introduction).

References

- [1] Omholt, A., Geofys. Publikasjoner Norske Videnskaps. Akad. Oslo 21, 1-38 (1959).
- [2] Garstang, R. H., The Airglow and the Aurorae, 324-327 (ed. Armstrong and Dalgarno, Pergamon Press, New York, 1956).
- [3] Stoffregen, W., and Derblom, H., Nature 185, 28-29 (1960).
- [4] Omholt, A., Planetary and Space Science 2, 246-248 (1960).
- [5] Nagvi, A. M., Thesis Harvard (1951).
- [6] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 111, 115-124 (1951).
- [7] Yamanouchi, T., and Horie, H., J. Phys. Soc. Japan 7, 52-56 (1952).

OI. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gĸ	Type of Transition	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$2p^4 - 2p^4$	3P - 3P	$[63.07 \times 10^{4}]$ $[63.07 \times 10^{4}]$ $[44.14 \times 10^{4}]$ $[14.70 \times 10^{5}]$	0.0 0.0 0.0 158.5	158.5 158.5 226.5 226.5	5,5 5 3	3 1 1	e m e m	1.30×10^{-11} 8.95×10^{-5} 1.00×10^{-10} 1.70×10^{-5}	2.32 2.50 1.03 2.00	C B C B	5, 6, 7 6 5, 6, 7
2		³ P - ¹ D (1 F)	6300.23 6300.23 6363.88 6363.88 [6391.6]	0.0 0.0 158.5 158.5 226.5	15867.7 15867.7 15867.7 15867.7 15867.7	5 3 3	5 5 5 5	e m e m e	$\begin{array}{c} 2.4\times10^{-5} \\ 5.1\times10^{-3} \\ 3.2\times10^{-6} \\ 1.64\times10^{-3} \\ 1.1\times10^{-6} \end{array}$	7.1×10^{-4} 2.37×10^{-4} 9.9×10^{-5} 7.9×10^{-5} 3.5×10^{-5}	D C D C	3, 4, 5, 7 6 3, 4, 5, 7 6
3		³ P - ¹ S (2 F)	[2958.4] 2972.3	0.0 158.5	33792.4 33792.4	5 3	1	e m	3.7×10 ⁻⁴ 0.067	5.0×10^{-5} 6.5×10^{-5}	D C	6 7
4		¹ D - ¹ S (3 F)	5577.35	15867.7	33792.4	5	1	e	1.34	4.31	C+	1, 2

Ground State

 $1s^2 2s^2 2p^3 {}^4S^{\circ}_{3/2}$

Ionization Potential

 $35.108 \text{ eV} = 283244 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
424.66	22	3007.4	84	3488.18	36
429.918	10			3496.27	36
		3007.74	85		
430.041	10	3008.28	85	3712.75	25
430.177	10	3008.8	84	3727.33	25
440.58	18	3009.7	85	3729.34	73
442.03	17	3009.81	85	3735.9	73
445.62	16	3010.0	85	3735.94	73
464.78	21	3010.5	85	3739.92	69
468.77	20	3012.8	85	3749.49	25
470.41	19	3013.0	85	3762.63	69
481.66	1.0	2010.07	0.4	9555	
	13	3013.37	84	3777.60	69
483.752	12	3014.0	84	3794.48	70
483.796	12	3019.8	84	3803.14	70
484.03	12	3032.08	86	3821.68	70
485.086	11	3032.50	86	3830.45	70
485.47	11	3047.5	86	3833.10	43
485.515	11	3113.71	66	3842.82	42
515.498	15	3122.62	66	3843.58	43
515.640	15	3124.02	66	3847.89	42
517.937	14	3129.44	66	3850.81	42
E10 040	1,4	07.04.00			
518.242	14	3134.32	66	3851.04	42
539.086	5	3134.82	66	3851.47	43
539.547	5 5	3138.44	66	3856.16	42
539.853	5	3139.77	66	3857.18	43
555.056	8	3270.9	71	3863.50	42
555.121	8	3270.98	71	3864.13	41
600.585	9	3273.52	71	3864.45	42
616.291	6	3277.69	67	3864.68	
616.363	6	3282.0		-	42
617.051	6	3287.59	39 67	3872.45 3874.10	41
		3207.39	07	3074.10	41
644.148	4	3290.13	67	3875.82	43
672.948	7 7	3295.13	67	3882.20	42
673.768	7	3301.56	67	3882.45	41
718.484	2	3305.15	67	3883.15	42
718.562	2 2	3306.60	67	3893.53	42 41
796.661	3	2277 90	20		
832.754		3377.20	38	3896.30	41
	1	3390.25	38	3907.45	41
833.326	1	3407.38	72	3911.96	33
834.462	1	3409.84	72	3912.09	33
2733.34	65	3447.98	68	3919.29	33
2747.46	65	3460.6	26	3926.58	41
3000.1	84	3470.42	68		41
3002.2	84			3945.05	30
3006.0		3470.81	68	3954.37	30
	84	3474.94	37	3967.44	47
3007.08	85	3479.7	26	3973.26	30

List of tabulated lines - Continued

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
3982.72	30	4272.3	34	4596.17	31
3985.46	47	4275.52	78	4598.2	50
4060.8	82	4276.71	77	4602.11	81
4069.64	40	4276.71	78	4002.11	01
4069.64	40	4270.71	10	4609.42	81
4009.70	40	4977.40	[70		
4072.16	40	4277.40	78	4613.11	81
4075.87	40	4277.90	78	4638.85	23
4078.86	40	4281.40	77	4641.81	23
4084.66	46	4282.82	77	4649.14	23
4085.12	40	4282.96	78	4650.04	20
1000.12	70	4283.13	78	4650.84	23
4087.16	76	4283.75	78	4661.64 4673.75	23
4089.30	76	4284.0	78	4676.23	23 23
4092.94	40	4284.4	78		23 69
4094.18	40	4288.8	77	4690.97	62
4095.63	76	4200.0	''	4691,47	62
2070100	.0	4288.83	77	4696.36	23
4096.18	76	4294.82	77	4698.48	60
4096.54	46	4295.5	29	4699.21	49
4097.26	45	4303.82	77	4699.21	60
4097.26	76	4317.14	24	7077.21	00
4103.02	45	102.12	-*	4701.23	62
		4319.63	24	4701.76	62
4104.74	45	4319.93	63	4703.18	60
4105.00	45	4325.77	24	4705.36	49
4106.03	40	4328.62	63	4710.04	48
4108.75	76	4329.0	29		
4109.3	76			4741.71	49
		4336.87	24	4751.34	48
4109.8	59	4340.36	79	4752.70	48
4110.20	59	4342.00	79	4845.0	54
4110.80	45	4345.56	24	4856.49	53
4112.03	46	4347.43	32		
4113.82	59			4856.76	53
	1	4349.1	[32]	4861.03	61
4114.4	76	4349.43	24	4864.95	53
4119.22	45	4351.27	32	4871.58	61
4120.28	45	4351.5	32	4872.2	61
4120.55	45	4359.38	51		
4121.48	44	1055.00		4890.93	52
		4366.90	24	4906.88	52
4126.1	76	4369.28	51	4924.60	52
4129.34	44	4371.3	79	4941.12	56
4132.81	44	4395.95	51	4943.06	56
4140.74	44	4406.02	51	1055 70	E 4
4141.96	64	4414.03	90	4955.78 5160.02	56 55
		4414.91	28	5176.00	55 55
4142.08	64	4416.98	28	5176.00	55
4142.24	64	4443.05	57	5206.73	55
4143.4	64	4443.7	57	0200.73	33
4143.52	64	4447.7	57	6627.62	75
4143.77	64	4440.01	[7	6640.90	$\frac{13}{27}$
		4448.21	57 28	6666.94	75
4145.6	64	4452.38	35	6678.19	75
4145.90	64	4465.40	1 11	6718.1	75
4146.09	64	4466.6	80 35	0.20.1	
4153.30	44	4467.88	33	6721.35	27
4156.54	44	4469.32	35	6810.6	74
		4409.32 4489.48	80	6844.1	74
4169.23	44	4409.46	80	6846.97	74
4185.46	58	4491.25 4539.6	50	6869.74	74
4189.6	58	4539.6 4563.2	50	000,111	
4189.79	58	4303.2	50	6885.07	74
4253.9	83	4590.97	31	6895.29	74
Ī		4596.0	31	6906.54	74
4263.2	77	4030.0		6908.11	74
2200.2		l .	`	6910.75	74

Most data on the vacuum ultraviolet lines are taken from the self-consistent field calculations by Kelly [1] in which exchange effects have been considered. The data for the strong $2s^22p^3-2s2p^4$ and $2p^3-2p^23s$ transitions are probably quite uncertain since these are sensitively affected by configuration interaction which has not been taken into account. Two transitions of the $2s^22p^3-2s2p^4$ array could be taken, however, from the calculations of Levinson et al. [2] in which the effects of configuration interaction have been approximately included.

For the multiplets in the visible four data sources have been selected: simplified self-consistent field calculations by Kelly [3] (with exchange effects approximately taken into account), the Coulomb approximation by Bates and Damgaard, emission measurements by Mastrup and Wiese [4], and intermediate coupling calculations by Garstang [5]. The absolute multiplet values have been obtained by averaging the results of the first three methods mentioned. The agreement is quite remarkable, often within 30%. For the breakdown of the multiplets into lines the intermediate coupling calculations by Garstang [5] and, whenever available, the experimental results by Mastrup and Wiese [4] are employed, both normalized to the absolute total multiplet values. The two sets of data agree very well, while LS-coupling values show large deviations for some multiplets of the 3p-3d array.

The absolute values of the intercombination lines are obtained by normalizing Garstang's coupling calculations [5] to the Coulomb approximation, as he has proposed in his paper.

- [1] Kelly, P. S., Astrophys. J. 140, 1247-1268 (1964).
- [2] Levinson, I. B., Bolotin, A. B., and Levin, L. I., Trudy Vil'nyusskogo Univ. 5, 49-55 (1956).
- [3] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964).
- [4] Mastrup, F., and Wiese, W. L., Z. Astrophys. 44, 259-279 (1958).
- [5] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 114, 118-133 (1954).

O II. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	$A_{ki}(10^8~{\rm sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p^3 - 2s2p^4$	⁴ S°-4P (1 uv)	833.80	0.0	119933	4	12	14	0.43	4.7	0.23	E	1
			834.462 833.326 832.754	0.0 0.0 0.0	119838 120001 120084	4 4 4	6 4 2	13 14 14	0.21 0.15 0.07	2.3 1.6 0.77	$ \begin{array}{r} -0.08 \\ -0.23 \\ -0.55 \end{array} $	E E E	ls ls ls
2		$^{2}D^{\circ} - ^{2}D$ (4 uv)	718.54	26817	165991	10	10	32	0.25	5.9	0.40	E	1
			718.484 718.562 718.484 718.562	26808 26829 26808 26829	165988 165996 165996 165988	6 4 6 4	6 4 4 6	30 29 3.1 2.1	0.23 0.22 0.016 0.024	3.3 2.1 0.23 0.23	$ \begin{array}{r} 0.14 \\ -0.05 \\ -1.01 \\ -1.01 \end{array} $	E E E	ls ls ls
3		² P°- ² D (11 uv)	796.661	40467	165991	6	10	4.4	0.070	1.1	-0.38	E	2
4		² P°- ² S (13 uv)	644.148	40467	195710	6	2	72	0.15	1.9	-0.05	Е	2
5	$2p^{3} - 2p^{2}(^{3}P)3s$	⁴ S°- ⁴ P (2 uv)	539.37	0.0	185402	4	12	8.6	0.11	0.80	-0.35	E	1
	-p (1)00	(2 47)	539.086 539.547 539.853	0.0 0.0 0.0	185499 185341 185235	4 4 4	6 4 2	8.6 8.6 8.6	0.056 0.037 0.019	$0.40 \\ 0.27 \\ 0.13$	$-0.65 \\ -0.82 \\ -1.13$	E E E	ls ls ls
6		$ \begin{array}{c c} ^2D^\circ - ^2P \\ (5 \text{ uv}) \end{array} $	616.56	26817	189008	10	6	18	0.061	1.2	-0.21	E	1
		(<i>o</i> uv)	616.291 617.051 616.363	26808 26829 26829	189068 188888 189068	6 4 4	4 2 4	16 18 1.8	0.061 0.051 0.010	$0.74 \\ 0.41 \\ 0.083$	-0.44 -0.69 -1.39	E E E	ls ls ls

OII. Allowed Transitions—Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(10^8~{ m sec^{-1}})$	fik	S(at.u.)	log gf	Accu- racy	Source
7		² P° – ² P (12 uv)	673.22	40467	189008	6	6	9.2	0.063	0.84	-0.42	E	1
			672.948 673.768 673.768 672.948	40467 40468 40467 40468	189068 188888 188888 189068	4 2 4 2	$\begin{array}{ c c }\hline 4\\2\\2\\4\\\end{array}$	7.7 6.2 3.1 1.5	0.052 0.042 0.010 0.021	0.46 0.19 0.093 0.093	$ \begin{array}{r r} -0.68 \\ -1.08 \\ -1.38 \\ -1.38 \end{array} $	E E E	ls ls ls ls
8	$\begin{vmatrix} 2p^3 - 2p^2(^1\mathrm{D})3s' \end{vmatrix}$	$^{2}D^{\circ}-^{2}D$ (6 uv)	555.08	26817	206972	10	10	15	0.067	1.2	-0.17	E	1
	2p (B)63	(0 uv)	555.056 555.121 555.056 555.121	26808 26829 26808 26829	206971 206972 206972 206971	6 4 6 4	6 4 4 6	14 13 1.5 0.97	0.063 0.061 0.0045 0.0067	0.69 0.44 0.049 0.049	$ \begin{array}{r r} -0.42 \\ -0.62 \\ -1.57 \\ -1.57 \end{array} $	E E E	ls ls ls ls
9		² P°- ² D (14 uv)	600.585	40467	206972	6	10	4.3	0.039	0.46	-0.63	E	1
10	$2p^3 - 2p^2(^3P)3d$	4S°-4P (3 uv)	430.09	0.0	232511	4	12	39	0.32	1.8	0.11	D-	1
	2p (1)00	(5 44)	430.177 430.041 429.918	0.0 0.0 0.0	232463 232536 232603	4 4 4	6 4 2	39 39 39	0.16 0.11 0.054	0.91 0.61 0.31		D- D- D-	ls ls ls
11		² D° – ² F (8 uv)	485.27	26817	232889	10	14	25	0.12	1.9	0.08	D-	1
		(0 44)	485.086 485.515 [485.47]	26808 26829 26808	232959 232796 232796	6 4 6	8 6 6	25 23 1.6	0.12 0.12 0.0058	1.1 0.78 0.056	$ \begin{array}{r} -0.16 \\ -0.31 \\ -1.46 \end{array} $	D- D- D-	ls ls ls
12		² D° – ² P	483.91	26817	233468	10	6	0.84	0.0018	0.028	-1.75	D-	1
		(9 uv)	483.976 483.752 [484.03]	26808 26829 26829	233430 233544 233430	6 4 4	4 2 4	0.76 0.84 0.084	0.0018 0.0015 3.0 × 10 ⁻⁴	0.017 0.0094 0.0019	-1.97 -2.23 -2.93	D- D- D-	ls ls ls
13		² D° - ² D (10 uv)	481.66	26817	234434	10	10	5.4	0.019	0.30	-0.73	D-	1
14		² P° – ² P	518.13	40467	233468	6	6	11	0.045	0.46	- 0.57	D-	1
		(16 uv)	518.242 517.937 517.937 518.242	40467 40468 40467 40468	233430 233544 233544 233430	4 2 4 2	4 2 2 4	9.4 7.5 3.7 1.9	0.038 0.030 0.0075 0.015	0.26 0.10 0.051 0.051	-0.82 -1.22 -1.52 -1.52	D – D – D – D –	ls ls ls
15		² P°- ² D (17 uv)	515.55	40467	234434	6	10	15	0.097	0.98	-0.24	D —	1
		(11 uv)	515.498 515.640 515.640	40467 40468 40467	234454 234402 234402	4 2 4	6 4 4	15 12 2.4	0.087 0.097 0.0097	0.59 0.33 0.066	$ \begin{array}{r} -0.46 \\ -0.71 \\ -1.41 \end{array} $	D – D – D –	ls ls ls
16	$2p^3 - 2p^2(^1\mathrm{D})3d'$	² D°− ² F	445.62	26817	251222	10	14	26	0.11	1.6	0.04	D-	1
17	-	² D°−2D	442.03	26817	253048	10	10	21	0.063	0.91	-0.20	D-	1
18		² D° − ² P	440.58	26817	253791	10	6	7.7	0.013	0.20	-0.87	D —	1
19		² P°− ² D	470.41	40467	253048	6	10	6.5	0.036	0.33	-0.67	D —	1
20		² P°- ² P	468.77	40467	253791	6	6	12	0.039	0.36	-0.64	D –	1
21		² P°- ² S	464.78	40467	255622	6	2	16	0.017	0.16	-0.99	D –	1
22	$2p^{3} - 2p^{2}(^{1}\mathrm{S})3d''$	² P°- ² D	[424.66]	40467	[275951]	6	10	19	0.086	0.72	-0.29	D-	1

OII. Allowed Transitions—Continued

						_							
No	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$) g	i E	$A_{ki}(10^8~{ m sec}^2$	-1) fik	S(at.u.)	log gf	Acci	Source
23	$2p^23s - 2p^2(^3P)3p$	4P-4D° (1)	4651.5	185402	206895	5 12	$2 \mid 2$	0 1.02	0.55	101	0.82	С	3, 4, ca
	2p (1)0p	(1)	4649.14	185499	207003	$\mid \epsilon$	5	8 1.04	0.448	41.1	0.429	C	4n, 5n
			4641.81	185341	206878		- 1	6 0.79	0.381	23.3	0.183	C	4n, 5n
	1		4638.85	185235	206786			4 0.422	0.272	8.3	-0.264	C	4n, 5n
	}	Ì	4676.23	185499	206878			6 0.257	0.084	7.8	-0.296	Č	4n, 5n
	-		4661.64	185341	206786			4 0.52	0.169	10.4	-0.169	l č	4n, 5n
	1		4650.84	185235	206731			2 0.82	0.265	8.1	-0.277	Č	4n, 5n
	1	J	4696.36	185499	206786			4 0.0372	0.0082	0.76	-1.308	Č	4n, 5n
			4673.75	185341	206731			2 0.131	0.0214	1.32	-1.067	č	4n, 5n
24		⁴ P - ⁴ P° (2)	4341.3	185402	208431	12	: 1:	2 1.05	0.297	51	0.55	C	3, 4, ca
		(2)	4349.43	185499	208484			5 0.74	0.211	18.1	0.102	C	4n, 5n
	}	1	4336.87	185341	208392			1 0.164	0.0462	2.64	-0.73	Č	4n, 5n
			4325.77	185235	208346				0.0435	1.24	-1.060	Ċ	4n, 5n
		[4366.90	185499	208392	6		4 0.50	0.096	8.3	-0.239	C C C	4n, 5n
	}	1	4345.56	185341	208346	4			0.125	7.2	-0.300	C	4n, 5n
			4319.63	185341	208484	4			0.119	6.8	-0.321	C	4n, 5n
	1		4317.14	185235	208392	2	4	0.424	0.237	6.7	-0.325	C	4n, 5n
25		$\begin{vmatrix} ^{4}\mathbf{P} - ^{4}\mathbf{S}^{\circ} \\ (3) \end{vmatrix}$	3735.9	185402	212162	12	4	1.77	0.123	18.2	0.170	С	3, 4, ca
		į.	3749.49	185499	212162	6	4	⊦ 0.90	0.127	9.4	-0.119	С	4n, 5n
			3727.33	185341	212162	4		0.59	0.122	6.0	-0.312	Č	4n, 5n
26	l	4P _ 2P°	3712.75	185235	212162	2	4	0.280	0.116	2.83	-0.64	č	4n, 5n
		1	[3479.7]	185499	214229	6	4	0.00101	1.22×10^{-4}	0.0084	-3.135		
			[3460.6]	185341	214229	4			2.76×10^{-4}	0.0126	-2.96	C	5 5
27		² P - ² S° (4)	6694.4	189008	203942	6	2	0.287	0.064	8.5	-0.414	C	3, ca
1			6721.35	189068	203942	4	2	0.189	0.064	5.7	-0.59	C	,
		1	6640.90	188888	203942	2	2		0.065	2.83	-0.89	C	ls ls
28		$^{2}P-^{2}D^{\circ}$ (5)	4418.1	189008	211636	6	10	1.13	0.55	48.1	0.52	С	3, 4, ca
			4414.91	189068	211713	4	6	1.15	0.50	29.3	0.205	С	4 -
			4416.98	188888	211522	2	4		0.55	16.1	0.305 0.044	č	4n, 5n
			4452.38	189068	211522	4	4		0.0457	2.68	$\begin{bmatrix} 0.044 \\ -0.74 \end{bmatrix}$	č	4n, 5n $4n, 5n$
29		2P-4S°											, 011
		1	[4329.0]	189068	212162	4	4	0.00157	$ _{4.42\times10^{-4}}$	0.0050	0.55	_	
			[4295.5]	188888	212162	2	4			0.0252 0.00420	-2.75	Č	5
30		² P- ² P° (6)	3966.9	189008	214210	6	6	1.46	0.343	26.9	0.314	$\begin{bmatrix} \mathbf{c} \\ \mathbf{c} \end{bmatrix}$	5
		(0)	3973.26	189068	214229	4	1	107					3, 4, ca
{		ſ	3954.37	188888	214170	2	$\begin{array}{c c} 4 \\ 2 \end{array}$	1.27	0.300	j 15.7	0.080	\mathbf{C}	4n, 5n
		1	3982.72	189068	214170	4	$\frac{2}{2}$	0.95	0.222	5.8	-0.353	C	4n, 5n
			3945.05	188888	214229	2	4	$\left[egin{array}{c} 0.447 \ 0.217 \end{array} ight]$	0.053	2.79	-0.67	C	4n, 5n
31	0_22.7	ar area		1	211227	-	'#	0.217	0.101	2.63	-0.69	C	4n, 5n
31	$\begin{vmatrix} 2p^23s' - \\ 2p^2(^1\mathrm{D})3p' \end{vmatrix}$	$^{2}D - ^{2}F^{\circ}$ (15)	4593.2	206972	228737	10	14	1.11	0.490	74	0.69	c	3, 4, ca
- 1	1	}	4590.97	206971	228747	6	8	1.11	0.466	42.3	0.447		-
- 1	- 1	Ī	4596.17	206972	228723	4	6	1.03	0.487	29.5	0.290	$\frac{c}{c}$	5n
			[4596.0]	206971	228723	6	6	0.079	0.0251	2.28	-0.82	C	5n 5n
32		$^{2}D - ^{2}D^{\circ}$	4349.7	206972	229955	10	10	1.04	0.204	40.4			
		(16)	4251 07	1	1	- 1		-	0.296	42.4	0.471	C	3, 4, ca
	ĺ	1	4351.27 4347.43	206971	229947	6	6	0.97	0.275	23.6	0.217	c	5n
\			[4349.1]	206972 206971	229968	4	4	0.94	0.267	15.3	0.029	č	5n 5n
ł	ì		[4351.5]		229968	6	4	0.102	0.0192	1.65	-0.94	č	5n
1	1	1	[4001.0]	206972	229947	4	6	0.075	0.0318		-0.90	Č	5n
								'		4	- 1	i	J.,

O II. Allowed Transitions—Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(10^8~{ m sec}^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
33		² D - ² P° (17)	3914.4	206972	232511	10	6	ĺ	0.193	24.9	0.286	С	3, 4, ca
			3911.96 3919.29 3912.09	206971 206972 206972	232527 232480 232527	6 4 4	4 2 4	1.27 1.40 0.137	0.194 0.161 0.0314	15.0 8.3 1.62	$ \begin{array}{r} 0.066 \\ -0.192 \\ -0.90 \end{array} $	C C C	5n 5n 5n
34	$\begin{vmatrix} 2p^2 3s'' - \\ 2p^2 (^1S) 3p'' \end{vmatrix}$	² S − ² P°	[4272.3]	[226851]	[250251]	2	6	1.08	0.89	25.0	0.250	С	3, ca
35	$\begin{vmatrix} 2s2p^33s''' - \\ 2s2p^3(^5S^\circ) \\ 3p''' \end{vmatrix}$	⁶ S°-6P (94)	4467.2	[245396]	[267775]	6	18	0.92	0.83	73	0.70	С	ca
	op .		4465.40 4467.88 4469.32	[245396] [245396] [245396]	[267783] [267771] [267763]	6 6 6	8 6 4	0.92 0.92 0.92	0.367 0.275 0.184	32.4 24.3 16.2	0.343 0.218 0.042	C C C	ls ls ls
36	$2p^{2}3p - 2p^{2}(^{3}P)3d$	² S°-4P (7)	3496.27 3488.18	203942 203942	232536 232603	2 2	4 2	0.0111 0.0084	0.00408 0.00152	0.094 0.0350	-2.088 -2.52	C C	5 5
37		² S°-4D (8)	3474.94	203942	232712	2		0.0085	0.00153	0.0351	-2.51	С	
38		² S°- ² P	3385.9	203942	233468	2	6	1.86	0.96	21.4	0.283	C	5 3, <i>ca</i>
		(9)	3390.25 3377.20	203942 203942	233430 233544	2 2	4 2	1.86 1.88	0.64 0.321	14.3 7.1	0.108 - 0.193	C	ls ls
39		² S°- ² D	[3282.0]	203942	234402	2	4	0.0168	0.0054	0.117	-1.97	C	5
40		⁴ D° - ⁴ F (10)	4074.8	206895	231429	20	28	1.98	0.69	185	1.140	С	3, ca
		(10)	4075.87 4072.16 4069.90 4069.64 4092.94 4085.12 4078.86 4106.03 4094.18	207003 206878 206786 206731 207003 206878 206786 207003 206878	231530 231428 231350 231296 231428 231350 231296 231350 231296	8 6 4 2 8 6 4 8 6	10 8 6 4 8 6 4 6 4	1.70 1.49 1.39 0.278 0.478 0.55 0.0187	0.62 0.56 0.55 0.69 0.070 0.120 0.138 0.00354 0.0065	66 45.3 29.7 18.5 7.5 9.7 7.4 0.383 0.53	$\begin{array}{c} 0.69 \\ 0.53 \\ 0.346 \\ 0.140 \\ -0.253 \\ -0.144 \\ -0.259 \\ -1.55 \\ -1.406 \end{array}$	C C C C C C C C C C	ls ls ls ls ls ls ls ls
41		⁴ D°- ⁴ P	3902.7	206895	232511	20	12	0.063	0.0086	2.21	-0.76	С	3, ca
			3926.58 3896.30 3872.45 3907.45 3882.45 3864.13 3893.53 3874.10	207003 206878 206786 206878 206786 206731 206786 206731	232463 232536 232603 232463 232536 232603 232463 232536	8 6 4 6 4 2 4 2	6 4 2 6 4 2 6 4	0.0397 0.0321 0.0113 0.0204 0.0323 0.00126	$\begin{array}{c} 0.0085 \\ 0.0060 \\ 0.00361 \\ 0.00258 \\ 0.00462 \\ 0.0072 \\ 4.31 \times 10^{-4} \\ 0.00144 \end{array}$	0.88 0.464 0.184 0.199 0.236 0.184 0.0221 0.0368	-1.165 -1.442 -1.84 -1.81 -1.73 -1.84 -2.76 -2.54	C C C C C C C C	ls ls ls ls ls ls
42		4D°-4D	3867.2	206895	232746	20	20	0.58	0.130	33.2	0.416	С	3, ca
		(12)	3882.20 3864.45 3851.04 3847.89 3883.15 3864.68 3856.16 3863.50 3850.81 3842.82	207003 206878 206786 206731 207003 206878 206786 206786 206786 206731	232754 232748 232746 232712 232748 232746 232712 232754 232754 232748	8 6 4 2 8 6 4 6 4 2	8 6 4 2 6 4 2 8 6 4	0.334 0.236 0.295 0.109 0.204 0.293 0.083 0.137	0.111 0.075 0.052 0.066 0.0185 0.0304 0.0327 0.0248 0.0458 0.066	11.4 5.7 2.66 1.66 1.89 2.32 1.66 1.89 2.32 1.66	$\begin{array}{c} -0.050 \\ -0.348 \\ -0.68 \\ -0.83 \\ -0.74 \\ -0.88 \\ -0.83 \\ -0.74 \\ -0.88 \end{array}$	0000000000	ls ls ls ls ls ls ls ls ls

O II. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gi	$A_{ki}(10^8~{ m sec^{-1}})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
43		⁴ D° – ² F (13)	3851.47 3857.18 3875.82	207003 206878 207003	232959 232796 232796	8 6 8	6	0.0448	0.0050 0.0100 0.00161	0.50 0.76 0.164	-1.402 -1.222 -1.89	00000	5 5 5 5 5
			3833.10 3843.58	206878 206786	232959 232796	6 4			0.00279 0.0074	0.211 0.374	-1.78 -1.53	C	5 5
44		⁴ P°− ⁴ P (19)	4151.7	208431	232511	12	12	1.01	0.261	42.8	0.496	С	3, 4 ca
		(12)	4169.28 4140.74 4121.48 4156.54 4129.34 4153.30 4132.81	208484 208392 208346 208484 208392 208392 208346	232463 232536 232603 232536 232603 232463 232536	6 4 2 6 4 4 2	6 4 2 4 2 6 4	0.220 0.0236 0.93 0.157 0.150 0.77 0.84	0.057 0.0061 0.237 0.0270 0.0191 0.298 0.430	4.73 0.331 6.4 2.22 1.04 16.3 11.7	-0.463 -1.61 -0.324 -0.79 -1.116 0.076 -0.066	CCCCCC	5n 5n 5n 5n 5n 5n
45		⁴ P° - ⁴ D (20)	4111.4	208431	232746	12	20	1.49	0.63	102	0.88	С	3, ca
		(20)	4119.22 4104.74 4097.26 4120.28 4105.00 4103.02 4120.55 4110.80	208484 208392 208346 208484 408392 208346 208484 208392	232754 232748 232746 232746 232746 232712 232746 232712	6 4 2 6 4 2 6 4	8 6 4 6 4 2 4 2	1.48 1.04 0.63 0.443 0.80 1.25 0.074 0.248	0.50 0.396 0.315 0.113 0.202 0.315 0.0125 0.0314	40.8 21.4 8.5 9.2 10.9 8.5 1.02 1.70	$\begin{array}{c} 0.478 \\ 0.200 \\ -0.201 \\ -0.170 \\ -0.093 \\ -0.201 \\ -1.124 \\ -0.90 \end{array}$	C C C C C C C C C C C C C C C C C C C	ls ls ls ls ls ls
46		⁴ P° – ² F (21)	4084.66 4096.54 4112.03	208484 208392 208484	232959 232796 232796	6 4 6	8 6 6	0.092	0.0216 0.0347 0.0275	1.74 1.87 2.23	-0.89 -0.86 -0.78	C C C	5 5 5
47		⁴ P° – ² P (22)	3967.44 3985.46	208346 208346	233544 233430	2 2	2 4	0.0133	0.00314 0.00400	0.082 0.105	-2.203 -2.097	CCC	5 5
48		² D° - ⁴ D (24)											ŭ
			4751.34 4710.04 4752.70	211713 211522 211713	232754 232748 232748	6 4 6	8 6 6	0.170	0.0264 0.085 0.00300	2.48 5.3 0.281	-0.80 -0.469 -1.75	C C C	5 5 5
49		$^{2}D^{\circ} - {}^{2}F$ (25)	4703.9	211636	232889	10	14	1.38	0.64	99	0.81	C	3, ca
			4705.36 4699.21 4741.71	211713 211522 211713	232959 232796 232796	6 4 6	8 6 6	1.29	0.61 0.64 0.0302	57 39.6 2.83	0.56 0.408 -0.74	C C C	ls ls ls
50		² D°−2P	4579.2	211636	233468	10	6	0.0418	0.0079	1.19	-1.103	С	3, ca
			[4598.2] [4539.6] [4563.2]	211713 211522 211522	233430 233544 233430	6 4 4	4 2 4	0.0430	0.0079 0.0066 0.00132	0.397	-1.326 -1.58 -2.278	CCC	ls ls ls
51		² D° – ² D (26)	4385.3	211636	234434	10	10	0.430	0.124	17.9	0.093	c	3, <i>ca</i>
			4395.95 4369.28 4406.02 4359.38	211713 211522 211713 211522	234454 234402 234402 234454	6 4 6 4	6 4 4 6	0.391 0.0424	0.115 0.112 0.0082 0.0125	6.4 0.72	-0.161 -0.349 -1.307 -1.302	C C C C	ls ls ls

OII. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	g _k	$A_{ki}(10^8~{ m sec^{-1}})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
52	52	4S° – 4P	4913.0	212162	232511	4	12	0.67	0.73	47.3	0.466	С	3, ca
		(28)	4924.60 4906.88 4890.93	212162 212162 212162	232463 232536 232603	4 4 4	$\left \begin{array}{c} 6\\4\\2\end{array}\right $	0.67 0.68 0.68	0.365 0.245 0.122	23.7 15.8 7.9	$ \begin{vmatrix} 0.165 \\ -0.011 \\ -0.310 \end{vmatrix} $	C C C	ls ls ls
53		⁴ S°- ⁴ D (29)											
			4856.49 4856.76 4864.95	212162 212162 212162	232748 232746 232712	4 4 4	6 4 2	0.094 0.176 0.235	0.050 0.062 0.0417	3.19 3.97 2.67		C C C	5 5 5
54		⁴ S° - ² F (30)	4045.0	010160	222704			0.0004	0.0050				
55		² P°− ² P	4845.0 5191.1	212162	232796	4	6	0.0094	0.0050	0.316	-1.70	C	5
55		(32)	5206.73	214210 214229	233468	6	6	0.53	0.213	21.8	0.106	C	3, 4, ca
			5160.02 5176.00 5190.56	214229 214170 214229 214170	233430 233544 233544 233430	4 2 4 2	4 2 2 4	0.391 0.350 0.171 0.137	0.160 0.140 0.0343 0.111	10.9 4.75 2.34 3.78		CCCC	$ \begin{array}{c cccc} 4n, & 5n \\ 4n, & 5n \\ 4n, & 5n \\ 4n, & 5n \end{array} $
56		${}^{2}P^{\circ} - {}^{2}D$ (33)	4943.2	214210	234434	6	10	1.07	0.65	64	0.59	С	3, 4, ca
		(33)	4943.06 4941.12 4955.78	214229 214170 214229	234454 234402 234402	4 2 4	6 4 4	1.06 0.83 0.256	0.58 0.61 0.094	37.9 19.7 6.1	0.367 0.083 -0.424	C C C	5n 5n 5n
57		² F°− ² F	4446.1	228737	251222	14	14	0.59	0.176	36.0	0.391	С	3, 4, ca
	$2\vec{p}^2(^1\mathrm{D})3d'$	(35)	4448.21 4443.05 [4447.7] [4443.7]	228747 228723 228747 228723	251221 251224 251224 251221	8 6 8 6	8 6 6 8	0.57 0.57 0.0282 0.0212	0.169 0.167 0.0063 0.0084	19.8 14.7 0.74 0 .7 4	0.131 0.002 -1.299 -1.299	CCCC	ls ls ls
58		² F°−³G (36)	4187.9	228737	252608	14	18	2.51	0.85	164	1.075	С	3, 4, ca
			4189.79 4185.46 [4189.6]	228747 228723 228747	252608 252609 252609	8 6 8	10 8 8	2.51 2.43 0.090	0.83 0.85 0.0236	91 70 2.60	$0.82 \\ 0.71 \\ -0.72$	C C C	ls ls ls
59		² F°- ² D (37)	4112.3	228737	253048	14	10	0.132	0.0239	4.53	-0.476	C	3, <i>ca</i>
			4113.82 4110.20 [4109.8]	228747 228723 228723	253048 253046 253048	8 6 6	6 4 6	0.126 0.132 0.0063	0.0239 0.0223 0.00159	2.59 1.81 0.129	-0.72 -0.87 -2.021	C C C	ls ls ls
60		$^{2}D^{\circ} - {}^{2}F$ (40)	4700.8	229955	251222	10	14	0.88	0.410	63	0.61	С	3, ca
		(40)	4699.21 4703.18 4698.48	229947 229968 229947	251221 251224 251224	6 4 6	8 6 6	0.88 0.82 0.059	0.390 0.410 0.0195	36.2 25.4 1.81	$0.369 \\ 0.215 \\ -0.93$	C C C	ls ls ls
61		${}^{2}P^{\circ}-{}^{2}D$	4868.I	232511	253048	6	10	0.437	0.259	24.9	0.191	С	3, <i>ca</i>
		(57)	4871.58 4861.03 [4872.2]	232527 232480 232527	253048 253046 253046	4 2 4	6 4 4	0.435 0.366 0.073	0.232 0.259 0.0259	14.9 8.3 1.66	- 0.032 - 0.285 - 0.99	C C C	ls ls ls
62		2P°-2P	4698.0	232511	253791	6	6	1.05	0.347	33.2	0.319	С	3, <i>ca</i>
		(58)	4701.23 4691.47 4701.76 4690.97	232527 232480 232527 232480	253792 253790 253790 253792	4 2 4 2	4 2 2 4	0.87 0.70 0.349 0.176	0.289 0.232 0.058 0.116	17.9 7.2 3.58 3.58	$ \begin{array}{r} 0.063 \\ -0.334 \\ -0.64 \\ -0.64 \end{array} $	C C C C	ls ls ls

O.H. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gĸ	$A_{ki}(10^8~{ m sec^{-1}})$) fik	S(at.u.)	log gf	Accu- racy	Source
63		$^{2}P^{\circ}-^{2}S$ (61)	4325.7	232511	255622	6	2	1.81	0.170	14.5	0.008	С	3, ca
		(02)	4328.62 4319.93	232527 232480	255622 255622	4 2	2 2	1.21 0.61	0.170 0.170	9.7 4.83	$ \begin{array}{r r} -0.168 \\ -0.469 \end{array} $	C	ls ls
64	$\begin{vmatrix} 2s2p^{3}3p''' - \\ 2s2p^{3}(^{5}S^{\circ}) \\ 3d''' \end{vmatrix}$	⁶ P - ⁶ D° (106)	4144.4	[267775]	[291897]	18	30	0.211	0.090	22.2	0.211	С	ca
			4146.09 4143.77 4142.24 4145.90 4143.52 4141.96 [4145.6] [4143.4] 4142.08	[267783] [267771] [267763] [267783] [267771] [267763] [267783] [267771] [267763]	[291896] [291897] [291898] [291897] [291898] [291899] [291898] [291899] [291900]	8 6 4 8 6 4 8 6 4	10 8 6 8 6 4 6 4 2	0.210 0.135 0.066 0.075 0.129 0.148 0.0167 0.063 0.211	0.068 0.0464 0.0253 0.0194 0.0331 0.0380 0.00323 0.0108 0.0271	7.4 3.80 1.38 2.12 2.71 2.07 0.353 0.89 1.48	-0.266 -0.55 -0.99 -0.81 -0.70 -0.82 -1.59 -1.186 -0.96	000000000	ls ls ls ls ls ls ls ls ls
65	$2p^23p - 2p^2(^3P)4s$	² S° - ² P (20 uv)	2738.0	203942	240454	2	6	0.36	0.12	2.2	-0.61	D	3, ca
	<i>Lp</i> (1) 13	(20 01)	2733.34 2747.46	203942 203942	240516 240329	2 2	4 2	0.37 0.36	0.082 0.041	1.5 0.74	-0.79 -1.09	D D	ls ls
66		⁴ D° – ⁴ P (14)	3133.9	206895	238795	20	12	1.53	0.135	27.9	0.432	С	3, ca
			3134.82 3138.44 3139.77 3122.62 3129.44 3134.32 3113.71 3124.02	207003 206878 206786 206878 206786 206731 206786 206731	238893 238732 238626 238893 238732 238626 238893 238732	8 6 4 6 4 2 4 2	6 4 2 6 4 4		0.136 0.095 0.056 0.0407 0.072 0.113 0.0068 0.0226	11.2 5.9 2.33 2.51 2.98 2.33 0.279 0.465	0.036 -0.246 -0.65 -0.61 -0.54 -0.65 -1.57 -1.345	0000000	ls ls ls ls ls ls
67		4P° - 4P (23)	3292.4	208431	238795	12	12	0.85	0.138	18.0	0.220	С	3, ca
			3287.59 3295.13 3301.56 3305.15 3306.60 3277.69 3290.13	208484 208392 208346 208484 208392 208392 208346	238893 238732 238626 238732 238626 238893 238732	6 4 2 6 4 4 2	6 4 2 4 2 6 4	0.113 0.141 0.379 0.70 0.259	0.097 0.0184 0.0230 0.0414 0.057 0.063 0.115	6.3 0.80 0.50 2.70 2.50 2.70 2.50	$\begin{array}{c} -0.235 \\ -1.132 \\ -1.337 \\ -0.61 \\ -0.64 \\ -0.60 \\ -0.64 \end{array}$	000000	ls ls ls ls ls ls
68		² D° – ² P (27)	3469.1	211636	240454	10	6	1.25	0.135	15.4	0.130	С	3, <i>ca</i>
			3470.81 3470.42 3447.98	211713 211522 211522	240516 240329 240516	6 4 4	$\begin{bmatrix} 4 \\ 2 \\ 4 \end{bmatrix}$	1.24	0.135 0.112 0.0227	9.2 5.1 1.03	$ \begin{array}{c c} -0.092 \\ -0.348 \\ -1.042 \end{array} $	C C C	ls ls ls
69		⁴ S° – ⁴ P (31)	3753.7	212162	238795	4	12	0.265	0.168	8.3	-0.173	C :	3, 4, ca
		(02)	3739.92 3762.63 3777.60	212162 212162 212162	238893 238732 238626	4 4 4	6 4 2	0.269	0.084 0.057 0.0269	2.83	- 0.473 - 0.64 - 0.97	CCC	4n, ls 4n, ls 4n, ls
70	}	² P°-2P (34)	3809.3	214210	240454	6	6	0.65	0.142	10.7	-0.069	С	3, <i>ca</i>
		(/	3803.14 3821.68 3830.45 3794.48	214230 214170 214230 214170	240516 240329 240329 240516	4 2 4 2	4 2 2 4	0.432 0.215	0.119 0.095 0.0236 0.0476	2.38 1.19	-0.324 -0.72 -1.025 -1.021	C C C C	ls ls ls ls

O II. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gĸ	$A_{ki}(10^8~{ m sec^{-1}})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
71	$2p^23p' - 2p^2(^1D)4s'$	² F° - ² D (39)	3272.4	228737	259287	14	10	1.20	0.137	20.7	0.284	С	3, ca
	2p (D) 18	(82)	3273.52	228747	259286	8	6	1.14	0.137	11.8	0.039	С	ls
			3270.98	228723	259287	6	4	1.20	0.128	8.3	-0.114	C	ls
	·		[3270.9]	228723	259287	6	6	0.057	0.0091	0.59	-1.261	C	ls
72		² D° – ² D (44)	3408.4	229956	259287	10	10	0.80	0.140	15.7	0.146	С	3, ca
		, ,	3407.38	229947	259286	6	6	0.75	0.131	8.8	-0.106	C	ls
			3409.84 3407.38	229968 229947	259287	4	4	0.72	0.126	5.7	-0.298	C	ls
			3407.36	229947	259287 259286	6 4	6	0.080 0.054	0.0093 0.0140	0.63 0.63	-1.252 -1.252	C	ls ls
73		² P°- ² D	3733.9	232513	259287	6	10	0.416	0.145	10.7	-0.060	C	3, ca
		(62)	3735.94	232527	259286	4	6	0.416	0.130	6.4	-0.282	C	J
			3729.34	232480	259287	2	4	0.349	0.130	3.57	$\begin{bmatrix} -0.282 \\ -0.54 \end{bmatrix}$	č	ls ls
			[3735.9]	232527	259287	$\frac{1}{4}$	4	0.069	0.0145	0.71	-1.237	č	ls
74	$2p^23d - 2p^2(^3P)4p$	⁴ F - ⁴ D° (45)	6897.5	231429	245923	28	20	0.333	0.170	108	0.68	С	3, ca
	-p (1).p	(10)	6895.29	231530	246029	10	8	0.298	0.170	38.6	0.231	С	ls
			6906.54	231428	245903	8	6	0.272	0.146	26.5	0.067	C	ls
			6910.75	231350	245816	6	4	0.267	0.127	17.4	-0.117	C	ls
			6908.11	231296 231428	245768	4	2 8	0.332	0.119	10.8	-0.323	C	ls ls ls
			6846.97 6869.74	231350	246029 245903	8	6	0.0347 0.059	0.0244 0.0415	4.40 5.6	$\begin{bmatrix} -0.71 \\ -0.60 \end{bmatrix}$	C	ls Is
			6885.07	231296	245816	4	4	0.067	0.0476	4.32	-0.72	č	l is
			[6810.6]	231350	246029	6	8	0.00180	0.00167	0.224	-2.000	č	ls
			[6844.1]	231296	245903	4	6	0.00325	0.00343	0.309	-1.86	C	ls
75		² P- ² P° (85)	6657.3	233468	248485	6	6	0.105	0.070	9.2	-0.377	С	3, ca
		` ′	6627.62	233430	248514	4	4,	0.089	0.059	5.1	-0.63	C	ls
			[6718.1]	233544	248425	2	2	0.068	0.0461	2.04	-1.035	C	ls
			6678.19	233544	248514	2	4	0.0173	0.0232	1.02	-1.334	C	ls
			6666.94	233430	248425	4	2	0.0349	0.0116	1.02	-1.333	C	ls
76	$2p^23d - 2p^2(^3P)4f$	⁴ F- ⁴ G° (48)	4093.7	231429	255850	28	36	2.60	0.84	317	1.372	С	3, ca
1			4089.30	231530	255978	10	12	2.62	0.79	106	0.90	C	ls
[4097.26	231428 231350	255828 255759	8	10 8	2.37 2.23	0.75 0.75	81	0.78 0. 6 5	C	ls ls
1			4095.63 4087.16	231296	255756	6 4	6	2.24	0.73	61 45.3	0.63	č	ls ls
		:	[4114.4]	231530	255828	10	10	0.212	0.054	7.3	-0.269	č	ls
1			4108.75	231428	255759	8	8	0.349	0.088	9.6	-0.151	C	ls
			4096.18	231350	255756	6	6	0.359	0.090	7.3	-0.267	C	ls
			[4126.1]	231530	255759	10	8	0.0077	0.00158	0.214	-1.80	C	ls
			[4109.3]	231428	255756	8	6	0.0128	0.00244	0.264	-1.71	C	ls
77		⁴ P - ⁴ D° (54)	4293.8	232511	255794	12	20	1.98	0.91	155	1.040	С	3, ca
		(0.2)	4303.82	232463	255691	6	8	1.97	0.73	62	0.64	C	ls
	ļ	[4294.82	232536	255813	4	6		0.57	32.5	0.362	C	ls ls
			[4288.8]	232603	255913	2	4	0.83	0.457	12.9 13.9	-0.039 -0.006	C	ls
			4281.40	232463	255813 255913	6 4	6 4	0.60 1.06	0.164 0.293	16.5	-0.068	č	ls
	[4282.82 4288.83	232536 232603	255913	2	2	1.66	0.457	12.9	-0.039	Č	ls
		-	[4263.2]	232463	255913	6	4	0.101	0.0184	1.55	-0.96	C	ls
			4276.71	232536	255912	4	2	0.334	0.0458	2.58	-0.74	C	ls

OII. Allowed Transitions - Continued

No	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(10^8~{\rm sec^{-1}})$	fik	S(at.u.)	log gf	Accu- racy	Source
78		⁴ D- ⁴ F° (67)	4278.0	232746	256115	20	28	2.12	0.81	229	1.211	С	3, ca
			4275.52 4276.71 4282.96 4277.40 4277.90 4283.13 4283.75 [4284.4] [4284.0]	232754 232748 232746 232712 232754 232748 232746 232754 232754 232754	256136 256123 256088 256084 256123 256088 256084 256088 256084	6	10 8 6 4 8 6 4 6 4	2.12 1.82 1.58 1.49 0.302 0.51 0.59 0.0204 0.0421	0.73 0.66 0.65 0.82 0.083 0.141 0.162 0.00420 0.0077	82 56 36.8 23.0 9.3 11.9 9.2 0.474 0.65	0.76 0.60 0.417 0.213 -0.179 -0.074 -0.187 -1.474 -1.334	000000000	ls ls ls ls ls ls
79		$\frac{{}^{2}\mathbf{F} - {}^{2}\mathbf{G}^{\circ}}{(77)}$	4341.7	232889	255915	14	18	2.31	0.84	168	1.070	С	3, ca
			4342.00 4340.36 [4371.3]	232959 232796 232959	255984 255829 255829	8 6 8	10 8 8	2.31 2.23 0.081	0.82 0.84 0.0232	93 72 2.67	$\begin{bmatrix} 0.81 \\ 0.70 \\ -0.73 \end{bmatrix}$	C C C	ls ls ls
80		² P - ² D° (86)	4488.9	233468	255739	6	10	1.81	0.91	81	0.74	С	3, ca
			4491.25 4489.48 [4466.6]	233430 233544 233430	255690 255812 255812	4 2 4	6 4 4	1.81 1.51 0.307	0.82 0.91 0.092	48.6 27.0 5.4	$\begin{bmatrix} 0.52 \\ 0.262 \\ -0.435 \end{bmatrix}$	C C C	ls ls ls
81		² D- ² F° (93)	4606.6	234434	256136	10	14	1.82	0.81	123	0.91	С	3, <i>ca</i>
			4609.42 4602.11 4613.11	234454 234402 234454	256143 256126 256126	6 4 6	8 6 6	1.82 1.70 0.121	0.77 0.81 0.0385	70 49.2 3.51	0.67 0.51 -0.64	C C C	ls ls ls
82	$2p^23d' - 2p^2(^1\mathrm{D})4f'$	² F - ² G° (97)	4060.8	251222	275841	14	18	2.20	0.70	131	0.99	С	3, ca
83		² G - ² H° (101)	4253.9	252608	276109	18	22	2.63	0.87	220	1.196	С	3, 4 ca
84	$2p^{2}3d - 2p^{2}(^{3}P)5f$	⁴ P- ⁴ D° (56)	[3011.7]	232511	[265705]	12	20	0.75	0.169	20.1	0.307	С	3, ca
			3013.37 [3014.0] [3019.8] [3007.4] [3008.8] [3006.0] [3002.2] [3000.1]	232463 232536 232602 232463 232536 232602 232463 232536	265639 [265705] [265762] [265705] [265762] [265859] [265859]	6 4 2 6 4 2 6 4	8 6 4 6 4 2 4 2	0.52 0.311 0.225 0.398 0.63 0.0376	0.135 0.106 0.085 0.0305 0.054 0.085 0.00339 0.0085	8.0 4.22 1.68 1.81 2.14 1.68 0.201 0.335	$\begin{bmatrix} -0.091 \\ -0.371 \\ -0.77 \\ -0.74 \\ -0.67 \\ -0.77 \\ -1.69 \\ -1.470 \end{bmatrix}$	0000000	ls ls ls ls ls
85		⁴ D- ⁴ F° (74)	[3008.4]	232746	[265977]	20	28	0.84	0.160	31.7	0.51	C	3, ca
			3007.08 3007.74 3009.81 [3009.7] 3008.28 [3010.0] [3012.8] [3010.5] [3013.0]	232754 232748 232746 232712 232754 232748 232746 232754 232754 232748	265999 265985 [265961] [265928] 265985 [265961] [265928] [265928]	8 6 4 2 8 6 4 8 6	6 4 8 6 4 6	0.72 0.63 0.59 0.120 0.204 0.235 0.0081	$\begin{array}{c} 0.143 \\ 0.130 \\ 0.128 \\ 0.159 \\ 0.0163 \\ 0.0278 \\ 0.0320 \\ 8.3 \times 10^{-4} \\ 0.00152 \end{array}$	11.3 7.8 5.1 3.16 1.29 1.65 1.27 0.066 0.090	$\begin{array}{c} 0.057 \\ -0.106 \\ -0.289 \\ -0.496 \\ -0.89 \\ -0.78 \\ -0.89 \\ -2.180 \\ -2.040 \end{array}$	00000000	ls ls ls ls ls ls ls
86		² F - ² G° (83)	3032.5	232889	265856	14	18	0.85	0.151	21.1	0.325	С	3, ca
		1	3032.08 3032.50 [3047.5]	232959 232796 232959	265930 265763 265763	8 6 8	8	0.82	0.147 0.151 0.00417	11.7 9.0 0.335	0.069 - 0.043 - 1.476	CCC	ls ls ls

The adopted values are exclusively from Seaton and Osterbrock's calculations [1]. The important effects of configuration interaction are partially taken into account and a reliable estimate of the quadrupole integral is given (see also general introduction).

Reference

[1] Seaton, M. J., and Osterbrock, D. E., Astrophys. J. 125, 66-83 (1957).

OII. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g i	gk	Type of Transi- tion	$A_{ki}(\mathrm{sec}^{-1})$	S(at.u.)	Accu- racy	Source
1	$2p^3 - 2p^3$	⁴ S°- ² D° (1 F)	3728.91 3728.91 3726.16 3726.16	0.0 0.0 0.0 0.0	26810.7 26810.7 26830.5 26830.5	4 4 4 4	6 6 4 4	m e m e	$7.4 \times 10^{-6} 4.1 \times 10^{-5} 1.43 \times 10^{-4} 2.7 \times 10^{-5}$	$\begin{array}{c} 8.5 \times 10^{-8} \\ 1.1 \times 10^{-4} \\ 1.10 \times 10^{-6} \\ 4.5 \times 10^{-5} \end{array}$	C D C D	1 1 1 1
2		⁴ S° – ² P°	[2470.4] [2470.4] [2470.3] [2470.3]	0.0 0.0 0.0 0.0	40466.9 40466.9 40468.4 40468.4	4 4 4 4	4 4 2 2	m e m e	$ \begin{vmatrix} 0.060 \\ 1.5 \times 10^{-7} \\ 0.0238 \\ 7.4 \times 10^{-7} \end{vmatrix} $	$\begin{array}{c} 1.33 \times 10^{-4} \\ 3.3 \times 10^{-8} \\ 2.66 \times 10^{-5} \\ 8.1 \times 10^{-8} \end{array}$	C D C D	1 1 1
3		² D° – ² D°	$[50.8 \times 10^{5}]$ $[50.5 \times 10^{5}]$	26810.7 26810.7	26830.5 26830.5	6 6	4 4	m e	$\begin{array}{c} 1.26 \times 10^{-7} \\ 1.5 \times 10^{-19} \end{array}$	2.40 0.0012	B D	1 1
4		² D° — ² P° (2 F)	7319.4 7319.4 7318.6 7330.7 7330.7 7329.9 7329.9	26810.7 26810.7 26810.7 26830.5 26830.5 26830.5 26830.5	40466.9 40466.9 40468.4 40466.9 40468.4 40468.4	6 6 6 4 4 4	4 4 2 4 4 2 2	m e e m e m	0.0091 0.106 0.0610 0.0160 0.0450 0.0103 0.0900	5.3×10^{-4} 5.30 1.52 9.3×10^{-4} 2.29 3.01×10^{-4} 2.27	000000	1 1 1 1 1 1
5		² P° — ² P°	$ \begin{bmatrix} 6.7 \times 10^{7} \\ 6.7 \times 10^{7} \end{bmatrix} $	40466.9 40466.9	40468.4 40468.4	4.4	2 2	m e	$\begin{vmatrix} 6.04 \times 10^{-11} \\ 4.9 \times 10^{-24} \end{vmatrix}$	1.33 5.0 × 10 ⁻⁴	C + D	1 1

Ground State

 $1s^2 2s^2 2p^2 {}^3P_0$

Ionization Potential

 $54.886 \text{ eV} = 442807 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
302.34	14	2683,65	36	3284.57	27
303.411	ii	2686.14	24	3299.36	17
303.460	ii	2687.53	36	3305.77	$\frac{1}{27}$
303.515	l ii l	2695.49	36	3312.30	1 17
		2983.78	20		
303.621	11	2905.78	20	3326.16	40
303.693	11	2992.11	28	3330.40	40
303.799		2996.51	28	3332.49	40
305.596	10	2997.71	28	3333.00	23
305.656	10	3004.35	28	3333.40	23
305.703	10	3008.79	28	3336.78	23
305.769	10	3017.63	28	3336.78	40
305.836	10	3023.45	18	3340.74	17
305.879	10	3024.36	28	3344.26	23
320.979	13	3024.57	18	3344.26	40
328.448	12	3035.43		3348.05	40
245 200	1 1	9049.00		2072 60	
345.309	15	3043.02	18	3350.68	23
373.805	7	3047.13	18	3350.99	23
374.005	7	3059.30	18	3355.92	40
374.075	7	3065.01	38	3362.38	23
374.165	7	3068.06	38	3376.4	39
374.331	7	3068.48	38	3376.82	39
374.436	7	3068.68	38	3377.3	39
395.558	8	3074.15	38	3382.69	39
434.975	9	3074.68	38	3383.5	39
507.391	3	3075.19	38	3383.85	39 39
507.683	$oxed{3}$	3075.95	38	2204.05	00
508.182				3384.95	39
	3 5	3083.65	38	3394.26	39
525.795	5	3084.63	38	3395.5	39
597.818	6	3088.04	38	3405.74	31
599.598	4	3095.81	38	3408.13	31
702.332	2	3115.73	29	3415.29	31
702.822	$\begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$	3121.71	29	3428.67	31
702.899	$\mid 2 \mid \mid$	3132.86	29	3430.60	31
703.850	2	3198.2	42	3444.10	31
832.927	$ \overline{1} $	3200.95	$\overline{42}$	3446.73	37
833.742	\parallel $_{1}$	3202.2	42	3447.22	27
835.096	l î	3207.12	42	3448.05	37
835.292	$1 1 \parallel$	3210.2	42	3450.94	37
2454.99	$\begin{vmatrix} 21 \end{vmatrix}$	3215.97	42		37
2558.06	46	3221.2	42	3451.33 3454.90	37 37
2597.69	45	3260.98	97	2455 10	
	45		27	3455.12	37
2605.41	45	3265.46	27	3459.52	37
2609.6	45	3267.31	27	3459.98	37
2665.69	24	3279.97	47	3466.15	37
2674.57	24	3281.94	27	3466.90	37

List of tabulated lines—Continued

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
3475.2	37	3712.48	22	3816.75	34
3520.7	26	3714.03	30	3961.59	33
3530.7	26	3715.08	30	4072.3	25
3532.8	26	3720.86	22	4073.90	25
3534.3	26	3721.95	22	4081.10	25
3555,3	26	3725.30	30	4088.5	25
3556.92	26	3728.49	41	4103.8	25
3638.70	44	3728.82	41	4118.6	25
3645.20	44	3729.70	41	4440.1	43
3646.84	44	3732.13	30	4447.82	43
3649.20	44	3734.80	22	4461.56	43
3650.70	44	3742.0	41	5268.06	35
3653.00	44	3747.6	41	5500.11	32
3695.37	22	3754.67	16	5592.37	19
3698.70	22	3757.21	16	3392.31	19
3702.75	30	3759.87	16		
3703.37	22	3761.2	16		
3704.73	$\frac{22}{22}$	3774.00	$\begin{array}{c c} & 41 \\ & 16 \end{array}$	1	1
3707.24	30	1			
3709.52	$\begin{array}{c c} 30 \\ 22 \end{array}$	3791.26 3810.96	16 16		

Values for the strong $2s^2 2p^2 - 2s2p^3$ transitions, which are very sensitive to configuration interaction, are taken from the calculations of Bolotin et al. [1]. These authors have used analytical one-electron wave functions and include configuration interaction in a crude manner. Thus large uncertainties must be expected. This applies also for the $2p^2 - 2p3s$ and to a lesser extent to the $2p^2 - 2p3d$ transitions, for which only Kelly's self-consistent field calculations [2] are available. In these, configuration interaction has been entirely neglected. For many other transitions the simplified self-consistent field calculations by Kelly [3], in which exchange effects are approximately taken into account, are applied. The results agree within a few percent with the values of the Coulomb approximation and the averaged values are adopted. The accuracy rating of "C" is supported by the good agreement with relative f-value measurements of Berg et al. [4] done with a magnetically driven shock tube.

- [1] Bolotin, A. B., Levinson, I. B., and Levin, L. I., Soviet Phys. JETP 2, 391-395 (1956).
- [2] Kelly, P. S., Astrophys. J. **140**, 1247–1268 (1964).
- [3] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964).
- [4] Berg, H. F., Eckerle, K. L., Burris, R. W., and Wiese, W. L., Astrophys. J. 139, 751-757 (1964).

OIII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g_k	$\begin{array}{c} A_{ki}(10^8 \\ \sec^{-1}) \end{array}$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
1	$\begin{array}{c} 2s^22p^2 -\\ 2s2p^3 \end{array}$	3P - 3D° (1 uv)	834.50 835.292 833.742 832.927 835.096 833.742 835.096	208.2 306.8 113.4 0.0 306.8 113.4 306.8	120041 120025 120053 120059 120053 120059 120059	9 5 3 1 5 3 5	15 7 5 3 5 3	8.4 8.4 6.3 4.7 2.1 3.5 0.23	0.15 0.12 0.11 0.15 0.022 0.036 0.0015	3.6 1.7 0.90 0.40 0.30 0.30 0.020	$\begin{array}{c} 0.12 \\ -0.21 \\ -0.48 \\ -0.84 \\ -0.96 \\ -0.96 \\ -2.14 \end{array}$	E E E E E E E E E E	ls ls ls ls ls

OIII. Allowed Transitions - Continued

No.	Transition Array	Multiple	t λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gĸ	$\begin{array}{c} A_{ki}(10^8 \\ \text{sec}^{-1}) \end{array}$	fik	S(at.u.)	log gf	Accu- racy	Source
2		$ \begin{cases} ^{3}P - ^{3}P^{\circ} \\ (2 \text{ uv}) \end{cases} $	703.36	208.2	142384	9	9	25	0.18	3.8	0.22	E	1
		(2 uv)	703.850 702.899 703.850 702.822 702.899 702.332	306.8 113.4 306.8 113.4 113.4 0.0	142382 142383 142383 142397 142382 142383	5 3 5 3 3 1	5 3 1 5 3	19 6.2 10 25 6.2 8.2	0.14 0.046 0.046 0.061 0.076 0.18	1.6 0.32 0.53 0.42 0.53 0.42	$ \begin{vmatrix} -0.16 \\ -0.86 \\ -0.64 \\ -0.74 \\ -0.64 \\ -0.74 \end{vmatrix} $	E E E E E	ls ls ls ls ls
3		$\begin{vmatrix} {}^{3}P - {}^{3}S^{\circ} \\ (3 \text{ uv}) \end{vmatrix}$	507.93	208.2	197087	9	3	150	0.19	2.9	0.24	E	1
		(3 uv)	508.182 507.683 507.391	306.8 113.4 0.0	197087 197087 197087	5 3 1	3 3	82 50 17	0.19 0.19 0.19	1.6 0.97 0.32		E E E	ls ls ls
4		$ \begin{array}{c c} ^{1}D - {}^{1}D^{\circ} \\ (7 \text{ uv}) \end{array} $	599.598	20271	187049	5	5	68	0.37	3.6	0.26	E	1
5		¹ D - ¹ P° (8 uv)	525.795	20271	210459	5	3	100	0.25	2.2	0.10	E	1
6		¹ S - ¹ P° (13 uv)	597.818	43184	210459	1	3	21	0.35	0.69	-0.46	E	1
7	$2p^{2} - 2p(^{2}P^{\circ})3s$	$\begin{array}{c} ^{3}P - ^{3}P^{\circ} \\ (4 \text{ uv}) \end{array}$	374.12	208.2	267505	9	9	38	0.081	0.90	-0.14	E	2
			374.075 374.165 374.436 374.331 373.805 374.005	306.8 113.4 306.8 113.4 113.4 0.0	267633 267376 267376 267257 267633 267376	5 3 5 3 1	5 3 1 5 3	29 9.6 16 38 9.6 13	0.061 0.020 0.020 0.027 0.034 0.081	0.37 0.075 0.12 0.10 0.12 0.10	-0.52 -1.22 -0.99 -1.09 -0.99 -1.09	EEE EEE	ls ls ls ls
8		¹ D - ¹ P° (9 uv)	395.558	20271	273080	5	3	68	0.096	0.62	-0.32	E	ls 2
9		¹ S - ¹ P° (14 uv)	434.975	43184	273080	1	3	13	0.11	0.16	-0.96	E	2
10	2p ² — 2p(² P°)3d	³ P - ³ D° (5 uv)	305.72	208.2	327302	9	15	180	0.43	3.9	0.58	D-	2
			305.769 305.656 305.596 305.836 305.703 305.879	306.8 113.4 0.0 306.8 113.4 306.8	327351 327277 327228 327277 327228 327228	5 3 1 5 3 5	7 5 3 5 3 3	180 140 100 46 76 5.1	0.36 0.32 0.43 0.064 0.11 0.0043	1.8 0.97 0.43 0.32 0.32 0.022	$ \begin{array}{c c} 0.25 \\ -0.02 \\ -0.37 \\ -0.49 \\ -0.49 \\ -1.67 \end{array} $	D- D- D- D- D- D-	ls ls ls ls ls
1		³ P - ³ P° (6 uv)	303.66	208.2	329525	9	9	100	0.14	1.3	0.10	$\mathbf{D}-$	2
			303.799 303.515 303.693 303.460 303.621 303.411	306.8 113.4 306.8 113.4 113.4 0.0	329468 329582 329582 329643 329468 329582	5 3 5 3 1	5 3 3 1 5 3	76 26 42 100 25 34	0.11 0.035 0.035 0.047 0.059 0.14	0.53 0.11 0.18 0.14 0.18 0.14	-0.28 -0.97 -0.75 -0.85 -0.75 -0.85	D- D- D- D- D-	ls ls ls ls ls
2		¹ D- ¹ D° (10 uv)	328.448	20271	324734	5	5	61	0.099	0.53	-0.31	D-	2
3		¹ D - ¹ F° (11 uv)	320.979	20271	331820	5	7	190	0.41	2.2	0.31	D-	2
4	}	¹ D- ¹ P°	[302.34]	20271	332777	5	3	6.4	0.0052	0.026	-1.58	D-	2

O III. Allowed Transitions—Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	g_k	$A_{ki}(10^8 { m sec}^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
15		¹ S – ¹ P° (15 uv)	345.309	43184	332777	1	3	98	0.53	0.60	-0.28	D	2
16	$egin{array}{c} 2p3s - \ 2p(^2\mathbf{P}^{\mathbf{o}})3p \end{array}$	³ P° - ³ D (2)	3762.3	267505	294077	9	15	1.07	0.377	42.0	0.53	С	3, ca
	2 p (1)0 p		3759.87 3754.67 3757.21 3791.26 3774.00 3810.96	267633 267376 267257 267633 267376 267633	294222 294002 293865 294002 293865 293865	5 3 1 5 3 5	7 5 3 5 3	1.07 0.80 0.59 0.260 0.440 0.0284	0.317 0.283 0.378 0.056 0.094 0.00371	19.6 10.5 4.67 3.50 3.50 0.233	0.200 -0.071 -0.423 -0.55 -0.55 -1.73	C C C C C	ls ls ls ls ls ls ls ls ls
17		$^{3}P^{\circ} - ^{3}S$	3326.6	267505	297558	9	3	1.56	0.086	8.5	-0.110	С	3, ca
		(0)	3340.74 3312.30 3299.36	267633 267376 267257	297558 297558 297558	5 3 1	3 3 3	0.85 0.52 0.177	0.085 0.086 0.087	4.70 2.82 0.94	-0.369 -0.59 -1.063	C C C	ls ls ls
18		³ P° - ³ P (4)	3041.5	267505	300374	9	9	2.04	0.283	25.5	0.406	С	3, ca
		\ -7	3047.13 3035.43 3059.30 3043.02 3023.45 3024.57	267633 267376 267633 267376 267376 267257	300441 300310 300310 300228 300441 300310	5 3 5 3 3	5 3 1 5 3	1.52 0.51 0.84 2.03 0.52 0.69	0.211 0.071 0.070 0.094 0.119 0.284	10.6 2.12 3.54 2.83 3.54 2.83	0.024 -0.67 -0.454 -0.55 -0.449 -0.55	C C C C C	ls ls ls ls ls ls
19		¹ P°-1P (5)	5592.37	273080	290957	3	3	0.328	0.154	8.5	- 0.336	С	3, ca
20		¹ P°- ¹ D (6)	2983.78	273080	306585	3	5	2.24	0.499	14.7	0.175	С	3, ca
21		¹ P° – ¹ S (19 uv)	2454.99	273080	313801	3	1	4.00	0.120	2.92	-0.442	C	3, ca
22	$2s2p^23s - 2s2p^2(^4P)3p$	⁵ P- ⁵ D° (21)	3706.1	338741	365716	15	25	1.09	0.375	69	0.75	C	ca
		ζ=-/	3703.37 3698.70 3695.37 3720.86 3712.48 3704.73 3734.80 3721.95 3709.52	338852 338690 338566 338852 338690 338566 338852 338690 338566	365846 365719 365619 365719 365619 365551 365519 365551	7 5 3 7 5 3 7 5 3	9 7 5 7 5 3 5 3	1.10 0.73 0.384 0.361 0.63 0.81 0.071 0.270 1.09	0.290 0.210 0.131 0.075 0.131 0.168 0.0106 0.0336 0.075	24.7 12.8 4.78 6.4 8.0 6.1 0.91 2.06 2.75	0.308 0.021 -0.406 -0.280 -0.184 -0.298 -1.130 -0.77 -0.65	00000000	Ls Ls Ls Ls Ls Ls Ls Ls
23		5P - 5P°	3345.9	338741	368620	15	15	1.50	0.252	41.6	0.58	C	ca
		(22)	3350.99 3344.26 3336.78 3362.38 3350.68 3333.00 3333.40	338852 338690 338566 338852 338690 338566	368685 368584 368526 368584 368526 368685 368584	7 5 3 7 5 3	7 5 3 5 3 7 5	1.00 0.125 0.377 0.69 0.112 0.51 0.68	0.168 0.0210 0.063 0.084 0.113 0.118 0.189	13.0 1.16 2.08 6.5 6.2 6.5 6.2	0.070 -0.98 -0.72 -0.233 -0.248 -0.229 -0.246	C C C C C C C	ls ls ls ls ls
24		⁵ P- ⁵ S° (22 uv)	2678.2	338741	376068	15	5	2.99	0.107	14.2	0.206	C	ca
		(22 uv)	2686.14 2674.57 2665.69	338852 338690 338566	376068 376068 376068	7 5 3	5 5 5	1.38 1.00 0.60	0.107 0.107 0.107	6.6 4.71 2.82	-0.126 -0.272 -0.494	C C C	ls ls ls

OIII. Allowed Transitions—Continued

		,			, = = = =							7	
No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g _k	$\begin{vmatrix}A_{ki}(10^8\\\sec^{-1})\end{vmatrix}$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
25		³ P - ³ D° (23)	4081.0	350212	374709	9	15	0.94	0.391	47.3	0.55	С	ca
ĺ		[(=0)	4081.10	350302	374799	5	7	0.94	0.329	22.1	0.217	C	ls
			4073.90	350123	374663	3	5	0.71	0.294	11.8	-0.055	l C	ls
]	[4072.3]	350026	374575	1	3	0.52	0.392	5.2	-0.407	l C	ls
- 1		ł	[4103.8]	350302	374663	5	5	0.232	0.058	3.95	-0.53	C	ls ls
-		i	[4088.5]	350123	374575	3	3	0.389	0.098	3.94	-0.53	CCC	ls
			[4118.6]	350302	374575	5	3	0.0254	0.00388	0.263	-1.71	C	ls ls
26		³ P - ³ P° (24)	3544.6	350212	378416	9	9	1.46	0.274	28.8	0.392	С	ca
-		(21)	3556.92	350302	378409	5	5	1.08	0.205	12.0	0.010	C	ls
			[3532.8]	350123	378421	3	3	0.367	0.069	2.39	-0.69	C	ls
			[3555.3]	350302	378421	5	3	0.60	0.068	4.00	-0.467	CCCC	ls
- 1			[3530.7]	350123	378438	3	1	1.47	0.092	3.19	-0.56	Č	ls
]			[3534.3]	350123	378409	3	5	0.366	0.114	3.99	-0.465	Č	ls
			[3520.7]	350026	378421	1	3	0.493	0.275	3.19	-0.56	C	ls
27	$2p3p - 2p(^2\mathbf{P}^{\circ})3d$	$^{3}D - {}_{3}F^{\circ}$	3265.9	294007	324688	15	21	2.08	0.465	75	0.84	С	3, <i>ca</i>
l			3265.46	294222	324836	7	9	2.07	0.425	32.0	0.474	C	ls
			3260.98	294002	324658	5	7	1.84	0.412	22.1	0.314	C	ls
			-3267.31	293865	324462	3	5	1.73	0.462	14.9	0.142	C	ls
			3284.57	294222	324658	7	7	0.226	0.0366	2.77	-0.59	C	ls ls
}	ļ	·	3281.94 3305.77	294002 294222	324462 324462	5 7	5 5	$0.317 \\ 0.0093$	0.051 0.00109	2.77 0.083	-0.59 -2.118	000000	ls ls
28		³ D - ³ D° (10)	3002.6	294007	327302	15	15	0.68	0.092	13.6	0.139	c	3, <i>ca</i>
		(10)	3017.63	294222	327351	7	7	0.59	0.081	5.6	-0.249	C	ls
ĺ			3004.35	294002	327277	5	5	0.472	0.064	3.16	-0.496	č	ls
J			2996.51	293865	327228	3	3	0.51	0.069	2.04	-0.68	č	ls
ł			3024.36	294222	327277	7	5	0.104	0.0102	0.71	-1.147	č	ls
- }	ļ		3008.79	294002	327228	5	3	0.134	0.0109	0.54	-1.264	č	ls
-			2997.71	294002	327351	5	7	0.076	0.0144	0.71	-1.143	00000	ls
			2992.11	293865	327277	3	5	0.082	0.0183	0.54	-1.261	č	ls
29		³ S - ³ P° (12)	3127.3	297558	329525	3	9	1.37	0.60	18.6	0.257	С	3, ca
- 1		1	3132.86	297558	3 29468	3	5	1.36	0.333	10.3	-0.001	C	ls
			3121.71	297558	329582	3	3	1.38	0.201	6.2	-0.220	č	ls
			3115.73	297558	329643	3	1	1.39	0.067	2.07	-0.70	č	ls
30		³ P - ³ D° (14)	3712.5	300374	327302	9	15	1.10	0.379	41.7	0.53	c	3,ca
			3715.08	300441	327351	5	7	1.10	0.319	19.5	0.203	C	ls
ĺ			3707.24	300310	327277	3	5	0.83	0.284	10.4	[-0.070]	\ddot{c}	ls
ĺ			3702.75	300228	327228	1	3	0.62	0.380	4.63	-0.420	č	l_s
1		ļ	3725.30	300441	327277	5	5	0.273	0.057	3.48	-0.55	\check{c}	ls
			3714.03 3732.13	300310 300441	327228 327228	$\begin{vmatrix} 3 \\ 5 \end{vmatrix}$	$\begin{bmatrix} 3 \\ 3 \end{bmatrix}$	0.459 0.0301	0.095 0.00378	$3.48 \\ 0.232$	$\begin{bmatrix} -0.55 \\ -1.72 \end{bmatrix}$	CC	ls ls
31		³ P - ³ P° (15)	3429.4	300374	329525	9	9	0.79	0.140	14.2	0.100	C	3, <i>ca</i>
		1	3444.10	300441	329468	5	5	0.59	0.104	5.9	-0.284	C	1.
	1		3415.29	300310	329582	3	3	0.200	0.0350	1.18	-0.284	č	ls ls
	1		3430.60	300441	329582	5	3	0.330	0.0349	1.97	-0.76	č	ls
	l		3408.13	300310	329643	3	1	0.81	0.0469	1.58	$\begin{bmatrix} -0.85 \\ -0.85 \end{bmatrix}$	č	ls
	1	İ	3428.67	300310	329468	3	5	0.198	0.058	1.97	-0.76	č	ls
			3405.74	300228	329582	1	3	0.270	0.141	1.58	-0.85	č	ls
32		¹ D - ¹ D° (16)	5500.11	306585	324734	5	5	0.112	0.051	4.58	-0.60	С	3, ca
33		¹ D - ¹ F°	3961.59	306585	331820	5	7	1.28	0.422	27.5	0.324	С	3,ca

O III. Allowed Transitions—Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gĸ	$A_{ki}(10^8 m sec^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
34		¹ D - ¹ P° (18)	3816.75	306585	332777	5	3	0.0402	0.0053	0.331	-1.58	С	3, ca
35		¹ S - ¹ P° (19)	5268.06	313801	332777	1	3	0.311	0.389	6.7	-0.411	С	3, ca
36	$\begin{vmatrix} 2s2p^23p - \\ 2s2p^2(^4P)3d \end{vmatrix}$	³ S° – ³ P (23 uv)	2691.5	363267	400410	3	9	2.10	0.68	18.2	0.312	С	ce
	20-10 (1)00	(25 21)	2695.49 2687.53 2683.65	363267 363267 363267	400355 400465 400518	3 3 3	5 3 1	2.09 2.11 2.12	0.379 0.229 0.076	10.1 6.1 2.02	$ \begin{array}{r} 0.056 \\ -0.163 \\ -0.64 \end{array} $	C C C	
37		⁵ D° – ⁵ F (25)	3453.0	365716	394668	25	35	1.68	0.420	119	1.021	С	ce
			3455.12 3450.94 3448.05 3446.73 3447.22 3466.15 3459.98 3454.90 3451.33 [3475.2] 3466.90 3459.52	365846 365719 365619 365551 365516 365846 365719 365619 365551 365846 365719 365619	394780 394688 394613 394555 394516 394688 394613 394555 394613 394555 394516	9 7 5 3 1 9 7 5 3 9 7 5	11 9 7 5 3 9 7 5 3 7 5 3 7	1.67 1.40 1.15 0.94 0.78 0.276 0.496 0.67 0.78 0.0234 0.066 0.111	0.365 0.321 0.287 0.279 0.419 0.0497 0.089 0.120 0.140 0.00330 0.0085 0.0119	37.4 25.5 16.3 9.5 4.76 5.1 7.1 6.8 4.76 0.340 0.68 0.68	0.52 0.351 0.157 - 0.077 - 0.377 - 0.350 - 0.205 - 0.223 - 0.378 - 1.53 - 1.225 - 1.224	000000000000000000000000000000000000000	ls ls ls ls ls ls ls ls ls ls ls ls ls l
38		⁵ D° + ⁵ D (26)	3081.0	365716	398164	25	25	0.62	0.089	22.5	0.345	С	ca
			3088.04 3083.65 3075.19 3068.48 3095.81 3084.63 3074.68 3068.06 3075.95 3074.15 3068.68 3065.01	365846 365719 365619 365551 365846 365719 365619 365719 365619 365551 365516	398219 398137 398127 398131 398137 398127 398131 398135 398137 398137 398131	9 7 5 3 9 7 5 3 7 5 3 1	9 7 5 3 7 5 3 1 9 7 5 3	0.52 0.311 0.157 0.234 0.132 0.248 0.365 0.63 0.104 0.180 0.220 0.210	0.074 0.0443 0.0222 0.0330 0.0147 0.0253 0.0310 0.0296 0.0190 0.0355 0.052 0.089	6.8 3.15 1.12 0.225 1.35 1.80 1.57 0.90 1.35 1.80 1.57	-0.178 -0.51 -0.95 -1.004 -0.88 -0.75 -0.81 -1.052 -0.88 -0.75 -0.81 -1.051	000000000000	ls ls ls ls ls ls ls ls ls ls ls ls ls l
39		⁵ P° – ⁵ D	3383.8	368620	398164	15	25	1.45	0.416	69	0.80	С	co
		(27)	3384.95 3382.69 [3377.3] 3394.26 3383.85 3376.82 [3395.5] [3383.5] [3376.4]	368685 368584 368526 368685 368584 368526 368685 368584 368526	398219 398137 398127 398137 398127 398131 398127 398131 398135	7 5 3 7 5 3 7 5 3	9 7 5 7 5 3 5 3	1.45 0.97 0.51 0.480 0.85 1.09 0.096 0.363 1.46	0.321 0.233 0.146 0.083 0.145 0.187 0.0118 0.0374 0.083	25.0 13.0 4.85 6.5 8.1 6.2 0.93 2.08 2.77	0.351 0.066 -0.360 -0.237 -0.139 -0.251 -1.082 -0.73 -0.60	0000000000	L. L. L. L. L. L. L. L. L. L. L. L. L. L
40		5P°-5P	3343.6	368620	398519	15	15	0.84	0.140	23.1	0.322	C	ce
		(28)	3355.92 3336.78 3326.16 3348.05 3332.49 3344.26 3330.40	368685 368584 368526 368685 368584 368584 368526	398474 398544 398583 398544 398583 398474 398544	7 5 3 7 5 5 3	7 5 3 5 3 7 5	0.55 0.070 0.212 0.388 0.63 0.278 0.379	0.093 0.0117 0.0352 0.0466 0.063 0.065 0.105	7.2 0.64 1.16 3.60 3.47 3.59 3.45	$ \begin{vmatrix} -0.187 \\ -1.233 \\ -0.98 \\ -0.487 \\ -0.50 \\ -0.487 \\ -0.50 \end{vmatrix} $	C C C C C C C	

O III. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$\begin{array}{c} A_{ki}(10^8 \\ \sec^{-1}) \end{array}$	fik	S(at.u.)	log gf	Accu- racy	Source
41		³D°-3F	3730.1	374709	401510	15	21	1.58	0.460	85	0.84	С	ca
		(30)	0700.00	374799	401609	7	9	1.58	0.424	36.4	0.472	c	ls
Ì			3728.82 3728.49	374799	401475	5	7	1.41	0.411	25.2	0.312	C C C	ls
			3728.49	374575	401379	3	5	1.33	0.461	17.0	0.141	C	ls
			[3747.6]	374799	401475	7	7	0.174	0.0366	3.16	-0.59	C	ls
			[3742.0]	374663	401379	5	5	0.244	0.051	3.16	-0.59	C	ls
			[3761.2]	374799	401379	7	5	0.0072	0.00108	0.094	-2.120	С	ls
42		³ D°- ³ D (31)	3210.2	374709	405851	15	15	0.66	0.102	16.2	0.186	С	ca
		(31)	3215.97	374799	405883	7	7	0.58	0.091	6.7	-0.198	C	ls
			3207.12	374663	405834	5	5	0.460	0.071	3.74	-0.451	C C C	ls
			3200.95	374575	405805	3	3	0.499	0.077	2.42	-0.64	<u>C</u>	ls
			[3221.2]	374799	405834	7	5	0.102	0.0113	0.84	-1.102	C	ls
		i	[3210.2]	374663	405805	5	3	0.165	0.0153	0.81	-1.117	C C C	ls
			[3202.2]	374663	405883	5	7	0.074	0.0159	0.84	-1.099		ls
			[3198.2]	374575	405834	3	5	0.100	0.0256	0.81	-1.115	'	ls
43		⁵ S°- ⁵ P	4452.9	376068	398519	5	15	0.490	0.437	32.0	0.340	C	ca
		` ′	4461.56	376068	398474	5	7	0.486	0.203	14.9	0.007	C	ls
			4447.82	376068	398544	5	5	0.492	0.146	10.7	-0.137	C	ls ls
			4440.1	376068	398583	5	3	0.495	0.088	6.4	-0.358	C	ls
44		³ P°- ³ D (35)	3643.9	378416	405851	9	15	1.39	0.461	49.8	0.62	С	ca
			3638.70	378409	405883	5	7	1.40	0.388	23.2	0.288	C	ls
			3646.84	378421	405834	3	5	1.04	0.345	12.4	0.015	C	ls
1			3653.00	378438	405805	1	3	0.77	0.460	5.5	-0.337	č	ls
			3645.20	378409	405834	5	5	0.347	0.069	4.15	-0.462	Ę	ls
			$3650.70 \\ 3649.20$	378421 378409	405805 405805	3 5	3	0.58 0.0384	0.115 0.00460	$\begin{vmatrix} 4.15 \\ 0.276 \end{vmatrix}$	-0.462 -1.64	C C C	ls ls
45	2p3d-	³P°-3S	2601.6	329525	367952	9	3	1.73	0.059	4.52	-0.278	C	3, ca
	$2p(^{2}\mathrm{P}^{\circ})4p$	(20 uv)]
	F () I		2597.69	329468	367952	5	3	0.97	0.059	2.51	-0.53	C	ls
			2605.41	329582	367952	3	3	0.58	0.059	1.51	-0.75	Č	ls
			[2609.6]	329643	367952	1	3	0.190	0.058	0.50	-1.235	C	ls
46		¹ F°- ¹ D (21 uv)	2558.06	331820	370901	7	5	1.16	0.081	4.79	-0.245	С	3, <i>ca</i>
47	$\begin{array}{c} 2p4p - \\ 2p(^{2}\mathrm{P}^{\circ})5d \end{array}$	¹ S - ¹ P° (29)	3279.97	373046	403526	1	3	0.241	0.117	1.26	-0.93	С	3, ca

The adopted values represent, as in the case of C I, the work of Garstang [1], Naqvi [2], and Yamanouchi and Horie [3], who have independently done essentially the same calculations and arrived at very similar results. For the selection of values, the same considerations as for C I have been applied. (Yamanouchi and Horie's result for the ${}^{3}P_{1}-{}^{1}D_{2}$ transition apparently contains a numerical error and is not used).

- [1] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 111, 115-124 (1951).
- [2] Naqvi, A. M., Thesis Harvard (1951).
- [3] Yamanouchi, T., and Horie, H., J. Phys. Soc. Japan 7, 52-56 (1952).

O III. Forbidden Transitions

No.	Tran sition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	Type of Transi- tion	$A_{ki}(\mathrm{sec^{-1}})$	S(at.u.)	Accu- racy	Source
1	$2p^2 - 2p^2$	3P = 3P		113.4 113.4 0 0	306.8 306.8 306.8 113.4	3 3 1 1	5 5 5 3	m e e m	$\begin{array}{c} 9.75 \times 10^{-5} \\ 7.8 \times 10^{-12} \\ 3.50 \times 10^{-11} \\ 2.62 \times 10^{-5} \end{array}$	2.50 0.086 0.383 2.00	B C C B	$ \begin{array}{c c} 1, 2, 3 \\ 1 \\ 1 \\ 1, 2, 3 \end{array} $
2		³ P- ¹ D (1 F)	5006.84 5006.84 4958.91 4958.91 4931.8	306.8 306.8 113.4 113.4	20271 20271 20271 20271 20271	5 5 3 3	5 5 5 5 5	m e m e e	$\begin{array}{c} 0.0210 \\ 4.1 \times 10^{-5} \\ 0.0071 \\ 6.2 \times 10^{-6} \\ 1.9 \times 10^{-6} \end{array}$	4.88×10^{-4} 3.8×10^{-4} 1.61×10^{-4} 5.5×10^{-5} 1.7×10^{-5}	C D C D	1, 2, 3 1 1, 2 1
3		³ P- ¹ S	[2331.6] [2321.1]	306.8 113.4	43183.5 43183.5	5 3	1 1	e m	$\begin{vmatrix} 7.1 \times 10^{-4} \\ 0.230 \end{vmatrix}$	$\begin{array}{ c c c c c }\hline 2.9 \times 10^{-5} \\ 1.07 \times 10^{-4} \\ \hline \end{array}$	D C	1 1, 3
4		¹ D- ¹ S (2 F)	4363.21	20271	43183.5	5_	1	e	1.60	1.51	C	1

 $1s^2 2s^2 2p {}^2P_{1/2}^{\circ}$

Ground State

Ionization Potential

 $77.394 \text{ eV} = 624396.5 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
238.361	6	3216.31	14	3774.38	13
238.573	6	3348.08	9	3930.63	17
238.58	6	3349.11	9	3942.14	17
279.633	5	3354.31	15	3945.29	17
279.937	6 5 5	3362.63	15	3956.82	17
553.328	3	3375.50	15	3974.66	17
554.074	3	3378.09	9	3977.10	17
554.514	3 3 3 3 2	3381.28	8	3995.17	17
555.262	3	3381.33	8	4568	21
608.395	2	3385.55	8	4652.5	20
609.829	2	3390.37	8	4685.4	20
624.617	2 4	3396.83	8	4772.57	16
625.130	4	3403.58	12	4779.09	16
625.852	4	3405.97	8	4783.43	16
787.710	1	3409.75	8	4794.22	16
790.103	1	3411.76	12	4798.25	16
790.203	ī	3413.71	12	4800.77	16
2494.8	10	3425.57	8	4813.07	16
2511.4	10	3489.84	11	4823.93	16
3063.46	7	3492.2	11	5290.1	18
3071.66	7	3492.24	11	5305.3	18
3177.80	14	3560.42	19	5362.4	18
3180.72	14	3563.36	19	5378.3	18
3180.98	14	3593.1	19		
3185.72	14	3725.81	13		
3188.17	14	3729.03	13		
3188.65	14	3736.78	13		
3194.75	14	3744.73	13		
3199.53	14	3755.82	13		
3209.64	14	3758.45	13		

Values for the $2s^22p-2s2p^2$ transitions are taken from the calculations of Bolotin and Yutsis [1] who employ analytical one-electron wave functions and include configuration interaction with a relatively crude approximation. For these as well as the $2s2p^2-2p^3$ and 2p-3s transitions large uncertainties must be expected because they are very sensitive to the effects of configuration interaction.

For several other transitions Kelly's self-consistent field calculations [2, 3] (which include exchange effects) are available. In the case of the highly excited lines, they agree within a few percent with the results of the Coulomb approximation and the averaged values are adopted.

^[1] Bolotin, A. B., and Yutsis, A. P., Zhur. Eksptl. i Teoret. Fiz. 24, 537-543 (1953). (Translated in "Optical Transition Probabilities," Office of Technical Services, U.S. Department of Commerce, Washington, D.C.)

^[2] Kelly, P. S., Astrophys. J. 140, 1247-1268 (1964).

^[3] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964).

OIV. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	$\begin{array}{c} A_{ki}(10^8 \\ \sec^{-1}) \end{array}$	fik	S(at.u.)	$\log gf$	Accu- racy	Source
1	2s ² 2p —	²P° − ²D	789.36	257.7	126942	6	10	9.5	0.15	2.3	-0.05	E	1
	$2\hat{s}(^{1}S)2p^{2}$	(1 uv)	790.203 787.710 790.103	386.5 0.0 386.5	126936 126950 126950	4 2 4	6 4 4	9.6 8.0 1.5	0.13 0.15 0.014	1.4 0.77 0.15	$ \begin{array}{r r} -0.27 \\ -0.53 \\ -1.24 \end{array} $	E E E	ls ls ls
2		² P°- ² S (2 uv)	609.35	257.7	164367	6	2	54	0.10	1.2	-0.22	E	1
		(2 47)	609.829 608.395	386.5 0.0	164367 164367	$\begin{vmatrix} 4\\2 \end{vmatrix}$	$\frac{2}{2}$	36 18	0.10 0.10	0.80 0.40	$ \begin{array}{r r} -0.40 \\ -0.70 \end{array} $	E E	ls ls
3		² P°− ² P	554.37	257.7	180644	6	6	83	0.38	4.2	0.36	E	1
		(3 uv)	554.514 554.074 555.262 553.328	386.5 0.0 386.5 0.0	180725 180481 180481 180725	4 2 4 2	4 2 2 4	68 55 28 14	0.31 0.25 0.064 0.13	2.3 0.93 0.47 0.47	0.10 -0.29 -0.59 -0.59	E E E E	ls ls ls
4	$2s2p^2-2p^3$	⁴ P - ⁴ S° (6 uv)	625.41	[71379]	[231275]	12	4	72	0.14	3.5	0.23	E	2
		(0 uv)	625.852 625.130 624.617	[71493] [71308] [71177]	[231275] [231275] [231275]	6 4 2	4 4 4	37 25 12	0.15 0.15 0.14	1.8 1.2 0.58	-0.06 -0.23 -0.55	E E E	ls ls ls
5	$2p - (^{1}S)3s$	² P°- ² S	279.83	257.7	357615	6	2	130	0.050	0.28	-0.52	E	2
		(4 uv)	279.937 279.633	386.5 0.0	357615 357615	4 2	2 2	85 43	0.050 0.050	0.19 0.092	-0.70 -1.00	E E	ls ls
6	$2p - (^{1}S)3d$	² P°- ² D	238.50	257.7	419544	6	10	350	0.50	2.4	0.48	D-	2
		(5 uv)	238.573 238.361 [238.58]	386.5 0.0 386.5	419550 419534 419534	4 2 4	6 4 4	350 300 59	0.45 0.50 0.050	1.4 0.79 0.16	0.26 0.00 -0.70	D- D- D-	ls ls ls
7	$3s - (^1S)3p$	² S - ² P°	3066.2	357615	390219	2	6	1.48	0.62	12.6	0.096	С	3, ca
		(1)	3063.46 3071.66	357615 357615	390248 390161	$\begin{vmatrix} 2\\2 \end{vmatrix}$	4 2	1.48 1.47	0.416 0.208	8.4 4.20	$ \begin{array}{r r} -0.079 \\ -0.382 \end{array} $	C	ls ls
8	2s2p3s -	⁴ P°- ⁴ D	3374.3	[438698]	[468325]	12	20	1.07	0.303	40.4	0.56	С	ca
	2s(³ P°)2p3p	(3)	3385.55 3381.28 3381.33 3409.75 3396.83 3390.37 3425.57 3405.97	[438589] [438724] [438971] [438589] [438724] [438971] [438589] [438724]	[468499] [468290] [468154] [468290] [468154] [468075] [468154] [468075]	6 4 2 6 4 2 6 4	8 6 4 6 4 2 4 2	1.06 0.74 0.442 0.310 0.56 0.88 0.051 0.172	0.242 0.191 0.151 0.054 0.096 0.151 0.0060 0.0149	16.2 8.5 3.37 3.64 4.31 3.37 0.404 0.67	0.162 -0.117 -0.52 -0.489 -0.414 -0.52 -1.446 -1.224	C C C C C C	ls ls ls ls ls ls ls
9		² P°- ² D	3350.7	452985	482821	6	10	1.23	0.346	22.9	0.317	C	ca
		(4)	3349.11 3348.08 3378.09	453073 452808 453073	482923 482668 482668	4 2 4	6 4 4	1.23 1.03 0.201	0.311 0.345 0.0344	13.7 7.6 1.53	$\begin{array}{r} 0.094 \\ -0.162 \\ -0.86 \end{array}$	C C C	ls ls ls
10		² P°- ² S	2505.8	452985	492880	6	2	3.04	0.095	4.72	-0.243	С	ca
		(5)	[2511.4] [2494.8]	453073 452808	492880 492880	4 2	2 2	2.01 1.02	0.095 0. 0 96	3.15 1.57	$ \begin{array}{r r} -0.420 \\ -0.72 \end{array} $	C	ls ls
11	2s2p3s' -	² P°- ² D	3490.9	518688	547326	6	10	0.99	0.301	20.8	0.257	c	ca
	2s2p(¹ P°)3p'	(14)	3489.84 3492.24 [3492.2]	518690 518684 518684	547336 547311 547311	$\begin{vmatrix} 4\\2\\4 \end{vmatrix}$	6 4 4	0.99 0.82 0.165	0.272 0.300 0.0302	12.5 6.9 1.39	$\begin{array}{c c} 0.037 \\ -0.222 \\ -0.92 \end{array}$	CCC	ls ls ls

O IV. Allowed Transitions-Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	g	i gk	$\begin{vmatrix} A_{ki}(10^8 \\ \sec^{-1}) \end{vmatrix}$	fik	S(at.u.)	log gf	Accu- racy	Source
12	$3p - (^{1}S)3d$	² P° – ² D (2)	3409.1	390219	419544	6	10	1.15	0.334	22.5	0.302	c	3, ca
			3411.76 3403.58 3413.71	390248 390161 390248	419550 419534 419534	$\begin{vmatrix} 4\\2\\4 \end{vmatrix}$	4	1.15 0.96 0.191	0.300 0.335 0.0334	13.5 7.5 1.50	$ \begin{array}{r} 0.080 \\ -0.174 \\ -0.87 \end{array} $	C C C	ls ls ls
13	2s2p3p — 2s2p(3P°)3d	⁴ D — ⁴ F° (6)	3733.4	[468325]	[495103]	20	28	0.80	0.235	58	0.67	C	ca
			3736.78 3729.03 3725.81 3725.81 3758.45 3744.73 3736.78 3774.38 3755.82	[468499] [468290] [468154] [468075] [468499] [468290] [468154] [468075] [468290]	[495253] [495099] [494986] [494908] [495099] [494986] [494908] [494908]	8 6 4 2 8 6 4 8 6	10 8 6 4 8 6 4 6 4	0.80 0.69 0.61 0.57 0.112 0.194 0.224 0.0075 0.0158	0.209 0.193 0.190 0.236 0.0237 0.0407 0.0469 0.00121 0.00222	20.6 14.2 9.3 5.8 2.35 3.01 2.31 0.120 0.165	$\begin{array}{c} 0.224 \\ 0.063 \\ -0.120 \\ -0.325 \\ -0.72 \\ -0.61 \\ -0.73 \\ -2.015 \\ -1.87 \end{array}$	00000000	ls ls ls ls ls ls ls ls ls ls
14	ļ	⁴ D− ⁴ D° (7)	3197.4	[468325]	[499591]	20	20	0.338	0.052	10.9	0.015	C	ca
			3209.64 3194.75 3185.72 3180.72 3216.31 3199.53 3188.65 3188.17 3180.98 3177.80	[468499] [468290] [468154] [468075] [468499] [468290] [468154] [468290] [468154] [468075]	[499647] [499582] [499535] [499506] [499582] [499535] [499647] [499582] [499535]	8 6 4 2 8 6 4 6 4 2	8 6 4 2 6 4 2 8 6 4	0.286 0.194 0.136 0.173 0.063 0.118 0.172 0.0485 0.080	0.0442 0.0296 0.0207 0.0263 0.0073 0.0120 0.0131 0.0098 0.0181 0.0263	3.74 1.87 0.87 0.55 0.62 0.76 0.55 0.62 0.76 0.55	-0.451 -0.75 -1.081 -1.280 -1.232 -1.142 -1.281 -1.229 -1.139 -1.279	0000000000	ls ls ls ls ls ls
15	4	$S - {}^{4}P^{\circ}$ (8)	3367.6	[474218]	[503904]	4	12	0.69	0.350	15.5	0.146	C	ca
			3375.50 3362.63 3354.31	[474218] [474218] [474218]	[503835] [503948] [504022]	4 4 4	6 4 2	0.68 0.69 0.69	0.175 0.117 0.058	7.8 5.2 2.58	$ \begin{array}{c c} -0.154 \\ -0.328 \\ -0.63 \end{array} $	C C C	ls ls ls
16	4	(9)	4792.5	[478731]	[499591]	12	20	0.303	0.174	32.9	0.320	С	ca
-		2	4823.93	[478811]	[499647] [499582] [499535] [499582] [499535] [499506] [499535]	6 4 2 6 4 2 6 4	8 6 4 6 4 2 4 2	0.303 0.213 0.128 0.090 0.161 0.254 0.0148 0.050	0.139 0.110 0.087 0.0311 0.056 0.087 0.00345 0.0087	13.2 6.9 2.74 2.96 3.51 2.74 0.329 0.55	-0.078 -0.358 -0.76 -0.73 -0.65 -0.76 -1.68 -1.46	ccccccc	ls ls ls ls ls ls
17	4]	$\begin{array}{c c} P-4P^{\circ} & \vdots \\ (10) & \end{array}$	3971.4	[478731]	[503904]	12	12	0.314	0.074	11.6	-0.050	c	ca
			3956.82 3930.63 3977.10 3945.29 3974.66	[478682] [478588] [478811] [478682] [478682]	[503835] [503948] [504022] [503948] [504022] [503835] [503948]	6 4 2 6 4 4 2	6 4 2 4 2 6 4	0.215 0.0425 0.053 0.140 0.266 0.094 0.133	0.051 0.0100 0.0124 0.0221 0.0310 0.0332 0.062	4.06 0.52 0.322 1.74 1.61 1.74 1.61	-0.51 -1.399 -1.61 -0.88 -0.91 -0.88 -0.91	CCCCCCC	ls ls ls ls ls
18	_	$\begin{array}{c c} \mathbf{D}^{-2} \mathbf{D}^{\circ} & 5 \\ (11) & 5 \end{array}$	5339.5	482821	501544	10	10	0.075	0.0319	5.6	-0.497	c	ca
		5 5 [5	378.3]	482923	501566 501511 501511 501566	6 4 6 4	6 4 4 6	0.069 0.069 0.0074 0.0052	0.0299 0.0291 0.00213 0.00324	2.03 0.226	-0.75 -0.93 -1.89 -1.89	C C C	ls ls ls

O IV. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	g_k	$A_{ki}(10^8 \text{ sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
19		² D - ² F° (12)	3563.0	482821	510879	10	14	1.15	0.306	35.9	0.486	С	ca
1		(12)	3563.36 3560.42 [3593.1]	482923 482668 482923	510979 510746 510746	6 4 6	8 6 6	1.15 1.08 0.075	0.291 0.307 0.0145	20.5 14.4 1.03	$\begin{array}{r} 0.242 \\ 0.089 \\ -1.060 \end{array}$	C	ls ls ls
20		² S - ² P° (13)	4674.4	492880	514267	2	6	0.297	0.292	9.0	-0.234	С	ca
		(13)	[4685.4] [4652.5]	492880 492880	514217 514368	2 2	4 2	0.295 0.301	0.194 0.098	6.0 2.99	$ \begin{array}{r r} -0.411 \\ -0.71 \end{array} $	C	ls ls
21	5f-(1S)6d	² F° - ² D (15)	4568	552490	[574375]	14	10	0.124	0.0278	5.9	-0.410	С	ca

Naqvi's calculation [1] of the one possible transition in the ground state configuration 2p is the only available source. The line strength should be quite accurate, since it does not sensitively depend on the choice of the interaction parameters.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

O IV. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	Type of Transi- tion	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	2p-2p	² P° — ² P°	[25.87×10 ⁴]	0	386.5	2	4	m	5.18×10 ⁻⁴	1.33	В	1

Ground State

Ionization Potential

 $113.873 \text{ eV} = 918702 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
172.168	2	3230	18	5114	10
192.751	8	3239	12	5343	21
192.80	8	3245	18	5352	21
192.800	8 8 8	3249	18	5376	21 21
192.906	8	3264	18	5417	21
192.91	8	3275.67	12	5432	21
192.92	8	3298	18	5473	21
215.034	8 8 6	3692	17	5573	15
215.104	6	3701	17	5582	15
215.245	6	3703	17	5584	15
220.352	9	3717	17	5600	15
248.459	9 7 1 3 3	3726	17	5606	15
629.732	i	3747	17	5608	15 22
758.677	3	3762	17	6329	22
759.440	3	4120	11	6767	20
760.229	3	4121.7	19	6790	20
760.445	3 3 3 5	4123	11	6819	20
761.131	3	4123.90	11	6830	20
762.001	3	4135.9	19	6878	20
774.522	5	4151	11	6909	20
		4150 56	10	7438	24
1371.29	4.	4158.76	19		
3058.68	13	4179	11		
3144.68	14	4211	11		
3222	12	4522	23		
3222	18	4554.28	16		_

Values for the $2s^2-2s2p$ and $2s2p-2p^2$ transition arrays are taken from the self-consistent field calculations of Weiss [1]. These calculations do not include the important effects of configuration interaction; hence large uncertainties must be expected. The average of the dipole length and velocity approximations is adopted [1]. Accuracies within 50 percent are indicated by the following comparison: Weiss [1] has undertaken refined calculations, including configuration interaction, for the same transitions in Be I—the first member of this isoelectronic sequence—in addition to calculations of the type done for this ion. In all cases the agreement with the average of the dipole length and velocity approximations is close.

For the remaining low-lying transitions Kelly's approximate Hartree-Fock calculations [2] are adopted, while for the moderately excited transitions Kelly's values are averaged with the Coulomb approximation, with which they agree quite well.

^[1] Weiss, A. W., private communication (1964).

^[2] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964).

Ov. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(10^8~{ m sec}^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
1	$2s^2 - 2s(^2S)2p$	¹ S - ¹ P° (1 uv)	629.732	0	158798	1	3	30	0.53	1.1	-0.28	D	1
2	$\begin{vmatrix} 2s^2 - \\ 2s(^2S)3p \end{vmatrix}$	¹ S - ¹ P° (2 uv)	172.168	0	580826	1	3	450	0.59	0.34	-0.23	D	2
3	$2s2p-2p^2$	³ P° – ³ P (3 uv)	760.36	[82413]	[213929]	9	9	21	0.18	4.1	0.21	D	1
		(3 44)	760.445 760.229 762.001 761.131 758.677 759.440	[82564] [82258] [83564] [82258] [82258] [82121]	[214066] [213797] [213797] [213642] [214066] [213797]	5 3 5 3 1	5 3 1 5 3	16 5.2 8.6 21 5.2 6.9	0.14 0.045 0.045 0.060 0.075 0.18	1.7 0.34 0.56 0.45 0.56 0.45	$\begin{array}{c} -0.17 \\ -0.87 \\ -0.65 \\ -0.75 \\ -0.65 \\ -0.74 \end{array}$	D D D D D	ls ls ls ls ls
4		¹ P° – ¹ D (7 uv)	1371.29	158798	231722	3	5	6.7	0.32	4.3	-0.03	D	1
5		¹ P°- ¹ S (8 uv)	774.522	158798	287909	3	1	21	0.062	0.48	-0.73	D	1
6	$2s2p - 2s(^2S)3s$	³ P° – ³ S (4 uv)	215.18	[82413]	[547150]	9	3	211	0.0488	0.311	-0.358	C	2
	25(2)65	(1 21)	215.245 215.104 215.034	[82564] [82258] [82121]	[547150] [547150] [547150]	5 3 1	3 3 3	117 71 23.5	0.0488 0.0490 0.0489	0.173 0.104 0.0346	$ \begin{array}{r} -0.61 \\ -0.83 \\ -1.311 \end{array} $	C C C	ls ls ls
7		¹ P°- ¹ S (9 uv)	248.459	158798	561278	3	1	137	0.0424	0.104	-0.90	С	2
8	$\begin{vmatrix} 2s2p - \\ 2s(^2S)3d \end{vmatrix}$	³ P°- ³ D (5 uv)	192.85	[82413]	[600943]	9	15	680	0.64	3.63	0.76	C	2
	23(-3)04	(S uv)	192.906 192.800 192.751 [192.91] [192.80] [192.92]	[82564] [82258] [82121] [82564] [82258] [82564]	[600956] [600936] [600926] [600936] [600926]	5 3 1 5 3 5	7 5 3 5 3 3	680 510 380 171 286 19.0	0.53 0.478 0.64 0.095 0.159 0.0064	1.69 0.91 0.403 0.303 0.303 0.0202	0.425 0.157 -0.197 -0.321 -0.321 -1.498	CCCC	ls ls ls ls ls
9		¹ P°- ¹ D (10 uv)	220.352	158798	612617	3	5	458	0.56	1.21	0.222	C	2
10	$\begin{vmatrix} 2s3s - \\ 2s(^2S)3p \end{vmatrix}$	¹ S- ¹ P° (1)	5114	547150	580826	1	3	0.253	0.298	5.01	-0.526		2, ca
11	$2p3s - 2p(^{2}P^{\circ})3p$	$ \begin{vmatrix} ^3P^{\circ} - ^3D \\ (4) \end{vmatrix} $	4130.4	[653435]	[677639]	9	15	0.483	0.206	25.2	0.268		ca
	2p(1)op		4123.90 4120 4123 4179 4151 4211	[653605] [653262] [653100] [653605] [653262] [653605]	[677847] [677532] [677333] [677532] [677333] [677333]	5 3 1 5 3 5	7 5 3 5 3 3	0.487 0.365 0.270 0.117 0.198 0.0127	0.174 0.155 0.206 0.0305 0.051 0.00202	11.8 6.3 2.80 2.10 2.10 0.140	-0.061 -0.333 -0.69 -0.82 -0.81 -1.99	CCCCC	ls ls ls ls ls
12		3P°-3S	3257.5	[653435]	[684124]	9	3	1.01	0.053	5.2	-0.318		ca
		(5)	3275.67 3239 3222	[653605] [653262] [653100]	[684124] [684124] [684124]	5 3 1	3 3 3	0.55 0.342 0.116	0.053 0.054 0.054	2.87 1.72 0.57	$ \begin{array}{r r} -0.57 \\ -0.79 \\ -1.268 \end{array} $	i	ls ls ls
13		¹ P°- ¹ D (6)	3058.68	664486	697170	3	5	1.30	0.305	9.2	-0.039	C	ca
14	$\begin{vmatrix} 2s3p - \\ 2s(^2S)3d \end{vmatrix}$	¹ P°- ¹ D	3144.68	580826	612617	3	5	1.05	0.258	8.02	-0.111	C+	2, ca

Ov. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	$A_{ki}(10^8 { m sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
15		³ P° – ³ D	5590.0	[583059]	[600943]	9	15	0.176	0.138	22.8	0.093	C+	2, ca
		(3)	5600 5582 5573 5606 5584 5608	[583097] [583020] [582984] [583097] [583020] [583097]	[600956] [600936] [600926] [600926] [600926]	5 3 1 5 3 5	7 5 3 5 3 3	0.175 0.133 0.0987 0.0437 0.0737 0.00486	0.115 0.103 0.138 0.0206 0.0345 0.00138	10.6 5.70 2.53 1.90 1.90 0.127	-0.240 -0.508 -0.861 -0.987 -0.986 -2.163	C + C + C + C + C +	ls ls ls ls ls
16	2p3p — 2p(2P°)3d	¹ P- ¹ D° (7)	4554.28	672965	694646	3	5	0.233	0.121	5.4	-0.440	С	ca
17	• ` ′	³ D - ³ D°	3727.5	[667639]	[704459]	15	15	0.155	0.0323	6.0	-0.314	С	ca .
		(6)	3747 3717 3701 3762 3726 3703 3692	[677847] [677532] [677333] [677847] [677532] [677532] [677333]	[704527] [704424] [704360] [704424] [704360] [704527] [704424]	7 5 3 7 5 5 3	7 5 3 5 3 7 5	0.136 0.109 0.119 0.0235 0.0388 0.0176 0.0239	0.0286 0.0226 0.0244 0.00356 0.00484 0.0051 0.0081	2.47 1.38 0.89 0.309 0.297 0.309 0.297	$\begin{array}{c} -0.70 \\ -0.95 \\ -1.135 \\ -1.60 \\ -1.62 \\ -1.60 \\ -1.61 \end{array}$	000000	ls ls ls ls ls
18		³ D — ³ P°	3268.4	[677639]	[708226]	15	9	0.0264	0.00254	0.410	-1.419	С	ca
			3298 3249 3222 3264 3230 3245	[677847] [677532] [677333] [677532] [677333]	[708154] [708296] [708379] [708154] [708296] [708379]	7 5 3 5 3 3	5 3 1 5 3 5	$\begin{array}{c} 0.0216 \\ 0.0201 \\ 0.0276 \\ 0.00397 \\ 0.0068 \\ 2.70 \times 10^{-4} \end{array}$	$\begin{array}{c} 0.00251 \\ 0.00191 \\ 0.00143 \\ 6.3 \times 10^{-4} \\ 0.00107 \\ 7.1 \times 10^{-5} \end{array}$	0.191 0.102 0.0455 0.0341 0.00228	$ \begin{array}{r} -1.75 \\ -2.021 \\ -2.368 \\ -2.499 \\ -2.494 \\ -3.67 \end{array} $	C C C C C	ls ls ls ls ls
19		³ S - ³ P° (11)	4147.9	[684124]	[708226]	3	9	0.259	0.200	8.2	-0.222	С	ca
			4158.76 4135.9 4121.7	[684124] [684124] [684124]	[708154] [708296] [708379]	3 3	5 3 1	0.257 0.261 0.264	0.111 0.067 0.0224	4.56 2.73 0.91		CCC	ls ls ls
20		³ P - ³ D° (12)	6816.6	[689793]	[704459]	9	15	0.075	0.088	17.7	-0.103	C	ca
			6830 6790 6767 6878 6819 6909	[689890] [689700] [689586] [689890] [689700] [689890]	[704527] [704424] [704360] [704424] [704360] [704360]	5 3 1 5 3 5	7 5 3 5 3 3	0.075 0.057 0.0430 0.0183 0.0313 0.00201	$\begin{array}{c} 0.073 \\ 0.066 \\ 0.088 \\ 0.0130 \\ 0.0218 \\ 8.6 \times 10^{-4} \end{array}$	8.3 4.42 1.97 1.47 1.47 0.098	$\begin{array}{c} -0.435 \\ -0.70 \\ -1.053 \\ -1.188 \\ -1.184 \\ -2.364 \end{array}$	000000	ls ls ls ls ls
21		³ P - ³ P° (13)	5423.6	[689793]	[708226]	9	9	0.87	0.384	62	0.54	С	ca
			5473 5376 5432 5352 5417 5343	[689890] [689700] [689890] [689700] [689700] [689586]	[708154] [708296] [708296] [708379] [708154] [708296]	5 3 5 3 1	5 3 1 5 3	0.64 0.223 0.361 0.91 0.218 0.304	0.285 0.097 0.096 0.130 0.160 0.390	25.7 5.1 8.6 6.9 8.6 6.9	$\begin{array}{c} 0.154 \\ -0.54 \\ -0.320 \\ -0.410 \\ -0.318 \\ -0.409 \end{array}$	CCCCCC	ls ls ls ls ls
22		¹ D - ¹ F° (14)	6329	697170	712967	5	7	0.136	0.114	11.9	-0.243	С	ca
23		¹ D - ¹ P° (15)	4522	697170	719277	5	3	0.0110	0.00203	0.151	-1.99	С	ca
24	2s4s — 2s(2S)4p	³ S - ³ P° (17)	7438	[722666]	[736107]	3	9	0.287	0.715	52.5	0.331	C+	2, ca

Naqvi's calculations [1] are the only available source. The results for the ${}^3P^{\circ}-{}^3P^{\circ}$ transitions are essentially independent of the choice of the interaction parameters. For the ${}^3P^{\circ}-{}^1P^{\circ}$ transitions, Naqvi has used empirical term intervals, i.e., the effects of configuration interaction should be partially included.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

OV. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	Type of Transition	$A_{ki}(\sec^{-1})$	S(at.u.)	Accuracy	Source
1	2s2p — 2s(2S)2p	3P°-3P°	$ \begin{bmatrix} 73.13 \times 10^4 \\ 32.65 \times 10^4 \end{bmatrix} $	[82121.2] [82257.9]			3 5	m m	$\begin{array}{c} 4.60 \times 10^{-5} \\ 3.87 \times 10^{-4} \end{array}$		B B	1 1
2		3P° — 1P°	[1304.2] [1306.5] [1311.8]	[82121.2] [82257.9] [82564.1]		1 3 5	3 3 3	m m m	0.064 16.9 0.078	$ \begin{array}{c c} 1.57 \times 10^{-5} \\ 0.00420 \\ 1.96 \times 10^{-5} \end{array} $	Č	1 1

 $\mathbf{O}\mathbf{V}\mathbf{I}$

Ground State

 $1s^2 2s {}^2S_{1/2}$

Ionization Potential

 $138.080 \text{ eV} = 1113999.5 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
129.786 129.87 129.872 150.088 150.124	5 5 5 2 2	1031.95 1037.63 3068 3314 3426	1 1 8 10 12	4751 5112 5279 5298 5410	14 16 18 19 17
172.935 173.082 173.09 183.937 184.117	4 4 4 3 3	3438 3509 3622 3811.35 3834.24	13 11 9 6 6	5602 11744 11892 11964	15 7 7 7

The values taken from Weiss' calculations [1] are estimated to be accurate to within 10% because of the very close agreement between his dipole length and dipole velocity approximations. The values calculated with the length approximation are adopted. The Coulomb approximation should be quite reliable for the highly excited transitions and is given perference over Kelly's approximate Hartree-Fock calculations [2], with which it sometimes disagrees.

^[1] Weiss, A. W., Astrophys. J. 138, 1262-1276 (1963).

^[2] Kelly, P. S., J. Quant. Spectrosc. Radiat. Transfer 4, 117-148 (1964).

OVI. Allowed Transitions

No	. Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	g	i gk	$A_{ki}(10^8 \text{ sec}^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
1	2s-2p	2S-2P°	1033.8	0.0	96730	2	6	4.08	0.196	1.33	-0.407	A	1
		(1 uv)	1031.95 1037.63	0.0 0.0	96908 96375	$\begin{vmatrix} 2\\2 \end{vmatrix}$	$\begin{vmatrix} 4 \\ 2 \end{vmatrix}$	4.09 4.02	0.131 0.0648	0.887 0.443	-0.583 -0.887	A A	ls ls
2	2s-3p	² S- ² P°	150.10	0.0	666218	2	6	259	0.262	0.259	-0.281	B+	1
		(2 uv)	150.088 150.124		666270 666113	2 2	4 2	259 259	0.175 0.0874	0.173 0.0864	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B+ B+	ls ls
3	2p-3s	² P°- ² S (3 uv)	184.06	96730	640040	6	2	170	0.0287	0.104	-0.764	B+	1
		(3 44)	184.117 183.937	96908 96375	640040 640040	4 2	2 2	113 56.7	0.0287 0.0287	0,093 0.0347	-0.939 -1.241	B+ B+	ls ls
4	2p-3d	$ \begin{array}{c} ^{2}P^{\circ}-^{2}D\\ (4 \text{ uv}) \end{array} $	173.03	96730	674657	6	10	884	0.662	2.26	0.599	B+	1
		(4 41)	173.082 172.935 [173.09]	96908 96375 96908	674677 674626 674626	4 2 4	6 4 4	886 737 147	0.597 0.661 0.0662	1.36 0.753 0.151	0.378 0.121 -0.577	B+ B+ B+	ls ls ls
5	2p-4d	$^{2}P^{\circ}-^{2}D$ (5 uv)	129.84	96730	866893	6	10	287	0.121	0.310	-0.139	В	ca
		(8 4.1)	129.872 129.786 [129.87]	96908 96375 96908	866902 866880 866880	4 2 4	6 4 4	285 239 47.6	0.108 0.121 0.0120	0.185 0.103 0.0206	$ \begin{array}{r r} -0.364 \\ -0.618 \\ -1.317 \end{array} $	B B B	ls ls ls
6	3s-3p	² S - ² P° (1)	3818.9	640040	666218	2	6	0.510	0.335	8.41	-0.175	В	1
		(1)	3811.35 3834.24	640040 640040	666270 666113	2 2	4 2	0.513 0.503	0.224 0.111	5.61 2.80	$-0.350 \\ -0.654$	B B	ls ls
7	3p-3d	$^{2}P^{\circ}-^{2}D$	11847	666218	674657	6	10	0.0137	0.0481	11.3	-0.540	В	1
			[11892] [11744] [11964]	666270 666113 666270	674677 674626 674626	4 2 4	6 4 4	$0.0136 \\ 0.0118 \\ 0.00223$	0.0433 0.0488 0.00478	6.78 3.77 0.753	$ \begin{array}{r r} -0.762 \\ -1.011 \\ -1.719 \end{array} $	B B B	ls ls ls
8	6s-7p	${}^{2}S - {}^{2}P^{\circ}$ (2)	3068	1000080	1032630	2	6	0.874	0.370	7.47	-0.131	В	ca
9	6p-7s	² P°- ² S	3622	1003130	1030780	6	2	2.72	0.178	12.7	0.029	В	ca
10	6p-7d	² P°- ² D	3314	1003130	1033324	6	10	2.02	0.554	36.3	0.522	В	ca
11	6d-7p	² D - ² P° (5)	3509	1004178	1032630	10	6	0.860	0.0952	11.0	-0.021	В	ca
12	6d – 7f	${}^{2}D - {}^{2}F^{\circ}$ (6)	3426	1004178	[1033382]	10	14	3.34	0.824	92.9	0.916	В	ca
13	6f-7d	² F °− ² D (7)	3438	[1004265]	1033324	14	10	0.337	0.0426	6.75	-0.225	В	ca
14	7s — 8p	² S - ² P° (10)	4751	1030780	1051724	2	6	0.423	0.429	13.4	-0.067	В	ca
15	7p-8s	² P°- ² S	5602	1032630	[1050543]	6	2	1.38	0.216	23.9	0.113	В	ca

OVI. Allowed Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(10^8 { m sec}^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
16	7p-8d	² P° - ² D (12)	5112	1032630	1052296	6	10	0.923	0.603	60.9	0.559	В	c a
17	7d-8p	² D- ² P° (13)	5410	1033324	1051724	10	6	0.491	0.129	23.0	0.111	В	ca
18	7d-8f	² D - ² F° (14)	5279	1033324	[1052280]	10	14	1.64	0.960	167	0.982	В	ca
19	7f-8d	² F° - ² D (15)	5298	[1033382]	1052296	14	10	0.255	0.0766	18.7	0.030	В	2

$\mathbf{O}^{\mathsf{T}}\mathbf{V}^{\mathsf{T}}\mathbf{I}$

Ground State

 $1s^2 {}^1S_0$

Ionization Potential

 $739.114 \text{ eV} = 5963000 \text{ cm}^{-1}$

Allowed Transitions

The results of extensive non-relativistic variational calculations by Weiss [1] are used. Values have been calculated in both the dipole length and dipole velocity approximations and agree to within 1 percent, except for the 3p $^1P^{\circ} - 3d$ 1D transition where agreement is not as good. The average of the two approximations is adopted [1].

Reference

[1] Weiss, A. W., private communication (1964).

O VII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	$A_{ki}(10^8 \mathrm{sec}^{-1})$	f_{ik}	S(at. u.)	log gf	Accu- racy	Source
1	$1s^2 - 1s2p$	1S-1P°	[21.602]	0	4629200	1	3	33000	0.694	0.0494	-0.158	A	1
2	$1s^2-1s3p$	¹S−¹P°	[18.627]	0	5368550	1	3	9370	0.146	0.00897	- 0.835	A	1
3	1s2s-1s2p	.1S-1P°	[2475.4]	[4588814]	4629200	1	3	0.246	0.0679	0.553	-1.168	A	1
4	1s2s-1s3p	¹ S- ¹ P°	[128.25]	[4588814]	5368550	1	3	504	0.373	0.158	-0.428	A	1
5	1s2p-1s3d	¹P°-¹D	[135.77]	4629200	[5365734]	3	5	1530	0.705	0.945	0.325	A	1
6	1s3d - 1s3p	¹ D - ¹ P°	[35500]?	[5365734]	5368550	5	3	6.99×10^{-4}	0.00792	4.62	-1.402	C+	1
													_
7	1s2s-1s2p	3S - 3P°	[1630.3]	4525270	[4586610]	3	9	0.794	0.0949	1.53	- 0.546	A	1
8	1s2s - 1s3p	3S - 3P°	[120.33]	4525270	5356300	3	9	533	0.347	0.413	0.018	A	1
9	1s2p-1s3d	³ P∞ − ³ D	[128.46]	[4586610]	5365070	9	15	1620	0.666	2.54	0.778	A	1
10	1s3p - 1s3d	3P°-3D	[11399]?	5356300	5365070	9	15	0.0113	0.0367	12.4	-0.481	A	1

FLUORINE

FI.

Ground State

Ionization Potential

 $1s^22s^22p^5 {}^2P_{3/2}^{\circ}$

 $17.418 \text{ eV} = 140524.5 \text{ cm}^{-1}$

Allowed Transitions List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
6239.64 6348.50 6413.66 6708.27 6773.97	3 3 3 2 2	6909.82 6966.35 7037.45 7127.88 7202.37	2 6 6 6 6	7489.14 7514.93 7552.24 7573.41 7607.17	5 1 1 1 4
6795.52 6834.26 6856.02 6870.22 6902.46	2 2 2 2 2	7311.02 7331.95 7398.68 7425.64 7482.72	5 1 1 1	7754.70 7800.22	4

Since there are no numerical data available for this spectrum, values for the prominent lines have been calculated from the Coulomb approximation by Bates and Damgaard. This method is expected to give fairly reliable results as judged from other atomic systems of similar complexity, where comparison data have been available.

FI. Allowed Transitions

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	$\begin{bmatrix} A_{ki}(10^8\\ \sec^{-1}) \end{bmatrix}$	f_{ik}	S(at.u.)	log g∱	Accu- racy	Source
1	2p ⁴ 3s — 2p ⁴ (³ P)3p	4P — 4P° (1)	7490.3 7398.68 7482.72 7514.93 7331.95 7425.64 7552.24 7573.41	102571 102407 102681 102841 102407 102681 102681 102841	115918 115919 116042 116144 116042 116144 115919 116042	12 6 4 2 6 4 4 2	12 6 4 2 4 2 6 4	0.35 0.25 0.047 0.058 0.17 0.30 0.10 0.14	0.29 0.21 0.039 0.049 0.089 0.12 0.13 0.24	86 30 3.9 2.4 13 12 13 12	0.54 0.09 -0.81 -1.01 -0.27 -0.31 -0.28 -0.31	D D D D D D	ca ls ls ls ls ls
2		⁴ P — ⁴ D° (2)	6859.2 6856.02 6902.46 6909.82 6773.97 6834.26 6870.22 6708.27 6795.52	102571 102407 102681 102841 102407 102681 102407 102681	117146 116988 117165 117309 117165 117309 117393 117309 117393	12 6 4 2 6 4 2 6 4	20 8 6 4 6 4 2 4 2	0.45 0.45 0.31 0.18 0.14 0.24 0.38 0.024 0.077	0.53 0.42 0.33 0.26 0.095 0.17 0.27 0.011 0.027	140 57 30 12 13 15 12 1.4 2.4	0.80 0.40 0.12 -0.28 -0.24 -0.17 -0.27 -1.19 -0.97	D D D D D D D	ca ls ls ls ls ls ls ls ls

Allowed Transitions - Continued

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	g	g_k	$A_{ki}(10^8 { m sec}^{-1})$	f_{ik}	S(at.u.)	$\log gf$	Accu- racy	Source
3		⁴ P- ⁴ S° (3)	6304.2	102571	118429	12	4	0.56	0.11	28	0.12	D	ca
		(0)	6239.64 6348.50 6413.66	102407 102681 102841	118429 118429 118429	6 4 2	4 4 4	0.29 0.18 0.090	0.11 0.11 0.11	14 9.3 4.7	$ \begin{array}{r} -0.18 \\ -0.35 \\ -0.65 \end{array} $	D D D	ls ls ls
4	<u> </u>	² P- ² D°	7759.4	104840	117724	6	10	0.35	0.53	80	0.50	D	ca
		(-/	7754.70 7800.22 7607.17	104732 105057 104732	117624 117874 117874	4 2 4	6 4 4	0.35 0.29 0.061	0.47 0.53 0.053	48 27 5.3	$0.27 \\ 0.02 \\ -0.67$	D D D	ls ls ls
5		² P- ² S° (5)	7369.3	104840	118406	6	2	0.40	0.11	16	-0.18	D	ca
		(0)	7311.02 7489.14	104732 105057	118406 118406	4 2	2 2	0.27 0.13	0.11 0.11	11 5.4.	-0.36 -0.66	D D	ls ls
6		² P - ² P° (6)	7067.02	104840	118986	6	6	0.46	0.34	48	0.31	D	ca
			7037.45 7127.88 6966.35 7202.37	104732 105057 104732 105057	118938 119083 119083 118938	$\begin{bmatrix} 4 \\ 2 \\ 4 \\ 2 \end{bmatrix}$	4 2 2 4	$0.38 \\ 0.30 \\ 0.16 \\ 0.072$	0.28 0.23 0.056 0.11	26 11 5.2 5.3	0.05 - 0.35 - 0.65 - 0.65	D D D	ls ls ls ls

Forbidden Transitions

Naqvi's calculation [1] of the one possible transition in the ground state configuration $2p^5$ is the only available source. The line strength should be quite accurate, since it does not sensitively depend on the choice of the interaction parameters.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

FI. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g_k	Type of Transition	$A_{ki}(\sec^{-1})$	S(at. u.)	Accu- racy	Source
1	$2p^5 - 2p^5$	² P° — ² P°	[24.75×10 ⁴]	0.0	404.0	4	2	m	0.00118	1.33	В	1

 $1s^22s^22p^4$ ³P₂

Ionization Potential

 $34.98 \text{ eV} = 282190.2 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
605.67	1	3535.2	5	4103.09	9
606.27	1 1	3536.84	5 5 5 5	4103.3	9
606.81	1 1	3538.6	5	4103.53	9
606.95	1 1	3541.77	5	1100.00	_
	1 1	3541.11		4103.72	9
607.48	1 1	3544.5	5	4103.87	9
608.06	1	3546.1	5 5	4104.1	ģ
	1/7	3640.89	10	4109.17	4
$3202.74 \\ 3501.42$	8	3640.9	10	4112.7	44
+	8	3641.99	10	7112.1	•
3501.5	8	3041.99	10	4113.1	4
3501.6	°	3642.80	10	4116.55	
3502.9	8	3847.09		4117.1	4 4 4 4
3502.9 3502.95	8	3849.99	2	4118.8	4
3503.10	8	3851.67	2 2 2 3	4119.22	4
3505.10 3505.4	8	4024.73	2	4119.22	*
3505.4 3505.6	8	4024.73	3	4246.16	11
5505.0	0	4025.01	ي	4240.10	6
3505.61	8	4025.50	3 3	4446.9	12
10.6066	0	4023.30	٥	1411 0.7	12

For one of the strongest ultraviolet transitions a value calculated by Varsavsky [1] from a screening approximation is available and listed. Because the strong effects of configuration interaction have been neglected, this number should be quite uncertain. (In general, Varsavsky's values have a tendency to be too large.) Values obtained with the Coulomb approximation are presented for all prominent transitions in the visible and near ultraviolet. The indicated accuracies are estimated from extrapolation with equivalent transitions of O I, for which experimental and theoretical comparison data are available.

Reference

[1] Varsavsky, C. M., Astrophys. J. Suppl. Ser. 6, 75-108 (1961).

FII. Allowed Transitions

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(10^8 m sec^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
1	$2s^{2}2p^{4} - 2s^{2}p^{5}$	³ P - ³ P° (1 uv)	606.85	169	164955	9	9	100	0.56	10	0.70	E	1
	2 0 2 p	(1 41)	606.81 606.95 605.67 606.27 608.06 607.48	342 0 342 342 342 491	164798 165107 165107 165281 164798 165107	5 3 5 3 1	5 3 1 5 3	78 26 43 100 25 33	0.43 0.14 0.14 0.18 0.23 0.55	4.3 0.86 1.4 1.1 1.4 1.1	$\begin{array}{c c} 0.33 \\ -0.37 \\ -0.15 \\ -0.26 \\ -0.16 \\ -0.26 \end{array}$	E E E E E	ls ls ls ls ls
2	$\begin{bmatrix} 2p^3 3s - \\ 2p^3 (^4S^{\circ}) 3p \end{bmatrix}$	⁵ S°- ⁵ P (<u>1</u>)	3848.9 3847.09 3849.99	[176654] [176654] [176654]	[202628] [202641] [202621]	5 5 5	15 7 5	1.3 1.3 1.3 1.3	0.84 0.39 0.28 0.17	54 25 18 11	0.62 0.29 0.15 -0.08	D D D D	ca ls ls

FII. Allowed Transitions—Continued

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	<i>8</i> k	$A_{ki}(10^8 \text{ sec}^{-1})$	f_{ik}	S(at.u.)	$\log gf$	Accu- racy	Source
3		³ S°- ³ P	4025.0	182865	207703	3	9	1.2	0.90	36	0.43	D	ca
		}	4024.73	182865	207705	3	5	1.2	0.50	20	0.18	D	ls
			4025.50 4025.01	182865 182865	207700 207703	3	$\frac{3}{1}$	1.2	0.30	12 4.0	-0.04	D	\ ls
						1	_		0.10	4.0	-0.52	D	ls
4	$2p^{3}3s' - 2p^{3}(^{2}D^{\circ})3p'$	$^{3}D^{\circ} - ^{3}D$	4113.7	211881	236183	15	15	1.8	0.45	92	0.83	D	ca
			4109,17 4116.55	211867 211888	236196 236173	5	7 5	$1.6 \\ 1.2$	$0.40 \\ 0.32$	38 21	$0.45 \\ 0.20$	D	ls
			4119.22	211901	236170	3	3	1.3	0.34	14	0.20	D	ls ls
			[4113.1]	211867	236173	7	3 5	0.28	0.050	4.8	-0.45	l b	ls
			[4117.1]	211888	236170	5	$\frac{3}{7}$	0.45	0.068	4.6	-0.47	D	ls
			[4112.7] [4118.8]	211888 211901	236196 236173	5 3	7 5	0.20	0.071	4.8	-0.45	D	ls
	:		[4116.6]	211901	230173	3	- 5	0.27	0.11	4.6	-0.47	D	ls
5		³ D° – ³ P	3539.8	211881	240123	15	9	2.1	0.23	40	0.54	D	ca
			3541.77	211867	240093	7	5	1.7	0.23	19	0.21	D	ls
			3536.84	211888 211901	240153	5	3	1.5	0.17	10	-0.06	D	ls
			[3535.2] [3544.5]	211901	240180 240093	3 5	1 5	2.1 0.31	0.13 0.058	4.5 3.4	$\begin{bmatrix} -0.42 \\ -0.54 \end{bmatrix}$	D	ls ls
			[3538.6]	211901	240153	3	3	0.51	0.096	3.4	-0.54	D D	ls
			[3546.1]	211901	240093	3	5	0.021	0.0064	0.23	-1.71	Ď	ls
6		¹ D° – ¹ F (7)	4299.18	215070	238324	5	7	1.7	0.64	45	0.51	D	ca
7		¹ D° — ¹ D (8)	3202.74	215070	246284	5	5	1.4	0.21	11	0.02	D	ca
8	$2p^{3}3p - 2p^{3}(^{4}S^{\circ})3d$	⁵ P - ⁵ D° (3)	3504.0	[202628]	[231159]	15	25	2.86	0.88	152	1.120	С	ca
	2p (3)3u	(3)	3505.61	[202641]	[231158]	7	9	2.86	0.68	55	0.68	С	ls
			3503.10	[202621]	[231159]	5	7	1.91	0.491	28.3	0.390	l C	ls
			[3501.6]	[202610]	[231160]	-3	5	1.00	0.307	10.6	-0.036	Č	ls
			[3505.6] 3502.95	[202641] [202621]	[231159]	7 5	7 5	0.95 1.67	0.175 0.307	14.2 17.7	0.089 0.186	C	ls
.			[3501.5]	[202621]	[231161]	3	3	2.15	0.307	13.7	0.180	C	ls ls
			[3505.4]	[202641]	[231160]	7	5	0.190	0.0251	2.02	-0.76	č	ls
Ì			[3502.9]	[202621]	[231161]	5	3	0.72	0.079	4.55	-0.404	C	ls
			3501.42	[202610]	[231161]	3	1	2.86	0.175	6.1	-0.279	С	ls
9		$^{3}P - ^{3}D^{\circ}$ (4)	4103.4	207703	232066	9		2.05	0.86	105	0.89	C	ca
			4103.53	207705	232067	5	7	2.05	0.72	48.8 26.2	0.56 0.287	C C	ls ls
			4103.09 4103.72	207700 207703	232065 232064	3	5 3	1.54 1.14	0.65 0.86	11.6	-0.267	C C	ls
ĺ			4103.72	207705	232065	5	5	0.51	0.129	8.7	-0.190	č	ls
			[4103.3]	207700	232064	3	3	0.85	0.215	8.7	-0.190	C	ls
			[4104.1]	207705	232064	5	3	0.057	0.0086	0.58	-1.366	С	ls
10	$2p^{3}3p' - 2p^{3}(^{2}D^{\circ})3d'$	³ F − ³ F° (11)	3641.7	237509	264961	21	21	0.147	0.0292	7.3	-0.213	Ç-	ca
	2p (D)00	(±.=2	3640.89	237508	264966	9	9	0.137	0.0273	2.95	-0.61	C-	ls
			3641.99	237509	264959	7	7	0.123	0.0245	2.06	$\begin{bmatrix} -0.77 \\ -0.99 \end{bmatrix}$	C-	ls ls
١			3642.80	237509	264953	5	5	0.130 0.0118	0.0259 0.00182	1.55 0.197	-0.89 -1.79	C-	ls
			3641.99	237508 237509	264959 264953	9 7	7 5	0.0118	0.00182	0.197	-1.79	Č-	ls
ļ			3642.80 [3640.9]	237509	264966	7	9	0.0092	0.00234	0.196	-1.79	C	ls
			3641.99	237509	264959	5	7	0.0116	0.00324	0.194	-1.79	C-	ls
11	$2p^{3}3d - 2p^{3}(^{4}S^{\circ})4f$	⁵ D° — ⁵ F (9)	4246.16	[231159]	[254703]	25	25	2.47	0.93	326	1.368	C	ca
	-r (=) 5		4445.0	940000	054547	15	91	2.35	0.97	214	1.165	С	ca
12		$^{3}D^{\circ} - {}^{3}F$ (10)	4446.9	232066	254547	15	21	2.33	0.71				

The adopted values represent the results of calculations by Garstang [1] and Naqvi [2], which are very similar in character. Garstang's evaluation of the quadrupole integral s_q is considered the more refined one; therefore, the quadrupole line strengths are taken from his paper. Naqvi, in his calculations of magnetic dipole lines, retains the spin-spin and spin-other-orbit integral in the transformation coefficients, while Garstang neglects it. Thus, Naqvi's values are chosen, whenever this becomes significant. When this refinement is not sensitive, the two authors agree. For the $^3P-^1S$ transition the important effects of configuration interaction are most appropriately taken into account by Garstang's method, so that his values are used. (Further explanations are found in the general introduction.)

References

- [1] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 111, 115-124 (1951).
- [2] Naqvi, A. M., Thesis Harvard (1951).

Fig. Forbidden Transitions

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g_i	g_k	Type of Transition	$A_{ki}(\mathrm{sec^{-1}})$	S(at.u.)	Accu- racy	Source
1	$2p^4 - 2p^4$	3P -3P		0.0 0.0 0.0 341.8	341.8 341.8 490.6 490.6	5 5 5 3	3 3 1 1	m e c m	$\begin{array}{c} 8.97\times 10^{-4}\\ 2.30\times 10^{-10}\\ 1.80\times 10^{-9}\\ 1.78\times 10^{-4} \end{array}$	2.50 0.88 0.376 2.00	B C C B	1, 2 1 1 1, 2
2		³ P - ¹ D (1 F)	4789.5 4789.5 4869.3 4869.3 [4904.8]	0.0 0.0 341.8 341.8 490.6	20873 20873 20873 20873 20873	5 5 3 3	5 5 5 5	m e m e e	$\begin{array}{c} 3.81 \\ 9.6 \times 10^{-5} \\ 0.0121 \\ 1.3 \times 10^{-5} \\ 4.1 \times 10^{-6} \end{array}$	7.8×10^{-4} 7.2×10^{-4} 2.59×10^{-4} 1.1×10^{-4} 3.5×10^{-5}	C D C D D	2 1 2 1 1
3		3P-1S	[2225.5] [2246.6]	0.0 341.8	44919 44919	5 3	1 1	e m	0.0016 0.490	5.2×10^{-5} 2.06×10^{-4}	D C	1 1
4		¹ D- ¹ S (2 F)	4157.5	20873	44919	5	1	e	2.10	1.55	C	1

FIII.

Ground State

 $1s^22s^22p^3\ ^4{\rm S}^{\circ}_{3/2}$

Ionization Potential

 $62.646 \text{ eV} = 505410 \text{ cm}^{-1}$

Allowed Transitions

After having written introductory remarks for 9.2 elements, we must confess that this becomes a rather cumbersome exercise in style. Since we expect that this introduction will share the fate of most introductions (namely be ignored) and since there is nothing new to say on this ion (for scientific content see F I) we might as well give the few readers of this introduction some good advice:

If there is no other data source, Use the Coulomb approximation, of course. The results should be certainly fine For any moderately or highly excited line.

F III. Allowed Transitions

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	$A_{ki}(10^8 { m sec}^{-1})$	f_{ik}	S(at.u.)	$\log gf$	Accu- racy	Source
1	$2p^23s - 2p^2(^3P)3p$	⁴ P - ⁴ D° (1)	3124.4	317043	349040	12	20	1.6	0.40	48	0.67	D	ca
	2p (1)0 p		3121.52 3115.67 3113.58	317238 316919 316707	349264 349005 348815	6 4 2	8 6 4	1.6 1.1 0.67	0.31 0.25 0.19	19 10 4.0	$ \begin{array}{c c} 0.27 \\ -0.01 \\ -0.41 \end{array} $	D D D	ls Is Is
			3146.96 3134.21 3124.76	317238 316919 316707	349005 348815 348701	6 4 2	6 4 2	$0.47 \\ 0.84 \\ 1.3$	0.070 0.12 0.19	4.3 5.1 4.0	$ \begin{array}{r r} -0.38 \\ -0.30 \\ -0.41 \end{array} $	D D D	ls ls ls
			3165.86 3145.54	317238 316919	348815 348701	6 4	$\begin{bmatrix} 4 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 0.077 \\ 0.26 \end{bmatrix}$	0.0077 0.019	0.48 0.80	-1.34 -1.11	D D	ls ls
2		$^{2}P - ^{2}D^{\circ}$ (2)	3176.9	324746	356214	6	10	1.7	0.42	26	0.40	D	ca
			3174.13 3174.73 3213.97	324874 324490 324874	356370 355980 355980	4 2 4	6 4 4	$egin{array}{c} 1.7 \\ 1.4 \\ 0.27 \end{array}$	$0.38 \\ 0.42 \\ 0.041$	16 8.7 1.8	$ \begin{array}{r} 0.18 \\ -0.08 \\ -0.78 \end{array} $	D D D	ls ls ls
3	$2p^23p' - 2p^2({}^1\mathbf{D})3d'$	$^{2}D^{\circ} - ^{2}F$ (3)	3039.3	380265	413158	10	14	2.75	0.53	53	0.73	С	ca
	 (3039.25 3039.75 3034.54	380243 380299 380243	413136 413187 413187	6 4 6	8 6 6	2.75 2.56 0.184	0.51 0.53 0.0254	$ \begin{array}{c c} 30.4 \\ 21.3 \\ 1.52 \end{array} $	$0.483 \\ 0.329 \\ -0.82$	C C C	ls ls ls
4		$ \begin{vmatrix} ^2P^\circ - ^2D \\ (4) \end{vmatrix} $	3150.6	384440	416171	6	10	1.39	0.344	21.4	0.315	С	ca
		(*)	3154.39 3142.78 3156.11	384485 384351 384485	416178 416161 416161	4 2 4	6 4 4	1.38 1.16 0.230	0.309 0.344 0.0344	12.9 7.1 1.43	0.093 -0.162 -0.86	C C C	ls ls ls

Naqvi's [1] calculations are the only available source. The values should not be quite as reliable as for other ions of the p^3 configuration (O II, Ne IV) since the important configuration interaction effects (see general introduction) are neglected.

Reference

[1] Naqvi, Λ . M., Thesis Harvard (1951).

F III. Forbidden Transitions

						_	_			T		
No.	Transition Array	Multi- plet	λ(Å)	$E_i({ m cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g_k	Type of Transition	$A_{ki}(\mathrm{sec^{-1}})$	S(at.u.)	Accu- racy	Source
1	$2p^3-2p^3$	⁴ S°- ² D°	[2933.1] [2933.1] [2930.0] [2930.0]	0 0 0 0	34084 34084 34120 34120	4 4 4 4	6 6 4 4	m e m e	$\begin{array}{c} 1.08 \times 10^{-5} \\ 1.2 \times 10^{-4} \\ 0.00134 \\ 7.5 \times 10^{-5} \end{array}$		C - D - C -	1 1 1 1
2		⁴ S°- ² P°	[1939.6] [1939.6] [1939.6] [1939.6]	0 0 0	51558 51558 51558 51558	4 4 4 4	4 4 2 2	m e m e	$\begin{array}{c} 0.256 \\ 2.7 \times 10^{-8} \\ 0.102 \\ 7.4 \times 10^{-7} \end{array}$	$ \begin{vmatrix} 2.77 \times 10^{-4} \\ 1.8 \times 10^{-9} \\ 5.5 \times 10^{-5} \\ 2.4 \times 10^{-8} \end{vmatrix} $	C - D - C - D -	1 1 1 1
3		² D° – ² D°	$[27.8 \times 10^{5}]$ $[27.8 \times 10^{5}]$	34084 34084	34120 34120	6	4 4	m e	$\begin{vmatrix} 7.55 \times 10^{-7} \\ 1.8 \times 10^{-18} \end{vmatrix}$	$\begin{array}{ c c c c c }\hline 2.40 \\ 7.2 \times 10^{-4} \\ \end{array}$	B D-	1

FIII. Forbidden Transitions - Continued

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	g_i	g_k	Type of Transition	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
4		² D°- ² P° (1F)	5721.2 5721.2 [5721.2] 5733.0 5733.0 [5733.0] [5733.0]	34084 34084 34084 34120 34120 34120 34120	51558 51558 51558 51558 51558 51558 51558	6 6 4 4 4 4	4 4 2 4 4 2 2	m e e m e m	0.0280 0.15 0.088 0.0494 0.065 0.0309 0.13	7.8×10^{-4} 2.2 0.64 0.00138 0.96 4.32×10^{-4} 0.96	C - D C - D C - D	1 1 1 1 1 1

FIV.

Ground State

Ionization Potential

 $1s^22s^22p^2$ ³P₀

 $87.14 \text{ eV} = 703020 \text{ cm}^{-1}$

Allowed Transitions

The results of calculations by Bolotin et al. [1] are listed. These authors have employed relatively simple wave functions and include the important effects of configuration interaction in a crude manner. Thus, their results should be quite uncertain, but they are nevertheless included since these transitions are expected to be among the strongest for this ion.

Reference

[1] Bolotin, A. B., Levinson, I. B., and Levin, L. I., Soviet Phys. - JETP 2, 391-395 (1956).

F IV. Allowed Transitions

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g _k	$\begin{array}{c} A_{ki}(10^8 \\ \sec^{-1}) \end{array}$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p^2 - 2s2p^3$	³ P - ³ D°	678.18	416	147870	9	15	11	0.13	2.6	0.07	E	1
	2029		[679.21] [677.21] [676.12] [679.00] [677.15] [678.94]	613 225 0 613 225 613	147842 147889 147902 147889 147902 147902	5 3 1 5 3 5	7 5 3 5 3 3	11 8.5 6.3 2.8 4.8 0.30	0.11 0.097 0.13 0.020 0.033 0.0013	1.2 0.65 0.29 0.22 0.22 0.014	$\begin{array}{c c} -0.27 \\ -0.54 \\ -0.89 \\ -1.01 \\ -1.01 \\ -2.20 \end{array}$	E E E E E	ls ls ls ls ls
2		3P - 3P°	572.00	416	175242	9	9	32	0.16	2.7	0.16	E	1
			[572.66] [571.37] [572.64] [571.30] [571.39] [570.64]	613 225 613 225 225 0	175237 175242 175242 175264 175237 175242	5 3 5 3 1	5 3 3 1 5 3	24 8.3 14 33 8.3 11	0.12 0.041 0.040 0.053 0.067 0.16	1.1 0.23 0.38 0.30 0.38 0.30	$\begin{array}{c c} -0.23 \\ -0.91 \\ -0.70 \\ -0.80 \\ -0.69 \\ -0.80 \end{array}$	EEEEEE	ls ls ls ls ls
3		³ P- ³ S°	420.38	416	238297	9	3	180	0.16	2.0	0.16	E	1
			[420.73] [420.04] [419.64]	613 225 0	238297 238297 238297	5 3 1	3 3	100 61 20	0.16 0.16 0.16	1.1 0.67 0.22	$ \begin{array}{r} -0.10 \\ -0.31 \\ -0.80 \end{array} $	E E E	ls ls ls
4		¹ D- ¹ D°	[491.00]	25241	228908	5	5	86	0.31	2.5	0.19	E	1
5		¹ D- ¹ P°	[430.76]	25241	257390	5	3	130	0.21	1.5	0.02	E	. 1
6		¹ S - ¹ P°	[490.57]	53544	257390	1	3	27	0.30	0.48	-0.53	E	-1

The adopted values represent the results of calculations by Garstang [1] and Naqvi [2], which are very similar in character. Garstang's evaluation of the quadrupole integral s_q is considered the more refined one; therefore, the quadrupole line strengths are taken from his paper. The results for the magnetic dipole lines agree, except for the $^3P-^1S$ transition. For this line, the important effects of configuration interaction are more appropriately taken into account by Garstang's approach of using the experimental term intervals, so that his values are used. (Further explanations are found in the general introduction.)

References

- [1] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 111, 115-124 (1951).
- [2] Naqvi, A. M., Thesis Harvard (1951).

F IV. Forbidden Transitions

				7	,	,	_	,				
No.	Transition Array	Multi- plet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g_i	g_k	Type of Transition	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu:	Source
1	$2p^2 - 2p^2$	3P _3P		0.0 0.0 225.2 225.2	225.2 613.4 613.4 613.4	1 1 3 3	3 5 5 5	m e m e	$\begin{array}{c} 2.05 \\ 5.0 \times 10^{-10} \\ 7.89 \times 10^{-4} \\ 1.20 \times 10^{-10} \end{array}$	2.00 0.171 2.50 0.405	B C B C	1, 2 1 1, 2 1
2		³ P- ¹ D (1 F)	[3960.7] 3996.3 3996.3 4059.3 4059.3	0.0 225.2 225.2 613.4 613.4	25241 25241 25241 25241 25241 25241	1 3 3 5 5	5 5 5 5 5	e m e m e	$\begin{array}{c} 6.4\times10^{-6} \\ 0.0342 \\ 2.1\times10^{-5} \\ 0.098 \\ 1.3\times10^{-4} \end{array}$	$\begin{array}{c} 1.9 \times 10^{-5} \\ 4.05 \times 10^{-4} \\ 6.4 \times 10^{-5} \\ 0.00122 \\ 4.3 \times 10^{-5} \end{array}$	D C D C D	1 1, 2 1 1, 2
3		3P_1S	[1875.5] [1889.3]	225.2 613.4	53544 53544	3 5	1 1	m e	1.10 0.0023	$\begin{array}{ c c c c c }\hline 2.69 \times 10^{-4} \\ 3.3 \times 10^{-5} \\\hline \end{array}$	C D	1 1
4		¹ D- ¹ S (2 F)	3532.2	25241	53544	5	1	e	2.10	0.69	С	1

FV.

Ground State

 $1s^2 2s^2 2p \,^2 P_{1/2}^{\circ}$

Ionization Potential

 $114.214 \text{ eV} = 921450 \text{ cm}^{-1}$

Allowed Transitions

The two available sources are quantum mechanical calculations by Bolotin and Yutsis [1] and Naqvi and Victor [2]. The important transitions covered by Bolotin and Yutsis are very sensitive to the effects of configuration interaction, which are only approximately included in their calculations. For the result of Naqvi and Victor, obtained from the charge expansion method, an accuracy within 25 percent is indicated from comparisons of this work with other material for equivalent transitions within this isoelectronic sequence.

References

- [1] Bolotin, A. B., and Yutsis, A. P., Zhur. Eksptl. i Teoret. Fiz. 24, 537-543 (1953) (Translated in "Optical Transition Probabilities," Office of Technical Services, U.S. Department of Commerce, Washington, D.C.).
- [2] Naqvi, A. M., and Victor, G. A., Technical Documentary Report No. RTD TDR-63-3118 (1964).

F v. Allowed Transitions

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	$\begin{vmatrix}A_{ki}(10^8\\\sec^{-1})\end{vmatrix}$	fik	S(at.u.)	$\log gf$	Accu- racy	Source
1	$2s^22p - 2s2p^2$	² P°- ² D	656.22 [657.33]	497 746	152885 152876	6	10	12 12	0.13 0.12	1.7	-0.10 -0.34	E E	ls
			[654.03] [657.24]	0 746	152898 152898	2 4	4 4	$\begin{array}{c} 12 \\ 10 \\ 2.0 \end{array}$	0.12 0.13 0.013	0.57 0.11	$ \begin{array}{r r} -0.54 \\ -0.58 \\ -1.29 \end{array} $	E E E	ls ls
2		² P°- ² S	507.44	497	197565	6	2	67	0.086	0.86	-0.29	E	1
1			[508.08] [506.16]	746 0	197565 197565	4 2	2 2	44 23	0.085 0.087	$0.57 \\ 0.29$	$-0.47 \\ -0.76$	E E	ls ls
3		² P°− ² P	465.78	497	215192	6	6	100	0.33	3.0	0.29	E	1
			[465.98] [465.37] [467.00] [464.36]	746 0 746 0	215348 214881 214881 215348	4 2 4 2	4 2 2 4	85 67 33 17	0.28 0.22 0.054 0.11	1.7 0.67 0.33 0.33	0.04 -0.36 -0.67 -0.67	E E E	ls Is Is Is
4	$3s - (^{1}S)3p$	$^{2}S-^{2}P^{\circ}$	2454.2	524751	565485	2	6	2.24	0.61	9.8	0.084	С	2
			[2450.7] [2461.3]	524751 524751	565544 565367	2 2	4 2	2.24 2.22	0.403 0.202	6.5 3.27	-0.094 -0.394	C	ls ls

Forbidden Transitions

Naqvi's calculation [1] of the one possible transition in the ground state configuration 2p is the only available source. The line strength should be quite accurate, since it does not sensitively depend on the choice of the interaction parameters.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

F V. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	Type of Transition	$A_{ki}(\mathrm{sec^{-1}})$	S(at. u.)	Accu- racy	Source
1	2p-2p	² P°_2P°	13.40×10 ⁴	0	746	2	4	m	0.00373	1.33	В	1

Ground State $1s^22s^2$ 1S_0

Ionization Potential

 $157.117 \text{ eV} = 1267581 \text{ cm}^{-1}$

Allowed Transitions

The results of the charge expansion calculations by Naqvi and Victor [1] are utilized whenever comparison of this work with other data in the isoelectronic sequence indicates a fair reliability of this material. Values for the $2s2p-2p^2$ transition array are available from the self-consistent field calculations by Weiss [2]. These calculations do not include the important effects of configuration interaction; hence, fairly large uncertainties must be expected. The average of the dipole length and velocity approximations [2] is adopted and accuracies within 50 percent are indicated from comparisons possible for the first member of this isoelectronic sequence.

References

- [1] Naqvi, A. M., and Victor, G. A., Technical Documentary Report No. RTD TDR-63-3118 (1964).
- [2] Weiss, A. W., private communication (1964).

Fvi. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g_k	$A_{ki}(10^{8} { m sce}^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
1	$2s^2 - 2s(^2S)2p$	¹S−¹P°	[535.21]	0	186841	1	3	48	0.62	1.1	-0.20	E	1
2	$2s^2 - 2s(^2S)3p$	¹ S- ¹ P°	[126.93]	0	787833	1	3	660	0.48	0.20	-0.32	E	1
3	$2s2p-2p^2$	³ P°− ³ P	646.27	97152	251886	9	9	25	0.16	3.0	0.15	D	2
			[646.38] [646.10] [648.52] [647.33] [643.98] [645.02]	96861 97437 96861 96861	252145 251635 251635 251341 252145 251635	5 3 5 3 1	5 3 3 1 5 3	18 6.3 10 25 6.4 8.3	0.11 0.039 0.039 0.052 0.066 0.16	1.2 0.25 0.42 0.33 0.42 0.33	$\begin{array}{c} -0.25 \\ -0.93 \\ -0.71 \\ -0.81 \\ -0.70 \\ -0.81 \end{array}$	D D D D D	ls ls ls ls ls
4	i	¹P°−¹D	[1139.5]	186841	274597	3	5	8.2	0.27	3.0	-0.10	D	2
5		¹ P°- ¹ S	[651.11]	186841	340424	3	1	26	0.054	0.35	-0.79	D	2
6	$2s3s - 2s(^2S)3p$	¹ S- ¹ P°	[4264.8]	764392	787833	1	3	0.326	0.267	3.75	-0.57	С	1

Forbidden Transitions

Naqvi's calculations [1] are the only available source. The results for the ${}^3P^{\circ} - {}^3P^{\circ}$ transitions are essentially independent of the choice of the interaction parameters. For the ${}^3P^{\circ} - {}^1P^{\circ}$ transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Fvi. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(m cm^{-1})$	gi	g_k	Type of Transition	$A_{ki}({ m sec}^{-1})$	S(at. u.)	Accu- racy	Source
1	2s2p - 2s(2S)2p	3P°-3P°	$[38.5 \times 10^{4}]$ $[17.36 \times 10^{4}]$	96601 96861	96861 97437	1 3	3 5	m m	$\begin{array}{c} 3.16 \times 10^{-4} \\ 0.00258 \end{array}$	2.00 2.50	B B	1
2			[1108.2] [1111.4] [1118.5]	96601 96861 97437	186841 186841 186841	1 3 5	3 3 3		0.268 44.2. 0.324	$\begin{array}{c} 4.05 \times 10^{-5} \\ 0.0068 \\ 5.1 \times 10^{-5} \end{array}$	C C C	1 1 1

F VII.

Ground State

 $1s^22s$ $^2S_{1/2}$

Ionization Potential

 $185.139 \text{ eV} = 1493656 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
86.732 97.262	3 6	127.81 134.71	5 4	890.762	1
97.354 112.94	$\frac{6}{2}$	134.88	4	$3246.6 \\ 3276.6$	7 7
112.98	2	335.17 391.73	8	7958.9 9524.8	11 9
127.65 127.80	5 5	392.16 883.097	10	9702.3	9
127.00	3	000.091	1	9787.8	9

For F VII, an ion of the Lithium sequence, theoretical data from the self-consistent field calculations by Weiss [1] and the variational calculations by Flannery and Stewart [2], both done in the dipole length and velocity approximations, as well as an experimental result from the lifetime measurement of Berkner et al. [3], are available. The agreement for the 2s-2p transition, which is covered by all three methods, is within an impressive 10 percent. Errors smaller than 25 percent are estimated from the close agreement between the dipole length and velocity approximations. The dipole length values are chosen.

- [1] Weiss, A. W., Astrophys. J. 138, 1262-1276 (1963).
- [2] Flannery, M. R., and Stewart, A. L., Monthly Notices Roy. Astron. Soc. 126, 387-392 (1963).
- [3] Berkner, K. H., Cooper, W. L., Kaplan, S. N., and Pyle, R. V., Phys. Letters 16, 35 (1965).

F vII. Allowed Transitions

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g_i	g_k	$A_{ki}(10^8 m sec^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
1	2s-2p	² S - ² P°	885.64	0	112913	2	6	4.77	0.168	0.981	-0.473	В	1, 2, 3
			883.097 890.762	0	113238 112263	$\frac{2}{2}$	4 2	4.81 4.69	0.112 0.0558	0.654 0.327	$ \begin{array}{r} -0.648 \\ -0.953 \end{array} $	B B	ls ls
2	2s-3p	² S- ² P°	112.95	0	885324	2	6	499	0.286	0.213	-0.242	B+	1, 2
			[112.94] [112.98]	0	885418 885136	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	4 2	499 499	0.191 0.0954	0.142 0.0710	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B+ B+	ls ls
3	2s-4p	2S-2P°	[86.732]	0	1152977	2	6	214	0.0725	0.0414	-0.839	C+	2
4	2p-3s	$^{2}P^{\circ}-^{2}S$	134.82	112913	854625	6	2	264	0.0240	0.0638	-0.842	C+	1, 2
			[134.88] [134.71]	113238 112263	854625 854625	4 2	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	175 88.3	0.0239 0.0240	0.0425 0.0213	$-1.019 \\ -1.319$	C+	ls ls
5	2p-3d	²P°−²D	127.75	112913	895686	6	10	1630	0.666	1.68	0.602	В	1
			[127.80] [127.65] [127.81]	113238 112263 113238	895722 895632 895632	4 2 4	6 4 4	1630 1360 272	0.600 0.666 0.0665	1.01 0.560 0.112	$0.380 \\ 0.125 \\ -0.575$	B B B	ls ls ls
6	2p-4s	² P°- ² S	97.323	112913	1140416	6	2	99	0.00468	0.0090	-1.55	С	2
			[97.354] [97.262]	113238 112263	1140416 1140416	4 2	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	66 33.0	0.00468 0.00468	0.0060 0.00300	$\begin{bmatrix} -1.73 \\ -2.028 \end{bmatrix}$	C C	ls ls
7	3s-3p	$^{2}S-^{2}P^{\circ}$	3256.5	854625	885324	2	6	0.604	0.288	6.18	-0.239	B+	1, 2
			[3246.6] [3276.6]	854625 854625	885418 885136	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	4 2	0.610 0.593	0.193 0.0955	4.12 2.06	$ \begin{array}{r r} -0.414 \\ -0.719 \end{array} $	B+ B+	ls ls
8	3s-4p	$^{2}\mathrm{S}-^{2}\mathrm{P}^{\circ}$	[335.17]	854625	1152977	2	6	63.7	0.322	0.710	-0.192	В	2
9	3 <i>p</i> -3 <i>d</i>	$^{2}\mathrm{P}^{\circ}-^{2}\mathrm{D}$	9648.0	885324	895686	6	10	0.0186	0.0432	8.23	-0.587	В	1
			[9702.3] [9524.8] [9787.8]	885418 885136 885418	895722 895632 895632	4 2 4	6 4 4	$0.0183 \\ 0.0161 \\ 0.00297$	0.0387 0.0437 0.00426	4.94 2.74 0.549	$ \begin{array}{c c} -0.811 \\ -1.059 \\ -1.769 \end{array} $	B B B	ls ls ls
10	3 <i>p</i> -4 <i>s</i>	² P°− ² S	392.02	885324	1140416	6	2	58.3	0.0448	0.347	-0.571	В	2
			[392.16] [391.73]	885418 885136	1140416 1140416	4 2	2 2	38.8 19.5	0.0447 0.0450	0.231 0.116	$ \begin{array}{r r} -0.747 \\ -1.046 \end{array} $	B B	ls Is
11	4s-4p	² S – ² P°	[7958.9]	1140416	1152977	2	6	0.140	0.399	20.9	-0.098	В	2

Ground State

Ionization Potential

 $953.60 \text{ eV} = 7693400 \text{ cm}^{-1}$

Allowed Transitions

The results of extensive non-relativistic variational calculations by Weiss [1] are used. Values have been calculated in both the dipole length and dipole velocity approximations and agree to within 1 percent, except for the 3p $^1P^{\circ}-3d$ 1D transition where agreement is not as good. The average of the two approximations is adopted [1].

Reference

[1] Weiss, A. W., private communication (1964).

FvIII. Allowed Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(cm^{-1})$	gi	gk	$A_{ki}(10^8~{\rm sec^{-1}})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$1s^2 -$	¹ S- ¹ P°	[16.807]	0	5949900	1	3	5.59×10 ⁴	0.710	0.0393	-0.149	A	1
2	$1s2p$ $1s^2-$	¹ S- ¹ P°	[14.458]	o	6916590	1	3	1.57×10^{4}	0.148	0.00704	-0.830	A	1
3	1s3p 1s2s —	¹ S- ¹ P°	[2149.9]	[5903400]	5949900	1	3	0.288	0.0599	0.424	- 1.223	A	1
4	1s2p 1s2s -	¹ S- ¹ P°	[98.698]	[5903400]	6916590	1	3	867	0.380	0.123	-0.420	A	1
5	-··	¹P°−¹D	[103.80]	5949900	[6913300]	3	5	2610	0.703	0.721	0.324	A	1
6	1s3d $1s3d$ $1s3p$	¹ D- ¹ P°	[30390]?	[6913300]	6916590	5	3	8.52×10^{-4}	0.00708	3.54	- 1.451	C+	1
7	1s2s - 1s2p	3S-3P°	[1422.9]	[5829640]	[5899920]	3	9	0.915	0.0833	1.17	-0.602	A	1
8	1s2s —	3S-3P°	[93.213]	[5829640]	[6902450]	3	9	914	0.357	0.329	0.030	A	1
9		3P°-3D	[98.756]	[5899920]	6912520	9	15	2750	0.669	1.96	0.780	A	1
10	$ \begin{array}{c c} 1s3d \\ 1s3p - \\ 1s3d \end{array} $	³ P°- ³ D	[9927.8]	[6902450]	6912520	9	15	0.0133	0.0327	9.62	-0.531	A	1

Ne I.

Ground State

 $1s^22s^22p^{6}$ 1S_0

Ionization Potential

 $21.559 \text{ eV} = 173932 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
735.89	2	6717.04	6	23709	14
743.70	$\frac{2}{1}$	6929.47	6	23956	16
3454.19	7	7032.41	3	24249	16
3472.57	7	7173.94	6	24339	13
3520.47	8	7245.17	'4	24365	14
5852.49	6	7438.90	5	25524	13
5881.90	3	7488.87	9	25855	16
5944.83	6 3 3 3	8377.61	10	26861	14
5975.53		8495.36	11	27521	15
6030.00	4	8654.38	12	28533	16
6074.34	4	18210	14	28744	16
6096.16	4	19577	13	29714	16
6128.45	4	19772	13	31860	15
6143.06	3 5	20350	14	33511	16
6163.59	5	20354	14		
6217.28	3 5	20565	14		
6266.50	5	21041	16	1	
6304.79	4	21708	14		
6334.43	3	22530	13		
6382.99	4	22662	13		
6402.25	3	23100	15		
6506.53	4	23260	13	II I	
6532.88	5	23373	15		
6598.95	6	23565	14		
6678.28	6	23636	13	1.	

In the vacuum uv region data are available for the two transitions of the 2p-3s array. They have been obtained experimentally from lifetime measurements by Schütz [1], Phelps [2], Korolev et al. [3], and theoretically from SCF calculations including exchange effects by Gold and Knox [4]. In the experiments only one of the two lines is obtained directly whereas the other one is derived using Shortley's [5] calculated intensity ratio. Since the total spread between the results is within a factor of two, uncertainties within 25 percent (class C) are estimated for the averaged values.

Extensive experimental work [6, 7] has been done on the lines of the prominent 3s-3p transition array. Ladenburg and Levy, and Pery-Thorne and Chamberlain have used the method of anomalous dispersion; Doherty and Friedrichs measured absolute emission intensities, the former with a conventional shock tube, the latter with a stabilized arc; with a discharge tube Garbuny determined relative intensities in emission and Krebs in absorption. Relative f-values have been obtained from the following procedure: the results of the three emission experiments (by Garbuny, Doherty, and Friedrichs) have been employed to obtain the line strengths within the groups of lines with the same upper but different lower levels, since for these cases errors are obviously minimized.

Analogously, the absorption measurements of Krebs and the anomalous dispersion measurements of Ladenburg and Levy, and Pery-Thorne and Chamberlain have supplied the most accurate relative f-values for lines starting with the same lower level but ending in different upper levels. The averaged emission and absorption data have then been combined in a least squares fit procedure to obtain a best set of relative data. It turns out that this set fits most of the original data and the J-file sum rule within 10 percent, but a few deviations of 30 percent are encountered.

Absolute values have been obtained by employing the results of recent extensive lifetime measurements of the 3p levels undertaken by Klose [7] with a delayed coincidence technique. An averaged conversion factor has been obtained from fitting the levels p_1 , p_2 , p_5 , p_6 , p_7 , p_8 , and p_9 which were measured by Klose with a high degree of precision. The averaged conversion factor has a standard deviation of only 6 percent. Accuracies within 10 percent for most absolute f-values are indicated (a) from the high experimental precision obtained by Klose which is usually within 4 percent, (b) from the good consistency of the data with the f-file sum rule, (c) from the excellent agreement of the total line strength for this transition array, which is 224, with a value of 230 obtained from the Coulomb approximation, and (d) from the very good agreement of Klose's lifetime results with some preliminary lifetime data by Bennett et al. [8].

For a few lines of the 3s-4p array, Klose's lifetime data for 4p levels could be utilized to derive transition probabilities. However, these cannot be considered as accurate as before because the contribution of the respective 4s-4p transition to the lifetimes could be only approximately taken into account using the data discussed immediately below.

The Coulomb approximation has been applied for obtaining an absolute scale for the 4s-4p array. For the breakdown into individual lines the intermediate coupling calculations of Ufford [10] are available. The latter are estimated to be not too reliable, since similar calculations by Shortley [5] for the 3s-3p array, as judged from the many experimental comparisons, have had only a fair degree of success.

From Doherty's [9] shock tube experiment some further material is available for the 3p-3d array. His absolute values have been renormalized by using the same conversion factor as that for his values of the 3s-3p array.

- [1] Schütz, W., Ann. Physik 18, 705-720 (1933).
- [2] Phelps, A. V., Phys. Rev. 100, 1230 (1955).
- [3] Korolev, F. A., Odintsov, V. I., and Fursova, E. V., Optics and Spectroscopy (U.S.S.R.) 16, 304-305 (1964).
- [4] Gold, A. and Knox, R. S., Phys. Rev. 113, 834-839 (1959).
- [5] Shortley, G. H., Phys. Rev. 47, 295-300 (1935).
- [6] Krebs, K., Z. Physik 101, 604-642 (1936).
 - Ladenburg, R. and Levy, S., Z. Physik 88, 461-468 (1934).
 - Pery-Thorne, A. and Chamberlain, J. E., Proc. Phys. Soc. London A 82, 133-141 (1963).
 - Doherty, L. R., Thesis Michigan (1961).
 - Garbuny, M., Z. Physik 107, 362-368 (1937).
 - Friedrichs, H., Z. Astrophys. 60, 176-183 (1964).
- [7] Klose, J. Z., Phys. Rev. 141, 181-186 (1966).
- [8] Bennett, Jr., W. R., Kindlmann, P. J., and Mercer, G. N., Applied Optics Supplement 2 of Chemical Lasers, 34-57 (1965)
- [9] Doherty, L. R., Thesis Michigan (1961).
- [10] Ufford, C. W., Astrophys, J. 85, 249-250 (1937).

Ne I. Allowed Transitions

No.	Transition Array	Transition	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	g_k	$\begin{array}{c} A_{ki}(10^8 \\ \sec^{-1}) \end{array}$	f_{ik}	S(at.u.)	$\log gf$	Accu- racy	Source
1	$2p^6 - 2p^5(^2\mathbf{P_{1/2}^{\circ}})3s$	¹ S-[1 ¹ / ₂]° (1 uv)	743.70	0	134461	1	3	0.476	0.0118	0.0290	-1.93	С	1, 2, 3, 4, 5
2	$\frac{2p^6-}{2p^5(^2\mathrm{P}^{\circ}_{1/2})}3s'$	¹ S -[½]° (2 uv)	735.89	0	135891	1	3	6.64	0.162	0.392	-0.79	С	1, 2, 3, 4, 5
3	$\begin{vmatrix} 2p^53s - \\ 2p^5(^2\mathbf{P}_{1^{1/2}}^{\circ})3p \end{vmatrix}$	[1½]°-[½]	7032.41	134044	148260	5	3	0.192	0.0854	9.89	-0.370	В-	6n, 7
	$(1) \frac{2p(1_1 y_2) 3p}{(1)}$	$ \begin{bmatrix} 1^{1}/2]^{\circ} - [2^{1}/2] \\ [1^{1}/2]^{\circ} - [1^{1}/2] \\ [1^{1}/2]^{\circ} - [1^{1}/2] \\ [1^{1}/2]^{\circ} - [1^{1}/2] \end{bmatrix} $	6402.25 6334.43 6217.28 6143.06	134044 134044 134044 134044	149659 149826 150124 150318	5 5 5 5	7 5 3 5	0.433 0.136 0.0777 0.216	0.373 0.0818 0.0270 0.122	39.3 8.53 2.76 12.4	$\begin{array}{ c c c c c }\hline 0.270 \\ -0.388 \\ -0.869 \\ -0.214 \\ \hline \end{array}$	B B - B - B -	6n, 7 6n, 7 6n, 7 6n, 7
	$\begin{array}{c} 2p^{5(^{2}\mathrm{P}_{1}^{\mathrm{o}}{}_{1})}3s - \\ 2p^{5(^{2}\mathrm{P}_{1/_{2}}^{\mathrm{o}})}3p' \\ (1) \end{array}$	$\begin{bmatrix} 1^{1/2}]^{\circ} - [1^{1/2}] \\ [1^{1/2}]^{\circ} - [1^{1/2}] \\ [1^{1/2}]^{\circ} - [1^{1/2}] \end{bmatrix}$	5975.53 5944.83 5881.90	134044 134044 134044	150774 150860 151040	5 5 5	3 5 3	0.0433 0.105 0.128	0.0139 0.0556 0.0398	1.37 5.44 3.86	-1.158 -0.556 -0.701	B- C+ B-	6n, 7 6n, 7 6n, 7
4	$2p^{5}3s - 2p^{5}(^{2}P_{1^{1}/2}^{\circ})3p$	[1½]°-[½]	7245.17	134461	148260	3	3	0.0977	0.0769	5.50	-0.637	В-	6n, 7
	(3)	$ \begin{array}{c} [1^{1}/2]^{\circ} - [2^{1}/2] \\ [1^{1}/2]^{\circ} - [1^{1}/2] \\ [1^{1}/2]^{\circ} - [1^{1}/2] \\ [1^{1}/2]^{\circ} - [1^{1}/2] \end{array} $	6506.53 6382.99 6304.79 6074.34	134461 134461 134461 134461	149826 150124 150318 150919	3 3 3	5 3 5 1	0.232 0.279 0.0507 0.617	0.245 0.170 0.0504 0.114	15.8 10.7 3.14 6.83	-0.133 -0.291 -0.821 -0.467	B- B- C+	6n, 7 6n, 7 6n, 7 6n, 7
	$\begin{array}{c} 2p^{5(^{2}\mathrm{P}_{1/2}^{\circ})}3s - \\ 2p^{5(^{2}\mathrm{P}_{1/2}^{\circ})}3p' \\ (3) \end{array}$	$ \begin{bmatrix} 1^{1}/2 \end{bmatrix}^{\circ} - \begin{bmatrix} 1^{1}/2 \end{bmatrix} \\ \begin{bmatrix} 1^{1}/2 \end{bmatrix}^{\circ} - \begin{bmatrix} 1^{1}/2 \end{bmatrix} \\ \begin{bmatrix} 1^{1}/2 \end{bmatrix}^{\circ} - \begin{bmatrix} 1^{1}/2 \end{bmatrix} $	6128.45 6096.16 6030.00	134461 134461 134461	150774 150860 151040	3 3 3	3 5 3	0.0327 0.169 0.0627	0.0184 0.157 0.0342	1.11 9.45 2.04	-1.258 -0.327 -0.989	B- C+ B-	6n, 7 6n, 7 6n, 7
5	$\begin{array}{c} 2p^{5}(^{2}\mathrm{P}_{^{1}\!\!/_{2}}^{\circ})3s' - \\ 2p^{5}(^{2}\mathrm{P}_{1^{1}\!\!/_{2}}^{\circ})3p \\ (5) \end{array}$	$\begin{bmatrix} 1/2 \\ 2 \end{bmatrix}^{\circ} - \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}^{\circ} - \begin{bmatrix} 11/2 \\ 1/2 \end{bmatrix}$	7438.90 6532.88	134821 134821	148260 150124	1	3	0.0292 0.128	0.0727 0.246	1.78 5.28	-1.139 -0.610	B- B-	6n, 7 6n, 7
	$\begin{array}{c} 2p^{5}3s' - \\ 2p^{5}(^{2}P^{\circ}_{_{1/_{2}}})3p' \\ (5) \end{array}$	$\begin{bmatrix} 1/2 \\ 0 \end{bmatrix}^{\circ} - \begin{bmatrix} 11/2 \\ 1/2 \end{bmatrix}^{\circ} - \begin{bmatrix} 11/2 \\ 1/2 \end{bmatrix}$	6266.50 6163.59	134821 134821	150774 151040	1	3 3	0.223 0.160	0.394 0.273	8.13 5.55	-0.405 -0.563	B- B-	6n, 7 6n, 7
6	$\begin{array}{c} 2p^{5(^{2}\mathbf{P}_{1/2}^{\circ})}3s' - \\ 2p^{5(^{2}\mathbf{P}_{1/2}^{\circ})}3p \\ (6) \end{array}$	$\begin{bmatrix} 1/2 \\ 2 \end{bmatrix}^{\circ} - \begin{bmatrix} 2^{1}/2 \\ 1/2 \end{bmatrix}^{\circ} - \begin{bmatrix} 1^{1}/2 \end{bmatrix}$	7173.94 6929.47	135891 135891	149826 150318	3 3	5 5	0.0365 0.190	0.0469 0.228	3.33 15.6	$-0.851 \\ -0.165$	B- B-	6n, 7 6n, 7
	$\begin{array}{c} 2p^{5}3s' - \\ 2p^{5}(^{2}P^{\circ}_{1/2})3p' \\ (6) \end{array}$	$\begin{bmatrix} 1/2 \\ 0 \end{bmatrix}^{\circ} - \begin{bmatrix} 11/2 \\ 1/2 \end{bmatrix}^{\circ} - \begin{bmatrix} 11/2 \\ 1 \end{bmatrix}^{\circ} - \begin{bmatrix} 11/2 \\ 1/2 \end{bmatrix}^{\circ} - \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}^{\circ} - \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$	6717.04 6678.28 6598.95 5852.49	135891 135891 135891 135891	150774 150860 151040 152973	3 3 3	3 5 3 1	0.234 0.238 0.251 0.719	0.158 0.265 0.164 0.123	10.5 17.5 10.7 7.11	-0.323 -0.099 -0.308 -0.433	B- C+ B- B	6n, 7 6n, 7 6n, 7 6n, 7
7		$ \begin{bmatrix} 1^{1/2}]^{\circ} - [2^{1/2}] \\ [1^{1/2}]^{\circ} - [^{1/2}] \end{bmatrix} $	3472.57 3454.19	134044 134461	162833 163403	5 3	7 1	0.099 0.085	0.0251 0.0051	1.44 0.173	$-0.90 \\ -1.82$	C	7 7
8	$\begin{array}{c} (2) \\ 2p^{5}3s' - \\ 2p^{5}(^{2}\mathbf{P}^{\circ}_{1/2})4p' \\ (7) \end{array}$	[½]°-[½]	3520.47	135891	164288	3	1	0.073	0.00449	0.156	-1.87	С	7

Ne I. Allowed Transitions - Continued

No.	Transition Array	Transition	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$) g	i gi	$\begin{vmatrix} A_{ki}(10^8 \\ \sec^{-1}) \end{vmatrix}$	fik	S(at.u.)	log gf	Accu- racy	Source
9	$\begin{array}{c c} 2p^53p - \\ 2p^5(^2\mathbf{P}_{1/2}^{\circ})3d \end{array}$	[½]-[1½]°	7488.87	148260	161609	3	5	0.349	0.489	36.2	0.166	C	9 <i>n</i>
10		$\begin{bmatrix} 2^{1/2} \\ -[3^{1/2}]^{\circ} \\ (12) \end{bmatrix}$	8377.61	149659	161592	7	9	0.51	0.69	134	0.69	С	9n
11		$[2^{1/2}]$ $-[3^{1/2}]^{\circ}$ (18)	8495.36	149826	161594	5	7	0.357	0.54	76	0.432	С	9n
12	$2p^{5}3p' - 2p^{5}(^{2}\mathbf{P}^{\circ}_{\frac{1}{2}})3d'$	[1 ¹ / ₂]~[2 ¹ / ₂]° (33)	8654.38	150860	162412	5	7	0.445	0.70	100	0.54	С	9 <i>n</i>
13	$\begin{array}{l} 2p^{5}4s - \\ 2p^{5}(^{2}P_{1}^{\circ})4p \end{array}$	$ \begin{bmatrix} 1^{1}/_{2}]^{\circ} - [& 1/_{2}] \\ 1^{1}/_{2}]^{\circ} - [2^{1}/_{2}] \\ [1^{1}/_{2}]^{\circ} - [2^{1}/_{2}] \\ [1^{1}/_{2}]^{\circ} - [1^{1}/_{2}] \\ [1^{1}/_{2}]^{\circ} - [1^{1}/_{2}] $	[25524] [23636] [23260] [22662] [22530]	158603 158603 158603 158603 158603	162520 162833 162901 163015 163040	5 5 5 5	3 7 5 3 5	0.012 0.057 0.0025 0.0058 0.037	0.073 0.67 0.020 0.027 0.28	31 260 7.8 10 100		D D+ D D	10n, ca 10n, ca 10n, ca 10n, ca 10n, ca
	$\begin{array}{c} 2p^{5(^{2}\mathrm{P}_{1}^{\alpha})_{2}})4s - \\ 2p^{5(^{2}\mathrm{P}_{1/_{2}}^{\alpha})}4p' \end{array}$	$ \begin{array}{l} [1^{1}/_{2}]^{\circ} - [1^{1}/_{2}] \\ [1^{1}/_{2}]^{\circ} - [1^{1}/_{2}] \\ [1^{1}/_{2}]^{\circ} - [1^{1}/_{2}] \end{array} $	[19772] [24339] [19577]	158603 158603 158603	163659 163711 163710	5 5 5	3 5 3	0.0052 0.021 0.058	0.018 0.18 0.20	5.9 73 64	$ \begin{array}{c c} -1.04 \\ -0.04 \\ -0.00 \end{array} $	D D D	10n, ca 10n, ca 10n, ca
14	$2p^{5}(^{2}P_{11/2}^{0})4p$	$ \begin{bmatrix} 1^{1}/_{2} \\ 1^{1}/_{2} \end{bmatrix}^{\circ} - \begin{bmatrix} 1/_{2} \\ 1^{1}/_{2} \end{bmatrix}^{\circ} - \begin{bmatrix} 1^{1}/_{2} \\ 1^{1}/_{2} \end{bmatrix}^{\circ} - \begin{bmatrix} 1^{1}/_{2} \\ 1^{1}/_{2} \end{bmatrix}^{\circ} - \begin{bmatrix} 1^{1}/_{2} \\ 1^{1}/_{2} \end{bmatrix}^{\circ} - \begin{bmatrix} 1^{1}/_{2} \end{bmatrix} $	[26861] [24365] [23709] [23565] [21708]	158798 158798 158798 158798 158798	162520 162901 163015 163040 163403	3 3 3 3	3 5 3 5 1	0.015 0.0015 0.0019 0.021 0.068	0.16 0.022 0.016 0.29 0.16	43 5.2 3.1 68 34	$ \begin{array}{c c} -0.31 \\ -1.19 \\ -1.32 \\ -0.06 \\ -0.32 \end{array} $	D D D D+	10n, ca 10n, ca 10n, ca 10n, ca 10n, ca
	$2p^{5}(^{2}\mathrm{P}_{^{1}\!/_{2}}^{o})4p'$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[20565] [20350] [20354] [18210]	158798 158798 158798 158798	163659 163711 163710 164289	3 3 3	3 5 3 1	0.026 0.054 0.025 0.0087	0.16 0.56 0.15 0.014	33 110 31 2.6	$ \begin{array}{c c} -0.31 \\ 0.22 \\ -0.34 \\ -1.36 \end{array} $	D D D D	10n, ca 10n, ca 10n, ca 10n, ca
15	$2p^{5(^{2}\mathrm{P}_{^{1}\!/_{2}}^{\circ})}4s' - 2p^{5(^{2}\mathrm{P}_{^{1}\!/_{2}}^{\circ})}4p$	1/2]° -[1/2] 1/2]° -[11/2]	[31860] [27521]	159382 159382			$\begin{bmatrix} 3 \\ 3 \end{bmatrix}$	0.0054 0.0075	0.25 0.26	26 23	$ \begin{array}{c c} -0.61 \\ -0.59 \end{array} $	D D	10n, ca $10n, ca$
12	$2p^{5}4s' - 2p^{5}(^{2}P^{\circ}_{1/2})4p'$	$[1/2]^{\circ} - [11/2]$ $[1/2]^{\circ} - [1/2]$	[23373] [23100]	159382 159382			3 3	0.027 0.0055	0.67 0.13	52 10	$ \begin{array}{c c} -0.17 \\ -0.88 \end{array} $	D D	10n, ca $10n, ca$
		$[1/2]^{\circ} - [21/2]$ $[1/2]^{\circ} - [11/2]$ $[1/2]^{\circ} - [11/2]$	[33511] [29714] [28744] [28533] [25855]	159537 159537 159537 159537 159537	162901 163015 163040	3 3 3	3 5 5 5 1	0.0020 0.027 0.021 0.0023 0.0030	0.034 0.59 0.26 0.046 0.010	170 74 13	$ \begin{array}{c c} -0.99 \\ 0.25 \\ -0.11 \\ -0.86 \\ -1.52 \end{array} $	D D D D	10n, ca 10n, ca 10n, ca 10n, ca 10n, ca
	$2p^{5}4s' - 2p^{5}(^{2}P_{_{1\!/_{2}}}^{\circ})4p'$	¹ / ₂]° -[¹ / ₂]	[24249] [23956] [21041]	159537 159537 159537	163710	3 3	3 3 1	0.0095 0.0029 0.075	0.084 0.025 0.17	20 5.9	$ \begin{array}{c c} -0.60 \\ -1.12 \end{array} $	D D D+	10n, ca 10n, ca 10n, ca

Ground State

 $1s^22s^22p^5$ $^2\mathrm{P}^{\circ}_{3/2}$

Ionization Potential

$41.07~eV = 331350~cm^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
460.725	1	3166.2	4	3357.90	24
462.338	l î l	3169.30	28	3360.63	3
2846.4	23	3173.58	25	3362.89	24
2853.5	7	3176.16	28	3367.05	24
2858.0	22	3187.60	4	3367.20	31
9070 0	10		26	2271.07	24
2870.0 2873.0	19 22	3188.74	26	3371.87 3374.10	34 24
2876.4	22 22	3190.86 3194.61	25 28	3378.28	13
2876.5	19	3198.62	25	3379.39	24
2010.0	17	3198.88	25	3386.24	24
0070.1	23	2200.2	27	3388.46	31
2878.1 2888.4	19	3208.3 3208.99	27 26	3390.56	24
2889.0	20	3209.38	28	3392.7	34
2891.5	22	3213.70	25	3392.78	13
2895.0	19	3214.38	26	3393.2	33
2896.3	7	3217.4	28	3397.5	31
2897.1	19	3218.21	25	3414.82	32
2906.8	22	3220.0	27	3416.87	33
2907.7	20	3230.16	16	3417.71	32
2910.4	19	3230.5	16	3453.10	33
2916.2	21	3231.97	16	3456.68	40
2925.7	22	3232.3	28	3463.1	12
2933.7	$\frac{1}{21}$	3232.38	16	3475.25	46
2934.3	$\overline{20}$	3243.34	27	3477.69	33
2935.3	21	3244.15	26	3479.5	17
2951.1	21	3248.15	27	3480.8	17
2953.0	21	3255.39	35	3481.96	11
2955.7	6	3263.43	27	3503.61	40
3001.65	6	3269.86	27	3522.72	46
3015.7	5	3270.79	3	3538.3	12
3017.34	18	3297.74	3	3542.90	45
3027.04	18	3309.78	13	3544.2	30
3028.7	18	3310.55	35	3546.22	39
3028.84	6	3311.30	3	3551.2	37
3034.48	18	3314.60	34	3554.39	30
3037.73	18	3319.75	15	3557.84	11
3045.58	18	3320.29	24	3561.23	42
3047.57	18	3323.75	13	3565.84	45
3054.69	18	3327.16	3	3568.53	14
3097.5	29	3329.20	24	3571.26	42
3118.02	28	3330.78	31	3574.23	14 39
3132.22	25	3334.8	34	3574.3	
3135.8	29	3334.87	3	3574.64	14 43
3135.82	4	3344.43	3	3590.47	43 45
3136.5	4	3345.49	15	3594.18	45
3151.16	28	3345.88	24	3612.35	38
3154.82	26	3345.88	15	3628.06	51
3160.0	29	3353.36	35	3632.75	44
3164.46	25	3355.05 3356.35	3	3643.89 3644.86	10 51
	25		32		

Allowed Transitions - Continued

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
3659.93	44	3790.96	41	4290.40	-54
3664.09	2	3800.02	49	4323.3	53
3679.80	51	3806.30	41	4346.9	54
3694.22	2	3818.44	49	4365.72	54
3697.09	51	3829.77	49	4369.77	53
3701.81	50	3903.9	9	4379.50	53
	2	3942.3	9	4385.00	53
3709.64			9	4391.94	54
3713.09	10	3999.5		4397.94	53
3721.86	47	4217.15	52	,,	53 54
3726.9	50	4219.76	52	4409.30	34
3727.08	10	4220.92	52	4413.20	54
3732.7	47	4224.75	52	4428.54	54
3734.94	1 2 1	4231.60	52	4430.90	53
3744.66	50	4234.3	52	4441.1	8
3751.26	2	4239.95	$\overline{52}$	4442.67	53
3753.83	48	4242.20	52	4446.46	53
3754.9		4249.2	5 <u>4</u>	4492.4	54
	36	4250.68	52	4502.52	53
3766.29	$\frac{2}{41}$	4257.82	52 52	4502.52	<i>5</i> 5
3776.9	41		52 53	[[
3777.16	2	4280.3	33		

Aside from the multiplet $2s^22p^5$ $^2P^\circ - 2s^2p^6$ 2S in the vacuum uv for which a quantum mechanical calculation (screening approximation) has been carried out by Varsavsky [1], the main source of theoretical information on the spectrum are the extensive calculations by Carstang [2] for lines of the 3s-3p and 3p-3d arrays. He has calculated the relative line strengths under the assumption of intermediate coupling and has used the Coulomb approximation to obtain the transition integrals for the absolute values. However, for the 3s-3p array Koopman's [3] relative line strengths obtained from intensity measurements with an electrically driven shock tube agree with LS-coupling better than with the intermediate coupling values. Therefore, Koopman's relative values are averaged with LS-coupling results and put on an absolute scale by using the Coulomb approximation. On the other hand, comparison with the very incomplete experimental intensity data [3] for the 3p-3d array indicates that intermediate coupling fits much better here than LS-coupling and gives in may cases drastic improvements. Thus Garstang's results are exclusively used for this array as well as for all intercombination lines. Some lines marked D- should be considered inferior in quality to the rest, since Garstang finds them very sensitive to the choice of parameters.

In addition, the f-values for the three strongest multiplets of the 3d-4f array have been calculated with the Coulomb approximation using LS-coupling for the multiplet components.

^[1] Varsavsky, C. M., Astrophys. J. Suppl. Ser. 6, No. 53, 75-108 (1961).

^[2] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 114, 118-133 (1954).

^[3] Koopman, D. W., J. Opt. Soc. Am. 54, 1354-1358 (1964).

Ne II. Allowed Transitions

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	g_k	$A_{ki}(10^8 m sec^{-1})$	f_{ik}	S(at.u.)	$\log gf$	Accu-	Source
	$\frac{2s^22p^5-}{2p^5-}$	² P°- ² S	461.28	260.07	217050	6	2	310	0.33	3.0	0.29	E	1
	$2s^2p^6$	(1 uv)	460.725 462.388	0.00 782	217050 217050	4 2	2 2	210 100	0.33 0.33	2.0 1.0	$0.12 \\ -0.18$	E E	ls ls
2	$2p^43s - 2p^4(^3P)3p$	4P_4P° (1)	3717.2	219442	246337	12	12	1.3	0.27	39	0.50	D	ca
	-p (2) op	(1)	3694.22 3734.94 3751.26 3664.09 3709.64 3766.29 3777.16	219133 219651 219950 219133 219651 219651 219950	246195 246417 246600 246417 246600 246195 246417	6 4 2 6 4 4 2	6 4 2 4 2 6 4	0.96 0.20 0.19 0.67 1.1 0.32 0.43	0.20 0.041 0.039 0.090 0.11 0.10 0.18	14 2.0 0.98 6.6 5.6 5.0 4.6	$\begin{array}{c} 0.07 \\ -0.78 \\ -1.10 \\ -0.27 \\ -0.34 \\ -0.39 \\ -0.43 \end{array}$	D D D D D D	3, ls 3, ls 3, ls 3, ls 3, ls 3, ls 3, ls
3		⁴ P - ⁴ D° (2)	3336.8	219442	249402	12	20	1.8	0.51	67	0.79	D	ca
			3334.87 3355.05 3360.63 3297.74 3327.16 3344.43 3270.79 3311.30	219133 219651 219950 219133 219651 219950 219133 219651	249111 249448 249698 249448 249618 249842 249698 249842	6 4 2 6 4 2 6 4	8 6 4 6 4 2 4 2	1.8 1.3 0.73 0.53 0.98 1.5 0.12 0.30	0.41 0.33 0.25 0.087 0.17 0.25 0.013 0.023	27 15 5.5 5.7 7.0 5.6 0.85 1.0	0.39 0.13 -0.30 -0.28 -0.17 -0.30 -1.11 -1.04	D D D D D D D D	3, ls 3, ls 3, ls 3, ls 3, ls 3, ls 3, ls 3, ls
4		⁴ P - ² D° (3)											į
		(3)	3135.82 [3136.5] 3187.60 [3166.2]	219133 219651 219651 219950	251013 251525 251013 251525	6 4 4 2	6 4 6 4	0.0065 0.0049 0.016 0.0042	$\begin{array}{c} 9.6 \times 10^{-4} \\ 7.2 \times 10^{-4} \\ 0.0036 \\ 0.0013 \end{array}$	0.059 0.030 0.15 0.026	$ \begin{array}{r rrrr} -2.24 \\ -2.54 \\ -1.84 \\ -2.60 \end{array} $	D D D	2 2 2 2 2
5		4P-2S°	[3015.7]	219651	252801	4	2	0.013	9.1×10 ⁻⁴	0.036	-2.44	D	2
6		4P_4S°	2982.94	219442	252956	12	4	2.5	0.11	13	0.12	D	ca
		(4)	[2955.7] 3001.65 3028.84	219133 219651 219950	252956 252956 252956	6 4 2	4 4 4	1.2 0.78 0.57	0.10 0.11 0.16	5.9 4.2 3.1	$ \begin{array}{r} -0.22 \\ -0.37 \\ -0.50 \end{array} $	D D D	3, <i>ls</i> 3, <i>ls</i> 3, <i>ls</i>
7		⁴ P − ² P°	[2853.5] [2896.3]	219133 219651	254167 254167	6 4	4 4	0.025 0.020	0.0020 0.0025	0.12 0.096	-1.91 -2.00	D D	2 2
8		² P _ ⁴ P°	[4441.1]	224089	246600	4	2	0.0034	5.1×10^{-4}	0.030	-2.69	D	2
9		² P - ⁴ D°	[3942.3] [3903.9] [3999.5]	224089 224089 224702	249448 249698 249698	4 4 2	6 4 4	$ \begin{vmatrix} 0.012 \\ 8.4 \times 10^{-4} \\ 0.0037 \end{vmatrix} $	0.0041 1.9×10 ⁻⁴ 0.0018	0.21 0.0099 0.046	-1.79 -3.11 -2.45	D D D	2 2 2 2
10		² P - ² D°	3713.0	224293	251218	6	10	1.3	0.45	33	0.43	D	ca
		(5)	3713.09 3727.08 3643.89	224089 224702 224089	251013 251525 251525	4 2 4	6 4 4	1.3 1.0 0.23	0.40 0.43 0.046	20 11 2.2	$ \begin{array}{r} 0.21 \\ -0.07 \\ -0.74 \end{array} $	D D D	3, <i>ls</i> 3, <i>ls</i> 3, <i>ls</i>
11		² P- ² S°	3506.9	224293	252801	6	2	1.5	0.095	6.6	-0.25	D	ca
		(6)	3481.96 3557.84	224089 224702	252801 252801	4 2	$\begin{vmatrix} 2\\2 \end{vmatrix}$	1.2 0.37	0.11 0.070	5.0 1.6	$-0.36 \\ -0.85$	D D	3, ls 3, ls

 $\textbf{Ne II.} \quad \textbf{Allowed Transitions} - \textbf{Continued}$

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	g_i	gk	$\begin{array}{c c} A_{ki}(10^8 \\ \sec^{-1}) \end{array}$	fik	S(at.u.)	$\log gf$	Accu- racy	Source
12		² P- ⁴ S°	[3463.1] [3538.3]	224089 224702	252956 252956	4 2	44	0.028 0.0090	0.0051 0.0034	0.23 0.079	-1.69 -2.17	D D	$\frac{2}{2}$
13		² P - ² P°	3341.8	224293	254209	6	6	1.8	0.30	19	0.25	D	ca
		(7)	3323.75 3378.28 3309.78 3392.78	224089 224702 224089 224702	254167 254294 254294 254167	4 2 4 2	4 2 2 4	1.4 1.3 0.46 0.29	0.24 0.23 0.037 0.098	11 5.1 1.6 2.2	$ \begin{array}{r} -0.02 \\ 0.34 \\ -0.83 \\ -0.71 \end{array} $	D D D D	3, <i>ls</i> 3, <i>ls</i> 3, <i>ls</i> 3, <i>ls</i>
14	$2p^{4}3s' - 2p^{4}(^{1}D)3p'$	² D− ² F° (9)	3571.1	246398	274392	10	14	4.3	0.36	42	0.56	D	ca
	2p (B)0p	()	3568.53 3574.64 3574.23	246397 246400 246397	274411 274367 274367	6 4 6	8 6 6	1.3 1.3 0.092	0.33 0.37 0.018	24 18 1.3	$0.30 \\ 0.17 \\ -0.97$	D D D	3, <i>ls</i> 3, <i>ls</i> 3, <i>ls</i>
15		$^{2}D - ^{2}P^{\circ}$ (10)	3336.9	246398	276357	10	6	1.7	0.17	19	0.23	D	$\dot{c}\dot{a}$
	:	(=0)	3345.49 3319.75 3345.88	246397 246400 246400	276279 276514 276279	6 4 4	4 2 4	1.5 1.7 0.17	0.17 0.14 0.028	11 6.2 1.3	$ \begin{array}{c c} 0.01 \\ -0.24 \\ -0.95 \end{array} $	D D D	3, <i>ls</i> 3, <i>ls</i> 3, <i>ls</i>
16		² D → ² D° (11)	3231:1	246398	277339	10	10	1.9	0.29	31	0.47	D	ca
			3230.16 3232.38 3231.97 [3230.5]	246397 246400 246397 246400	277346 277328 277328 277346	6 4 6 4	6 4 4 6	1.8 1.7 0.19 0.13	0.27 0.26 0.020 0.029	18 11 1.3 1.3	0.22 0.02 -0.93 -0.93	D D D	3, <i>ls</i> 3, <i>ls</i> 3, <i>ls</i> 3, <i>ls</i>
17	$2p^{4}3s'' - 2p^{4}(^{1}S)3p''$	² S – ² P°	3480.3	276678	305403	2	6	1.6	0.86	20	0.24	D	ca
			[3480.8] [3479.5]	276678 276678	305399 305409	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	4 2	1.6 1.6	0.58 0.29	13 -6.6	$\begin{bmatrix} 0.06 \\ -0.24 \end{bmatrix}$	D D	2 2
18	$\begin{bmatrix} 2p^43p - \\ 2p^4(^3P)3d \end{bmatrix}$	⁴ P°- ⁴ D (8)	3039.3	246337	279230	12	20	3.2	0.74	89	0.95	D	ca
			3034.48 3047.57 3054.69 3027.04 3037.73 3045.58 3017.34 [3028.7]	246195 246417 246600 246195 246417 246600 246195 246417	279139 279221 279327 279221 279327 279425 279327 279425	6 4 2 6 4 2 6 4	8 6 4 6 4 2 4 2	3.1 1.8 0.93 1.5 2.0 2.5 0.35 0.84	0.57 0.37 0.26 0.20 0.28 0.35 0.032 0.058	34 15 5.2 12 11 7.0 1.9 2.3	0.53 0.17 -0.28 0.08 0.05 -0.15 -0.72 -0.64	D D D D D D D D D	2 2 2 2 2 2 2 2
19		4P°−4F	[9907 11	946105	200700			0.040					_
			[2897.1] [2870.0] [2876.5] [2888.4] [2895.0] [2910.4]	246195 246195 246195 246417 246417 246600	280703 281028 280950 281028 280950 280950	6 6 4 4 2	8 6 4 6 4	0.042 0.11 0.18 0.015 0.016 0.43	0.0071 0.014 0.015 0.0029 0.0021 0.11	0.41 0.77 0.86 0.11 0.079 2.1	$ \begin{array}{c c} -1.37 \\ -1.09 \\ -1.04 \\ -1.94 \\ -2.08 \\ -0.66 \end{array} $	D D D D D	2 2 2 2 2 2
20		4P°_2F	[2934.3] [2907.7] [2889.0]	246195 246417 246195	280264 280799 280799	6 4 6	6	0.0030 0.039 0.015	$5.1 \times 10^{-3} \\ 0.0075 \\ 0.0019$	0.030 0.29 0.11	- 2.51 - 1.52 - 1.94	D D D	$\begin{array}{c}2\\2\\2\\2\end{array}$
21		•P° – 2D	[2933.7] [2916.2] [2953.0] [2935.3] [2951.1]	246195 246195 246417 246417 246600	280271 280476 280271 280476 280476	6 6 4 4 2	4 6 4	0.068 0.047 0.012 0.032 0.023	0.0087 0.0040 0.0023 0.0041 0.0061	0.51 0.23 0.089 0.16 0.12	$\begin{array}{c c} -1.28 \\ -1.62 \\ -2.04 \\ -1.79 \\ -1.92 \end{array}$	D D D D	2 2 2 2 2 2

Ne II. Allowed Transitions—Continued

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gĸ	$A_{ki}(10^8 m sec^{-1})$	f_{ik}	S(at.u.)	$\log gf$	Accu- racy	Source
22		4P°-4P	2880.2	246337	281046	12	12	1.7	0.21	24	0.40	D	ca
			[2858.0] [2891.5] [2925.7] [2873.0] [2906.8] [2876.4] [2906.8]	246195 246417 246600 246195 246417 246417 246600	281174 280992 280770 280992 280770 281174 280992	6 4 2 6 4 4 2	6 4 2 4 2 6 4	0.91 0.097 0.52 0.46 1.6 0.84 0.75	0.11 0.012 0.067 0.038 0.10 0.16 0.19	6.3 0.47 1.3 2.2 3.9 5.9 3.6	$\begin{array}{c c} -0.18 \\ -1.31 \\ -0.87 \\ -0.64 \\ -0.39 \\ -0.21 \\ -0.42 \end{array}$	D D D D D D	2 2 2 2 2 2 2 2 2
23		⁴ P°_2P	[2878.1] [2846.4]	246600 246600	281335 281722	2 2	2 4	0.067 0.035	0.0083 0.0084	0.16 0.16	$-1.78 \\ -1.77$	D D	2 2
24		⁴ D° – ⁴ D (12)	3351.7	249402	279230	20	20	0.79	0.13	29	0.42	D	ca
		(12)	3329.20 3357.90 3374.10 3379.39 3320.29 3345.88 3362.89 3367.05 3386.24 3390.56	249111 249448 249698 249842 249111 249448 249698 249448 249698 249842	279139 279221 279327 279425 279221 279327 279425 279139 279221 279327	8 6 4 2 8 6 4 6 4 2	8 6 4 2 6 4 2 8 6 4	0.87 0.55 0.38 0.35 0.13 0.22 0.30 0.035 0.067 0.078	0.15 0.093 0.065 0.060 0.017 0.024 0.025 0.0079 0.017 0.027	13 6.1 2.9 1.3 1.5 1.6 1.1 0.53 0.77 0.60	$\begin{array}{c} 0.07 \\ -0.26 \\ -0.59 \\ -0.92 \\ -0.87 \\ -0.83 \\ -0.99 \\ -1.32 \\ -1.16 \\ -1.27 \end{array}$	D D D D D D D D D D D D D D D D D D D	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
25		⁴ D°- ⁴ F (13)	3202.5	249402	280619	20	28	2.5	0.55	120	1.04	D	ca
		(19)	3218.21 3198.62 3190.86 3213.70 3164.46 3165.70 3198.88 3132.22 3173.58	249111 249448 249698 249842 249111 249448 249698 249111 249448	280174 280703 281028 280950 280703 281028 280950 281028 280950	8 6 4 2 8 6 4 8 6	10 8 6 4 8 6 4 6 4	3.6 2.2 0.73 1.8 0.22 0.19 0.59 0.022 0.0017	$\begin{array}{c} 0.70 \\ 0.45 \\ 0.17 \\ 0.56 \\ 0.033 \\ 0.028 \\ 0.090 \\ 0.0024 \\ 1.7 \times 10^{-4} \end{array}$	59 29 7.0 12 2.7 1.7 3.8 0.20 0.011	$\begin{array}{c} 0.75 \\ 0.44 \\ -0.18 \\ 0.05 \\ -0.58 \\ -0.78 \\ -0.44 \\ -1.72 \\ -2.98 \end{array}$	D D D D D- D- D- D-	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
26		⁴ D° – ² F (14)	3208.99 3188.74 3154.82 3244.15 3214.38	249111 249448 249111 249448 249698	280264 280799 280799 280264 280799	8 6 8 6 4	8	0.12 0.32 0.0022 1.1 1.6	$\begin{array}{c} 0.018 \\ 0.048 \\ 2.5 \times 10^{-4} \\ 0.22 \\ 0.38 \end{array}$	1.5 3.0 0.021 14 16	-0.84 -0.54 -2.70 0.13 0.18	D D- D- D	2 2 2 2 2 2
27		⁴ D°- ² D (15)											
		(10)	3243.34 3248.15 3269.86 3263.43 [3222,0] [3208.3]	249448 249698 249698 249842 249448 249111	280271 280476 280271 280476 280476 280271	6 4 4 2 6 8	6 4 6 4 4 6	0.18 0.14 0.48 0.36 0.020 0.0091	0.029 0.022 0.12 0.12 0.0020 0.0010	1.8 0.94 5.0 2.5 0.13 0.089	$\begin{array}{c} -0.76 \\ -1.06 \\ -0.33 \\ -0.64 \\ -1.92 \\ -2.07 \end{array}$	D- D- D- D	2 2 2 2 2 2 2 2
28		⁴ D°- ⁴ P	3159.3	249402	281046	20	12	0.39	0.035	7.2	-0.16	D	ca
		(16)	3118.02 3169.30 [3217.4] 3151.16 3194.61 [3232.3] 3176.16 3209.38	249111 249448 249698 249448 249698 249842 249698 249842	281174 280992 280770 281174 280992 280770 281174 280992	8 6 4 6 4 2 4 2	6 4 2 6 4 2 6 4	0.11 0.17 0.13 0.066 0.14 0.033 0.034 0.51	0.013 0.017 0.0098 0.0016 0.021 0.0051 0.0078 0.16	1.0 1.1 0.42 0.099 0.088 0.11 0.33 3.3	$\begin{array}{c} -0.99 \\ -0.99 \\ -1.41 \\ -2.02 \\ -1.08 \\ -1.99 \\ -1.50 \\ -0.50 \end{array}$	D D D D D D D	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

 $\textbf{Ne II.} \quad \textbf{Allowed Transitions} - \textbf{\textit{Continued}}$

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gi	$A_{ki}(10^8 { m sec}^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
29		⁴ D°− ² P	[3135.8] [3160.0] [3097.5]	249842 249698 249448	281722 281335 281722	2 4 6	4 2 4	0.020 0.019 0.015	0.0058 0.0014 0.0015	0.12 0.059 0.089	$\begin{vmatrix} -1.94 \\ -2.25 \\ -2.06 \end{vmatrix}$	D D D	2 2 2 2
30		² D° - ⁴ D (18)	3554.39 [3544.2]	251013 251013	279139 279221	6 6	8 6	0.013 0.0037	0.0034 7.0×10 ⁻⁴	0.24 0.049	-1.69 -2.38	D D	$egin{array}{c} 2 \\ 2 \end{array}$
31		² D° – ⁴ F (19)	3367.20 3388.46 3330.78 [3397.5]	251013 251525 251013 251525	280703 281028 281028 280950	6 4 6 4	8 6 6 4	1.0 2.0 0.12 0.049	0.24 0.51 0.020 0.0084	16 23 1.3 0.38	0.15 0.31 -0.93 -1.47	D D D D	$egin{array}{c} 2 \ 2 \ 2 \ 2 \ 2 \end{array}$
32		² D°-2F	3414.9	251218	280493	10	14	1.4	0.34	38	0.53	D	ca
		(20)	3417.71 3414.82 3356.35	251013 251525 251013	280264 280799 280799	6 4 6	8 6 6	$\begin{bmatrix} 2.0 \\ 0.41 \\ 0.11 \end{bmatrix}$	0.47 0.11 0.019	32 4.8 1.3	$ \begin{array}{r} 0.45 \\ -0.37 \\ -0.93 \end{array} $	D D- D-	2 2 2
33		² D°−2D	3431.3	251218	280353	10	10	0.85	0.15	17	0.18	D	ca
		(21)	3416.87 3453.10 [3393.2] 3477.69	251013 251525 251013 251525	280271 280476 280476 280271	6 4 6 4	6 4 4 6	0.67 0.59 0.022 0.34	0.12 0.11 0.0025 0.091	7.9 4.8 0.17 4.2	$ \begin{array}{r} -0.15 \\ -0.38 \\ -1.82 \\ -0.44 \end{array} $	D D D D-	2 2 2 2
34		² D°- ⁴ P											
		(22)	3314.60 3371.87 [3392.7] [3334.8]	251013 251525 251525 251013	281174 281174 280992 280992	6 4 4 6	6 6 4 4	0.026 0.12 0.14 0.030	0.0042 0.032 0.025 0.0033	0.28 1.4 1.1 0.22	$ \begin{array}{c c} -1.60 \\ -0.89 \\ -1.00 \\ -1.70 \end{array} $	D D D	2 2 2 2
35		² D°- ² P (23)	3291.6	251218	281590	10	6	0.098	0.0095	1.0	-1.02	D	ca
		(23)	3255.39 3353.63 3310.55	251013 251525 251525	281722 281335 281722	6 4 4	2	0.12 0.048 0.0061	0.013 0.0040 0.0010	0.81 0.18 0.044	$ \begin{array}{c c} -1.12 \\ -1.79 \\ -2.40 \end{array} $	D D D	2 2 2
36		2S°-4D	[3754.9]	252801	279425	2	2	0.0095	0.0020	0.050	-2.40	D	2
37		² S°- ⁴ F (24)	3551.52	252801	280950	2		0.055	0.021	0.49		D	
38	•	$^{2}S^{\circ}-^{2}D$ (26)	3612.35	252801	280476	2		0.22	0.021	2.1	-1.38		2
39	}:	² S°- ⁴ P	3312.00		200 110	-	T	0.22	0.007	2.1	-0.76	D	2
		(27)	3546.22 [3574.3]	252801 252801	280992 280770	$\begin{bmatrix} 2\\2 \end{bmatrix}$		0.021 0.046	0.0081 0.0088	0.19 0.21		D D	$\frac{2}{2}$
40	:	² S°- ² P (28)	3472.5	252801	281590	2	6	1.3	0.70	16	0.15	D	ca
		(23)	3456.68 3503.61	252801 252801	281722 281335	$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$	$\begin{bmatrix} 4 \\ 2 \end{bmatrix}$	1.0	0.36 0.34	8.2 7.9	$ \begin{array}{c c} -0.14 \\ -0.16 \end{array} $	D D	2 2

Ne II. Allowed Transitions - Continued

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	g_i	gk	$A_{ki}(10^8 m sec^{-1})$	f_{ik}	S(at.u.)	$\log gf$	Accu- racy	Source
41		⁴ S°- ⁴ D (30)			:								
	 	(30)	3806.30 3790.96 [3776.9]	252956 252956 252956	279221 279327 279425	4 4 4	6 4 2	0.013 0.017 0.0074	0.0043 0.0036 8.0×10 ⁻⁴	0.22 0.18 0.040	$ \begin{array}{r} -1.76 \\ -1.85 \\ -2.50 \end{array} $	D D D	2 2 2
42		⁴ S°- ⁴ F (31)	3561.23	252054	201.020		,	0.11	0.021	,,,	0.01	n	
			3571.26	252956 252956	281028 280950	44	6 4	0.11 0.43	0.031 0.083	1.5 3.9	$\begin{bmatrix} -0.91 \\ -0.48 \end{bmatrix}$	D D-	2 2
43		⁴ S°- ² F (32)	3590.47	252956	280799	4	6	0.087	0.025	1.2	-0.99	D-	2
44		⁴ S°- ² D (33)											
		(33)	3659.93 3632.75	252956 252956	280271 280476	4 4	6 4	0.11 0.090	0.033 0.018	1.6 0.85	-0.88 -1.15	D-D	2 2
45		⁴ S° <u>-</u> ⁴ P (34)	3559.0	252956	281046	4	12	1.1	0.63	30	0.40	D	ca
		, ,	3542.90 3565.84 3594.18	252956 252956 252956	281174 280992 280770	4 4 4	6 4 2	1.3 0.82 1:3	0.35 0.16 0.12	16 7.3 5.9	$ \begin{array}{r} 0.15 \\ -0.20 \\ -0.30 \end{array} $	D D D	2 2 2
46		⁴ S°- ² P (35)											
		(00)	3475.25 3522.72	252956 252956	281722 281335	44	4 2	0.0047 0.011	8.5×10^{-4} 0.0011	0.039 0.050	$-2.47 \\ -2.37$	D D	$\frac{2}{2}$
47	 	² P°_4F (37)	3721.86	254167	281028	4	6	0.036	0.011	0.55	-1.35	D-	
			[3732.7]	254167	280950	4	4	0.030	0.0062	0.31	-1.60	D D	2 2
48		² P°-2F (38)		25.43.65				0.55	0.70			,	
49		² P°_2D	3753.83 3824.0	254167 254209	280799 280353	6	6 10	0.55	0.18 0.35	8.7 26	-0.15 0.32	D D	$\begin{array}{ c c } \hline & 2 \\ & ca \\ \hline \end{array}$
•		(39)	3829.77	254167	280271	4	6	0.88	0.29	15	0.06	D	2
			3818.44 3800.02	254294 254167	280476 280476	4	4	0.69	0.30 0.076	7.6 3.8	$ \begin{array}{c} -0.22 \\ -0.52 \end{array} $	D	2 2
50	·	² P° – ⁴ P (40)		1					0.0==	0.5	٥٠٠		
			3701.81 3744.66 [3726.9]	254167 254294 254167	281174 280992 280992	$\begin{vmatrix} 4\\2\\4 \end{vmatrix}$	6 4 4	0.25 0.22 0.092	0.077 0.091 0.019	3.7 2.2 0.94	$ \begin{array}{r} -0.51 \\ -0.74 \\ -1.12 \end{array} $	D D	$\begin{array}{c c} 2\\2\\2\\2\end{array}$
51		² P°_ ² P	3651.2	254209	281590	6	6	1.2	0.24	17	0.15	D	ca
		(41)	3628.06 3697.09 3679.80	254167 254294 254167	281722 281335 281335	4 2 4	4 2 2	0.57 0.34 0.36	0.11 0.070 0.037 0.34	5.3 1.7 1.8 8.2	$ \begin{array}{r} -0.35 \\ -0.86 \\ -0.83 \\ -0.17 \end{array} $	D D D	2 2 2 2

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g_i	g_k	$A_{ki}(10^8 m sec^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
52	2p43d-	⁴D — ⁴D°	4229.6	279230	302866	20	20	0.39	0.10	29	0.32	D	ca
	2p ⁴ 6P)4f	(52)	4219.76 4231.60 4239.95 4242.20 4217.15 4220.92 4224.57 [4234.3] 4250.68	279139 279221 279327 279425 279139 279221 279327 279221 279327	302831 302846 302905 302991 302846 302991 302831 302846 302905	8 6 4 2 8 6 4 6 4	8 6 4 2 6 4 2 8 6 4	0.33 0.22 0.15 0.19 0.074 0.14 0.19 0.055 0.090	0.089 0.060 0.042 0.052 0.015 0.024 0.026 0.020 0.036 0.052	9.8 5.0 2.3 1.5 1.6 2.0 1.4 1.7 2.0 1.5	-0.15 -0.45 -0.78 -0.98 -0.93 -0.84 -0.99 -0.84 -0.98	D D D D D D	ls ls ls ls ls ls ls ls ls ls ls
53		⁴ F - ⁴ F° (56)	4257.82 4394.5 4397.94 4379.50 4385.00 4430.90 [4280.3] [4323.3] 4446.46 4502.52	279425 280619 280174 280703 281028 280950 280174 280703 281028 280703	303368 302906 303531 303827 303512 303531 303827 303512 302906	28 10 8 6 4 10 8 6 8	28 10 8 6 4 8 6 4 10	0.26 0.24 0.20 0.18 0.21 0.028 0.048 0.052 0.021	0.076 0.070 0.058 0.053 0.062 0.0062 0.010 0.010 0.0081	31 10 6.7 4.6 3.6 0.88 1.2 0.91 0.96	0.33 -0.16 -0.33 -0.50 -0.61 -1.21 -1.09 -1.21 -1.19	D D D D D D	ca ls ls ls ls ls ls ls
54		⁴F—⁴G° (57)	4442.67 4369.77 4360.8 4290.40 4391.94 4409.30 4413.20 [4292.4] [4346.9] 4428.54 [4249.2] 4365.72	281028 280950 280619 280174 280703 281028 280950 280174 280703 281028 280174 280703	303531 303827 303544 303476 303465 303701 303602 303465 303701 303602 303701 303602	28 10 8 6 4 10 8 6 10 8	36 12 10 8 6 10 8 6 8 6	0.035 0.035 2.4 2.5 2.2 2.0 2.0 0.20 0.33 0.33 0.0073 0.012	0.014 0.015 0.89 0.83 0.79 0.79 0.89 0.056 0.093 0.096 0.0016 0.0026	1.2 0.88 360 120 91 69 52 7.9 11 8.4 0.22 0.30	-1.08 -1.21 1.39 0.92 0.80 0.68 0.55 -0.25 -0.13 -0.24 -1.80 -1.68	D D D D D D D D D D D D D D D D D D D	ls ca ls ls ls ls ls ls ls ls

Naqvi's calculation [1] of the one possible transition in the ground state configuration $2p^5$ is the only available source. The line strength should be quite accurate, since it does not sensitively depend on the choice of the interaction parameters.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Ne II. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\text{cm}^{-1})$	ģi	gk	Type of Transition	$A_{ki}(\mathrm{sec^{-1}})$	S(at.u.)	Accu- racy	Source
1	$2p^5 - 2p^5$	2P° 2P°	[12.78×10 ⁴]	0	782	4	2	m	0.00859	1.33	В	1

 $1s^22s^22p^4$ ³P₂ Ground State

Ionization Potential

 $63.5~{\rm eV} = 512312~{\rm cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
227.24	13	283.894	5	2163.5	17
227.42	12	301.124	7	2163.7	17
227.49	12	308.559	9	2163.77	17
227.57	13	313.048	4	2412.73	18
227.72	13	313.677	4	2412.94	18
227.73	12	313.92	4	2413.18	18
227.76	12	379.308	$\frac{2}{3}$	2413.54	18
227.82	12	427.840	3	2413.78	18
227.90	12	488.103	1	2590.04	14
228.85	11	488.868	1	2593.60	14
228.88	11	489.501	1	2595.68	14
228.91	ii	489.641	$\bar{1}$	2610.03	16
229.19	ii l	490.310	1	2611.42	16
229.22	ii	491.050	1	2612.5	16
229.34	11	2086.96	19	2613.41	16
251.145	10	2087.44	19	2614.51	16
251.558	10	2088.92	<u>19</u>	2615.87	16
251.726	10	2089.43	19	2677.90	15
267.059	6	2092.44	19	2678.64	15
267.516	6	2095.54	19		
247.700		2159.44	17		
267.709	6	2159.60	17	į.	
282.50	8 5 5 5	2160.88	17 l	į	
283.178	ا ع	2161.04	17		
283.206 283.690	5	2161.22	17	ľ	

The values for the majority of the transitions are taken from the self-consistent field calculations (with exchange) by Weiss[1]. These calculations do not include the important effects of configuration interaction; hence, fairly large uncertainties must be expected in most cases. The average of the dipole length and velocity approximations is adopted [1].

For the $2s^22p^4$ $^1S-2s2p^5$ $^1P^\circ$ transition a value is available from the calculations of Bolotin et al. [2] which include configuration interaction in a limited way. Again, large uncertainties are to be expected.

References

[1] Weiss, A. W., private communication (1965).

^[2] Bolotin, A. B., Shironas, I. I., and Braiman, M. Yu., Vilniaus Valstybinio v. Kapsuko vardo universiteto Mokslo Darbai, 33, matematika, fizika, 9, 107-112 (1960).

Ne III. Allowed Transitions

No	. Transition Array	Multi- plet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	$A_{ki}(10^8 m sec^{-1})$		S(at.u.)	$\log gf$	Accu- racy	Source
1	$ 2s^2 2p^4 - \\ 2s 2p^5 $	³ P - ³ P° (1 uv)	489.54	317	204589	9		71	0.26	3.7	0.36	E	l 1
			489.501 489.641 488.103 488.868 491.050 490.310	0 643 0 643 643 927	204292 204879 204879 205204 204292 204879	5 3 5 3 1	5 3 1 5 3	52 18 30 71 17 23	0.19 0.064 0.063 0.085 0.11 0.25	1.5 0.31 0.51 0.41 0.51 0.41	$ \begin{array}{r} -0.03 \\ -0.72 \\ -0.50 \\ -0.59 \\ -0.50 \\ -0.60 \end{array} $	E E E E E E	ls ls ls ls ls
2		^t D - ¹ P° (6 uv)	379.308	25841	289479	5	3	210	0.27	1.7	0.13	E	1
3		¹ S - ¹ P° (9 uv)	427.840	55747	289479	1	3	16	0.13	0.19	-0.87	E	2
4	$2p^{4} - 2p^{3}(^{4}S^{\circ})3s$	³ P - ³ S° (2 uv)	313.35	317	319445	9	3	81	0.040	0.37	-0.45	E	1
			313.048 313.677 313.92	0 643 927	319445 319445 319445	5 3 1	3 3 3	46 26 9.0	0.041 0.039 0.040	$\begin{array}{ c c } 0.21 \\ 0.12 \\ 0.041 \end{array}$	$ \begin{array}{r} -0.69 \\ -0.93 \\ -1.40 \end{array} $	E E E	ls ls ls
5	$2p^4 - 2p^3(^2D^\circ)3s'$	$\begin{array}{c c} & ^{3}P - ^{3}D^{\circ} \\ & (3 \text{ uv}) \end{array}$	283.41	317	353167	9	15	28	0.057	0.48	-0.29	E	1
			283.206 283.690 283.894 283.178 283.690 283.178	0 643 927 0 643 0	353148 353177 353197 353177 353197 353197	5 3 1 5 3 5	7 5 3 5 3	28 21 16 7.1 12 0.80	$ \begin{vmatrix} 0.047 \\ 0.043 \\ 0.057 \\ 0.0086 \\ 0.014 \\ 5.8 \times 10^{-4} \end{vmatrix} $	0.22 0.12 0.053 0.040 0.040 0.0027	$\begin{array}{r} -0.63 \\ -0.89 \\ -1.25 \\ -1.37 \\ -1.37 \\ -2.54 \end{array}$	E E E E E	ls ls ls ls ls
6	$2p^4 - 2p^3(^2\mathrm{P}^\circ)3s''$	³ P - ³ P° (4 uv)	267.29	317	374448	9	9	32	0.034	0.27	-0.51	E	1
	2p (1)03		267.059 267.516 267.059 267.516 267.516 267.709	643 0 643 643 643 927	374434 374461 374461 374478 374434 374461	5 3 5 3 1	5 3 1 5 3	23 8.1 13 32 8.0 11	0.025 0.0087 0.0086 0.011 0.014 0.034	0.11 0.023 0.038 0.030 0.038 0.030	$ \begin{array}{r} -0.90 \\ -1.58 \\ -1.36 \\ -1.47 \\ -1.37 \\ -1.47 \end{array} $	E E E E E	ls ls ls ls ls
7	$2p^4 - 2p^3(^2D^\circ)3s'$	¹ D - ¹ D° (7 uv)	301.124	25841	357930	5	5	71	0.097	0.48	-0.32	E	1
8	$2p^4 - 2p^3(^2\mathbf{P}^{\circ})3s''$	¹ D- ¹ P° (8 uv)	282.50	25841	379834	5	3	45	0.032	0.15	-0.79	E	1
9	$2p^4 - 2p^3(^2\mathbf{P}^{\circ})3s''$	¹ S - ¹ P° (10 uv)	308.559	55747	379834	1	3	32	0.14	0.14	-0.86	E	1
10	$2p^4 - 2p^3(^4S^{\circ})3d$	³P ~ ³D° (5 uv)	251.33	317	398203	9	15	140	0.21	1.6	0.29	D —	1
			251.145 251.558 251.726 251.145 251.558 251.145	0 643 927 0 643 0	398211 398197 398193 398197 398193 398193	5 3 1 5 3 5	7 5 3 5 3	140 100 76 33 55 3.8	0.18 0.16 0.22 0.031 0.052 0.0022	0.75 0.40 0.18 0.13 0.13 0.0089	$ \begin{array}{c c} -0.04 \\ -0.32 \\ -0.66 \\ -0.80 \\ -0.80 \\ -1.97 \end{array} $	D - D - D - D - D - D -	ls ls ls ls ls
11	$2p^4 - 2p^3(^2\mathrm{D}^\circ)3d'$	³ P − ³ D°	229.06	317	[9	15	73	0.096	0.65	-0.06	D-	1
			[228.91] [229.22] [229.34] [228.88] [229.19] [228.85]	927 0 643	436914 436959 436914 436959	5 3 1 5 3 5	7 5 3 5 3 3	72 54 40 18 30 2.0	$ \begin{array}{c} 0.080 \\ 0.071 \\ 0.095 \\ 0.014 \\ 0.024 \\ 9.6 \times 10^{-4} \end{array} $	0.30 0.16 0.072 0.054 0.054 0.0036	$\begin{array}{c c} -0.40 \\ -0.67 \\ -1.02 \\ -1.14 \\ -1.15 \\ -2.32 \end{array}$	D - D - D - D - D - D -	ls ls ls ls ls

Ne III. Allowed Transitions - Continued

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g_k	$\begin{array}{c c} A_{ki}(10^8 \\ \sec^{-1}) \end{array}$	f_{ik}	S(at.u.)	$\log gf$	Accu- racy	Source
12		3P – 3P°	227.62	317	439646	9	9	160	0.12	0.83	0.04	D-	1
			[227.49] [227.76] [227.42] [227.73] [227.82] [227.90]	0 643 0 643 643 927	439586 439708 439708 439760 439586 439708	5 3 5 3 3 1	5 3 1 5 3	120 39 69 160 41 52	0.093 0.031 0.032 0.041 0.053 0.12	$ \begin{vmatrix} 0.35 \\ 0.069 \\ 0.12 \\ 0.092 \\ 0.12 \\ 0.092 \end{vmatrix} $	$\begin{array}{c} -0.33 \\ -1.04 \\ -0.80 \\ -0.91 \\ -0.80 \\ -0.91 \end{array}$	D- D- D- D-	ls ls ls ls ls
13		³ P- ³ S°	227.40	317	440065	9	3	210	0.055	0.37	-0.31	D-	1
			[227.24] [227.57] [227.72]	0 643 927	440065 440065 440065	5 3 1	3 3 3	120 69 23	0.056 0.053 0.055	0.21 0.12 0.041	$ \begin{array}{r} -0.55 \\ -0.80 \\ -1.26 \end{array} $	D- D- D-	ls ls ls
14	$2p^33s - 2p^3(^4S^{\circ})3p$	⁵ S°- ⁵ P (11 uv)	2592.3	[314148]	[352712]	5	15	2.5	0.76	32	0.58	D	ca
	-F (-)-F	(== 1,)	2590.04 2593.60 2595.68	[314148] [314148] [314148]	[352746] [352693] [352662]	5 5 5	7 5 3	2.5 2.5 2.5	0.36 0.25 0.15	15 11 6.5	$0.25 \\ 0.10 \\ -0.12$	D D D	ls ls ls
15		³ S°- ³ P (12 uv)	2678.2	319445	356773	3	9	2.4	0.78	20	0.37	D	ca
		(12 11)	2677.90 2678.64 2677.90	319445 319445 319445	356777 356766 356777	3 3 3	5 3 1	2.4 2.4 2.4	0.43 0.26 0.086	11 6.8 2.3	$ \begin{array}{r} 0.11 \\ -0.11 \\ -0.59 \end{array} $	D D D	ls ls ls
16	$2p^33s' - 2p^3(^2D^0)3p'$	³D°−3F	2612.4	353167	391435	15	21	2.4	0.34	44	0.71	D	ca
	-P (-)-P		2610.03 2613.41 2615.87 2611.42 2614.51 [2612.5]	353148 353177 353197 353148 353177 353148	391450 391430 391414 391430 391414 391414	7 5 3 7 5 7	9 7 5 7 5 5	2.4 2.1 2.0 0.27 0.37 0.011	$ \begin{vmatrix} 0.32 \\ 0.31 \\ 0.34 \\ 0.027 \\ 0.038 \\ 7.8 \times 10^{-4} \end{vmatrix} $	19 13 8.9 1.6 1.6 0.047	0.34 0.18 0.01 -0.72 -0.72 -2.26	D D D D D	ls ls ls ls ls
17	$2p^{3}3p - 2p^{3}(^{4}S^{\circ})3d$	5P — 5D°	2163.77 2161.22 2159.60 [2163.7] 2161.04 2159.44 [2163.5] 2160.88	[352746] [352693] [352662] [352746] [352693] [352662] [352746] [352693]	[398947] [398949] [398952] [398949] [398952] [398956] [398956]	7 5 3 7 5 3 7 5	9 7 5 7 5 3 5 3	6.5 4.36 2.30 2.25 3.82 4.92 0.450 1.64	0.59 0.428 0.268 0.158 0.267 0.344 0.0227 0.069	29.4 15.2 5.7 7.9 9.5 7.3 1.12 2.45	$\begin{array}{c} 0.62 \\ 0.330 \\ -0.096 \\ 0.044 \\ 0.126 \\ 0.014 \\ -0.80 \\ -0.464 \end{array}$	C – C – C – C – C – C – C – C – C – C –	ca, ls ca, ls ca, ls ca, ls ca, ls ca, ls ca, ls ca, ls ca, ls
18		³ P - ³ D°	2413.0	356773	398203	9	15	4.87	0.71	51	0.80	Ç —	ca
			2412.73 2412.94 2413.78 2413.54 2413.18 2413.78	356777 356766 356777 356777 356766 356777	398212 398197 398193 398197 398193 398193	5 3 1 5 3 5	7 5 3 5, 3	4.87 3.65 2.70 1.22 2.03 0.135	0.59 0.53 0.71 0.106 0.177 0.0071	23.6 12.7 5.6 4.22 4.22 0.281	$\begin{array}{c} 0.473 \\ 0.202 \\ -0.150 \\ -0.275 \\ -0.275 \\ -1.451 \end{array}$	C- C- C- C- C-	ls ls ls ls ls
19	$2p^{3}3p' - 2p^{3}(^{2}D^{\circ})3d'$	3D - 3D°	2091.7	389099	436891	15	15	3.92	0.257	26.6	0.59	C-	ca
	2p (υ)3 u		2095.54 2089.43 2086.96 2092.44 2087.44 2092.44 2088.92	389139 389069 389058 389139 389069 389069 389058	436845 436914 436959 436914 436959 436845 436914	7 5 3 7 5 5 3	7 5 3 5 3 7 5	3.47 2.73 2.96 0.61 0.99 0.435 0.59	0.228 0.179 0.194 0.0286 0.0387 0.0400 0.064	11.0 6.2 3.99 1.38 1.33 1.38 1.33	$\begin{array}{c} 0.204 \\ -0.048 \\ -0.236 \\ -0.70 \\ -0.71 \\ -0.70 \\ -0.71 \end{array}$	C- C- C- C- C-	ls ls ls ls ls

The adopted values represent, as in the case of FII, the work of Garstang [1] and Naqvi [2], who independently have done essentially the same calculations and have arrived at very similar results. For the selection of values, the same considerations as for FII have been applied.

- [1] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 111, 115-124 (1951).
- [2] Naqvi, A. M., Thesis Harvard (1951).

Ne III. Forbidden Transitions

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	Type of Transition	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
2	-1	³ P - ¹ D	$[15.55 \times 10^{4}]$ $[15.55 \times 10^{4}]$ $[10.79 \times 10^{4}]$ $[36.19 \times 10^{4}]$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 642.9 \end{array}$	642.9 642.9 927 927	5 5 5 3	3 3 1 1	m e e e m	$\begin{array}{c} 0.00599 \\ 2.60 \times 10^{-9} \\ 2.03 \times 10^{-8} \\ 0.00115 \end{array}$	2.50 0.422 0.176 2.00	B C C B	1, 2 1 1 1, 2
3		(1 F) ³ P- ¹ S	3868.74 3868.74 3967.51 3967.51 [4012.7]	0 0 642.9 642.9 927	25841 25841 25841 25841 25841 55747	5 5 3 3 1	5 5 5 5 1	m e m e e	$\begin{array}{c} 0.170 \\ 3.0 \times 10^{-4} \\ 0.052 \\ 3.8 \times 10^{-5} \\ 1.2 \times 10^{-5} \\ 0.0051 \end{array}$	$\begin{array}{c} 0.00182 \\ 7.7 \times 10^{-4} \\ 6.1 \times 10^{-4} \\ 1.1 \times 10^{-4} \\ 3.7 \times 10^{-5} \\ \\ 5.6 \times 10^{-5} \end{array}$	C D C D D	2 1 2 1 1
4		¹ D – ¹ S (2 F)	3342.9	642.9 25841	55747	5	1	т . е	2.80	4.87×10^{-4} 0.70	С	1

Ionization Potential

 $97.02 \text{ eV} = 782768 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
208.485 208.734 208.899 212.556 357.831 358.70 387.13 388.23 421.584 469.77 469.817 469.865 521.730 521.74 521.810	7 7 7 8 3 6 6 5 2 2 2 4 4 4	541.124 542.076 543.884 2018.44 2022.19 2029.2 2033.5 2174.4 2176.1 2188.0 2192.6 2203.88 2206.4 2220.81 2258.02	1 1 1 13 13 13 13 10 10 10 10 10 10 10 10	2262.08 2264.54 2285.79 2293.14 2293.49 2350.84 2352.52 2357.96 2362.68 2363.28 2365.49 2372.16 2384.20 2384.95 2404.28	14 14 12 12 12 12 9 9 9 11

The values for several of the transitions are taken from the self-consistent field calculations (with exchange) by Weiss [1]. These calculations do not include the important effects of configuration interaction; hence, fairly large uncertainties must be expected. The average of the dipole length and velocity approximations is adopted [1].

For the $2s^22p^3$ ²P° $-2s2p^4$ ²D, ²S transitions values are available from the calculations of Levinson et al. [2] which include configuration interaction in a limited way. Again, large uncertainties are to be expected.

References

[1] Weiss, A. W., private communication (1965).

^[2] Levinson, I. B., Bolotin, A. B., and Levin, L. I., Trudy Vil'nyusskogo un. 5, 49-55 (1956).

Ne IV. Allowed Transitions

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	gk	$\begin{array}{ c c c c }\hline A_{ki}(10^8\\ \sec^{-1}) \\ \end{array}$	fik	S(at.u.)	log gf	Accu- racy	Source
	$2s^{2}2p^{3}-$	4S°-4P	542.82	0	184222	4	12	25	0.34	2.4	0.13	E	1
	2s2p4	(1 uv)	543.884 542.076 541.124	0 0 0	183860 184477 184799	4 4 4	6 4 2	25 25 25	0.17 0.11 0.056	1.2 0.80 0.40	$ \begin{array}{r r} -0.17 \\ -0.35 \\ -0.65 \end{array} $	E E E	ls ls ls
2		$^{2}\mathrm{D}^{\circ}-^{2}\mathrm{D}$	469.84	[40968]	[253808]	10	10	51	0.17	2.6	0.23	E	1
		(4 uv)	469.817 469.817 [469.77] 469.865	[40950] [40995] [40950] [40995]	[253799] [253822] [253822] [253799]	6 4 6 4	6 4 4 6	49 46 4.9 3.3	0.16 0.15 0.011 0.016	1.5 0.94 0.10 0.10	$ \begin{array}{r} -0.01 \\ -0.22 \\ -1.19 \\ -1.19 \end{array} $	E E E	ls ls ls ls
3		$^{2}\mathrm{D}^{\circ}-^{2}\mathrm{P}$	358.40	[40968]	[319985]	10	6	150	0.18	2.1	0.25	E	1
		(5 uv)	358.70 357.831 358.70	[40950] [40995] [40995]	[319751] [320452] [319751]	6 4 4	4 2 4	140 150 15	0.18 0.15 0.030	$egin{array}{c} 1.3 \ 0.70 \ 0.14 \end{array}$	$ \begin{array}{r} 0.04 \\ -0.23 \\ -0.93 \end{array} $	E E E	ls ls ls
4		² P°- ² D (8 uv)	521.78	[62155]	[253808]	6	10	7.7	0.052	0.54	- 0.50	E	2
		(o uv)	521.810 521.730 [521.74]	[62157] [62150] [62157]	[253799] [253822] [253822]	4 2 4	6 4 4	7.6 6.4 1.3	$\begin{array}{c} 0.047 \\ 0.052 \\ 0.0052 \end{array}$	0.32 0.18 0.036	$ \begin{array}{r} -0.73 \\ -0.98 \\ -1.68 \end{array} $	E E E	ls ls ls
5		² P°- ² S (9 uv)	421.584	[62155]	[299351]	6	2	120	0.11	0.92	-0.18	E	2
6		² P°-2P (10 uv)	387.85	[62155]	[319985]	6	6	75	0.17	1.3	0.01	E	1
		(== 21)	388.23 387.13 387.13 388.23	[62157] [62150] [62157] [62150]	[319751] [320452] [320452] [319751]	4 2 4 2	4 2 2 4	62 51 24 12	0.14 0.11 0.027 0.055	0.72 0.29 0.14 0.14	$ \begin{array}{r} -0.25 \\ -0.64 \\ -0.96 \\ -0.96 \end{array} $	E E E	ls ls ls ls
7	$2p^3 - 2p^2(^3P)3s$	⁴ S°- ⁴ P (2 uv)	208.63	0	479309	4	12	48	0.095	0.26	-0.42	E	I
	2p (1)03	(2 uv)	208.485 208.734 208.899	0 0 0	479662 479083 478701	4 4 4	6 4 2	48 48 48	0.047 0.032 0.016	0.13 0.087 0.043	$ \begin{array}{r} -0.72 \\ -0.90 \\ -1.20 \end{array} $	E E E	ls ls ls
8	$\begin{array}{c c} 2p^3 - & \\ 2p^2(^1{\rm D})3s' \end{array}$	$^{2}D^{\circ}-^{2}D$ (6 uv)	212.556	[40968]	[511681]	10	10	74	0.050	0.35	-0.30	E	1
9	$\begin{array}{c c} 2p^2 3s - \\ 2p^2 (^3P) 3p \end{array}$	4P-4D°	2361.5	479309	521643	12	20	2.5	0.34	32	0.62	D	ca
			2357.96 2352.52 2350.84 2384.95 2372.16 2362.68 2405.19 2384.20	479662 479083 478701 479662 479083 478701 479662 479083	522058 521578 521226 521578 521226 521013 521226 521013	6 4 2 6 4 2 6 4	8 6 4 6 4 2 4	2.5 1.7 1.0 0.72 1.3 2.0 0.12 0.40	0.28 0.22 0.17 0.061 0.11 0.17 0.0067 0.017	13 6.7 2.7 2.9 3.4 2.7 0.32 0.53	0.22 -0.06 -0.46 -0.43 -0.36 -0.47 -1.39 -1.17	D D D D D D D D	ls ls ls ls ls ls
10		4P_4P°	2197.5	479309	524802	12	12	3.1	0.23	20	0.43	D	ca
			2203.88 [2192.6] [2188.0] 2220.81 [2206.4] [2176.1] [2174.4]	479662 479083 478701 479662 479083 479083 478701	525022 524677 524391 524677 524391 525022 524677	6 4 2 6 4 4 2	6 4 2 4 2 6 4	2.2 0.42 0.52 1.4 2.5 0.96 1.3	0.16 0.030 0.037 0.067 0.093 0.10 0.19	6.8 0.86 0.54 2.9 2.7 2.9 2.7	$\begin{array}{c} -0.03 \\ -0.92 \\ -1.13 \\ -0.40 \\ -0.43 \\ -0.39 \\ -0.42 \end{array}$	D D D D D D D	ls ls ls ls ls

Ne IV. Allowed Transitions - Continued

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g_k	$egin{array}{c} A_{ki}(10^8 \ m sec^{-1}) \end{array}$	f_{ik}	S(at.u.)	$\log gf$	Accu- racy	Source
11		² P − ² D°	2366.7	[488934]	[531174]	6	10	2.6	0.37	17	0.35	D	ca
,		1	2363.28 2365.49 2404.28	[489161] [488479] [489161]	[531462] [530741] [530741]	4 2 4	6 4 4	2.7 2.2 0.42	0.33 0.37 0.036	10 5.7 1.1	$ \begin{array}{c c} 0.12 \\ -0.13 \\ -0.84 \end{array} $	D D D	ls ls ls
12	$2p^23s' - 2p^2(^1D)3p'$	² D− ² F°	2289.1	[511681]	[555353]	10	14	2.8	0.30	23	0.48	D	ca
	- p (2)3p		2285.79 2293.49 2293.14	[511678] [511685] [511678]	[555413] [555273] [555273]	6 4 6	8 6 6	2.8 2.6 0.18	0.29 0.30 0.014	13 9.2 0.65	$0.24 \\ 0.08 \\ -1.06$	D D D	ls ls ls
13		² D− ² D°	2031.7	[511681]	[560885]	10	10	4.0	0.25	17	0.39	D	ca
			2022.19 2018.44 [2029.2] [2033.5]	[511678] [511685] [511678] [511685]	[560846] [560943] [560943] [560846]	6 4 6 4	6 4 4 6	3.8 3.7 0.40 0.27	0.23 0.22 0.017 0.025	9.3 6.0 0.66 0.66	0.14 -0.05 -1.00 -1.00	D D D D	ls ls ls ls
14	$2p^23s'' - 2p^2(^1S)3p''$	6S−6P°	2260.8	[538500]	[582718]	6	18	2.7	0.63	28	0.58	D	ca
	2p (0)0p		2258.02 2262.08 2264.54	[538500] [538500] [538500]	[582773] [582693] [582645]	6 6 6	8 6 4	2.7 2.7 2.7	0.28 0.21 0.14	12 9.4 6.2	$0.23 \\ 0.10 \\ -0.08$	D D D	ls ls ls

Garstang's 1960 calculations [1] are exclusively used, since it is felt that the important effects of configuration interaction are partially taken into account in this work and a reliable estimate of the quadrupole integral is provided (see also general introduction).

Reference

[1] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 120, 201 (1960).

Ne IV. Forbidden Transitions

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	g_k	Type of Transition	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$2p^3 - 2p^3$	⁴ S° − ² D°	[2441.3] [2441.3] [2438.6] [2438.6]	0 0 0 0	40950 40950 40995 40995	4 4 4 4	6 6 4 4	m e m e	$ \begin{vmatrix} 1.80 \times 10^{-4} \\ 4.1 \times 10^{-4} \\ 0.0053 \\ 2.7 \times 10^{-4} \end{vmatrix} $	5.8×10^{-7} 1.3×10^{-4} 1.14×10^{-5} 5.5×10^{-5}	C D C D	1 1 1 1
2		4S° — 2P°	[1609.0] [1609.0] [1608.8] [1608.8]	0 0 0 0	62150 62150 62157 62157	4 4 4 4	2 2 4 4	m e m e	$\begin{array}{c} 0.53 \\ 8.6 \times 10^{-6} \\ 1.33 \\ 1.5 \times 10^{-7} \end{array}$	1.64×10^{-4} 1.1×10^{-7} 8.2×10^{-4} 3.8×10^{-9}	C D C	1 1 1 1
3		² D° – ² D°	$[22.2 \times 10^{5}]$ $[22.2 \times 10^{5}]$	40950 40950	40995 40995	6	4 4	m e	$\begin{vmatrix} 1.48 \times 10^{-6} \\ 1.1 \times 10^{-17} \end{vmatrix}$	$\frac{2.40}{0.0014}$	D C+	1 1

Ne IV. Forbidden Transitions - Continued

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k({ m cm}^{-1})$	gi	g_k	Type of Transition	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
4		² D° — ² P° (1 F)	4714.25 4715.61 4715.61 4724.15 4724.15 4725.62 4725.62	40950 40950 40950 40995 40995 40995 40995	62150 62157 62157 62157 62157 62150 62150	6 6 6 4 4 4 4	2 4 4 4 2 2	e m e m e m	0.110 0.210 0.191 0.358 0.079 0.229 0.160	0.305 0.00327 1.06 0.0056 0.439 0.00179 0.446	C C C C C C	1 1 1 1 1 1
5		² P° — ² P°	$[15.6 \times 10^6]$ $[15.6 \times 10^6]$	62150 62150	62157 62157	$\frac{2}{2}$	44	m e	$\begin{array}{c} 2.36 \times 10^{-9} \\ 2.6 \times 10^{-22} \end{array}$	1.33 5.7 × 10 ⁻⁴	C +	1 1

Ne V.

Ground State

 $1s^22s^22p^2\ ^3{\rm P_0}$

Ionization Potential

 $126.3 \text{ eV} = 1018634 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
142.44	8	173.932	6	572.336	1
142.52	8	357.955	3	2224.12	14
142.58	8	358.472	$\begin{bmatrix} 3 \\ 3 \end{bmatrix}$	2227.42	14
142.66	l š	359.385	3	2232.41	14
142.72	8 8	365.594	3 5	2236.29	14
143.22	7	416,198	4	2245.48	14
143.27	7 1	480,406		2256.05	14
143.30	7	481.281	2 2 2 2	2257.9	14
143.34	7	481.361	$\frac{1}{2}$	2259.57	13
143.42	7	482.987	$\frac{1}{2}$	2263.39	13
143.45	7	568.418	1 1	2265.71	13
147.13	l ii l	569.759	i i II	2274.54	14
148.78	1 10 1	569.830	i	2282.61	13
151.42	9	572.03	î	2306.31	13
156.61	12	572.106	i i	2330.3	13

For the $2s^22p^2-2s2p^3$ transition array, values are available from the calculations of Bolotin et al. [1] which include the important effects of configuration interaction only in a limited way. Hence, fairly large uncertainties must be expected.

The values for several other transitions are taken from the self-consistent field calculations (with exchange) by Weiss [2]. These calculations neglect the effects of configuration interaction entirely. The average of the dipole length and the velocity approximations is adopted [2].

^[1] Bolotin, A. B., Levinson, I. B., and Levin, L. I., Soviet Phys. - JETP 2, 391-395 (1956).

^[2] Weiss, A. W., private communication (1965).

Ne V. Allowed Transitions

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$\begin{array}{c c} A_{ki}(10^8\\ \sec^{-1}) \end{array}$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$\begin{vmatrix} 2s^22p^2 - \\ 2s2p^3 \end{vmatrix}$	³ P - ³ D° (1 uv)	571.04	756	175876	9	15	14	0.11	1.9	0.00	E	1
	282p	(1 uv)	572.336 569.830 568.418 572.106 569.759 [572.03]	1112 414 0 1112 414 1112	175834 175905 175927 175905 175927 175927	5 3 1 5 3 5	7 5 3 5 3 3	14 10 7.7 3.5 5.8 0.40	0.094 0.084 0.11 0.017 0.028 0.0012	0.89 0.47 0.21 0.16 0.16 0.011	$\begin{array}{c c} -0.33 \\ -0.60 \\ -0.95 \\ -1.07 \\ -1.07 \\ -2.23 \end{array}$	E E E E E	ls ls ls ls ls
2		$ \begin{array}{c c} ^{3}P - ^{3}P^{\circ} \\ (2 \text{ uv}) \end{array} $	482.15	756	208161	9	9	40	0.14	2.0	0.10	E	1
		(= = 1)	482.987 481.361 482.987 481.281 481.361 480.406	1112 414 1112 414 414 0	208157 208157 208157 208193 208157 208157	5 3 5 3 1	5 3 3 1 5 3	30 10 17 40 10 13	0.10 0.036 0.035 0.046 0.059 0.14	0.83 0.17 0.28 0.22 0.28 0.22	-0.28 -0.97 -0.75 -0.86 -0.75 -0.86	E E E E E	ls ls ls ls* ls
3		³ P - ³ S° (3 uv)	358.93	756	279365	9	3	220	0.14	1.5	0.10	E	1
		(0 41)	359.385 358.472 357.955	1112 414 0	279365 279365 279365	5 3 1	3 3 3	120 73 25	0.14 0.14 0.14	0.83 0.50 0.17	$-0.15 \\ -0.37 \\ -0.84$	E E E	ls ls ls
4		¹ D - ¹ D° (4 uv)	416.198	30294	270564	5	5	110	0.28	1.9	0.14	E	1
5		¹ D - ¹ P° (5 uv)	365.594	30294	303812	5	3	150	0.18	1.1	-0.04	E	1
6	2p ² — 2p(² P°)3s	¹ D - ¹ P° (6 uv)	173.932	30294	605231	5	3	230	0.063	0.18	-0.50	E	2
7	2p ² - 2p(² P°)3d	3P — 3D°	143.32	756	698517	9	15	1200	0.61	2.6	0.74	D-	2
	2p(*r)5a		[143.34] [143.27] [143.22] [143.42] [143.30] [143.45]	1112 414 0 1112 414 1112	698735 698382 698231 698231 698231	5 3 1 5 3 5	7 5 3 5 3	1200 900 670 300 500 32	0.51 0.46 0.62 0.093 0.16 0.0059	1.2 0.65 0.29 0.22 0.22 0.014	$\begin{array}{c} 0.41 \\ 0.14 \\ -0.21 \\ -0.33 \\ -0.33 \\ -1.53 \end{array}$	D- D- D- D- D- D-	ls ls ls ls ls
8		3P-3P°	142.61	756	701945	9	9	670	0.20	0.86	0.26	D-	2
			[142.72] [142.52] [142.66] [142.44] [142.58] [142.44]	1112 414 1112 414 414 0	701765 702074 702074 702459 701765 702074	5 3 5 3 1	5 3 1 5 3	500 170 280 670 170 220	0.15 0.051 0.051 0.068 0.085 0.20	0.36 0.072 0.12 0.096 0.12 0.096	$\begin{array}{c} -0.12 \\ -0.81 \\ -0.59 \\ -0.69 \\ -0.59 \\ -0.69 \end{array}$	D- D- D- D- D- D-	ls ls ls ls ls
9	,	¹ D - ¹ D°	[151.42]	30294	690691	5	5	400	0.14	0.34	-0.17	D-	2
10		¹ D- ¹ P°	[148.78]	30294	702412	5	3	37	0.0073	0.018	-1.43	D-	2
11		¹ D - ¹ F°	[147.13]	30294	709956	5	7	1300	0.58	1.4	0.46	D-	2
12		¹ S - ¹ P°	[156.61]	63900	702412	1	3	690	0.76	0.39	-0.12	D-	2

Ne V. Allowed Transitions - Continued

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(10^8 m sec^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
13	2p3s — 2p(² P°)3p	3P° — 3D	2269.0 2265.71 2259.57 2263.39 2306.31 2282.61 [2330.3]	597083 597523 596626 596254 597523 596626 597523	641142 641646 640868 640422 640868 640422 640422	9 5 3 1 5 3 5	15 7 5 3 5 3 3	2.2 2.2 1.7 1.2 0.52 0.89 0.056	0.28 0.24 0.21 0.28 0.042 0.070 0.0027	8.9 4.7 2.1 1.6 1.6 0.11	0.40 0.07 - 0.20 - 0.55 - 0.68 - 0.68 - 1.86	D D D D D	ca ls ls ls ls
14	2s2p ² 3s — 2s2p ² (⁴ P)3p	5P — 5D°	2232.41 2227.42 2224.12 2256.05 2245.48 2236.29 2274.54 [2257.9]	698504 697935 697507 698504 697935 697507 698504 697935	743285 742816 742455 742816 742455 742210 742455 742210	7 5 3 7 5 3 7 5	9 7 5 7 5 3 5	0.20 0.13 0.069 0.063 0.11 0.15 0.012 0.047		0.96 0.50 0.19 0.25 0.31 0.24 0.036 0.080	$\begin{array}{c} -0.88 \\ -1.17 \\ -1.59 \\ -1.47 \\ -1.37 \\ -1.49 \\ -2.32 \\ -1.97 \end{array}$	D D D D D D D	ca, ls ca, ls ca, ls ca, ls ca, ls ca, ls ca, ls ca, ls ca, ls

The adopted values represent, as in the case of FIV, the work of Garstang [1] and Naqvi [2], who independently have done essentially the same calculations and have arrived at very similar results. For the selection of values, the same considerations as for FIV have been applied.

- [1] Garstang, R. H., Monthly Notices Roy. Astron. Soc. 111, 115-124 (1951).
- [2] Naqvi, A. M., Thesis Harvard (1951).

Ne V. Forbidden Transitions

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	Type of Transition	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	$2p^2 - 2p^2$	3P_3P										
1	2p 2p	1 1	$[24.15 \times 10^{4}]$	0	414	1	3	m	0.00129	2.00	В	1, 2
			$[8.990 \times 10^{4}]$	-	1112	ĺî	5	e	5.2×10^{-9}	0.091	Č	- ' ī
			$[14.32 \times 10^4]$	414	1112	3	5	m	0.00459	2.50	В	$1, \bar{2}$
		1	$[14.32 \times 10^{4}]$	414	1112	3	5	e	1.10×10^{-9}	0.197	$\bar{\mathbf{c}}$	<u>''</u> i
2		$^{3}P - ^{1}D$ $(1 F)$	[111027110]									
		(11)	[3300.0]	0	30294	1	5	e	1.9×10^{-5}	2.2×10^{-5}	D	1 1
			3345.9	414	30294	3	5	m	0.138	9.6×10^{-4}	$\bar{\mathbf{c}}$	$1, \bar{2}$
			3345.9	414	30294	3	5	e	6.2×10^{-5}	7.7×10^{-5}	D	-, <u>1</u>
	Į.		3425.8	1112	30294	5	5	m	0.382	0.00285	C	1, 2
		}	3425.8	1112	30294	5	5	e	3.9×10^{-4}	5.5×10^{-4}	D	´ı
3		$^{3}P-^{1}S$				1		1	ļ		ļ	Į.
_	1		[1575.2]	414	63900	3	1	m	4.20	6.1 × 10 ⁻⁴	C	1
			[1592.7]	1112	63900	5	1	e	0.0068	4.1×10^{-5}	D	1
4		¹ D - ¹ S (2 F)	[-374.1]			1					}	
		(21)	2972	30294	63900	5	1	e	2.60	0.359	C	1

Ground State $1s^2 2s^2 2p \,^2 P_{1/2}^{\circ}$

Ionization Potential

 $157.91 \text{ eV} = 1274000 \text{ cm}^{-1}$

Allowed Transitions

List of tabulated lines:

Wavelength [Å]	No.	Wavelength [Å]	No.	Wavelength [Å]	No.
122.49 122.69 138.39 138.64 399.82	9 9 8 8 3	440.404 440.46 440.60 451.843 452.745	5 5 5 4 4	571.00 637.90 638.19 641.26 641.55	6 7 7 7 7
401.14 401.93 403.26 433.176 435.649	3 3 3 2 2	454.072 558.59 562.71 562.80 570.77	4 1 1 1 6	2042.38 2055.93 2213.1 2229.1	10 10 11 11

The transition probabilities are taken from the self-consistent field calculations (with exchange) by Weiss [1]. These calculations neglect the effects of configuration interaction entirely. The average of the dipole length and velocity approximations is adopted [1].

Reference

[1] Weiss, A. W., private communication (1965).

Ne VI. Allowed Transitions

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(10^8 m sec^{-1})$	fik	S(at.u.)	log gf	Accu- racy	Source
1	$2s^22p-$	²P°−²D	561.38	873	179004	6	10	17	0.14	1.5	-0.09	E	1
_	$2s2p^2$		[562.80] [558.59] [562.71]	1310 0 1310	178992 179021 179021	4 2 4	6 4 4	17 15 2.8	$0.12 \\ 0.14 \\ 0.013$	0.90 0.50 0.10	-0.31 -0.57 -1.27	E E E	ls ls ls
2	'	² P°- ² S	434.82	873	230853	6	2	32	0.030	0.26	-0.74	Е	1
		• •	435.649 433.176	1310 0	230853 230853	4 2	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$	21 11	0.030 0.031	0.17 0.087	$-0.93 \\ -1.21$	E E	ls ls
3		²P° _ ²P	401.66	873	249839	6	6	100	0.25	2.0	0.18	Е	1
3		•	[401.93] [401.14] [403.26] [399.82]	1310 0 1310 0	250112 249292 249292 250112	4 2 4 2	4 2 2 4	86 69 34 17	0.21 0.17 0.041 0.084	1.1 0.44 0.22 0.22	$ \begin{array}{r} -0.08 \\ -0.48 \\ -0.78 \\ -0.78 \end{array} $	E E E E	ls ls ls ls
	$2s2p^2-2p^3$	4P-4S°	453.26	[101204]	[321829]	12	4	82	0.084	1.5	0.00	E	1
4	2s2p2p	1 5	454.072 452.745 451.843	[101600] [100954] [100513]	[321829] [321829]	6 4	4 4 4	41 27 14	0.084 0.084 0.084	0.75 0.50 0.25	$ \begin{array}{r} -0.30 \\ -0.47 \\ -0.77 \end{array} $	E E E	ls ls ls

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	gi	g_k	$A_{ki}(10^8 m sec^{-1})$	f_{ik}	S(at.u.)	$\log gf$	Accu- racy	Source
		² D – ² P°	440.47	179004	406032	10	6	25	0.044	0.64	-0.36	E	1
			440.404 440.60 [440.46]	178992 179021 179021	406056 405984 406056	6 4 4	4 2 4	23 25 25	0.044 0.036 0.0074	0.38 0.21 0.043	-0.58 -0.84 -1.53	E E E	ls ls ls
6		² S - ² P°	570.84	230853	406032	2	6	12	0.17	0.64	- 0.47	E	1
		1	[570.77] [571.00]	230853 230853	406056 405984	2 2	4 2	12 12	0.11 0.056	0.43 0.21	- 0.64 - 0.95	E E	ls ls
7		² P – ² P°	640.23	249839	406032	6	6	19	0.12	1.5	-0.15	E	1
			[641.26] [638.19] [641.55] [637.90]	250112 249292 250112 249292	406056 405984 405984 406056	4 2 4 2	4 2 2 4	16 13 6.5 3.3	0.098 0.079 0.020 0.040	0.83 0.33 0.17 0.17	$ \begin{array}{r} -0.41 \\ -0.80 \\ -1.09 \\ -1.09 \end{array} $	E E E	ls ls ls ls
8	2p-(1S)3s	² P°− ² S	138.55	873	722610	6	2	300	0.029	0.078	- 0.77	E	1
		!	[138.64] [138.39]	1310 0	$722610 \\ 722610$	$\begin{vmatrix} 4 \\ 2 \end{vmatrix}$	$\frac{2}{2}$	200 100	0.028 0.029	0.052 0.026	- 0.94 - 1.24	E E	ls ls
9	$2p - (^{1}S)3d$	² P°− ² D	122.62	873	816405	6	10	1400	0.54	1.3	0.51	D	1
			[122.69] [122.49] [122.69]	1310 0 1310	816405 816405 816405	4 2 4	6 4 4	1400 1200 240	0.48 0.53 0.054	0.78 0.43 0.087	$0.29 \\ 0.03 \\ -0.67$	D D D	ls ls ls
10	$3s - (^{1}S)3p$	² S – ² P°	2046.9	722610	771449	2	6	2.72	0.51	6.9	0.010	C	1
		<u>.</u>	2042.38 2055.93	722610 722610	771557 771234	2 2	4 2	2.73 2.68	0.342 0.170	4.60 2.30	- 0.165 - 0.469	C	ls ls
11	$3p - (^{1}S)3d$	² P°−2D	2223.7	771449	816405	6	10	1.82	0.225	9.9	0.131	С	1
			[2229.1] [2213.1] [2229.1]	771557 771234 771557	816405 816405 816405	4 2 4	6 4 4	1.80 1.54 0.302	$ \begin{vmatrix} 0.201 \\ 0.226 \\ 0.0225 \end{vmatrix} $	5.9 3.30 0.66	-0.095 -0.344 -1.046	C C C	ls ls ls

Naqvi's calculation [1] of the one possible transition in the ground state configuration 2p is the only available source. The line strength should be quite accurate, since it does not sensitively depend on the choice of the interaction parameters.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Ne VI. Forbidden Transitions

No.	Transition Array	Multiplet	λ(Å)	$E_i({ m cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g_i	gk	Type of Transition	$A_{ki}(\sec^{-1})$	S(at.u.)	Accu- racy	Source
1	2p-2p	2P°-2P°	$[76.32 \times 10^3]$	0	1310	2	4	m	0.0202	1.33	В	1

Ground State

 $1s^22s^2$ 1S_0

Ionization Potential

 $207.21 \text{ eV} = 1671700 \text{ cm}^{-1}$

Allowed Transitions

The values are taken from the calculations of Veselov [1] who has used relatively simple wave functions and neglected the effects of configuration interaction entirely. Hence, large uncertainties are to be expected.

Reference

[1] Veselov, M. G., Zhur. Eksptl. i Teoret. Fiz. 19, 959-964 (1949).

Ne VII. Allowed Transitions

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(10^8 { m sec}^{-1})$	f_{ik}	S(at.u.)	log gf	Accu- racy	Source
1	$2s^2 - 2s(^2S)2p$	¹ S - ¹ P°	465.221	0	214952	1	3	58	0.57	0.87	- 0.25	E	1
2	$2s2p - 2p^2$	$^3\mathrm{P}^{\circ} - ^3\mathrm{P}$	561.59	[112208]	[290273]	9	9	33	0.16	2.6	0.14	E	1
			561.728 561.378 564.529 562.992 558.61 559.947	[112700] [111706] [112700] [111706] [111706] [111251]	[290722] [289839] [289839] [289328] [290722] [289839]	5 3 5 3 1	5 3 1 5 3	25 8.2 14 32 8.6 11	0.12 0.039 0.040 0.051 0.067 0.15	1.1 0.21 0.37 0.28 0.37 0.28	$\begin{array}{c} -0.23 \\ -0.94 \\ -0.70 \\ -0.81 \\ -0.70 \\ -0.81 \end{array}$	E E E E E	ls ls ls ls ls
3	2s3s —	³ S− ³ P°	1987.0	[978300]	[1028626]	3	9	2.3	0.41	8.1	0.09	D	ca
	2s(² S)3p		1981.97 1992.06 1997.35	[978300]	[1028755] [1028499] [1028367]	3 3	5 3 1	2.4 2.3 2.3	0.23 0.14 0.046	4.5 2.7 0.90	$ \begin{array}{r} -0.16 \\ -0.38 \\ -0.86 \end{array} $	D D D	ls ls ls

Forbidden Transitions

Naqvi's calculations [1] are the only available source. The results for the ${}^3P^{\circ}-{}^3P^{\circ}$ transitions are essentially independent of the choice of the interaction parameters. For the ${}^3P^{\circ}-{}^1P^{\circ}$ transitions, Naqvi uses empirical term intervals, i.e., the effects of configuration interaction should be partially included.

Reference

[1] Naqvi, A. M., Thesis Harvard (1951).

Ne VII. Forbidden Transitions

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\text{cm}^{-1})$	g_i	g_k	Type of Transition	$A_{ki}({ m sec}^{-1})$	S(at.u.)	Accu- racy	Source
1	2s2p — 2s(² S)2p	3 h ° = 3 h °	$[21.97 \times 10^4]$ $[10.06 \times 10^4]$	111251 111706	111706 112700	1 3	3 5	m m	0.00170 0.0132	2.00 2.50	B B	1 1
2		³ P°−¹P°	[964.31] [968.56] [977.98]	111251 111706 112700	214952 214952 214952	1 3 5	3 3 3	m m m	0.91 100 1.10	9.1×10^{-5} 0.0101 1.14×10^{-4}	C C C	1 1 1

Ne VIII.

Ground State

 $1s^2 2s \, ^2S_{1/2}$

Ionization Potential

 $239 \text{ eV} = 1928000 \text{ cm}^{-1}$ (?)

Allowed Transitions

The extensive self-consistent field calculations including exchange by Weiss [1] are used for this ion. Values have been calculated in both the dipole length and velocity approximations and agree quite well. The dipole length values are chosen. For the 2s-2p transition an experimental result from the lifetime measurement of Berkner et al. [2] is available and agrees very well with Weiss' value.

- [1] Weiss, A. W., Astrophys. J. 138, 1262-1276 (1963).
- [2] Berkner, K. H., Cooper, W. L., Kaplan, S. N., and Pyle, R. V., Phys. Letters 16, 35 (1965).

Ne VIII. Allowed Transitions

No.	Transition Array	Multi- plet	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	g_i	gk	$A_{ki}(10^8 m sec^{-1})$	f_{ik}	S(at.u.)	$\log gf$	Accu- racy	Source
1	2s-2p	2S – 2P°	773.69	.0	129251	2	6	5.64	0.152	0.774	-0.517	B+	1, 2
			770.402 780.324	0	129801 128152	$\frac{2}{2}$	4 2	5.72 5.50	0.102 0.0502	0.516 0.258	-0.692 -0.998	B+ B+	ls ls
2	2s-3p	$^{2}S - ^{2}P^{\circ}$	[88.134]	0	[1134634]	2	6	853	0.298	0.173	-0.225	В	1
3	2p-3s	$^{2}P^{\circ} - ^{2}S$	[103.05]	129251	[1099681]	6	2	462	0.0245	0.0499	-0.833	В	1
4	2p-3d	$^{2}P^{\circ}-^{2}D$	[98.308]	129251	[1146459]	6	10	2760	0.667	1.30	0.602	В	1
5	3s-3p	$^{2}S-^{2}P^{o}$	[2860.1]	[1099681]	[1134634]	2	6	0.696	0.256	4.82	- 0.291	В	1
6	3p-3d	$^{2}P^{\circ} - ^{2}D$	[8454.3]	[1134634]	[1146459]	6	10	0.0214	0.0382	6.38	-0.640	В	1

Ground State

Ionization Potential

 $1195 \text{ eV} = 9641000 \text{ cm}^{-1}$ (?)

Allowed Transitions

The results of extensive non-relativistic variational calculations by Weiss [1] are chosen. Values have been calculated in both the dipole length and dipole velocity approximations and agree to within 1%, except for the 3p 1 P o -3d 1 D transition where agreement is not as good. The average of the two approximations is adopted [1].

Reference

[1] Weiss, A. W., private communication (1964).

Ne IX. Allowed Transitions

No.	Transition Array	Multi- plet	$\lambda(\mathring{A})$	$E_i(\mathrm{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gi	gk	$A_{ki}(10^8\mathrm{sec^{-1}})$	f_{ik}	S(at.u.)	$\log gf$	Accu- racy	Source
1	$1s^2 - 1s2p$	¹ S - ¹ P°	[13.460]	0	[7429270]	1	3	8.87×10 ⁴	0.723	0.0320	-0.141	A	1
2	$1s^2 - 1s3p$	¹ S_ ¹ P°	[11.558]	0	[8652380]	1	3	2.48×10^4	0.149	0.00567	- 0.827	A	1
3	1s2s - 1s2p	¹ S - ¹ P°	[1901.5]	[7376680]	[7429270]	1	3	0.329	0.0535	0.335	-1.272	A	1
4	1s2s — 1s3p	¹ S - ¹ P°	[78.388]	[7376680]	[8652380]	1	3	1400	0.386	0.0996	-0.413	A	1
5	1s2p-1s3d	¹P°_ ¹D	[82.010]	[7429270]	[8648630]	3	5	4180	0.703	0.569	0.324	A	1
6	$1s3d-\ 1s3p$	¹ D- ¹ P°	[26660]?	[8648630]	[8652380]	5	3	9.99×10^{-4}	0.00639	2.80	-1.496	C+] 1
7	1s2s — 1s2p	$^{3}S - ^{3}P^{\circ}$	[1297.5]	[7294740]	[7371810]	3	9	0.980	0.0742	0.951	- 0.653	A	1
8	1s2s — 1s3p	$^{3}S - ^{3}P^{\circ}$	[74.527]	[7294740]	[8636540]	3	9	1460	0.365	0.269	0.039	A	1
9	1s2p - 1s3d	3P°-3D	[78.356]	[7371810]	[8648030]	9	15	4380	0.672	1.56	0.782	A	1
10	1s3p-1s3d	³ P°- ³ D	[8700.8]	[8636540]	[8648030]	9	15	0.0155	0.0294	7.58	-0.577	A	1

List of Recent Additional Material

(New material which would have been employed if received before cut-off date)

Spectrum	Keferences	Spectrum	References
He I	D, H, K	N II N III	L C, L
Liı	A, B	N IV N v	I B, E
Ве I Ве II	I B	Оп	G, J F
В I В II В III	C, L L B	O III O IV O V O VI	F C I B, E
C 1 C 11	L C	Fv	C
C III C IV N I	I B, E C, J, L	Ne I Ne II Ne VI	D F C

References and Comments

- A. Anderson, E. M., and Zilitis, V. A., Optics and Spectroscopy (U.S.S.R.) 16, 211-214 (1963).
- Semi-empirical calculations. Extensive tabulations, in fair agreement with our adopted values except for some of the high-lying transitions, especially those of the resonance series where these values are as much as 50% lower. B. Flannery, M. R., and Stewart, A. L., Monthly Notices Roy. Astron. Soc. 126, 387-392 (1963).
- Li I, Be II, B III, C IV, N V, O VI. Variational calculations. Good agreement with tabulated values, usually within 10-25%, except for cases where cancellation occurs. Some transitions are covered for which we have no values. Has been used for F VII. C. Nikitin, A. A., and Yakubovskii, O. A., Soviet Phys. -Doklady 9, 409-411 (1964).
- В I, С II, N III, O IV, F V, Ne VI.
 - Quantum mechanical calculations for forbidden transitions. Values are presented for quadrupole transitions in sp² configurations. We have no values for these transitions.
- D. Bennett, Jr., W. R., Kindlmann, P. J., and Mercer, G. N., Applied Optics Supplement 2 of Chemical Lasers pp. 34-57, (1965). He I, Ne I.
 - Lifetime determinations. The results for Ne agree within 25% with the adopted values and with the experimental results of Klose. The He results have been incorporated from an earlier paper which was referenced in this tabulation.
- E. Berkner, K., Cooper III, W. S., Kaplan, S. N., and Pyle, R. V., Physics Letters 16, 35-36 (1965).
 - Lifetime determinations using the accelerator technique. Agrees with Weiss' extensive calculations within the stated experimental and theoretical error limits. Has been used for F VII and Ne VIII.
- F. Froese, C., Phys. Rev. **137**, A1644–A1648 (1965). О п, О п, Ne п.
 - Self-consistent field calculations. Excellent agreement with the adopted values of Kelly, Mastrup, and Wiese, and the Coulomb approximation. Tends to be a few percent high in all cases except one and should be used in preference to the Coulomb approximation.
- G. Morse, F. A., and Kaufman, F., J. Chem. Phys. 42, 1785-1790 (1965). N 1, O 1.
- Absorption of resonance radiation. The lower limit given for N I is considerably lower than the values from the arc experiment of Labuhn and the lifetime determination of Lawrence and Savage (See ref. L), but is closer to the value of Prag, Fairchild, and Clark (See ref. J). For Ot the values are in excellent agreement with the tabulated values. H. Pendleton, W. R., and Hughes, R. H., Phys. Rev. 138, A683-A687 (1965).
- - Lifetime determination. Supports the theory quite well and usually agrees with other referenced lifetime experiments within the stated error limits.
- Pfennig, H., Steele, R., and Trefftz, E., J. Quant. Spectrosc. Radiat. Transfer 5, 335-357 (1965).
- Be I, C III, N IV, O V.
- Self-consistent field calculations. Good agreement with tabulated values of Weiss; fair agreement with Kelly and the Coulomb approximation, with better agreement for the visible lines where Kelly and the Coulomb approximation have been averaged. Large divergences may occur where cancellation is significant. Prag. A. B., Fairchild, C. E., and Clark, K. C., Phys. Rev. 137, A1358-A1363 (1965).
- - Absorption of resonance radiation. For NI, disagrees by as much as a factor of 3-4 (low) with the adopted values (arc experiment by Labuhn) and with the lifetime experiment of Lawrence and Savage (See ref. L). Agrees well for O I but this is to be expected because of the choice of "best" values.
- K. Green, L. C., Kolchin, E. K., and Johnson, N. C., Submitted for publication in the Transactions of the International Astronomical Union Symposium, #26 (1965). He t.
 - Extensive variational calculations. Excellent agreement, within the assigned error limits, except for 11S-7, 81P. where the disagreement is 10-15% low. These new values should be used for 1'S-7, 8'P.
- L. Lawrence, G. M., and Savage, B. D., (To be published in Phys. Rev.)
- В і, іі, С і, N і, іі, ііі.
 - Lifetime experiment using the phase shift method. Supports the adopted results of Weiss and Bolotin and the arc experiments of Boldt and Labuhn. The lifetimes tend to be somewhat longer than the adopted values.