Atomic Energy Levels—The Rare-Earth Elements

The Spectra of Lanthanum, Cerium, Praseodymium, Neodymium, Promethium, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium, and Lutetium

W.C. Martin, Romuald Zalubas, and Lucy Hagan

Institute for Basic Standards National Bureau of Standards Washington, D.C. 20234

U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary

Dr. Sidney Harman, Under Secretary Jordan J. Baruch, Assistant Secretary for Science and Technology

NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director

Issued April 1978

Library of Congress Cataloging in Publication Data

Martin, William Clyde, 1929-Atomic energy levels—the rare-earth elements.

(Nat. stand. ref. data ser.; NSRDS-NBS 60)
"National Standard Reference Data System."
Supt. of Docs. no.: C13.48:60
1. Earths, Rare—Spectra—Tables. 2. Atomic spectra—Tables, etc.
3. Energy levels (Quantum mechanics)—Tables, etc. 1. Zalubas, Romuald, joint author. II. Hagan, Lucy, joint author. III. Title. IV. Series: United States. National Bureau of Standards. National standard reference data series; NSRDS-NBS 60.
QC100.U573 no. 60 [QC462.R2] 602'.1s [539.7'2] 77-12195

NSRDS-NBS 60

Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 60, 422 pages (April 1978) CODEN: NSRDAP

©1978 by the Secretary of Commerce on Behalf of the United States Government

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1978

Foreword

The National Standard Reference Data System provides access to the quantitative data of physical science, critically evaluated and compiled for convenience and readily accessible through a variety of distribution channels. The System was established in 1963 by action of the President's Office of Science and Technology and the Federal Council for Science and Technology, and responsibility to administer it was assigned to the National Bureau of Standards.

NSRDS receives advice and planning assistance from a Review Committee of the National Research Council of the National Academy of Sciences-National Academy of Engineering. A number of Advisory Panels, each concerned with a single technical area, meet regularly to examine major portions of the program, assign relative priorities, and identify specific key problems in need of further attention. For selected specific topics, the Advisory Panels sponsor subpanels which make detailed studies of users' needs, the present state of knowledge, and existing data resources as a basis for recommending one or more data compilation activities. This assembly of advisory services contributes greatly to the guidance of NSRDS activities.

The System now includes a complex of data centers and other activities in academic institutions and other laboratories. Components of the NSRDS produce compilations of critically evaluated data, reviews of the state of quantitative knowledge in specialized areas, and computations of useful functions derived from standard reference data. The centers and projects also establish criteria for evaluation and compilation of data and recommend improvements in experimental techniques. They are normally associated with research in the relevant field.

The technical scope of NSRDS is indicated by the categories of projects active or being planned: nuclear properties, atomic and molecular properties, solid state properties, thermodynamic and transport properties, chemical kinetics, and colloid and surface properties.

Reliable data on the properties of matter and materials are a major foundation of scientific and technical progress. Such important activities as basic scientific research, industrial quality control, development of new materials for building and other technologies, measuring and correcting environmental pollution depend on quality reference data. In NSRDS, the Bureau's responsibility to support American science, industry, and commerce is vitally fulfilled.

ERNEST AMBLER, Director

f. Ambler.

Preface

The program on $Atomic\ Energy\ Levels\ (AEL)$ initiated at the National Bureau of Standards in 1946 called for complete coverage of the Periodic Table. Three volumes prepared by Charlotte E. Moore and originally published as NBS Circular 467 were reprinted as NSRDS-NBS 35 in 1971. These volumes cover the elements Hydrogen through Actinium (Z=1-89) except for the rare earths, Cerium through Lutetium (Z=58-71). The present compilation covering Lanthanum through Lutetium (Z=57-71) has been prepared by W. C. Martin, Romuald Zalubas, and Lucy Hagan as part of a continuing program on the evaluation and compilation of atomic energy levels, spectral wavelengths and classifications. This work is being carried out in the Atomic Energy Levels Data Center of the Spectroscopy Section, Optical Physics Division, Institute for Basic Standards, and in the Office of Standard Reference Data. It represents one of the important activities of the National Standard Reference Data System.

A similar compilation for the actinide elements is planned. The preparation of a single volume covering both the rare-earth and the actinide elements, i.e., the originally planned Volume IV of AEL, would have unnecessarily delayed publication of the present tables. The somewhat different title of the present publication and the assignment of a separate NSRDS-NBS series number are meant to recognize this change, as well as to alert readers to certain differences in the format of the tables from that of the previous AEL compilations.

The three AEL volumes now available as NSRDS-NBS 35 were originally issued during the period 1949–58, and the tables for many of the included spectra are now in need of revision. A part of this need is being met by new compilations for selected spectra. Moore's Selected Tables of Atomic Spectra [NSRDS-NBS 3, issued in sections] include H I, D, T [Sec. 6, 1972]; C I-VI [Sec. 3, 1970]; N I-III [Sec. 5, 1975]; N IV-VII [Sec. 4, 1971]; O I [Sec. 7, 1976]; Si I [Sec. 2, 1967]; and Si II-IV [Sec. 1, 1965]. A multiplet table as well as a table of energy levels is given for each spectrum in this series. Recent compilations of energy levels carried out in the Spectroscopy Section include ⁴He I [W. C. Martin, J. Phys. Chem. Ref. Data 2, 257 (1973)], the 26 spectra of Fe, Fe I-XXVI [J. Reader and J. Sugar, J. Phys. Chem. Ref. Data 4, 353 (1975)], the 24 spectra of Cr, Cr I-XXIV [J. Sugar and C. H. Corliss, J. Phys. Chem. Ref. Data 6, 317 (1977)], and the 25 spectra of Mn, Mn I-XXV [C. H. Corliss and J. Sugar, J. Phys. Chem. Ref. Data 6, 1253 (1977)].

Many users need more extensive current data on atomic energy levels and spectra than are included in the critical compilations now available or planned for the near future. The NBS program thus includes publication of bibliographies covering the more recent literature in this area, with the references classified according to the types of data. The most recent such publication is the *Bibliography on Atomic Energy Levels and Spectra*, *July 1971 through June 1975*, by Lucy Hagan [NBS Spec. Publ. 363, Suppl. 1, 1977]. Earlier periods are covered in the bibliographies NBS Spec. Publ. 363 [L. Hagan and W. C. Martin, 1972] and NBS Spec. Publ. 306, Sections 1–4 [C. E. Moore, 1968–69].

The AEL program has from the beginning received the help and cooperation of spectroscopists in many laboratories who observe and analyze atomic spectra. I join the authors of the present compilation in expressing sincere gratitude for this assistance.

D. R. Lide, Jr., Chief Office of Standard Reference Data

Contents

oreword	l
reface	
	oduction
1.1.	Scope and Format of the Tables
1.2.	Important Conventions
	a. Naming of Levels
	b. Incomplete Terms
	pling Schemes, Allowed Terms, Percentage Composition,
	man Effect
2.1.	Coupling Types, Order of Coupling of Electrons, Ancestral Terms
	a. LS Coupling (Russell-Saunders Coupling)
	b. $J_1 j$ or $J_1 J_2$ Coupling
	c. jj Coupling of Equivalent Electrons
	d. $J_1 l$ or $J_1 L_2$ Coupling
	e. LS_1 Coupling
2.2	f. Coupling Schemes and Term Symbols
2.2.	Allowed Terms or Levels for Equivalent Electrons
	a. LS Coupling (Table 1)
2.2	b. jj Coupling (Table 2)
2.3.	Percentage Compositions of Levels
	a. Explanation of Eigenvector Percentages
2.4	b. Need for Leading Percentages, and a Caveat
2.4.	Zeeman Effect (Tables 3-6)
Mat	erial Preceding Each Table—Summary Data, Comments, References
	lanation of the Tables (by Column Heading)
4.1.	Configuration
	a. Levels Tabulated With Leading Percentages
	b. Levels Tabulated Without Leading Percentages
	c. Limits
4.2.	Term
	a. Levels Tabulated With Leading Percentages: Naming of Levels,
	Grouping of Levels Into Terms, Other Conventions
	b. Levels Tabulated Without Leading Percentages
4.3.	Total Electronic Angular-Momentum Quantum Number J
4.4.	Level
4.5.	Experimental g Value
4.6.	Leading Percentages
	a. First Percentage
	b. Second Percentage From Same Eigenvector as First
	Percentage
	c. Second Percentage Is for Leading Component of Eigenvector
NT .	in Alternate Coupling Scheme
	e on Tables of Wavelengths for Rare-Earth Spectra
	e of Analyses of Rare-Earth Spectra
	nowledgments
	erences
	es for the Introduction
Tabl	
Tabl	e 2. Allowed J Values for l_i^N Equivalent Electrons (jj Coupling)
Tabl	e 3. Corrected Landé g Values for Terms of Odd Multiplicity
Tabl Tabl	e 3. Corrected Landé g Values for Terms of Odd Multiplicity e 4. Corrected Landé g Values for Terms of Even Multiplicity
Tabl	e 3. Corrected Landé g Values for Terms of Odd Multiplicity e 4. Corrected Landé g Values for Terms of Even Multiplicity e 5. Landé g Values for Terms of Odd Multiplicity in Order of
Tabl Tabl	e 3. Corrected Landé g Values for Terms of Odd Multiplicity e 4. Corrected Landé g Values for Terms of Even Multiplicity e 5. Landé g Values for Terms of Odd Multiplicity in Order of Increasing g
Tabl Tabl Tabl	e 3. Corrected Landé g Values for Terms of Odd Multiplicity e 4. Corrected Landé g Values for Terms of Even Multiplicity e 5. Landé g Values for Terms of Odd Multiplicity in Order of Increasing g

Index to Tables of Energy Levels

\boldsymbol{Z}	Element	Spectrui	n*	Page
57	Lanthanum			27
		La 11		36
		La III		41
		La IV		43
		La v		45
58	Cerium	Се і		47
		Се п		70
		Ce 111		83
		Ce IV		91
		Ce v		93
		Ce vi		94
59	Praseodymium	Pr 1		95
00	Trascodymium	Pr II		102
		Pr III		102
		Pr iv		119
		Pr v		123
		rr v		123
60	Neodymium	2.00 1		124
		Nd 11		137
		Nd III		148
		[Nd IV]		149
61	Promethium	Pm 1		151
		Pm 11		156
		(Pm III)		160
		[Pm IV]		161
62	Samarium	Sm 1		162
02	Samarum	Sm 1		174
		Sm III		180
	•			182
		[Sm IV]		
		Sm xxx	V	184
63	Europium	Eu 1		185
		Eu II		199
		Eu III		204
		[Eu IV]		208
64	Gadolinium	Gd 1		209
		Gd 11		228
		Gd III		
		[Gd IV]		
		Gd xxx		
C.F	Touking	ጥኤ ፣		239
65	Terbium	Tb I		~=-
		Tb II		
		Th III,		
		Tb IV		259

Index to Tables of Energy Levels—Continued

\boldsymbol{Z}	Element	Spectrum*	Page
66	Dysprosium	Dy I Dy II (Dy III) [Dy IV] Dy XXXIX	279 292 293
67	Holmium	Ho II	305 308
68	Erbium	Er I Er II Er III [Er IV]	332
69	Thulium	Tm I Tm II Tm III [Tm IV]	358
70	Ytterbium	Yb IIYb III Yb IV	382
71	Lutetium	Lu I Lu II Lu III Lu IV Lu V	404 407 408

^{*}Spectral symbols enclosed in brackets indicate data obtained from ions in crystals or solutions. No analyses are available for the spectra in parentheses.

Atomic Energy Levels—The Rare-Earth Elements

The Spectra of Lanthanum, Cerium, Praseodymium, Neodymium, Promethium, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium, and Lutetium

W. C. Martin, Romuald Zalubas, and Lucy Hagan

Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234

Energy level data are given for 66 atoms and atomic ions of the 15 elements lanthanum (Z=57) through lutetium (Z=71). These data have been critically compiled from published and unpublished material. Only experimentally determined energy levels are included, the energies being restricted to excitations of outer-shell electrons and to inner-shell excitations up to the soft x-ray range. The levels were taken from analyses of the spectra of atomic gases wherever possible; however, the levels for several of the triply ionized rare earths are from analyses of the spectra of the ions in crystals or solutions. In addition to the level value (usually in units of cm⁻¹) and the parity, the J value, configuration and term assignments, and the experimental g value are listed wherever available. Leading percentages from the calculated eigenvector are also tabulated for each level if available. The levels are grouped into spectroscopic terms of appropriate coupling schemes where such groups appear meaningful. Ionization potentials are tabulated for most of the spectra. Complete references for the tabulated data are given for each spectrum.

Key words: Atomic energy levels; atomic spectroscopy; electron configurations; ionization potentials; lanthanides; rare earths; spectra; Zeeman effect.

1. Introduction

A program on the compilation of atomic energy levels was begun at the National Bureau of Standards in 1946 by Charlotte E. Moore under the direction of William F. Meggers [Moore, 1971].1 The appearance of the third volume of Moore's Atomic Energy Levels (AEL) in 1958 completed the coverage of the elements through Ac (Z=89) except for the rare earths Ce through Lu (Z=58-71). A planned Volume IV of AEL was to include the rare earths and the actinide elements; publication of such a volume was not feasible during the 1960's, however, because many of the needed spectra had not been analyzed sufficiently, if at all. Atomic spectroscopists have greatly increased the available data for these elements during the past 15 years or so, and active work on the present compilation was begun in 1969. As the compilation progressed we decided to publish the tables for the rare earths separately. A similar compilation for the actinide elements is planned.

1.1. Scope and Format of the Tables

The compiled data pertain to the energy levels of the atoms and ions of the 15 elements La (Z=57) through Lu (Z=71). Although La I, La II, and La III were included in AEL Vol. III, the new and revised data obtained for La I through La V since 1958 warranted new compilations. Only experimentally determined values of the energy levels are tabulated, and the energies are restricted to excitations of outer-shell electrons and to inner-shell excitations up to the

soft x-ray range. All but a relatively few of the levels have been obtained from analyses of optical spectra. The sources for most of these spectra were atomic gases; ideally, the levels are evaluated for free, unperturbed atoms and ions.

Reliable analyses were not available, however, for the (free-ion) spectra of triply ionized Nd, Pm, Sm, Eu, Gd, Dy, Ho, Er, and Tm. In each case we have therefore given a few levels as derived from the spectra of the ions in crystals or solutions. These levels are enclosed in brackets to indicate that the derived positions may differ from corresponding values for the unperturbed ions by several percent. No data of this type are included for species other than triply ionized.

An explanation of the data tabulated with the energy levels is given in section 4, arranged by column headings. The format of the AEL tables, which was based to a considerable extent on the earlier Atomic Energy States [Bacher and Goudsmit, 1932], is now probably the most familiar scheme for the presentation of energy level data. We have retained much of this format while adapting and extending it to give more detailed theoretical descriptions of levels for which such information is available. The main formal changes are the addition of the "Leading Percentages" (referring to the theoretical composition of the levels) and the deletion of the "Interval" column. Changes in the arrangement within some of the other columns are noted in section 4.

We originally prepared a table for each spectrum with the levels of the two parities intermixed. In a number of cases, however, the complication added by intermixing two separately complex level structures appeared to outweigh

Names and dates in brackets indicate references at the end of this introduction.

any advantages of the arrangement. In such cases we give the levels in separate lists for the two parities, a practice now followed in most publications on complex spectra. (A deviation from the usual AEL arrangement of intermixed parities was in fact made for Hf I; see AEL Vol. III [Moore, 1971].)

The notations for several different coupling schemes and a convention bearing on the order of coupling of the electrons are used without comment in the tables. Explanations of the notations and of some other pertinent theoretical points are given in section 2.

It should be emphasized that the familiarity of the format can be misleading unless certain new conventions are understood. We recommend the reading of section 4 of the Introduction (especially 4.1, 4.2, and 4.6) by all who plan to use this compilation in more than a casual way. The following points are based on the more detailed explanations given in sections 2 and 4.

1.2. Important Conventions

a. Naming of Levels

We have retained the practice of listing the levels according to spectroscopic terms, except where such groupings of levels would be meaningless as indications of atomic structure. In a note on coupling in rare-earth spectra, G. Racah wrote "... in many configurations of the rare earths there are interactions which are of the same order of magnitude, and it will be impossible to define the coupling scheme. This does not mean that it will be impossible to calculate the positions of the levels and even the exact compositions of the states; this only means that the composition will be such a complicated combination of different states, that it will be impossible to correlate it with a meaningful name or symbol" [Racah, 1960]. To make the compilation easier to use, we have tried to handle the question of term names in a reasonably consistent manner for all spectra. The criteria we followed in deciding whether to retain (or in some cases to assign) names for levels are explained in section 4.2.

If a level is given with leading percentages and with a term symbol under the "Term" heading, the full set of symbols in the first two columns (plus the J value) constitutes a unique name in this compilation. This also holds for levels given without leading percentages, provided the appropriate ancestral terms are given with the configuration. In most cases we have not given shortened designations for the levels; this is emphasized because in the AEL tables each term or interpreted level has a unique short designation under the column heading "Desig."

Levels not listed with a term symbol in the second column (under "Term") have no symbolic names for the purposes of this compilation.² This should be noticed especially in connection with J_1j and J_1J_2 coupling, since the symbols in the first column alone constitute complete theoretical term

descriptions in these schemes—such a term is a suggested name, however, only if it is followed by a (J_1,j) or (J_1,J_2) term symbol in the second column.

In cases of strong configuration interaction, an attempt to correlate each eigenvector with even a particular configuration can be meaningless. The configuration listed in the first column does not necessarily represent a configuration assignment for the level; the configuration for the first percentage is normally given in the "Configuration" column regardless of the magnitude of this percentage.

b. Incomplete Terms

Predicted levels that have not been found are usually *not* indicated notationally in these tables. The only exceptions occur as levels of partially known terms (shown as term groups), and the levels of such terms are grouped only under certain conditions (sec. 4.2). Some conventions regarding incomplete terms can be noticed in an example from the $4f^6(^7F)5d$ subconfiguration of Eu III:

Term	J	Level
$^6\mathrm{G}$	3/2	
	5/2	49905.64
	9/2	
	11/2	51650.77
	13/2	52099.87

The blank spaces under "Level" for J=3/2 and 3/2 indicate that these levels have not been found in the analysis (a standard convention). It will be noticed, however, that no blank space or J value appears for a third level "missing" from this term (J=3/2). This omission signifies that none of the calculated eigenvectors is appropriate for the corresponding designation. By the omission we avoid the implication that a $4f^6(^7F)5d^6G_{7/2}$ level is missing from the Eu III analysis. The best candidate levels for this designation are known and may be found among the levels near the 6G term. (In this particular example, all of the calculated $4f^6(^7F)5d^6G_{7/2}$ composition is distributed among known levels, since all twelve J=3/2 levels for the interacting $4f^6(^7F)5d$ and $4f^6(^7F)6s$ subconfigurations are known.)

2. Coupling Schemes, Allowed Terms, Percentage Composition, Zeeman Effect

We assume that the reader is familiar with the basic vocabulary and standard notations used in discussing atomic structure and spectra.³ However, the notations required for the full description of some of the theoretical states used in this compilation are necessarily more complex than for simpler spectra, and an explanation of certain adopted conventions is needed. The following outline of the notational scheme (sec. 2.1 and 2.2) includes all the coupling

 $^{^{2}}$ A convenient method for designating unnamed levels is to give the numerical value with the J value as a subscript, and a superscript degree symbol for odd levels. It is usually sufficient to give the position to the nearest cm $^{-1}$, or simply truncated at the decimal point.

A pertinent summary is given in the introduction to Vol. I of AEL [Moore, 1971]. El'yashevich [1961] gives an extensive discussion and a number of useful tables relating to the theoretical properties of terms and levels of rare-earth configurations. In the case of words used differently by different authors (e.g., term, multiplet), we follow Condon and Shortley [1963, chaps. 7-9].

types that now appear to be needed for Atomic Energy Levels compilations.⁴ This section is also in part an introductory supplement to section 4, which gives a detailed explanation of the tables.

2.1. Coupling Types, Order of Coupling of Electrons, Ancestral Terms

In this section we give enough examples to make clear the meaning of the different coupling-scheme notations. Not all of the configurations in the examples have been identified experimentally, and some of the examples of a particular coupling scheme (given for heuristic purposes) may be physically inappropriate.

a. LS Coupling (Russell-Saunders Coupling)

Some examples of this familiar scheme are given below mainly to indicate a spacing convention bearing on the order of coupling of the electrons.

	Configuration	Term
1.	4f ⁷ (8S°)6s6p(3P°)	$^{10}\mathrm{P}$
2.	$4f^{7}(^{8}S^{\circ})6s6p^{2}(^{4}P)$	¹¹ P °
3.	$4f^{7}(^{8}\mathrm{S}^{\circ})5d^{2}(^{3}\mathrm{F})$	¹⁰ F°
4.	$4f^{10}(^{3}\text{K2})6s6p(^{1}\text{P}^{\circ})$	${}^3\mathrm{L}^{o}$
5.	$4f^{7}(^{8}S^{\circ})5d^{-}(^{7}D^{\circ})6p^{-}$	${}^8{ m F}$
6.	$4f$ $^{7}(^{8}\mathrm{S}^{\circ})5d$ $(^{9}\mathrm{D}^{\circ})6s$ $(^{8}\mathrm{D}^{\circ})7s$	$^9\mathrm{D}^{\circ}$
7.	$4f^{7}(^{8}S^{\circ})5d^{-}(^{9}D^{\circ})6s6p(^{3}P^{\circ})$	$^{11}{ m F}$
8.	$4f^{7}(^{8}\mathrm{S}^{\circ})5d^{2}(^{1}\mathrm{G})$ ($^{8}\mathrm{G}^{\circ})6p$	${}^7{ m F}$
9.	$4f(^{2}F^{\circ}) \ 5d^{2}(^{1}G)6s \ (^{2}G)$	¹P°

In the first example, the seven 4f electrons couple to give an ⁸S° term, and the 6s and 6p electrons couple to form the ³P° term; the final ¹⁰P term is one of three possible terms obtained by coupling the ⁸S° and ³P° parent terms. The next three examples are quite similar to the first. The meaning of the index number 2 following the ³K symbol in the fourth example is explained in section 2.2.

The coupling in example five is appropriate if the interaction of the 5d and 4f electrons is sufficiently stronger than the 5d-6p interaction. The $^7D^\circ$ parent term results from coupling the 5d electron to the $^8S^\circ$ grandparent, and the 6p electron is then coupled to the $^7D^\circ$ parent to form the final 8F term. A space is inserted between the 5d electron and the $^7D^\circ$ parent to emphasize that the latter is formed by coupling to a term ($^8S^\circ$) listed to the left of the space. The sixth example illustrates a similar coupling order carried to a further stage; the $^8D^\circ$ parent term results from the coupling of the 6s electron to the $^9D^\circ$ grandparent.

The seventh example is similar to the first four cases, but in seven the first of the two terms that couple to form the final 11 F term, i.e., the 9 D° term, is itself formed by the coupling of the 5d electron to the 8 S° core term. The eighth example shows an 8 G° parent term formed by coupling the 8 S° and 1 G grandparent terms. A space is again used to emphasize that the following (8 G°) term is formed by the coupling of terms listed before the space.

A different order of coupling is indicated in the final example, the $5d^2$ ¹G term being coupled first to the external 6s electron instead of directly to the 4f core electron. The $4f(^2F^\circ)$ core term is isolated by a space to denote that it is coupled (to the $5d^2(^1G)6s$ ²G term) only after the other electrons have been coupled. The notation in this particular case (with a single 4f electron) could be simplified by writing the 4f electron after the ²G term to which it is coupled. It appears more important, however, to retain the convention of giving the core portion of the configuration first.

The notations in examples 1-4 are in the form recommended by Russell, Shenstone, and Turner [1929], and used in both the *Atomic Energy States* and *AEL* compilations. The convention introduced in the remaining examples allows different orders of coupling of the electrons to be indicated without the use of additional parentheses, brackets, etc.

b. J_1j or J_1J_2 Coupling

The symbol J_i refers to the total angular momentum of an electron or of a group of electrons; a small j indicates explicitly the angular momentum of one electron ($j=l\pm \frac{1}{2}$). In the configuration notations, J_i values are written as subscripts.

	Configuration	Term
1.	$4f(^2{ m F}^{\circ}_{5/2})6p_{3/2}$	(5/2, 3/2)
2.	$4f^2(^3\mathrm{H}_5)6p_{1/2}$	(5,½)°
3.	$4f^{11}(^{2}\mathrm{H}^{\circ}_{9/2}2)6s6p(^{3}\mathrm{P}^{\circ}_{1})$	(9/2,1)
4.	$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{-}(^{7}\mathrm{H}^{\circ}_{8})6s6p(^{3}\mathrm{P}^{\circ}_{0})$	(8,0)
5 .	$4f^{12}(^{3}\mathrm{H_{6}}) \ 5d(^{2}\mathrm{D})6s6p(^{3}\mathrm{P^{o}}) \ (^{4}\mathrm{F_{3/2}^{o}})$	(6,3/2)°
6.	$5f^{4}(^{5}\mathrm{I}_{4})6d_{3/2} (4,\frac{3}{2})_{11/2} 7s7p(^{1}\mathrm{P_{1}^{o}})$	(11/2,1)°

These examples all have an f-electron core in LS coupling. The (J_1,j) and (J_1,J_2) term symbols are used throughout this compilation. The configuration notation $4f_{5/2}6p_{3/2}$ might well be used in the first example, but the notation shown emphasizes that the 4f electron belongs more to the atomic core. This notation is also preferred because of its similarity to the more complex examples that follow.

c. jj Coupling of Equivalent Electrons

This scheme has been used for calculations of some $5f^N$ actinide configurations, and is often used in relativistic ab initio calculations. Notations of the following types are consistent with those outlined above.

 $^{^4}$ Neither the jj coupling scheme for equivalent electrons (2.1.c, 2.2.b) nor the LS_1 coupling scheme (2.1.e) is used in this volume.

	Configuration	Term
1.	$6d_{5/2}6d_{3/2}$	(5/2,3/2)
2.	$6d^3_{5/2}$	
3.	$5frac{4}{7/2}5frac{2}{5/2}$	(₂ 4,4)
4.	$5f_{\ 7/2}^{\ 4}5f_{\ 5/2}^{\ 5}\ (8,$ % $_{2}$ $)_{21/2}^{\circ}\ 7p_{3/2}^{}$	$(^{2}\sqrt{2}, ^{3}\sqrt{2})$
5.	$5f_{7/2}^35f_{5/2}^3$ (%, %), $7s7p(^3P_2^\circ)$	(9.2)°

The configuration in the second example shows a general notation for equivalent electrons having the same j value.

The third example shows a more general case of jj coupling of equivalent electrons, with each of the two groups of electrons $(j_1=\frac{1}{2}, j_2=\frac{5}{2})$ in this case) having more than one allowed J value. The allowed J values for l_i^N equivalent-electron groups are given in table 2 through $j=\frac{\pi}{2}$. The $l_{7/2}^4$ group has two levels for each of the J values 2 and 4; these are distinguished by seniority numbers given as preceding subscripts to the J_i values. The (J_1, J_2) notation under "Term" follows the convention that J_1 arises from the group of electrons on the left, \boldsymbol{J}_{2} from the group on the right. In pure jj coupling, the levels of an entire subconfiguration such as $5f_{7/2}^4 5f_{5/2}^2$ are degenerate; thus the seven subconfigurations of 5f⁶, for example, are the real "terms" in this scheme. The listing of the (J_1, J_2) symbols under the "Term" heading is, however, a notational convenience implied by the fact that the final $(J_1, J_2)_J$ wavefunctions constitute the basis set in the jj scheme (see

The fourth and fifth examples are obvious extensions to configurations having external electrons, with a resultant J_2 coupled to the core J_1 to form a (J_1,J_2) term.

d. J_1l or J_1L_2 Coupling⁵

	Configuration	Term
1.	$4f(^2\mathrm{F}^{\circ}_{5/2})5g$	²[%]°
2.	$4f^{2}(^{3}\mathrm{H}_{_{4}})5g$	² [3]
3.	$4f^{13}(^{2}\mathrm{F}^{\circ}_{7/2})5d^{2}(^{1}\mathrm{D})$	¹[7⁄2]°
4.	$4f^{13}(^{2}\mathrm{F}^{\circ}_{5/2})5d6s(^{3}\mathrm{D})$	³[%]°

The first two terms result from coupling a parent-level J_1 to the orbital angular momentum of a 5g electron (l=4) to obtain a resultant K value enclosed in brackets. The spin of the external electron is then coupled with the K angular momentum to obtain a pair of J values, $J=K\pm \frac{1}{2}$ (for $K\neq 0$), not shown. The multiplicity (2) of such pair terms has usually been omitted from the term symbol; it is given explicitly in these tables, since other multiplicities occur in the more general J_1L_2 coupling (examples 3 and 4). The last two examples are straightforward extensions of J_1l coupling, with the L_2 and S_2 momenta of the "external" term (1 D and 3 D in examples 4 and 5, respectively) replacing the l and s momenta of a single external electron.

е.	LS_1	Coup	ling ⁶

	Configuration	Term
1.	$5p^5(^2\mathrm{P^\circ})5f$ G	² [½]
2.	$5p^3(^4{ m D}^\circ)5f^2(^3{ m F})~{ m H}^\circ$	³ [13/ ₂]°

In these hypothetical examples from the Xe I and I I isoelectronic sequences, the 5f electrons are mainly "outside" the $5p^N$ cores. The orbital angular momentum of the core is coupled with the orbital angular momentum of the external electron(s) to give the total orbital angular momentum L. The letter symbol for the final L value is listed with the configuration because this angular momentum is then coupled with the spin of the core (S_1) to obtain the resultant K angular momentum of the final term (in brackets). The multiplicity of the [K] term arises from the spin of the external electron(s).

f. Coupling Schemes and Term Symbols

The coupling schemes outlined above include those now most frequently used in calculations of atomic structure. Since the notations clearly distinguish the different schemes, it will not be necessary in our discussions of particular spectra to indicate the coupling schemes for the various configurations.

Each of the three types of term symbols gives the values of the two angular momenta that couple to give the total electronic angular momenta of the levels (indicated by the J values). For configurations of more than one unfilled subshell, the angular momenta involved in the final coupling derive from two groups of electrons (either group may consist of only one electron). These are often an inner group of coupled electrons and an outer group of coupled electrons, respectively. In any case the quantum numbers for the two groups have been distinguished by subscripts 1 and 2, so that quantum numbers represented by capital letters without subscripts are total quantum numbers for both groups. Thus the quantum numbers for the two vectors that couple to give the final J are related to the term symbol as follows:

Coupling Scheme	Quantum numbers for vectors that couple to give J	Term Symbol
LS	L,S	^{2S+1}L
$\boldsymbol{J_1J_2}$	J_1,J_2	(J_1,J_2)
$J_1L_2(\rightarrow K)$	K, S_2	$^{2S_2+1}[K]$
$LS_1(\rightarrow K)$	K, S_2	$^{2S_2+1}[K]$

The parity is indicated by appended degree symbols on odd parity terms.

Some authors refer to this scheme as JK coupling.

⁶Also referred to as LS_c (c for core) or LK coupling.

2.2. Allowed Terms or Levels for Equivalent Electrons

a. LS Coupling (Table 1)

Configurations with one or more groups of equivalent electrons are usually analyzed or calculated on the basis of LS coupling of the equivalent electrons. The allowed terms of a configuration consisting of two inequivalent groups are obtained by coupling the L and S vectors of the groups in all possible ways, and the procedure may be extended to any number of such groups. Thus the allowed terms for any configuration can be obtained from a table of the allowed terms for groups of equivalent electrons. Table 1 is sufficient for this purpose for any configuration in this compilation.

The configuration l^N has more than one allowed term of certain LS types if l>1 and 2< N<4l (d^3-d^7) and f^3-f^{11} in table 1). Each recurring term of a particular type for one of these configurations in table 1 is immediately followed by a sequential index number [Nielson and Koster, 1963]; these index numbers stand for additional theoretical quantum numbers that differentiate the recurring terms except for a few terms of f^5 and f^9 , f^6 and f^8 , and f^7 .

The first of the additional quantum numbers given with each term of the d^N and f^N configurations is the seniority number [Racah, 1942; 1943; 1949]. The seniority number of each d^N term is followed by the group label of the term according to the irreducible representations of the R_5 group. This label consists of two integers (w_1w_2) in parentheses, with $2 \ge w_1 \ge w_2 \ge 0$.

The theoretical classification of the terms of the f^N configurations is according to the scheme of Racah [1949]. The seniority number (not needed, but given for completeness) is followed by the group labels W (three integers $(w_1w_2w_3)$, with $2{\geqslant}w_1{\geqslant}w_2{\geqslant}w_3{\geqslant}0$) and U (two integers (u_1u_2) , with $4{\geqslant}u_1{+}u_2$ and $u_1{\geqslant}u_2{\geqslant}0$). These identify respectively an irreducible representation of the R_7 group and an irreducible representation of its subgroup G_2 . The few remaining duplicated terms are further labeled A or B to indicate Racah's separation of the two terms.

In the tables of energy levels, we use the index numbers assigned by Nielson and Koster to distinguish recurring terms. For the d^N configurations, this procedure has the disadvantage of substituting an arbitrary number for a quantum number (the seniority) that itself distinguishes the recurring terms in all cases. The actual value of the seniority number is rarely needed, however, and we prefer a consistent notation for the d^N and f^N configurations.

b. jj Coupling (Table 2)

The allowed J values for a group of N equivalent electrons having the same j value, l_j^N , are given in table 2 for $j=\frac{1}{2}$, $\frac{3}{2}$, $\frac{5}{2}$, and $\frac{7}{2}$ (sufficient for $l\leq 3$). The $l_{7/2}^4$ group has two allowed levels for each of the J values 2 and 4. The subscripts distinguishing the two levels in each case are the seniority numbers [de-Shalit and Talmi, 1963].

The allowed levels of the configuration nl^P may be obtained by dividing the electrons into sets of two groups

 $nl_{l+1/2}^Q nl_{l-1/2}^R$, Q+R=P. The possible sets run from Q=P-2l (or zero if P<2l) up to Q=P or Q=2l+2, whichever is smaller. The (degenerate) levels for a set with both Q and R nonzero have wavefunctions defined by the quantum numbers $(\alpha J_1, \beta J_2)_J$, with the J_1 the resultant angular momentum of the Q group, and J_2 from the R group. The symbols α and β represent any additional quantum numbers required to identify levels of the Q and R groups, respectively. The J values of the allowed levels for each $(\alpha J_1, \beta J_2)$ subset are obtained by combining J_1 and J_2 in the usual way.

2.3. Percentage Compositions of Levels

a. Explanation of Eigenvector Percentages

The analyses of many rare-earth spectra could be carried out beyond a very limited stage only with the aid of calculations of the energy level structures. The calculations of interest here yield the wavefunctions of the levels expressed as eigenvectors of a certain type: the eigenvector for each level is a linear combination of single-configuration single-term wavefunctions. (The configuration and quantum numbers designating a level of a theoretical spectroscopic term determine the angular dependence of a corresponding wavefunction.) Thus the wavefunction $|\alpha JM\rangle$ of the M sublevel (state) of a level labeled αJ is expressed in terms of basis states; for example, if basis states $|\gamma SLJM\rangle$ are formed by Russell-Saunders coupling,

$$|\alpha JM\rangle = \sum_{\gamma SL} |\gamma SLJM\rangle \langle \gamma SLJ|\alpha J\rangle.$$

The symbol γ represents all the quantum numbers needed in addition to SLJM to specify a basis state $|\gamma SLJM\rangle$ (configuration, parentage, group-theoretical label, etc.). The $\langle \gamma SLJ|\alpha J\rangle$ are expansion coefficients, and

$$\sum_{\gamma SL} |\langle \gamma SLJ | \alpha J \rangle|^2 = 1.$$

The squared expansion coefficients for the various γSL terms in the composition of the αJ level are conveniently expressed as percentages, whose sum is 100%. Thus the percentage contributed by the pure Russell-Saunders state $\gamma_a S_b L_c J$ is equal to $100 \cdot |\langle \gamma_a S_b L_c J | \alpha J \rangle|^2$. The notation for Russell-Saunders basis states has been used only for concreteness; the eigenvectors may be expressed in any coupling scheme, and the coupling schemes may be different for different configurations included in a single calculation (with configuration interaction).

Notations of the type (A+B+...), where A, B, ... represent configurations, will be used in referring to calculations that include the interactions of the configurations listed between the parentheses.

The largest percentage in the composition of a level is called the "purity" of the level in that coupling scheme. The coupling scheme (or combination of coupling schemes if more than one configuration is involved) that results in the

largest average purity for all the levels in a calculation is usually best for naming the levels. Calculations of very complex configurations are almost always carried out with Russell-Saunders basis states, however, and eigenvectors in this scheme are usually advantageous for most purposes. Transformations to other schemes of higher purity are often made as the last step of a calculation.

b. Need for Leading Percentages, and a Caveat

In the tables we give one or two leading percentages from the eigenvectors of the levels where these are available (see sec. 4). The percentages are important qualifiers of the configuration and term notations given with the levels. The need for some indication of low eigenvector purities seems evident. Even leading components too small to describe a level nevertheless serve to indicate the extent of term and/or configuration mixing in the eigenvectors. Percentages representing higher purities are quantitative confirmations of the term designations (but see below).

It should be emphasized that the eigenvectors are calculated quantities, dependent on particular theoretical models and subject to the inaccuracies of necessary approximations. Even within a particular approach such as, for example, the parametric treatment of Slater-Condon interactions, the results are affected by the inclusion or omission of explicit configuration interaction (and which configurations are included), effective interactions, explicitly term-dependent interactions, magnetic interactions in addition to the spin-orbit interaction, etc. The variation of the eigenvectors due to such effects can in some cases change the designations of particular levels. The calculations also vary considerably in the overall accuracy of the resulting eigenvectors, and thus in the accuracy prediction of the observed quantities-energy levels, g values, line strengths, etc. The reader is urged to consult the references given with the individual tables for details about calculations of interest.

2.4. Zeeman Effect (Tables 3-6)

The Zeeman effect for "weak" magnetic fields is of interest here because of the importance of Zeeman data in the analysis of complex spectra. In the weak-field effect, the J value of a level remains a good quantum number, although in general the level is split by the field into magnetic sublevels. (The field is weak only in the sense that the splittings must be small compared to the level separations. The nuclear magnetic moment is here assumed to be zero, or to have a negligible effect.) For our purpose, the g value of such a level may be defined by the expression for the energy shift of its magnetic sublevel having magnetic quantum number M (which has one of the 2J+1 values, -J, -J+1, ..., J-1, J):

$$\Delta E = gM\mu_0B.$$

The magnetic flux density is B and μ_0 is the Bohr magneton $(\mu_0 = e\hbar/2m_e$ in SI units). Since the g value is a gyromagnetic ratio (expressed as a pure number), the concept is

meaningless for J=0; levels having this J value are excluded from the discussion.

The wavenumber shift $\Delta \sigma$ corresponding to the energy shift $gM\mu_0B$ is given by

$$\Delta \sigma = qM(0.46686 \text{B cm}^{-1}/\text{T}).$$

Here the magnetic flux density B is expressed in units of the tesla (symbol T, equivalent to 10^4 gauss). The quantity in parentheses, the Lorentz unit, is of the order of $1~{\rm cm}^{-1}$ for typical flux densities used to obtain the optical Zeeman effect. Most of the g values tabulated here were derived by application of this formula (for each of the two combining levels) to measurements of optical Zeeman patterns. A single transverse-Zeeman-effect pattern (two polarizations, resolved components, and sufficiently complete) can yield the J value and the g value for each of the two levels involved [White, 1934; van den Bosch, 1957].

The highly accurate g values tabulated for some low levels in neutral atoms have been obtained by atomic beam magnetic-resonance techniques; the analysis of this type of data usually involves nuclear moments, and in general is more complex than the weak-field optical effect [Marrus and Nierenberg, 1962; Wybourne, 1965, chap. 5].

The g value of a level αJ belonging to a pure LS-coupling term is given by the formula:

$$g_{\alpha SLJ} = 1 + (g_s - 1) \frac{J(J+1) - L(L+1) + S(S+1)}{2 J(J+1)}.$$

The independence of this expression from any other quantum numbers (represented by α) such as the configuration, etc., is important. The expression is derived from vector coupling formulas by assuming a g value of unity for a pure orbital angular momentum (singlet level) and writing the g value for a pure electron spin (S level) as g_s [Wybourne, 1965, p. 98]. A value of 2 for g_s yields the Landé formula. If the anomalous magnetic moment of the electron is taken into account, the value of g_s is 2.002319. "Corrected" Landé g values obtained with this value for g_s are given according to Russell-Saunders terms in tables 3 and 4. Tables 5 and 6 give Landé g values in increasing order, the (three-place) values being from the uncorrected Landé formula.

The usefulness of Landé g values is enhanced by their relation to the g values in intermediate coupling. In the notation used in section 2.3 for the description of a level αJ in intermediate coupling, the corresponding g value is given by:

$$g_{\alpha J} = \sum_{\gamma SLJ} |\langle \gamma SLJ | \alpha J \rangle|^2,$$

where the summation is over the same set of quantum numbers as for the wavefunction. The $g_{\alpha J}$ value is thus a weighted average of the Landé g_{SLJ} values, the weighting factors being just the corresponding component percentages

 $^{^{7}}$ The g values in tables 3 and 4 are from an unpublished tabulation by Dr. Mark Fred of the Argonne National Laboratory. The arrangement here follows similar tables in Vol. I of AEL [Moore, 1971].

from the eigenvector of the αJ level in the LS-coupling representation. The range of g values of interest can be obtained from the Landé formula; the practical range (table 6) is from -2.000 to 4.667.

The Landé formula in general requires additional corrections if theoretical values accurate to three or more decimal places are needed. Relativistic and diamagnetic corrections have been calculated for the g values of a number of low levels of neutral rare-earth atoms [Judd and Lindgren, 1961; Conway and Wybourne, 1963]. If the correction for intermediate coupling is excepted, the absolute value of the sum of the corrections to the Landé formula appears to be less than 0.002 for most of the g values calculated by Judd and Lindgren.

The formulas for g values in two other coupling schemes used in this compilation are:

 J_1J_2 coupling

$$\begin{split} g_J = & \ g_{J_1} \frac{J(J+1) + J_1(J_1+1) - J_2(J_2+1)}{2 \, J(J+1)} \\ + & \ g_{J_2} \frac{J(J+1) + J_2(J_2+1) - J_1(J_1+1)}{2 \, J(J+1)} \end{split}$$

 J_1L_2 coupling

$$\begin{split} g_J = & \ 2(g_{J_1} - 1) \frac{K(K + 1) + J_1(J_1 + 1) - L_2(L_2 + 1)}{(2J + 1)(2K + 1)} \\ & + \ \frac{3J(J + 1) - K(K + 1) + S_2(S_2 + 1)}{2J(J + 1)} . \end{split}$$

The J_1L_2 -coupling formula is from Wybourne [1965, p. 100] with g_s set equal to 2. If $S_2=\frac{1}{2}$, so that $J=K\pm\frac{1}{2}$, the second term simplifies to (2J+1)/(2K+1), and the formula is equivalent to that given by Racah [1942a] for J_1l coupling.

3. Material Preceding Each Table—Summary Data, Comments, References

Some basic data are collected at the beginning of the table for each spectrum. The configuration and term designation of the ground-state level are given, with the electrons of inactive closed subshells listed in parentheses. The wavenumber corresponding to the principal ionization energy is given, as well as this energy expressed in electron-volts (eV). An equivalence of 1 eV to $8065.479\pm0.021~{\rm cm^{-1}}$ was used for the conversion [Cohen and Taylor, 1973]. The confidence levels of the quoted uncertainties for many of the ionization energies were not given in the original papers. Uncertainties quoted without comment are probably best taken as standard-deviation errors.

A summary list of the configurations to which experimental levels of each parity have been assigned is

provided if these are not readily apparent from the table itself.

We have given the sources of the data for each spectrum, along with any necessary explanation of the theoretical interpretation. We have also tried to include in the references enough of the earlier papers to indicate the main line of progress on the energy-level analysis of the spectrum. References on energy levels of ions in crystals or solutions are mainly restricted to sources of the compiled data in cases where no free-ion data were available.

The extent of the observations of the spectra on which the analyses are based is usually indicated (wavelength ranges, approximate numbers of lines). The main references for line lists are given, except that we usually do not cite any of the extensive collections of atomic wavelengths that may be useful for a particular spectrum. References for several such collected tables are listed in section 5. The references for various other types of data not included in the tables (hyperfine structure, isotope shifts, etc.) are very incomplete, and in many cases are omitted entirely.

The abbreviations of periodical titles generally follow the *Bibliographic Guide for Editors and Authors* [1974]. The symbols following the citations indicate types of data or other content according to the following code:

EL Energy Levels

Experimental energy differences, except Hfs or IS. Includes references that suggest the rejection of previously reported levels or confirm previously doubtful levels.

ND New Designations

New or changed designations or J values for known energy levels. This symbol is sometimes omitted, especially if the symbol EL occurs.

CL Classified Lines

Indicates the assignment of observed lines to transitions between energy levels that are specified by theoretical designations and/or by their positions in a known level scheme.

W Wavelengths (or wavenumbers)

New measurements, or wavelengths newly assigned to a particular spectrum. Also, measurements of other entities corresponding to energy differences between levels.

- ZE Zeeman Effect data or interpretation
- SE Stark Effect data or interpretation
- Hfs Hyperfine structure

Observations and theory.

IS Isotopic or Isomeric (Nuclear) Shifts

Observations and theory.

IP Ionization Potential (Ionization Energy)

^{*}A single-page tabulation of the ground levels and ionization potentials for the neutral through triply ionized lanthanide atoms is given in a compilation of such data for the lanthanides and actinides [Martin, Hagan, Reader, and Sugar, 1974]. A number of the ionization potentials are superseded by more accurate values in the present compilation.

SF Series Formulae

Evaluated series constants, including those appearing in polarization-theory formulae.

PT Parametric Theory

Calculations in which the energy parameters of Slater-Condon theory, or extensions thereof, were obtained by fitting the theory to experimental levels, g values, and/or other observed quantities.

AT Ab initio Theory

These references are mostly to Hartree-Fock type calculations of energy parameters or levels.

Additional references for these types of data may be found in the NBS bibliographies [Moore, 1969; Hagan and Martin, 1972; Hagan, 1977]. A recent article on rare-earth atoms and ions by Blaise, Camus, and Wyart [1976] includes some types of data omitted from the present compilation, especially hyperfine structures and isotope shifts.

The date of submission of the manuscript for each spectrum is given in brackets following the list of references.

4. Explanation of the Tables (By Column Heading)

For most of the headings, it is convenient to discuss separately the cases of levels tabulated with and without leading percentages.

4.1. Configuration

a. Levels Tabulated With Leading Percentages

The electron configuration for the largest component in the calculated eigenvector for the level is normally given in this column. (The configuration is for the largest component to within the estimated uncertainty of the calculation; see 4.2.) Any ancestor terms or J values appropriate to this component are normally included with the configuration, as in the examples in section 2.1.

A question mark after the configuration indicates that the assignment of the observed level to the calculated eigenvector is uncertain. This particular notation for an uncertain assignment usually implies that at least one other possible assignment of the level would give a different configuration or set of parent terms for the leading component.

The configuration is listed only once for a set of levels grouped into a term (see 4.2). All notations given with the configuration, including any question marks, apply to each level of such a term.

In cases of strong configuration interaction, more than half the percentage composition of a level may be due to components from a configuration different from that for the leading component; such an example makes it clear that the configuration given in the first column does not necessarily

represent a configuration assignment of the level. A particular configuration may appear in the first column for more levels than the pure configuration is allowed (see Ce III for a relatively simple example).

b. Levels Tabulated Without Leading Percentages

The reliability and indeed the meaning of configuration assignments made without supporting calculations vary greatly. Even in the most complex spectra, there may be some levels or groups of levels belonging largely to a single configuration. The observed structure, g values, intensities, and other data can in such cases lead to unambiguous assignments representing high purity. (Examples are the lower levels of most 4f N6s2, 4f N6s, and 4f N configurations in the rare earths.) Quite often, however, the levels to be interpreted comprise a dense structure to which several configurations are known or expected to contribute. Some preliminary configuration assignments may be possible and useful in such cases, but such assignments for the bulk of the levels are often best regarded as tentative until confirmed by calculations. In many cases, meaningful singleconfiguration assignments do not exist.

We have tried to indicate doubtful features of the interpretations in the discussions of particular spectra and, to some extent, in the tables. A question mark following the configuration indicates explicitly that the assignment is doubtful. A doubtful ancestor term is indicated by a question mark after the term symbol within parentheses.

In some cases the configuration for a level may be known, although the appropriate ancestor terms (or even the preferred order of coupling of the electrons) cannot be determined without calculations. Such a configuration assignment (together with the final term and J value) without full ancestry does not in general serve as a unique name for the level.

c. Limits

The wavenumber corresponding to the principal ionization energy is entered in proper sequence under "Level." The corresponding entry in the first column is the symbol for the next higher spectrum of the element, followed by the term designation and J value for the ground level of this next ion. The configuration is normally omitted, and the word "Limit" appears in the "Term" column (the levels of the higher ion being limits for series in the lower spectrum). If the known levels of the lower ion (or atom) extend above the principal limit, one or more of the higher limits are also given at appropriate positions.

4.2. Term

a. Levels Tabulated With Leading Percentages: Naming of Levels, Grouping of Levels Into Terms, Other Conventions

A term symbol in the second column belongs to the eigenvector component whose configuration and ancestry appear in the first column. The assignment of a set of levels

to a term is indicated by grouping the levels and by listing the configuration and term symbol for only the first (lowest) level of the group. The presence of both a configuration with all necessary ancestor terms in the first column and a term symbol in the second column guarantees that each of the levels grouped with the term is uniquely designated by the symbols in the first two columns, together with the J value; i.e., such levels have names. This naming convention also applies to isolated levels not grouped into terms. The use of the (J_1, J_2) term symbols in this connection should be noticed; a J_1J_2 configuration notation in the first column is indicated as a name for the associated level(s) only if a (J_1, J_2) symbol appears in the second column.

We usually retained or formed a term (by grouping levels) if half or more of the candidate levels for the term were known and had leading components approximately 45% or larger. The 45% requirement was sometimes lowered for levels significantly having leading components sufficiently larger than the corresponding components. Additional levels of lower purity (~30% to 45%) were retained (or assigned) to help complete a multilevel term provided certain conditions were met. Thus the component for an assigned term name is normally the leading component in the eigenvector, and is also as large a percentage of the particular name as occurs in the eigenvector of any other level (known or not) with the same I value. We have also tried to avoid a name for which the configuration contributes less to the total composition of the level than some other configuration. These are minimal requirements for avoiding completely inappropriate names.

One can assure more generally satisfactory names by disallowing any name representing significantly less than 50% eigenvector purity; and in the case of a leading percentage near 50%, by requiring that the second percentage be significantly smaller (alternate designation clearly less appropriate), and that no other eigenvector should have a comparable leading percentage ($\sim 50\%$) for the same designation. The weaker criteria for the grouping and naming of levels outlined above were adopted to allow practically any significant term structure within a single configuration to be exhibited in the tables. In cases of strong configuration interaction it sometimes happens that assignment to a particular term type remains appropriate for a level or level group for which no meaningful configuration assignment is possible. Such term names are not indicated by our scheme but may usually be deduced by examination of the two leading eigenvector percentages (see

Most of the calculated leading percentages for levels in question as to naming are probably uncertain by several percent. In order to facilitate term assignments, we have allowed a relatively few small deviations (by up to $\sim 4\%$) from the above requirements on naming. These deviations are probably within the uncertainties of the calculations.

Many of the resulting terms are incomplete, in the sense that no observed level is listed for one or more of the possible J values of the term. A level "missing" from such a term may not have been found in the analysis; alternatively, it may be that no theoretical eigenvector is appropriate for the corresponding designation, even under the relaxed criteria described above. The first case is distinguished in the tables by printing the J value of the level, and leaving a blank space in the "Level" column. The leading percentages for such a missing level are given if available. In the second case, the best candidate levels for the missing designation are usually known and lie in the same region as the levels assigned to the term.

Levels belonging to a term most of whose levels have not been found may nevertheless be grouped if the term appears to be an important one or lies in a region where most terms are more complete. The printed J values of the missing levels explicitly indicate possible extensions of the analysis. No predicted term is shown, however, unless at least one level is known, and we emphasize that missing predicted levels are generally not indicated in these tables: No term symbols or J values are listed for missing levels having low eigenvector purities or belonging to terms the levels of which are not grouped (for whatever reason). The reader is urged to consult the references to published calculations for additional predicted levels.

A level with the leading percentage >45% from a single-level term (singlet, S term, etc.) is usually so named (shown as a term) if the second percentage is significantly smaller, and if the other conditions outlined above are met. Isolated levels (those remaining after the formation of all terms) are named according to similar conditions.

Some levels of f^N and d^N configurations have large eigenvector components from two or more terms of the same LS type (sec. 2.2.a). Since the resultant lowering of the purities has no physical significance, we have retained the names of such levels having adequate total purity of a particular LS type and labeled them with the Nielson-Koster index number for the term of the leading component. (Of course the corresponding group-theoretical numbers have little meaning for such a low-purity term.) Similar considerations have been applied in designating parent (or grandparent) terms arising from f^N configurations.

A question mark after a term designation indicates that the assignment of the observed level(s) to the calculated eigenvector(s) is uncertain.

b. Levels Tabulated Without Leading Percentages

Most of the discussion in section 4.1.b of configuration assignments of levels with no calculated eigenvectors is pertinent to term assignments. Some of the additional difficulties often encountered in attempts to assign term names will be obvious from the preceding discussion.

We note here also that a term symbol in the second column does not guarantee that the symbols in the first two columns (and the J value) uniquely name the level; the necessary nominal parentages may not be given.

A group of levels (or a single level) constituting a term is always set off from neighboring terms or is rely by full vertical spaces. For compactness, neighboring levels not belonging to terms are in many cases separated by less than full vertical spaces. Groups of such levels are not to be confused with the significantly more compact groups constituting terms.

4.3. Total Electronic Angular-Momentum Quantum Number J

An uncertain J value for a level is usually known to within two or three possible values; in such cases all the possible J values are listed. Two or more J values may also be listed at a single energy position to denote the unresolved levels of a term, etc. Three or more such J values are indicated by listing the two extreme values separated by a dash.

4.4. Level

The levels are normally given in units of cm⁻¹, with respect to the ground level at zero cm⁻¹. Odd-parity levels are printed in italics. The uncertainty of the level positions in units of the last decimal place is not constant; it may vary by an order of magnitude even within an analysis. If no statement about the accuracy is made, it is usually safe to assume that the probable error is between 2 and \sim 20 units in the last place. A better estimate of the error in a particular case may sometimes be obtained by consulting the original paper(s) or line list.

Levels within terms are listed in order of position. Terms are listed in order of lowest (known) levels, with ungrouped levels being treated as terms. The J value and blank space indicating a missing level of a term are given in the order of the corresponding calculated level if such a value is available.

A question mark following a level always indicates that the level may not be real.

An asterisk (*) following a level has the same meaning as a question mark following the assignment—the term assignment of the level is questionable. For configurations that have been calculated, this means that the correlation of the calculated eigenvector to the experimental level is questionable. The asterisk notation is used mainly for questionably assigned levels included in terms. An uncertain assignment of an isolated level may be indicated by an asterisk, but only if the configuration in the first column would be unchanged by any possible reassignment of the level (no question mark in the first column).

4.5. Experimental g Value

These (dimensionless) magnetic splitting factors are usually obtained from measurements of weak-field Zeeman patterns (sec. 2.4). The relation between the uncertainty and the number of decimal places given differs according to the observer and the particular value; the range covered by this relation is similar to that for the level values (see above). More specific comments are made on the g values for some spectra.

A colon following a g value indicates that it may be significantly less accurate than values given to the same number of decimal places but not so marked. Values followed by a question mark are tentative, usually being based on assumptions made to allow reduction of the Zeeman patterns.

4.6. Leading Percentages

This column normally gives one or two percentages from the calculated eigenvector of the level. The space for the second percentage (on the right) is used in either of two ways, as explained below. All percentages are rounded off to the nearest percent, and the "%" symbol is omitted.

Any use of this column in a manner not outlined below is explained in the tables for particular spectra.

a. First Percentage

If the level has an assigned name (see sec. 4.2), the first percentage is for this "name" component. A first percentage followed by a term symbol represents the largest component in the eigenvector of a level having no assigned name, the configuration and ancestry for this component being shown under "Configuration."

b. Second Percentage From Same Eigenvector as First Percentage

If two percentages are listed without the word "or" between them, the second percentage is the largest of the remaining percentages from the same eigenvector as the first percentage. If the second component belongs to the same configuration as the first, usually only the parent terms (or parent levels where appropriate) and final term for the second component are given after the percentage. Electron subshells common to different configurations for the first and second percentages may be omitted from the second configuration, the most frequent example being a common $4f^N$ core. Term notations common to all second percentages listed for the levels of a term are usually given only once.

The coupling scheme for a second eigenvector component belonging to a different configuration may be different from the scheme for the first component; this should not be confused with case c below, where the second listed percentage is the leading percentage in a different coupling scheme.

Since many authors list only the largest percentage for at least some levels, the absence of a second percentage in this compilation does not necessarily mean that it is less than the smallest percentage used here (0.5%, given as 1%).

The relative signs of the two eigenvector components are not given. These are often not given in the original publications. Furthermore, these signs depend on certain conventions, no one set of which has been accepted by all authors. The original articles can be consulted for (possibly) more complete eigenvectors with signs.

c. Second Percentage Is for Leading Component of Eigenvector in Alternate Coupling Scheme

Where the eigenvectors from a calculation are available in more than one coupling scheme, we often give in the second percentage space the leading percentage from the eigenvector calculated in an alternate scheme. This use of the second percentage space is indicated by the word "or" between the two percentages, since each is a leading

percentage. Competitively high coupling purities for a configuration in different coupling schemes were, of course, regarded as an argument for giving leading percentages in alternate schemes, as was the case in which a second scheme for the configuration in question is the preferred scheme for a related configuration (two configurations connected by a strong transition array, etc.). We have favored LS coupling as a second scheme in cases where another scheme was used for naming the levels.

It should be noted that the leading component in a second scheme is not necessarily a name for the level in that scheme; in cases of low purity, the eigenvectors of two (or more) levels of the same J value may have the same leading component.

For some configurations, the alternate coupling schemes are both LS coupling, but with the electrons coupled differently in the two cases (see Eu I $4f^{7}5d6s$, for example). In this case it is usually possible to set up terms in either scheme, as indicated by printing the term symbol for the second scheme only for the first level of each term.

5. Note on Tables of Wavelengths for Rare-Earth Spectra

Several of the more comprehensive collections of atomic spectral wavelengths that include the rare earths are listed here, since we have usually not included these publications in the references for particular spectra. The most complete existing lists of observed lines for many rare-earth spectra are at present unavailable in either published or report form.

Gatterer, A., and Junkes, J., Atlas der Restlinien, Vol. II, Spektren der Seltenen Erden, Specola Vaticana, 347 pp. (1945).

Wavelength range, 2265-7600 Å. Mainly first and second spectra. Main tables have a total of 41605 lines arranged by element, with Sc, Y, Zr, and Th included in addition to the lanthanides. Generally the most complete collection of rare-earth lines having tables separated according to element. Otherwise, these tables have been superseded. No energy level classifications.

Harrison, G. R., MIT Wavelength Tables, MIT Press, Cambridge, Mass., 429 pp. (1969).

Wavelength range, 2000-10000 Å. Mainly first and second spectra. Main table has all elements and spectra together, arranged by wavelength. Includes original measurements of thousands of lines of the more complex rare-earth spectra, and was used extensively in the preparation of several other publications listed here. No energy level classifications.

Meggers, W. F., Corliss, C. H., and Scribner, B. F., *Tables of Spectral-Line Intensities*, Nat. Bur. Stand. (U.S.), Monogr. 145, Part I, 403 pp.; Part II, 228 pp. (1975).

Wavelength range 2000-9000 Å. Mainly first and second spectra. Part I is arranged by element. About 16000 of the strongest lines of the rare-earth spectra are included, and the tables for several of these spectra have lines and energy levels (for classified transitions) that have not been published elsewhere. Part II is arranged according to wavelength with all (70) elements together.

Moore, C. E., A Multiplet Table of Astrophysical Interest, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 40, 253 pp. (1972). A reprint of the 1945 edition.

Wavelength range, 2950-13000 Å. Has multiplet tables (by spectrum) and a finding list (all included spectra together). Lines of several rare-earth spectra (as available in 1945) are listed in the multiplet format especially convenient for some users.

Wysocka-Lisek, J., Spectrum Lines of Rare Earths Arranged by Wavelengths, Lubelskie Towarzystwo Naukowe, Lublin, Poland, 583 pp. (1970).

Most complete published collection of spectrum lines of the neutral and singly ionized rare earths for the region 2000–10000 Å (58000 lines including lines of Sc, Y, Zr, and Th, in addition to the lanthanides). Arranged by wavelength with all elements together. No energy level classifications.

Zaidel', A. N., Prokof'ev, V. K., Raiskii, S. M., Slavnyi, V. A., and Schreider, E. Ya., *Tables of Spectral Lines*, IFI/Plenum, New York, 782 pp. (1970).

Part 1 has 52000 lines of 60 elements, including the rare earths. This part is arranged by wavelength, with all elements together (mainly first and second spectra, range 2000-8000 Å). Part 2 has 38000 lines of 98 elements arranged by element, and includes lines from third and higher spectra. Both parts were revised to include material published in the 1960's. The wavelength range of Part 2 extends into the vacuum ultraviolet and further to the infrared. For the rare earths, the main advantage of Part 2 (relative to the other publications) is the tabulation of the stronger lines of some third and higher spectra. Also includes the energy of the upper level (to the nearest 0.01 eV) for classified lines.

6. State of Analyses of Rare-Earth Spectra

The table ¹⁰ below roughly summarizes the status of the analyses for the first six spectra of the rare earths, based on the data available for this compilation. Analyses of spectra of ions in crystals or solutions are included only to the extent of indicating (by brackets) nine triply ionized species for which the levels tabulated here are entirely derived from such data. Analyses of the atomic and free-ion spectra are indicated by numbers one to four, with the following approximate meanings:

- 1. The spectrum has been well excited and measured over the relevant optical range. For a first or second spectrum the Zeeman effect has been observed. Practically all of the strong lines are classified. (In practice the number of "strong" lines varies from less than 100 to several thousand, depending on the complexity of the spectrum.) The more important configurations have been calculated; all the lower levels and more than half of all the known levels have been interpreted according to the calculations. More or refined calculations might be needed, such as the inclusion of additional configuration interactions, use of effective interactions, recoupling transformations, or extension to additional configurations. Such additional calculations probably would allow some extension and refinement of the analysis, especially in the case of a first or second spectrum; however, the analysis is now one of the most complete for the type of spectrum.
- 2. These analyses are less complete than those described above. Important configurations are not known or have not been interpreted theoretically. The wavelength descriptions are usually satisfactory, but in some cases further observations are needed.
- 3. The analysis has progressed beyond the beginning stages, but important configurations are not known relative to the ground configuration; or the basic configurations have not been calculated. More observations may be needed.
 - 4. Only a beginning analysis exists.

The number for a particular spectrum thus indicates roughly the completeness of the analysis relative to other spectra of the same type and level of complexity. The main tables should, of course, be perused for details on the analyses. Summary tables of "Observed Terms," of the type given in AEL Vols. I–III, have been omitted here as being impractical for many of the complex rare-earth spectra with extensive configuration interactions.

The energy levels for 57 of the atomic species in the present compilation are from analyses of atomic or free-ion spectra; before 1960, there were no analyses at all for 35 of these spectra. Also since 1960, there has been additional work on all but 2 or 3 of the 22 spectra analyzed earlier. It is clear from the table, however, that this progress on the

rare earths during the past 15 years or so has in most cases not included the fourth and higher spectra. (No analyses of third or fourth rare-earth spectra were carried out during the 20 years from the late 1930's to the late 1950's.) More complete data on energy levels and wavelengths for the rare earths are needed in several important areas of research. It is fortunate that work on a number of these difficult spectra is now continuing or planned.

 $\begin{array}{cccc} Status \ of \ analyses \ of \ rare-earth \ spectra. \\ See \ text \ for \ explanation. \end{array}$

Z	I	II	III	IV	v	VI
57 La	2	2	1	2	3	
58 Ce	2	1	1	2	4	4
59 Pr	2	3	1	1	2	
60 Nd	2	2	3	[]		
6l Pm	3	3		[]		
62 Sm	1	2	3	[]		
63 Eu	2	2	2	[]		
64 Gd	2	1	2	[]		
65 Tb	2	3	2	2		
66 Dy	2	2	4	[]		
67 Ho	2	3	2	[]		
68 Er	2	2	2	[]		
69 Tm	1	1	1	[]		
70 Yb	2	1	1	1		
71 Lu	2	2	2	1	3	

7. Acknowledgments

The international community of spectroscopists has been very generous in helping with this undertaking. We are especially grateful to those colleagues in other laboratories who have supplied unpublished data and theoretical results, the following being only the most outstanding in this regard: J. Blaise and his associates, especially J. F. Wyart, at the Laboratoire Aimé Cotton, Orsay; Zipora Goldschmidt and associates in the Racah Institute of Physics, the Hebrew University, Jerusalem; P. F. A. Klinkenberg, E. Meinders, and T. A. M. van Kleef, at the Zeeman Laboratory, Amsterdam; G. Smith, of the Department of Astrophysics, Oxford; H. M. Crosswhite, formerly at the Johns Hopkins University and now at the Argonne National Laboratory, and W. T. Carnall, of the Argonne National Laboratory. These and other contributors of unpublished material are cited in the discussions of particular spectra.

We are very grateful to Charlotte E. Moore for the example of her carefully done compilations of spectroscopic data, especially the *Atomic Energy Levels* volumes, and for the extensive bibliographic material that she maintained and kept current in this laboratory for more than 20 years.

Our colleagues in the Spectroscopy Section have generously assisted us whenever called upon. We especially thank C. H. Corliss, V. Kaufman, J. Reader, J. Sugar, and J. L. Tech for their expert help and advice on a variety of problems. Reader and Sugar have also supplied unpublished material.

The table is a revised version of a similar summary made several years ago [Martin, 1972]. The separated group of spectra in the upper part of the table belong to the Xe I and I I isoelectronic sequences; the 4f-electron orbit is not collapsed (rare-earth like) in the low-ionization members of these sequences. The first three Lu spectra are also separated off, since the analyzed configurations include 4f electrons only in the closed shell. Three additional spectra that have been analyzed, Sm XXXV, Gd XXXVII, and Dy XXXIX, are not shown.

Analyses of crystal or solution spectra are excluded from consideration in the following remarks.

K. G. Kessler, Chief of the Optical Physics Division, and D. R. Lide, Jr., Chief of the Office of Standard Reference Data, have supported this work over a period of years. Their encouragement and advocacy are much appreciated.

In the preparation of the tables, the data were first transferred to decks of punched cards which could be conveniently revised and expanded to include new material up to a cutoff date. After final checking, the coded punched card records were transferred to magnetic tape and edited to produce a final tape for automatic typesetting. The main editing code was obtained by suitable modifications of editinsertion programs of C. Messina and J. Hilsenrath [1970]. The modified code and its successful use to produce the tables via automatic photocomposition (Linotron) are largely due to Robert Thompson, of the Office of Standard Reference Data, and to Rebecca Morehouse, Anne Meininger, and the late Rubin Wagner of the Computer Assisted Printing Section. Kathy Strine and the late Ruth l'eterson of the Spectroscopy Section did most of the keypunching of the original cards and helped with the checking. Mrs. Strine also typed most of the original manuscript; Marsha Ahalt and Arlene Musgrove did the later typing and keypunching, and helped with the proofreading. Miriam Oland of the Computer Assisted Printing Section retyped and coded the final manuscript for typesetting via photocomposition. We are very grateful to all these members of the NBS staff for this excellent assistance.

8. References

Bacher, R. F., and Goudsmit, S., Atomic Energy States, 562 pp. (McGraw-Hill Book Co., New York, N.Y., 1932).

Ribliographic Guide for Editors and Authors, 362 pp. (American Chemical Society, Washington, D.C., 1974).

Blaise, J., Camus, P., and Wyart, J. F., in Gmelin Handbuch der Anorganischen Chemie, Vol. 39, Part B4, pp. 124-334 (Springer-Verlag, Berlin, 1976). Cohen, E. R., and Taylor, B. N., J. Phys. Chem. Ref. Data 2, 663 (1973).

Condon, E. U., and Shortley, G. H., *The Theory of Atomic Spectra*, 441 pp. (Cambridge University Press, 1935: reprinted 1951 and later years).

Conway, J. G., and Wybourne, B. G., Phys. Rev. 130, 2325 (1963).

de-Shalit, A., and Talmi, I., Nuclear Shell Theory, 573 pp. (Academic Press, New York, N.Y., 1963).

El'yashevich, M. A., Spectra of the Rare Earths, 586 pp. in 2 books, AEC-tr-4403/LK (1961). Available from National Technical Information Service (U.S.), Springfield, VA 22161. [A translation of Spektry Redkikh Zemel (State Publishing House of Technical-Theoretical Literature, Moscow, 1953).]

Hagan, L., Nat. Bur. Stand. (U.S.), Spec. Publ. 363, Suppl. 1 (1977).

Hagan, L., and Martin, W. C., Nat. Bur. Stand. (U.S.), Spec. Publ. 363, 103 pp. (1972).

Judd, B. R., and Lindgren, I., Phys. Rev. 122, 1802 (1961).

Marrus, R. A., and Nierenberg, W. A., in *Topics on Radiofrequency Spectroscopy*, International School of Physics "Enrico Fermi," Course XVII, pp. 118-156, (Academic Press, New York, N.Y., 1962).

Martin, W. C., Opt. Pur. Apl. 5, 181 (1972).

Martin, W. C., Hagan, L., Reader, J., and Sugar, J., J. Phys. Chem. Ref. Data 3, 771 (1974).

Messina, C. G., and Hilsenrath, J., Edit-Insertion Programs for Automatic Typesetting of Computer Printout, Nat. Bur. Stand. (U.S.), Tech. Note 500, 50 pp. (1970).

Moore, C. E., Nat. Bur. Stand. (U.S.), Spec. Publ. 306, Sec. 4, 55 pp. (1969).

Moore, C. E., Atomic Energy Levels, Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 35, Vol. I, 359 pp., Vol. II, 259 pp., Vol. III, 282 pp. (1971). [Reprint of NBS Circular 467, which originally appeared in 1949 (Vol. I), 1952 (Vol. II), and 1958 (Vol. III).]

Nielson, C. W., and Koster, G. F., Spectroscopic Coefficients for the p", d", and f" Configurations, 275 pp. (MIT Press, Cambridge, Mass., 1963).

Racah, G., Phys. Rev. 61, 537 (1942a).

Racah, G., Phys. Rev. 62, 438 (1942b).

Racah, G., Phys. Rev. 63, 367 (1943).

Racah, G., Phys. Rev. 76, 1352 (1949).

Racah, G., in Transactions of the Joint Commission for Spectroscopy, J. Opt. Soc. Am. 50, 408 (1960).

Russell, H. N., Shenstone, A. G., and Turner, L. A., Phys. Rev. 33, 900 (1929).

van den Bosch, J. C., in *Encyclopedia of Physics*, S. Flügge, Ed., Vol. 28, 448 pp. (Springer-Verlag, Berlin, 1957).

White, H. E., Introduction to Atomic Spectra, 457 pp. (McGraw-Hill Book Co., New York, N.Y., 1934).

Wybourne, B. G., Spectroscopic Properties of Rare Earths, 236 pp. (John Wiley & Sons, New York, N.Y., 1965).

9. Tables for the Introduction

Table 1. Allowed terms for LS coupling of equivalent electrons $^{\mathrm{a}}$

Config.								Allov	ved terms	ŀ						·
8	² S															
S^2	1S															
p and $p^{\mathfrak{s}}$	²P°															
p^{2} and p^{4}	³ P	$^{1}\mathrm{D}$	1	S												
p^3	4S°	$^{2}\mathrm{D}^{\circ}$	2]	P°								-				
p^{6}	¹S															
d and d^9	$^{2}\mathrm{D}$	1	(10)													
d^{2} and d^{8}	³ F ³ P	2 2	(11) (11)	¹ G ¹ D	2 2	(20) (20)	1 S	S 0	(00)							
d^3 and d^7	⁴ F ⁴ P	3	(11) (11)	$^{2}_{^{2}\mathrm{H}}$	3 3	(21) (21)	$^2_{^2}\mathrm{I}$		` '	${}^{2} \mathrm{D} {}^{2} \mathrm{P}$	2 3 3	(21) (21)				
d^4 and d^6	⁵ D ³ H ³ G ³ F1	4 4 4 2	(10) (21) (21) (11)	³ F2 ³ D ³ P1 ³ P2	4 4 2 4	(21) (21) (11) (21)	¹ I ¹ (¹ F	G1 2 G2 4	(22) (20) (22) (22)	¹ D1 ¹ D2 ¹ S1 ¹ S2	2 4 0	(20) (22) (00) (22)				
d^5	6 S 4 G 4 F 4 D	5 5 3 5	(00) (20) (11) (20)	⁴ P ² I ² H ² G1	3 5 3 3	(11) (22) (21) (21)	² C ² F ² F	71 3 72 5	(22) (21) (22) (10)	² D2 ² D3 ² P ² S	3 5 3	(21) (22) (21) (22)				
d^{10}	¹ S															
f and f^{13}	² F°	1	(100)	(10)												
f° and f^{12}	³H ³F	$\frac{2}{2}$	(110) (110)	(11) (10)	³ P	2 2		(11) (20)	¹ G ¹ D	2 2	(200) (200)	(20) (20)	¹ S	0	(000)	(00)
f^{i} and f^{ii}	⁴ I° ⁴ G° ⁴ F° ⁴ D° ⁴ S°	3 3 3	(111) (111) (111) (111) (111)	(20) (20) (10) (20) (00)	² L° ² K° ² I° ² H° ²	3 3 1 3	(210) (210)	(21) (21) (20) (11) (21)	² G°1 ² G°2 ² F°1 ² F°2 ² D°1	3 3 1 3 3	(210) (210) (100) (210) (210)	(21) (10) (21)	² D°2 ² P°		(210) (210)	
11 and f10	⁵ I ⁵ G ⁵ F ⁵ D ⁵ S ³ M ³ L ³ K1 ³ K2 ³ I1 ³ I2 ³ H1	4 4 4 4 4 4 4 4 4	(111) (111) (111) (111) (111) (211) (211) (211) (211) (211) (211) (211) (211) (110)	(20) (20) (10) (20) (00) (30) (21) (21) (30) (20) (30) (11)	3H2 3H3 3H4 3G1 3G2 3G3 3F1 3F2 3F3 3F4 3D1 3D2	4 4 4 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1	(11) (21) (30) (20) (21) (30) (10) (10) (21) (30) (20) (21)	³ P1 ³ P2 ³ P3 ¹ N ¹ L1 ¹ L2 ¹ K ¹ I1 ¹ I2 ¹ I3 ¹ H1 ¹ H2	4 4 4 4 4 2 4 4 4	(110) (211) (220) (220) (220) (220) (220) (220) (220) (220) (220) (220)	(11) (30) (22) (21) (22) (21) (20) (20) (22) (21)	G1 G2 G3 G4 F D1 D2 D3 D4 S1	2 4 4 4 2 4 4 4 0 4	(200) (220) (220) (220) (220) (200) (220) (220) (220) (000) (220)	(20) (20) (21) (22) (21) (20) (20) (21) (22) (00) (22)

TABLE 1. Allowed terms for LS coupling of equivalent electrons a—Continued

Config.								Allo	wed terms	3					"	
f^5 and f^9	6H°	5	(110)	(11)	$^4\mathrm{F}^\circ 3$	5	(211)	(21)	² K°5	5	(221)	(31)B	²F°1	1	(100)	(10)
	$^6\mathrm{F}^\circ$	5	(110)	(10)	$^4\mathrm{F}^\circ 4$	5	(211)	(30)	${}^2\mathrm{I}^{\circ}1$	3	(210)	(20)	${}^2\mathrm{F}^\circ 2$	3	(210)	(21)
	⁶ P°	5	(110)	(11)	$^4\mathrm{D}^\circ 1$	3	(111)	(20)	${}^2\mathrm{I}^\circ 2$	5	(221)	(20)	$^2\mathrm{F}^\circ 3$	5	(221)	(10)
	⁴ M°	5	(211)	(30)	$^{4}\mathrm{D}^{\circ}2$	5	(211)	(20)	$^2\mathrm{I}^\circ 3$	5	(221)	(30)	${}^2\mathrm{F}^{\circ}4$	5	(221)	(21)
	$^4\mathrm{L}^\circ$	5	(211)	(21)	$^{4}\mathrm{D}^{\circ}3$	5	(211)	(21)	${}^2\mathrm{I}^{\circ}4$	5	(221)	(31)A	${}^{2}\mathrm{F}^{\circ}5$	5	(221)	(30)
	⁴ K°1	5	(211)	(21)	⁴ P°1	5	(211)	(11)	${}^2\mathrm{I}^{\circ}5$	5	(221)	(31)B	${}^2\mathrm{F}^\circ 6$	5	(221)	(31)A
	4K°2	5	(211)	(30)	$^{4}P^{\circ}2$	5	(211)	(30)	$^2\mathrm{H}^\circ 1$	3	(210)	(11)	${}^2\mathrm{F}^{\circ}7$	5	(221)	(31)B
	⁴ I°1	3	(111)	(20)	⁴ S°	3	(111)	(00)	$^2\mathrm{H}^\circ2$	3	(210)	(21)	$^2\mathrm{D}^\circ 1$	3	(210)	(20)
	4I°2	5	(211)	(20)	² O°	5	(221)	(31)	$^2\mathrm{H}^\circ 3$	5	(221)	(11)	$^2\mathrm{D}^\circ2$	3	(210)	(21)
	4I°3	5	(211)	(30)	$^2\mathrm{N}^\circ$	5	(221)	(31)	$^2\mathrm{H}^\circ 4$	5	(221)	(21)	$^{2}\mathrm{D}^{\circ}3$	5	(221)	(20)
	⁴ H°1	5	(211)	(11)	² M °1	5	(221)	(30)	$^2\mathrm{H}^\circ 5$	5	(221)	(30)	$^2\mathrm{D}^\circ 4$	5	(221)	(21)
	4H°2	5	(211)	(21)	² M °2	5	(221)	(31)	$^2\mathrm{H}^\circ 6$	5	(221)	(31)A	$^2\mathrm{D}^\circ 5$	5	(221)	(31)
	⁴ H°3	5	(211)	(30)	$^{2}\mathrm{L}^{\circ}1$	3	(210)	(21)	$^2\mathrm{H}^\circ7$	5	(221)	(31)B	$^{2}\mathrm{P}^{\circ}1$	3	(210)	(11)
	4G°1	3	(111)	(20)	$^2\mathrm{L}^\circ 2$	5	(221)	(21)	${}^{2}\mathrm{G}^{\circ}1$	3	(210)	(20)	$^{2}P^{\circ}2$	5	(221)	(11)
	4G°2	5	(211)	(20)	$^{2}\mathrm{L}^{\circ}3$	5	(221)	(31)	2 G $^{\circ}$ 2	3	(210)	(21)	² P°3	5	(221)	(30)
	4G°3	5	(211)	(21)	² K°1	3	(210)	(21)	$^2\mathrm{G}^{\circ}3$	5	(221)	(20)	$^2\mathrm{P}^\circ 4$	5	(221)	(31)
	4G°4	5	(211)	(30)	² K°2	5	(221)	(21)	² G°4	5	(221)	(21)				
	⁴ F°1	3	(111)	(10)	² K°3	5	(221)	(30)	$^{2}\mathrm{G}^{\circ}5$	5	(221)	(30)				
	4F°2	5	(211)	(10)	² K°4	5	(221)	(31)A	$^2\mathrm{G}^\circ 6$	5	(221)	(31)				
f^6 and f^8	$^7\mathrm{F}$	6	(100)	(10)	$^3\mathrm{K}6$	6	(221)	(31)B	³ F 8	6	(221)	(31)A	¹ I 6	6	(222)	(40)A
	5L	6	(210)	(21)	³ I1	4	(211)	(20)	${}^3\mathrm{F}9$	6	(221)	(31)B	¹ I 7	6	(222)	(40)B
	5K	6	(210)	(21)	$^3\mathrm{I}2$	4	(211)	(30)	$^3\mathrm{D}1$	4	(211)	(20)	¹ H1	4	(220)	(21)
	⁵ I1	4	(111)	(20)	$^3\mathrm{I}3$	6	(221)	(20)	$^3\mathrm{D2}$	4	(211)	(21)	$^{1}\mathrm{H2}$	4	(220)	(22)
	⁵ I2	6	(210)	(20)	³ I 4	6	(221)	(30)	$^3\mathrm{D}3$	6	(221)	(20)	$^{1}\mathrm{H3}$	6	(222)	(30)
	5H1	6	(210)	(11)	$^3\mathrm{I}5$	6	(221)	(31)A	$^3\mathrm{D4}$	6	(221)	(21)	$^{1}\mathrm{H4}$	6	(222)	(40)
	5H2	6	(210)	(21)	$^3\mathrm{I}6$	6	(221)	(31)B	$^3\mathrm{D}5$	6	(221)	(31)	$^{1}G1$	2	(200)	(20)
	5G1	4	(111)	(20)	³ H1	2	(110)	(11)	$^{3}P1$	2	(110)	(11)	$^{1}G2$	4	(220)	(20)
	5G2	6	(210)	(20)	$^3\mathrm{H2}$	4	(211)	(11)	$^{3}P2$	4	(211)	(11)	$^{1}G3$	4	(220)	(21)
	5G3	6	(210)	(21)	$^3\mathrm{H3}$	4	(211)	(21)	$^{3}\mathrm{P3}$	4	(211)	(30)	$^{1}G4$	4	(220)	(22)
	5F1	4	(111)	(10)	³ H4	4	(211)	(30)	3 P4	6	(221)	(11)	$^{1}G5$	6	(222)	(20)
	5F2	6	(210)	(21)	$^3\mathrm{H}5$	6	(221)	(11)	$^3\mathrm{P5}$	6	(221)	(30)	$^{1}G6$	6	(222)	(30)
	5D1	4	(111)	(20)	$^3\mathrm{H}6$	6	(221)	(21)	$^3\mathrm{P6}$	6	(221)	(31)	1 G7	6	(222)	(40)A
	⁵ D2	6	(210)	(20)	$^3\mathrm{H7}$	6	(221)	(30)	$^{1}\mathbf{Q}$	6	(222)	(40)	$^{1}G8$	6	(222)	(40)B
	⁵ D3	6	(210)	(21)	3H8	6	(221)	(31)A	¹ N1	4	(220)	(22)	¹F1	4	(220)	(21)
	5P	6	(210)	(11)	³ H9	6	(221)	(31)B	¹ N2	6	(222)	(40)	¹ F2	6	(222)	(10)
	⁵ S	4	(111)	(00)	³ G1	4	(211)	(20)	¹ M1	6	(222)	(30)	$^{1}\mathrm{F3}$	6	(222)	(30)
	3O	6	(221)		3 G2	4	(211)	(21)	¹ M 2	6	(222)	(40)	¹F4	6	(222)	(40)
	3N	6	(221)	(31)	$^3\mathrm{G3}$	4	(211)	(30)	¹ L1	4	(220)	(21)	¹D1	2	(200)	(20)
	³ M1	4	(211)	(30)	³ G4	6	(221)	(20)	$^{\scriptscriptstyle 1}\mathrm{L2}$	4	(220)	(22)	¹ D2	4	(220)	(20)
	3M2	6	(221)	(30)	3 G5	6	(221)	(21)	¹ L3	6	(222)	(40)A	¹ D3	4	(220)	(21)
	3M3	6	(221)	(31)	3 G6	6	(221)	(30)	¹ L4	6	(222)	(40)B	¹ D4	4	(220)	(22)
	³ L1	4	(211)	(21)	³G7 ₃E1	6	(221)	(31)	¹K1	4	(220)	(21)	¹ D5	6	(222)	(20)
	$^{3}L2$	6	(221)	(21)	³F1	2	(110)	(10)	¹K2	6	(222)	(30)	$^{1}\mathrm{D6}$	b C	(222)	(40)
	³ L3	6	(221)	(31)	³F2	4	(211)	(10)	¹K3	6	(222)	(40)	¹ P	6	(222)	(30)
	3K1	4	(211)	(21)	³F3	4	(211) (211)	(21)	$^{\scriptscriptstyle 1}\mathrm{I}1$	2	(200)	(20)	¹ S1	0	(000)	(00)
	3 K2 3 K3	4	(211) (221)	(30) (21)	³F4 ₃⋤5	4 6	(211) (221)	(30)	¹ I3	4	(220)	(20)	¹ S2 ¹ S3	4	(220)	(22)
	³ K4	$\frac{6}{6}$	(221) (221)	(21) (30)	${}^3\mathrm{F}5$ ${}^3\mathrm{F}6$	$\frac{6}{6}$	(221) (221)	(10) (21)	¹I4	$rac{4}{6}$	(220) (222)	(22) (20)	¹ S3 ¹ S4	$\frac{6}{6}$	(222)	(00)
	³ K5		(221) (221)		°го ³F7	6	(221) (221)	(30)	¹ I5		(222) (222)		-134	U	(222)	(40)
l	$\mathbf{G}\mathbf{M}_{\mathbf{a}}$	O	(221)	(01)A	°F 1	U	(441)	(90)	-19	О	(444)	(30)				

Table 1. Allowed terms for LS coupling of equivalent electrons ^a – Continued

ipr.								Allowe	d terms							
, · 8	'S°	7	(000)	(00)	⁴ G°6	7	(220)	(21)	²K°1	3	(210)	(21)	$^2\mathrm{G}^\circ 6$	5	(221)	(31)
	.) [] °	7	(200)	(20)	${}^4\mathrm{G}^{\circ}7$	7	(220)	(22)	${}^2\mathrm{K}^{\circ}2$	5	(221)	(21)	$^2\mathrm{G}^\circ 7$	7	(222)	(20)
	i H°	5	(110)	(11)	⁴F°1	3	(111)	(10)	${}^2\mathrm{K}^{\circ}3$	5	(221)	(30)	$^2\mathrm{G}^\circ 8$	7	(222)	(30)
	i(i°	7	(200)	(20)	${}^4\mathrm{F}^\circ 2$	5	(211)	(10)	${}^2\mathrm{K}^\circ 4$	5	(221)	(31)A	$^2\mathrm{G}^\circ 9$	7	(222)	(40)A
1	; F20	5	(110)	(10)	${}^4\mathrm{F}^\circ 3$	5	(211)	(21)	$^2\mathrm{K}^\circ 5$	5	(221)	(31)B	$^2\mathrm{G}^\circ 10$	7	(222)	(40)I
	;D°	7	(200)	(20)	${}^4\mathrm{F}^\circ 4$	5	(211)	(30)	${}^2\mathrm{K}^\circ 6$	7	(222)	(30)	${}^2\mathrm{F}^{\circ}1$	1	(100)	(10)
	iP°	5	(110)	(11)	$^4\mathrm{F}^\circ 5$	7	(220)	(21)	${}^2\mathrm{K}^\circ 7$	7	(222)	(40)	$^2\mathrm{F}^\circ 2$	3	(210)	(21)
	٠ N°	7	(220)	(22)	⁴ D°1	3	(111)	(20)	${}^2\mathrm{I}^{\circ}1$	3	(210)	(20)	$^2\mathrm{F}^\circ 3$	5	(221)	(10)
	¹M°	5	(211)	(30)	$^4\mathrm{D}^\circ 2$	5	(211)	(20)	${}^2\mathrm{I}^\circ 2$	5	(221)	(20)	${}^2\mathrm{F}^\circ 4$	5	(221)	(21)
	L°1	5	(211)	(21)	$^4\mathrm{D}^\circ 3$	5	(211)	(21)	$^2\mathrm{I}^\circ 3$	5	(221)	(30)	$^2\mathrm{F}^\circ 5$	5	(221)	(30)
- 1	L°2	7	(220)	(21)	$^4\mathrm{D}^\circ 4$	7	(220)	(20)	$^2\mathrm{I}^\circ 4$	5	(221)	(31)A	$^2\mathrm{F}^\circ 6$	5	(221)	(31)A
	'L°3	7	(220)	(22)	$^4\mathrm{D}^\circ 5$	7	(220)	(21)	$^2\mathrm{I}^\circ 5$	5	(221)	(31)B	$^2\mathrm{F}^\circ7$	5	(221)	(31)
1	·K°1	5	(211)	(21)	$^4\mathrm{D}^\circ 6$	7	(220)	(22)	$^2\mathrm{I}^\circ 6$	7	(222)	(20)	$^2\mathrm{F}^\circ 8$	7	(222)	(10)
	¹ K°2	5	(211)	(30)	⁴ P°1	5	(211)	(11)	$^2\mathrm{I}^\circ 7$	7	(222)	(30)	$^2\mathrm{F}^\circ 9$	7	(222)	(30)
	'K°3	7	(220)	(21)	$^4\mathrm{P}^\circ 2$	5	(211)	(30)	$^2\mathrm{I}^\circ 8$	7	(222)	(40)A	${}^2\mathrm{F}^{\circ}10$	7	(222)	(40)
	4I°1	3	(111)	(20)	${}^{4}\mathrm{S}^{\circ}1$	3	(111)	(00)	$^2\mathrm{I}^\circ 9$	7	(222)	(40)B	$^2\mathrm{D}^\circ 1$	3	(210)	(20)
	Ч°2	5	(211)	(20)	$^4\mathrm{S}^\circ 2$	7	(220)	(22)	${}^{2}\mathrm{H}^{\circ}1$	3	(210)	(11)	$^2\mathrm{D}^\circ2$	3	(210)	(21)
	·I°3	5	(211)	(30)	$^2\mathrm{Q}^\circ$	7	(222)	(40)	$^2\mathrm{H}^\circ2$	3	(210)	(21)	$^2\mathrm{D}^\circ 3$	5	(221)	(20)
	'I'4	7	(220)	(20)	${}^2{ m O}^\circ$	5	(221)	(31)	$^2\mathrm{H}^\circ 3$	5	(221)	(11)	$^2\mathrm{D}^\circ 4$	5	(221)	(21)
1	41°5	7	(220)	(22)	$^2\mathrm{N}^\circ 1$	5	(221)	(31)	$^2\mathrm{H}^\circ 4$	5	(221)	(21)	$^2\mathrm{D}^\circ 5$	5	(221)	(31)
i	4H°1	5	(211)	(11)	$^2\mathrm{N}^\circ2$	7	(222)	(40)	$^2\mathrm{H}^\circ5$	5	(221)	(30)	$^2\mathrm{D}^\circ 6$	7	(222)	(20)
	Н°2	5	(211)	(21)	$^2\mathrm{M}^\circ 1$	5	(221)	(30)	$^2\mathrm{H}^\circ 6$	5	(221)	(31)A	$^2\mathrm{D}^\circ7$	7	(222)	(40)
	4H°3	5	(211)	(30)	${}^2\mathrm{M}^{\circ}2$	5	(221)	(31)	$^2\mathrm{H}^\circ7$	5	(221)	(31)B	$^{2}\mathrm{P}^{\circ}1$	3	(210)	(11)
	·H°4	7	(220)	(21)	$^2\mathbf{M}^{\circ}3$	7	(222)	(30)	$^2\mathrm{H}^\circ 8$	7	(222)	(30)	$^{2}\mathrm{P}^{\circ}2$	5	(221)	(11)
-	4H°5	7	(220)	(22)	${}^2\mathrm{M}^{\circ}4$	7	(222)	(40)	$^2\mathrm{H}^\circ 9$	7	(222)	(40)	$^{2}\mathrm{P}^{\circ}3$	5	(221)	(30)
	$^{4}\mathrm{G}^{\circ}1$	3	(111)	(20)	$^2\mathrm{L}^\circ 1$	3	(210)	(21)	${}^2\mathrm{G}^{\circ}1$	3	(210)	(20)	$^2\mathrm{P}^\circ 4$	5	(221)	(31)
1	'G°2	5	(211)	(20)	$^2\mathrm{L}^\circ 2$	5	(221)	(21)	$^2\mathrm{G}^\circ2$	3	(210)	(21)	$^2\mathrm{P}^\circ 5$	7	(222)	(30)
	¹G°3	5	(211)	(21)	$^2\mathrm{L}^\circ 3$	5	(221)	(31)	$^2\mathrm{G}^\circ 3$	5	(221)	(20)	$^2\mathrm{S}^\circ 1$	7	(222)	(00)
	${}^{_{1}}\mathrm{G}^{\circ}4$	5	(211)	(30)	$^2\mathrm{L}^\circ4$	7	(222)	(40)A	${}^2\mathrm{G}^{\circ}4$	5	(221)	(21)	$^2\mathrm{S}^\circ2$	7	(222)	(40)
	'G°5	7	(220)	(20)	$^2\mathrm{L}^\circ 5$	7	(222)	(40)B	2 G $^{\circ}$ 5	5	(221)	(30)				
/ 11	'S															

From Nielson and Koster (1963), with some rearrangement. (By permission of the M. I. T. Press.)

Table 2. Allowed J values for $l_j^{\scriptscriptstyle N}$ equivalent electrons $(jj \ {\rm coupling})$.

l_{j}^{N}	$oxed{Allowed}\ J \ ext{values}$
1/2	1/2
2 /2	0
l_2 and $l_{ m 3/2}^3$	
2:1/2	0, 2
4 4 5/2	0
$_{\scriptscriptstyle 2}$ and $l_{\scriptscriptstyle 5/2}^{\scriptscriptstyle 5}$	5/2
$_{^{\prime 2}}$ and $l_{\scriptscriptstyle 5/2}^{\scriptscriptstyle 4}$	0, 2, 4
2	3/2, 5/2, 9/2
2	0
$_{\scriptscriptstyle 2}$ and $l_{\scriptscriptstyle 7/2}^{\scriptscriptstyle 7}$	7/2
$_{/2}$ and $l_{7/2}^6$	0, 2, 4, 6
$_{/2}$ and $l_{7/2}^{5}$	3/2, 5/2, 7/2, 9/2, 11/2, 15/2
! /2	0, 22, 42, 24, 44, 5, 6, 8
2	0

Table 3. Corrected Landé g-values for terms of odd multiplicity

						Mu	ltiplic	ity				
Term	S	inglets	Γ	Criplets	ı	Quintets		Septets		Nonets		Undecets
Term		1		3		5		7		9		11
	J	g	J	g	J	g	J	g	J	g	J	g
S	0		1	2.002319	2	2.002319	3	2.002319	4	2.002319	5	2.002319
P	1	1.000000	2	1.501160	3	1.668213	4	1.751739	5	1.801855	6	1.835266
			1	1.501160	2	1.835266	3	1.918793	4	1.952203	5	1.968909
			0		1	2.503479	2	2.336426	3	2.252899	4	2.202783
D	2	1.000000	3	1.334106	4	1.501160	5	1.601392	6	1.668213	7	1.715942
			2	1.167053	3	1.501160	4	1.651507	5	1.735034	6	1.787537
			1	0.198840	2	1.501160	3	1.751739	4	1.851971	5	1.902087
				0.498840	1	1.501160	2	2.002319	3	2.085846	$\mid 4 \mid$	2.102551
					0		1	3.004638	2	2.670532	3	2.503479
F	3	1.000000	4	1.250580	5	1.400928	6	1.501160	7	1.572754	8	1.626450
•		1.00000	3	1.083527	4	1.350812	5	1.501160	6	1.596619	7	1.662247
			2	0.665894	3	1.250580	4	1.501160	5	1.634802	6	1.715942
					2	1.000000	3	1.501160	4	1.701623	5	1.801855
					1	-0.002318	2	1.501160	3	1.835266	4	1.952203
							1	1.501160	2	2.169372	3	2.252899
							0		1	3.505798	2	3.004638
G	4	1.000000	5	1.200464	6	1.334106	7	1.429565	8	1.501160	9	1.556844
	1	1.000000	4	1.050116	5	1.267285	6	1.405701	7	1.501160	8	1.570765
			3	0.749420	4	1.150348	5	1.367517	6	1.501160	7	1.590652
					3	0.916473	4	1.300696	5	1.501160	6	1.620483
					2	0.331787	3	1.167053	4	1.501160	5	1.668213
							2	0.832947	3	1.501160	4	1.751739
							1	-0.503478	2	1.501160	3	1.918793
									$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	1.501160	2	$\begin{array}{c} 2.336426 \\ 4.006958 \end{array}$
											1	4.000990
H	5	1.000000	6	1.167053	7	1.286377	8	1.375870	9	1.445475	10	1.501160
11		1.000000	5	1.033411	6	1.214783	7	1.340073	8	1.431554	9	1.501160
			4	0.799536	5	1.100232	6	1.286377	7	1.411667	8	1.501160
					4	0.899768	5	1.200464	6	1.381836	7	1.501160
					3	0.498840	4	1.050116	5	1.334106	6	1.501160
							3	0.749420	4	1.250580	5	1.501160
							2	-0.002318	3	1.083527	4	1.501160
									2	$0.665894 \\ -1.004637$	$\begin{vmatrix} 3 \\ 2 \end{vmatrix}$	1.501160 1.501160
									1	-1.004657	1	1.501160
											0	
									1.0	1 400000	4.4	1 455000
I	6	1.000000	7	1.143188	8	1.250580	9	1.334106	10	1.400928 1.378654	11 10	1.455600 1.446488
			6 5	1.023865	7	1.178986	8	$\begin{array}{c} 1.292343 \\ 1.232681 \end{array}$	9 8	1.378654 1.348028	9	1.434338
			Э	0.832947	6 5	$1.071594 \\ 0.899768$	$\begin{array}{ c c }\hline 7 \\ 6 \end{array}$	1.232681	7	1.304275	8	1.417633
					4	$0.899768 \\ 0.599072$	5	1.000000	6	1.238647	7	1.393768
			-		1 **	0.000012	$\begin{vmatrix} 3 \\ 4 \end{vmatrix}$	0.749420	5	1.133643	$\frac{1}{6}$	1.357971
							3	0.248261	4	0.949884	5	1.300696
									3	0.582367	4	1.200464
									2	-0.336425	3	1.000000
											2	0.498840
				-	1					1	1	-1.505797

 ${\tt TABLE~3.} \quad {\tt Corrected~Land\'e~g-values~for~terms~of~odd~multiplicity-Continued}$

						Mu	ltiplicit	ty				
Term	Si	inglets	,	Triplets	Q	uintets		Septets		Nonets		Undecets
		1		3		5		7		9		11
	J	g	J	g	.J	g	J	g	J	g	J	g
K	. 7	1.000000	8 7 6	1.125290 1.017899 0.856812	9 8 7 6 5	1.222738 1.153132 1.053696 0.904541 0.665894	10 9 8 7 6 5 4	1.300696 1.256148 1.194895 1.107391 0.976135 0.766126 0.398608	11 10 9 8 7 6 5 4 3	1.364480 1.337144 1.300696 1.250580 1.178986 1.071594 0.899768 0.599072 -0.002318	12 11 10 9 8 7 6 5 4 3	1.417633 1.402446 1.382704 1.356380 1.320185 1.268478 1.190918 1.066821 0.849652 0.415314 -0.670531
L	8	1.000000	9 8 7	1.111369 1.013921 0.874710	10 9 8 7 6	1.200464 1.133643 1.041763 0.910507 0.713623	11 10 9 8 7 6 5	1.273360 1.227800 1.167053 1.083527 0.964203 0.785217 0.498840	12 11 10 9 8 7 6 5 4	1.334106 1.303733 1.264248 1.211601 1.139211 1.035797 0.880676 0.632483 0.198145	13 12 11 10 9 8 7 6 5 4 3	$\begin{array}{c} 1.385507 \\ 1.366232 \\ 1.341700 \\ 1.309808 \\ 1.267285 \\ 1.208817 \\ 1.125290 \\ 1.000000 \\ 0.799536 \\ 0.448724 \\ -0.252898 \end{array}$
M	9	1.000000	10 9 8	1.100232 1.011137 0.888631	11 10 9 8 7	1.182240 1.118456 1.033411 0.916473 0.749420	12 11 10 9 8 7 6	1.250580 1.205020 1.145792 1.066821 0.958237 0.803116 0.570435	13 12 11 10 9 8 7 6 5	1.308406 1.276280 1.235393 1.182240 1.111369 1.013921 0.874710 0.665894 0.331787	14 13 12 11 10 9 8 7 6 5 4	$\begin{array}{c} 1.357971 \\ 1.335942 \\ 1.308406 \\ 1.273360 \\ 1.227800 \\ 1.167053 \\ 1.083527 \\ 0.964203 \\ 0.785217 \\ 0.498840 \\ -0.002318 \end{array}$
N	10	1.000000	11 10 9	1.091120 1.009112 0.899768	12 11 10 9 8	1.167053 1.106307 1.027336 0.922042 0.777262	13 12 11 10 9 8 7	1.231304 1.186329 1.129087 1.054672 0.955452 0.819026 0.624130	14 13 12 11 10 9 8 7 6	1.286377 1.253333 1.212029 1.159460 1.091120 1.000000 0.874710 0.695725 0.427246	15 14 13 12 11 10 9 8 7 6 5	1.334106 1.310242 1.280870 1.244155 1.197427 1.136680 1.055684 0.944316 0.785217 0.546570 0.164734

Table 3. Corrected Landé y-values for terms of odd multiplicity — Continued

						Mu	ltiplici	ty				
Term	S	Singlets	T	Criplets	Q	uintets		Septets		Nonets		Undecets
rerm		1		3		5		7		9		11
	.J	g	.J	g	.J	g	J	g	.J	g	J	g
()	11	1.000000	12 11 10	1.083527 1.007593 0.908880	13 12 11 10 9	1.154203 1.096377 1.022780 0.927104 0.799536	14 13 12 11 10 9 8	1.214783 1.170725 1.115652 1.045560 0.954440 0.832947 0.665894	15 14 13 12 11 10 9 8 7	1.267285 1.233874 1.192754 1.141353 1.075933 0.990888 0.877494 0.721578 0.498840	16 15 14 13 12 11 10 9 8 7 6	1.313225 1.288167 1.257739 1.220290 1.173478 1.113900 1.036448 0.933179 0.791184 0.58833 0.284058
Q	12	1.000000	13 12 11	1.077101 1.006425 0.916473	14 13 12 11 10	1.143188 1.088116 1.019275 0.931660 0.817760	15 14 13 12 11 10 9	$\begin{array}{c} 1.200464 \\ 1.157507 \\ 1.104638 \\ 1.038551 \\ 0.954440 \\ 0.845096 \\ 0.699304 \end{array}$	16 15 14 13 12 11 10 9 8	1.250580 1.217169 1.176599 1.126667 1.064251 0.984813 0.881544 0.743852 0.554525	17 16 15 14 13 12 11 10 9 8	1.294800 1.269005 1.238051 1.200464 1.154203 1.096377 1.022780 0.927104 0.799536 0.624130 0.373551

Table 4. Corrected Landé g-values for terms of even multiplicity

					Μι	altiplicity				
	D	oublets	Q	uartets	;	Sextets		Octets		Decets
Term		2		4		6		8		10
	J	g	J	g	J	g	J	g	J	g
S	1/2	2.002319	3/2	2.002319	5/2	2.002319	7/2	2.002319	9/2	2.002319
P	3/2 1/2	1.334106 0.665894	5/2 3/2 1/2	$1.601392 \\ 1.735034 \\ 2.670532$	7/2 5/2 3/2	$1.715942 \\ 1.887768 \\ 2.403247$	9/2 7/2 5/2	1.779582 1.938680 2.288696	11/2 9/2 7/2	$1.820079 \\ 1.961821 \\ 2.225057$
D	5/2 3/2	1.200464 0.799536	7/2 5/2 3/2 1/2	$\begin{array}{c} 1.429565 \\ 1.372290 \\ 1.200464 \\ -0.002318 \end{array}$	9/2 7/2 5/2 3/2 1/2	1.556844 1.588664 1.658667 1.868677 3.338745	11/2 9/2 7/2 5/2 3/2	1.637839 1.698586 1.811401 2.059595 2.804175	13/2 11/2 9/2 7/2 5/2	1.693913 1.764006 1.880826 2.097778 2.575073
F	7/2 5/2	1.143188 0.856812	9/2 7/2 5/2 3/2	1.334106 1.238647 1.028638 0.398608	11/2 9/2 7/2 5/2 3/2 1/2	$1.455600 \\ 1.435351 \\ 1.397746 \\ 1.315015 \\ 1.066821 \\ -0.670531$	13/2 11/2 9/2 7/2 5/2 3/2 1/2	1.539710 1.553729 1.577093 1.620483 1.715942 2.002319 4.006958	15/2 13/2 11/2 9/2 7/2 5/2 3/2	1.601392 1.632232 1.679895 1.759330 1.906860 2.231421 3.205102
G	9/2 7/2	1.111369 0.888631	11/2 9/2 7/2 5/2	1.273360 1.172115 0.984090 0.570435	13/2 11/2 9/2 7/2 5/2 3/2	$\begin{array}{c} 1.385507 \\ 1.343452 \\ 1.273360 \\ 1.143188 \\ 0.856812 \\ -0.002318 \end{array}$	15/2 13/2 11/2 9/2 7/2 5/2 3/2 1/2	$1.467749 \\ 1.457469 \\ 1.441581 \\ 1.415102 \\ 1.365926 \\ 1.257739 \\ 0.933179 \\ -1.338744$	17/2 15/2 13/2 11/2 9/2 7/2 5/2 3/2 1/2	1.530640 1.538501 1.549991 1.567747 1.597342 1.652303 1.773218 2.135962 4.675170
Н	11/2 9/2	1.091120 0.908880	13/2 11/2 9/2 7/2	1.231304 1.133175 0.969627 0.665894	15/2 13/2 11/2 9/2 7/2 5/2	1.334106 1.282705 1.203268 1.070871 0.824992 0.284058	17/2 15/2 13/2 11/2 9/2 7/2 5/2 3/2	1.412720 1.389136 1.354667 1.301397 1.212613 1.047729 0.684985 -0.403246	19/2 17/2 15/2 13/2 11/2 9/2 7/2 5/2 3/2 1/2	1.474783 1.468576 1.459888 1.447189 1.427563 1.394853 1.334106 1.200464 0.799536 -2.006957
I	13/2 11/2	1.077101 0.922899	15/2 13/2 11/2 9/2	1.200464 1.107942 0.964954 0.726640	17/2 15/2 13/2 11/2 9/2 7/2	1.294800 1.239770 1.159343 1.035046 0.827885 0.443156	19/2 17/2 15/2 13/2 11/2 9/2 7/2 5/2	1.369275 1.338244 1.294800 1.231304 1.133175 0.969627 0.665894 -0.002318	21/2 19/2 17/2 15/2 13/2 11/2 9/2 7/2 5/2 3/2	$1.429565 \\ 1.414493 \\ 1.394101 \\ 1.365552 \\ 1.323826 \\ 1.259341 \\ 1.151867 \\ 0.952271 \\ 0.513159 \\ -0.804174$

Table 4. Corrected Landé g-values for terms of even multiplicity—Continued

					Mu	ltiplicity				
erm	Г	Ooublets	Q	uartets	S	Sextets		Octets		Decets
erm		2		4		6		8		10
	J	g	J	g	J	g	J	g	J	g
K	15/2 13/2	1.066821 0.933179	17/2 15/2 13/2 11/2	1.176880 1.090405 0.964019 0.768696	19/2 17/2 15/2 13/2 11/2 9/2	1.263768 1.207911 1.129712 1.015420 0.838788 0.544400	21/2 19/2 17/2 15/2 13/2 11/2 9/2 7/2	1.334106 1.298937 1.251356 1.184741 1.087382 0.936917 0.686142 0.220418	23/2 21/2 19/2 17/2 15/2 13/2 11/2 9/2 7/2 5/2	1.392212 1.371460 1.344155 1.307212 1.255493 1.179903 1.063083 0.868382 0.306795 -0.288695
L	17/2 15/2	1.058960 0.941040	19/2 17/2 15/2 13/2	$\begin{array}{c} 1.158261 \\ 1.077579 \\ 0.964624 \\ 0.799536 \end{array}$	21/2 19/2 17/2 15/2 13/2 11/2	1.238647 1.183382 1.108610 1.003931 0.850937 0.614493	23/2 21/2 19/2 17/2 15/2 13/2 11/2 9/2	$\begin{array}{c} 1.305054 \\ 1.267700 \\ 1.218551 \\ 1.152055 \\ 1.058960 \\ 0.922899 \\ 0.712622 \\ 0.362161 \end{array}$	25/2 23/2 21/2 19/2 17/2 15/2 13/2 11/2 9/2 7/2	1.360835 1.336431 1.305054 1.263768 1.207911 1.129712 1.015420 0.838788 0.544400 -0.002318
M	19/2 17/2	1.052754 0.947246	21/2 19/2 17/2 15/2	1.143188 1.067826 0.965865 0.823120	23/2 21/2 19/2 17/2 15/2 13/2	1.217895 1.163940 1.092947 0.996897 0.862427 0.665894	25/2 23/2 21/2 19/2 17/2 15/2 13/2 11/2	$1.280649 \\ 1.242300 \\ 1.192993 \\ 1.128116 \\ 1.040341 \\ 0.917456 \\ 0.737855 \\ 0.460290$	27/2 25/2 23/2 21/2 19/2 17/2 15/2 13/2 11/2 9/2	1.334106 1.307378 1.273677 1.230347 1.173333 1.096198 0.988208 0.830377 0.586456 0.179921
N	21/2 19/2	1.047729 0.952271	23/2 21/2 19/2 17/2	1.130737 1.060181 0.967343 0.841739	25/2 23/2 21/2 19/2 17/2 15/2	1.200464 1.148169 1.080933 0.992464 0.872771 0.705200	27/2 25/2 23/2 21/2 19/2 17/2 15/2 13/2	$1.259861 \\ 1.221253 \\ 1.172573 \\ 1.109985 \\ 1.027633 \\ 0.916215 \\ 0.760230 \\ 0.532251$	29/2 27/2 25/2 23/2 21/2 19/2 17/2 15/2 13/2 11/2	1.311065 1.282902 1.247981 1.203950 1.147339 1.072850 0.972072 0.830981 0.624773 0.306087
()	23/2 21/2	1.043579 0.956421	25/2 23/2 21/2 19/2	1.120278 1.054038 0.968872 0.856812	27/2 25/2 23/2 21/2 19/2 17/2	1.185615 1.135127 1.071470 0.989624 0.881932 0.736232	29/2 27/2 25/2 23/2 21/2 19/2 17/2 15/2	1.241939 1.203536 1.155916 1.095874 1.018677 0.917101 0.779676 0.587280	31/2 29/2 27/2 25/2 23/2 21/2 19/2 17/2 15/2 13/2	1.290996 1.262008 1.226578 1.182645 1.127251 1.056030 0.962319 0.835533 0.658032 0.398608

TABLE 4. Corrected Landé g-values for terms of even multiplicity — Continued

					M	ultiplicity				
Term	I	Doublets	6	<i>Q</i> uartets		Sextets		Octets		Decets
201		2		4		6		8		10
	J	g	J	g	J	g	J	g	J	g
Q	25/2 23/2	1.040093 0.959907	27/2 25/2 23/2 21/2	1.111369 1.049002 0.970366 0.869263	29/2 27/2 25/2 23/2 21/2 19/2	1.172814 1.124170 1.063851 0.987798 0.890015 0.761353	31/2 29/2 27/2 25/2 23/2 21/2 19/2 17/2	$\begin{array}{c} 1.226330 \\ 1.188423 \\ 1.142091 \\ 1.084640 \\ 1.012202 \\ 0.919067 \\ 0.796522 \\ 0.630725 \end{array}$	33/2 31/2 29/2 27/2 25/2 23/2 21/2 19/2 17/2 15/2	$\begin{array}{c} 1.273360 \\ 1.243966 \\ 1.208491 \\ 1.165133 \\ 1.111369 \\ 1.043579 \\ 0.956421 \\ 0.841739 \\ 0.686581 \\ 0.469360 \end{array}$

TABLE 5. Landé g-values for terms of odd multiplicity in order of increasing g

								terpricity in					
J =		J=3		J=5-		J=6-	Cont.	J = 8 - C	ont.	J = 10 -	Cont.	J = 12 -	Cont.
-1.500	11 I	1.500	$^{7}\mathrm{F}$	0.900	9 K	1.786	$^{11}\mathrm{D}$	1.153	5 K	1.000	¹N	1.141	^{6}O
-1.000	9H		9G ¹¹H	1.000	¹ H ⁷ I	1.833	11 P	1.194	7 K	1.009	3N .	1.167	⁵ N
$-0.500 \\ 0.000$	⁷ G ⁵F	1.667	" ⊓ ⁵P	1.033	${}^3\mathrm{H}$	J =	7	1.208	11 L	1.027	5N	1.173	11 O
0.500	$^{3}\mathrm{D}$	1.750	$^{7}\mathrm{D}$	1.055	11 K	0.975	110	1.250	⁵ I	1.036	¹¹ O	1.186	⁷ N
1.000	¹P	1.833	9F	1.100	5 H	0.375	11 Q		9 K	1.055	⁷ N	1.212	9 N
1.500	³ P	1.917	⁷ P	1.133	9 I	$0.500 \\ 0.589$	9O	1.292	7 I	1.091	9N	1.244	11 N
1.500	$^{5}\mathrm{D}$	1.511	11 G	1.200	^{3}G	$0.589 \\ 0.625$	7N	1.319	11 K	1.100	³ M⋅	1.250	⁷ M
	$^{7}\mathrm{F}$	2.000	7 S	1.200	7 H	0.625	9N	1.347	9 I	1.118	⁵ M	1.276	⁹ M
	9 G	2.083	9 D	1.267	5G	0.750	5 M	1.375	7H	1.136	11 N	1.308	11 M 9 L
	11 H	2.250	9P	1.300	11 I	0.786	11 N	1.417	11 I	1.145	⁷ M	1.333 1.365	¹¹ L
2.000	3S		11 F	1.333	$^9\mathrm{H}$	0.804	7 M │	1.431	9H 9G	1.182 1.200	⁹ M ⁵L	1.303 1.417	11 K
2.500	$^5\mathrm{P}$	2.500	$^{11}\mathrm{D}$	1.367	$^7\mathrm{G}$	0.875	3 L	1.500	11H	1.200 1.227	7L	1.417	
3.000	$^7\mathrm{D}$			1.400	${}^5{ m F}$		9 M	1.569	11G	1.221	11 M	J=1	3
3.500	${}^9{ m F}$	J =	4	1.500	$^7{ m F}$	0.911	5 L	1.625	11 F	1.264	9L		
4.000	$^{11}\mathrm{G}$				${}^9{ m G}$	0.964	$^7\mathrm{L}^{\circ}$	1.020	1	1.300	7 K	1.077	$^{3}\mathbf{Q}$
		0.000	$^{11}\mathbf{M}$		$^{11}\mathrm{H}$		11 M	$J = \Omega$,	1.309	11 L	1.088	5 Q
J =	2	0.200	${}^9{ m L}$	1.600	$^7\mathrm{D}$	1.000	1 K	J=3	,	1.336	9 K	1.104	$^{7}\mathbf{Q}$
		0.400	$^{7}\mathrm{K}$	1.633	${}^9\mathrm{F}$	1.018	${}^3{ m K}$	0.700	$^{7}\mathrm{Q}$	1.382	11 K	1.126	9 Q
-0.667	11 K	0.450	11 L	1.667	11 G	1.036	9L	0.744	°Q	1.400	9 I	1.154	5O
-0.333	9 I	0.600	5 I	1.733	⁹ D	1.054	⁵ K	0.800	5 O	1.445	11 I	1 170	¹¹ Q
0.000	⁷ Н	0.750	9 K	1.800	⁹ P	1.107	7 K	0.500	11 Q	1.500	11 H	$1.170 \\ 1.192$	7О 9О
0.333	⁵G ¹¹ I	0.750	⁷ I	1.900	¹¹ F ¹¹ D	1.125	11 L	0.833	7 O	J=1	1	1.192 1.220	11 O
0.500	3F	0.800	³ H ¹¹ K	1.900	11P	1.143	3 I	0.878	9O	J - J	. 1	1.220 1.231	7 N
0.667	$^{9}\mathrm{H}$	0.850	5 H	2.000	11S	1.179	5 I	0.900	^{3}N	0.917	$^3\mathbf{Q}$	1.253	9 N
0.833	$^{7}\mathrm{G}$	$0.900 \\ 0.950$	9 I	2.000	۵	1 202	9 K	0.902	5 N	0.932	5 Q	1.280	11 N
1.000	¹D	1.000	¹G	J =	6	1.232	7 I	0.906	7 N	0.955	$^7\mathbf{Q}$	1.308	9 M
1.000	5 F .	1.050	³G	J		1.268 1.286	¹¹ K ⁵ H	0.933	11 O	0.985	$^{9}\mathbf{Q}$	1.335	11 M
1.167	$^{3}\mathrm{D}$	1.050	7H	0.286	11 O	1.304	ьΙ	1.000	¹ M	1.000	1 O	1.385	11 L
1.500	³ P	1.150	5 G	0.429	${}^9\mathrm{N}$	1.339	7H		9N	1.008	3 O		
1.000	5 D	1.200	11 I	0.548	^{11}N	1.393	11 I	1.011	³ M	1.023	5 O	J=1	.4
	$^7\mathrm{F}$	1.250	${}^3{f F}$	0.571	7 M	1.411	9H	1.033	⁵ M		$^{11}\mathbf{Q}$		
	${}^{9}\mathrm{G}$		9H	0.667	$^{-9}$ M	1.429	7G │	1.056	11 N	1.045	⁷ О	1.143	$^5{f Q}$
	¹¹ H	1.300	$^{7}\mathrm{G}$	0.714	$^5 { m L}$	1.500	°G	1.067	⁷ M	1.076	9O	1.157	$^7{f Q}$
1.833	⁵ P	1.350	${}^5{ m F}$	0.786	$^7\mathrm{L}$		11 H	1.111	3 L	1.091	³ N	1.176	$^{9}\mathbf{Q}$
2.000	$^{5}\mathrm{S}$	1.500	5 D		11 M	1.571	${}^9{ m F}$	1 100	9 M	1.106	5N	1.200	$^{11}\mathbf{Q}$
	$^7\mathrm{D}$		$^7{ m F}$	0.857	³ K	1.589	11 G	1.133	⁵ L ⁷ L	1.114	¹¹ O	1.214	^{7}O
2.167	9 F		⁹ G	0.881	$^9\mathrm{L}$	1.661	$^{11}{ m F}$	1.167	11 M	1.129	⁷ N ⁹ N	1.233	9O
2.333	$^{7}\mathrm{P}$		11 H	0.905	5 K	1.714	$^{11}\mathrm{D}$	1.211	9L	1.159 1.182	⁵ M	1.257	¹¹ O
	^{11}G	1.650	$^7\mathrm{D}$	0.976	^{7}K	l		1.222	5 K	1.182	11 N	1.286	9N
2.667	⁹ D	1.700	${}^9{ m F}$	1.000	∵¹I ¹¹L	J=8	8	1.256	7 K	1.205	7 M │	1.310	11 N
3.000	$^{11}\mathrm{F}$	1.750	⁷ P	1.024	3 I	0.556	$^{9}\mathbf{Q}$	1.267	11 L	1.235	9 M	1.357	¹¹ M
		1 050	11 G	1.024	5 I	$0.556 \\ 0.625$	11 Q	1.300	9 K	1.273	7L	J = 1	5
J=3	ა	1.850	9D	1.011	9 K	0.623	7 O	1.333	7 I		11 M	J=1	<i></i>
-0.250	11 L	1.950	⁹ P ¹¹F	1.143	7 I	0.722	9O	1.356	11 K	1.303	9 L	1.200	$^7\mathrm{Q}$
0.000	9K	2.000	¹¹ F	1.167	³Н	0.778	5 N	1.378	9 I	1.341	11 L	1.217	9Q
0.250	7 I	2.000 2.100	11 D	1.191	11 K	0.792	11 O	1.433	¹¹ I	1.364	9K	1.238	11 Q
0.417	11 K	2.200	11P	1.214	${}^5{ m H}$	0.819	7 N	1.444	9H	1.402	¹¹ K	1.267	9O
0.500	5 H			1.238	9 I	0.875	9 N	1.500	11 H	1.455	11 I	1.288	11 O
0.583	9 I	J = 5	5	1.286	$^7\mathrm{H}$	0.889	³ M	1.556	$^{11}\mathrm{G}$			1.333	11 N
0.750	$^3\mathrm{G}$			1.333	$^5\mathrm{G}$	0.917	5 M			J=1	.2		
	$^7\mathrm{H}$	0.167	11 N	1.357	11 I	0.944	11 N	J=10	0			J=1	6
0.917	$^5\mathrm{G}$	0.333	⁹ M	1.381	9 H	0.958	⁷ M	0.010		1.000	¹ Q		
1.000	${}^{\scriptscriptstyle 1}\mathbf{F}$	0.500	$^7\mathrm{L}$	1.405	⁷ G	1.000	1L	0.818	⁵ Q	1.006	³Q 5 Q	1.250	$^{9}\mathrm{Q}$
	11 I		11 M	1.500	⁷ F	1.014	3 L	0.845	⁷ Q	1.019	⁵ Q	1.268	$^{11}\mathbf{Q}$
1.083	$^{3}\mathrm{F}$	0.633	9L		9G		⁹ M	0.882	⁹ Q ³O	1.038	⁷ Q	1.312	11 O
	9H	0.667	⁵ K	1 505	11 H	1.042	5 L	0.909	5O	1.064	⁹ Q ³ O		
1.167	7G	0.767	7 K	1.595	9F	1.083	⁷ L	0.927	11 Q	1.083 1.096	5O	J=1	7
1.250	5 F	0.800	11 L	1.619	11 G 9 D	1 105	¹¹ M ³ K	0.955	7 O	1.030	11 Q		
1.333	³ D ⁵ D	0.833 0.900	³ I ⁵ I	$1.667 \\ 1.714$	"D ™F	1.125 1.139	9L	$0.935 \\ 0.991$	9O	1.115	7 O	1.294	$^{11}\mathbf{Q}$
1.500			· 1	1./14	r	แ เมล์	- L	0.001	9	1 1.110	9	I	

Table 6. Landé g-values for terms of even multiplicity in order of increasing g

J = 1/2 $J = 7/2 - Cont.$ -2.000 ¹⁰ H 0.508 ¹⁰ K	alues for				II –			
-2 000 10H 0 508 10K	J=11/	2-Cont.	J = 15/2	-Cont.	J = 19/2	C-Cont.	J = 23/2	Cont.
lii	0.615	$_{ m 6}\Gamma$	0.659	10 O	0.797	$^{8}\mathbf{Q}$	1.071	e O
-1.333 ⁸ G 0.667 ⁴ H	0.713	$^{8}\Gamma$.	0.706	$^6\mathrm{N}$	0.842	$^{10}\mathbf{Q}$	1.096	^{8}O
−0.667 ⁶ F ⁸ I	0.769	4 K	0.761	⁸ N	0.857	4O	1.127	10 O
0.000 ⁴ D 0.825 ⁶ H	0.839	$^6\mathrm{K}$	0.824	4 M	0.882	₆ O	1.130	4 N
0.667 ${}^{2}P \parallel 0.889$ ${}^{2}G$		$^{10} m L$	0.831	¹⁰ N	0.917	8O	1.148	$^6\mathrm{N}$
2.000 2 S \parallel 0.952 10 I	0.923	$^2{f I}$	0.863	$^6{ m M}$	0.952	2 N	1.172	8N
2.667 ⁴ P 0.984 ⁴ G	0.937	.8 K	0.918	8 M	0.962	¹⁰ O	1.203	^{10}N
3.333 ⁶ D \parallel 1.048 ⁸ H	0.965	4 I	0.941	$^2\mathrm{L}$	0.967	4 N	1.217	$^6\mathrm{M}$
4.000 8 F 1.143 2 F	1.035	$_{ m eI}$	0.965	4L	0.992	$^6\mathrm{N}$	1.242	8 M
4.667 10 G 10	1.063	$^{10}\mathrm{K}$	0.988	¹⁰ M	1.028	8 N	1.273	$^{10}\mathrm{M}$
J = 3/2 1.238 4F	1.091	${}^2\mathbf{H}$	1.004	e Γ	1.053	² M	1.304	$^8\mathrm{L}$
$\frac{3-3/2}{}$ 1.333	1.133	4 H	1.059	$^8\mathrm{L}$	1.068	4 M	1.336	$^{10} m L$
-0.800 10 I 1.365 8 G	.	8 I	1.067	² K	1.073	$^{10}\mathrm{N}$	1.391	$^{10}{ m K}$
-0.400 ⁸ H 1.397 ⁶ F	1.203	6 H	1.090	4 K	1.093	6 M		
0.000 6 G 1.429 4 D	1.259	$^{10}\mathrm{I}$	1.129	6 K	1.128	8 M	J=2	5/2
0.400 ${}^4\mathrm{F}$ 1.587 ${}^6\mathrm{D}$	1.273	4 G		$^{10}\mathrm{L}$	1.158	$^4\mathrm{L}$		
0.800 ² D 1.619 *F	1.301	$^8\mathrm{H}$	1.184	$^{8}\mathrm{K}$	1.173	¹⁰ M	1.040	$^2\mathbf{Q}$
¹⁰ H 1.651	1.343	$^6\mathrm{G}$	1.200	4 I	1.183	6 L	1.049	$^4\mathrm{Q}$
0.933 ^{8}G $\begin{vmatrix} 1.001 & G \\ 1.714 & ^{6}P \end{vmatrix}$	1.427	$^{10}\mathrm{H}$	1.239	e I	1.218	$^8\mathrm{L}$	1.064	$^6{f Q}$
1.067 6 F $\begin{vmatrix} 1.714 & ^{6}$ P $\\ 1.809 & ^{8}$ D	1.441	$^8\mathrm{G}$	1.255	¹⁰ K	1.263	6 K	1.084	$^{8}\mathbf{Q}$
1 200 4D 1.009 °D	1.455	$^6\mathrm{F}$	1.294	8 I		$^{10}{ m L}$	1.111	$^{10}\mathrm{Q}$
1 222 2D 1.905 10 F	1.552	$^8{f F}$	1.333	6H	1.298	${}^8{ m K}$	1.120	4O
$_{1.723}$ $_{4\mathrm{P}}$ $^{1.937}$ $^{8\mathrm{P}}$	1.566	¹⁰ G	1.365	10 I	1.343	¹⁰ K	1.135	еO
$_{1.867}$ $_{^{6}\mathrm{D}}$ $^{2.000}$ $^{8}\mathrm{S}$	1.636	$^8\mathrm{D}$	1.388	$^8\mathrm{H}$	1.368	8 I	1.156	^{8}O
2.000 ${}^{4}\mathrm{S} \parallel 2.095$ ${}^{10}\mathrm{D}$	1.678	$^{10}{ m F}$	1.459	¹⁰ H	1.414	10 I	1.182	10 O
$_{8}^{\mathrm{F}}\parallel2.222$	1.762	$^{10}\mathrm{D}$	1.467	8G	1.474	$^{10}\mathrm{H}$	1.200	6N
2.133 10 G $J = 9/2$	1.818	$^{10}\mathrm{P}$	1.537	10 G			1.221	$^8\mathrm{N}$
2.400 ⁶ P	1-	13/2	1.600	¹⁰ F	J =	21/2	1.247	$^{10}{ m N}$
2.800 $^{8}\mathrm{D}$ 0.182 $^{10}\mathrm{M}$							1.280	8 M
3.200 10 F 0.364 8L	0.400	10 O	J=1	7/2	0.870	4 Q	1.307	$^{10}\mathrm{M}$
0.545 6K	0.533	$^8\mathrm{N}$			0.890	6 Q │	1.360	$^{10} m L$
J = 5/2	0.626	¹⁰ N	0.632	8 Q	0.919	^{8}Q		
0.687 ⁸ K	0.667	6 M	0.687	10 Q	0.957	² O	J=2	7/2
-0.286 10 K 0.727 4 I	0.738	8 M	0.737	6O		$^{10}\mathbf{Q}$		
0.000 8I 0.828 6I	0.800	4L	0.780	8O	0.969	4O	1.111	$^4\mathbf{Q}$
0.286 ⁶ H 0.869 ¹⁰ K	0.831	¹⁰ M	0.836	10 O	0.990	6O	1.124	$^6{f Q}$
0.514 10 I 0.909 2 H	0.851	$_{ m 6} m L$	0.842	4 N	1.019	8O	1.142	$^{8}\mathbf{Q}$
0.571 ${}^{4}G$ 0.970 ${}^{4}H$	0.923	$^8\mathrm{L}$	0.873	6 N	1.048	2 N	1.165	$^{10}\mathbf{Q}$
0.686 ⁸ H 8I	0.933	2 K	0.916	8 N	1.056	10 O	1.185	eO
0.857 2 F 1.071 6 H	0.964	4 K	0.947	² M	1.060	⁴ N	1.203	^{8}O
⁶ G	1.015	6 K	0.966	4 M	1.081	6 N	1.226	10 O
		10 L	0.972	¹⁰ N	1.110	8 N	1.259	8N
1.029 ⁴ F 1.152 ¹⁰ I	1.077	2 I	0.007				1 000	10 N
1.029 ⁴ F 1.152 ¹⁰ I 1.200 ² D 1.172 ⁴ G	11		0.997	6 M	1.143	4 M	1.282	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.087	${}^8{f K}$	1.040	8 M	1.147	¹⁰ N	1.282 1.333	$^{10}\mathrm{M}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.087 1.108	⁸ K ⁴ I	1.040 1.059	${}^8\mathrm{M}$ ${}^2\mathrm{L}$	1.147 1.164	¹⁰ N ⁶ M	1.333	¹⁰ M
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.087 1.108 1.159	⁸ K ⁴ I ⁶ I	1.040 1.059 1.077	⁸ M ² L ⁴L	1.147 1.164 1.193	¹⁰ N ⁶ M ⁸ M		¹⁰ M
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.087 1.108 1.159 1.179	⁸ K ⁴ I ⁶ I ¹⁰ K	1.040 1.059 1.077 1.096	$^8\mathrm{M}$ $^2\mathrm{L}$ $^4\mathrm{L}$ $^{10}\mathrm{M}$	1.147 1.164 1.193 1.230	¹⁰ N ⁶ M ⁸ M ¹⁰ M	1.333 $J = 2$	¹⁰ M
1.029	1.087 1.108 1.159	⁸ K ⁴ I ⁶ I ¹⁰ K ⁴ H	1.040 1.059 1.077 1.096 1.108	⁸ M ² L ⁴ L ¹⁰ M ⁶ L	1.147 1.164 1.193 1.230 1.238	¹⁰ N ⁶ M ⁸ M ¹⁰ M ⁶ L	1.333 $J = 2$ 1.172	¹⁰ M 9/2
1.029 4F 1.152 10 I 1.200 2D 1.172 4G 10H 1.212 8H 1.257 8G 1.273 6G 1.314 6F 1.333 4F 1.371 4D 1.394 10 H 1.600 4P 1.414 8G 1.657 6D 1.434 6F	1.087 1.108 1.159 1.179 1.231	⁸ K ⁴ I ⁶ I ¹⁰ K ⁴ H ⁸ I	1.040 1.059 1.077 1.096 1.108 1.152	^{8}M ^{2}L ^{4}L ^{10}M ^{6}L ^{8}L	1.147 1.164 1.193 1.230 1.238 1.267	¹⁰ N ⁶ M ⁸ M ¹⁰ M ⁶ L ⁸ L	1.333 $J = 2$ 1.172 1.188	9/2 ⁶ Q ⁸ Q
1.029 4F 1.152 10I 1.200 2D 1.172 4G 10H 1.212 8H 1.257 8G 1.273 6G 1.314 6F 1.333 4F 1.371 4D 1.394 10H 1.600 4P 1.414 8G 1.657 6D 1.434 6F 1.714 8F 1.556 6D	1.087 1.108 1.159 1.179 1.231	⁸ K ⁴ I ⁶ I ¹⁰ K ⁴ H ⁸ I ⁶ H	1.040 1.059 1.077 1.096 1.108 1.152 1.176	$^{8} m{M}$ $^{2} m{L}$ $^{4} m{L}$ $^{10} m{M}$ $^{6} m{L}$ $^{8} m{L}$ $^{4} m{K}$	1.147 1.164 1.193 1.230 1.238 1.267 1.304	¹⁰ N ⁶ M ⁸ M ¹⁰ M ⁶ L ⁸ L	1.333 $J = 2$ 1.172 1.188 1.208	9/2 6Q 8Q 10Q
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.087 1.108 1.159 1.179 1.231 1.282 1.323	8 K 4 I 6 I 10 K 4 H 8 I 6 H 10 I	1.040 1.059 1.077 1.096 1.108 1.152	⁸ M ² L ⁴ L ¹⁰ M ⁶ L ⁸ L ⁴ K ⁶ K	1.147 1.164 1.193 1.230 1.238 1.267 1.304 1.333	10 N 6 M 8 M 10 M 6 L 8 L 10 L 8 K	$ \begin{array}{c} 1.333 \\ \hline $	10 M 9/2 6 Q 8 Q 10 Q 8 O
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.087 1.108 1.159 1.179 1.231 1.282 1.323 1.354	*K 4I 6I 10K 4H *I 6H 10I 8H	1.040 1.059 1.077 1.096 1.108 1.152 1.176 1.207	⁸ M ² L ⁴ L ¹⁰ M ⁶ L ⁸ L ⁴ K ⁶ K ¹⁰ L	1.147 1.164 1.193 1.230 1.238 1.267 1.304 1.333 1.371	10 N 6 M 8 M 10 M 6 L 8 L 10 L 8 K	$ \begin{array}{c} 1.333 \\ \hline $	9/2 6 Q 8 Q 10 Q 8 O 10 O
1.029 4F 1.152 1º I 1.200 2D 1.172 4G 1º H 1.212 8H 1.257 8G 1.273 6G 1.314 6F 1.333 4F 1.371 4D 1.394 1º H 1.600 4P 1.414 8G 1.657 6D 1.434 6F 1.714 8F 1.556 6D 1.772 1º G 1.576 8F 1.886 6P 1.596 1º G 2.000 6S 1.697 8D	1.087 1.108 1.159 1.179 1.231 1.282 1.323 1.354 1.385	*K 4I 6I 10K 4H *I 6H 10I 8H 6G	1.040 1.059 1.077 1.096 1.108 1.152 1.176 1.207	* M	1.147 1.164 1.193 1.230 1.238 1.267 1.304 1.333	10 N 6 M 8 M 10 M 6 L 8 L 10 L 8 K	$ \begin{array}{c} 1.333 \\ \hline $	10 M 9/2 6 Q 8 Q 10 Q 8 O
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.087 1.108 1.159 1.179 1.231 1.282 1.323 1.354 1.385 1.446	*K 4I 6I 10K 4H 8I 6H 10I 8H 6G	1.040 1.059 1.077 1.096 1.108 1.152 1.176 1.207	* M 2 L 4 L 10 M 6 L 8 L 4 K 6 K 10 L 8 K 10 L	1.147 1.164 1.193 1.230 1.238 1.267 1.304 1.333 1.371 1.429	10 N 6 M 8 M 10 M 6 L 8 L 10 L 8 K 10 K 10 I	$ \begin{array}{c} 1.333 \\ \hline $	10 M 9/2 6 Q 8 Q 10 Q 8 O 10 O 10 N
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.087 1.108 1.159 1.179 1.231 1.282 1.323 1.354 1.385 1.446 1.456	*K 4I 6I 10K 4H 8I 6H 10I 8H 6G 10H 8G	1.040 1.059 1.077 1.096 1.108 1.152 1.176 1.207 1.251 1.294 1.307	* M 2 L 4 L 10 M 6 L 8 L 4 K 6 K 10 L 8 K 10 L	1.147 1.164 1.193 1.230 1.238 1.267 1.304 1.333 1.371	10 N 6 M 8 M 10 M 6 L 8 L 10 L 8 K 10 K 10 I	$ \begin{array}{c} 1.333 \\ \hline $	10 M 9/2 6 Q 8 Q 10 Q 8 O 10 O 10 N
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.087 1.108 1.159 1.179 1.231 1.282 1.323 1.354 1.385 1.446 1.456 1.538	*K 4I 6I 10K 4H *I 6H 10I *H 6G 10H *G *F	1.040 1.059 1.077 1.096 1.108 1.152 1.176 1.207 1.251 1.294 1.307 1.337	*M 2 L 4 L 10 M 6 L * K 6 K 10 L 8 K 6 I 10 K 8 I	1.147 1.164 1.193 1.230 1.238 1.267 1.304 1.333 1.371 1.429	10 N 6 M 8 M 10 M 6 L 8 L 10 L 8 K 10 K 10 I	$ \begin{array}{c} 1.333 \\ J = 2 \\ \hline 1.172 \\ 1.188 \\ 1.208 \\ 1.241 \\ 1.261 \\ 1.310 \\ \end{bmatrix} $	10 M 9/2 6 Q 8 Q 10 Q 8 O 10 O 10 N
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.087 1.108 1.159 1.179 1.231 1.282 1.323 1.354 1.385 1.446 1.456 1.538 1.549	*K 4I 6I 10K 4H 8I 6H 10I 8H 6G 10H 8G 8F	1.040 1.059 1.077 1.096 1.108 1.152 1.176 1.207 1.251 1.294 1.307 1.337 1.393	* M 2 L 4 L 10 M 6 L 8 L 4 K 6 K 10 L 8 K 6 I 10 K 8 I	1.147 1.164 1.193 1.230 1.238 1.267 1.304 1.333 1.371 1.429 J=2	10 N 6 M 8 M 10 M 6 L 8 L 10 L 8 K 10 K 10 I	1.333 $J = 2$ 1.172 1.188 1.208 1.241 1.261 1.310 $J = 3$ 1.226	10 M 9/2 6 Q 8 Q 10 Q 8 O 10 O 10 N
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.087 1.108 1.159 1.179 1.231 1.282 1.323 1.354 1.385 1.446 1.456 1.538 1.549 1.631	*K 4I 6I 10K 4H *I 6H 10I *H 6G 10H *G 10F	1.040 1.059 1.077 1.096 1.108 1.152 1.176 1.207 1.251 1.294 1.307 1.337 1.393 1.412	*M	$\begin{array}{c} 1.147 \\ 1.164 \\ 1.193 \\ 1.230 \\ 1.238 \\ 1.267 \\ 1.304 \\ 1.333 \\ 1.371 \\ 1.429 \\ \\ \\ J=5 \\ \hline 0.960 \\ 0.970 \\ \end{array}$	10 N 6 M 8 M 10 M 6 L 8 L 10 L 8 K 10 K 10 I	1.333 $J = 2$ 1.172 1.188 1.208 1.241 1.261 1.310 $J = 3$ 1.226 1.243	10 M 9/2 6 Q 8 Q 10 Q 8 O 10 O 10 N 1/2 8 Q 10 Q
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.087 1.108 1.159 1.179 1.231 1.282 1.323 1.354 1.385 1.446 1.456 1.538 1.549	*K 4I 6I 10K 4H 8I 6H 10I 8H 6G 10H 8G 8F	1.040 1.059 1.077 1.096 1.108 1.152 1.176 1.207 1.251 1.294 1.307 1.337 1.393 1.412	8 M 2 L 4 L 10 M 6 L 8 L 4 K 6 K 10 L 8 K 6 I 10 K 8 I 10 I 8 H 10 H	$\begin{array}{c} 1.147 \\ 1.164 \\ 1.193 \\ 1.230 \\ 1.238 \\ 1.267 \\ 1.304 \\ 1.333 \\ 1.371 \\ 1.429 \\ \\ \\ J=2 \\ \hline 0.960 \\ 0.970 \\ 0.988 \\ \end{array}$	10 N 6 M 8 M 10 M 6 L 8 L 10 L 8 K 10 K 10 I 23/2	1.333 $J = 2$ 1.172 1.188 1.208 1.241 1.261 1.310 $J = 3$ 1.226	10 M 9/2 6 Q 8 Q 10 Q 8 O 10 O 10 N
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.087 1.108 1.159 1.179 1.231 1.282 1.323 1.354 1.385 1.446 1.456 1.538 1.549 1.631 1.692	*K 4I 6I 10K 4H 8I 6H 10I 8H 6G 10H 8G 8F 10G 10F 10D	1.040 1.059 1.077 1.096 1.108 1.152 1.176 1.207 1.251 1.294 1.307 1.337 1.393 1.412	*M	1.147 1.164 1.193 1.230 1.238 1.267 1.304 1.333 1.371 1.429 $J = 9$ 0.960 0.970 0.988 1.012	10 N 6 M 8 M 10 M 6 L 8 L 10 L 8 K 10 K 10 I 23/2	J = 2 1.172 1.188 1.208 1.241 1.261 1.310 $J = 3$ 1.226 1.243 1.290	10 M 9/2 6 Q 8 Q 10 Q 8 O 10 O 10 N 1/2 8 Q 10 Q 10 O
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1.087 \\ 1.108 \\ 1.159 \\ 1.179 \\ 1.231 \\ \\ 1.282 \\ 1.323 \\ 1.354 \\ 1.385 \\ 1.446 \\ 1.456 \\ 1.538 \\ 1.549 \\ 1.631 \\ 1.692 \\ \\ \\ J = \end{array}$	*K 4I 6I 10K 4H *I 6H 10I *H 6G 10H *G 10F 10G 10F	1.040 1.059 1.077 1.096 1.108 1.152 1.176 1.207 1.251 1.294 1.307 1.337 1.393 1.412	*M ² L ⁴ L ¹⁰ M ⁶ L ⁸ K ⁶ K ¹⁰ L ⁸ K ⁶ I ¹⁰ K ⁸ I ¹⁰ I ⁸ H ¹⁰ H ¹⁰ G	$\begin{array}{c} 1.147 \\ 1.164 \\ 1.193 \\ 1.230 \\ 1.238 \\ 1.267 \\ 1.304 \\ 1.333 \\ 1.371 \\ 1.429 \\ \\ \\ J=2 \\ \hline 0.960 \\ 0.970 \\ 0.988 \\ \end{array}$	10 N 6 M 8 M 10 M 6 L 8 L 10 L 8 K 10 K 10 I 23/2	1.333 $J = 2$ 1.172 1.188 1.208 1.241 1.261 1.310 $J = 3$ 1.226 1.243	10 M 9/2 6 Q 8 Q 10 Q 8 O 10 O 10 N 1/2 8 Q 10 Q 10 O
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.087 1.108 1.159 1.179 1.231 1.282 1.323 1.354 1.385 1.446 1.456 1.538 1.549 1.631 1.692	*K 4I 6I 10K 4H 8I 6H 10I 8H 6G 10H 8G 8F 10G 10F 10D	1.040 1.059 1.077 1.096 1.108 1.152 1.176 1.207 1.251 1.294 1.307 1.337 1.393 1.412 1.467 1.529	*M ² L ⁴ L ¹⁰ M ⁶ L ⁸ K ⁶ K ¹⁰ L ⁸ K ⁶ I ¹⁰ K ⁸ I ¹⁰ I ⁸ H ¹⁰ H ¹⁰ G	1.147 1.164 1.193 1.230 1.238 1.267 1.304 1.333 1.371 1.429 $J = 9$ 0.960 0.970 0.988 1.012	10 N 6 M 8 M 10 M 6 L 8 L 10 L 8 K 10 K 10 I 23/2	J = 2 1.172 1.188 1.208 1.241 1.261 1.310 $J = 3$ 1.226 1.243 1.290	10 M 9/2 6 Q 8 Q 10 Q 8 O 10 O 10 N 1/2 8 Q 10 Q 10 O

TABLE 7. The Periodic System^a

	89		ာ	4		2		1	9			7	
28	2p	38	3p	48 3d (4s)	4 <i>p</i>	58 4d(58)	5p	68 4f (5d)	29	<i>d</i> 9			(4 L) P9
3 %		Na 11		N 19		Rb 37		Cg 55			Fr 87		
Be 4		Mg 12		Ca 20		Sr 38		В а 56			R.8 88		
	3 5		A1 13		Ga 31		In 49			T1 81			
	0 C		Si I		Ge 32		\mathbf{Sn}			Pb 82			
	0 8 V		P S 15 16		As Se 33 34		Sb T 51 5			Bi I 83 8			
	9 H		Cl 3 17		e Br 4 35		Te I 52 53			Po At 84 85			
	Ne 10		Ar 18		Kr 36		Xe 54			t Rn 5 86			
				Sc 21		Y 39			15.				ភ្ន
				Ti 22		Zr 40			Lu Hf 71 72				3 104
				23 2,		Nb N			Ta 73				105
				Cr M ₁ 24 25		40 Tc 2 43			W B 74 75				06 10
				Mn Fe 25 26		Nb Mo Te Ru Rh Pd Ag 41 42 43 44 45 46 47			Re Os 75 76				7 108
				C ₀		Rh 45			Ir 77				3 109
				Ni C 28 29		Pd A			Pt /				110
				Cu Zn 29 30		lg Cd 7 48			Au 11g 79 80				Lr 103 104 105 106 107 108 109 110 111 112
			i					La					61
								Ce	S C			Ac Th 89 90	
								Pr	e c			Pa 91	
								d PN	200			0 3 3	
								Pm Sm	70			Np Pu Am Cm Bk 93 94 95 96 97	
								ng u	3			u An	
								PS	# 5			n Cm 96	
								Tb	3			Bk 97	
								Dy Ho	9			8 C	
								lo Er				99 E	
								Tm				Fm Md 100 101	

*The arrangement follows M. Catalán. Each row is labeled by the electron subshell being filled. If the filling involves a second subshell for some elements in the row, the secondary type of electron is given in parenthesis.

LANTHANUM

La I

57 electrons Z=57

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ 5 $d6s^2$ $^2D_{3/2}$

Ionization energy 44981±5 cm⁻¹

 5.5770 ± 0.0006 eV

Identified even configurations $5d6s^2$, $5d^26s$, $5d^3$, 4f6s6p, $5d^27s$, 5d6s7s, $5d^26d$

Identified odd configurations $5d6s6p, 5d^26p, 6s^26p, 4f5d6s, 4f6s^2, 4f5d^2?, 5d^27p?,$

 $6s^28p-23p$

Emission Spectrum, Energy Levels, g Values

Meggers' [1932] list of wavelengths from arc and spark sources has about 700 lines assigned to La I (2647–10952 Å). The basic analysis of the spectrum by Russell and Meggers [1932] gave classifications for about 540 of these lines, and their list has not yet been superseded by publication of the more recent observations. Fisher, Knopf, and Kinney [1959] gave 14 La lines in the infrared region 1.11–1.41 μ m, with 10 lines classified by known La I levels.

Stein [1967a, 1967b] was able to locate the $5d^3$ ⁴F term using modern computer techniques to calculate several important configurations of both parities and to make energy-level searches. The more comprehensive work on the analysis during the past 10 years is partly based on new but as yet unpublished observations carried out at the Argonne National Laboratory and at the Laboratoire Aimé Cotton in Orsay [Giacchetti and Wilson, 1968, 1976; Ben Ahmed, Bauche-Arnoult, and Wyart, 1974; Ben Ahmed, Verges, Wilson, and Giacchetti, 1976; Ben Ahmed, 1976, 1977]. Giacchetti and Wilson photographed the spectrum emitted from electrodeless lamps over the region 2500–9000 Å, and Ben Ahmed and Verges obtained Fourier-transform spectra of such lamps in the range 6900 Å to 2.9 μ m. The list of stronger La lines given by Meggers, Corliss, and Scribner [1975] for the region 2187–8840 Å includes some energy-level classifications of La I lines by Giacchetti and Wilson, as well as classifications from the earlier analysis of Russell and Meggers.

All levels given here except the $6s^28p-23p$ series members were reevaluated or newly derived in the extensions of the analysis mentioned above. The level positions are from Ben Ahmed et al. [1976a, 1976b], Ben Ahmed [1976, 1977], and Giacchetti and Wilson [1976]. The combination arrays show the positions of the low even levels to be consistent to within a few units in the third place [Giacchetti and Wilson, 1976].

Meggers' measurements of optical Zeeman-effect patterns in La I and La II were largely superseded by the more accurate determinations of Harrison, Rosen, and McNally [1945] at M.I.T. Zeeman data for 152 La I lines and 506 La II lines were given by Harrison et al., who noted that their g-value determinations from different lines "agree usually to within 0.004 g unit." New measurements of Zeeman-effect patterns obtained at the Argonne Laboratory enabled Ben Ahmed to determine many J values and extend the analysis. The two- and three-place g values here are from these new data [Ben Ahmed et al., 1976a, 1976b; Ben Ahmed, 1976, 1977], or from Harrison et al. [1945], or are averages of values from these sources. Childs and Goodman [1971] used the atomic-beam magnetic-resonance technique to obtain the five-place g values given for 13 low even levels. The stated uncertainties vary from 3 to 8 units in the fifth place except for the $^4P_{1/2}$ level and the two $5d^2(^1D)6s$ 2D levels, for which the uncertainties are 2 to 3 units in the fourth place.

Theoretical Interpretation

Russell and Meggers identified the lowest even and odd levels as belonging respectively to $5d6s^2$, $5d^26s$ and 5d6s6p, $6s^26p$ terms. A number of their level assignments to higher configurations such as $5d^27s$ and $5d^26p$ have also been confirmed, but much of the present interpretation was possible only with modern calculations and extension of the analysis. The eigenvector percentages given here for the even levels are from the calculation of $(5d6s^2 +$ $5d^26s+5d^3+4f6s6p+5d6s7s+5d^27s$) by Ben Ahmed et al. [1976a]; these six configurations account for the known even levels up to about 33000 cm⁻¹. Although configuration-interaction and intermediate-coupling effects are apparent in the eigenvectors, the purities nevertheless allow the grouping of most of these levels into Russell-Saunders terms. Ben Ahmed at al. [1976a] assigned six levels to two terms of the $5d^26d$ configuration, which was not included in the calculation. With regard to the uninterpreted even levels above 33000 cm⁻¹ these authors note that "Several overlapping configurations are expected to lie in this energy region, in particular $6p^25d$, $5d^26d$, 5d6s6d and $6s^26d$, not forgetting those levels above 35000 cm⁻¹ belonging to the configurations already studied. Because of this confusion of levels (made worse by the large departures from LS coupling) we have not yet been able to classify the great majority of these levels."

Stein's [1967b] calculations for La I included the odd group $(5d6s6p+6s^26p+5d^26p+4f6s^2+4f5d6s)$. He found several of the configuration interactions to be very large (see below), and his eigenvector assignments correctly located the $4f6s^2$ and 4f5d6s configurations and showed the latter to be the main configuration for most of the levels previously assigned to $4f5d^2$. Brewer [1971] also assigned or reassigned a number of the odd levels to 4f5d6s.

The percentages given here for the odd levels are from the thesis of Ben Ahmed [1977], who has calculated the five configurations listed above in connection with her extension of the analysis. We list the percentage for the largest single eigenvector component first, as usual. This number is, however, followed by the largest total percentage contribution to the eigenvector from a configuration different from that for the first percentage; if no such percentage from another configuration is $\geq 10\%$, the second percentage space is blank. The large configuration mixing is apparent, and in some cases the second listed configuration is the largest total contributor to the eigenvector. Ben Ahmed regards the calculation as preliminary; a calculation including additional configurations is needed, since large deviations occur for some levels in the region above about 23000 cm⁻¹. The inclusion of additional configurations, particularly $4f5d^2$, will of course change some of the eigenvectors significantly. Ten of the eleven unidentified levels between 29466 and 33820 cm⁻¹ can be assigned to doublet terms of the $4f5d(^3G^{\circ})6s$ subconfiguration; however, these levels and the $5d^2(^3P)6p$ $^4S_{3/2}^{\circ}$ level were omitted from the calculation because of large deviations [Ben Ahmed, 1977]. The tentative assignments of several odd levels above $34000~{\rm cm^{-1}}$ to $4f5d^2$, $5d^27p$, and 5d6s7p terms are also due to Ben Ahmed. The $4f5d^2$ configuration probably accounts for many of the unidentified levels in this region.

5d6s² ²D - 6s²np ²P° Absorption Series and the Ionization Energy

Garton and Wilson [1966] observed two series interpreted as $5d6s^2 \, ^2D_{5/2} - 6s^2np \, ^2P_{3/2}^{\circ}$ and $5d6s^2 \, ^2D_{3/2} - 6s^2np \, ^2P_{1/2,3/2}^{\circ}$, respectively (n=8-23). The lines are broadened by autoionization for $n \ge 9$, and none of the (theoretical) doublets of the latter series were resolved. In some cases we have given the positions for the $6s^2np \, ^2P_{3/2}^{\circ}$ levels as derived from the former series separately from the corresponding $np \, ^2P^{\circ}$ positions from the latter series, but the differences may not be significant. Garton and Wilson derived the quoted value for the La II $6s^2 \, ^1S_0$ limit from these series, and thus also the $5d^2 \, ^3F_2$ principal ionization energy.

References

```
Ben Ahmed, Z., unpublished material (1976). EL ZE PT
Ben Ahmed, Z., Thesis, Univ. Paris. Orsay (1977). EL CL ZE PT
Ben Ahmed, Z., Bauche-Arnoult, C., and Wyart, J. F., Physica (Utrecht) 77, 148 (1974). EL ZE Hfs PT
Ben Ahmed, Z., Verges, J., Wilson, M., and Giacchetti, A., Physica (Utrecht) 84C, 275 (1976a). EL ND ZE PT
Ben Ahmed, Z., Verges, J., Wilson, M., and Giacchetti, A., unpublished material (1976b). EL ZE
Brewer, L., J. Opt. Soc. Am. 61, 1101 (1971). ND
```

La I—Continued

Childs, W. J., and Goodman, L. S., Phys. Rev. A 3, 25 (1971). ZE Hfs PT

Fischer, W., Hühnermann, H., and Mandrek, K., Z. Phys. 269, 245 (1974). IS Fisher, R. A., Knopf, Jr., W. C., and Kinney, F. E., Astrophys. J. 130, 683 (1959). CL W

Garton, W. R. S., and Wilson, M., Astrophys. J. 145, 333 (1966). EL CL W IP

Giacchetti, A., and Wilson, M., J. Opt. Soc. Am. 58, 740A (1968).

Giacchetti, A., and Wilson, M., unpublished material (1976). EL CL Hfs

Harrison, G. R., Rosen, N., and McNally, Jr., J. R., J. Opt. Soc. Am. 35, 658 (1945). ZE

King, A. S., and Carter, E., Astrophys. J. 65, 86 (1927). W

Meggers, W. F., J. Washington Acad. Sci. 17, 25 (1927). EL

Meggers, W. F., J. Res. Nat. Bur. Stand. (U.S.) 9, 239 (1932). W ZE

Meggers, W. F., and Burns, K., J. Opt. Soc. Am. 14, 449 (1927). EL Hfs

Meggers, W. F., Corliss, C. H., and Scribner, B. F., Nat. Bur. Stand. (U.S.), Monogr. 145, Part 1, 403 pp. (1975). CL

Moore, C. E., Atomic Energy Levels, Nat. Bur. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 35, Vol. III, 282 pp. (1971). Compilation EL ZE IP

Russell, H. N., and Meggers, W. F., J. Res. Nat. Bur. Stand. (U.S.) 9, 625 (1932). EL CL ZE IP

Stein, J., J. Opt. Soc. Am. 57, 333 (1967a). EL ND CL PT

Stein, J., Thesis, Hebrew Univ. Jerusalem, Israel, 152 pp. (1967b). EL ND CL PT

Wilson, M., Phys. Rev. A 3, 45 (1971). AT

[May 1977]

La I, Even Parity

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages			
$5d 6s^2$	$^{2}\mathrm{D}$	3/2	0.000	0.79755	85	10	5d ² (¹ D)6s ² D	
		5/2	1053.164	1.19907	82	13		
$5d^{2}(^{3}F)6s$	4F	3/2	2668.188	0.40446	98	1	$5d6s^2$ ² D	
, ,		5/2	3010.002	1.02940	98	1	_	
		7/2	3494.526	1.23742	99	1		
		9/2	4121.572	1.33278	100	1	(1) 1	
$5d^2(^3F)6s$	2F	5/2	7011.909	0.89830	86	5	(¹D) ²D	
		7/2	8052.162	1.13469	93	4	` _ '	
$5d^2(^3P)6s$	4P	1/2	7231.407	2.65252	99	1	(¹S) ²S	
		3/2	7490.521	1.70427	97	2	$({}^{1}\overset{\sim}{\mathrm{D}}) {}^{2}\overset{\sim}{\mathrm{D}}$	
		5/2	7679.939	1.50558	82	10	(^{1}D) ^{2}D	
$5d^{2}(^{1}D)6s$	$^{2}\mathrm{D}$	3/2	8446.044	0.93603	61	18	(3P) 2P	
		5/2	9183.797	1.25449	67	16	(³ P) ⁴ P	
$5d^2(^3P)6s$	² P	1/2	9044.214	0.690	72	26	$5d^3$ ² P	
		3/2	9719.439	1.220	54	21	5ú 1	
$5d^2(^{1}G)6s$	² G	9/2	9919.821	1.107	91	8	$5d^3$ ² G	
		7/2	9960.904	0.892	88	9	<i>50.</i> G	
$5d^3$	4F	3/2	12430.609	0.411	98.	1	$^2\mathrm{D2}$	
		5/2	12787.404	1.026	99	1	D2	
		7/2	13238.323	1.228	99			
		9/2	13747.276	1.220	97	2	${}^{2}\mathrm{G}$	
$5d^3$	4P	1/2	16617.30		97	2	$5d^2(^1S)6s^2S$	
	_	3/2	16735.14	1.698	94	2	5d ² (³ P)6s ² P	
		5/2	17099.38	1.000	97	2	² D1	
$5d^2(^1S)6s$	² S	1/2	16991.42		97	2	$5d^3$ 4P	
$5d^3$	² G	7/2	17023.36	0.880	90	9	5d²(¹G)6s ²G	
		9/2	17140.90	,	54	39	² H	
$5d^3$	$^{2}D2$	3/2	18037.64		57	26	² D1	
		$\frac{5}{2}$	18776.62		68	20 21	DI	

La I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Le	ading percentages
$5d^3$	²H	$\frac{11}{2}$ $\frac{9}{2}$	18310.92 18315.88	0.970	100 61		36	$^{2}\mathrm{G}$
$5d^3$	²P	$\frac{1}{2}$ $\frac{3}{2}$	20392.60 21037.30	0.709 1.316	71 67		26 24	5d ² (³ P)6s ² P
$5d^3$	2F	7/2	21943.80	1.010	95		4	5d ² (³ F)6s ² F
.		5/2	21969.32		93		3	Sw (1)00 1
$5d^3$	² D1	⁵ / ₂ ³ / ₂	25414.63		64 56		23 32	² D2
$4f6s(^3F^\circ)6p$	4F	3/2	28742.34	0.45	96		2	(3F°) 2D
		$\frac{5}{2}$	28754.96 30055.05	0.93 1.19	64		15 15	(¹ F°) ² F (¹ F°) ² F
		9/2	30033.03	1.19	54 91		3	$(^{3}F^{\circ})$ ^{2}G
$4f6s(^3\mathrm{F}^\circ)6p$		7/2	29045.86	1.15	40	4F	33	(1F°) 2F
$4f6s(^3\mathrm{F}^\circ)6p$	4G	5/2	29578.82	0.78	62		23	$(^3F^\circ)$ 4F
		7/2	30401.70	1.03	77		15	$(^{1}F^{\circ})$ ^{2}F
		$\frac{9}{2}$ $\frac{11}{2}$	30934.76	1.16	78 100		18	(1F°) 2G
$5d^2(^3{ m F})7s$		3/2	29874.97	0.70	42	4F	30	$5d6s(^3D)7s$ 4D
$5d^2(^3{ m F})7s$		5/2	29905.33	1.14	20	4F	20	$5d6s(^{1}D)7s$ ^{2}D
$5d6s(^3D)7s$	4D	1/2	30019.24	0.00	100			
		3/ ₂	30169.82	0.91	58		39	5d ² (³ F)7s ⁴ F
		⁵ / ₂ ⁷ / ₂	30354.28 31287.59	1.07 1.41	44 85		30 7	5d ² (³ F) ⁷ s ⁴ F (³ F°) ⁴ D
$4f6s(^{1}\mathrm{F}^{\circ})6p$	2F	5/2	30305.61	0.84	49		25	$(^3F^\circ)$ 4G
$4f6s(^3\mathrm{F}^\circ)6p$	⁴ D	5/2	30908.86	1.25	58		23	(¹F°) ²D
		$^{3}/_{2}$	30988.36	1.12	85		7	$(^{1}F^{\circ})$ ^{2}D
		1/2	31061.85	0.00	100			(1E%) 2C
5 J2/3T/\/7 a	410	7/2	31925.00	1.27	63			(1F°) 2G
$5d^2(^3F)7s$	⁴F	7/2	31059.69	1.22	83			(3F) 2F
$5d^2(^3F)7s$		5/2	31119.02	0.98	48	4F	46	(3F) 2F
5d6s(1D)7s		3/2	31247.78	0.78	33	$^{2}\mathrm{D}$	30	$5d^2(^1D)7s^2D$
5d6s(3D)7s	0.5	5/2	31351.60	1.18	34	⁴ D	21	(1D) 2D
5d6s(3D)7s	² D	$\frac{3}{2}$ $\frac{5}{2}$	31688.66 32872.94	0.81 1.19	78 74		9 10	$5d^{3} {}^{2}D1$ $5d^{2}({}^{1}D)7s {}^{2}D$
$5d^2(^3F)7s$	4F	9/2	31923.96	1.34	99		1	(¹G) ²G
$5d^2(^3F)7s$	2F	7/2	32108.48	1.13	82		17	(^3F) 4F
$4f6s(^{1}F^{\circ})6p?$	² G?	7/ ₂ 9/ ₂	32219.53	1.06	46 50		19 22	$({}^{3}F^{\circ}) {}^{4}D$ $({}^{3}F^{\circ}) {}^{2}G$
$4f6s(^{1}\mathrm{F}^{\circ})6p$		5/2	32348.34	1.23	44	$^{2}\mathrm{D}$	36	$(^3F^\circ)$ 4D
		1/2	33143.55	1.39				
$5d^2(^3F)6d$	4H	7/ ₂ 9/ ₂ 11/ ₂	33286.50 33753.41	0.78 1.02				

La I, Even Parity—Continued

La I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
5d ² (³ F)6d	4G	5/2	33350.00	0.68			3/2	35875.99	1.78
- , ,		7/2	33756.45 34526.69	0.99			7/2	35907.05	1.19
		9/ ₂ 11/ ₂	34526.69 35236.20	1.21			7/2	35931.75	1.28
		1/2	33419.48	1.03			1/2	36027.41	2.17
		3/2	33657.05	1.17			9/2	36034.60	1.10
		1	33678.21	0.99			3/2	36065.91	0.96
		⁵ / ₂	34032.72	0.90			5/2	36109.65	1.28
		5/2	34124.64	0.89			11/2	36159.90	1.28
		1/2	34249.24	0.97			3/2	36172.80	1.24
		7/2	34272.48	0.84			7/2	36220.33	1.13
		3/2	34369.05	1.62			5/2	36258.93	1.40
		5/2	34400.06	1.21			9/2	36265.28	1.22
			34482.28	1.21			7/2	36292.96	1.23
		7/2	34488.22	1.75			9/2	36400.72	1.18
		1/2	34529.88	0.88			7/2	36792.36	0.89
		5/2	34545.80	0.83			9/2	36822.77	0.90
		3/2		1.32			1/2	36840.70	2.02
		1/2	34590.09	1.07			5/2	36851.32	1.21
		9/2	34634.98	1.10			3/2	36853.58	1.13
		7/2	34663.99				3/2	37092.15	0.66
		1/2	34752.58	1.33			3/2	37248.61	1.38
		3/2	34758.54	1.28			5/2	37544.15	1.06
		5/2	34787.23	1.01			3/2	37612.91	1.43
		1/2	34860.96	0.95			1/2	37659.48	0.91
		5/2	34880.63	0.91			71	95099 50	0.00
		3/2	34906.89	1.07			7/2	37833.78	0.90
		7/2	34968.73	1.05			5/2	37855.75	1.28
		3/2	35009.99	1.22			5/2	37903.24	0.93
		7/2	35096.10	1.20			9/2	38172.80	0.93
		5/2	35117.70	1.20			7/2	38178.00	0.99
		9/2	35169.58	0.95			5/2	38378.90	1.06
		3/2	35280.42	0.94			7/2	38391.75	1.04
		7/2	35298.12	1.09			3/2	38478.84	0.90
		3/2	35308.40	1.04			9/2	38755.72	
		5/2	35393.38	1.28			1/2	38921.15	0.22
		5/2	35414.45	1.10			7/2	38991.90	1.03
		9/2	35445.98	1.11			3/2	39110.34	0.87
		3/2	35494.05	0.83			9/2	39391.23	1.04
		9/2	35552.32	1.15			9/2	40084.07	1.25
		7/2	35570.48	1.11			1/2	40243.01	2.24
		1/2	35581.78	1.80					
		3/2	35628.33	1.13	La II $({}^{3}\mathbf{F}_{2})$	Limit		44981	

La I, Odd Parity

5d6s(PD6p	Configuration	Term	J	Level (cm ⁻¹)	g			Lead	ing percentages
1,804.08 1.09 53 10 5d ² 6p 1237 100 10	5d6a(3D)6a	4 L °	3/-	19060 90	0.59	71			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3a6s(*D)6p	-1	5/2 5/2					10	$5d^{2}6n$
			7/2					10	$\delta a = 0p$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1.201				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 10 (OT)\A				1000		4530	• •	F .19 C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$5d6s(^{3}D)6p$		5/2	13631.04		43	4F.°	10	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$5d6s(^3D)6p$	⁴ D°						26	$6s^{2}(^{1}S)6p^{2}P^{\circ}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			7/2 7/-						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				10099.29					_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$5d6s(^3D)6p$		3/2	15031.64	0.92	25	$^{2}\mathrm{D}^{\circ}$	11	$5d^2 6p$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$4f6s^2$	² F°	$^{5}/_{2}$	15196.83	0.906	53			5d6s6p
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			7/2	16538.39	1.179	51		29	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5d6s(^3\mathrm{D})6p$		1/2	15219.89	0.313	46	$^{4}\mathrm{D}^{\circ}$	35	$6s^2(^1S)6p$ $^2P^\circ$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$6s^2(^1\mathrm{S})6p$		3/2	16280.26	1.326	40	${}^{2}\mathrm{P}^{\circ}$	51	5d6s6p
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$5d^2(^3{ m F})6p$		5/2	16856.80	0.810	2 8	⁴G°	24	$4f6s^2$ ² F°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5d6s(3D)6n	4p ∘	1/0	17567 19	2.63	ØЗ			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5005(B)0p	1	$\frac{12}{3/2}$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			5/2					31	$5d^{2}6p$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5d2(3F)6n						4G°		•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	400					ď		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$5d^{2}(^{3}F)6p$	⁴ G°	5/2		1.061				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1/2					23	5absbp
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						96			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5d^{2}(^{3}\mathrm{F})6p$	$^{2}\mathrm{D}^{\circ}$							5d6s6p
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			5/2	19379.40	1.186	54		30	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$5d6s(^{1}\mathrm{D})6p$		3/2	20018.99	1.01	37	${}^{2}\mathrm{P}^{\circ}$	51	$5d^2 6p$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$5d^{2}(^{3}F)6p$	4F°	3/2	20082.98	0.724	72		11	5d6s6p
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$^{5}/_{2}$		1.006				•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			$^{7}/_{2}$		1.178	63			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			9/2	21384.00	1.278	67			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$5d6s(^{1}\mathrm{D})6p$		1/2	20197.34	0.63	47	${}^{2}\mathrm{P}^{\circ}$	50	$5d^2 6p$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$5d^2(^3\mathrm{F})6p$		5/2	20972.17	0.890	41	${}^{2}F^{\circ}$	28	5d6s6p
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$5d^2(^3\mathrm{F})6p$		7/2	21447.86	1.103	31	${}^{2}\mathrm{F}^{\circ}$	16	5d6s6p
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.d2/3F\G _m	200	7/6	21662 51	0.995	51		15	4f 5d6s
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5α (Γ)0p		$\frac{9}{2}$						<i>y 50000</i>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$5d^2(^3{ m F})6p$	$^{4}\mathrm{D}^{\circ}$	1/2	22246.64	0.04	89			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(- /- F		3/2	22439.36	1.192				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			$^{5}/_{2}$	22804.25	1.362				
$5d^2(^3P)6p$ $^2S^{\circ}$ $^{1/2}$ $^{23260.92}$ $^{1.891}$ 85			7/2	23303.26	1.178				
	$5d6s(^3D)6p$		7/2	23221.10	1.078	23	${}^{2}\mathrm{F}^{\circ}$	47	4f5d6s
$Af5d(^{1}G^{\circ})6s$ $^{2}G^{\circ}$ $^{9}/_{2}$ $^{2}S/66.81$ 1 1 1 1 1 1 2 1 5 2 6 6	$5d^{2}(^{3}P)6p$	² S°	1/2	23260.92	1.891	85			
TI DOI 1 100 14 AD 400004 1.11 40 01 00 00	$4f5d(^{1}\mathrm{G}^{\circ})6s$	$^{2}\mathrm{G}^{\circ}$	9/2	23466.84	1.11	49		31	$5d^2 6p$

La I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ding percentages
- 10.000								
$5d^2(^3{ m P})6p$	⁴ D°	1/2	23528.45	0.153	85			
		3/2	23704.81	1.133	79			
		⁵ / ₂	24046.10	1.271	63		16	4f5d6s
		⁷ / ₂	25083.36	1.381	83		12	4f5d6s
$5d6s(^3D)6p$		5/2	23874.95	0.962	34	${}^{2}\mathrm{F}^{\circ}$	32	4f5d6s
$4f5d(^3\mathrm{H}^\circ)6s$	⁴ H°	7/2	24088.54	0.72	73		14	$5d^26p$
		9/2	24249.00	0.96	65		12	$5d^26p$
		11/2	24841.42	1.15	86			
		13/2			100			
$4f5d(^3F^\circ)6s$	4F°	3/2	24173.83	0.717	68		13	$5d^26p$
		⁵ / ₂	24507.87*	1.158	48		21	
		7/2	25380.27	1.228	84		10	
		9/2	25997.17	1.319	85		11	
$4f5d(^{1}\mathrm{G}^{\circ})6s$		7/2	24409.68	1.161	40	² G°	29	$5d^26p$
$5d^2(^3\mathrm{P})6p$	⁴ S°	3/2	24639.26	1.781	59		14	5d6s6p
$5d^2(^3P)6p$?	²D°?	3/2	24762.60	0.854	49		26	5d6s6p
4f 5d(1D°)6s?		3/2	24910.38	0.724	22	$^{2}\mathrm{D}^{\circ}$		$5d^2 6p$
$5d^2(^3P)6p?$							44	•
-		5/2	24984.29	1.063	31	$^{2}\mathrm{D}^{\circ}$	49	4f5d6s
4f 5d(3H°)6s		9/2	25089.35	0.94	42	²H°	33	$5d^2 6p$
$5d^2(^3\mathrm{P})6p$		5/2	25218.27	1.244	21	4P°	26	4f5d6s
$5d6s(^3D)6p$		1/2	25453.95	0.984	31	${}^{2}\mathrm{P}^{\circ}$	35	$5d^2 6p$
$5d^2(^3\mathrm{P})6p$	4P°	1/2	25616.95	2.274	62		13	5d6s6p
		3/2	25643.00	1.59	65		13	$4f5d\dot{6}s$
		5/2	26338.93	1.524	60		18	4f5d6s
$5d^2(^1\mathrm{G})6p$		11/2	25874.52	1.082	47	² H°	52	4f5d6s
$5d^{2}(^{3}P)6p$		3/2	25950.32	1.433	33	4S°	19	4f5d6s
$4f5d(^{3}G^{\circ})6s$	4G°	5/2	27022.62	0.58	78.			
•		7/2	27455.31	0.976	86		11	$5d^26p$
		9/2	28089.17	1.163	95			su sp
		11/2	28743.24	1.27	96			
$5d^2(^1\mathrm{G})6p$		9/2	27054.96	0.91	49	² H°	49	4f5d6s
$5d^{2}(^{1}G)6p$	2G°	7/2	27132.44	0.94	48		38	4f5d6s
ou (a)sp		9/2	27619.54	1.12	62		30	4/ 5408
$5d^2(^3P)6p$	2P°	3/2	27225.26	1.31	50		13	4f5d6s
S. (2 / Sp		1/2	27748.97	0.682	48		19	4/ 50.08
$5d^2(^1\mathrm{D})6p$		5/2	27393.04	0.888	32	²F°	31	5d6s6p
4f 5d(3F°)6s	2F°	5/	araaa ar	0.00	_			W 10 a
4) 500(°F)08	2 F	⁵ / ₂ ⁷ / ₂	27669.37 28543.08	0.88 1.12	57 57		31 36	$5d^2 6p$
$4f5d(^3\mathrm{D}^\circ)6s$		3/2	27968.54	0.836	33	$^{2}\mathrm{D}^{\circ}$	32	$5d^2 6p$
$5d6s(^{1}\mathrm{D})6p$		7/2	28039.45	1.14	31	${}^{2}\mathbf{F}^{\circ}$	45	$5d^2 6p$
$4f5d(^3\mathrm{H}^\circ)6s$	²H°	11/2	28179.07	1.098	57		39	$5d^2 6p$
$5d6s(^{3}D)6p$		5/2	28506.41	1.20	21	$^{2}\mathrm{D}^{\circ}$	45	$5d^2 6p$
อนองเราบางข		,			41		44.1	100 1111

La I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lead	ling percentages
4f 5d(3D°)6s		3/2	28971.84	0.884	46	⁴ D°	22	$5d^2 6p$
4f 5d(3D°)6s		3/2	29199.57	1.106	36	$^{4}\mathrm{D}^{\circ}$	20	$5d^2 6p$
1 0 00 (2) 00		7/2	29466.67	0.93				•
$4f5d(^3\mathrm{D}^\circ)6s$		5/2	29502.18*	1.263	41	$^{4}\mathrm{D}^{\circ}$	19	$5d^26p$
4f 5d(3P°)6s		1/2	29564.70	0.78	35	${}^{2}\mathrm{P}^{\circ}$	19	$5d^2 6p$
4f 5d(3D°)6s		5/2	29775.58*	1.253	36	⁴D°	20	$5d^2 6p$
4f 5d(3D°)6s		7/2	29894.91	1.352	34	⁴ D°	21	$5d^2 6p$
$4f5d(^3P^\circ)6s$		3/2	29936.74*	1.492	44	²P°	14	5d6s6p
4f 5d(3P°)6s	4P°	1/2	29985.46	2.534	50		17	$5d^26p$
4) 500(1)00		3/2	30417.46*	1.533	49		15	ow op
		5/2	30896.84	1.424	67		17	
		9/2	30650.28	1.08				
		5/2	30788.45	1.04				
		7/2	30964.71	1.15				
		5/2	31477.22	0.90				
		3/2	31751.48	0.832				
		7/2	32140.55	1.15				
$4f5d(^{1}P^{\circ})6s$	2P°	$\frac{1}{2}$ $\frac{3}{2}$	32290.16	0.67	72 69		13 16	$5d^2 6p$
		9/2	32415.73	0.92				
		5/2	32492.76	1.145				
		3/2	33204.05	1.324				
		5/2	33799.23	1.25				
		1/2	33820.31	0.617				
$5d^2(^3{ m F})7p?$	4F°?	3/ ₂ 5/ ₂ 7/ ₂	34015.76 34213.53 34988.17?	0.60				
		9/2	35888.45					
$4f5d(^{1}\mathrm{H}^{\circ})6s$	²H°	$\frac{9}{2}$ $\frac{11}{2}$	34239.61 34245.05	0.90 1.06	89 89		10	$5d^2 6p$
		3/2	34299.11	1.01				
$5d^2(^3{ m F})7p?$	4G°?	5/2	34358.60					
		7/ ₂ 9/ ₂	34380.86 35236.06	1.13				
		11/2	36074.74	1.10				
$4f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{F})?$	4H°?	9/2	34714.73	1.02				
$5d6s(^{3}D)7p?$	4F°?	3/2	34850.38	0.58				÷
-		5/2	34982.43	0.9				
		5/2	35232.81					
$4f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{F})$?	²G°?	7/ ₂ 9/ ₂	35253.10 35450.47	0.89 1.09				
		5/2	35275.16	1.2				
		3/2	35470.85	1.42				
		1/2	35482.70					

La I, Odd Parity—Continued

La I, Odd Parity—Continued

Configuration	Term	\int	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	
		5/2	35780.10		6s ² (¹ S)9p	²P°	3/2	47675	
		1/2	35860.64	2.2				47695	
		7/2	35956.72		$6s^{2}(^{1}S)10p$	²P°		49168.7	
		7/2	35999.06	1.03			3/2	49176.5	
		5/2?	36081.09		$6s^{2}(^{1}S)11p$	² P°	2,	50026.2	
		3/2	36333.08	1.57			3/2	50030.3	
		1/2	36358.96	0.40	$6s^2(^1S)12p$	² P°	3/2	50591.4 50593.5	
		5/2	36447.35	0.90	$6s^{2}(^{1}S)13p$	2P°	3/2	50968.3	
		7/2	<i>36454.46</i>		00 (D)10p		,-	50969.6	
		1/2	<i>36495.28</i>	0.43	$6s^{2}(^{1}\mathrm{S})14p$	²P°		51238.7	
		3/2	36678.58	0.91	00 (D)2 Ap		3/2	51242.2	
		3/2	36722.38	1.076	$6s^2(^1{ m S})15p$	²P°		51432.2	
		7/2	36723.27	1.21	00 (2) 10 p		3/2	51441.6	
		1/2	36896.63	1.70	$6s^{2}(^{1}S)16p$	²P°	1/2,3/2	51591.2	
		5/2	37086.70	1.20	-	970	3/2		
		5/2	37245.34	0.98	$6s^{2}(^{1}S)17p$	² P°	72	51708.5 51710.2	
		3/2	37253.52	1.20	$6s^2(^1S)18p$	2P°	3/2	51800.3	
		1/2	37475.30	0.76	08-(-5)10p	-P	12	51800.5 51801.5	
		7/2	37673.94	1.29	$6s^{2}(^{1}S)19p$	² P°	1/2,3/2	51874.1	
		5/2	37731.59	1.15	•				
		5/2	37771.53	0.733	$6s^{2}(^{1}S)20p$	² P°	1/2,3/2	51939.2	
		3/2	37787.04	0.648	$6s^2(^1\mathrm{S})21p$	²P°	1/2,3/2	51989.0	
		7/2	37842.77	1.0	$6s^{2}(^{1}S)22p$	2p°	1/2,3/2	52030.4	
		⁵ / ₂	37961.34	1.14	-	_	, -, , -		
		7/2	37982.68 38050.57	1.04	$6s^2(^1S)23p$	² P°	3/2	52066.7 52069.8	
		7/ ₂ 3/ ₂	38050.57 38061.57	1.33	La II (¹So)	T			
		5/2	38264.31	0.79	La II (-150)	Limit		52376	
		5/2	39179.11	1.04					
		7/2	39350.50						
		7/2	40910.11	1.15					
$6s^{2}(^{1}S)8p$	2P°	3/ ₂ 1/ ₂	44978.6 44978.9?						
$-$ а II $({}^3\mathrm{F}_2)$	Limit		44981						

(Ba I sequence; 56 electrons)

Z = 57

Ground state (1s²2s²2p63s²3p63d¹04s²4p64d¹05s²5p6) 5d² $^3{\rm F}_2$

Ionization energy 89200±80 cm⁻¹

 $11.060 \pm 0.010 \text{ eV}$

Identified even configurations $5d^2$, 5d6s, $6s^2$, 4f6p, $4f^2$, $6p^2$, 5d6d, 5d7s,

6s7s?, 6s6d

Identified odd configurations 4f 6s, 4f 5d, 5d6p, 6s6p

Spectrum Observations, Zeeman Effect, Early Work on the Analysis

Meggers [1927] and Russell and Meggers [1932] carried out most of the analysis of this spectrum, greatly extending the earlier work of Paulson [1914] and Goudsmit [1925]. Most of the energy levels and assignments are from the 1932 paper, which pointed out that observations of La II in the Schumann region were needed for extension of the analysis. No such observations appear to have been made to date. Meggers [1932] lists about 800 lines for La II in the range 2142–10955 Å, with more than 700 having energy-level classifications [Russell and Meggers].

All except one of the g values are from Harrison, Rosen, and McNally [1945]. (See La I for more detail on the Zeeman data.) These authors also give more accurate (3-place) wavelengths for some of the 507 La II lines for which they obtained Zeeman patterns.

La II was an important spectrum in early applications of the Slater-Condon theory of atomic structure. The identification of the complete 4f6p, 4f5d, and $4f^2$ configurations in La II led Condon and Shortley [1931] to extend Slater's formulas to configurations involving f electrons. They showed that the La II 4f5d and $4f^2$ configurations fit the theory very well, and "their theoretical predictions led to the correct identifications of the difficult terms 4f5d ¹H° and $4f^2$ ¹I" [Russell and Meggers]. The agreement with theory for several other two-electron configurations in La II was less good because of neglect of strong configuration interactions and of the spin-orbit interaction.

Designations and Calculations of the Even Levels

More recent calculations have yielded quantitative details of the configuration interactions in both the even and odd groups. In a discussion of the $(5d^2+5d6s+6s^2)$ group, Goldschmidt [1968b] notes the especially mixed configurational compositions of the J=2 levels at 1394 and 10095 cm⁻¹. The ¹D character of both levels is apparent from the eigenvectors, but "the assignments of configurational quantum numbers . . . are meaningless." We indicate the lack of configuration assignments by listing the "a ¹D" and "b ¹D" designations of these levels after the respective leading percentages, instead of under "Term." Russell-Saunders term notations preceded by small letters are in all cases as given by Russell and Meggers, and can be used in connection with line classifications given in their paper.

All eigenvector percentages for the even levels are from Goldschmidt's [1976] calculation of the group $(5d^2+5d6s+6s^2+4f^2+4f6p+6p^2+6s6d)$. Her eigenvector assignments reverse the former configuration designations of the high $h^{-1}D_2$ and $i^{-1}D_2$ levels, a result not inconsistent with the intensities of the transitions from these levels. The 4f6p levels are here arranged into four j_1j_2 -coupling terms according to the leading percentages, the Russell-Saunders designations being listed after the word "or" in the last column. The four 5d7s levels clearly form two j_1j_2 pairs, as listed, and again the less appropriate Russell-Saunders names are also shown.

The reality of the $5d6d\ ^3P_0$ level is questionable [Russell and Meggers], and the designations of the nominal $5d6d\ ^3S_1$, 1S_0 , and 3P_1 levels are given here as tentative. The inclusion of this configuration in the calculation of the even group is definitely needed. The $f\ ^3S_1$ level given by Harrison et al. (60660.18 cm⁻¹) classifies several lines listed by Russell and

La II-Continued

Meggers, and is certainly real. The position is consistent with our suggested assignment to the 6s7s configuration. The "i " i " level of Russell and Meggers (69233.90 cm⁻¹) is still uninterpreted, and the tentative level at 64706.76 cm⁻¹ is omitted here.

Interpretation of the Odd Levels

Goldschmidt [1968a; 1974] and Spector and Gotthelf [1970] have calculated the four identified odd configurations (4f6s+4f5d+5d6p+6s6p), with the configuration interactions included. The eigenvector percentages here are from Goldschmidt's unpublished results [1974]. The 4f6s levels are grouped into two j_1j_2 -coupling pairs, with the Russell-Saunders names and leading percentages being given after the word "or" in the last column.

The designations y $^3P_2^{\circ}$ and x $^3P_2^{\circ}$ are retained for the levels at 29498 and 33204 cm⁻¹, respectively, because the eigenvectors have high $^3P^{\circ}$ character; these designations are given after the leading percentages (and not under "Term"), however, to indicate that meaningful configuration assignments are prevented by the strong mixtures of 6s6p and 5d6p in the eigenvectors. Several J=1 levels in this group also have very mixed compositions. The eight odd levels lying above the interpreted group are listed with the ordinal designations used by Russell and Meggers.

Ionization Energy

Sugar and Reader [1965] related the 4f6s levels, the 5d6s and 5d7s levels, and the 5d6s and 6s6d levels to known regularities for the three corresponding series, 4fns, 5dns, and 6snd. The three values thus obtained for the ionization energy agreed to within 52 cm^{-1} . We give their value with an error estimate conservatively based on this agreement.

References

Condon, E. U., and Shortley, G. H., Phys. Rev. 37, 1025 (1931). PT

Eremin, M. V., and Maryakhina, O. I., Opt. Spectrosc. (USSR) 26, 479 (1969). PT

Goldschmidt, Z. B., Thesis, Hebrew Univ. Jerusalem, Israel, 487 pp. (1968a). PT

Goldschmidt, Z. B., in Spectroscopic and Group Theoretical Methods in Physics, Ed. F. Block et al. (John Wiley and Sons, New York, N.Y., 1968b). PT

Goldschmidt, Z. B., unpublished material (1974; 1976). ND PT

Goudsmit, S., Proc. Sect. Sci. Kon. Akad. Wet., Amsterdam, 28, 23 (1925). EL CL ZE

Harrison, G. R., Rosen, N., and McNally, Jr., J. R., J. Opt. Soc. Am. 35, 658 (1945). CL ZE

Meggers, W. F., J. Opt. Soc. Am. 14, 191 (1927). EL CL W

Meggers, W. F., J. Res. Nat. Bur. Stand. (U.S.) 9, 239 (1932). W ZE

Meggers, W. F., and Burns, K., J. Opt. Soc. Am. 14, 449 (1927). Hfs

Paulson, E., Ann. Phys. (Leipzig) 45, 1203 (1914). EL W

Russell, H. N., and Meggers, W. F., J. Res. Nat. Bur. Stand. (U.S.) 9, 625 (1932). EL ND CL W ZE IP

Spector, N., and Gotthelf, U., Opt. Pura Apl. (Spain) 3, 98 (1970). ND PT

Sugar, J., and Reader, J., J. Opt. Soc. Am. 55, 1286 (1965). IP

[January 1977]

La II

Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ding percentages
$5d^2$	a 3F	2	0.00	0.721	83		11	¹ D
		3	1016.10	1.083	100			10
		4	1970.70	1.248	99		1	¹G
$5d^2$		2	1394.46	0.977	36	a $^{1}\mathrm{D}$	33	5d6s ¹ D
5d6s	a 3D	1	1895.15	0.498	100			
<i>5</i> 408		$\overset{1}{2}$	2591.60	1.133	100 85		10	$5d^{2}$ ¹ D
		$\bar{3}$	3250.35	1.334	100		10	0 D
$5d^2$	a 3P	0	5940.70		00			1S
\mathfrak{su}	a P	$egin{matrix} 0 \ 1 \end{matrix}$	5249.70 5718.12	1.497	92 99		4	4f ² ³ P
		$\overset{1}{2}$	6227.42	1.481	96		3	5d6s ¹ D
0.9	10							F 10 10
$6s^2$	a ¹S	0	7394.57		75		17	$5d^2$ ¹ S
$5d^2$	a ¹G	4	7473.32	1.000	98		1	$5d^2$ 3 F
T. J.C		0	1000100	1005		1.15		F 70 1 TO
5d6s		2	10094.86	1.005	53	b $^{1}\mathrm{D}$	42	$5d^2$ ¹ D
$4f(^2{ m F_{5/2}^{\circ}})6s_{1/2}$	(5/2,1/2)°	2	14147.98	0.664	96	or	95	z $^3\mathrm{F}^\circ$
		3	14375.17	1.056	95	or	64	
$4f(^{2}\mathrm{F}^{\circ}_{7/2})6s_{1/2}$	(7/2,1/2)°	4	15698.74	1.247	05	OM.	97	z ³F°
±j (± 1/2/001/2	(12,-12)	3	15098.74	1.247	95 93	or or	97 64	z 1 F $^{\circ}$
4 C F 1	1							
4f5d	$z^{-1}G^{\circ}$	4	16599.17	0.969	73		22	$^3\mathrm{H}^\circ$
4f5d	<i>y</i> ³F°	2	17211.93	0.754	70		26	$^{1}\mathrm{D}^{\circ}$
·		3	18235.56	1.086	97			
		4	19214.54	1.232	90		8	${}^{1}\mathrm{G}^{\circ}$
4f5d	z ³H°	4	17825.62	0.846	* 77		19	$^{1}\mathrm{G}^{\circ}$
		5	18580.41	1.017	100			-
		6	19749.62	1.178	100			
4f5d	z $^{1}\mathrm{D}^{\circ}$	2	18895.41	0.923	64		28	3F°
•							20	•
4f5d	z ³ G°	3	20402.82	0.757	96			
		$rac{4}{5}$	21331.60 22282. 9 0	$1.049 \\ 1.197$	100 99			
		Ü						
4f5d	z $^{3}\mathrm{D}^{\circ}$	1	21441.73	0.542	79		15	$5d6p$ $^3\mathrm{D}^\circ$
		$\frac{2}{3}$	22106.02 22537.30	1.167 1.288	83 78		13 10	$5d6p$ $^3D^\circ$ $4f5d$ $^1F^\circ$
		3	22357.50	1.200	10		10	4) 3a -r
4f5d	z ³ P°	0	22683.70		84		11	$5d6p$ $^3\mathrm{P}^\circ$
		1	22705.15	1.431	79		11	
		2	23246.93	1.459	82		11	
5d6p	<i>y</i> ¹D°	2	24462.66	0.887	56		33	$^3\mathrm{F}^\circ$
4f5d	y ¹F°	3	24522.70	1.034	0.4		10	$^3\mathrm{D}_\circ$
±) •M		Ð	24022.10	1.004	84		10	. U
5d6p	y ³ D°	1	25973.37	0.782	44		27	¹ P°
		$\frac{2}{3}$	27388.11	1.168 1.308	83		13	4f 5d 3D°
			28315.25	1.000	81		10	$4f5d$ $^3\mathrm{D}^\circ$
5d6p	<i>x</i> ³ F°	$\frac{2}{3}$	26414.01	0.825	59		33	$^{1}\mathrm{D}^{\circ}$
		3	26837.66	1.088	90			
		4	28565.40	1.245	95			
5d6p		1	27423.91	0.876	37	$^{3}\mathrm{D}_{\circ}$	23	1P°
	,, 3D∘	0	0751505					F.10 9700
6s6p	<i>y</i> ³ P°	0	27545.85		70		19	$5d6p$ $^3\mathrm{P}^\circ$
6s6p		1	28154.55	1.267	44	$^3\mathrm{P}^\circ$	30	$4f5d$ $^{1}\mathrm{P}^{\circ}$

La II—Continued

			La II—Co	ittiitaca			
Configuration	Term	J	Level (cm ⁻¹)	g		Le	ading percentages
4f5d	z ¹H°	5	28525.71	1.004	99		
6s6p		2	29498.05	1.471	45 y ³ P°	40	$5d6p$ $^3\mathrm{P}^\circ$
4f5d	y ¹P°	1	30353.33	1.074	49	22	5d6p ¹P°
5d6p	<i>x</i> ³ P°	0 1	31785.82 32160.99	1.492	70 65	26 29	$6s6p$ $^3\mathrm{P}^\circ$
5d6p	x 1F°	3	32201.05	1.005	91		
6s6p		2	33204.41	1.494	52 x ³ P°	45	$5d6p$ $^3\mathrm{P}^\circ$
$4f(^2\mathbf{F_{5/2}})6p_{1/2}$	(5/2,1/2)	$_2^3$	35452.66 35787.53	0.876 0.719	92 or 80 or		e ³ G e ³ F
$4f(^{2}F_{7/2}^{\circ})6p_{1/2}$	(7/2,1/2)	$\begin{matrix} 3 \\ 4 \end{matrix}$	36954.65 37172.79	1.061 1.127	48 or 86 or		e ³ F e ³ G
4f (² F\$/ ₂)6p _{3/2}	(5/2,3/2)	3 4 2 1	37209.71 37790.57 38221.49 38534.11	0.944 1.113 1.071 0.497	48 or 82 or 81 or 100 or		e ¹ F e ³ F e ³ D e ³ D
$4f(^{2}F_{7/2})6p_{3/2}$	(7/2,3/2)	5 4 3 2	39018.74 39221.65 39402.55 40457.71	1.21 1.059 1.274 1.036	100 or 70 or 80 or 97 or		e ³ G e ¹ G e ³ D e ¹ D
6s6p	x 1P°	1	45692.17	0.999	77	20	5d6p ¹P°
$5d(^2\mathrm{D}_{3/2})7s_{1/2}$	$(^{3/2},^{1/2})$	1 2	49733.13 49884.35	0.500 1.117	or or		f ³ D f ³ D
$5d(^2\mathrm{D}_{5/2})7s_{1/2}$	(5/2,1/2)	3_2	51228.57 51523.86	1.315 1.036	or or		f ³D f ¹D
5d6d	f ¹F	3	52137.67	0.987			
5d6d	g ³ D	1 2 3	52169.66 52734.81 53689.56	0.621 1.154 1.218			
5d6d	f ³G	3 4 5	52857.88 53333.37 54434.65	0.861 1.036 1.21			
5d6d	e ¹P	1	53302.56	1.335			
5d6d	f 3F	$\begin{matrix}2\\3\\4\end{matrix}$	53885.24 54840.04 55321.35	0.751 1.088 1.136			
5d6d	e ³ S?	1	54365.80	1.455			
5d6d?	e ¹ S?	0	54793.82				
5d6d	e ³ P	$\begin{matrix} 0 \\ 1 \\ 2 \end{matrix}$	54964.19? 55230.33* 56036.60	1.552 1.203			
4f²	e 3H	4 5 6	55107.25 55982.09 56837.94	0.883 1.033 1.14	98 100 100	2	¹G
5d6d	g ¹D	2	55184.05	1.183			
5d6d	f ¹ G	4	56035.70	1.027			

La II—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading	g percentages
	1°	3	57364.12	1.07			
4f²	g ³ F	2 3	57399.58 57918.50 58259.41	0.675 1.085	97 100		1D
	2°	4	58748.90	1.196	77	22	¹ G
$4f^2$	$g^{-1}G$	4	59527.60	1.046	75	23	$^3\mathrm{F}$
·	3°	2,3	59612.64	1.010		20	•
$6p^2$	$h^{-1}\mathrm{D}$	2	59900.08	1.035	58	32	6s6d ¹D
$6p^2$	f 3P	$\begin{matrix} 0 \\ 1 \\ 2 \end{matrix}$	60094.84 61128.83 62506.36	1.528 1.416	90 95 79	6 5 11	¹ S 4f ² ³ P 4f ² ¹ D
6s7s?	f 3S	1	60660.18	1.955			
	4°	4	60744.17	1.25			
	5°	3,4	61017.66				
	6°	3,4	61514.46	0.97?			
4f2	<i>i</i> ¹D	2	62026.27	1.054	78	12	3P
$4f^2$	e 1I	6	62408.40	1.003	100		
4f²	<i>g</i> ³ P	$\begin{matrix} 0 \\ 1 \\ 2 \end{matrix}$	63463.95 63703.18 64278.92	1.471 1.414	91 94 82	4 5 9	^{1}S $6p^{2}$ ^{3}P $6p^{2}$ ^{3}P
	7°	4	63598.87	1.205			
6s6d	h 3D	1 2 3	64361.28 64529.90 64692.59	0.506 1.217	100 99 100		
	8°	3	64411.17	0.97			
$6p^2$	f ¹S	0	66591.91		56	35	4f² ¹S
	<i>i</i> ³D?	3	69233.90				
4f²	g ¹S	0	69505.06		58	34	$6p^2$ ¹ S
La III (² D _{3/2})	Limit		89200				

La III

(Cs I sequence; 55 electrons)

Z = 57

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ 5d 2 D_{3/2}

Ionization energy 154675±5 cm⁻¹

 19.1774 ± 0.0006 eV

Identified even configurations

 $5p^65d-9d$, $5p^66s-10s$, $5p^65q-8q$

Identified odd configurations

 $5p^64f-8f$, $5p^66p-9p$

Gibbs and White first classified the La III 6s-6p and 5d-6p multiplets in their early work on one-electron spectra. Badami confirmed these terms in his 1931 paper and added the 6d levels. The following year Meggers published new measurements of the La spectra, and Russell and Meggers gave new values for the known La III levels, as well as for the $7s\ ^2S$ level.

Lang's observations in the vacuum ultraviolet yielded the $5f^2F^\circ$ term but not the 4f term. The latter was located by Sugar and Kaufman, who found 13 new terms based on their measurements of 45 lines in the region 700-2000 Å. Five of the highest terms were added by Odabasi [1967], who also obtained the intervals for the 2G terms.

All levels except those of 5d ²D and 4f ²F° are from Odabasi's paper, and are accurate to about ± 0.2 cm⁻¹. He gives 74 La III lines in the region 2200-11000 Å. The four lowest levels are from Johansson and Litzén, whose measurements of the three 5d-4f lines (in the infrared) yielded levels accurate to ± 0.02 cm⁻¹. The ionization energy [Sugar and Reader, 1973] is based on the three values for the limit obtained by Kaufman and Sugar [1971] from the ns, nf, and ng series.

Odabasi resolved the hfs of the 6s $^2\mathrm{S}_{1/2}$ level, obtaining the sublevels 13590.56 cm $^{-1}$ (F=3) and 13591.59 cm $^{-1}$ (F=4). His value for the hyperfine splitting (1.03±0.10 cm $^{-1}$) agrees well with measurements made with higher resolution; Wittke [1940], for example, obtained the value 1.076±0.01 cm $^{-1}$.

Odabasi estimates that his values for the 2G fine-structure intervals are accurate to ± 0.10 cm $^{-1}$, in which case the peculiar behavior of these intervals (an *increase* with increasing n, n=5 to 7) is an interesting theoretical problem.

References

Badami, J. S., Proc. Phys. Soc. London 43, 53 (1931). EL CL W
Gibbs, R. C., and White, H. E., Proc. Nat. Acad. Sci. (U.S.) 12, 551 (1926); Phys. Rev. 33, 157 (1929). EL CL W
Johansson, S., and Litzén, U., J. Opt. Soc. Am. 61, 1427 (1971). EL CL W
Kaufman, V., and Sugar, J., J. Opt. Soc. Am. 61, 1693 (1971). IP
Lang, R. J., Can. J. Res., Sect. A 13, 1 (1935). EL CL W
Meggers, W. F., J. Res. Nat. Bur. Stand. (U.S.) 9, 239 (1932). W ZE
Odabasi, H., J. Opt. Soc. Am. 57, 1459 (1967). EL CL W Hfs IP PT AT
Russell, H. N., and Meggers, W. F., J. Res. Nat. Bur. Stand. (U.S.) 9, 625 (1932). EL CL W ZE IP
Sugar, J., and Kaufman, V., J. Opt. Soc. Am. 55, 1283 (1965). EL CL W IP
Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP
Wittke, H., Z. Phys. 116, 547 (1940). Hfs

[October 1976]

La III

	La III			
Configuration	Term	J	Level (cm ⁻¹)	g
$5p^{6}(^{1}\mathrm{S})5d$	² D	3/ ₂ 5/ ₂	0.00 1603.23	
$5p^{6}(^{1}\mathrm{S})4f$	2F°	5/ ₂ 7/ ₂	7195.14 8695.41	
$5p^6(^1\mathrm{S})6s$	2S	1/2	13591.14	2.10
$5p^6(^1\mathrm{S})6p$	² P°	1/ ₂ 3/ ₂	42015.04 45110.94	0.63 1.37
$5p^6(^1\mathrm{S})7s$	2S	1/2	82347.28	
$5p^6(^1\mathrm{S})6d$	² D	3/ ₂ 5/ ₂	82380.76 82814.27	
$5p^{6}(^{1}\mathrm{S})5f$	² F°	5/ ₂ 7/ ₂	92454.54 92534.73	
$5p^{6(^{1}\mathrm{S})}7p$	² P°	1/ ₂ 3/ ₂	93232.39 94461.44	
$5p^{6}(^{1}{ m S})8s$	2S	1/2	110209.57	
$5p^{6}(^{1}\mathrm{S})7d$	² D	3/ ₂ 5/ ₂	110534.20 110738.31	
$5p^{6}(^{1}\mathrm{S})5g$	² G	7/ ₂ 9/ ₂	114754.90 114755.34	
$5p^6(^1\mathrm{S})6f$	² F°	5/ ₂ 7/ ₂	114889.80 114938.90	
$5p^6(^1\mathrm{S})8p$	² P°	1/ ₂ 3/ ₂	115602.26 116225.92	
$5p^6(^1\mathrm{S})9s$	2S	1/2	124504.10	
$5p^6(^1\mathrm{S})8d$	² D	3/ ₂ 5/ ₂	124742.24 124856.08	
$5p^6(^1\mathrm{S})6g$	² G	7/ ₂ 9/ ₂	126952.47 126953.16	
$5p^{6}(^{1}\mathrm{S})7f$	²F°	5/ ₂ 7/ ₂	127042.58 127075.60	
$5p^{6}(^{1}\mathrm{S})9p$	² P°	1/2 3/2	127548.93 127935.04	
$5p^{6}(^{1}{ m S})10s$	2S	1/2	132840.41	
$5p^{6}(^{1}\mathrm{S})9d$	² D	3/ ₂ 5/ ₂	133006.65 133076.90	
$5p^{6}(^{1}\mathrm{S})7g$	² G	7/ ₂ 9/ ₂	134318.02 134319.39	
$5p^6(^1\mathrm{S})8f$	²F°	5/ ₂ 7/ ₂	134373.83 134399.63	
$5p^{6}(^{1}\mathrm{S})8g$	² G	7/ ₂ 9/ ₂	139100.48 139101.70	
La IV (¹So)	Limit		- 154675	

La IV

(Xe I sequence; 54 electrons)

Z = 57

Ground state (1 $s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^2$) $5p^{6}$ $^1\mathrm{S}_0$

Ionization energy 402900 ± 500 cm⁻¹

 $49.95 \pm 0.06 \text{ eV}$

Reader and Epstein [1975, 1976] have observed this spectrum in the range 300-5200 Å using sliding-spark sources. Ten resonance lines from upper J=1 levels were given in the 1975 paper, but about 200 lines are classified by the unpublished analysis used here. The connection of the system of excited levels to the ground level should be accurate to about ± 0.5 cm⁻¹, and the relative positions of most of the excited levels are accurate to ± 0.2 cm⁻¹.

All levels of the upper configurations are here designated in the J_1l coupling scheme. Leading eigenvector percentages in the LS scheme are also listed (after the word "or") except for the $5p^54f$ levels. The percentages are from Reader and Epstein [1976], whose calculations of $(5p^55d+5p^56s)$ and $(5p^56d+5p^57s)$ included the configuration interactions.

Reader and Epstein [1975] obtained the quoted ionization energy from the $5p^56s$ and 7s levels by assuming a value for the difference in the quantum defects for these configurations.

References

Reader, J., and Epstein, G. L., J. Opt. Soc. Am. 65, 638 (1975). EL CL W IP Reader, J., and Epstein, G. L., unpublished material (1976). EL CL W PT

[March 1977]

La IV

Configuration	Term	J	Level (cm ⁻¹)		Leading pe	ercentage	s
$5p^6$	¹S	0	0.0				
$5p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})4f$	2[3/2]	1 2	143354.7 145949.0				
$5p^{5(^{2}\mathrm{P}_{3/2}^{\circ})}4f$	2[5/2]	$\begin{vmatrix} 3 \\ 2 \end{vmatrix}$	149927.1 160486.4				
$5p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})4f$	2[7/2]	3 4	153339.1				
$5p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})5d$	² [1/ ₂]°	0 1	156100.3 158412.6	100 65	or or	100 93	3P°
$5p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})5d$	² [3/ ₂]°	2	162867.6 181155.0	90 51	or or	78 88	³ D∘ ³ b∘
$5p^{5}(^{2}\text{P}_{3/2}^{\circ})5d$	² [⁷ / ₂]°	4 3	163693.3 165070.7	100 78	or or	100 74	3F.º
$5p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})5d$	² [5/ ₂]°	2 3	167921.7 173335.5	95 80	or or	42 62	3D° 3ٰ
$5p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})4f$	2[5/2]	$egin{array}{c} 3 \ 2 \end{array}$	175013.8			92	_
$5p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})5d$	² [5/ ₂]°	2 3	184885.7 190831.7	91 96	or or	55 45	3F° ¹F°

La IV—Continued

Configuration	Term	J	Level (cm ⁻¹)		Leading p	ercentage	es
$5p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})5d$	² [3/ ₂]°	2 1	188393.2 215919.2	85 59	or or	58 93	³D° ¹P°
$5p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})6s$	² [³ / ₂]°	2 1	198303.1 200183.3	98 99	or or	98 59	3P° 1P°
$5p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})6s$	² [1/ ₂]°	0 1	219336.9 220506.9	100 99	or or	100 59	$^3\mathrm{P}_\circ$
$5p^{5}(^{2}\mathrm{P_{3/2}^{\circ}})6p$	2[1/2]	1 0	231008.7 244301.8	86 94	or or	70 57	³ S
$5p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})6p$	² [5/ ₂]	2 3	233401.5 236790.4	85 100	or or	54 100	$^{3}\mathrm{D}$ $^{3}\mathrm{D}$
$5p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})6p$	2[3/2]	1 2	237727.3 239654.3	88 85	or or	56 69	¹ P ³ P
$5p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})6p$	2[3/2]	$\frac{1}{2}$	254251.3 259224.3	91 100	or or	70 45	$^{3}\mathrm{D}$ $^{3}\mathrm{D}$
$5p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})6p$	2[1/2]	1 0	259085.9 260449.8	90 94	or or	59 57	³ P ¹ S
$5p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})6d$	² [1/ ₂]°	0	284205.8 284981.9	100 65	or or	100 86	$^3\mathrm{P}_\circ$
$5p^{5(^{2}\mathrm{P_{3/2}^{\circ})}}6d$	² [⁷ / ₂]°	4 3	285856.2 285951.0	100 94	or or	100 55	3F°
$5p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})6d$	² [3/ ₂]°	2 1	286298.2 290596.2	97 63	or or	57 52	3P°
$5p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})6d$	² [⁵ / ₂]°	2 3	287402.6 287874.0	98 94	or or	51 71	$^{1}\mathrm{D}^{\circ}$
$5p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})7s$	² [3/ ₂]°	2	292080.3 292777.8	100 97	or or	100 62	$^{3}P^{\circ}$
$5p^{5(^{2}\mathrm{P}_{1/2}^{\circ})6d}$	² [5/ ₂]°	2 3	307183.0 308151.3	97 100	or or	72 41	3F°
$5p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})6d$	² [3/ ₂]°	2	307398.4 310049.8	97 98	or or	41 45	$^{3}P^{\circ}$ $^{1}P^{\circ}$
$5p^{5(^{2}\mathrm{P}_{1/2}^{\circ})7s}$	² [1/ ₂]°	0 1	313512.4 313917.0	100 100	or or	100 64	3P°
La v (² P _{3/2})	Limit		402900				

La v

(I I sequence; 53 electrons)

Z = 57

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10})$ $5s^25p^5$ $^2P_{3/2}^{\circ}$

Ionization energy 497000 ± 5000 cm⁻¹

 $61.6 \pm 0.6 \text{ eV}$

Identified odd configuration

 $5s^25p^5$

Identified even configurations

 $5s5p^6$, $5s^25p^45d$, $5s^25p^46s$

The levels and eigenvector percentages are from the analysis by Epstein and Reader [1976]. Their list of transitions from the even levels to the $5p^5$ ²P° ground-term levels extends over the range 389–825 Å. In addition to the $5s5p^6$ ²S_{1/2} level, most of the levels of the $5p^45d$ and $5p^46s$ configurations that can combine with the ground term have been found. The uncertainty of the $5p^5$ ²P°_{1/2} and $5s5p^6$ ²S_{1/2} levels relative to the ²P°_{3/2} ground level is ±1 cm⁻¹; the uncertainty increases for the higher levels to about ±3 cm⁻¹ at 250000 cm⁻¹. We have rounded off the levels above 180000 cm⁻¹ to the nearest cm⁻¹.

Epstein and Reader based their interpretation on a calculation of the three known even configurations, with the configuration interactions being included. Eigenvector percentages for the $5p^46s$ configuration are given here in the J_1j coupling scheme, the second percentages being from the unpublished complete eigenvectors [Epstein and Reader, 1975]. We have omitted names for several even levels, and some of the retained names have little or no meaning. For example, two J=3/2 levels with leading percentages well below 40% are assigned to terms. The two leading percentages for the nominal $5p^4(^3P)5d$ $^4D_{1/2}$ level (169748.5 cm $^{-1}$) are almost identical to those for the unnamed level at 185115 cm $^{-1}$. Epstein and Reader note strong configuration mixing in several of the eigenvectors. Although the interaction between the $5s5p^6$ $^2S_{1/2}$ and $5p^4(^1D)5d$ $^2S_{1/2}$ levels is less in La v than for lower sequence members, the La v $5s5p^6$ $^2S_{1/2}$ level is displaced about 25000 cm $^{-1}$ by this perturbation. The $5p^45d-5p^46s$ interaction is also strong (30–40% admixture) for two pairs of levels.

Good agreement between the calculated and experimental even levels was necessary for the analysis, since the J values could not be determined unambiguously before the levels were identified. In general the even levels having $J=\frac{1}{2}$ or $\frac{3}{2}$ are based on pairs of lines separated by the $^2P_{3/2}^{\circ}-^2P_{1/2}^{\circ}$ wavenumber interval. The questionable level at 169748 cm⁻¹, designated $5p^4(^3P)5d^4D_{1/2}$, is an exception derived from a single line.

Each of the levels having $J=\frac{5}{2}$ is also based on a single allowed transition (to the ${}^2P_{3/2}^{\circ}$ ground level), but all such transitions clearly belong to La v and have wavelengths close to the predicted values. The level designated $5p^4({}^3P_2)6s$ (2,½) $_{5/2}^{\circ}$, at 225191 cm⁻¹, is less certain because of the relative weakness of the transition. The assignment of the $J=\frac{3}{2}$ level for this term is also uncertain, because of ambiguity in the J values of this level (228545 cm⁻¹) and the nearby level at 228916 cm⁻¹; it is possible that the J values and eigenvector assignments of these two levels should be interchanged [Epstein and Reader, 1976].

Epstein and Reader obtained the ionization energy from the $5p^4(^3P_2)6s$ (2,½) term by using an estimated value of the effective quantum number $n^*(6s)$. A correction for the perturbation of this term was included.

References

Epstein, G. L., and Reader, J., unpublished material (1975). PT

Epstein, G. L., and Reader, J., J. Opt. Soc. Am. 66, 590 (1976). EL CL W Hfs IP PT AT

[October 1976]

La v

Configuration	Term	J	Level (cm ⁻¹)	Lead	ling percentages
$5s^2(^1{ m S})5p^5$	²P°	3/ ₂ 1/ ₂	0.0 21634.1		
$5s5p^6$	2S	1/2	142970.1	70	$28 \ 5p^4(^1D)5d ^2S$
$5s^2(^1S)5p^4(^3P)5d$	4D	5/2	166600.9	75	7 (³ P) ⁴ F
•		3/2	167307.9	65	12 (³ P) ⁴ P
		7/ ₂ 1/ ₂	169748.5?	77 52	16 (3P) 4F 19 (1D) 2P
				32	
$5s^2(^1S)5p^4(^3P)5d$	4P	3/2	182670	33	20 (1S) 2D
		1/ ₂ 5/ ₂	183552 189842	74 52	14 (3P) 2P 18 (3P) 2F
$5s^2(^1\mathrm{S})5p^4(^3\mathrm{P})5d$		1/2	185115	48 ⁴ D	23 (¹D) ²P
-	450				
$5s^2(^1S)5p^4(^3P)5d$	4F	9/ ₂ 5/ ₂	187535	83 80	17 (¹D) ²G 7 (³P) ⁴D
		3/2	188299	80 67	7 (3P) 4D 19 (3P) 4P
		7/2		49	$\frac{13}{23}$ (3P) 2 F
$5s^2(^{1}S)5p^4(^{3}P)5d$		3/2	190217	29 ⁴ D	23 (¹D) ²D
$5s^2(^{1}S)5p^4(^{1}D)5d$		3/2	196794	28 ² P	28 (3P) ² P
$5s^2(^{1}S)5p^4(^{1}D)5d$		5/2	198577	26 ² D	24 (3P) 4P
$5s^2(^1S)5p^4(^3P)5d$	² F	7/2		43	29 (³ P) ⁴ F
• • •		5/2	200771	51	$\frac{20}{23}$ (1 D) 2 F
$5s^2(^1\mathrm{S})5p^4(^1\mathrm{D})5d$	² F	5/2	207398	61	27 (¹D) ²D
(2)0p (D)0w	•	7/2	201000	78	14 (³ P) ² F
$5s^2(^1{ m S})5p^4(^1{ m S})5d$	² D	3/2	222023	35	28 (¹D) ²P
o Cojop Cojou		5/2	236365	64	28 (1D) 2F 11 (3P) 2F
$5s^2(^1\mathrm{S})5p^4(^3\mathrm{P}_2)6s_{1/2}$	$(2,^{1}/_{2})$	5/2	225191?	81	15 $(^{1}D_{2}) (2,^{1}/_{2})$
- (2/5p (x 2/001/2	(-, /2)	3/2?	228545*	54	15 (D2) (2, 72)
$5s^2(^1S)5p^4(^1D)5d$?	2S?	1/2?	228916	49	19 $5s5p^6{}^2\mathrm{S}$
$5s^2(^1S)5p^4(^3P)5d$	² D	5/2	229740	58	24 (¹D) ²D
(D)op (1)ou		3/2	250921	43	24 (°D) °D 29 (°S) °D
$5s^2(^1{ m S})5p^4(^3{ m P})5d$		3/2	231424	24 ² P	22 (¹D) ²D
$5s^2(^1{ m S})5p^4(^3{ m P})5d$		1/2	237222	30 ² P	28 (¹D) ²P
$5s^2(^1\mathrm{S})5p^4(^3\mathrm{P_0})6s_{1/2}$		1/2	240308	38 (0,1/2)	$17 (^{1}D)5d ^{2}S$
$5s^2(^1\mathrm{S})5p^4(^3\mathrm{P}_1)6s_{1/2}$	(1,1/2)	3/2	246854	96	$3 (^{1}D_{2}) (2,^{1}/_{2})$
/-[(/	`,'-'	1/2	250411	94	3 $({}^{1}S_{0}) (0, {}^{1}/_{2})$
$5s^2(^1\mathrm{S})5p^4(^1\mathrm{D}_2)6s_{1/2}$	$(2,^{1}/_{2})$	5/2	255936	83	15 $(^{3}P_{2}) (2,^{1}/_{2})$
(D)op (D2)001/2	(4, 12)	3/2	257047	73	20
		-			
La vi (3P ₂)	Limit		497000		

CERIUM

Ce I

58 electrons Z=58

Ground state (1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6) 4f5d6s^2 \ ^1{\rm G}_4^\circ

Ionization energy 44672±3 cm⁻¹

 $5.5387 \pm 0.0004 \text{ eV}$

Identified odd configurations

 $4f5d6s^2$, $4f5d^26s$, $4f5d^3$?, $4f^26s6p$

Identified even configurations

 $4f^26s^2$, $4f^25d6s$, $4f6s^26p$, 4f5d6s6p, $4f5d^26p$, $4f^25d^2$

Energy Levels, Wavelengths

The levels are from Martin's unpublished tables for this spectrum [1975]; the low levels of both parities up to 10000 cm⁻¹ have been published previously [Martin, 1971]. The odd levels are given here to 31000 cm⁻¹, and the table of almost 700 even levels includes all those known below 30000 cm⁻¹. Many of the levels in the working lists above these points are not yet well established.

The uncertainty for a number of the odd levels below 5000 cm $^{-1}$ is ± 0.001 to ± 0.003 cm $^{-1}$, and most of the high even levels (>15000 cm $^{-1}$) have uncertainties of less than 0.01 cm $^{-1}$. The low even levels and the high odd levels have uncertainties of 0.01 to 0.02 cm $^{-1}$.

About 15000 lines are classified as transitions from high even levels to the low odd group belonging mainly to $4f5d6s^2$ and $4f5d^26s$. A relatively small part of the spectrum arises from transitions to the low even levels. The principal line list, a table of wavelengths for the region 3000–10000 Å measured by Martin, Corliss, and Blanc, is unpublished. However, almost 1000 of the strongest Ce I lines are listed in the NBS intensity tables [Meggers, Corliss, and Scribner], most with energy-level classifications from Martin's analysis, and a published Ce line list for the infrared $(0.82-2.4~\mu\text{m})$ has about 1100 classified Ce I lines [Verges, Corliss, and Martin]. The older line lists of King [1928] and of Paul [1936] were useful for their definite assignments of lines to Ce I. Martin and Wilson have reobserved the absorption spectrum to below 3000 Å, but no list of the wavelengths has been prepared.

Zeeman Data, Optical and Magnetic-Resonance Investigations

The three-place (and two-place) g values have been obtained from measurements of Zeeman patterns for several thousand lines [Martin, 1975]. Childs and Goodman used the atomic-beam magnetic-resonance technique to obtain the 5-place g values quoted for 32 low odd levels and for the lowest even level. This appears to be the largest number of such atomic-beam g-value determinations made for any atom thus far. The uncertainties range from 2 to 10 units in the fifth place. The uncertainty for the optically determined values also varies, and in most cases it is less than 0.01.

Smith and Spalding [1961] used the atomic-beam magnetic-resonance technique to make the first measurements of three g values in Ce I. The corresponding levels were found and included in the 15 low odd levels located in the first successful analysis of the optical spectrum; they were shown to be the nominal $4f5d6s^2$ ${}^1G_4^{\circ}$, ${}^3F_2^{\circ}$ and ${}^3F_3^{\circ}$ levels [Martin, 1963]. No simultaneous determinations of J and g values for Ce I levels have been made by the atomic-beam magnetic-resonance method. Using a beam of cerium-143 atoms, Maleh [1965] observed resonances that he associated with the three low levels for which Smith and Spalding had obtained g values. Maleh's interpretation of the resonances for two of the levels is in agreement with the J values obtained from analysis of the optical spectrum, but his interpretation of a third set of resonances as due to a low level having g=0.7651 and J=4 is inconsistent with the more detailed and highly redundant optical data [Martin, 1963; 1971].

48 Ce I—Continued

Theoretical Calculations, Status of the Analysis

Most of the theoretical calculations of Ce I have been carried out by Z. Goldschmidt and her colleagues at the Hebrew University of Jerusalem. The eigenvector percentages for the low odd configuration group $(4f5d6s^2+4f5d^26s+4f5d^3)$ are from a calculation by Goldschmidt and Salomon [1970] that included configuration interactions and effective interactions. The levels having low term purities could be reliably interpreted only with such calculations, and Martin's [1971] arrangement of these levels was also based on the eigenvectors of Goldschmidt and Salomon. We have allowed fewer practically meaningless term names for low-purity levels in the arrangement here, since the two leading percentages are listed.

The levels are complete to above $10000~\rm cm^{-1}$, but the assignments of two odd levels having $J=4~(3100~\rm and~3312~\rm cm^{-1})$ might possibly be interchanged, as might those of two levels having $J=5~(7715~\rm and~7842~\rm cm^{-1})$. Experimental g values are lacking for most of the low odd levels above $10000~\rm cm^{-1}$, and only a few odd levels above $10500~\rm cm^{-1}$ have been assigned at this stage. It is almost certain, however, that the lowest predicted level of either parity not yet found is a $^3P_0^\circ$ level (mainly from $4f5d^26s$) calculated by Goldschmidt and Salomon to be near $12000~\rm cm^{-1}$. The region below this point has $113~\rm odd$ levels.

Goldschmidt notes that $4f^26s6p$ and $4f^25d6p$ have been added to the three odd configurations mentioned above in a more recent calculation of all five configurations with interaction. The assignments of several odd levels above $18000 \, \mathrm{cm}^{-1}$ to J_1J_2 -coupling terms of $4f^26s6p$ are taken from this preliminary work by Goldschmidt and Salomon [1973]. An extension of the experimental data (such as g values) will probably be necessary before enough levels can be reliably assigned to the $4f5d^3$, $4f^26s6p$, and $4f^25d6p$ configurations to allow improvement of the theoretical parameters.

Only the lowest few terms of the system of even levels could be identified without extensive calculations [Martin, 1971]. Y. Oreg [1973], under the direction of Zipora Goldschmidt, has constructed and carried out the first diagonalizations of the necessary matrices. The eigenvector percentages for the even levels are from Oreg's calculation of the nine configurations $(4f^26s^2+4f^25d6s+4f^25d^2+4f5d6s6p+4f5d^26p+4f6s^26p+5d^26s^2+5d^36s+5d^4)$. Most of the eigenvectors are highly mixed with regard to both configuration and term type. (Both the direct configuration interactions and effective interactions were included.) Comparison of the calculated and experimental levels shows that the great majority of predicted levels have been found up to about 27000 cm⁻¹, and that they belong primarily to a mixture of the first six of the above configurations. In many cases, however, the calculated levels and g values are not sufficiently accurate to allow unambiguous correlations with the experimental levels of this dense system. We have not entered eigenvector percentages for the even levels above some particular level (depending on the J value) at which uncertain assignments become too numerous. Most of the interpretation up to about 20000 cm-1 appears secure, however, the assignments here being in general those made by Oreg. Some of the more questionable assignments are so marked. A few assignments were changed on the basis of line intensities and/or g values, and a number of additional assignments were made [Martin, 1975]. The interpretation at this stage establishes at least the lower portions of the first six of the above configurations except $4f^25d^2$, and a few of the assigned levels have large $4f^25d^2$ components. Practically all of the $4f^26s^2$ configuration except 1S_0 is now accounted for.

Isotope Shifts, Ionization Energy

Champeau [1972] has derived values of the isotope shifts associated with the $4f5d^26s$, $4f^26s^2$, and $4f^25d6s$ configurations, taken with respect to zero shift for $4f5d6s^2$. A tentative and rough comparison of Oreg's eigenvectors for a number of even levels for which Champeau [1969] has obtained isotope shifts indicates a general consistency of the results; the isotope shifts of several additional even configurations could be obtained.

Worden, Conway, Paisner, and Solarz [1977] have observed high members of two series in Ce I by using laser techniques. These data became available too late for inclusion here, but the quoted ionization energy is a new determination from these series.

References

Champeau, R.-J., Thesis, Univ. Paris, Orsay, 83 pp. (1969). IS

Champeau, R.-J., Physica (Utrecht) 62, 209 (1972); ibid., 225 (1972). IS

Childs, W. J., and Goodman, L. S., Phys. Rev. A 1, 1290 (1970). ZE

Goldschmidt, Z. B., and Salomon, D., unpublished material (1970; 1973). ND PT

King, A. S., Astrophys. J. 68, 194 (1928). W

Maleh, I., Phys. Rev. 138, B766 (1965). Hfs

Martin, W. C., J. Opt. Soc. Am. 53, 1047 (1963). EL ZE

Martin, W. C., Phys. Rev. A 3, 1810 (1971). EL ND ZE

Martin, W. C., unpublished material (1975). EL ND CL W ZE

Meggers, W. F., Corliss, C. H., and Scribner, B. F., Nat. Bur. Stand. (U.S.), Monogr. 145, Part I, 403 pp. (1975). CL W

Oreg, Y., Thesis, Hebrew Univ. Jerusalem, Israel, 201 pp. (1973). ND PT

Paul, F. W., Phys. Rev. 49, 156 (1936). W

Smith, K. F., and Spalding, I. J., Proc. R. Soc. London, Ser. A., 265, 133 (1961). ZE

Verges, J., Corliss, C. H., and Martin, W. C., J. Res. Nat. Bur. Stand. (U.S.) 76A, 285 (1972). CL W Worden, E. F., Conway, J. G., Paisner, J. A., and Solarz, R. W., unpublished material (1977). IP

[July 1976]

Ce I, Odd Parity

Configuration	Term	J	Level (cm ⁻¹)	g	Leading perce		Leadi	ng percentages
Ind $6s^2$	¹G°	4	0.000	0.94543	55		29	зН.
′โฟ 68²	3F°	2	228.849	0.76515	66		24	¹D°
		3	1663.120	1.07736	85		7	4f(2F°) 5d2(1D)6s (2D) 3F°
		4	3100.151*	1.07703	34		27	$4f(^{2}F^{\circ}) 5d^{2}(^{3}F)6s (^{4}F) ^{5}I^{\circ}$
ોત 6ક²	3H°	4	1279.424	0.88979	54		20	¹G°
	1	5	2208.657	1.03212	80		12	4f(2F°) 5d2(1D)6s (2D) 3H°
		6	3976.104	1.16032	78		13	4f(2F°) 5d2(1D)6s (2D) 3H°
$5d 6s^2$	3G°	3	1388.941	0.73494	66		11	4f(2F°) 5d2(1D)6s (2D) 3G°
		5	4199.367	1.15021	48		34	$4f(^{2}F^{\circ}) 5d^{2}(^{3}F)6s (^{4}F) ^{5}H^{\circ}$
(2F°) 5d2(3F)6s (4F)	5H°	3	2369.068	0.59978	66		16	$4f5d6s^2$ 3 G $^\circ$
		4	2437.629	0.98592	38		25	(2F°) (3F)(4F) 3G°
		6	4746.627	1.16593	67		24	(2F°) (3F)(4F) 5I°
		7	5802.108	1.237	62		38	(2F°) (3F)(4F) 5I°
5d 6s²	¹D°	2	2378.827	0.93654	54		23	3F°
(² F°) 5d ² (³ F)6s (⁴ F)	5I°	4	3196.607	0.66612	67		11	$4f5d6s^2$ 3 F°
		5	3764.008	0.90691	90		3	4f 5d6s ² ³ H°
		6	4455.756	1.11714	64		26	(2F°) (3F)(4F) 5H°
		7	5315.803	1.21625	56		33	(2F°) (3F)(4F) 5H°
		8	6809.128	1.250	100			
(² F°) 5d ² (³ F)6s (⁴ F)		5	3210.583	1.16277	41	³G°	37	$(^{2}F^{\circ})~(^{3}F)(^{4}F)~^{5}H^{\circ}$
նժ 6s²		4	3312.240*	1.08582	29	${}^3\mathrm{F}^\circ$	26	3G°
$5d 6s^2$	³D°	1	3710.513	0.61549	64		10	4f(2F°) 5d2(1D)6s (2D) 3D°
		2	4766.323	1.14945	67		12	$4f({}^{2}\text{F}^{\circ}) \ 5d^{2}({}^{1}\text{D})6s \ ({}^{2}\text{D}) \ {}^{3}\text{D}^{\circ}$
		3	5006.719	1.23674	58		20	1F°
(² F°) 5d ² (³ F)6s (⁴ F)		0	3974.503		29	⁵ D°	23	(2F°) (1D)(2D) 3P°
(² F°) 5d ² (³ F)6s (⁴ F)		1	4020.954	1.49404	17	3S°	15	$({}^{2}F^{\circ}) ({}^{1}D)({}^{2}D) {}^{3}P^{\circ}$
(² F°) 5d ² (³ F)6s (⁴ F)	3G°	3	4160.283	0.72933	47		23	(2F°) (3F)(4F) 5H°
$(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{4}F)$		4	4173.494	1.02948	41	³G°	30	(2F°) (3F)(4F) 5H°
(² F°) 5d ² (³ F)6s (⁴ F)		5	4417.618	1.17790	29	3G°	28	$4f5d6s^2$ 3 G $^\circ$

Ce I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lead	ling percentages
4f(2F°) 5d2(3F)6s (4F)	3S°	1	5097.777	1.88257	49		25	(2F°) (3F)(4F) 5D°
f(2F°) 5d ² (3F)6s (4F)		2	5210.906	1.22694	28	5D°	27	(2F°) (3F)(4F) 5G°
	500			0.773	95		24	(2F°) (3F)(4F) 5D°
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{4}F)$	⁵ G°	$rac{2}{3}$	5409.236 6234.792	1.04965	35 69		13	$(^{2}F^{\circ}) (^{3}F)(^{4}F) ^{5}D^{\circ}$
		4	6856.559	1.150	72		6	(2F°) (3F)(2F) 1G°
		5	7467.160	1.179	69		7	$({}^{2}F^{\circ}) ({}^{3}F)({}^{4}F) {}^{3}H^{\circ}$
		6	8055.526	1.207	50		18	(2F°) (3F)(4F) 3H°
$f(^{2}\mathrm{F}^{\circ}) \ 5d^{2}(^{3}\mathrm{F})6s \ (^{4}\mathrm{F})$		3	5519.751	1.24530	32	⁵ D°	21	(2F°) (3F)(4F) 3F°
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{4}F)$		0	5571.156		44	$^5\mathrm{D}^\circ$	35	$4f5d6s^2$ ³ P°
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{4}F)$		4	5572.074	1.31658	29	$^5\mathrm{D}^\circ$	27	$(^{2}F^{\circ}) (^{3}F)(^{4}F) \ ^{3}F^{\circ}$
$f5d~6s^2$		1	5637.233	1.389	30	$^3\mathrm{P}^\circ$	26	$4f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{4}F) \ ^{5}D^{\circ}$
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{4}F)$	5F°	1	5674.829	0.140	73		6	(2F°) (3F)(4F) 5D°
(1) 000 (1) 000 (1)	_	2	5904.006	0.905	66		13	$({}^{2}F^{\circ}) ({}^{3}F)({}^{4}F) {}^{5}G^{\circ}$
		3	6337.061	1.232	42		16	(2F°) (3F)(4F) 5D°
		4 5	7174.156 7933.558	1.373 1.345	67 81		19 5	(² F°) (³ F)(⁴ F) ⁵ D° (² F°) (³ P)(⁴ P) ⁵ F°
$f5d~6s^2$		2	6303.984	1.419	36	³P°	16	4f(2F°) 5d2(1D)6s (2D) 3P
$f({}^{2}{ m F}^{\circ}) \; 5d^{2}({}^{3}{ m F})6s \; ({}^{2}{ m F})$		4	6475.540	0.897	43	зН°	17	$({}^{2}F^{\circ}) ({}^{3}F)({}^{2}F) {}^{1}G^{\circ}$
$f5d~6s^2$		3	6621.892	1.147	35	¹F°	17	$^3\mathrm{D}_\circ$
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{4}F)$		5	6663.226	0.953	19	$_3\mathrm{I}_\circ$	18	$(^{2}F^{\circ})\ (^{3}F)(^{2}F)\ ^{3}I^{\circ}$
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{4}F)$		2	6836.628	0.68078	33	${}^3{ m F}^\circ$	18	$(^{2}F^{\circ}) (^{3}F)(^{4}F) \ ^{5}G^{\circ}$
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{4}F)$		3	7169.751	1.13	28	${}^3\mathrm{F}^\circ$	26	$(^{2}F^{\circ}) (^{3}F)(^{4}F) {}^{5}F^{\circ}$
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{2}F_{,})$		4	7348.299	0.964	22	¹G°	21	$(^{2}F^{\circ}) (^{3}F)(^{4}F) ^{3}H^{\circ}$
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{4}F)$		6	7696.210	1.076	39	$_{3}I_{\circ}$	19	(2F°) (1G)(2G) 3I°
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{4}F)?$		5	7715.236	0.934	22	3I°	14	(2F°) (3F)(4F) 5G°
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{2}F)?$		5	7841.955	1.063	24	3H°	21	(2F°) (3F)(2F) 3I°
$f(^{2}F^{\circ}) \ 5d^{2}(^{1}D)6s \ (^{2}D)$		1	7853.119	0.983	27	¹ P°	16	(2F°) (3F)(2F) 3D°
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{4}F)$		4	7890.429	1.242	25	3F°	18	(2F°) (3F)(4F) 5D°
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}P)6s \ (^{4}P)$	⁵ G°	2	8088.912	0.403	95		3	$(^{2}F^{\circ}) (^{3}F)(^{4}F) ^{5}G^{\circ}$
		3	8307.309	0.957	81		6 9	(2F°) (3P)(4P) 3G° (2F°) (3F)(2F) 3H°
		4 5	8762.126 9462.705	1.054 1.19	50 46		12	$(^{2}F^{\circ}) (^{3}P)(^{4}P) ^{3}G^{\circ}$
		6	11030.470	1.193	51		21	$(^{2}F^{\circ}) (^{3}F)(^{2}F) ^{3}H^{\circ}$
$f(^{2}\text{F}^{\circ}) \ 5d^{2}(^{3}\text{F})6s \ (^{4}\text{F})$	5P°	2	8101.187	1.735	85		5	$(^{2}F^{\circ}) (^{3}F)(^{4}F) \ ^{5}S^{\circ}$
		3	8270.249	1.504	74		11	(2F°) (3F)(4F) 3D°
		1	8430.846	2.04	62		10	(2F°) (3F)(4F) 3P°
$f(^{2}\text{F}^{\circ}) \ 5d^{2}(^{3}\text{F})6s \ (^{2}\text{F})$	¹S°	0	8351.167		44		17	$4f5d6s^2$ $^3\mathrm{P}^\circ$
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{4}F)$		2	8366.098	1.525	33	$^3\mathrm{P}_\circ$	16	(2F°) (3F)(4F) 5S°
$f({}^{2}{ m F}^{\circ}) \ 5d^{2}({}^{3}{ m F})6s \ ({}^{2}{ m F})$		5	8400.730	0.917	30	3I°	19	4f 5d6s ² ¹ H°
$f({}^{2}\mathrm{F}^{\circ}) \ 5d^{2}({}^{3}\mathrm{F})6s \ ({}^{2}\mathrm{F})$		4	8509.209	0.954	20	3H°	19	(2F°) (3P)(4P) 5G°
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{4}F)$	3I°	7	8587.973	1.155	59	500	24	(2F°) (1G)(2G) 3I°
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{4}F)$		6	8603.531	1.225	36	5G° 3P°	25	(2F°) (3F)(4F) 3H° (2F°) (3F)(4F) 5P°
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{4}F)$		1	8695.201	1.285	22	³P°	12	4f 5d6s ² ¹ F°
$4f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{2}F)$		3	8902.306	1.128	20		14	
$4f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{2}F)$	1	5	8991.451	1.067	31	$^3\mathrm{H}^\circ$	17	$(^{2}F^{\circ}) (^{3}P)(^{4}P) \ ^{5}G^{\circ}$

Ce I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lead	ding percentages
f(2F°) 5d2(3F)6s (4F)		0	9119.094		40	³P°	32	(2F°) (3F)(2F) 1S°
f(2F°) 5d2(3P)6s (4P)	3D°	3	9135.099	1.274	50		12	$(^{2}F^{\circ}) (^{3}F)(^{4}F) {}^{5}P^{\circ}$
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{2}F)$		2	9200.707	1.376	24	$^3\mathrm{D}_\circ$	21	$(^{2}F^{\circ}) (^{3}P)(^{2}P) \ ^{3}D^{\circ}$
f(2F°) 5d2(3F)6s (2F)	3I.º	6 7	9333.222 11061.551	1.047 1.141	61 79		20 16	(2F°) (1G)(2G) 3I° (2F°) (1G)(2G) 3I°
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{4}F)$		1	9369.628	1.065	21	3P°	17	$(^{2}F^{\circ}) (^{3}F)(^{2}F) \ ^{3}D^{\circ}$
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}P)6s \ (^{4}P)$	3D°	2	9425.529	1.207	46		8	$(^{2}F^{\circ}) (^{3}F)(^{4}F) \ ^{5}S^{\circ}$
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{2}F)$	3F°	2	9709.012	0.799	51		13	$(^{2}F^{\circ}) (^{3}P)(^{2}P) \ ^{3}F^{\circ}$
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{2}F)?$	3G°	3	9787.220	0.868	42	,	26	$(^{2}F^{\circ}) (^{3}P)(^{2}P) \ ^{3}G^{\circ}$
$f(^{2}F^{\circ}) \ 5d^{2}(^{1}G)6s \ (^{2}G)$		6	9830.608	1.081	31	¹I°	12	$(^{2}F^{\circ}) (^{3}F)(^{2}F) \ ^{1}I^{\circ}$
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}P)6s \ (^{4}P)$		1	9903.122	0.813	38	$^3\mathrm{D}_\circ$	14	$(^{2}F^{\circ}) (^{3}P)(^{4}P) \ ^{5}F^{\circ}$
$f(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{4}F)$	5S°	2	9947.822	1.63	52		18	(2F°) (3F)(4F) 3P°
(2F°) 5d2(1D)6s (2D)?		3	9996.647		24	3G°	16	$(^{2}F^{\circ}) (^{3}P)(^{2}P) \ ^{3}G^{\circ}$
(2F°) 5d2(1D)6s (2D)		4	10243.780		18	¹G°	13	$(^{2}F^{\circ}) (^{3}P)(^{2}P) \ ^{1}G^{\circ}$
(2F°) 5d2(3P)6s (4P)	5D°	0	10249.014		62		23	(2F°) (3F)(4F) 5D°
f(2F°) 5d2(3F)6s (2F)		3	10318.438		20	3F°	18	(2F°) (3F)(4F) 3D°
f(2F°) 5d2(3P)6s (4P)		1	10409.273		39	5D°	24	(2F°) (3P)(4P) 5F°
		4	10586.772					
		3	10604.889					
		2	10612.867					
(2F°) 5d2(3P)6s (4P)		6	10673.847	1.201	40	5G°	23	(2F°) (3F)(2F) 3H°
		4	10723.512	į				
		3	10774.605					
(2F°) 5d2(1G)6s (2G)		5	10879.793	1.10?	27	¹H°	20	(2F°) (1G)(2G) 3G°
		2	10901.971					
		3	11131.710					
		4	11271.088					
		2	11301.537					
		3	11337.859	0.860				
$5d \ 6s^2$		5	11357.036		20	¹H°	15	4f(2F°) 5d2(1G)6s (2G) 1H°
		1	11517.044				10	J (1) SW (W) SS (W)
		4	11545.398	1.174?				
		1	11578.951	1.1.4.				
		1	11626.193					
		2	11650.367					
			11796.367					
		4						
(2₽°) 5d2(3₽)€~ (2₽)	300	4	11810.672		00		4.0	(2E°) (3D)(2D) 3C°
$(^{2}F^{\circ}) \ 5d^{2}(^{3}F)6s \ (^{2}F)$	3G°	5	11850.252		60		12	(2F°) (3P)(2P) 3G°
		3	11874.016					
		2	12022.199					
(ATO) # 10(1 G) G (C)		1,2	12297.629					(070) (07) (17)
$(^{2}F^{\circ}) \ 5d^{2}(^{1}G)6s \ (^{2}G)$		5	12297.781	1.12?	39	3H°	9	$(^{2}F^{\circ}) (^{3}P)(^{4}P) \ ^{3}G^{\circ}$
		4	12351.320					

Ce I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
		1	12359.009			
		4	12425.898			
		2	12454.486			
		3	12600.087			
		4	12720.115			
		5	12793.504			
		2	12873.850			
		5	12948.901			
		4	12988.140			
		3	13089.798			
		2	13139.668			
		1	13214.677			
$4f(^{2}\text{F}^{\circ}) \ 5d^{2}(^{1}\text{G})6s \ (^{2}\text{G})?$	³H°?	6	13219.389		56	8 (2F°) (3F)(2F) 3H°
, , , , , , , , , , , , , , , , , , ,		5	13297.212			~ (- /(- /(- /
$4f(^{2}F^{\circ}) \ 5d^{2}(^{1}G)6s \ (^{2}G)$	3K°	6 7	13301.147*	1.021	74 57	14 $4f(^{2}F^{\circ})5d^{3}(^{2}G)$ $^{3}K^{\circ}$ 26 $(^{2}F^{\circ})$ $(^{1}G)(^{2}G)$ $^{1}K^{\circ}$
		8	15333.298		81	$4f({}^{2}F^{\circ})5d^{3}({}^{2}G) {}^{3}K^{\circ}$
		3,4	13315.568			
		2,3	13409.732			
		1	13451.017			
		5	13519.477			
		2	13622.021			
		5	13629.358			
•		4,5	13815.996			
		3	13903.145			
		3	13924.569			
		6	14001.960			
		3,4,5	14027.718			
		6	14107.938			
		4	14116.215			
		5,6	14186.567			
		5,6	14218.083			
		3	14273.213			
		2	14310.076			
		5	14338.872			
		4	14417.612			
		4	14531.530			
		3	14697.478			
		5	14766.727			
$f({}^2{ m F}^\circ)5d^3({}^4{ m F})?$	5I°?	7			00	c (2D°)/4E) 31°
j (1)00 (1);	1 :		15021.768		83	$6 (^{2}F^{\circ})(^{4}F) ^{3}I^{\circ}$
		4,5	15063.392			
		4	15077.976?			
		6	15101.371?			

Ce I, Odd Parity—Continued

Ce I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		5	15255.040		$4f^2(^3{ m H_6})6s6p(^1{ m Pi})?$	(6,1)°?	5	27192.300?	1.159
		6	15382.028				6 7	27491.670	1.148
		6	15491.666						
		7	15677.664	3.		(0.1)00	3	27593.641	0.940
		7	15917.077		$4f^2(^3\mathbf{F_2})6s6p(^1\mathbf{P_1^\circ})?$	(2,1)°?	2	27696.365	0.68?
		6	16990.481				4	27766.972	0.694
		6	17138.587				5	27796.140	1.045
		4,5	18042.674				7	27880.736	0.920
		3	18186.160				5	27909.999	0.915
		5	18221.783				6	27912.105	0.848
4/ ² (³ H ₄)6s6p(³ P ₁ °)	(4,1)°	3					6	28122.510	
, (===, ===p(= 1)	(2,2)	3 5	18284.583	0.956			1,2,3	28341.689	
		4					4	28344.003	1.05
		4	18676.826				5	28555.941	0.809
		5	18732.204				3	28621.942	
		5	18790.605				4	28644.342	1.039
		5	19073.740				3	28726.936	0.947
		4	19510.332				5	28744.941	0.813
		5,4	19530.380				6	28757.305	0.999
		3	19624.548				4	28847.533	
		5	19782.885				5	28850.009	1.116
		5,4	19863.308				6	28904.034	
		2	19941.382				7	28940.252	
		6,5	19982.138				6,5	28943.559	
		4	20621.926				5	29099.164	0.993
		6,5	21796.170				4	29202.304	0.979?
		4	23697.589?	1.220?			4	29257.977	0.515.
		1					4	29377.007	
$4f^2(^3\text{H}_4)6s6p(^1\text{P}_1^\circ)$	(4,1)°	5 4	23819.871 23901.786	0.890 0.904			6	29432.305	0.925
		3	25501.780	0.304			2	29443.866	0.323
		5	23947.422?	1.173?			6		
		4	24320.576?	1.117?			5	29564.126 29628.245	
		4	24426.131	1.082			5	29704.676	
		6	24712.835	1.092					
				1.052			6	29734.634	1 174
		5	24839.872				3	29839.334	1.174
		4	24957.614	0.998			2,3	30034.780	
		3	25078.953	0.997			3	30098.186	
		3,4,5	25384.989	0.80?			5	30128.922	
		5	26287.707	1.035			5	30233.702	1.155?
		6	26538.263	0.980			3	30402.116	
		4	26576.399	1.043			4	30439.275	
		6	26585.577				4,5	30470.391	
		5	26612.454				7	30511.959	
		5	26868.899	0.790			3	30542.299	

Ce I, Odd Parity—Continued

Ce I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		4,5	30559.272				4	30787.639	0.6957
		5	30566.948				3	30854.052	0.737
		6	30603.359				7	30876.234	
		4,3	30624.042				2	30991.841	
		2	30706.313						
		4	30739.270						
		3	30740.884		Ce II (4H ² / ₂)	Limit		44672	
		5	30767.047						

Ce I, Even Parity

Configuration	Term	J	Level (cm ⁻¹)	g		Leadir	ng percentages
$4f^{2}6s^{2}$	3Н	4	4762.718	0.80508	89	4	$4f5d(^{3}\text{G}^{\circ})6s6p(^{1}\text{P}^{\circ})$ ³ H
-		5	6238.934	1.035	92	4	
		6	7780.202	1.169	92	4	
$4f^2 6s^2$	$^{3}\mathrm{F}$	2	8235.605	0.680	88	4	$4f5d(^{3}\mathrm{F}^{\circ})6s6p(^{1}\mathrm{P}^{\circ})$ $^{3}\mathrm{F}$
		2 3	9206.305	1.083	90	4	$4f5d(^{3}F^{\circ})6s6p(^{1}P^{\circ})$ ³ F
		4	9379.148	1.139	55	32	¹G
$4f^2 6s^2$	¹G	4	11361.895	1.101	52	35	3F
4f ² (³ H)5d (⁴ I)6s	⁵ I	4	12114.115	0.655	59	17	$(^{3}H)(^{2}H)$ ^{3}H
		5	13124.010	0.957	50	14	$(^{3}H)(^{2}H)$ ^{1}H
		6	13605.000		72	8	(3H)(4I) 3I
		7	14609.088		78	5	$(^{3}H)(^{4}I)^{3}I$
		8			85	5	$4f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{F}) (^{4}\text{H}^{\circ})6p$
4f ² (³ H)5d (⁴ K)6s	5K	5	12366.834	0.710	63	9	$(^{3}\mathrm{H})(^{2}\mathrm{H})$ $^{1}\mathrm{H}$
		6	12960.950	0.90	75	8	$(^{3}H)(^{4}K)$ ^{3}K
		7	13908.826		84	7	$(^{3}H)(^{4}K)$ ^{3}K
		8			89	4	$(^{3}H)(^{4}K)$ ^{3}K
		9			96	4	$4f(^{2}F^{\circ})5d^{2}(^{3}F)(^{4}I^{\circ})6p^{-5}$
$4f^{2}(^{3}\text{H})5d^{-}(^{4}\text{K})6s$		5	12467.827	0.948	22 ⁵ K	20	$(^{3}\mathrm{H})(^{2}\mathrm{H})~^{3}\mathrm{H}$
4f ² (³ H)5d (⁴ G)6s	5G	2	12992.115	0.388	38	24	$4f5d(^{3}F^{\circ})6s6p(^{3}P^{\circ})$ ⁵ G
		3	13389.827	0.919	40	15	$4f5d(^{3}F^{\circ})6s6p(^{3}P^{\circ})$ ⁵ G
		4	14064.382		46	11	$({}^{3}F)({}^{4}G) {}^{5}G$
		5			46	12	$(^{3}F)(^{4}G)$ ^{5}G
		6	16066.940	1.260	44	14	$(^{3}F)(^{4}G)$ ^{5}G
$4f^{2}(^{3}\text{H})5d$ ($^{2}\text{H})6s$	3H	4	13194.849	0.775	45	13	(3H)(4I) 5I
		6	13939.793	1.127?	46	10	$(^{3}F)(^{2}H)$ ^{3}H

Ce I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ding percentages
4/5d(1G°)6s6p(3P°)		4	13513.875	0.806	22	3H	18	(³ H°)(³ P°) ³ H
4/ $5d(^{1}G^{\circ})6s6p(^{3}P^{\circ})$		5	13784.151	1.023	19	³ H	17	(3H°)(3P°) 3H
4/2(3H)5d (2H)6s		5	13881.444	0.990	20	³ H	20	(³ H)(² H) ¹ H
4/ ² (³ H)5d (⁴ H)6s		3	13902.760	0.665?	42	5H	26	4f5d(3G°)6s6p(3P°) 5H
4/ ² (³ H)5d (⁴ G)6s		2	14098.305	0.484	27	5G	26	$4f5d(^{3}\text{F}^{\circ})6s6p(^{3}\text{P}^{\circ})$ ⁵ G
$4f5d(^{3}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		3	14136.322	0.649	40	5H	20	(¹G°)(³P°) ³G
$4/5d(^{3}\mathrm{F}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		3	14539.212	0.967	20	5G	20	(¹D°)(³P°) ³F
4/ ² (³ H)5d (⁴ H)6s		4	14599.598	0.906	39	5H	18	4f5d(3G°)6s6p(3P°) 5H
$4/5d(^{3}\text{F}^{\circ})6s6p(^{3}\text{P}^{\circ})$		1	14635.243	0.407	44	5F	16	(3F°)(3P°) 3D
$4/5d(^{3}\text{F}^{\circ})6s6p(^{3}\text{P}^{\circ})$		2	14646.445	1.152	19	$^3\mathrm{D}$	16	(3F°)(3P°) 5F
4/ ² (³ H)5d (⁴ K)6s	зK	6 7 8	14743.626 16067.587	1.051?	67 56 84		10 10 5	(3H)(4K) 5K (3H)(4K) 5K (3H)(2K) 3K
$4/5d(^{1}\text{G}^{\circ})6s6p(^{3}\text{P}^{\circ})$. 4	14748.945	0.992	19	^{3}G	17	(3H°)(3P°) 5H
4/ ² (³ H)5d (⁴ I)6s	зI	5	14795.290		53		11	(³ H)(² H) ¹ H
$4/5d(^{1}G^{\circ})6s6p(^{3}P^{\circ})?$		3	15063.452	0.849	16	^{3}G	13	(3F°)(3P°) 3G
$4/5d(^{1}G^{\circ})6s6p(^{3}P^{\circ})$		4	15240.619	1.012	16	$^3\mathrm{G}$	14	(3H°)(3P°) 5H
4/2(3H)5d (2F)6s?		3	15277.852	0.807	12	${}^{\scriptscriptstyle 1}\mathrm{F}$	10	(³ H)(² F) ³ F
4/ ² (³ H)5d (⁴ H)6s		5	15339.718	1.076	32	5H	11	$4f5d(^3\mathrm{G}^\circ)6s6p(^3\mathrm{P}^\circ)$ 5H
$4/5d(^{3}\text{H}^{\circ})6s6p(^{3}\text{P}^{\circ})$		4	15371.647	1.040	24	5H	19	(¹G°)(³P°) ³F
$4/^{2}(^{3}\text{H})5d$ (4I)6s		6	15396.286		37	$_{3}I$	15	$(^{3}H)(^{2}I)$ ^{3}I
$4f(^2\mathbf{F}_{5/2}^{\circ})6s^26p_{1/2}$		3	15555.992	1.005	14	(5/2, 1/2)	8	$4f^2(^3{ m H})5d~(^4{ m F})6s~^5{ m F}$
4/5d(³ H°)6s6p(³ P°)	5 I	5 4 6 7 8	15561.346 15843.449 17066.246 18027.669 19567.423	1.075 0.883 1.117 1.179 1.246	27 29 56 76 93		25 10 8 4 5	(¹G°)(³P°) ³G (³H°)(³P°) ³H (³H°)(³P°) ⁵H 4f(²F°)5d²(³F) (⁴I°)6p ⁵I 4f(²F°)5d²(³F) (⁴I°)6p ⁵I
$4f(^2F_{5/2}^{\circ})6s^2 6p_{1/2}$		2	15587.927	0.747	19	(5/2,1/2)	9	$4f5d(^{3}G^{\circ})6s6p(^{3}P^{\circ})$ ^{5}G
$4f^{2}(^{3}\text{H})5d$ (2F)6s		2	15607.981	0.839	21	3F	17	(³ H)(⁴ F) ⁵ F
$4/5d(^{1}G^{\circ})6s6p(^{3}P^{\circ})$		6	15644.943	1.171	36	зН	15	(3H°)(3P°) 3H
$4/5d(^{3}\text{F}^{\circ})6s6p(^{3}\text{P}^{\circ})$		0	15649.774		37	$^{5}\mathrm{D}$	23	(1D°)(3P°) 3P
$4f5d(^{3}F^{\circ})6s6p(^{3}P^{\circ})$		4	15700.978	1.062	15	$^{5}\mathrm{G}$	10	$4f^2(^3{ m H})5d~(^4{ m G})6s~^5{ m G}$
$4f5d(^{3}F^{\circ})6s6p(^{3}P^{\circ})$		1	15751.949	1.013	26	5D	16	(1D°)(3P°) 3P
$4f5d(^{3}\mathrm{F}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		2	15758.458	0.550	19	5G	15	(3G°)(3P°) 5G
4/ ² (³ F)5d (⁴ H)6s?		3	15766.048	0.740	17	5H	12	(³ H)(⁴ G) ⁵ G
$4f(^{2}\text{F}_{5/2})6s^{2}6p_{1/2}?$		3	15798.226	0.798	12	(5/2,1/2)	11	$4f5d(^{1}G^{\circ})6s6p(^{3}P^{\circ})$ ^{3}F
$4f 5d(^{3}\text{H}^{\circ})6s6p(^{3}\text{P}^{\circ})$		5	15879.778	0.952	16	5H	13	(3H°)(3P°) 5I
$4f 5d(^{3}F^{\circ})6s6p(^{3}P^{\circ})$		4	15945.111	0.987	25	5G	9	$4f^{2}(^{3}F)5d$ ($^{4}H)6s$ ^{5}H
$4f5d(^{3}F^{\circ})6s6p(^{3}P^{\circ})$		2	15967.087	0.901	23	5F	11	$({}^{3}{\rm G}^{\circ})({}^{3}{\rm P}^{\circ})\ {}^{5}{\rm G}$
$4f5d(^{3}F^{\circ})6s6p(^{3}P^{\circ})$	į	3	16008.831	1.220	36	5F	10	$(^3F^\circ)(^3P^\circ)$ 3D
$4f5d(^{3}\text{H}^{\circ})6s6p(^{3}\text{P}^{\circ})$		5	16016.409	1.071	43	5H	10	(3H°)(3P°) 1H
4f ² (³ F)5d (⁴ H)6s		3	16017.358	0.863	25	5H	9	(3H)(4G) 5G
$4f^{2}(^{3}\text{H})5d$ (4H)6s		4	16051.478	0.912	12	зН	10	$(^{3}H)(^{4}G)$ ^{5}G
$4f^2 6s^2$		2	16080.882	1.010	34	¹D	19	$4f5d(^{3}{ m F}^{\circ})6s6p(^{3}{ m P}^{\circ})$ ⁵ F
$4/5d(^{3}\text{F}^{\circ})6s6p(^{3}\text{P}^{\circ})$		3	16200.493	0.963	11	5G	11	$(^3G^\circ)(^3P^\circ)$ 5G

Ce I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ding percentages
$4f^{2}(^{3}\text{H})5d$ ($^{2}\text{I})6s$		5	16223.643	0.977	27	3I	13	$4f5d(^{3}\text{H}^{\circ})6s6p(^{3}\text{P}^{\circ})$ ¹ H
$4f^{2}(^{3}\text{H})5d$ ($^{4}\text{H})6s$	5H	6	16249.601	1.190	56		11	$4f5d(^{3}G^{\circ})6s6p(^{3}P^{\circ})$ 5H
$4f^2(^3F)5d$ (4H)6s		4	16338.704	0.967	20	5H	8	(³ H)(⁴ G) ⁵ G
$4f(^{2}\mathrm{F}_{5/2}^{\circ})6s^{2}6p_{1/2}$		2	16347.978	0.749	14	(5/2,1/2)	10	$4f5d(^{3}G^{\circ})6s6p(^{3}P^{\circ})$ 5G
$4f5d(^{3}{ m F}^{\circ})6s6p(^{3}{ m P}^{\circ})$		3	16384.741	1.056	12	5D	12	(3F°)(3P°) 5F
$4f5d(^{3}{ m F}^{\circ})6s6p(^{3}{ m P}^{\circ})$		2	16534.451	1.059	20	$^5\mathrm{D}$	10	4f ² (³ F)5d (⁴ D)6s ⁵ D
$4f^{2}(^{3}F)5d$ ($^{2}P)6s$		0	16546.418		21	3P	17	$(^{3}F)(^{4}D)$ ^{5}D
$4f5d({}^{1}{ m G}^{\circ})6s6p({}^{3}{ m P}^{\circ})$		5	16586.423	1.065	27	$^3\mathrm{H}$	21	(3H°)(3P°) 5I
4f ² (³ F)5d (⁴ H)6s?		4	16588.202	1.155	14	5H	9	(³ H)(² F) ³ F
$4f^{2}(^{3}F)5d$ ($^{2}P)6s$		1	16649.443	1.430	18	$^{3}\mathrm{P}$	12	$4f5d(^{1}\mathrm{D}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$ ³ P
$4f5d(^{3}{ m G}^{\circ})6s6p(^{3}{ m P}^{\circ})$		3	16668.190	0.867	22	5H	13	(3G°)(3P°) 5G
4f ² (³ H)5d (⁴ G)6s?		4	16693.152	1.014	12	5G	10	$4f5d(^{3}\text{G}^{\circ})6s6p(^{3}\text{P}^{\circ})$ ⁵ H
$4f5d(^{3}{ m H}^{\circ})6s6p(^{3}{ m P}^{\circ})$		6	16699.384	1.157	28	5H	17	(¹G°)(³P°) ³H
4f ² (³ H)5d (² I)6s		6	16836.647	1.065	24	¹ I	23	(³ H)(⁴ I) ³ I
4f ² (³ H)5d (⁴ F)6s		2	16868.770	1.088	17	5F	9	(³ H)(² F) ³ F
4f ² (³ F)5d (⁴ H)6s?		4	16869.253	0.991	6	5H	5	$4f5d(^{3}\text{H}^{\circ})6s6p(^{3}\text{P}^{\circ})$ ^{3}H
$4f5d({}^{3}{ m F}^{\circ})6s6p({}^{3}{ m P}^{\circ})$		1	16873.700	0.616	29	$^{3}\mathrm{D}$	12	(¹D°)(³P°) ³P
$4f5d({}^{3}{ m F}^{\circ})6s6p({}^{3}{ m P}^{\circ})$		5	16903.380	1.185	14	5G	12	4f ² (¹ G)5d (² H)6s ³ H
•		3	16921.980	0.950				• • • • • • • • • • • • • • • • • • • •
$4f5d(^{3}\text{G}^{\circ})6s6p(^{3}\text{P}^{\circ})$?	WITTER A CAL	4	16942.526	0.981	14	5G	13	4f²(³H)5d (⁴H)6s ³H
•		3	17051.642	1.040				•
$4f5d(^{3}\text{F}^{\circ})6s6p(^{3}\text{P}^{\circ})$?		5	17075.107	1.087	21	5G	8	(3H°)(3P°) 1H
$4f5d(^{1}{\rm D}^{\circ})6s6p(^{3}{\rm P}^{\circ})$		2	17108.967	1.196	19	$^{3}\mathrm{P}$	16	(3F°)(3P°) 1D
$4f5d(^{3}{ m F}^{\circ})6s6p(^{3}{ m P}^{\circ})$		0	17109.992		33	5D	15	(3D°)(3P°) 3P
$4f^{2}(^{3}F)5d$ ($^{4}H)6s$?		5	17120.402	1.095	37	5H	12	$4f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{F}) (^{4}\text{H}^{\circ})6p$ 5H
$4f^2(^3F)5d$ (4P)6s		1	17136.214	1.491	18	5P	17	$4f5d(^{3}\mathrm{F}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$ ⁵ D
ACT 1/2(CO) a. a. (2(DO) a.		3	17146.308	0.864				
4f 5d(3G°)6s6p(3P°)?		4	17147.538	1.026	16	⁵H	9	$({}^{3}F^{\circ})({}^{3}P^{\circ}) {}^{1}G$
4f ² (³ H)5d (⁴ H)6s	5H	7	17167.681		50		19	(3H)(4I) 3I
$4f^{2}(^{3}\text{H})5d$ ($^{2}\text{I})6s$		6	17289.878	1.041	34	¹ I	18	(³ H)(² I) ³ I
ASE J(3E)\C -C(3D)\		3	17302.943	1.030				
$rac{4f5d(^{3} ext{F}^{\circ})6s6p(^{3} ext{P}^{\circ})}{4f5d(^{3} ext{F}^{\circ})6s6p(^{3} ext{P}^{\circ})}$		4	17315.438	1.148	22	5F	10	$4f^{2}(^{3}\text{H})5d~(^{4}\text{H})6s~^{3}\text{H}$
•		5	17343.734	1.178	18	⁵G	10	$(^3G^\circ)(^3P^\circ)$ 3G
$4f5d(^{1}D^{\circ})6s6p(^{3}P^{\circ})$		4	17390.114	1.179	16	3F	11	$({}^{3}F^{\circ})({}^{3}P^{\circ}) {}^{5}F$
4f ² (³ F)5d (⁴ P)6s 4f ² (³ F)5d (⁴ P)6s	570	1	17391.859	1.830	29	5P	9	$(^{3}F)(^{4}F)$ ^{5}F
4f 5d(3F°)6s6p(3P°)	5P	2	17417.150		46		10	$(^{3}F)(^{2}P)$ ^{3}P
g 5a(°r)686p(°r)		4	17438.566	1.232	30	5F	7	$4f^{2}(^{3}\text{H})5d~(^{4}\text{F})6s~^{5}\text{F}$
f2(3U)5J (4C)C-		3	17511.596	0.977				
4f ² (³ H)5d (⁴ G)6s		5	17530.761	1.194	26	5G 	15	$4f5d(^{3}G^{\circ})6s6p(^{3}P^{\circ})$ ⁵ G
$f5d(^{3}F^{\circ})6s6p(^{3}P^{\circ})$		4	17615.893	1.161	31	5D	12	$4f^{2}(^{3}F)5d$ ($^{4}D)6s$ ^{5}D
$f5d(^3\mathrm{H}^\circ)6s6p(^3\mathrm{P}^\circ)$		6	17649.036	1.184	23	3 H	18	$4f^{2}(^{3}F)5d$ ($^{4}H)6s$ ^{5}H
£9/3T1\F 1 (4T)\Q		3	17654.418	1.078				
$f^{2}(^{3}F)5d$ ($^{4}P)6s$		1	17674.961	0.611	19	5P	17	$(^{3}F)(^{4}F)$ ^{5}F
$4f^{2}(^{3}F)5d$ ($^{4}G)6s$	į	2	17689.747	0.595	26	$^{5}\mathrm{G}$	22	$4f5d(^{3}\text{H}^{\circ})6s6p(^{3}\text{P}^{\circ})$ ^{5}G

Ce I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lead	ling percentages
² 6s ²		0	17700.798		20	3P	19	$4f5d(^{1}D^{\circ})6s6p(^{3}P^{\circ})$ ^{3}P
$5d(^{3}{ m H}^{\circ})6s6p(^{3}{ m P}^{\circ})$		7	17708.707	1.206	28	5H	16	$4f^{2}(^{3}F)5d$ ($^{4}H)6s$ ^{5}H
$75d(^3\mathrm{G}^\circ)686p(^3\mathrm{P}^\circ)$		5	17729.875	1.222	16	5H	9	$4f^{2}(^{3}\mathrm{H})5d~(^{4}\mathrm{H})6s~^{3}\mathrm{H}$
$t 5d(^{1}{ m G}^{\circ}) 6s6p(^{3}{ m P}^{\circ})$		4	17731.228	1.110	10	3Н	6	$4f^{2}(^{3}F)5d$ ($^{4}F)6s$ ^{5}F
$75d(^{1}{ m P}^{\circ})6s6p(^{3}{ m P}^{\circ})$		2	17770.105	0.936	12	$^3\mathrm{F}$	11	$({}^{3}G^{\circ})({}^{3}P^{\circ}) {}^{3}G$
		3	17785.937	1.147				
⁽² (³ F)5d (⁴ F)6s		2	17886.379	1.357	18	5F	7	$(^{3}F)(^{2}P)$ ^{3}P
¹² (3F)5d (4H)6s		4	17892.814	0.917	27	³ H	12	$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$ ($^{4}\mathrm{H}^{\circ})6p$ $^{3}\mathrm{H}$
⁽² (3H)5d (4H)6s		5	17895.539	1.087	23	3Н	7	$4f5d(^{3}{\rm H}^{\circ})6s6p(^{3}{\rm P}^{\circ})$ ⁵ H
		3	17921.087	1.222				
⁽² (3F)5d (4H)6s		6	17975.060	1.207	22	5H	14	(1G)(2H) 3H
$7(^{2}\mathrm{F}_{7/2}^{\circ})6s^{2}6p_{1/2}?$		4	17998.974	1.040	13	(7/2, 1/2)	12	(5/2, 3/2)
		3	18005.652	1.136	1			
$75d(^{3}{ m H}^{\circ})6s6p(^{3}{ m P}^{\circ})$		5	18008.442	1.139	9	$_{3}I$	7	$({}^{3}F^{\circ})({}^{3}P^{\circ}) {}^{5}F$
⁷² (3F)5d (4F)6s		2	18052.690	0.978	13	$^{5}\mathrm{F}$	8	$(^{3}F)(^{4}P)$ ^{5}P
$7.5d(^{1}{ m D}^{\circ})6s6p(^{3}{ m P}^{\circ})$		1	18066.931	0.719	19	$^{3}\mathrm{D}$	12	$4f^{2}(^{3}\mathrm{F})5d~(^{4}\mathrm{F})6s~^{5}\mathrm{F}$
f ² (3H)5d (2G)6s?		4	18141.848	1.075	9	¹G	9	$(^{3}F)(^{2}F)$ ^{3}F
T ² (³ H)5d (⁴ F)6s		4	18162.311	1.161	15	5F	11	$4f5d(^{3}G^{\circ})6s6p(^{3}P^{\circ})$ ^{5}G
	•	3	18192.766	1.087	;			
$f5d(^{3}{ m G}^{\circ})6s6p(^{3}{ m P}^{\circ})$		5	18194.890	1.025	12	5H	11	$(^{3}H^{\circ})(^{3}P^{\circ})$ ^{1}H
$f^{^{\prime }2}6s^{2}$		1	18201.970	1.302	19	^{3}P	12	$4f5d(^{3}\mathrm{D}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$ ⁵ D
T ² (³ F)5d (² P)6s		1	18221.192	1.118	12	¹P	12	$4f5d(^3\mathrm{F}^\circ)6s6p(^3\mathrm{P}^\circ)$ ⁵ D
f ² (3H)5d (4F)6s		2	18238.821	0.945	18	³F	8	$4f5d(^{3}\mathrm{D}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$ ⁵ F
$f5d(^3\mathrm{F}^\circ)6s6p(^3\mathrm{P}^\circ)$		6	18294.451		32	5 G	10	$(^{3}H^{\circ})(^{3}P^{\circ})$ ^{3}H
$f 5d(^3{ m H}^\circ) 6s6p(^3{ m P}^\circ)$		7	18294.645	1.224	34	5H	16	$4f^{2}(^{3}\mathrm{H})5d~(^{4}\mathrm{I})6s~^{3}\mathrm{I}$
		3	18313.861	1.235				
$f5d(^{3}\text{F}^{\circ})6s6p(^{3}\text{P}^{\circ})$		2	18324.668	1.006	13	$^{1}\mathrm{D}$	12	$({}^{3}F^{\circ})({}^{3}P^{\circ}) {}^{3}D$
$75d(^3\mathrm{F}^\circ)6s6p(^3\mathrm{P}^\circ)$		5	18365.725	1.158	18	5F	14	$(^{3}H^{\circ})(^{3}P^{\circ})$ ^{3}H
$75d(^{3}{ m F}^{\circ})6s6p(^{3}{ m P}^{\circ})$		4	18411.170	1.175	12	^{3}G	12	$4f^{2}(^{3}F)5d$ ($^{4}F)6s$ ^{5}F
		3	18427.612					
$f^2 6s^2$		1	18535.575	0.602	22	$^{3}\mathrm{P}$	18	$4f5d(^{3}\mathrm{D}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$ ⁵ F
⁷² (³ H)5d (² G)6s		4	18550.101	1.055	15	$^3\mathrm{G}$	6	$4f5d(^{3}{ m G}^{\circ})6s6p(^{3}{ m P}^{\circ})$ $^{1}{ m G}$
$75d(^{3}{ m F}^{\circ})6s6p(^{3}{ m P}^{\circ})$		2	18587.749	1.135	12	$^{5}\mathrm{D}$	7	$4f^{2}(^{3}\mathrm{F})5d$ (4P)6s $^{3}\mathrm{P}$
$75d(^3\mathrm{F}^\circ)6s6p(^3\mathrm{P}^\circ)$		6	18598.261	1.253	31	$^{5}\mathrm{G}$	17	$({}^{3}G^{\circ})({}^{3}P^{\circ})$ 5H
		3	18611.386	1.028				
$75d(^3\mathrm{F}^\circ)6s6p(^3\mathrm{P}^\circ)$		5	18619.685	1.119	14	5F	12	$({}^{3}G^{\circ})({}^{3}P^{\circ}) {}^{5}H$
		3	18652.242	1.137				
⁷² (³ H)5d (⁴ F)6s		5	18661.289	1.237	25	$^5\mathrm{F}$	12	$4f5d(^{3}{ m F}^{\circ})6s6p(^{3}{ m P}^{\circ})$ $^{5}{ m F}$
$f'(^2F^{\circ}_{5/2})6s^2 6p_{3/2}$		4	18692.793	1.110	11	(5/2,3/2)	7	$(^{7}/_{2}, ^{3}/_{2})$
T ² (³ H)5d (⁴ F)6s		2	18706.502	0.844	21	3F	15	$4f5d(^{3}{\rm F}^{\circ})6s6p(^{3}{\rm P}^{\circ})~^{3}{\rm F}$
75d(3G°)6s6p(3P°)?		1	18727.755	0.625	13	5F	12	$4f^{2}(^{3}F)5d$ ($^{4}F)6s$ ^{5}F
		3	18758.513	1.047				
⁷² (³ F)5d (⁴ G)6s?		5	18831.782	1.141	11	$^{5}\mathrm{G}$	9	$4f5d(^{3}{ m G}^{\circ})6s6p(^{3}{ m P}^{\circ})$ $^{3}{ m G}$
$75d(^{3}{\rm G}^{\circ})6s6p(^{3}{\rm P}^{\circ})$		4	18871.606	1.100	9	$^3\mathrm{G}$	9	$({}^{3}F^{\circ})({}^{3}P^{\circ}) {}^{3}G$

Ce I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lead	ling percentages
$4f5d(^{1}\mathrm{D}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		2	18880.662	0.934	14	3D	7	(3G°)(3P°) 5F
$4f^2(^3F)5d$ (4H)6s		7	18942.478	1.257	39	5H	22	$4f5d(^{3}\text{H}^{\circ})6s6p(^{3}\text{P}^{\circ})$ ⁵ H
$f^2(^3F)5d$ (4H)6s?		5	18943.013	1.160	13	$^3\mathrm{H}$	5	$(^{3}F)(^{4}F)$ ^{5}F
$f^{2}(^{3}F)5d$ ($^{2}P)6s$?		1	18973.876	0.842	15	$^3\mathrm{P}$	12	$(^{3}F)(^{2}P)$ ^{1}P
$f^{2}(^{3}F)5d$ (2D)6s		2	18987.150	1.121	12	$^{1}\mathrm{D}$	9	$(^{3}F)(^{2}D)$ ^{3}D
$df(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{F})$ ($^{4}\text{H}^{\circ})6p$		4	19014.863	0.911	26	5 <u>I</u>	15	$4f^{2}(^{3}F)5d$ (4H)6s ^{3}H
$f5d(^{3}{ m H^{\circ}})6s6p(^{3}{ m P^{\circ}})$		5	19062.498	1.097	12	5G	11	4f ² (³ F)5d (⁴ H)6s ³ H
$f^{2}(^{3}{\rm H})5d~(^{4}{\rm H})6s$		6	19072.103	1.122	17	$^3\mathrm{H}$	15	$4f5d(^{3}\text{H}^{\circ})6s6p(^{3}\text{P}^{\circ})$ ^{3}I
		3	19072.898	1.009				•
$f^{2}(^{3}F)5d$ (2D)6s		2	19158.135	1.020	9	$^{1}\mathrm{D}$	9	$4f5d(^{1}D^{\circ})6s6p(^{3}P^{\circ})$ ³ D
$f5d(^3\mathrm{G}^\circ)6s6p(^3\mathrm{P}^\circ)$		4	19220.360	1.137	14	$^3\mathrm{G}$	6	4f ² (³ F)5d (⁴ F)6s ⁵ F
$f5d(^{3}{ m H}^{\circ})6s6p(^{3}{ m P}^{\circ})$		6	19235.098	1.097	16	зI	13	(3G°)(3P°) 5H
f ² (³ H)5d (² G)6s		4	19244.787	1.000	13	^{1}G	9	4f(2F°)5d2(3F) (4I°)6p 3H
, (, (-,		3	19247.627	1.067				
$f({}^{2}{ m F}^{\circ})5d^{2}({}^{3}{ m F})~({}^{4}{ m I}^{\circ})6p$		4	19296.353	0.926	22	³H	9	4f5d(3H°)6s6p(1P°) 3H
, (- , - :: (- , (- , - F		2	19321.019	1.334				
		2	19330.215	0.961				
$f5d(^{3}{ m H}^{\circ})6s6p(^{3}{ m P}^{\circ})$		5	19347.064	1.198	18	5G	14	$({}^{3}F^{\circ})({}^{3}P^{\circ}) {}^{3}G$
f ² (³ H)5d (⁴ H)6s		6	19347.542	1.193	21	3H	9	(3F)(4H) 3H
$f^2 6s^2$		1	19362.490	1.392	15	зР	11	$4f5d(^{3}\mathrm{D}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$ ³ P
, ••		3	19406.157	1.158				
		2	19409.898	0.922				
		3	19457.393	0.972				
$f 5d(^{3}\mathrm{D}^{\circ}) 6s6p(^{3}\mathrm{P}^{\circ})$		4	19544.105	1.187	12	$^5\mathrm{F}$	9	4f ² (³ H)5d (⁴ F)6s ⁵ F
$f5d(^{1}{\rm D}^{\circ})6s6p(^{3}{\rm P}^{\circ})?$		1	19566.861	0.836	18	$^3\mathrm{D}$	12	$4f^{2}(^{3}F)5d$ ($^{2}D)6s$ ^{3}D
		2	19595.360	0.826				•
1f5d(3G°)6s6p(3P°)?		6	19627.275	1.075	23	5H	17	$({}^{3}\mathrm{G}^{\circ})({}^{3}\mathrm{P}^{\circ}) {}^{5}\mathrm{G}$
		3	19636.636	1.052				
f (2F°)5d2(3F) (4H°)6p?	10 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	5	19661.076	1.047	22	5 <u>I</u>	10	4f ² (³ F)5d (⁴ H)6s ³ H
f ² (³ F)5d (⁴ D)6s		4	19680.078	1.260	15	5D	10	$4f5d(^{1}G^{\circ})6s6p(^{3}P^{\circ})$ ³ F
f ² (³ H)5d (² K)6s?	з К ?	6	19680.343	1.06	45		7	(3H)(4H) 3H
j (11)3a (11)03.		3	19711.008	0.946				
f5d(3D°)6s6p(3P°)?		1	19768.832	0.813	9	¹P	9	$4f^{2}(^{3}F)5d$ ($^{4}D)6s$ ^{3}D
· ·							10	$4f5d(^{3}\text{H}^{\circ})6s6p(^{3}\text{P}^{\circ})$ ^{3}I
$f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$ (4I°)6p	⁵ K	$\frac{5}{6}$	19791.740 20591.937	$0.836 \\ 0.961$	34 51		18 11	$({}^{2}F^{\circ})({}^{3}F) ({}^{4}H^{\circ}) {}^{5}I$
		7	21654.060	1.053	66		5	(2F°)(3F) (4H°) 5I (2F°)(3F) (4H°) 5I
		8 9	22864.055 24350.503	1.164 1.222	59 95		$\begin{array}{c} 26 \\ 4 \end{array}$	4f ² (³ H)5d (⁴ K)6s ⁵ K
								•
		2	19805.290	1.244		177	9.0	$(^{3}H)(^{2}K)$ ^{3}K
f ² (³ H)5d (² K)6s		7	19836.936	1.011	40	1K	30	(3F)(2G) 1G
f ² (³ F)5d (⁴ F)6s		4	19840.631	1.211	21	5F 512	5	$4f^{2}({}^{1}G)5d ({}^{2}H)6s {}^{3}H$
$f(^{2}F^{\circ})5d^{2}(^{3}F) (^{4}I^{\circ})6p?$		5	19843.704	1.008	15	5K	10	4) -(G)00 (11)08 -11
		2	19880.707	0.779				
		3	19928.468	1.157		ETO		(3D°)/3D°) 5D
$165d(\mathrm{TP})6s6p(\mathrm{^3P}^\circ)?$		1	19961.411		15	5P	10	$(^{3}D^{\circ})(^{3}P^{\circ})$ ^{5}P

Ce I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lead	ling percentages
		3	19988.986	1.086				
		3	20030.979	0.950				
² (³ F)5d (⁴ H)6s		6	20063.180	1.106	33	$^3\mathrm{H}$	15	$(^{3}H)(^{2}K)$ ^{3}K
		4	20112.605	1.116				
$^{(2)}(^{3}F)5d$ ($^{4}P)6s$?		1	20142.354		13	$^{3}\mathrm{P}$	10	$(^{3}F)(^{4}D)$ ^{5}D
		4	20174.457	0.879				
		2	20200.964	1.190				
		3	20242.186	1.017				
		3	20267.785	1.19				
$5d(^{3}G^{\circ})6s6p(^{3}P^{\circ})$		5	20276.120	1.169	16	$^{3}\mathrm{G}$	16	$4f(^2\mathrm{F}_{7/2}^{\circ})6s^26p_{3/2}(^{7/}_{2},^{3/}_{2})$
		4	20320.040	1.137				
$5d(^{3}G^{\circ})6s6p(^{3}P^{\circ})$		5	20338.893	0.996	12	$^3\mathrm{H}$	12	$4f(^{2}F^{\circ})5d^{2}(^{3}F)$ ($^{4}I^{\circ})6p$ ^{5}K
$5d(^{3}{\rm H}^{\circ})6s6p(^{3}{\rm P}^{\circ})$		6	20346.021	1.282	32	5G	19	$4f^{2}(^{3}F)5d$ ($^{4}G)6s$ ^{5}G
$5d(^{3}\mathrm{P}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		1	20399.725	1.533	22	5P	10	$(^{3}P^{\circ})(^{3}P^{\circ})$ ^{5}D
		4	20411.394	1.088				
		3	20430.658	1.275				
		2	20430.829	1.216				
$5d(^{3}G^{\circ})6s6p(^{3}P^{\circ})$	5H	7	20448.112	1.275	75		6	$4f^{2}(^{3}\mathrm{H})5d~(^{4}\mathrm{H})6s~^{5}\mathrm{H}$
$^{(2)}(^{3}F)5d$ ($^{4}F)6s$		5	20498.515	1.212	28	5F	10	$4f(^{2}{\rm F}^{\circ})5d^{2}(^{3}{\rm F})\ (^{2}{\rm G}^{\circ})6p\ ^{3}{\rm G}$
² 6s ²	1]	6	20509.064	1.00	64		10	$4f5d(^{1}{\rm H^{\circ}})6s6p(^{1}{\rm P^{\circ}})$ $^{1}{\rm I}$
		4	20509.805	1.163				
		2	20513.966	1.107				
$^{2}(^{3}\mathrm{F})5d$ ($^{4}\mathrm{D})6s$		1	20562.159		16	$^{3}\mathrm{D}$	10	$(^{3}F)(^{2}P)$ ^{1}P
		3	20613.172	1.130				
		2	20624.376	0.889				
$(^{2}F^{\circ})5d^{2}(^{3}F)$ $(^{4}I^{\circ})6p$		5	20631.804	1.016	13	зН	10	$(^{2}F^{\circ})(^{3}F) (^{4}I^{\circ}) {}^{5}K$
		3	20661.129	0.885				
		2	20708.481	1.288				
$(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$ $(^{4}\mathrm{I}^{\circ})6p$		5	20730.135	1.056	10	зН	6	$4f5d(^{3}{\rm H}^{\circ})6s6p(^{3}{\rm P}^{\circ})~^{3}{\rm I}$
		4	20747.237	1.125				
		4	20765.312	1.103				
		3	20782.510	1.348				
		1	20791.875	1.230				
$5d(^{3}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$	3I	7	20812.921	1.145	48		11	$4f(^{2}F^{\circ})5d^{2}(^{3}F) (^{4}I^{\circ})6p ^{3}I$
$(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{F})$ $(^{4}\text{H}^{\circ})6p$	5]	6	20842.504	1.100	51		8	$(^{2}F^{\circ})(^{3}F)$ $(^{4}I^{\circ})$ ^{5}K
		7	22063.473	1.171	75		5 32	4f ² (³ H)5d (⁴ I)6s ⁵ I (² F°)(³ F) (⁴ I°) ⁵ K
		8	23282.722	1.233	60		34	(I)(I)(I) K
		4	20907.116	1.148				
		2	20927.698	1.002				
		2	20962.608	0.996				
		4	20998.016	1.054				
$5d(^3\mathrm{D}^\circ)6s6p(^3\mathrm{P}^\circ)$		1	20998.840	1.209	36	5P	6	(3P°)(3P°) 5P
$5d(^3G^\circ)6s6p(^3P^\circ)$		1	21017.878	0.468	24	5F	14	$(^3\mathrm{D}^\circ)(^3\mathrm{P}^\circ)$ $^5\mathrm{F}$
	-	2	21023.153	0.953				

Ce I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages				
4f(2F°)5d2(3F) (4H°)6p		5	21059.520	1.075	19	5 <u>I</u>	10	(2F°)(3F) (2G°) 3H	
$4f5d(^{3}{ m D}^{\circ})6s6p(^{3}{ m P}^{\circ})$		0	21068.470		18	$^3\mathrm{P}$	11	(3P°)(3P°) 5D	
		4	21076.477	0.949					
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$ ($^{4}\mathrm{H}^{\circ})6p$		6	21100.065	1.069	11	3H	9	$4f^{2}(^{1}G)5d$ ($^{2}H)6s$ ^{3}H	
$4f5d(^{3}{ m D}^{\circ})6s6p(^{3}{ m P}^{\circ})$		5	21153.703	1.250	15	5F	12	(3G°)(3P°) 5F	
		3	21158.831	1.225				, ,,	
		4	21161.192	0.700					
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$ ($^{4}\mathrm{D}^{\circ})6p$		1	21165.259	0.85	17	5F	10	$5d^{3}(^{4}{ m F})6s~^{5}{ m F}$	
		2	21168.987	1.128				, , = =	
$4f5d(^{3}{ m D}^{\circ})6s6p(^{3}{ m P}^{\circ})$		5	21226.361	1.134	14	5F	13	$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})~(^{2}\mathrm{G}^{\circ})6p~^{3}\mathrm{H}$	
		3	21237.916	1.010					
		4	21267.903	1.107					
$4f^{2}(^{3}\text{H})5d\ (^{2}\text{K})6s$		7	21314.996	1.014	32	1K	31	(³ H)(² K) ³ K	
$4f5d(^{3}{ m H}^{\circ})6s6p(^{3}{ m P}^{\circ})$		6	21324.736	1.043	21	1 <u>I</u>	9	$4f(^{2}F^{\circ})5d^{2}(^{3}F) (^{4}I^{\circ})6p ^{3}I$	
		3	21340.864	1.108			v	J(1)00(1)(1)0p 1	
		2	21375.475	0.950					
		3	21399.014	1.265					
		2	21420.772	1.114					
$4f^{2}(^{1}G)5d$ ($^{2}D)6s$		1	21431.568	0.640	13	$^{3}\mathrm{D}$	11	$4f(^{2}F^{\circ})5d^{2}(^{3}F) (^{4}F^{\circ})6p ^{3}D$	
$4f5d(^{3}{ m H}^{\circ})6s6p(^{3}{ m P}^{\circ})$		5	21456.528	1.200	21	5G	9	(3G°)(3P°) 5G	
5 - 1 () p ()		3	21499.915	1.153		-	v	(4)(1) 4	
		4	21520.287	1.107					
$4f5d(^{3}{ m H}^{\circ})6s6p(^{3}{ m P}^{\circ})$		5	21581.408	1.134	10	5G	7	$4f(^{2}F^{\circ})5d^{2}(^{3}F)(^{2}I^{\circ})6p^{3}I$	
•		3	21582.401	1.148				-J (- / (- / (- /op -	
		4	21619.232	1.021					
		2	21623.269	1.503?					
		3	21661.537	0.843					
$f(^{2}F^{\circ})5d^{2}(^{3}F)$ ($^{2}S^{\circ})6p$		0	21664.821		41	^{3}P	8	$(^{2}F^{\circ})(^{3}F) (^{4}P^{\circ}) {}^{3}P$	
$4f^{2}(^{1}G)5d$ ($^{2}I)6s$		5	21683.722	0.934	9	^{3}I	8	(3F)(4G) 3G	
		2	21712.611	1.395					
4f ² (³ H)5d (² K)6s	зK	8	21722.069		65		10	$(^{1}I)(^{2}K)$ ^{3}K	
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$ ($^{4}\mathrm{I}^{\circ})6p$	5 <u>I</u>			0.007				ě	
ij (1)6û (1) (1)6p	1	$\frac{5}{6}$	21725.348 22321.098	0.997 1.057	45 41		8 5	(² F°)(³ F) (² G°) ³ H (² F°)(³ F) (² I°) ³ I	
		7 8	23452.626	1.157	38		8	$4f^{2}({}^{1}G)5d$ (${}^{2}I)6s$ ${}^{3}I$	
((0770) 7 10 (17)		0	24657.245	1.238	70		11	$4f^{2}(^{3}\mathrm{H})5d^{2}(^{3}\mathrm{F})^{5}\mathrm{I}$	
$df(^{2}F^{\circ})5d^{2}(^{1}D) (^{2}P^{\circ})6p$		1	21725.865	1.337	10	$^3\mathrm{S}$	7	$(^{2}F^{\circ})(^{3}F) (^{4}P^{\circ}) {}^{3}S$	
		2	21786.764	1.186					
		3	21813.247	1.048					
$f5d(^{1}\mathrm{F}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		1	21823.516	0.653	17	$_3\mathrm{D}$	11	$4f^{2}(^{1}{\rm G})5d~(^{2}{\rm D})6s~^{3}{\rm D}$	
$f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{F}) (^{2}\text{G}^{\circ})6p$		6	21877.490	1.128	24	$^3\mathrm{H}$	14	$(^2F^\circ)(^3F)$ $(^4H^\circ)$ 5I	
		4	21885.546	1.156					
		5	21946.849	1.084					
		3	21948.875	1.099					
		4	21993.874	1.213					
		2	21994.428	1.45	1				

Ce I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Le a di	ng percentages
		4	22063.708	1.156				
$75d(^{3}{ m H}^{\circ})6s6p(^{3}{ m P}^{\circ})$		6	22064.966	1.150	17	5G	16	$4f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{F}) (^{2}\text{G}^{\circ})6p ^{3}\text{H}$
		2	22092.108	1.014				
		3	22127.392	1.087				
$f(^{2}F^{\circ})5d^{2}(^{3}F) (^{2}S^{\circ})6p$		1	22162.504	0.806	11	$^{3}\mathrm{P}$	9	$(^{2}F^{\circ})(^{3}F)~(^{4}F^{\circ})~^{5}F$
		2	22170.124	0.745				
		5	22184.376	1.092				
		3	22190.760	0.938				
		4	22210.585	1.082				
		2	22219.750	1.179				
		1	22246.080	1.322				
		3	22291.251	1.233				
		4	22325.164	1.106				
		5	22355.991	1.083				
		2	22360.158	1.165				(0D0) (0D0) ED
f5d(3P°)6s6p(3P°)?		1	22392.029	1.500	37	5D	19	(3D°)(3P°) 5D
$f5d(^3\mathrm{H}^\circ)6s6p(^3\mathrm{P}^\circ)$		6	22438.967	1.126 0.990	9	¹ I	7	(3H°)(3P°) 5G
		3	22477.386 22503.719	1.049				
		4 5	22518.695	1.049				
		2	22549.057	1.185				
$f(^{2}F^{\circ})5d^{2}(^{3}F)$ ($^{4}I^{\circ})6p$		6	22558.596	1.180	17	5 <u>I</u>	11	4f5d(3H°)6s6p(3P°) 5G
$f(^{2}F^{\circ})5d^{2}(^{3}F)$ ($^{2}S^{\circ})6p$?		1	22567.448	1.476	14	³P	8	(2F°)(1D) (2P°) 3S
(1)	-	3	22600.482	1.250				
		2	22660.085	0.955				
$f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{F}) (^{2}\text{P}^{\circ})6p$		0	22678.015		14	1S	13	$(^{2}F^{\circ})(^{1}D) (^{2}P^{\circ}) {}^{1}S$
		3	22713.073	1.155				
$f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$ ($^{4}\mathrm{I}^{\circ})6p$		7	22739.355	1.135	15	$_{3}I$	13	$4f^{2}({}^{1}G)5d$ (${}^{2}I)6s$ ${}^{3}I$
		5	22740.645	1.093				
		4	22741.485	1.021				
		4	22781.169	1.156				
		2	22798.685	1.266				
		3	22844.779	1.036				
$f(^{2}F^{\circ})5d^{2}(^{3}F) (^{4}I^{\circ})6p$		6	22851.015	1.141	28	3H	14	$4f5d(^{3}\text{H}^{\circ})6s6p(^{1}\text{P}^{\circ})$ ^{3}H
		5	22882.755	1.147				
		4	22908.586	1.176		517	-	(2E°)(3D) (4D°) 5E
$(^{2}F^{\circ})5d^{2}(^{3}F) (^{4}D^{\circ})6p$		1	22933.990	0.488	17	5F	7	(2F°)(3P) (4D°) 5F
		4	22949.615	1.119				
		2	22970.284 22972.499	0.890 1.052				
		3	23049.867	0.953				
		2 5	23083.233	1.101				
		5	23117.060	1.087				
		3	23139.791					

Ce I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Lead	ling percentages
		3	23154.693	0.696			
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$ ($^{4}\mathrm{I}^{\circ})6p$		7	23184.096	1.151	27 ⁵ I	17	$(^{2}F^{\circ})(^{3}F) \ (^{2}I^{\circ}) \ ^{3}I$
4f(2F°)5d2(3F) (4H°)6p		6	23190.384	1.169	38 ⁵ H	8	$4f5d(^{1}\text{H}^{\circ})6s6p(^{3}\text{P}^{\circ})$ ^{3}H
g (= /-		3	23240.982	0.865			
		2	23244.973	0.993			
		4	23251.722	1.053			
		5	23292.136	0.975			
$4f5d({}^{1}{ m F}^{\circ})6s6p({}^{3}{ m P}^{\circ})$		1	23299.807	1.527	6 ³ D	6	$4f(^{2}F^{\circ})5d^{2}(^{3}F) (^{4}D^{\circ})6p ^{5}F$
-J (-) F (-)		3	23301.906	1.272			
$4f(^{2}F^{\circ})5d^{2}(^{3}F)$ ($^{2}I^{\circ})6p$		6	23370.168	1.034	13 ¹ I	11	$({}^{2}F^{\circ})({}^{1}G) ({}^{2}I^{\circ}) {}^{1}I$
<i>y</i> (<i>i</i>)		4	23391.896	1.067			
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$ ($^{4}\mathrm{D}^{\circ})6p$		0	23392.754		12 ⁵ D	11	$4f5d(^{3}P^{\circ})6s6p(^{3}P^{\circ})$ ^{3}P
1) (1)00 (1) (1) /00		5	23430.776	1.293			
		4	23513.352	1.166			
		3	23535.757	1.011			
$4f5d(^{3}\mathrm{D}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		1	23554.940	0.519	9 ³ D	7	$4f(^{2}F^{\circ})5d^{2}(^{1}D) (^{2}P^{\circ})6p ^{3}I$
4) θα(1))θεθρ(1)		4	23596.416	1.043			
		2	23620.200	1.047			
		6	23627.278	1.012			
		1	23673.890	1.604			
		3	23701.801	1.008			
		6	23709.980	0.943			
		4	23722.196	1.051			
		2	23725.770	1.088			
		3	23727.513	1.193			
		5	23749.896	1.148			
		4	23811.369	1.113			
		2	23860.329	0.962			
		2	23869.048	1.236			
		5	23885.162	1.16			
		1	23895.211	0.813			
		3	23909.764	1.186			
		6	23944.962	0.889			
4f(2E°\5 d2(3E\) (4E°\6m		0	23951.456		26 ⁵ D	12	$4f5d(^{3}\mathrm{D}^{\circ})6s6p(^{1}\mathrm{P}^{\circ})^{3}\mathrm{P}$
$4f(^{2}F^{\circ})5d^{2}(^{3}F)$ ($^{4}F^{\circ})6p$		5	23962.481	1.196	20 2		- y y - y y - y y - y y y y y y y y y y
		4	23978.411	1.154			
		5	24009.430	1.074			
		2	24024.353	1.393			
		3	24041.686	ł			
		2	24071.835	1.163			
$4f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{F}) \ (^{4}\text{D}^{\circ})6p$		1	24087.022		18 ⁵ P	13	1 4f ² (³ P)5d (⁴ P)6s ⁵ P
-η (1)οω (1) (12)οp		3	24131.943	1.155		-	•
		3	24135.490				
$4f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{F})$ ($^{4}\text{H}^{\circ})6p$	5H	7	24148.194		51	10	0 4f ² (¹ G)5d (² I)6s ³ I

Ce I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
		4	24159.701	1.103	
		6	24167.499	0.948	
		2	24193.407	0.010	
		4	24198.377	1.174	
		4	24214.433	1.146	
		5	24248.369	1.080	
		3	24274.908	1.192	
		5	24290.594	1.098	
		2	24294.652		
		İ		0.941	
		1	24325.115	1.245	
		3	24352.787	0.863	
		4	24364.716	1.188	
		5	24412.448	1.067	
		2	24420.797	0.915	
		6	24427.862	1.129	
F 1/2D0\4 A (0D0\0		2	24445.454	1.156	
$5d(^{3}P^{\circ})6s6p(^{3}P^{\circ})?$		0	24466.163		11 ^{3}P 9 $4f^{2}(^{1}D)5d$ ($^{2}P)6s$ ^{3}P
		5	24535.600	1.155	
		4	24549.787	0.947	
		6	24561.348	0.972	
		3	24562.175		
		3	24565.881	1.125	
$5d(^{3}P^{\circ})6s6p(^{3}P^{\circ})?$		0	24601.655		20 ³ P 18 4f ² (¹ D)5d (² P)6s ³ P
		1	24609.938	1.252	
		4	24619.260	1.159	
		2	24660.675	0.936	
		2	24673.994		
		6	24691.432	1.216	
		4	24697.323		
		2	24704.139	1.163	
		5	24715.417	1.189	
		3	24731.583	0.941	
		1,2	24789.209		
		2	24808.737	0.94	
$({}^{2}{ m F}^{\circ})5d^{2}({}^{3}{ m F})~({}^{2}{ m I}^{\circ})6p$		7	24826.953	1.060	41 ³ K 13 (² F°)(¹ G) (² I°) ³ K
		5	24853.962	1.125	
		3	24859.809	1.219	
		4	24873.633	1.086	
		3	24883.143	1.042	
		1	24904.076		
		2	24934.358	1.265	
		1	24943.654	1.081	
	-	4	24960.288	0.947	
		1	24980.095	0.011	

Ce I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
		3	25044.233	0.997		
		6	25058.207	1.150		
		2	25059.621	1.113		
		4	25077.395	1.187		
		5	25093.105	1.146		
		3	25134.962	1.135		
		1	25174.542	1.906		
		1	25185.870	0.704		
		2	25193.242	1.578		
		4	25208.286	1.332		
$4f(^{2}F^{\circ})5d^{2}(^{3}F)$ ($^{4}I^{\circ})6p$?		7	25260.320	1.129	25 ³ K	$12 (^{2}F^{\circ})(^{3}F) (^{2}H^{\circ}) ^{3}I$
		5	25266.806	1.112		
$4f(^{2}F^{\circ})5d^{2}(^{3}F)$ ($^{4}D^{\circ})6p$		0	25287.107		31 ⁵ D	$13 (^{2}F^{\circ})(^{3}F) \ (^{4}F^{\circ}) \ ^{5}D$
		3	25297.222	1.225		
		4	25331.885	0.836		
		6	25344.548	1.126		
		2	25346.707	1.158		
		4	25365.812	0.941		
		1	25431.677	1.086		
$4f(^{2}F^{\circ})5d^{2}(^{3}F)$ ($^{4}H^{\circ})6p$?		7	25434.458	1.086	26 ³I	$14 (^{2}F^{\circ})(^{3}F) (^{2}H^{\circ}) ^{3}I$
		5	25438.378	1.135		
		3	25441.048	1.399		
		2	25454.305	1.453		
		3	25492.072	0.956		
		6	25544.009	1.278		
		2	25567.838	0.909		
		1	25577.169			
		2	25635.648	1.311		
		3	25640.598	1.009		
		4	25668.215	1.069		
		5	25686.084	0.885		
		6	25730.382	1.179		
		3	25734.430	1.199		
		1	25740.465	1.319		
		4	25742.736	1.029		
		5	25774.246	1.11		
		6	25825.193	0.949		
		3	25854.290	1.09		
$4f(^{2}F^{\circ})5d^{2}(^{3}F)$ ($^{2}I^{\circ})6p$	3K	8	25859.876	1.144	55	11 $({}^{2}F^{\circ})({}^{1}G) ({}^{2}I^{\circ}) {}^{3}K$
		4	25863.180	1.042		
		5,6	25866.350			
		5	25868.082	1.057		
		2	25881.592			
		5	25928.289	0.931		

Ce I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
		4	25930.045	1.18		
		4	25958.129	1.024		
		2	25985.208	0.936		
		5	25987.414	1.066		
$4f(^{2}F^{\circ})5d^{2}(^{3}F)$ ($^{4}I^{\circ})6p$		7	25990.573	1.191	20 ⁵ H	$17 (^{2}F^{\circ})(^{3}F) (^{4}I^{\circ}) {^{3}K}$
		1	26003.955	1.015		
		3	26010.601	0.687		
		4	26028.968	1.20		
		3	26050.442	1.404		
		5	26077.519	0.966		
		6	26107.128	1.137		
		2	26117.078			
		3	26129.632	0.990		
		1	26155.734	1.60		
		2	26160.350	1.51		
		4	26179.026	1.134		
		2	26209.390	1.446		
		5	26215.094 26226.051	1.113		
		5	26245.918	0.951		
		4	26297.430	1.216		
		3	26311.553	1.210		
		4	26351.090	1.05		
		3	26384.438	1.269		
		1	26402.895	1.835		
		6	26436.162	1.060		
		2	26449.158	1.232		
		4	26474.425			
		3	26498.929	1.20		
		1	26510.686			
$4f(^{2}F^{\circ})5d^{2}(^{3}F)$ ($^{4}I^{\circ})6p$		7	26543.339	1.185	34 ⁵ H	8 $4f^{2(3H)}5d^{2(3F)}^{3}K$
		4	26545.399	0.99		
		6	26586.690	1.10		
		5	26589.936	0.891		
		3	26610.277	1.144		
		5	26632.010	1.038		
	·	3	26658.643	0.978		·
		6	26675.568			
		2	26690.185	1.144		
4 (9/9IIVE 19/9IIV9		5	26702.035	1.190	1.0 5IV	11 $4f(^{2}F^{\circ})5d^{2}(^{3}F)(^{4}I^{\circ})6p^{-3}K$
4/ ² (³ H)5d ² (³ F)?		7	26707.443	1.103	16 ⁵ K	11 4/(-r /əa-(-r) (-1 /op -k
		4	26713.745 26714.323	1.21 1.248		
		3	26714.323	0.997		
		$egin{pmatrix} 4 \\ 2 \end{bmatrix}$	26786.991	0.997		

Ce I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
		6	26808.109	1.066	
		4	26836.434	1.217	
		3	26843.555		
		1	26853.642	1.605	
		6	26883.075		
		1	26913.605		
		4	26929.306	1.075	
		3	26934.381	1.270	
		2	26943.447	1.026	
		6	26972.051	1.186	
		2	27013.438	0.94	
		6	27038.349		
		6	27046.095		
		5	27059.164	0.989	
		2	27076.477		
		5	27079.267	1.129	
		4	27091.644	1.002	
		4,3	27103.499		
		4	27114.140	1.25	
		4	27159.064	0.83	
		3	27172.959		
		1	27183.504	1.456	
		3	27230.482		
		2	27254.752		
		4	27269.619		
		3	27269.831	0.855	
$4f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{F}) (^{4}\text{G}^{\circ})6p$	5H	7	27271.854	1.239	54 8 4f ² (¹ I)5d (² I)6s ³ I
		6	27313.506	1.044	
		5	27323.672	1.278	
		2	27323.740		
		1	27334.124		
		2	27384.387	1.058	
		4	27394.344	1.20	
		5	27400.533	1.165	
		4	27419.445		
		3	27438.661	1.143	
		1	27474.071	0.537	
		4	27483.038		
		2	27488.295		
$4f^2(^3\mathrm{H})5d^2(^3\mathrm{F})$	5 I	7	27499.170		44 22 (³ F)(³ F) ⁵ I
		2	27520.602		
		4	27539.493		
		5	27541.881	1.065	
		6	27551.129	1.138	
		3	27575.557	1.131	1

Ce I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Le	ading percentages
		5	27594.029	0.883				
		1	27682.976	1.63				
$4f^2(^3{ m H})5d^2(^3{ m F})$		8	27713.404	1.157	28	5K	20	(3H)(3F) 5I
		3	27720.080					
		5	27722.717	1.078				
		2	27754.738	1.06				
		4	27777.471					
$4f^2(^3\mathrm{H})5d^2(^3\mathrm{F})$		7	27790.306	1.082	41	5K	12	$4f(^{2}F^{\circ})5d^{2}(^{3}F)(^{2}I^{\circ})6p^{-1}K$
		3	27801.418	0.789				
		4	27819.166					
		6	27831.875		-			
		2	27889.229	0.985				
		1	27927.770					
		4	27958.133					
		5	27961.103					
		3	27968.275 27993.692					
		6	28008.895					
		4 2	28027.579					
4£2/311\E J2/3\D\		7	28027.579	1.06	15	зK	14	$4f(^{2}F^{\circ})5d^{2}(^{3}F) (^{2}I^{\circ})6p ^{-1}K$
$4f^2(^3{ m H})5d^2(^3{ m F})$		3	28061.678	1.00	15	K	14	4) (1)0a (1) (1)0p 11
		4	28072.439					
		5	28081.659	1.15				
		1	28109.530	1.13				
		2	28110.643	1.21				
		3	28136.988	1.29				
		4	28162.787					
		4	28229.328					
		5	28248.773					
$4f(^{2}F^{\circ})5d^{2}(^{3}F)$ ($^{4}H^{\circ})6p$		7	28278.254		28	3I	12	$(^{2}F^{\circ})(^{3}F) (^{2}H^{\circ}) {}^{3}I$
		3	28279.191					
		1	28318.481					
		2	28319.742					
		3	28323.546	1.149				
		4	28350.795					
		6	28353.870	1.076				
		0	28383.402					
		4	28391.572					
		1	28392.007					
		2	28398.232					
		2	28435.008					
		1	28449.566					
		6	28460.075					
		5	28463.492					
		4	28487.621	1	I			

Ce I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g*		Leading percentages
		3	28503.446	0.884		
		6	28540.983			
		3	28550.271			
		4	28552.406			
$f^{2(3}\text{H})5d^{2(3}\text{P})$		7	28557.829		14 ³ I	13 (³ H)(³ F) ³ I
		1	28560.398			
		_ 5	28572.764			
		2,3	28585.170			
		5	28624.773			
		1	28630.090			
		3,4	28631.200			
		2	28637.803			
		4	28766.939	0.898		
		2	28776.759			
		6	28812.043	1.181		
		5	28818.644			
		4 5	28885.245 28900.623			
		4	28905.360	1.173		•
		2	28918.763	1.173		
		3	28922.881			
		4,3	28970.469			
•		2,3	28972.464			
		2,1	29013.879			
		6	29056.021			
		3	29066.231			
$f(^{2}\mathrm{F}^{\circ})5d^{2}(^{1}\mathrm{G}) \ (^{2}\mathrm{K}^{\circ})6p$		7	29068.385		27 ³ L	15 $4f^{2(1)}5d^{2}L6s^{3}L$
		4	29079.931			, (), (), (), (), ()
		3	29102.000			
		2,3	29119.963			
		4,5,6	29164.578			
		4	29177.515			
		3	29213.489			
		4	29218.849			
		6	29252.803			
		1	29283.340			
		3,4	29283.952			
		3	29290.199			
		1	29322.493			
		2	29326.078			
		4	29330.295			
		6	29330.352			
		3,4 5,6	29331.059			
		$\frac{5,6}{2}$	29341.611 29380.730			

Ce I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading	g percentages
		2	29404.276				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		3,4	29421.697				
		5	29442.990				
		2	29443.725				
$f({}^{2}{ m F}^{\circ})5d^{2}({}^{1}{ m G})~({}^{2}{ m K}^{\circ})6p$		7	29451.510		23 ³ L	22 4f	$^{2}(^{3}\mathrm{H})5d^{2}(^{1}\mathrm{G})$ $^{3}\mathrm{L}$
		1	29452.104				
		4	29454.950	0.95			
		7	29467.837	1.111			
		1	29488.484				
		3,4	29493.486				
		6	29503.337				
		2,1	29527.513				
		2	29536.625				
		5,4	29570.267				
		4,3	29612.061				
		5	29613.602	1.228			
		6	29625.206	1.227			
		2,3	29646.559	1.22			
		5	29657.504				
		4,3	29667.999				
		1	29669.252				
		3,4	29678.177				
		7	29708.948				
		3,4	29717.715				
		2	29722.053				
		1	29751.194				
		4	29759.552				
		5	29766.188				
		6	29780.904				
		3	29798.291				
		2,3	29813.168				
		4	29821.757				
		5	29871.798				
		7	29877.112				
		3,2	29884.660				•
		2	29903.166				
		4	29914.670				
		3	29946.815				
		5	29950.307				
		0,1	29956.305				
		2	29957.083				
		4	29999.887				
		6	30022.492	1.103			
e II (4H ^o _{7/2})	Limit		44672				

(La I sequence; 57 electrons)

Z = 58

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f5d^{2}$ $^4\text{H}^{\circ}_{7/2}$

Ionization energy 87500± 600 cm⁻¹

 $10.85 \pm 0.08 \text{ eV}$

Identified odd configurations $4f5d^2$,

 $4f5d^2$, 4f5d6s, $4f6s^2$, $4f^26p$, $4f^3$

Identified even configurations

 $4f^26s$, $4f^25d$, 4f5d6p, $5d^3$, 4f6s6p, $5d^26s$, $5d6s^2$?

The preliminary analysis of this spectrum by Albertson and Harrison in 1937 gave a scheme of 31 lower and 51 upper energy levels classifying 584 lines. The basic methods of the analysis—searching a list of the most accurate obtainable wavelengths for repeating wavenumber differences by automatic techniques, and using Zeeman data to confirm, develop, and interpret the level scheme—were successfully applied to several other spectra during this period at MIT, and more recently the modern version of this method became the standard approach to analyses of the most complex and featureless atomic spectra. Such spectra are generally observed for atomic species having a large number of very low energy levels. Albertson and Harrison noted in this connection that for Ce II they had found "more than two dozen low energy levels within 6000 cm $^{-1}$ of the lowest." (In fact Ce II has 46 levels below 6000 cm $^{-1}$.) They suggested correctly that the low levels belonged to the 4f5d6s and $4f5d^2$ configurations.

This interpretation was confirmed by Harrison, Albertson, and Hosford [1941], who extended the original system of energy levels and also found a second, unconnected system of levels based on the lowest even configurations, $4f^26s$ and $4f^25d$. The 39 low levels of this second system were given configuration and term designations, as were the 40 high odd $(4f^26p$ and $4f^3$) levels. Term names were also assigned for many of the levels of the first system. Some 3600 of the approximately 7000 lines in their unpublished list (2512-7000 Å) were classified by a total of 316 levels. Zeeman measurements for 427 lines gave g (and g) values for 280 of these levels. (This analysis and the data on which it was based superseded results reported in the three 1939 papers by, respectively, Gerasimov, Tsien, and van de Vliet; only the last of these was known to Harrison, Albertson, and Hosford.) Albertson worked intermittently on the analysis until 1949 and added designations for many of the levels.

G. Racah began calculations for Ce II at the Hebrew University in the 1950's, and in 1955 he found the connection between the two systems of levels. An extraordinarily complete theoretical interpretation of Ce II has resulted from Z. Goldschmidt's continuation of this work. Her 1968 thesis included all seven even configurations, with their interactions, in one calculation, and also gave her results for the four odd configurations $4f^26p$ and $(4f5d^2+4f5d6s+4f6s^2)$. Working with Albertson's unpublished line list, Goldschmidt also found some 50 real new levels and revised portions of the analysis.

Beginning in 1970, Corliss used new measurements of Ce II made at NBS to further extend the analysis [Corliss, 1973]. He assigned a number of levels to the $4f^3$ configuration and also found many of the missing levels of configurations that had been calculated by Goldschmidt. In 1971–72, Corliss and Goldschmidt again extended and revised the analysis, making use of Goldschmidt's new calculations for the levels of both parities.

The levels are from Corliss's paper, which lists 192 odd and 288 even levels classifying about 7500 lines. He gives a total of about 11000 lines in the range 2512 Å to 2.423 μ m, with most of the wavelengths below 3300 Å being taken from Albertson's list. The wavelengths longer than 1.1 μ m were taken from the 1972 list of Verges et al. Corliss notes that the strongest Ce II lines lie between 3800 and 4200 Å, and arise from the transition arrays $(4f5d^2+4f5d6s)-4f5d6p$, and $4f^26s-4f^26p$.

The eigenvector percentages are from Goldschmidt's [1972] calculations. Every known level of a particular parity was assigned to an eigenvector from a calculation that included all

Ce II—Continued 71

known configurations of that parity. All configuration interactions and appropriate effective interactions were included [Goldschmidt, 1973].

The arrangement of the levels here results in a number of almost meaningless designations (in order to complete certain terms), but no name is assigned that is clearly less appropriate than an alternate name.

The ionization energy is from Sugar and Reader.

More than 150 lines of Ce II have been identified in the solar spectrum [Moore, Minnaert, and Houtgast, 1966], Ce being one of the most abundant rare-earth elements in the sun [Grevesse and Blanquet, 1969].

References

Albertson, W. E., and Harrison, G. R., Phys. Rev. 52, 1209 (1937). EL CL W

Albertson, W. E., unpublished material (1949, 1955). EL CL W ZE

Corliss, C. H., J. Res. Nat. Bur. Stand. (U.S.) 77A, 419 (1973). EL ND CL W PT

Gerasimov, F. M., Zh. Eksp. Teor. Fiz., 9, 1036 (1939). ZE

Goldschmidt, Z. B., Thesis, Hebrew Univ. Jerusalem, Israel, 487 pp. (1968). ND CL PT

Goldschmidt, Z. B., unpublished calculations (1972). ND PT

Goldschmidt, Z. B., Atomic Physics 3, S. J. Smith and G. K. Walters, Eds., pp. 221-246 (Plenum Press, New York, 1973). ND PT

Grevesse, N., and Blanquet, G., Sol. Phys. 8, 5 (1969).

Harrison, G. R., Albertson, W. E., and Hosford, N. F., J. Opt. Soc. Am. 31, 439 (1941). EL CL W ZE

Kiess, C. C., Hopkins, B. S., and Kremers, H. C., Sci. Papers Bur. Stand. 17, 317 (1921). W

King, A. S., Astrophys. J. 68, 194 (1928). W

Moore, C. E., Minnaert, M. G. J., and Houtgast, J., Nat. Bur. Stand. (U.S.), Monogr. 61, 349 pp. (1966).

Racah, G., Bull. Res. Council Israel 5A, 78 (1955). EL

Sugar, J., and Reader, J., J. Opt. Soc. Am. 5, 1286 (1965). IP

Tsien, Wei-Zang, Chinese J. Phys. 3, 89 (1939). EL CL ZE

van de Vliet, H. J., Thesis, Zeeman Lab., Amsterdam, 85 pp. (1939). ZE

Verges, J., Corliss, C. H., and Martin, W. C., J. Res. Nat. Bur. Stand. (U.S.) 76A, 285 (1972). CL W

[July 1976]

Ce II, Odd Parity

Configuration	Term	J	Level (cm ⁻¹)	g			Le	ading percentages
$4f(^{2}F^{\circ})5d^{2}(^{3}F)$	4H°	7/2	0.000	0.794	48		35	(2F°)(3F) 2G°
		9/2	2581.257	1.023	35		21	(2F°)(3F) 2G°
		11/2	2879.695	1.123	92		2	(2F°)(1D) 2H°
		13/2	4203.934	1.189	69		29	$({}^{2}\mathrm{F}^{\circ})({}^{3}\mathrm{F}) {}^{4}\mathrm{I}^{\circ}$
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$		9/2	987.611	0.948	30	⁴ I°	24	$(^2F^\circ)(^3F)$ $^2G^\circ$
$4f(^{2}{ m F}^{\circ})5d^{2}(^{3}{ m F})$	4I°	9/2	1410.304	0.856	49		22	(2F°)(3F) 4H°
		11/2	2563.233	0.968	94		2	(2F°)(1D) 2H°
		$^{13}/_{2}$	3793.634	1.128	68		24	(2F°)(3F) 4H°
		$^{15}/_{2}$	5455.845	1.196	99			
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$		7/2	1873.934	0.806	43	4H°	18	(2F°)(3F) 2G°
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$		1/2	2140.492	0.985	26	2S°	23	(2F°)(1D) 2P°
$4f5d(^{1}\mathrm{G}^{\circ})6s$		9/2	2382.246	1.039	33	${}^{2}\mathrm{G}^{\circ}$	18	$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$ $^{4}\mathrm{H}^{\circ}$
$4f5d(^3\mathrm{F}^\circ)6s$	4F°	3/2	2595.644	0.516	72		21	(¹D°) ²D°
		$^{5/_{2}}$	3363.427	0.995	43		18	$4f(^{2}F^{\circ})5d^{2}(^{3}F) ^{2}F^{\circ}$
		7/2	4459.872	1.134	57		10	$4f(^{2}F^{\circ})5d^{2}(^{1}D) ^{2}G^{\circ}$
		9/2	5675.763	1.241	71		16	(³ G°) ⁴ G°
$1f5d(^3{ m F}^\circ)6s$		5/2	2634.666	0.957	26	²F°	21	$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{1}\mathrm{D})\ ^{2}\mathrm{F}^{\circ}$
$1f5d(^{1}{ m G}^{\circ})6s$		7/2	2641.559	0.829	44	² G°	29	(3H°) 4H°
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$	2S°	1/2	3508.470	1.262	52		27	(2F°)(3F) 4D°

Ce II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ding percentages	
$4f5d(^{1}\mathrm{G}^{\circ})6s$		9/2	3593.882	0.988	26	²G°	25	4f(2F°)5d2(1D) 2H°	
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$		7/2	3703.594	1.085	20	${}^{2}\mathrm{F}^{\circ}$	16	$(^2F^\circ)(^3F)$ $^2G^\circ$	
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$	⁴ D°	3/2	3745.475	1.240	58		16	$(^2F^\circ)(^3P)$ $^4D^\circ$	
$4f5d(^3\mathrm{H}^\circ)6s$	4H°	7/2	3995.460	0.879	51		18	(3F°) 4F°	
		9/2	4523.033	0.978	84		4	$4f(^{2}F^{\circ})5d^{2}(^{1}D) ^{2}H^{\circ}$	
	Colore March Color	$\frac{11}{2}$ $\frac{13}{2}$	5651.357 6913.392	1.085	49		15	$4f(^{2}F^{\circ})5d^{2}(^{3}F) ^{2}I^{\circ}$	
		/2	6913.392	1.217	95		2	$4f(^{2}F^{\circ})5d^{2}(^{3}F)^{2}I^{\circ}$	
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$	4F°	3/2	4201.893	0.528	54		15	$({}^{2}{\rm F}^{\circ})({}^{1}{\rm D}) {}^{2}{\rm D}^{\circ}$	
		5/ ₂ 7/ ₂	5010.870	1.038	80		7	(2F°)(3P) 4F°	
		9/2	5964.896 7059.072	1.332 1.222	45 53		29 9	(2F°)(3F) 4D° (2F°)(3F) 4G°	
$4f5d(^3\mathrm{G}^\circ)6s$		7/2	4266.397	0.964	27	²G°	26	(³ G°) ⁴ G°	
4f5d(3G°)6s		5/2	4322.708	0.766	30	⁴G°	28	4f(2F°)5d2(3F) 4G°	
4f 5d(3G°)6s	4G°	5/2	4511.257	0.731		ď		(3F°) 4F°	
-	-3				63	4D.º	10	• ,	
$4f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{F})$		5/2	4737.373	1.021	41	⁴ D°	33	(2F°)(3F) 4G°	
$4f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{F})$		3/2	4844.644	0.699	29	4F°	25	$4f5d(^{1}\mathrm{D}^{\circ})6s\ ^{2}\mathrm{D}^{\circ}$	
$4f5d(^3\mathrm{H}^\circ)6s$		11/2	4910.963	1.095	32	4H°	26	(3H°) 2H°	
$4f5d(^{1}\mathrm{D}^{\circ})6s$		5/2	5118.806	1.152	43	² D°	17	$4f(^{2}F^{\circ})5d^{2}(^{3}F) ^{4}D^{\circ}$	
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{1}\mathrm{D})$		1/2	5283.029	0.566	34	$^{2}\mathrm{P}^{\circ}$	31	$(^2F^\circ)(^3F)$ $^4D^\circ$	
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$	⁴ G°	7/2	5437.422	0.999	54		23	$4f5d(^3\mathrm{G}^\circ)6s\ ^4\mathrm{G}^\circ$	
		$\frac{9}{2}$ $\frac{11}{2}$	6389.942 7522.622	1.154	66		19		
		11/2	7522.622	1.248	78		16		
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$		7/2	5716.216	1.009	37	4G°	34	$4f5d(^3G^\circ)6s$ $^4G^\circ$	
$4f5d(^{3}\mathrm{G}^{\circ})6s$		9/2	5819.113	1.189	26	⁴G°	21	$4f(^{2}F^{\circ})5d^{2}(^{1}D) \ ^{2}G^{\circ}$	
$4f(^2\mathbf{F}^\circ)5d^2(^3\mathbf{F})$		3/2	5924.204	1.241	26	${}^{2}\mathrm{P}^{\circ}$	25	$(^2F^\circ)(^1D)$ $^2P^\circ$	
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$		7/2	5942.798	1.145	26	4F°	22	$(^2F^\circ)(^3F)$ $^4D^\circ$	
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{1}\mathrm{G})$		11/2	5969.007	0.954	32	² I°	30	$(^2F^\circ)(^3F)$ $^2I^\circ$	
$4f5d(^3\mathrm{F}^\circ)6s$		5/2	6517.619	0.954	14	${}^{2}\mathrm{F}^{\circ}$	14	$(^3\mathrm{D}^\circ)$ $^2\mathrm{D}^\circ$	
$4f5d(^3\mathrm{D}^\circ)6s$		3/2	6521.332	0.924	28	$^{2}\mathrm{D}^{\circ}$	27	$(^3\mathrm{D}^\circ)$ $^4\mathrm{D}^\circ$	
$4f5d(^{3}\mathrm{F}^{\circ})6s$		5/2	6549.908		20	${}^{2}\mathrm{F}^{\circ}$	15	$(^1\mathrm{D}^\circ)~^2\mathrm{D}^\circ$	
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$		9/2	6638.258	1.215	27	4F°	26	$4f5d(^3\mathrm{G}^\circ)6s$ $^4\mathrm{G}^\circ$	
$4f5d(^3\mathrm{D}^\circ)6s$	⁴ D°	1/2	7061.838		95		2	(¹P°) ²P°	
		3/2	7818.147	1.099	67		14	(¹D°) ²D°	
		5/ ₂ 7/ ₂	8175.863 8402.668	1.271 1.343	75 69		7 13	$({}^{1}F^{\circ}) {}^{2}F^{\circ}$ $({}^{1}F^{\circ}) {}^{2}F^{\circ}$	
$4f(^{2}{ m F}^{\circ})5d^{2}(^{3}{ m P})$	⁴G°	5/2	7202.529	1.106	91		3	4f 5d(3F°)6s 2F°	
J , , , , , , , , , , , , , , , , , , ,	9	7/2	7878.328	1.100	83		ა 5	4f 5d(°G°)6s °G°	
		9/2	8804.224	1.160	69		9	$4f5d(^{3}G^{\circ})6s\ ^{2}G^{\circ}$	
		11/2	10035.711		93		2	$4f5d(^3\mathrm{H}^\circ)6s\ ^2\mathrm{H}^\circ$	
$4f5d(^3\mathrm{G}^\circ)6s$	⁴G°	11/2	7233.627	1.266	80		14	$4f(^2{\rm F}^\circ)5d^2(^3{\rm F})\ ^4{\rm G}^\circ$	
$4f5d(^3\mathrm{F}^\circ)6s$		7/2	7259.075	1.140	39	${}^{2}\mathrm{F}^{\circ}$	18	$4f(^{2}F^{\circ})5d^{2}(^{3}F) ^{2}F^{\circ}$	

Ce II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ading percentages
$4f(^{2}{ m F}^{\circ})5d^{2}(^{3}{ m F})$	⁴ P°	3/2	7278.922		85		6	$(^2F^\circ)(^3F)$ $^2P^\circ$
		1/2	7522.458		84		12	$(^{2}F^{\circ})(^{3}F)$ $^{2}S^{\circ}$
		5/2	7746.185		77		7	$4f5d(^{3}\mathrm{D}^{\circ})6s\ ^{2}\mathrm{D}^{\circ}$
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$	² I°	13/2	7293.938	1.100	48		37	$(^2F^\circ)(^1G)$ $^2I^\circ$
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{1}\mathrm{G})$		9/2	7713.089	0.950	28	²H°	26	$(^2F^\circ)(^3F)$ $^2H^\circ$
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$	⁴ S°	3/2	8169.698		66		14	$(^2F^\circ)(^1D)$ $^2P^\circ$
$4f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{P})$	² D°	5/2	8280.946	1.189	48		7	(2F°)(3F) 4D°
4) (1)Ou (1)		3/2	8702.444	1.100	50		11	(2F°)(3F) 2D°
			2.5				11	
$4f5d(^3\mathrm{H}^\circ)6s$		11/2	8927.514	1.071	36	² H°	31	$4f(^{2}F^{\circ})5d^{2}(^{3}F)^{2}H^{\circ}$
$4f(^{2}\text{F}^{\circ})5d^{2}(^{1}\text{G})$	² G°	7/2	9198.326		64		16	$(^2F^\circ)(^3P)$ $^2G^\circ$
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{P})$		1/2	9269.826		41	⁴D°	35	(2F°)(3F) 2P°
$4f5d(^3\mathrm{P}^\circ)6s$	⁴ P°	1/2	9491.493		97		1	(1P°) 2P°
		3/2	9634.186	1.690	87		4	$(^{1}P^{\circ})$ $^{2}P^{\circ}$
		5/2	10641.442	1.526	86		3	$4f(^{2}F^{\circ})5d^{2}(^{3}P) ^{4}D^{\circ}$
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{1}\mathrm{G})$		9/2	9723.335	1.348	29	² G°	18	(2F°)(3P) 4G°
$4f(^{2}\mathrm{F}^{\circ})6s^{2}$	²F°	5/2	9778.986		73		13	$4f(^{2}F^{\circ})5d^{2}(^{1}S) \ ^{2}F^{\circ}$
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$		3/2	10088.640		23	²P°	17	$(^{2}F^{\circ})(^{3}P)$ $^{4}D^{\circ}$
$4f5d(^{1}\mathrm{F}^{\circ})6s$	2F°	5/2	10114.883	0.938	54		8	$4f(^{2}\text{F}^{\circ})5d^{2}(^{1}\text{D})\ ^{2}\text{F}^{\circ}$
4) 500(1)03	_	7/2	10274.971	1.195	52		22	(3D°) 4D°
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{P})$		3/2	10454.272		31	⁴ D°	19	(2F°)(3P) 4F°
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{P})$		1/2	10684.441		36	4D°	29	(2F°)(3F) 2P°
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{P})$		5/2	10798.555	0.971	37	⁴ D°	27	(2F°)(3P) 4F°
4.C/9.D0\F 19/1.G\	2110	9/	10001.000					(879)/4/3) 8/39
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{1}\mathrm{G})$	² H°	9/ ₂ 11/ ₂	10924.876	1.001	44		22	(2F°)(1G) 2G°
		/2	11742.245	1.081	51		20	4f5d(1H°)6s 2H°
$4f(^{2}{ m F}^{\circ})5d^{2}(^{3}{ m P})$	4F°	3/2	11007.799		58		10	(2E°)(3D) 4D°
		5/2	11325.781		55		12 19	(2F°)(3P) 4D° (2F°)(3P) 4D°
		7/2	11340.598	1.123	38		12	$4f5d(^{3}G^{\circ})6s \ ^{2}G^{\circ}$
		9/2	12762.641	1.275	65		9	4f5d(3G°)6s 2G°
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{P})$	⁴ D°	7/2	11387.731		60		17	$(^2F^\circ)(^3F)$ $^4D^\circ$
$4f5d(^3\mathrm{G}^\circ)6s$		7/2	11949.189	1.029	22	2 G°	19	$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{1}\mathrm{D})\ ^{2}\mathrm{G}^{\circ}$
$4f(^{2}{ m F}^{\circ})5d^{2}(^{3}{ m F})$	² D°	5/2	12057,107		47		10	(2F°)(1G) 2F°
		3/2	12466.430		59		17 18	(2F°)(3P) 2D°
$4f(^2\mathrm{F}^\circ)6s^2$				1.100		0.750		
-		7/2	12260.088	1.168	42	$^{2}\mathrm{F}^{\circ}$	35	$4f(^{2}F^{\circ})5d^{2}(^{3}P) \ ^{4}F^{\circ}$
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{1}\mathrm{G})$	² K°	13/2	12326.417		97		2	$({}^{2}F^{\circ})({}^{3}F) {}^{2}I^{\circ}$
		15/2	14404.40		99		1	4f3 2K°
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$	²H°	9/2	12365.806	0.921	46		23	$4f5d(^{1}\mathrm{H}^{\circ})6s\ ^{2}\mathrm{H}^{\circ}$
$4f(^{2}{ m F}^{\circ})5d^{2}(^{3}{ m F})$		11/2	12751.782		33	²H°	23	4f5d(1H°)6s 2H°
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{1}\mathrm{G})$	2F°	5/2	19010 007					(070) (07)
J (= /=== (G/	F .	7/ ₂	13012.095		44		14	(2F°)(3F) 2D°
		/2	13515.853		73		9	$(^2F^\circ)(^3F)$ $^2F^\circ$
$4f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{P})$	1 1							

Ce II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Lea	ding percentages
4f5d(3D°)6s							4.00000E 19/1D\ 2D°
•	² D°	3/2	13758.670		45	33	$4f(^{2}\text{F}^{\circ})5d^{2}(^{1}\text{D}) \ ^{2}\text{D}^{\circ}$
$4f5d(^3\mathrm{P}^\circ)6s$		3/2	13784.834		37 ² P°	36	(1P°) 2P°
$4f5d(^3\mathrm{P}^\circ)6s$	² P°	1/2	14315.932		62	18	(¹P°) ²P°
$4f(^{2}F^{\circ})5d^{2}(^{1}D)$		5/2	14481.930		29 ² F°	14	(2F°)(1G) 2F°
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{1}\mathrm{G})$		11/2	14963.100		41 ² I°	39	$(^2F^\circ)(^3F)$ $^2I^\circ$
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{1}\mathrm{G})$	² I°	13/2	15517.772		56	42	$(^2F^\circ)(^3F)$ $^2I^\circ$
$4f5d(^3\mathrm{D}^\circ)6s$		5/2	15565.420		26 ² D°	20	$4f(^{2}F^{\circ})5d^{2}(^{1}G)$ $^{2}D^{\circ}$
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{1}\mathrm{D})$		7/2	16159.536		42 ² F°	14	$4f5d(^{3}\mathrm{F}^{\circ})6s\ ^{2}\mathrm{F}^{\circ}$
$4f5d(^{1}\mathrm{H}^{\circ})6s$	² H°	9/2	16192.466		62	20	$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{1}\mathrm{D})~^{2}\mathrm{H}^{\circ}$
		11/2	17171.245		45	29	
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{P})$		7/2	17300.310		41 ² G°	18	$({}^{2}\mathrm{F}^{\circ})({}^{1}\mathrm{D}) {}^{2}\mathrm{G}^{\circ}$
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{P})$		9/2	17475.023		38 ² G°	28	$(^2F^\circ)(^1D)$ $^2G^\circ$
$4f5d(^{1}\mathrm{P}^{\circ})6s$	² P°	1/2	17851.80		74	12	$4f(^{2}F^{\circ})5d^{2}(^{1}D) \ ^{2}P^{\circ}$ $4f(^{2}F^{\circ})5d^{2}(^{1}G) \ ^{2}P^{\circ}$
4.4970) 7.1944.0)		3/2	19138.534		42	21	•
$4f(^{2}{ m F}^{\circ})5d^{2}(^{1}{ m G})$	² D°	3/ ₂ 5/ ₂	18147.005		65 55	13 17	(2F°)(1G) 2P° (2F°)(1D) 2D°
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{P})$	²F°	5/2	19136.024		54	15	(2F°)(1S) 2F°
		7/2	19920.813		62	11	(2F°)(3F) 2F°
$4f(^2\mathrm{F}^\circ)5d^2(^1\mathrm{G})$	² P°	$\frac{3}{2}$ $\frac{1}{2}$	19946.568		59 95	13 1	$4f5d(^{1}P^{\circ})6s \ ^{2}P^{\circ}$ $(^{2}F^{\circ})(^{3}F) \ ^{2}P^{\circ}$
$4f^2(^3\mathrm{H_4})6p_{1/2}$	(4, ¹ / ₂)°	9/ ₂ 7/ ₂	25766.355 26268.203	0.799 0.712	95 75	4 19	(¹ G ₄) (4, ¹ / ₂)° (³ H ₄) (4, ³ / ₂)°
$4f^2(^3{ m H}_5)6p_{1/2}$	(5, ¹ / ₂)°	11/ ₂ 9/ ₂	27378.515 27975.619	1.005 0.933	87 51	11 34	$(^{3}\text{H}_{4}) \ (4,^{3}/_{2})^{\circ}$
$4f^{2}(^{3}\mathrm{H_{4}})6p_{3/2}$	(4, ³ / ₂)°	9/2	27432.782	0.941	62	31	$(^{3}\mathrm{H}_{5})~(5,^{1}/_{2})^{\circ}$
4) -(°H4)0p3/2	(4, /2)	11/2	28327.071	1.036 0.900	64	26 15	$(^{3}\text{H}_{5}) \ (5,^{3}/_{2})^{\circ} \ (^{3}\text{H}_{4}) \ (4,^{1}/_{2})^{\circ}$
		7/ ₂ 5/ ₂	28349.582 28396.150	0.594	71 65	27	$({}^{3}F_{2}) (2, {}^{1}/_{2})^{\circ}$
$4f^2(^3{ m H_6})6p_{1/2}$	(6,¹/2)°	13/2	29043.854	1.130	70	27	$(^{3}\text{H}_{5}) \ (5,^{3}/_{2})^{\circ}$
, , , ,		11/2	29263.338	1.107	62	14	
$4f^2(^3{ m H}_5)6p_{3/2}$	$(5,^3/_2)^{\circ}$	13/2	29591.873	1.158	64	19 11	$(^{3}\text{H}_{6}) \ (6,^{3}/_{2})^{\circ} \ (^{3}\text{H}_{5}) \ (5,^{1}/_{2})^{\circ}$
		$\frac{9}{2}$ $\frac{11}{2}$	29735.413 29750.547	1.112 1.019	78 58	22	$(^{3}H_{6}) (6, ^{1}/2)^{\circ}$
		7/2	29892.677	0.940	46	45	$(^{3}F_{3}) (3,^{1}/_{2})^{\circ}$
$4f^2(^3\mathrm{F}_2)6p_{1/2}$	$(2,^{1}/_{2})^{\circ}$	5/2	29948.914	0.612	65	29	$(^{3}\text{H}_{4}) \ (4,^{3}/_{2})^{\circ}$
		3/2	30120.406	0.677	95	2	$(^{1}D_{2}) (2,^{1}/_{2})^{\circ}$
$4f^2(^3\mathrm{F_4})6p_{1/2}$	$(4,^1/_2)^{\circ}$	9/ ₂ 7/ ₂	30669.702 31344.828	1.110	53 52	$\frac{27}{34}$	$({}^{1}G_{4}) (4, {}^{1}/_{2})^{\circ}$
. 20/077 \ -	(0.01.)0			1.205	100		
$4f^2(^3{ m H}_6)6p_{3/2}$	$(6,^{3}/_{2})^{\circ}$	15/ ₂ 11/ ₂	30846.582 31151.534	1.205	74	13	$(^{3}F_{4}) (4,^{3}/_{2})^{\circ}$
		13/2	31340.393	1.110	77	12	$(^{3}\text{H}_{6})\ (6,^{1}/_{2})^{\circ}$
		9/2	32372.621	1.104	48	33	$({}^{3}\mathrm{F}_{3}) \ (3,{}^{3}/_{2})^{\circ}$
$4f^2(^3{ m F}_3)6p_{1/2}$	$(3,^{1}/_{2})^{\circ}$	5/2	31024.076		95	1	$(^3F_3) (3,^3/_2)^{\circ}$

Ce II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			L	eading percentages
$4f^2(^3{ m H_5})6p_{3/2}$		7/2	31130.983	0.975	37	(5, ³ / ₂)°		33 (3F ₃) (3, ¹ / ₂)°
$4f^2(^3\mathrm{F}_2)6p_{3/2}$	$(2,^3/_2)^{\circ}$	1/-	24442.002					(1°3) (3,-72)
-j (1 2)0ps/2	(2, 72)	1/ ₂ 3/ ₂	31613.833 31747.243	0.860	95			$2 (^{1}D_{2}) (2,^{3}/_{2})^{\circ}$
		5/2	31966.748	1.015	95 87			$2 (^{1}D_{2}) (2,^{3}/_{2})^{\circ}$
		7/2	32235,239	1.111	52			8 (3F ₃) (3, ³ / ₂)° 5 (3F ₃) (3, ¹ / ₂)°
$4f^2(^3\mathrm{F}_3)6p_{3/2}$	(3, ³ / ₂)°	9/2	32616.019					
•	(-, , -)	3/2	32826.668		47 95		2	. , , , , , , , , , , , , , , , , , , ,
		5/2	32885.367	1.102	47		2	1 4f5d(3D°)6s 2D° 8 (3F ₄) (4,3/ ₂)°
		7/2	32989.218	1.10	46		2:	
$4f^2(^3\mathbf{F_4})6p_{3/2}$	(4,3/2)°	11/2	32864.278		52		29	
$4f^2(^3\mathrm{F_4})6p_{3/2}$		9/2	33040.353	1.106	36	$(4,^3/_2)^{\circ}$	34	
$4f^2(^3\mathrm{F_4})6p_{3/2}$		7/2	33111.163	1.086	29	$(4,^3/_2)^{\circ}$	27	
$4f^2(^1G_4)6p_{1/2}$		7/2	33535.636	0.966	31	$(4,^{1}/_{2})^{\circ}$	23	$3 (3F_4) (4, 1/2)^{\circ}$
$4f^2(^3\mathbf{F}_3)6p_{3/2}$		5/2	33594.152		41	$(3,^3/_2)^{\circ}$	34	$(^3F_4) (4,^3/_2)^\circ$
$4f^2(^3\mathbf{F_4})6p_{1/2}$	(101)	9/2	33908.193	1.11	30	$(4,^{1}/_{2})^{\circ}$	21	$({}^{1}G_{4}) (4, {}^{3}/_{2})^{\circ}$
$4f^2(^{1}G_4)6p_{3/2}$ $4f^2(^{3}F_4)6p_{3/2}$	(4, ³ / ₂)°	11/2	34861.526		63		34	$(^3F_4) (4,^3/_2)^\circ$
$4f^2(^1G_4)6p_{3/2}$	$(4,^3/_2)^{\circ}$ $(4,^3/_2)^{\circ}$	9/ ₂	35026.944	1.142	50		41	$({}^{1}G_{4}) (4, {}^{3}/_{2})^{\circ}$
$4f^2(^3\mathbf{F_4})6p_{3/2}$	(4, /2)	5/ ₂ 7/ ₂	35298.190 35625.700	0.000	59		32	· -7 (-1 1-1
			33025.700	0.923	48	$(4,^3/_2)^{\circ}$	46	$({}^{1}G_{4}) (4, {}^{3}/_{2})^{\circ}$
$4f^3$	⁴ I°	9/2	38194.728	0.720	97		2	² H°2
		11/ ₂	39079.298	0.964	99		1	_
		$\frac{13}{2}$ $\frac{15}{2}$	40039.524 41058.614	1.104	99			
4 (9/1D.) a			41038.014	1.197	99		1	² K°
$4f^2(^1\mathrm{D}_2)6p_{1/2}$	(2, ¹ / ₂)°	3/ ₂ 5/ ₂	38661.520 38835.734		82 83		7 7	$(^{3}P_{2}) (2,^{1}/_{2})^{\circ}$
$4f^2(^1\mathrm{D_2})6p_{3/2}$	(2,3/2)°	1/2						
, , , , , , , , , , , , , , , , , , ,	(=, /2/	$\frac{7}{2}$	40475.925		82 88			$(^{3}P_{2}) (2,^{3}/_{2})^{\circ}$
		$^{3}/_{2}$	40720.122		79		7 7	
		5/2	41100.932		89		5	
$4f^2(^3\mathrm{P}_1)6p_{1/2}$		3/2	42533.459		42	$(1,^{1}/_{2})^{\circ}$	22	(³ P ₂) (2, ¹ / ₂)°
$4f^2(^1{ m I}_6)6p_{1/2}$	(6,1/2)°	13/2	42712.810		79		21	$(^{1}I_{6}) (6,^{3}/_{2})^{\circ}$
		11/2	42729.447		69		30	(16) (0,-72)
$4f^2(^3\mathrm{P_0})6p_{3/2}$	(0,3/2)°	3/2	44423.575		69		24	(3P ₂) (2, ¹ / ₂)°
$4f^2(^1{ m I}_6)6p_{3/2}$	(6,3/2)°	13/2	44637.548		70		20	
		15/2	45443.86		79 99		20	$({}^{1}\mathrm{I}_{6}) \ (6, {}^{1}/_{2})^{\circ}$
		11/2	45864.950		59		24	$(^{1}I_{6}) (6,^{1}/_{2})^{\circ}$
		9/2	46697.084		89		4	4f ³ ² H°2
$4f^3$	4F°	3/2	44651.303		62		25	$4f^2(^3P_1)6p_{3/2} \ (1,^3/_2)^\circ$
		5/2	45130.529		97		23 2	⁴ <i>j</i> -(3F1)0 <i>p</i> 3/2 (1,3/2) ³ ² D°1
		⁷ / ₂ ⁹ / ₂	45598.301 46169 609		92		4	² G°1
4.00.00			46162.692		77		9	² H°2
$4f^2(^3\mathrm{P_2})6p_{3/2}$	(2,3/2)°	7/2	44893.939	1	92		7	$(^{1}D_{2}) (2,^{3}/_{2})^{\circ}$
		$\frac{5}{2}$ $\frac{1}{2}$			91		5	$(^{1}D_{2}) (2,^{3}/_{2})^{\circ}$
		3/2			39			$(^{3}P_{1})(1,^{3}/_{2})^{\circ}$

Ce II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Lea	ding percentages
$4f^3$	²H°2	9/ ₂ 11/ ₂	44949.011 46588.131		61 66	9 12	² H°1
$4f^3$		7/2	47430.184		35 ² G°1	31	⁴G°
$4f^3$	⁴ G°	5/ ₂ 7/ ₂ 9/ ₂ 11/ ₂	47459.894 48330.79 48549.99 49617.70		98 67 65 93	1 18 11 4	$4f(^{2}F^{\circ})5d^{2}(^{3}P) \ ^{4}G^{\circ}$ $^{2}G^{\circ}1$ $^{2}G^{\circ}1$ $^{2}H^{\circ}1$
$4f^3$	² K°	13/ ₂ 15/ ₂	48045.10 49087.88		98 94	1 4	
$4f^3$		9/2	49267.982		33 ² G°1	31	4G°
Ce III (³ H ₄)	Limit		87500				

Ce II, Even Parity

Configuration	Term	J	Level (cm ⁻¹)	<i>g</i>		Lea 	ding percentages
4.62/311\Co	4H	7/2	3854.012	0.669	95	3	(¹G) ²G
$4f^{2}(^{3}\mathrm{H})68$	-11	9/2	4165.550	0.949	55	40	(3H) 2H
		11/2	5513.709	1.125	82	17	(3H) 2H
		13/2	6967.547	1.125 1.225	98	1	4f 5d(3G°)6p 4H
		/-					
$4f^{2}(^{3}\mathrm{H})6s$	² H	9/2	5616.739	0.934	56	42	(^3H) 4H
•		11/2	7341.007	1.089	81	17	
$4f^{2}(^{3}\mathrm{H})5d$	² H	9/2	7011.804	0.889	65	19	$(^3\mathrm{H})$ $^4\mathrm{I}$
4) (11)34	11	11/2	8278.054	0.957	56	14	(3F) ² H
		12	0210.001	0.00.			•
$4f^{2}(^{3}\mathrm{H})5d$	4K	11/2	7092.265	0.803	83	7	(3H) ² I
Į.		13/2	8423.672	0.980	96	2	(^{3}H) ^{2}I
		15/2	9771.956	1.090	100		
		17/2	11165.796	1.187	100		
$4f^{2}(^{3}F)6s$	4F	3/2	7454.951	0.407	95	2	(^{1}D) ^{2}D
4) =(31)08	-1	5/2	7722.285	0.986	68	27	(^{3}F) ^{2}F
		7/2	8531.678	1.213	89	4	$({}^{3}F) {}^{2}F$
						34	$(^{1}G)^{2}G$
		9/2	8774.064	1.247	61	54	(u) u
$4f^{2}(^{3}\mathrm{H})5d$	4 I	9/2	8131.217	0.751	78	11	(^3H) 2H
3		11/2	8896.729	0.961	92	4	(^{3}H) ^{2}I
		13/2	10058.226	1.105	97	2	(³ H) ² I
		15/2	11309.972	1.193	98	1	(^3H) 2K
4 (9/9II) F 1	40	5/	0449.641	0.633	40	30	(3F) 4G
$4f^{2}(^{3}\mathrm{H})5d$	4G	5/2	8448.641		49	32	(1) 0
		7/2	9316.912	0.992	54		
		9/2	10314.162	1.04	55	34	
		11/2	11458.353	1.235	48	35	
$4f^{2}(^{3}F)6s$	² F	5/2	8789.380	0.905	69	28	(^3F) 4F
*J (*)00	_	7/2	9053.629	1.026	54	41	(^{1}G) ^{2}G
4.£9/311\F.J	ATT	7/2	9725.733	0.694	63	25	(³ F) ⁴ H
$4f^2(^3\mathrm{H})5d$	⁴ H			0.694		23 27	(1 / 11
		9/2	10703.305		62		
		$\frac{11}{2}$ $\frac{13}{2}$	11759.467 13027.758	1.124 1.210	64 59	28 22	

Ce II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ding percentages
$4f^{2}(^{3}\mathrm{H})5d$	21	11/ ₂ 13/ ₂	10646.070 11454.701	0.951 1.101	46 48		22 27	(¹G) ²I
$4f^{2}(^{3}\mathrm{H})5d$		5/2	10820.486		34	² F	26	$(^3\mathrm{F})$ $^2\mathrm{F}$
4f2(1G)6s	² G	9/2	10869.541	1.193	60		36	(³ F) ⁴ F
		7/2	11015.579	1.016	49		39	(³ F) ² F
$4f^{2}(^{3}\mathrm{F})5d$		7/2	12097.276		38	$^{2}\mathrm{F}$	32	(³ H) ² F
$4f^2(^3\mathrm{F})5d$	4H	7/2	12456.746	0.691	63		28	(3H) 4H
		9/2	13117.922		36		21	(¹G) ²H
		$\frac{11}{2}$ $\frac{13}{2}$	14276.298	1.114	59		27	(3H) 4H
4.59/311\5 1			15281.602	1.204	61		27	(³ H) ⁴ H
$4f^{2}(^{3}\mathrm{H})5d$	⁴ F	3/2	12704.634	0.467	68		17	(3F) 4F
$4f^{2}(^{3}\mathrm{H})5d$	² G	7/2	13217.976		45		11	(¹G) ²F
$4f^2(^3\mathrm{F})5d$	4P	3/2	13256.701		60		16	(^3F) 2D
		5/2 1/2	13436.858		47		13	(^{3}F) ^{2}D
4.09/911\5 1		1/2	13503.508		64		16	(3F) 2P
4f ² (³ H)5d	4F	5/2	13268.218		51		12	(3F) 4F
$4f^{2}(^{3}F)5d$		9/2	13527.239	0.963	32	4H	24	(1G) 2H
$4f^{2}(^{3}F)5d$	⁴G	5/2	13675.722		54		25	(3H) 4G
$4f^2(^3\mathrm{F})5d$		3/2	14049.761		34	²D	14	(^3F) 2P
$4f^{2}(^{3}\text{H})5d$		7/2	14097.689		40	4F	17	(3F) 4G
$4f^{2}(^{3}F)5d$		7/2	14252.178		30	4G	20	(3H) 4G
$4f^{2}(^{3}\text{H})5d$		9/2	14387.112		33	4F	16	(3H) 2G
$4f^{2}(^{1}G)5d$		11/2	14625.503		44	²H	16	(3H) 4G
$4f^{2}(^{3}F)5d$		3/2	14727.540		35	4D	27	(3F) 2P
$4f^2(^3\mathrm{F})5d$		5/2	14739.761		24	4F	19	(3H) 2F
$4f^{2}({}^{1}\mathrm{G})5d$		7/2	14827.623		27	² G	12	(3H) 2G
$4f^2(^3\mathrm{F})5d$		9/2	15134.048		41	4G	18	(³ H) ⁴ G
$4f^2(^3\mathrm{F})5d$	4F	3/2	15235.579		49		19	(³ H) ⁴ F
$4f^{2}(^{3}\mathrm{F})5d$		5/2	15434.699		29	4F	22	(3F) ² D
$4f^{2}(^{3}\mathrm{F})5d$	4D	1/2	15510.786		74		21	(3F) 2P
		5/ ₂	15529.576		80		5	(¹G) ²D
		3/ ₂ 7/ ₂	15576.568 16152.377		50 48		28 27	(3F) 2P (3F) 4F
$4f^{2}(^{3}\mathrm{H})5d$	² K	13/2	15593.660					
J (/	11	$\frac{15}{2}$	17232.652		76 80		15 18	(¹I) ²K
$4f^{2}(^{3}\mathrm{H})5d$		9/2	15803.310		38	² G	12	(3F) 4G
$4f^{2}(^{3}\mathrm{F})5d$		7/2	15822.059		28	4D	16	(¹G) ²G
$4f^{2}(^{3}\mathrm{H})5d$		9/2	15859.363		43	4F	35	(¹G) ²G
$4f^{2}(^{1}{ m D})6s$	² D	⁵ / ₂ ³ / ₂	16133.194 16268.673		68 86		5 4	(3P) 4P (3P) 2P
$4f^{2}(^{1}{ m D})6s$		5/2	16454.555		17	$^{2}\mathrm{D}$	12	$4f^{2}(^{3}\text{H})5d^{-4}\text{F}$
$4f^2(^3\mathrm{F})5d$	4G	11/2	16545.269		47	_	23	(3H) 4G
$f^2(^3\mathrm{F})5d$		7/2	17000.007		28	4F	20	(3H) 4F
$4f^2(^3\mathrm{F})5d$	4F	9/2	17571.401		5 5	•	17	(¹G) ²G

Ce II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Lea	iding percentages
$4f^2(^1\mathrm{G})5d$	² D	5/ ₂ 3/ ₂	17976.413		56 58	27 20	
$4f^2(^3\mathrm{F})5d$		7/2	18393.327		36	2 G 18	$(^{1}\mathrm{D})~^{2}\mathrm{G}$
$4f^2(^1\mathrm{G})5d$	21	11/ ₂ 13/ ₂	18704.313 19950.340		56 62	23 26	
$4f^2(^3\mathrm{F})5d$	²H	9/ ₂ 11/ ₂	19481.040 20554.596		47 51	13 11	
$4f^2(^1\mathrm{G})5d$	2F	5/2	19483.225		50	27	(^3F) 2F
$4f^2(^3\mathrm{F})5d$		9/2	19982.187		42	² G 17	(¹D) ²G
$4f^2(^3\mathrm{P})6s$	4P	1/ ₂ 3/ ₂ 5/ ₂	20714.959		86 87 87	5 6 6	(3P) ² P
$4f^2(^1\mathrm{I})6s$	2 [11/ ₂ 13/ ₂	20783.79 20881.327		96 97	3	4f5d(¹H°)6p ²I
$4f^2(^1\mathrm{G})5d$		7/2	20940.839		33	² F 26	(3F) 2F
$4f^2(^3\mathrm{P})6s$	² P	1/ ₂ 3/ ₂	21373.623		58 66	15 12	$4f^2(^1\mathrm{D})5d$ ² P
$4f^2(^3\mathrm{P})5d$		3/2	22290.320		30	4F 17	(¹D) ²D
$4f^2(^3\mathrm{P})5d$		5/2	22576.170		32	4F 19	(1D) 2F
$4f^2(^3\mathrm{P})5d$		3/2	22903.974		34	4F 21	(3P) 4P
$4f^2(^3\mathrm{P})5d$	⁴ P	5/2	23200.331		45	15	.,
$4f^2(^3\mathrm{P})5d$		7/2	23267.351			4F 16	
$4f^2(^1\mathrm{D})5d$		3/2	23508.880			² D 29	
$4f^{2}(^{3}\mathrm{P})5d$		9/2	23640.563			4F 29	
$4f^{2}(^{1}\mathrm{D})5d$		5/2	23782.988			² F 28	
$4f^{2}(^{1}\mathrm{D})5d$		7/2	24153.466			² G 18	
$4f^2(^1\mathrm{D})5d$		5/ ₂	24500.756			² D 21	
$4f5d(^{1}\mathrm{G}^{\circ})6p$		9/2	24663.053	0.933		² H 25	(³ H°) ² H
$4f^{2}(^{1}\mathrm{D})5d$		7/2	24819.334	0.000	1	25 2F 18	(3P) 4F
$4f^2(^3\mathrm{P})5d$		3/2	25099.482			P 13	(3P) 4P
$4f5d(^3\mathrm{F}^\circ)6p$	4G	$\frac{5}{2}$ $\frac{7}{2}$ $\frac{9}{2}$ $\frac{11}{2}$	25359.686 27187.047 29166.597 31089.731	0.761 1.015 1.124 1.221	42 51 64 59	23 11 9 12	(¹ D°) ² F (¹ D°) ² F (³ G°) ⁴ G (³ G°) ⁴ H
$4f^2(^3\mathrm{P})5d$	4F	9/2	25361.674	1.221	45	28	(¹D) ²G
$4f^2(^1\mathrm{I})5d$	21	11/ ₂ 13/ ₂	25492.251 25753.492		92 84	3 8	(³ H) ² I (¹ I) ² K
$4f5d(^3\mathrm{F}^\circ)6p$		3/2	25681.488	0.692	32 4	F 27	(3F°) 2D
$4f5d(^{1}\mathrm{G}^{\circ})6p$		7/2	25945.396	0.941		27 PG 17	(3H°) 4H
$4f^2(^3\mathrm{P})5d$	4D	1/ ₂ 3/ ₂ 5/ ₂ 7/ ₂	26351.911 26479.921 26817.940 27514.660		86 86 88 58	7 4 2 13	(3P) 2P (3P) 2P 4f5d(3P°)6p 4D 4f5d(3H°)6p 4H
$4f5d(^3\mathrm{H}^\circ)6p$		9/2	26841.384	0.954	42 4	I 28	(¹G°) ²G
$4f5d(^3\mathrm{H^\circ})6p$		7/2	26900.354	0.841		H 18	(3F°) 2G

Ce II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Le	ading percentages
$4f5d(^3\mathrm{F}^\circ)6p$	4F	5/2	27249.669	1.061	55		13	(3F°) 2D
$4f^2(^1\mathrm{I})5d$	² L	15/ ₂ 17/ ₂	27353.67 28096.58		98 100		1	(³ H) ² K
$4f5d(^{1}\mathrm{G}^{\circ})6p$		11/2	27379.949	1.052	40	²H	33	(³ H°) ·4I
$4f^2(^1\mathrm{I})5d$	² K	13/ ₂ 15/ ₂	27706.631 28117.519		75 81		15 17	
$4f^{2}(^{3}\mathrm{P})5d$		7/2	27811.496		26	4D	24	4f5d(3H°)6p 4H
$4f5d(^3\mathrm{F}^\circ)6p$		5/2	27812.398		40		17	•
$4f5d(^3\mathrm{F}^\circ)6p$		3/2	27835.233	0.833	32		26	
$4f^2(^1\mathrm{I})5d$	²H	9/ ₂	27905.157 27950.889	0.920	77 81		7 8	(³ F) ² H
$4f5d(^3\mathrm{H}^\circ)6p$		9/2	27934.638	0.969	35	4H	27	(¹G°) ²H
$4f5d(^3\mathrm{G}^\circ)6p$	4H	7/ ₂ 9/ ₂ 11/ ₂ 13/ ₂	28297.473 29908.904 31738.484 33531.388	0.906 1.074 1.140 1.257	46 44 64 95		13 15 13 2	(³ G°) ² G (³ G°) ² G (³ F°) ⁴ G
$4f5d(^3\mathrm{H}^\circ)6p$		9/2	28334.756	0.901	90	911		
$4f5d(^{3}G^{\circ})6p$		5/ ₂	28337.814	0.891 0.916	38	2H	31	· ,
$4f5d(^{1}\mathrm{D}^{\circ})6p$		1/2	28345.313	0.316	26 44	⁴G ²P	16 43	(³ G°) ² F (³ F°) ⁴ D
$4f5d(^{1}\mathrm{G}^{\circ})6p$								
$4f5d(^{1}\mathrm{G}^{\circ})6p$		11/ ₂	28634.516	1.080	37	² H	27	(3H°) 4I
4f 5d(3H°)6p		5/ ₂	28685.758	0.827	37	² F	14	(3H°) 4G
$4f5d(^{3}\mathrm{F}^{\circ})6p$	4F	9/ ₂	28725.148	1.002	36	4H	18	(¹G°) ²H
$4f5d(^{3}\mathrm{F}^{\circ})6p$	- r	7/ ₂	28730.712	1.124	54	25	7	(3F°) 4G
$4f5d(^3\mathrm{F}^\circ)6p$		3/ ₂	29029.353	0.980	31	² D	29	(¹D°) ²P
4f ² (³ P)5d		5/ ₂	29281.374	1.052	23	2D	22	(3F°) 4D
$4f5d(^3\mathrm{H}^\circ)6p$		7/2	29364.740	0.894	17	² F	14	$4f5d(^{3}\mathrm{G}^{\circ})6p$ ² F
$4f 5d(^3G^\circ)6p$		11/ ₂	29438.817	1.041	39	4 <u>I</u>	31	(3H°) 2H
•		3/2	29449.778	0.723	36	4F	23	(3F°) 4D
$4f^2(^3\mathrm{P})5d$	² F	⁵ / ₂ ⁷ / ₂	29673.771 29807.078	1.055	51 39		13 8	5d³ ² F
$4f5d(^3\mathrm{D}^\circ)6p$		1/2	29790.270	0.45	39	^{2}P	26	(3F°) 4D
$4f5d(^3\mathrm{F}^\circ)6p$		7/2	29794.517	1.052	24	$^{2}\mathrm{F}$	15	(3F°) 4D
$4f5d(^3\mathrm{F}^\circ)6p$		3/2	29984.052	0.773	38	4D	14	(³ G°) ⁴ F
$4f5d(^3\mathrm{G}^\circ)6p$		5/2	29994.041		34	4G	21	(3G°) 4F
$4f5d(^3\mathrm{F}^\circ)6p$		7/2	30065.164	1.075	29	4D	12	(3H°) 2G
$4f5d(^3\mathrm{H}^\circ)6p$	4H	11/2	30134.910	1.146	53		22	(3H°) 2H
$4f5d(^3\mathrm{G}^\circ)6p$		7/2	30166.057	1.036	30	4G	16	(¹D°) ²F
$4f5d(^3\mathrm{H}^\circ)6p$	4 <u>I</u>	13/2	30180.096	1.115	91	→	9	(3H°) 4H
$4f5d(^3\mathrm{F}^\circ)6p$		9/2	30245.878	1.225	41	4F		(¹G°) ²G
$4f5d(^3\mathrm{H}^\circ)6p$		5/ ₂	30425.349	0.831	37	⁴G	15	4f 6s(3F°)6p 4G
$4f5d(^3\mathrm{F}^\circ)6p$		5/ ₂		1.125	10	^{2}D		4/ 08(°F)0p °G (3G°) 2F
$4f5d(^3\mathrm{G}^\circ)6p$		9/2		1.079	30	⁴H	15	(3F°) 2G
$4f6s(^3F^\circ)6p$		3/2	30745.286	2.010	29	4F		4f 5d(3D°)6p 4F

Ce II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
$4f5d(^3\mathrm{G}^\circ)6p$		7/2	30829.124	1.016	25 ⁴ G	12 (¹D°) ²F
$4f5d(^{1}\mathrm{D}^{\circ})6p$		3/2	30961.518	1.043	25 ^{2}D	17 (³ F°) ⁴ D
$4f5d(^{1}\mathrm{D}^{\circ})6p$		1/2	31032.611	0.692	31 ² P	24 (³ F°) ⁴ D
$4f5d(^3\mathrm{F}^\circ)6p$		5/2	31043.110	1.014	29 ² F	26 (3F°) ⁴ D
$4f5d(^3\mathrm{G}^\circ)6p$		9/2	31075.603	1.207	24 ⁴ F	23 (³ G°) ⁴ G
$4f5d(^3\mathrm{H}^\circ)6p$	4H	13/2	31155.623	1.203	80	9 (3H°) 4I
$4f5d(^3\mathrm{D}^\circ)6p$		3/2	31170.645	1.118	31 ² P	19 (3D°) 4D
$4f5d(^3\mathrm{F}^\circ)6p$		7/2	31207.927	1.123	15 ⁴ D	$12 (^{3}G^{\circ}) ^{4}F$
$4f5d(^{1}\mathrm{D}^{\circ})6p$		5/2	31234.878	0.975	20 ² F	16 (¹D°) ²D
$4f5d(^3\mathrm{D}^\circ)6p$		5/2	31369.093		15 ⁴ F	15 $5d^{3}$ 4F
$4f5d(^3\mathrm{G}^\circ)6p$		7/2	31558.626	1.167	13 ⁴ F	$12 (^{3}D^{\circ}) ^{4}F$
$4f^2(^1\mathrm{I})5d$		9/2	31568.019	1.138	33 ² G	$4f5d(^{3}G^{\circ})6p\ ^{4}G$
$4f^2(^3\mathrm{P})5d$		3/2	31766.109		32 ² D	11 $5d^{3}$ ² D2
$4f5d(^3\mathrm{D}^\circ)6p$		5/2	31851.397	1.238	20 ⁴ P	18 (3D°) 4D
$4f5d(^3{ m G}^\circ)6p$		9/2	31930.936	1.149	31 ⁴ G	$20 ext{ } 4f^{2}(^{1}\text{I})5d^{2}\text{G}$
$4f5d(^3\mathrm{H}^\circ)6p$		7/2	31937.653		29 ⁴ G	23 (³ H°) ² G
$4f6s(^3\mathrm{F}^\circ)6p$		5/2	32138.698	1.008	23 ⁴ F	11 4f5d(3G°)6p 2F
$4f^2(^1\mathrm{I})5d$		9/2	32197.982	1.195	28 ² G	$16 ext{ } 4f5d(^{3}\text{G}^{\circ})6p ext{ }^{4}\text{F}$
$4f5d(^3\mathrm{H}^\circ)6p$	4I	15/2	32269.252	1.195	100	
$4f5d(^3\mathrm{D}^\circ)6p$	4P	1/ ₂ 3/ ₂	32314.466 33050.291	1.426	57 48	20 (3D°) 4D 14 (3D°) 2P
$4f5d(^3\mathrm{F}^\circ)6p$		7/2	32318.175	1.118	15 ² F	14 (3G°) 2G
$4f^2(^1\mathrm{I})5d$	² G	7/2	32413.346	1.019	68	7 $4f5d(^{1}\mathrm{H}^{\circ})6p$ $^{2}\mathrm{G}$
$4f5d(^3\mathrm{G}^\circ)6p$		11/2	32492.038	1.221	43 ⁴ G	28 (3H°) 4G
$5d^3$		3/2	32507.442	0.643	26 ⁴ F	22 $4f^2(^3P)5d^2D$
$4f5d(^3\mathrm{D}^\circ)6p$		3/2	32638.165	1.070	37 ⁴ D	12 (3P°) 4D
$4f^2(^3\mathrm{P})5d$		5/2	32716.647	1.151	28 ² D	$8 ext{ } e$
$4f5d(^3\mathrm{H}^\circ)6p$	² I	11/ ₂ 13/ ₂	32802.165 34513.468	0.948 1.079	83 84	3 (¹H°) ²I 8 (³H°) ⁴H
$4f5d(^3\mathrm{P}^\circ)6p$	4P	1/ ₂ 3/ ₂	32860.353 33876.377	1.535	56 68	$9 (^3D^{\circ}) {}^2P 8 5d^2(^3P)6s {}^4P$
$4f5d(^3\mathrm{F}^\circ)6p$		7/2	32862.767	1.009	21 ² G	$17 (^{3}G^{\circ}) {^{2}F}$
$4f^2(^3\mathrm{P})5d$		5/2	33045.095	1.188	35 ² D	$4f5d(^{3}\mathrm{D}^{\circ})6p^{4}\mathrm{P}$
$5d^3$		7/2	33079.512	1.257	27 ⁴ F	$4f6s(^{3}F^{\circ})6p$ ^{4}F
$5d^3$		5/2	33148.589	1.098	21 ⁴ F	$16 ext{ } 4f5d(^{3}\mathrm{D}^{\circ})6p ext{ }^{4}\mathrm{P}$
$4f5d(^3\mathrm{P}^\circ)6p$		1/2	33177.196	1.484	21 ⁴ P	18 (3D°) 4P
$4f5d(^1\mathrm{F}^\circ)6p$		9/2	33296.805	•	18 ² G	18 (³ G°) ² G
$4f5d(^3\mathrm{D}^\circ)6p$		7/2	33409.897	•	15 ⁴ D	14 (³ G°) ² F
$4f6s(^3\mathrm{F}^\circ)6p$		5/2	33552.582	0.920	13 ² F	$11 (^{1}F^{\circ}) ^{2}F$
$4f6s(^3F^\circ)6p$		3/2	33574.145	0.675	20 ⁴ F	$4f5d(^{3}\mathrm{D}^{\circ})6p\ ^{4}\mathrm{F}$
4f 5d(3H°)6p		11/2	33659.968	1.249	41 ⁴ G	21 (³ G°) ⁴ G
$4f5d(^3\mathrm{D}^\circ)6p$		5/2	33808.317	1.230	44 ⁴ D	$16 (^3P^{\circ}) ^4D$
$4f5d(^{3}\mathrm{G}^{\circ})6p$	2H	9/ ₂ 11/ ₂	33811.567 35716.088		43 61	16 (³ G°) ² G 9 (³ H°) ² H

Ce II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Le	ading percentages
4f5d(3D°)6p		7/2	33977.140	1.186	17 ⁴ F	10	4f6s(1F°)6p 2F
$4f6s(^3F^\circ)6p$		1/2	34006.822		40 ⁴ D	26	4f5d(3P°)6p 4D
$4f5d(^3G^\circ)6p$		9/2	34044.441	1.102	22 ² H	16	$5d^3$ 4F
$5d^3$		7/2	34155.311	1.151	19 ⁴ F	10	4f6s(3F°)6p 4F
$4f^{2}(^{1}S)6s$	2S	1/2	34159.877		68	12	$5d^2(^1\mathrm{S})6s$ $^2\mathrm{S}$
$4f6s(^3F^\circ)6p$		3/2	34166.039		17 ⁴ F	15	(3F°) 4D
$4f5d(^3\mathrm{H^\circ})6p$	² G	9/2	34295.450	1.125	45	13	(3H°) 4G
$4f6s(^3F^\circ)6p$		5/2	34333.096	1.069	28 4G	13	$(^{1}F^{\circ})$ ^{2}D
$4f5d(^{1}\mathrm{F}^{\circ})6p$		5/2	34426.037	0.997	24 ² D	9	4f6s(3F°)6p 4D
$4f6s(^3F^\circ)6p$		3/2	34767.688	0.974	18 ⁴ D	17	$4f5d(^3\mathrm{D}^\circ)6p$ $^2\mathrm{D}$
$4f5d(^3P^\circ)6p$		5/2	34813.202	1.269	28 ⁴ P	16	(³ D°) ² F
4f5d(1F°)6p		7/2	34920.788	1.109	25 ² G	20	(3D°) 4D
4f5d(3D°)6p		9/2	34928.969	1.275	38 4F	22	$5d^3$ 4F
$4f6s(^3F^\circ)6p$		5/2	34934.421	1.134	29 ⁴ D	17	(3F°) 4F
$4f5d(^3\mathrm{P}^\circ)6p$	4S	3/2	35197.840	0.999	61	8	(3P°) 2P
$4f5d(^3P^\circ)6p$		5/2	35225.656	1.217	23 ⁴ P	10	(3D°) 2F
$4f6s(^3F^\circ)6p$		7/2	35346.282	1.119	18 4G	16	(3F°) 4F
$4f5d(^3\mathrm{D}^\circ)6p$		3/2	35457.318	2.799	19 ² D	19	(3P°) 2D
$4f6s(^3F^\circ)6p$		7/2	35558.702	1.197	15 ⁴ D	15	(³ F°) ⁴ G
$4f6s(^{1}\mathrm{F}^{\circ})6p$		9/2	35807.568	1.199	26 ² G	15	(3F°) 2G
$4f6s(^{3}\mathrm{F}^{\circ})6p$		7/2	35925.682	1.075	17 4G	16	(3F°) 4D
$4f6s(^{3}F^{\circ})6p$		7/2	36112.021	1.184	20 ⁴ D	19	4f5d(1F°)6p 2F
$4f6s(^{1}F^{\circ})6p$		5/2	36137.604	1.060	20 ² F	19	4f5d(3D°)6p 2D
$4f6s(^{3}F^{\circ})6p$	4G	9/2	36202.557	1.186	47	14	4f 5d(3H°)6p 4G
4f5d(3P°)6p		1/2	36288.661		36 ² P	15	$5d^2(^3P)6s^{-2}P$
4f5d(3P°)6p		3/2	36516.798		25 ⁴ S	22	(3P°) 2P
4f5d(3D°)6p		5/2	36844.305	1.091	18 ² D	16	$4f6s(^{1}F^{\circ})6p^{2}D$
4f6s(1F°)6p		7/2	36893.770	1.062	21 ² G	17	4f5d(3D°)6p 2F
4f5d(¹H°)6p		9/2	36923.789	1.104	27 ² H	12	(¹F°) 2G
4f5d(1F°)6p		3/2	37078.879	0.695	20 ² D	18	5d ² (³ F)6s ⁴ F
$4f6s(^3F^\circ)6p$		9/2	37196.137	1.175	17 ⁴ G	15	(3F°) 4F
$4f5d(^{3}P^{\circ})6p$		3/2	37232.438	0.625	25 ² D	25	$5d^2(^3F)6s^4F$
$4f5d(^{1}\text{F}^{\circ})6p$		5/2	37342.327	1.194	19 ² F	16	$4f^{2}(^{1}S)5d^{2}D$
$4f5d(^{3}P^{\circ})6p$		3/2	37530.630	1.112	27 ⁴ D	12	4f 6s(3F°)6p 4D
$4f5d(^{1}F^{\circ})6p$		7/2	37588.473	1.142	38 ² F	19	(3D°) 2F
$4f6s(^{3}F^{\circ})6p$		1/2	37615.734	1.142		30	$4f5d(^{3}P^{\circ})6p \ ^{4}D$
$4f 5d(^{3}P^{\circ})6p$		5/2		1 100			(3P°) 4D
$4f^{2}(^{1}S)5d$		3/2	37652.091	1.108		25	
•	45		37804.434	0.908	14 ² D	14	5d ² (³ F)6s ⁴ F
$5d^2(^3F)6s$	4F	5/ ₂ 7/ ₂	37848.550 38809.476	1.082 1.192	49 53	23 22	$4f5d(^{3}\text{G}^{\circ})6p \ ^{4}\text{F}$
		9/2	39871.833		63	22	
4f5d(¹H°)6p	²H	11/2	37970.532		56	22	5d³ ²H
$5d^3$	² G	7/2	37973.771		53	13	$4f5d({}^{1}{ m F}^{\circ})6p {}^{2}{ m G}$

Ce II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lead	ling percentages
$4f5d(^{1}\mathrm{F}^{\circ})6p$		9/2	38134.400	0.621	25	² G	22	(¹H°) ²H
$4f6s(^{3}\mathrm{F}^{\circ})6p$	4G	11/2	38137.682		71		13	$4f5d(^3\mathrm{H}^\circ)6p$ $^4\mathrm{G}$
$4f5d(^{3}\mathrm{P}^{\circ})6p$		1/2	38269.974		33	^{2}S	23	$5d^3$ ⁴ P
$4f6s(^{1}F^{\circ})6p$		3/2	38452.750		24	$^{2}\mathrm{D}$	15	(3F°) 4D
$4f 5d(^3\mathrm{D}^\circ)6p$		5/2	38529.021	1.169	19	$^{2}\mathrm{D}$	12	$4f^{2}(^{1}S)5d^{2}D$
$4f 3a(^{\circ}D^{\circ})6p$ $5d^3$		9/2	38541.873	1.097	35	² G	10	$4f5d(^{1}\text{H}^{\circ})6p\ ^{2}\text{G}$
		5/ ₂	38832.709	1.273	35	⁴ D	13	(1F°) 2D
$4f6s(^{3}F^{\circ})6p$		1/ ₂	38892.501	1.210	30	$^{2}\mathrm{S}$	24	$5d^3$ ⁴ P
$4f5d(^{3}\mathrm{P}^{\circ})6p$		3/2	38937.812	1.399	34	4 P	9	$4f5d(^{3}\text{P}^{\circ})6p\ ^{2}\text{P}$
$5d^3$								
$4f5d(^3\mathrm{P}^\circ)6p$	4.5	7/2	39394.990	1.396	42	⁴ D	23	4f6s(3F°)6p 4D
$5d^3$	4P	5/2	39838.445	1.577	67		16	$4f^{2}(^{3}P)5d^{4}P$
$5d^3$		1/2	39855.395		30	^{2}P	22	4P
$5d^3$		3/2	40511.127		27	² P	22	⁴ P
$4f5d(^{1}\mathrm{H}^{\circ})6p$	2 I	$\frac{11}{2}$ $\frac{13}{2}$	40673.575 41992.356		74 90		13 6	5d ³ ² H (³ H°) ² I
$4f5d(^1\mathrm{H}^\circ)6p$	² G	9/ ₂ 7/ ₂	40858.205 41085.208		45 57		14 14	(¹H°) ²H 5d²(¹G)6s ²G
$5d^3$	²H	$\frac{9}{2}$ $\frac{11}{2}$	41083.294 41289.971	1.090	49 53		16 27	$4f5d(^{1}\mathrm{H}^{\circ})6p$ $^{2}\mathrm{H}$
$5d^2(^3\mathrm{F})6s$	² F	5/ ₂ 7/ ₂	41198.309 42573.191	1.143	51 52		9 19	$5d^3$ ² F
$4f5d(^{1}\mathrm{P}^{\circ})6p$	2 P	$\frac{1}{2}$ $\frac{3}{2}$	41589.12 42458.743		73 40		13 10	$({}^{3}\mathrm{P}^{\circ}) {}^{2}\mathrm{S}$ $5d^{3} {}^{2}\mathrm{D2}$
4f5d(1P°)6p		3/2	41748.279	0.880	23	$^{2}\mathrm{D}$	16	5d ² (¹ D)6s ² D
$5d^2(^1{\rm D})6s$		5/ ₂	42033.653	1.161	21	$^{2}\mathrm{D}$	20	$4f^{2}(^{1}S)5d^{2}D$
4f5d(¹P°)6p		3/2	43167.878		35	$^{2}\mathrm{D}$	32	(¹P°) ²P
•	200							
$4f5d(^{1}\mathrm{P}^{\circ})6p$	² S	1/2	43334.332	Production	66		15	(3P°) 2S
$4f5d(^{1}\mathrm{P}^{\circ})6p$	² D	5/2	43460.533	1.170	64		7	$5d^3$ ² D2
$5d^2(^3P)6s$	4P	1/2	43643.230		75		9	4f5d(3D°)6p 4P
(- /00		3/2	44081.375		77		7	$4f5d(^3D^\circ)6p$ 4P
		5/2	44594.928	1.573	68		9	$5d^3$ ² D1
$5d^3$		3/2	46987.371		31	$^{2}\mathrm{D2}$	24	$5d^2(^1{\rm D})6s\ ^2{\rm D}$
$5d^2(^1{ m D})6s$		5/2	47466.445		34	$^{2}\mathrm{D}$	29	$5d^3$ ² D2
$5d^2(^1\mathrm{G})6s$	² G	7/ ₂ 9/ ₂	47489.280 48151.739		48 67		22 8	4f6s(³ F°)6p ² G 4f6s(¹ F°)6p ² G
4.60 a/3.129\C						217		
$4f6s(^3F^\circ)6p$		5/2	48024.675		36	² F	28	5d ³ ² F
$4f6s(^{3}F^{\circ})6p$		3/2	48630.464		26	$^{2}\mathrm{D}$	22	5d ² (¹ D)6s ² D
$5d^3$	² F	7/2	48657.336		49		19	5d ² (³ F)6s ² F
$5d^3$		5/2	49089.486		38	$^{2}\mathrm{F}$	18	$4f6s(^3F^\circ)6p$ 2F
$4f6s(^3\mathrm{F}^\circ)6p$		7/2	50368.336		24	² F	15	$(^3F^\circ)^2G$
$5d(^{2}{\rm D})6s^{2}$?		5/2	50564.294		32	$^{2}\mathrm{D}$	26	$4f6s(^{3}\text{F}^{\circ})6p$ ² D
$4f6s(^3\mathrm{F}^\circ)6p$		7/2	51171.581		23	${}^{2}G$	20	$(^3F^\circ)$ 2F
$4f6s(^3\mathrm{F}^\circ)6p$	² G	9/2	52058.587		51		16	$(^{1}F^{\circ})$ ^{2}G
Ce III (³ H ₄)	Limit		87500					

Ce III

(Ba I sequence; 56 electrons)

Z = 58

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{2\ 3}H_4$

Ionization energy 162903± 20 cm⁻¹

 20.198 ± 0.003 eV

Identified even configurations

4f², 5d², 4f6p, 5d6s, 4f5f, 4f7p, 4f6f, 6p²?, 5d6d

Identified odd configurations

4f5d, 4f6s, 4f6d, 4f7s, 5d6p, 4f8s, 4f7d, 4f5g

Most of the energy levels found by Kalia are based on real wavenumber differences, but the first correctly designated levels were given by de Bruin, Lier, and van de Vliet [1937], and by Russell, King, and Lang [1937]. The latter analysis gave nearly all the levels of seven configurations. These did not include, however, the $4f^2$ ground configuration, which Sugar located in his extension of the analysis. His observations of the sliding-spark spectrum (1700 new lines, 757–11091 Å) increased the known lines by a factor of 7 and yielded 126 new levels. Sugar also gave improved values for the previously known levels and assigned designations in appropriate coupling schemes. More recently Johansson and Litzén observed 31 infrared lines of Ce III (1.1–2.6 μ m) and completed the $4f^2$ configuration by finding the 3P term.

Levels, Ionization Energy, g Values

Most of the energy levels and designations are from Sugar's paper. The $4f^2$ ³P levels are from Johansson and Litzén, as are some improved values for other $4f^2$ levels. Wyart recently located the $5d^2$ ¹S₀ level. The analysis is remarkably complete, almost all the expected levels having been found for 14 of the 17 identified configurations. Five of the 26 possible 4f6f levels are missing. Sugar noted that his assignments of eight high even levels to $6p^2$ and 5d6d were not positive; we give the $6p^2$ identification as tentative, as only one level was assigned to this configuration. Sugar's level for 5d6p ¹P₁ (102249.70 cm⁻¹) does not agree well with the position calculated by Spector (103780 cm⁻¹). Since the experimental evidence for the level is not strong, it is listed as questionable.

Sugar and Reader derived the ionization potential from the 4f6s-8s series, using a correction for the estimated deviation from the Ritz formula.

The g values are mainly from Russell et al., from van de Vliet, or from our reductions of patterns given by these authors. An additional few values were taken from de Bruin et al. or from our reductions of patterns they measured. Most of the g values not followed by a colon are probably accurate to ± 0.02 . Values given with a colon are based on poor or unresolved patterns, and are in general less accurate.

Theory

Goldschmidt's [1968a] calculations have been used for the $4f^2$ configuration and for the $(4f6p+5d^2+5d6s)$ group. The effects of the $(4f6p+5d^2)$ configuration interaction on the four J=4 levels between 50000 and 55000 cm⁻¹ are noteworthy. Since each of these levels has well over 50% 4f6p configurational purity, all four are listed with this configuration in the first column, even though a pure fp configuration has only three J=4 levels. The good j_1j_2 coupling shown by the 4f6p levels having other J values cannot hold for these four levels sharing three designations, and their leading j_1j_2 components range from 41% to 53%. The level with smallest leading percentage (51289.38 cm⁻¹) has no assigned j_1j_2 name, but it has a higher total 4f6p configurational purity than two of the J=4 levels having such names. The basic reason for the low purities of the four levels is the interaction of 4f6p with $5d^2$ [Goldschmidt, 1968b], as evidenced by the large second percentages from $5d^2$ 1G listed for two of the levels. Goldschmidt notes that the composition of each of these two levels (named $4f(^2F_{7/2}^{\circ})6p_{1/2}$ and $4f(^2F_{7/2}^{\circ})6p_{3/2}$ in the table) has a total of about 80% 1G character if the percentages from both configurations are given in LS coupling. The strong interaction of 4f6p 1G and $5d^2$ 1G causes

the $5d^2$ ¹G components to be distributed among the four levels in such a way that $5d^2$ ¹G is missing as a designation. This case furnishes one of the simplest examples of some effects of configuration interaction having many analogues in more complex rare-earth spectra.

The percentages for the 4f5d levels are from a calculation by Goldschmidt and Salomon. The inclusion of effective interactions in this calculation significantly improved the eigenvectors for several of the levels, as shown by comparisons of observed with calculated g values [Goldschmidt, 1973].

The four levels of 4f6s have very high purity in the j_1j_2 coupling scheme [Goldschmidt, 1967].

Spector's results have been used for the percentages of the 5d6p, 4f6d, 4f7d, and 4f5g odd levels. The leading component for each of the 4f6d levels is given in both the j_1l and LS coupling schemes, and leading components for the 4f7d levels are given in the j_1l and j_1j_2 schemes. The percentages for the 4f5f, 4f6f, and 4f7p even configurations are also from Spector. Most of Sugar's LS designations for the 4f5f levels, made on the evidence of the intensities of the 4f5d-4f5f lines, were confirmed by Spector's calculations. The LS scheme does not furnish satisfactory names for 6 of the 26 4f5f levels, however, and the j_1l scheme is definitely preferred.

References

Crosswhite, H. M., Phys. Rev. A 4, 485 (1971). PT

de Bruin, T. L., Lier, J. N., and van de Vliet, H. J., Proc. K. Ned. Akad. Wet. 40, 334 (1937). EL CL W ZE

Goldschmidt, Z. B., Colloq. Int. C.N.R.S., No. 164, 365 (1967). ND PT

Goldschmidt, Z. B., Thesis, Hebrew Univ. Jerusalem, Israel, 487 pp. (1968a). ND PT

Goldschmidt, Z. B., Spectroscopic and Group Theoretical Methods in Physics, Ed. F. Bloch et al., pp. 411-457 (John Wiley & Sons, Inc., New York, N.Y., 1968b). ND PT

Goldschmidt, Z. B., Atomic Physics 3, Ed. S. J. Smith and G. K. Walters, pp. 221-246 (Plenum Press, New York, N.Y., 1973). PT

Goldschmidt, Z. B., and Salomon, D., unpublished material (1974). PT

Johansson, S., and Litzén, U., Phys. Scr. 6, 139 (1972). EL CL W

Judd, B. R., Crosswhite, H. M., and Crosswhite, H., Phys. Rev. 169, 130 (1968). PT

Kalia, P. N., Indian J. Phys. 8, 137 (1933). EL CL

King, A. S., and King, R. B., Astrophys. J. 75, 40 (1932). \boldsymbol{W}

Russell, H. N., King, R. B., and Lang, R. J., Phys. Rev. 52, 456 (1937). EL CL W ZE IP

Spector, N., J. Opt. Soc. Am. 55, 492 (1965). ND PT

Sugar, J., J. Opt. Soc. Am. 55, 33 (1965). EL ND CL W IP

Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP

van de Vliet, H. J., Thesis, Univ. Amsterdam, 85 pp. (1939). ZE

Wyart, J. F., private communication (1976). EL

[October 1976]

Ce III, Even Parity

Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ding percentages
4f2	зН	4	0.00		97			
		5	1528.32		100			
		6	3127.10		100			
$4f^{2}$	³F	2	3762.75		00			
7	•	$\frac{2}{3}$	4764.76		98			
		4	5006.06		100 58		40	¹G
		•			90		40	- G
$4f^2$	¹G	4	7120.00		57		42	3F
$4f^{2}$	¹D	2	12835.09		00		0	3D
•			12099.03		90		8	$^3\mathrm{b}$
$4f^2$	3P	0	16072.04		99			
		1	16523.66		100			
		2	17317.49		92		8	¹ D
$4f^{2}$	1I	6	17420.60	-	100			
		Ü			100			
$4f^{2}$	¹S	0	32838.62		99			
$5d^2$	$^{3}\mathrm{F}$	2	40440.20	0.70:	05			
	_	3	41938.54	1.08:	95 98			
		4	43517.46	1.27:	97			
$5d^2$	10	0						
5a-	¹D	2	46889.79	1.06:	71		15	3b
$5d^2$	3P	0	48075.96		99			
		1	48674.12		100			
		2	50043.85		82		14	¹ D
$4f(^{2}\mathrm{F}_{5/2}^{\circ})6p_{1/2}$	(5/2,1/2)	9	49967.00	0.05				
ij (1 3/2)0p1/2	(12,-12)	$\frac{3}{2}$	48267.00	0.87	97			
		2	48404.86	0.81	89			
$4f(^{2}\mathrm{F}_{7/2}^{\circ})6p_{1/2}$	$(^{7}/_{2},^{1}/_{2})$	4	50057.60	1.06	52		36	$5d^2$ $^1\mathrm{G}$
		3	50375.00	1.16	91		30	<i>50.</i> G
$4f(^{2}\mathrm{F}^{\circ}_{5/2})6p_{3/2}$	(51.31)		7100001					
4) (-r 5/2)0p3/2	(5/2,3/2)	3	51262.21	0.94	92			
	· ·	2	51640.68	0.99	91			
		1 4	51932.34 52440.96	0.40 1.135	95 45		90	$(^{7}/_{2}, ^{3}/_{2})$
		•	02110.00	1.100	40		38	(1/2, 1/2)
4f6p		4	51289.38	1.09	41	(7/2, 1/2)	32	(5/2, 3/2)
$4f(^{2}\mathrm{F}^{\circ}_{7/2})6p_{3/2}$	(7/2,3/2)	3	53615.98	1.24	0.4			
-5 (=, op u.2	(12, 12)	3 5	54193.84	1.24	94 100			
		4	54549.34	1.05	53		27	$5d^2$ $^1\mathrm{G}$
		2	54556.48	1.08	93		21	<i>5a</i> G
5d6s	зЪ	,	C2227 40					
0000		$\frac{1}{2}$	63335.40 64010.70		95			
		3	65550.73		93 96			
~ 10					00			
$5d^2$	¹S	0	67730.3					
5d6s	¹D	2	70433.08		90			
$4f(^2\mathbf{F}_{5/2}^{\circ})5f$	207/ 7							
±) (1. 9/2)θ∫	2[7/2]	$\frac{3}{4}$	98913.68 99577.01		79	or	59	3G
		**	99911.01		77	or	83	
"	2[11/2]	5	99178.16		80	or	67	зІ
		6	100015.70		83	or	88	-
"	2021 3	1	00040.00					
	2[3/2]	1 2	99248.38		85	\mathbf{or}	52	$_{3}\mathrm{D}$

Ce III, Even Parity—Continued

06	Term	J	Level (cm ⁻¹)	g		-	Lead	ing percentages	
Configuration	Term	J	(cm ⁻¹)	9			Dead	mg percentages	
$4f(^2\mathbf{F}_{\mathbf{5/2}}^{\circ})5f$	2[9/2]	5 4	99604.30 100814.08		69 86	or or	40 77	³ H	
11	2[5/2]	$\frac{3}{2}$	99708.39 101354.33		67 72	or or	30 69	³ F	
,,	2[1/2]	1 0	100189.69 102502.41		62 94	or or	33 81	3D	
$4f(^2{ m F}_{5/2}^{\circ})7p_{1/2}$	(5/2,1/2)	$\frac{3}{2}$	100662.63 100734.04		98 94		6	(5/2, 3/2)	
$4f(^2\mathrm{F}^{\circ}_{7/2})5f$	2[9/2]	5	101178.46		83	or	77	$^3\mathrm{G}$	
		4	102566.29		74	or	42	¹G	
"	² [5/ ₂]	$\frac{3}{2}$	101343.93 103231.23		66 62	or or	55 36	3D	
"	2[13/2]	$\frac{7}{6}$	101564.83 103676.13		100 67	or or	100 81	³ I ¹I	
"	2[3/2]	$\frac{1}{2}$	101647.49 104177.07		46 74	or or	50 55	3S 3P	
$4f(^2{ m F_{5/2}})7p_{3/2}$	(5/2,3/2)	3	101821.97		98				
		$\frac{2}{4}$	102173.68 102221.92		94 98		6	(5/2,1/2)	
		1	102369.48		100				
$4f(^2\mathrm{F}^\circ_{7/2})5f$	2[11/2]	5 6	102408.70 102897.68		72 77	or or	83 83	3H	
•	2[7/2]	$\frac{3}{4}$	102649.22 103351.21		55 83	or or	83 67	3F	
$4f(^2{ m F}_{7/2}^{\circ})7p_{1/2}$	(7/2,1/2)	$\begin{matrix} 3 \\ 4 \end{matrix}$	102961.29 103079.67		94 92		4 5	(7/2, 3/2)	
$4f(^2\mathrm{F}^\circ_{7/2})5f$	2[1/2]	1 0	103612.68		58 94	or or	85 81	3P 1S	
$4f(^2{ m F}_{7/2}^{\circ})7p_{3/2}$	(7/2,3/2)	4	104289.06		94		5	(7/2, 1/2)	
		3 5	104293.20 104351.04		94 100		6	(7/2, 1/2)	
		2	104840.50		100				
$4f(^2\mathrm{F^{\circ}_{5/2}})6f$	2[7/2]	$\frac{3}{4}$	122160.10 122628.94		79 80		21	$(^2F_{5/2}^{\circ})^{\ 2}[^5/_2]$	
"	2[11/2]	5 6	122289.31 122870.19		75 92		25	$(^2F_{5/2}^{\circ})^{\ 2}[^9/_2]$	
"	2[9/2]	5 4	122611.07 123201.62		70 83		25	$(^2F_{5/2}^{\circ})^{\ 2}[^{11}/_2]$	
"	2[5/2]	$\frac{3}{2}$	122688.60 123555.41		74 67		20 31	$ig(^2\mathrm{F}^{\circ}_{5/2})\ ^2[^7/_2] \ ig(^2\mathrm{F}^{\circ}_{5/2})\ ^2[^3/_2]$	
"	2[3/2]	1 2	122807.84		88 59		32	$(^2\mathrm{F}^{\circ}_{5/2})\ ^2[^5/_2]$	
"	2[1/2]	1 0	122980.12		83 99				
$4f(^2\mathrm{F}_{7/2}^\circ)6f$	2[9/2]	5 4	124433.38 125091.24		80 74		20 20	$({}^2F^{\circ}_{7/2})\ {}^2[{}^{11}/{}_2] \ ({}^2F^{\circ}_{7/2})\ {}^2[{}^{7}/{}_2]$	

Ce III, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Lead	ling percentages
$4f(^2\mathrm{F}^\circ_{7/2})6f$	² [5/ ₂]	3 2	124510.28 125399.50		64 74	36 18	$({}^2{ m F}_{7/2}^{\circ}) {}^2[{}^7/_2] \ ({}^2{ m F}_{7/2}^{\circ}) {}^2[{}^3/_2]$
"	2[13/2]	7 6	124609.73 125710.16		100 59	36	$(^2\mathrm{F}^\circ_{7/2})\ ^2[^{11}/_2]$
"	2[11/2]	5 6	125006.22 125301.13		80 62	20 32	${(^2F_{7/2}^2)} {^2[^9/_2]} \ {(^2F_{7/2}^2)} {^2[^{13}/_2]}$
"	2[7/2]	3 4	125132.28 125615.94		60 80	35 20	$({}^2F^{\circ}_{7/2}) {}^2[{}^5/{}_2] \ ({}^2F^{\circ}_{7/2}) {}^2[{}^9/{}_2]$
$4f(^2\mathrm{F}_{7/2}^{\circ})6f$	2[3/2]	1 2	126052.62		66 77	31 21	$({}^{2}\mathrm{F}_{7/2}^{2}){}^{2}[{}^{1}/{}_{2}] \ ({}^{2}\mathrm{F}_{7/2}^{2}){}^{2}[{}^{5}/{}_{2}]$
$6p^2$?	3P?	0 1 2	130713.26				
5d6d	3D	1 2 3	136321.39 137902.90				
5d6d	1F	3	136447.67				
5d6d	3F	2 3 4	138264.72 139477.67				
5d6d	3P	$\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$	141104.03				
5d6d	¹D	2	141803.07				
Ce IV (2F _{5/2})	Limit		162903				

Ce III, Odd Parity

Configuration	Term	J	Level (cm ⁻¹)	g		Lea	ding percentages
4f5d	¹G°	4	3276.66	0.99	72	22	3H°
4f5d	3F°	2	3821.53	0.76	72	27	¹D°
		3	5502.37	1.10	96	3	3G°
		4	7150.05	1.30	86	8	¹G°
4f5d	³H°	4	5127.27	0.87	77	18	¹G°
,		5	6361.27	1.07	100	10	ď
		6	8349.99	1.17	100		
4f5d	³G°	3	6265.21	0.76	93	4	3F°
J		4	7836.72	1.06	94	4	³F°
		5	9325.51	1.22:	99	1	¹H°
4f5d	¹D°	2	6571.36	0.88	67	27	3F°
4f5d	3D°	1	8922.05	0.52:	97	2	¹P°
-		2	9900.49	1.18	95	4	¹D°
		3	10126.53	1.34	74	26	1F°

Ce III, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lead	ling percentages
4f5d	3P°	0 1 2	11577.16 11612.67 12641.55	1.29 1.38	100 95 97		4 3	1D°
4f5d	1F°	3	12500.72	1.03	72		26	$^3\mathrm{D}_\circ$
4f5d	¹H°	5	16152.32	1.06	99		1	$^3\mathrm{G}^\circ$
4f5d	¹P°	1	18443.63	0.99	94		4	3P°
$4f(^2\mathrm{F_{5/2}^\circ})6s_{1/2}$	(5/2,1/2)°	2 3	19236.23 19464.46	0.665 1.07	99 99			
$4f(^2\mathrm{F}_{7/2}^{\circ})6s_{1/2}$	(⁷ / ₂ , ¹ / ₂)°	4 3	21476.46 21849.47	1.27 1.035	100 100			
$4f(^2\mathrm{F}^{\mathrm{s}}_{5/2})6d$	² [5/ ₂]°	2 3	89350.03 90086.92		86 85	or or	77 67	³F°
$4f(^2\mathrm{F}^{\circ}_{5/2})7s_{1/2}$	(5/2,1/2)°	2 3	89596.39 89663.07					
$4f(^2\mathrm{F}_{5/2}^{\circ})6d$	² [9/ ₂]°	4 5	89651.92 90658.94	0.88: 1.07:	71 92	or or	64 76	3H°
"	² [7/ ₂]°	$\begin{matrix} 3 \\ 4 \end{matrix}$	89743.68 90045.27		86 70	or or	80 36	3G°
"	² [3/ ₂]°	$\begin{array}{c} 1 \\ 2 \end{array}$	90144.52 90223.72		90 86	or or	88 57	3D°
"	² [1/2]°	1 0	90878.78 90902.41		90 100	or or	81 100	з Р °
$4f(^2\mathrm{F}_{7/2}^\circ)6d$	² [9/ ₂]°	4 5	91735.87 92180.41		78 69	or or	59 71	³ G°
$4f(^2{ m F}_{7/2}^{\circ})7s_{1/2}$	(⁷ / ₂ , ¹ / ₂)°	4 3	91840.44 91922.55					
$4f(^2\mathrm{F}^\circ_{7/2})6d$	² [7/ ₂]°	3 4	91954.59 92080.62		55 80	or or	44 74	3L° 3D°
"	² [5/ ₂]°	2 3	92018.61 92705.16		71 56	or or	40 48	ıٰ
"	² [11/ ₂]°	6 5	92526.56 93226.80	1.01:	100 63	or or	100 69	³H°
5d6p	зъ°	2 3 4	92635.13 96022.31 99168.82		58 92 100		37	₁ D _o
$4f(^2\mathrm{F}_{7/2}^\circ)6d$	² [3/ ₂]°	2 1	92795.44 93602.83		71 96	or or	64 74	ıb. 3b.
5d6p	3D°	1 2 3	94508.68 96375.66 97964.37		88 94 83		10	1F°
5d6p	¹D°	2	95827.23		53		41	3F°
5d6p	3P°	$\begin{matrix}1\\0\\2\end{matrix}$	99288.43		79 100 88		13	1P°

Ce III, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ding percentages
5d6p	¹P°	1	102249.70?		79		18	3P°
5d6p	¹F°	3	102369.16		90		10	3D°
$4f(^2F_{5/2}^{\circ})8s_{1/2}$	(5/2,1/2)°	2 3	117949.15 117986.06					,
$4f(^2\mathrm{F}_{5/2}^\circ)7d$	² [5/ ₂]°	2 3	118290.69 118588.24		83 97	or or	95 88	$(^{2}\mathrm{F}_{5/2}^{\circ})7d_{3/2} \ (^{2}\mathrm{F}_{5/2}^{\circ})7d_{5/2}$
"	² [9/ ₂]°	4 5	118312.48 118794.12		50 98	or or	81 98	$(^{2}\mathrm{F}_{5/2}^{\circ})7d_{3/2} \ (^{2}\mathrm{F}_{5/2}^{\circ})7d_{5/2}$
"	² [7/ ₂]°	3 4	118318.07 118476.74		97 50	or or	88 81	$(^2F_{5/2}^{\circ})7d_{3/2} \ (^2F_{5/2}^{\circ})7d_{5/2}$
"	² [3/ ₂]°	2 1	118665.91 118682.98		83 98	or or	95 56	$(^{2}\mathrm{F}_{5/2}^{\circ})^{7}d_{5/2} \ (^{2}\mathrm{F}_{5/2}^{\circ})^{7}d_{3/2}$
"	² [1/ ₂]°	0 1	119043.35		100 98	or or	100 57	$(^{2}\mathrm{F}_{5/2}^{\circ})7d_{5/2}$
$4f(^2\mathrm{F}_{7/2}^{\circ})8s_{1/2}$	(⁷ / ₂ , ¹ / ₂)°	4 3	120199.11 120249.22					
$4f(^2\mathrm{F}_{^2\prime 2})7d$	· 2[9/2]°	4 5	120467.78 120646.18		86 84	or or	97 52	(2F ² / ₁ 2)7d _{3/2} (2F ² / ₂ 2)7d _{5/2}
"	² [7/ ₂]°	3 4	120652.44 120685.11		55 86	or or	99 97	(² F ² / ₂)7 <i>d</i> _{3/2} (² F ² / ₂)7 <i>d</i> _{5/2}
"	² [5/ ₂]°	2 3	120739.95 121001.44		95 55	or or	58 99	(² F ² / ₂)7 <i>d</i> _{3/2} (² F ² / ₂)7 <i>d</i> _{5/2}
"	^{2[11/2]°}	6 5	120845.67 121056.71		100 83	or or	100 50	(² F ² / ₂)7d _{5/2} (² F ² / ₂)7d _{3/2}
,,	² [3/ ₂]°	2 1	121095.78 121559.51		95 98	or or	58 98	(² F _{7/2})7d _{5/2}
$4f(^2\mathbf{F_{5/2}})5g$	² [9/ ₂]°	4 5	122905.69 122908.89		100 100			
"	^{2[11} / ₂]°	6 5	122919.83 122922.37		100 100			
"	² [7/ ₂]°	4 3	122932.21 122933.38		100 100			
"	² [5/ ₂]°	2 3	122976.30 122978.36		100 100			
"	^{2[13} / ₂]°	6 7	123010.29 123017.02		100 100			
"	² [3/ ₂]°	2 1	123028.39 123029.01		100 100			
$4f(^2\mathrm{F}_{^{9}/^{2}})5g$	^{2[11} / ₂]°	6 5	125155.89 125158.97		100 100			
,,	² [9/ ₂]°	4 5	125164.86 125168.37		100 100			
"	² [13/ ₂]°	$\frac{6}{7}$	125181.54 125186.61		100 100			

Ce III, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
$4f(^{2}\mathrm{F}^{\circ}_{7/2})5g$	² [7/ ₂]°	4	125193.91		100
		3	125196.03		100
"	² [5/ ₂]°	2	125230.90		100
		3	125232.67		100
"	² [3/ ₂]°	2	125268.40		100
		1	125269.29		100
"	² [15/ ₂]°	8	125270.97		100
		7	125279.58		100
"	² [1/2]°	0	125295.21		100
		1	125296.65		100
Ce IV $({}^{2}F_{5/2})$	Limit		162903		

Ce IV

(Cs I sequence; 55 electrons)

Z = 58

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ 4f ${}^2F_{5/2}^{\circ}$

Ionization energy 296470±40 cm⁻¹

 $36.758 \pm 0.005 \text{ eV}$

Gibbs and White [1929] and Badami [1931] classified the $6s\ ^2S-6p\ ^2P^\circ$ transitions, but Badami's extension of the analysis proved incorrect. The levels and interpretation given here are due to Lang [1936a], who reobserved the spectrum with spark sources. He lists 31 classified lines in the range $443-2778\ \mathring{A}$.

Lang commented that the 6d ²D levels are "puzzling, as there seems to be no reason for their inversion, but no other possibility could be found in the spectrum." Reader has confirmed the correctness of these levels. He suggests that their perturbation is probably due to interaction with one or more configurations of the type $5p^54fnl$ (probably $5p^54f5d$ and/or $5p^54f6s$).

On the basis of the accurate ionization potential [Sugar and Reader] and the general behavior of ng series (in La III, for example), we find Lang's level for 6g ²G to be about 850 cm⁻¹ above the expected position. Since a perturbation of this magnitude seems unlikely and the level is based on two weak lines, we have omitted it here. The 5g ²G level is based on four combinations, and its quantum defect of 0.02 is in accord with similar spectra.

The four Zeeman patterns observed by van de Vliet for the 6s ^2S-6p $^2P^\circ$ and 5f $^2F^\circ-7d$ 2D lines are consistent with these classifications. The three g values we have derived from his data are close to the theoretical single-electron values.

Edwin and King resolved the 140 Ce $^{-142}$ Ce isotope shift for each of the 6s 2 S-6p 2 P $^\circ$ lines in Ce IV, using a pulsed hollow-cathode source; "... we believe this is the first time a fourth spectrum has been obtained with emission lines narrow enough for high-resolution measurements to be made on them."

References

Badami, J. S., Proc. Phys. Soc. London 43, 53 (1931). EL CL Edwin, R. P., and King, W. H., J. Phys. B 2, 260 (1969). IS Gibbs, R. C., and White, H. E., Phys. Rev. 33, 157 (1929). EL CL Lang, R. J., Can. J. Res., Sect. A 13, 1 (1935); Sect. A 14, 127 (1936a). EL CL W IP Lang, R. J., Phys. Rev. 49, 552 (1936b). EL CL W Reader, J., private communication (1975). Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP van de Vliet, H. J., Thesis, Univ. Amsterdam, 85 pp. (1939). ZE

[July 1976]

Ce IV

Configuration	Term	J	Level (cm ⁻¹)	g
5p ⁶ (¹ S)4f	²F°	5/ ₂ 7/ ₂	0 2253	
$5p^{6}(^{1}\mathrm{S})5d$	² D	3/ ₂ 5/ ₂	49737 52226	
$5p^{6}(^{1}{ m S})6s$	2S	1/2	86602	1.95
$5p^6(^1\mathrm{S})6p$	²P°	1/ ₂ 3/ ₂	122585 127292	0.65 1.36
$5p^{6}(^{1}\mathrm{S})6d$	² D	5/ ₂ 3/ ₂	177198 178913	
$5p^{6}(^{1}{ m S})7s$	2S	1/2	183502	
$5p^{6}(^{1}S)5f$	² F°	5/ ₂ 7/ ₂	184545 184746	
$5p^6(^1\mathrm{S})7d$	² D	3/ ₂ 5/ ₂	221661 221838	
$5p^{6}(^{1}{ m S})8s$	2S	1/2	225128	
$5p^6(^1\mathrm{S})5g$	² G	7/2,9/2	225625	
Ce v (¹S₀)	Limit		296470	

Ce V

(Xe I sequence; 54 electrons)

Z = 58

Ground state (1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^2) 5p^6 $^1\mathrm{S}_0$

Ionization energy 528700± 2000 cm⁻¹

 $65.55 \pm 0.25~\mathrm{eV}$

The five excited levels derive from five transitions to the ground level (365 to 552 Å). Reader and Ekberg based the identifications on comparisons along the Xe I isoelectronic sequence through La IV. We have listed the J=1 upper levels as belonging to J_1l -coupling pairs, by analogy with La IV. Alternative Russell-Saunders names are given in the last column, the leading percentages for the $5p^55d$ levels being from a preliminary calculation by Hansen [1971].

Reader and Epstein derived the quoted ionization energy by using the $5p^56s$ levels, an estimated position for the $5p^57s$ levels, and an assumed value for the difference between the Rydberg denominators $n^*(7s)-n^*(6s)$.

References

Hansen, J., unpublished material (1971). PT Reader, J., and Ekberg, J. O., J. Opt. Soc. Am. 62, 464 (1972). EL CL W Reader, J., and Epstein, G. L., J. Opt. Soc. Am. 65, 638 (1975). IP

[July 1976]

Ce v

Configuration	Term	J	Level (cm ⁻¹)	Lea	Leading percentages				
$5p^6$	1S	0	0						
$5p^{5(^{2}\mathrm{P}_{3/2}^{\circ})}5d$	2[1/2]°	0		or	100	³P°			
•		1	181116	or	93	$_3\mathrm{P}_\circ$			
$5p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})5d$	^{2[3/2]°}	2		or	75	$^3\mathrm{P}^\circ$			
		1	207057	\mathbf{or}	87	$^3\mathrm{D}_\circ$			
$5p^{5}(^{2}\mathrm{P}_{3/2}^{\circ})6s$	² [3/ ₂]°	2 1		or		$^3\mathrm{P}_\circ$			
•		1	247396	or		¹P°			
$5p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})5d$	^{2[3/2]°}	2		or	51	$^3\mathrm{D}^\circ$			
•		1	250399	or	93	¹P°			
$5p^{5}(^{2}\mathrm{P}_{1/2}^{\circ})6s$	^{2[1/2]°}	0		or		$^3\mathrm{P}_\circ$			
-		1	273477	or		3P°			
Ce VI (² P _{3/2})	Limit		- 528700						

Ce VI

(I I sequence; 53 electrons)

Z = 58

Ground state (1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}) 5s^25p^5~^2\mathrm{P}^{\circ}_{3/2}

Ionization energy 626000 ± 10000 cm⁻¹

 $77.6 \pm 1.2~\mathrm{eV}$

Reader and Ekberg classified the two transitions from the $5s5p^6$ $^2S_{1/2}$ level to the $^2P^\circ$ ground-term levels, using comparisons along this isoelectronic sequence through La v. The value for the separation of the $^2P^\circ$ levels "is supported by additional measurements for transitions to $5p^5$ $^2P^\circ$ from as yet uninterpreted upper levels." The authors state that the $5s^25p^44f$ configuration is expected "not far above the ground configuration" and suggest that the ground term is probably perturbed by interaction with this configuration.

Epstein and Reader derived the quoted ionization energy by an extrapolation based on the data for this sequence through La v.

References

Epstein, G. L., and Reader, J., J. Opt. Soc. Am. **66**, 590 (1976). IP Reader, J., and Ekberg, J. O., J. Opt. Soc. Am. **62**, 464 (1972). EL CL W

[July 1976]

Ce VI

Configuration	Term	J	Level (cm ⁻¹)
$5s^2(^1{ m S})5p^5$	²P°	3/ ₂ 1/ ₂	0 25984
$5s5p^6$	2S	1/2	160416
Ce VII (³ P ₂)	Limit		626000

PRASEODYMIUM

Pr I

59 electrons Z=59

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^36s^2$ $^4I_{9/2}^{\circ}$

Ionization energy 44070± 40 cm⁻¹

 $5.464 \pm 0.005 \text{ eV}$

Identified odd configurations

 $4f^36s^2$, $4f^35d6s$, $4f^26s^26p$?, $4f^25d6s6p$, $4f^25d^26p$?

Identified even configurations

 $4f^25d6s^2$, $4f^25d^26s$, $4f^36s6p$, $4f^35d6p$

The levels are from unpublished tables of Blaise, Verges, Wyart, Camus, and Zalubas [1973a; 1973b], and Blaise and Ginibre [1976], who are extending this analysis. Zalubas and Borchardt [1973] reported the lowest three levels of the $4f^36s^2$ ⁴I° ground term and about 60 upper even levels.

The accuracy of the wavelength measurements for Pr I and Pr II is limited in general by unresolved hyperfine structure. The line list for the region 4000 to 12000 Å has about 25000 Pr I lines [unpublished list for Pr I and Pr II; see Zalubas and Borchardt]. The list has been extended to 3 μ m at the Laboratoire Aimé Cotton, Orsay. Zalubas and Wilson [1964] give 3532 Pr I lines obtained in absorption in the range 1741–5839 Å, and King's [1928] list has 1018 lines of Pr I and Pr II between 3111 and 6828 Å with temperature classifications. Most of the 1460 stronger lines of Pr I and Pr II given by Meggers, Corliss, and Scribner [1975] belong to Pr II; the range is 2558–8715 Å, and energy-level classifications are listed for both spectra.

The Zeeman patterns are also affected by hyperfine structure, with a resultant lowering of the accuracy of the derived g values [Blaise et al., 1973b; Blaise and Ginibre, 1976]. Except for the 4 I° ground term these are basically two-place values, although some values are given to the nearest 0.005. The more poorly determined g values are followed by colons, and values obtained from ambiguous reductions of patterns are given with question marks.

Very accurate g values for the levels of the ground term have been determined by the atomic-beam magnetic-resonance method. The values for the lowest three levels are from Böklen, Bossert, Foerster, Fuchs, and Nachtsheim [1975], and the value for the ${}^4I^{\circ}_{15/2}$ level is from Lew [1970]. The values are rounded off to five decimal places from values given in the references with uncertainties from 1.5 to 4 units in the sixth place. Lew's [1953] original determination of the J and g values for the ${}^4I^{\circ}_{9/2}$ level were important in establishing 4f ${}^36s^2$ as the ground configuration of Pr I. The leading percentages for the ground-term levels are from Conway and Wybourne [1963].

Although the lower levels of several of the most important configurations have been identified, the interpretation of this spectrum is incomplete. The designations followed by question marks are regarded as tentative. Blaise, Verges, Wyart, and Camus [1975] have begun calculations for Pr I, and the percentages for the $4f^35d6s$ levels are from their results. The interpretation of some of the low even levels is also based in part on preliminary calculations. A more complete analysis and theoretical interpretation for Pr I will probably involve calculations in alternate coupling schemes, e.g., J_1J_2 coupling for the $4f^36s6p$ configuration. We have included parentages for some of the designations given without percentages. In some cases these are unique for the indicated order of coupling and final term, in other cases only probable.

The hyperfine structures of the levels have to some extent proved useful in the analysis [Blaise et al., 1973b]. Ginibre and Gerstenkorn [1970] began the theoretical and experimental work at Orsay on this aspect of the Pr I spectrum. Murakawa [1960] classified the strong Pr I line at 4951.37 Å and analyzed its hyperfine structure.

Pr I—Continued

Worden, Conway, Paisner, and Solarz [1977] obtained the ionization energy from two-step photoionization threshold determinations carried out with laser techniques.

References

Blaise, J., and Ginibre, A., unpublished material (1976). EL ND ZE

Blaise, J., Verges, J., Wyart, J. F., and Camus, P., unpublished material (1975). PT

Blaise, J., Verges, J., Wyart, J. F., Camus, P., and Zalubas, R., J. Opt. Soc. Am. 63, 1315A (1973a). EL

Blaise, J., Verges, J., Wyart, J. F., Camus, P., and Zalubas, R., unpublished material (1973b). EL ND CL ZE Hfs

Böklen, K. D., Bossert, T., Foerster, W., Fuchs, H. H., and Nachtsheim, G., Z. Phys. A274, 195 (1975). ZE Hfs

Cabezas, A. Y., Lindgren, I. P. K., Marrus, R., and Nierenberg, W. A., Phys. Rev. 126, 1004 (1962). ZE Hfs

Conway, J. G., and Wybourne, B. G., Phys. Rev. 130, 2325 (1963). PT

Ginibre, A., and Gerstenkorn, S., unpublished material (1970). Hfs PT

King, A. S., Astrophys. J. 68, 194 (1928). W

Lew, H., Phys. Rev. 91, 619 (1953). ZE Hfs

Lew, H., Bull. Am. Phys. Soc. 15, 795 (1970). ZE Hfs

Meggers, W. F., Corliss, C. H., and Scribner, B. F., Nat. Bur. Stand. (U.S.), Monogr. 145, Part I, 403 pp. (1975). CL

Murakawa, K., J. Phys. Soc. Japan 15, 2306 (1960). EL CL Hfs

Worden, E. F., Conway, J. G., Paisner, J. A., and Solarz, R. W., unpublished material (1977). IP

Zalubas, R., and Borchardt, B. R., J. Opt. Soc. Am. 63, 102 (1973). EL ZE

Zalubas, R., and Wilson, M., J. Res. Nat. Bur. Stand. (U.S.) 69A, 59 (1965). W

[January 1977]

Pr I, Odd Parity

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages		
$4f^36s^2$	4 <u>I</u> °	9/2	0.00	0.73104	97	2	² H°2	
		11/2	1376.60	0.96515	99	-	-	
		13/2	2846.75	1.10632	99			
		15/2	4381.10	1.19799	99	1	${}^{2}\mathrm{K}^{\circ}$	
$4f^{3}(^{4}I^{\circ})5d6s(^{3}D)$	e L °	11/2	8080.49	0.63	95	2	(2H°2)(3D) 4K°	
		13/2	8733.50	0.85	84	7	$({}^{4}I^{\circ})({}^{3}D) {}^{4}L^{\circ}$	
		15/2	9646.90	0.98	85	7	$(^4I^\circ)(^3D)$ $^4L^\circ$	
		17/2	10720.45	1.06:	89	5	$(^4\mathrm{I}^\circ)(^3\mathrm{D})$ $^4\mathrm{L}^\circ$	
		19/2	11913.21	1.18	93	3	$(^4I^\circ)(^3D)$ $^4L^\circ$	
		21/2	13198.74		99	1	$(^{2}\mathrm{K}^{\circ})(^{3}\mathrm{D})$ $^{4}\mathrm{M}^{\circ}$	
$4f^{3}(^{4}I^{\circ})5d6s(^{3}D)$	$^{ m eK}{}_{\circ}$	9/2	8250.22	0.56	93	3	(4I°)(3D) 4I°	
		11/2	8835.42	0.84	83	7	(4I°)(3D) 4K°	
		13/2	9684.24	0.98	85	8	(4I°)(3D) 4K°	
		15/2	10669.00	1.13:	87	7	(4I°)(3D) 4K°	
		17/2	11764.29		90	4	(4I°)(3D) 4K°	
		19/2	12945.56		94	3	(4I°)(3D) 6L°	
$4f^{3}(^{4}I^{\circ})5d6s(^{3}D)$	4L°	13/2	10410.80	0.805	43	40	(4I°)(1D) 4L°	
		$\frac{15}{2}$ $\frac{19}{2}$	11814.70	0.97	48	37	$(^4I^\circ)(^1D)$ $^4L^\circ$	
		17/2	13280.47	1.08	54	36	(4I°)(1D) 4L°	
4f ³ (4I°)5d6s(3D)	4K°	11/2	10431.75	0.800				
g (1)0000(2)	11	13/2	11746.36	0.97	38	33	(4I°)(1D) 4K°	
		15/2	13002.05	0.97	50	30	$({}^{4}{\rm I}^{\circ})({}^{1}{\rm D}) {}^{4}{\rm K}^{\circ}$	
		17/2	14340.21					
f ³⁽⁴ I°)5d6s(³ D)	eI.o	7/2						
g (1)0005(D)	1	9/2	10936.67	0.00				
		11/2		0.80			(470) (070) 470	
		13/2	11322.46		40	34	$({}^{4}{\rm I}^{\circ})({}^{3}{\rm D}) {}^{4}{\rm I}^{\circ}$	
		15/2	12222.10					
		17/2						
$f^2 5d6s6p$	6K°	9/2	18125.55	0.615				
•								
$f^{2}(^{3}\text{H})5d^{-}(^{4}\text{K})6s6p(^{3}\text{P}^{\circ})$	$_{ m e}\Gamma_{\circ}$	11/2	18204.08	0.720				

Pr I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		11/2	18808.05	0.985			9/2	23430.39	
$4f^{2}(^{3}\text{H})5d^{-}(^{4}\text{K})6s6p(^{3}\text{P}^{\circ})$	$_{ m e}\Gamma_{\circ}$	13/2	18829.41	0.97			11/2	23475.11	0.965
		9/2	18886.11	0.80			15/2	23488.64	1.02
41 ² 5d6s6p	${}_{6}\mathrm{K}_{\circ}$	11/2	18934.89	0.885			11/2	23611.65	1.17
41 ² 5d6s6p	eI_{\circ}	7/2	18987.10	0.64			11/2	23767.22	0.925
4/ ² 5d6s6p	eI.	9/2	19303.53	0.840			11/2	23923.09	1.04
41° 25d6s6p		13/2	19315.96				7/2	23984.06	0.88
41 ² (³ H)6s ² 6p?	4I°	9/2	19339.86	0.77			13/2	24116.09	1.00?
		11/2	19910.13	0.85			15/2	24156.54	1.09
		11/2	20249.54	1.035			13/2	24390.15	1.020
		11/2	20315.28	1.07			11/2	24406.45	0.86
4/ ² 5d6s6p?	6K°?	13/2	20339.47	1.05			15/2	24528.91	1.105
		9/2	20396.31	0.83			11/2	24534.39	1.00
1/ ² 5d6s6p?	$^4\mathrm{L}^\circ$	13/2	20439.49	0.915			7/2	25013.78	0.960
		7/2	20542.98	0.76			9/2	25209.16	1.05
		11/2	20583.92	1.06			13/2	25236.52	1.005
		5/2	20621.72	0.79			11/2	25250.67	0.980
		15/2	20652.01	1.135			11/2	25280.40	1.11
		7/2	20873.94	0.84:			13/2	25312.15	0.99
		11/2	21013.27	0.84			11/2	25366.96	1.07
		13/2	21231.04				13/2	25382.49	1.145
		11/2	21301.02	0.96:			11/2	25461.73	1.07
		5/2	21369.79	0.63			11/2		
		7/2	21424.11	0.93			13/2	25551.27	1.02
		13/2	21466.44	1.05			9/2	25614.30	1.11
		11/2	21470.50	1.00			9/2	25657.85	0.98
		15/2	21655.15	1.14			9/2	25704.78	1.020
		13/2	21709.83	1.065				25729.03	1.025
		11/2	21813.11	1.05			7/2	25745.61	0.930
$W^2 5d^2 6p$?	$e\Gamma_{\circ}$	11/2	21969.49	0.64			9/2	25814.85	1.020
4f ² (³ H)5d ² (³ F) (⁵ L)6p?	$^{ m eM}_{\circ}$	13/2	21999.38	0.915			13/ ₂	25843.56	1.055
		11/2	22577.25	1.085			13/ ₂	25902.38	1.165
•		13/2	22670.12	0.92			9/ ₂	26006.18	1.055
$4f^2 5d^2 6p?$	$e\Gamma_{\circ}$	13/2	22786.54	0.95			9/ ₂	26083.73	0.98
		11/2	22811. 26	1.02			⁵ / ₂	26197.80	104
		13/2	22831.71	1.105			11/2	26310.93	1.04
		11/2	22850.99	1.025			13/2	26448.18	0.00
		11/2	22881.44	0.98			11/2	26757.35	0.99
		11/2	22949.56	0.85			11/2	26766.20	1.26
		13/2	22974.55	1.080			11/2	26824.75	0.825
		9/2	23087.27	0.950			9/2	26828.82	1.02
		11/2	23207.53	1.050			9/2	26908.65	0.945
		9/2	23280.09	1.060		·	9/2	27026.50	0.83
		11/2	23309.48	1.005			11/2	27309.98	1.030
		•-					9/2	27331.71	1.00

Pr I, Odd Parity—Continued

Pr I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	$\begin{array}{c} Level \\ (cm^{-1}) \end{array}$	g
		11/2	27449.24	1.070			9/2	28675.30	1.050
		11/2	27571.91	1.065			11/2	31728.49	1.040
		11/2	27602.42	0.99			11/2	31787.07	1.01
		13/2	27991.76	1.050			9/2	32704.29	
		11/2	28168.72	1.20			 		
		9/2	28501.82	1.120	Pr II $({}^{4}I_{9/2}^{\circ})6s_{1/2}$ $({}^{9/2},{}^{1/2})_{4}^{\circ}$	Limit		44070	

Pr I, Even Parity

Pr I, Even Parity

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
$4f^{2(3}\text{H})5d6s^{2}$	4 I	9/2	4432.22	0.805			13/2	10266.51	1.13:
		$\frac{11}{2}$ $\frac{13}{2}$	6313.23 7951.31	0.96 1.09			9/2	10356.71	
		15/2	1331.31	1.03			13/2	10423.68	
$4f^{2}(^{3}\text{H})5d6s^{2}$	4K	11/2	4866.54	0.785			11/2	10904.07	
4) (11)0000	11	$^{13}/_{2}$	6603.60	0.96			5/2	11107.69	0.85
		$\frac{15}{2}$ $\frac{17}{2}$	8363.91*	1.06?			9/2	11184.41	
							11/2	11282.89	1.080
$4f^{2}(^{3}\text{H})5d6s^{2}$	²H	$\frac{9}{2}$ $\frac{11}{2}$	5822.87 6892.95	0.855 0.85			13/2	11562.79	
4 CO (OTT) F 10 0	4	·					9/2	11713.25	0.980
$4f^{2}(^{3}\text{H})5d6s^{2}$	4H	$\frac{7}{2}$ $\frac{9}{2}$	6535.51 8029.24	0.68 0.965			11/2	11944.19	1.085
		$^{11}/_{2}$	9675.01	1.1			13/2	12041.67	
		$^{13}/_{2}$					11/2	12180.13	1.095
$4f^{2}(^{3}\text{H})5d^{2}(^{3}\text{F})$ ($^{5}\text{L})6s$	eT	$\frac{11}{2}$	6714.22	0.81			11/2	12234.62	
		$\frac{13}{2}$ $\frac{15}{2}$	7630.16	0.87			9/2	12746.10	1.140
		$^{17}/_{2}$					11/2	13035.75	
		$\frac{19}{2}$ $\frac{21}{2}$					13/2	13146.60	
$4f^2 5d6s^2$	4G		7617.44	0.95			$^{13}/_{2}$	13250.71	
		7/2					9/2	13272.65	1.075
$4f^2 5d^2 6s$	eI	7/2 $9/2$ $11/2$ $13/2$ $15/2$ $17/2$	8013.14 8643.83 9268.75	0.46	$4f^{3}(^{4}I^{\circ})6s6p(^{3}P^{\circ})?$	⁶ K?	9/2 $11/2$ $13/2$ $15/2$ $17/2$	13432.52 14178.40 15156.11 16451.35 17855.50	0.79 0.910 1.0 1.095 1.20
$4f^{2}(^{3}\text{H})5d^{2}(^{3}\text{F}) (^{5}\text{K})6s$	$^{6}\mathrm{K}$	9/ ₂	8320.27 8829.06	0.54 0.85	4f ³ (⁴ I°)6s6p(³ P°)?	eI.5	$\frac{19}{2}$	19171.69 13454.27	0.75
		13/ ₂ 15/ ₂ 17/ ₂ 19/ ₂ 11/ ₂	9464.43 10466.73 9483.50	1.01 1.14:	2) (1)000p(1).		$\frac{9}{2}$ $\frac{11}{2}$ $\frac{13}{2}$ $\frac{15}{2}$ $\frac{17}{2}$	13974.75 14981.54 16069.91 17262.21 18557.11	0.91 1.05 1.1
$4f^{2}(^{3}F)5d6s^{2}$	⁴ H	7/2	9918.17	0.62			9/2	13605.71	1.030
· · · · · · · · · · · · · · · · · · ·	_	9/2	10920.40	0.97			11/2	13727.51	
		$\frac{11}{2}$ $\frac{13}{2}$					7/2	13781.39	0.93

Pr I, Even Parity—Continued

Pr I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
1		9/2	13822.51	1.170			17/2	17695.16	
		7/2	13867.20	0.71			11/2	18144.32	0.945
		11/2	13872.32	1.075			9/2	18189.22	
		13/2	14087.60	1.065			11/2	18237.29	0.990
		9/2	14139.33	1.020			15/2	18277.91	
		9/2	14186.39	1.00			11/2	18309.12	0.905
		9/2	14261.56	1.11			17/2	18380.34	
		9/2	14272.91	1.01			15/2	18466.97	1.30
		9/2	14468.33	1.00			15/2	18548.53	1.14?
		13/2	14470.09				9/2,11/2	18578.24	
		11/2	14505.11	0.97			9/2	18636.18	1.145
		11/2	14660.64	0.985			11/2	19122.57	1.025
		11/2	14760.32				13/2	19212.72	1.145
		9/2	14764.32	0.880			11/2	19343.25	1.06
		15/2	14800.71				15/2	19364.58	
		11/2	15111.50				13/2	19390.42	1.13
		11/2	15238.16		$4f^36s6p$?	4I?	11/2	19474.75	0.94
		13/2	15372.31	1.055			15/2	19566.82	1.08?
$4f^2 5d6s^2$?	2I?	11/2	15469.58	1.045			9/2,11/2	19620.04	
,		9/2	15531.58				7/2	19654.58	0.95
		11/2	15567.30	1.13			7/2	19749.10	1.075
$4f^{3}(^{4}I^{\circ})6s6p(^{3}P^{\circ})?$	4K?	13/2	15677.69	0.95			11/2	19820.69	0.995
4 (-)		13/2	15772.58				11/2	19861.89	0.89
		13/2	15850.49				9/2	19871.16	1.12
		11/2	15882.93				11/2	19920.36	1.040
		11/2	15904.93	1.00			9/2	19963.96	1.010
		15/2	15994.81				11/2	20089.26	1.035
		11/2	16121.23				9/2	20154.60	1.225
		13/2	16250.92				11/2	20171.75	1.09
		15/2	16294.40		$4f^{3}(^{4}{ m I}^{\circ})6s6p(^{1}{ m P}^{\circ})$?	4I?	9/2	20190.85	0.81
		11/2	16316.49				11/2	20243.72	1.095
		11/2	16377.47				7/2	20269.46	1.035
		13/2	16626.91				11/2	20271.23	
$4f^3 6s6p$?		15/2	16650.65				13/2	20290.58	1.15:
gP		11/2	16778.49				9/2	20344.28	1.005
		13/2	16823.81				7/2	20467.38	0.88
		11/2	16935.88				9/2	20476.66	1.08
		13/2	16979.04	1.10			9/2	20620.80	1.235
		11/2	17405.54	1.05			13/2	20622.75	1.03
	4K?	15/2	17429.98				7/2	20653.36	1.185
		11/2	17470.75	1.150			11/2	20731.90	1.17?
		17/2	17494.45				7/2	20792.13	0.975
		13/2	17504.18	1.040			13/2	20798.25	1.05
$4f^3 6s6p?$	4K?	11/2	17577.91	0.76			13/2	20827.15	1.005

Pr I, Even Parity—Continued

Pr I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		9/2	20878.48	1.04	$4f^3 6s6p?$	4K?	15/2	22762.55	1.03
		9/2	20938.62	1.07	4f³(4I°)5d (5L°)6p?	⁶ M?	13/2	22785.33	0.71
		11/2	20943.42	1.180	i (1)δα (11)δρ.	111.	$^{15}/_{2}$	23842.67	0.87
		11/2	20982.95	1.135			$\frac{17}{2}$ $\frac{19}{2}$?	25025.55 26313.78	1.078
		7/2	21072.64	0.950			21/2		
		7/2	21105.88	0.865			$^{23}/_{2}$?	29011.25	
		11/2	21120.69	1.135			9/2	22921.34	1.08
		13/2	21159.76	1.120			9/2	22924.39	1.11
		7/2	21211.48	1.045	4f³(4I°)5d (5L°)6p?	6L?	11/2	23067.34	0.76
$f^{3}(^{4}I^{\circ})6s6p?$	4K?	13/2	21263.71		j (1)00 (2)0p.		$^{13}/_{2}$	24073.41	0.99
		15/2	21398.47	1.20:			$\frac{15}{2}$ $\frac{17}{2}$?	25168.99 26252.14	1.12
		13/2	21470.05				$^{19}/_{2}$?	28613.84	
		11/2	21471.81	1.010		,	$^{21}/_{2}$?	28809.03	
		7/2	21513.28	1.18	$4f^3 6s6p?$	4I?	$^{13}/_{2}$	23085.08	1.11
		$^{7}/_{2}$	21565.83	0.96	$4f^3 6s6p?$	4G?	9/2	23242.13	1.18
		11/2	21612.66	1.07	$4f^3 6s6p?$	4K?	$^{17}/_{2}$	23793.67	1.09
$f^2 5d^2 6s$?	4L?	$^{13}/_{2}$	21618.49	0.850			9/2	23818.60	0.90
		$^{15}/_{2}$	21629.20	1.06:			$^{13}/_{2}$	23891.25	0.99
		$^{7}/_{2}$	21649.64	0.88	$4f^3 5d6p?$	6K?	$^{9}/_{2}$	23976.05	0.84
		11/2	21677.15	1.00			$^{13}/_{2}$	23997.59	1.09
		7/2	21720.97	0.970	$4f^3 5d6p$?	4M?	$^{15}/_{2}$	24125.97	0.93
		13/2	21746.01	1.115			11/2	24136.57	1.10
		11/2	21765.16	1.02	$4f^3 6s6p?$	4K?	$^{17}/_{2}$	24195.13	1.16
		13/2	21766.96	1.12	$4f^3 5d6p$?	4L?	$^{13}/_{2}$	24235.31	0.87
		7/2	21789.99	1.150			11/2	24251.54	1.12
		9/2	21795.17	1.06			$^{13}/_{2}$	24267.84	1.10
		7/2	21961.01	1.025			11/2	24307.52	0.97
		7/2	22014.11	1.165			11/2	24312.05	0.86
		7/2	22057.52	1.140			11/2	24333.76	1.10
		15/2	22088.82	1.09:			9/2	24441.81	0.99
		13/2	22156.21	1.157			$^{15}/_{2}$	24472.97	1.11
		7/2	22159.67	0.885			13/2	24555.04	1.03
		7/2	22272.48	1.165			11/2	24584.76	0.93
		13/2	22416.15	1.11	$4f^3 5d6p?$	6L?	11/2	24590.84	0.680
		7/2	22453.16	1.11			15/2	24634.79	1.07
	-	11/2	22463.47	1.14:	$4f^3 5d6p?$		11/2	24720.82	1.03
		15/2	22498.81	1.02			15/2	24754.55	1.07
		9/ ₂	22509.40	1.105	$4f^3 5d6p$?	6K?	11/2	24821.53	0.96
		$\frac{7}{2}$	22566.39	1.030	1		11/2	24906.70	1.07
		$\frac{9}{2}$			$4f^3 5d6p$?		11/2	25006.96	1.030
			22694.60	1.03	$4f^3 5d6p?$		11/2	25097.82	1.01
		$\frac{17}{2}$	22700.89	1.175	F.		11/2	25279.18	1.10
		13/ ₂	22725.88	1.14	$4f^3 5d6p$?	4L?	$\frac{15}{2}$	25321.60	1.10
		11/2	22742.62	1 1 1 0	$4f^3 5d6p?$	п.	$\frac{11}{2}$	25333.72	0.91
		9/2	22761.90	1.110	, susp.		/2	40000.14	0.31

Pr I, Even Parity—Continued

Pr I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		13/2	25357.39	1.01			15/2	26932.88	
		13/2	25454.41	1.040			15/2	26998.57	1.07:
		9/2	25473.75	0.915			11/2	27153.94	0.96
$f^3 5d6p$?	eL?	13/2	25498.90	0.975	$4f^3 5d6p$		17/2	27201.91	
		13/2	25587.92	1.15	$4f^3 5d6p$		13/2	27213.98	
$f^3 5d6p$?		13/2	25608.77	1.050	$4f^3 5d6p?$		19/2?	27404.55	
•		17/2	25664.75		$4f^3 5d6p?$		17/2?	27523.18	
$f^3 5d6p$?	4M?	¹⁵ / ₂	25781.55	0.97			15/2	27620.01	1.02
4f ³ 5d6p?	6K?	13/2	25840.18	1.04			11/2	27634.52	0.94
, , , , , , , , , , , , , , , , , , ,		¹⁵ / ₂	25861.92	0.98	$4f^3 5d6p?$		21/2?	27634.53	
		13/2	25962.72	1.15	·		13/2	27721.26	0.96
		13/2	26107.27	1.040	4 60 7 10 9		17/2	27784.56	1.11
		13/2	26123.37	1.10	$4f^3 5d6p?$		11/2	27869.73	1.11
		13/2	26258.65	1.08			11/2	28054.35	1.060
		13/2	26297.91				11/2		0.98
		13/2	26352.84	0.99			15/2	28149.78 28378.49	1.12
		11/2	26357.24	1.04			11/2	28560.68	0.97
		9/2	26392.39	1.035					0.97
$4f^3 5d6p$?	eL?	¹⁵ / ₂	26410.25	1.12			15/2	28906.27	1.10
$4f^3 5d6p?$	6K?	13/2	26455.31	1.04	4.02 5 109		13/ ₂ 21/ ₂ ?	28917.29 28964.07	1.10
<i>i</i> ,		9/2	26528.81	0.83	$4f^3 5d6p?$		21/2?	28904.07	
		17/2	26565.32	1.13:	$4f^3 5d6p?$				
		15/2	26654.48	1.02	4 (2 7 10 0		17/ ₂ 19/ ₂ ?	30010.53	
4f ³ 5d6p?		15/2	26710.33		$4f^3 5d6p?$		10/2!	31172.71	
$4f^3 5d6p$?	4K?	13/2	26715.43	0.97					
r		11/2	26784.33	0.89	Pr II (4I9/2)681/2 (9/2,1/2)4	Limit		44070	
		11/2	26844.01						

(Ce I sequence; 58 electrons)

Z = 59

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{3}(^4I_{9/2}^{\circ})6s$ $(^{9}\!\!2,^{1}\!\!/_2)_4^{\circ}$

Ionization energy 85100± 600 cm⁻¹

 $10.55 \pm 0.08 \text{ eV}$

Identified odd configurations $4f^36s$, $4f^35d$, $4f^25d6p$?

Identified even configurations $4f^25d^2$, $4f^25d6s$, $4f^36p$

In their 1941 paper Rosen, Harrison, and McNally noted the difficulty in analyzing the Pr spectra, "both because of the complexity of this rare earth atom, and because many of its lines show hyperfine structure difficult to measure." Their successful analysis of Pr II was helped greatly by Zeeman-effect data obtained at magnetic fields up to 9.5 teslas (95000 gauss). They gave 74 levels, including all the low odd levels of $4f^3(^4I^\circ)6s$ and of the $4f^3(^4I^\circ)5d^5L^\circ$ and $^5K^\circ$ terms. A number of the upper even levels were assigned to $4f^36p$. Schuurmans' [1946] independent analysis also yielded the low odd terms mentioned above.

Rosen at al. list more than 300 classified lines of Pr II (3650-7100 Å), with Zeeman data for about half of them. The wavelengths were taken from the M.I.T. tables [Harrison, 1969], which have 2708 lines from the arc and spark spectra of Pr. The other main line lists are described in the preceding text for Pr I. About 13000 of the lines in an unpublished NBS-Orsay list are believed to belong to Pr II.

The levels here are mainly from Blaise, Verges, Wyart, Camus, and Zalubas [1973], who extended the analysis to include about 200 levels. Blaise and Ginibre [1976] have supplied a number of additional levels from their more recent work on this spectrum.

The data of Rosen et al., Blaise et al., and Blaise and Ginibre were used in compiling the g values, with many of the values being averages of values from the first two sources. The accuracy is usually limited by hyperfine structure; the most poorly determined g values are followed by colons. Values derived from uncertain reductions of Zeeman patterns are indicated by question marks.

Wyart, Blaise, and Camus [1974] calculated $(4f^36s+4f^35d)$ for Pr II, and the percentages for the $4f^35d$ levels are from their unpublished eigenvectors [1975]. The pairing of the eight $4f^3(^4I^\circ)6s$ levels into four J_1j -coupling terms was first noted by Rosen et al.; we have arranged the levels accordingly and listed the corresponding percentages from an unpublished calculation of $4f^36s$ [Sugar and Hagan, 1971]. The leading percentages in LS coupling from this calculation are also given, following the word "or." The two separate calculations we have used for $4f^36s$ and $4f^35d$ (only one of which includes the configuration interaction) are not very inconsistent, because the configuration interaction is relatively small.

Blaise et al. [1973] have shown that the lowest even levels belong to the $(4f^25d^2+4f^25d6s)$ group, but a detailed interpretation with assignments to calculated eigenvectors has not yet been made. Ginibre [1975] made a preliminary calculation $4f^36p$ without configuration interaction; the percentages for some of the higher even levels are from her results. Most of the even levels are unassigned or have only tentative assignments, pending more complete calculations and interpretation.

White's [1929] measurements of the hyperfine structures of 173 Pr II lines enabled him to deduce a nuclear spin of $\frac{5}{2}$ and the occurrence of a single 6s electron in a low configuration. Rosen et al. made some use of White's data in their analysis, and most of the subsequent work on hyperfine structure in Pr II has dealt with transitions to the $4f^3(^4I^\circ)$ 6s levels. The hyperfine patterns of a much larger number of Pr II lines could be resolved and conveniently recorded with modern spectroscopic techniques; such data would very likely prove highly useful in obtaining a more complete analysis and interpretation of this spectrum.

Sugar and Reader derived the quoted ionization energy.

References

Belyanin, V. B., Opt. Spektrosk. 4, 264 (1958). CL W Hfs

Blaise, J., and Ginibre, A., unpublished material (1976). EL ND ZE

Blaise, J., Verges, J., Wyart, J. F., Camus, P., and Zalubas, R., unpublished material (1973). EL ZE

Brix, P., Phys. Rev. 89, 1245 (1953). Hfs

Ginibre, A., unpublished material (1975). PT

Harrison, G. R., M.I.T. Wavelength Tables, 2d Edition, 429 pp. (M.I.T. Press, Cambridge, Mass., 1969). W

King, A. S., Astrophys. J. 68, 194 (1928). W

Murakawa, K., J. Phys. Soc. Japan 15, 2306 (1960). Hfs PT

Rosen, N., Harrison, G. R., and McNally, J. R., Jr., Phys. Rev. 60, 722 (1941). EL CL W ZE Hfs

Schuurmans, P., Physica (Utrecht) 11, 419 (1946). EL

Sugar, J., and Hagan, L., unpublished material (1971). PT

Sugar, J., and Reader, J., J. Opt. Soc. Am. 55, 1286 (1965). IP

White, H. E., Phys. Rev. 34, 1397 (1929). W Hfs

Wyart, J. F., Blaise, J., and Camus, P., Phys. Scr. 9, 325 (1974). PT

Wyart, J. F., Blaise, J., and Camus, P., unpublished material (1975). PT

[January 1977]

Pr II

Configuration	Term	J	Level (cm ⁻¹)	g			Lead	ling percentages
100/4T0 NG	(9/2,1/2)°	4	0.00	0.604	97	or	97	(4]°) 5]°
$4f^{3(4}I_{9/2}^{\circ})6s_{1/2}$	(3/2,-/2)	5	441.95	0.875	90	or	58	
	(11/2,1/2)°	6	1649.01	1.064	94	or	77	(4I°) 5I°
$4f^{3}(^{4}I_{11/2}^{\circ})6s_{1/2}$	(/2, /2)	5	1743.72	0.860	91	or	59	(4I°) 3I°
$4f^{3}(^{4}I_{13/2}^{\circ})6s_{1/2}$	(13/2,1/2)°	7	2998.36	1.177	98	or	90	(4I°) 5I°
4/ 3(*113/2)081/2	(12, 12)	6	3403.21	1.037	95	or	77	(4I°) 3I°
4f³(4I°)5d	5L°	6	3893.46	0.726	94		3	(2H°2) 3K°
4) (1)00		7	5108.40	0.908	95		1	(2H°2) 3K°
		8	6417.83	1.05	97		1	(4I°) 5K° (4I°) 5K°
		9	7805.61	1.12	98		1	(⁴ 1′) ³ K (² K°) ³ M°
		10	9255.14	1.20	99		1	(2K) 9W
4 CO (4TO) F 1	5 K °	5	4097.60	0.686	90		6	(4I°)6s 3I°
$4f^3(^4I^\circ)5d$	-K	$\frac{3}{6}$	5226.52	0.911	95		2	(4I°) 3I°
		7	6413.93	1.05	96		1	(4I°) 5L°
		8	7659.76	1.15	96		1	$(^4\mathrm{I}^\circ)~^5\mathrm{L}^\circ$
		$\overset{\circ}{9}$	8958.49	1.220	96		1	(4I°) 3L°
$4f^{3}(^{4}I_{15/2}^{\circ})6s_{1/2}$	(15/2,1/2)°	8	4437.15	1.250	99	or	99	(4I°) 5I°
4) *(*115/2)081/2	(12, 12)	7	5079.35	1.143	97	or	89	(4I°) 3I°
$4f^{2}(^{3}\text{H})5d^{2}(^{3}\text{F})$	5℃	6	5854.61	0.71				
4f ² (³ H)5d ² (³ F)?	5 I ?	4	7227.99	0.62				
$4f^{3(4}I^{\circ})5d$	зI°	5	7438.23	0.880	59		11	(4I°) 5I°
4/ *(-1)50		6	8465.04	1.035	47		19	(4I°) ⁵ I°
$4f^3(^4I^\circ)5d$	5 I °	4	7446.43	0.631	89		8	(4I°) 3H°
4) -(-1)00		5	8489.87	0.93	83		8	
		6	9646.67	1.076	78		8	
		7	11005.57	1.152	49		28	(4I°) 3I°
		8	11611.05	1.234	87		9	(4I°) 3K°
4f³(4I°)5d	5H°	3	7744.27	0.52	73		12	
4) (1)0h		4	8099.72	0.830	40		35	
		5	9378.63	1.05	55		13	
		6	10729.75	1.11	50		23	(4I°) 3I°
		7	12243.49	1.18	41		24	(4I°) 3I°
$4f^2 5d6s?$	5 <u>I</u>	4	7832.43	0.61				

Pr II—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
$4f^2(^3\text{H})5d6s(^3\text{D})?$		5	7888.50	0.79		
$4f^2(^3\text{H})5d6s(^3\text{D})$?	5K?	6	8140.67	0.95		
$4f^2 5d6s$?		5	8197.80	0.78		
$4f^{2}(^{3}\text{H})5d6s(^{3}\text{D})$?	5K?	5	8379.44	0.66?		
$4f^{2}(^{3}\text{H})5d^{2}(^{3}\text{F})$?	⁵ I?	5	8477.84	0.96:		
$4f^3(^4\mathrm{I}^\circ)5d$	5G°	2 3	8965.63 9045.00	0.37 0.83	92 62	3 (4G°) 5G° 22 (4I°) 3G°
		4 5	10116.63 11447.73	1.07 1.20	67	10 ($^4\mathrm{I}^\circ$) $^3\mathrm{G}^\circ$
		6	12826.94	1.285	63 64	18 (4I°) ³ H° 17 (4I°) ³ H°
$4f^3(^4I^\circ)5d$		4	9128.67	0.91	39 ⁵ H°	23 (⁴ I°) ³ H°
$4f^2 5d6s?$		6	9211.93			
		4	9335.75	0.68?		
		5	9515.97			
$4f^{2(3}\text{H})5d^{2(3}\text{F})$?	⁵ I?	6	9532.52	1.03:		
		6	9670.81			
$4f^2 5d6s$?		7	9694.73			
$4f^2 5d6s$?		4	9767.98	0.85		
$4f^3(^4I^\circ)5d$		7	10030.31	1.14	44 ⁵ I°	32 (⁴ I°) ³ I°
		6	10137.91			
$4f^3(^4I^\circ)5d$	3K°	$\frac{6}{7}$	10163.47	0.930	55	13 (⁴ I°) ⁵ H°
		7 8	11794.38 13373.61	1.12 1.14	46 67	32 (⁴ I°) ⁵ H° 13 (² H°2) ³ K°
		5	10466.42			
$4f^3(^4I^\circ)5d$		5	10535.83	1.11	24 ³ H°	23 (⁴ I°) ⁵ H°
$4f^2 5d6s$?		7	10650.22			
		5	10801.81	0.97		
$4f^2 5d^2$?		7	10987.23			
		4	11054.73			
		6	11088.79			
		7	11253.45			
		6	11283.14			
$4f^2 5d6s?$		8	11310.15			
$4f^3(^4I^\circ)5d$	зГ∘	7 8 9	11418.52 13029.09 14705.96	0.897 1.013 1.11	80 81 81	10 (2K°) 3L° 11 11
$4f^3(^4I^\circ)5d$		6	11749.49	1.215	31 ³ H°	25 (4I°) ⁵ G°

Pr II—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
$4f^2 5d^2$?		5	11927.02		
		4,5	11943.32		
$4f^2 5d6s?$		6	12076.31		
		7	12237.15		
$4f^2 5d6s?$		8	12545.18		
		7	12916.25		
$4f^2 5d^2$?		8	13021.35		
		6	13084.24		
$4f^2 5d6s$?		7	13122.57		
		6	13216.22		
$4f^{2}(^{3}\text{H})5d6s(^{3}\text{D})$?	5H?	3	13257.21	0.63	
$4f^2 5d6s$?		6	13365.03		
		4	13457.10		
$4f^2 5d^2$?		6	13472.64	1.07	
$4f^2 5d6s?$		9	13639.13		
		6	13776.80		
		7,8	14035.48		
		4,5	14095.02		
4f 2 5d6s?		4	14102.29		
		4,5	14167.90		
		7,8	14198.61		
		7	14307.12		
		9	14330.52		
		6	14416.81		
		5	14607.64		
		5,6	14745.85	1.04	
$4f^2 5d6s$?		8	14791.81		
		7	14810.97		
		5	14908.91		
		8	15087.16		
		5	15166.04		
4f ² 5d6s?		6	16243.01		
4f ² 5d6s?		4	16967.72	0.865	
		5	17676.04	0.945	
		7	18077.25	1.03	
		4	18470.25		
		6	18835.77	1.04	
4 C		5	18910.11	0.95	
4f ² 5d6s?		4	19567.48	1.04	
4 C 2 T 10 9		8	19721.75		
4f ² 5d6s?		4	19845.37	0.988	
		6	19882.14		
		6	20114.95		
	1	7	20490.61	1.13	

Pr II—Continued

Configuration	Term	j	Level (cm ⁻¹)	g		Leading percentages
		6	20554.30			
		5,6	21061.01			
		5,6	21131.26			
$4f^2 5d6s$?		4	21462.00			
4j - 900s;		6	21494.75			
$4f^2 5d6s$?		5	21676.12	1.000		
4j - 300s:		6	21781.06			
		4	21971.46	0.84		
		5	22040.05	0.998		
		8	22184.27			
		5	22317.07	1.18		
		6	22472.04			
		5	22571.48	1.166		
		7	22660.77	1.03		
	577	E	22675.44	0.830		
$4f^{3}(^{4}I^{\circ})6p$	5K	5 6	24115.50	0.959	88	7 (4I°) 3I
		7 8 9	25569.19 27128.00	1.07 1.15	91 93	$ 5 (^{4}I^{\circ}) ^{5}I \\ 5 (^{4}I^{\circ}) ^{5}I $
		9	28816.25	1.13	99	$1 ({}^{2}K^{\circ}) {}^{3}L$
		4	22686.69			
		6	22718.35	1.08		
		5	22885.59	0.997		
		6	23141.44	1.061		
		5	23261.36	0.920		
		6	23505.46			
		4	23527.90	1.025		
		5	23616.86	1.01?		
		5	23652.25	0.98		
				0.67	64	27 (4I°) ³ H
$4f^3(^4I^\circ)6p$	5]	$\begin{vmatrix} 4 \\ 5 \end{vmatrix}$	23660.20 24716.04	0.67	74	14 (4I°) 3H
		6 7	25656.69*	1.046	60	27 (4I°) 3K
		8	26860.95 28201.95	1.119 1.160	65	27 (4I°) 3K
		5	23712.63			
		7	23898.36	1.104		
		8	23970.47	1.14		
	ļ	6	23977.83	1.156		
		6	24393.73	0.97		
4£3/4T°\£9		4	24754.95	0.908		
$4f^{3}(^{4}I^{\circ})6p$?		7	24818.54	1.14		
		6	24835.03	1.01		
		7	25248.69	1.07		
		4	25467.47	0.90		
4.00/470\0.5		5	25499.52	0.990	3.7	
$4f^{3(4\tilde{1}^{\circ})}6p?$		4	25545.04			

Pr II—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
4f ³⁽⁴ I°)6p	5H	3	25578.49	0.55	97	2 (2H°2) 3G
		6	25610.20	1.118		
		3	25762.81	0.86		
		4	25814.44	0.95		
		5	25842.41	1.000		
		5	26062.38			
		8	26139.77			
$4f^{3}(^{4}I^{\circ})6p$?		5	26146.01	1.05		
$4f^{3}(^{4}I^{\circ})6p$?		4	26226.56	0.91		
$4f^{3}(^{4}I^{\circ})6p$?		6	26398.52	0.990		
		7	26445.11	1.065		
		6	26524.02	1.02		
		5	26640.86	1.05		
		5	26707.31	1.07		
$4f^{3}(^{4}I^{\circ})6p$?		6	26961.96	1.076		•
		5	26973.49	1.11		
$4f^{3}(^{4}I^{\circ})6p?$		5	27198.24	1.07		
		5	27380.45	1.06		
$4f^{3}(^{4}I^{\circ})6p$?		6	27604.94	1.13		
		8	27781.69	1.075		
$4f^{3}(^{4}I^{\circ})6p?$		7	28009.80	1.12		
		6	28034.08			
		7	28172.96	1.14:		
$4f^3(^4I^\circ)6p$	зI	6	28508.79	1.11	51	37 (⁴ I°) ⁵ H
$4f^{3}(^{4}I^{\circ})6p$?	313	7	28577.79	1.19		
$4f^{3}(^{4}I^{\circ})6p$?		8	29723.97	1.15		
$4f^{3}(^{4}I^{\circ})6p?$	5H?	7	30018.10	1.215		
$4f^{2}(^{3}\text{H})5d6p?$	5K°?	5	30844.63	0.74?		
$4f^2 5d6p$?		4	31775.93	0.78		
4f ² 5d6p?		5	32590.69	0.69:		
$4f^2 5d6p$?		5	33277.53	0.91		
$4f^2 5d6p?$		5	33387.62	0.93		
$4f^2 5d6p?$		4	33440.49	0.83		
4.02 ° 309		6	33616.69	0.98		
4f ² 5d6p?		5	33674.55	0.97		
$4f^2 5d6p$?		4	33981.23			
4f ² 5d6p?		6	34031.30	0.96		•
$4f^2 5d6p?$		4	34322.69	0.80		
		6	35133.62	0.00		
		5	35220.91	0.89		
		5	35497.57			
Pr III (4I%/2)	Limit		85100			

(La I sequence; 57 electrons)

Z = 59

Ground state (1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6) 4f^3 ^4 {\rm I}^{\circ}_{9/2}

Ionization energy 174407± 20 cm⁻¹

 21.624 ± 0.003 eV

Identified odd configurations

 $4f^3$, $4f^26p$, $4f^25f$, $4f5d^2$, 4f5d6s

Identified even configurations

 $4f^25d$, $4f^26d$, $4f^26s$, $4f^27s$, $4f^28s$

The levels are from Sugar's analysis [1963, 1969], with a few additions and revisions [Crosswhite, Crosswhite, and Judd, 1968; Sugar, 1974; Wyart, Blaise, and Camus, 1974]. There are more than 3300 classified lines in the range 821 Å to 10717 Å. About 4400 lines are included in Sugar's list [1974] for the range above 2107 Å, and his 1969 paper has a table of 2948 lines in the range below this wavelength.

Rajnak's eigenvectors were used to obtain LS percentages for the $4f^3$ configuration. The compositions for $(4f^26p+4f5d^2+4f5d6s)$, $4f^25f$, and $4f^26d$ are from Sugar's calculations [1969], and those for $4f^26s$ and $4f^25d$ are from Goldschmidt's thesis [1968]. The second component given in the last column is from the same eigenvector as that used for the designation, except for the levels of the $4f^25f$ configuration. Although J_1l coupling is the preferred scheme for this configuration, Sugar found the LS character of the levels useful in making his first identifications. Hence the leading LS component for each $4f^25f$ level is listed instead of a second component from the J_1l scheme.

The strong configuration interactions within the $(4f^26p+4f5d^2+4f5d6s)$ group [Sugar, 1969; Pasternak, 1970] are analogous to the interactions within Ce III $(4f6p+5d^2+5d6s)$ found by Goldschmidt.

The extent of the observed structure for Pr III $4f^3$ (39 of the 41 expected levels have been found) and the relative freedom from perturbation by other low configurations have made possible the evaluation of other deviations from the intermediate-coupling approximation; a number of "effective interactions" and additional magnetic interactions applicable to f^N configurations were evaluated by fitting the observed $4f^3$ levels [Rajnak, 1965; Crosswhite et al., 1968; Goldschmidt et al., 1968; Pasternak, 1970].

The energy parameters derived by Feneuille and Pelletier-Allard [1968] for the Pr III $(4f^25d+4f^26s)$ and $4f^26p$ configurations include effective interactions corresponding to "all two-particle operators, acting only upon the orbit of the electrons." Wyart et al. [1974] calculated $(4f^25d+4f^26s)$ with improved values for the parameters, and found two missing $4f^2(^3F)5d$ 4D levels. These levels also agree well with the predictions of Goldschmidt [1968].

Judd [1968] cited the regularity of the observed intervals within each of several low Pr III $4f^25d$ quartets as an example of a theorem he derived. The Landé rule is well obeyed by these intervals despite overlapping of the terms. The smallness of the interactions between the terms is due to the approximate equality of the spin-orbit parameters $\zeta(4f)$ and $\zeta(5d)$. This equality also accounts for the regularity of the low lying $4f5d^2$ quartets [Sugar, 1969].

Reader and Sugar [1965] were able to derive a value for the nuclear magnetic moment of 141 Pr from the wide hyperfine structure of transitions to $4f^26s$ levels.

Sugar obtained a value of 174284 cm⁻¹ for the Pr IV $4f^2$ ³H₄ limit by fitting a Ritz formula to the $4f^2$ (³H)6s, 7s, and 8s levels. Sugar and Reader [1973] derived the quoted limit by applying a correction known to be needed in this region of the periodic table.

References

Crosswhite, H., Crosswhite, H. M., and Judd, B. R., Phys. Rev. 174, 89 (1968). EL PT Feneuille, S., and Pelletier-Allard, N., Physica (Utrecht) 40, 347 (1968). PT Goldschmidt, Z. B., Thesis, Hebrew Univ. Jerusalem, Israel, 487 pp. (1968). ND PT Goldschmidt, Z. B., Pasternak, A., and Goldschmidt, Z. H., Phys. Lett. 28A, 265 (1968). PT Judd, B. R., J. Opt. Soc. Am. 58, 1311 (1968). PT Pasternak, A., Thesis, Hebrew Univ. Jerusalem, Israel, 219 pp. (1970). PT

Rajnak, K., J. Opt. Soc. Am. 55, 126 (1965). ND PT

Reader, J., and Sugar, J., Phys. Rev. 137, B784 (1965). CL Hfs

Spector, N., J. Opt. Soc. Am. 54, 1359 (1964). ND PT

Sugar, J., Johns Hopkins Spectroscopic Rep. No. 22, 87 pp. (1961). EL CL W IP PT

Sugar, J., J. Opt. Soc. Am. 53, 831 (1963). EL Hfs IP PT

Sugar, J., J. Res. Nat. Bur. Stand. (U.S.) 73A, 333 (1969). EL ND CL W IP PT

Sugar, J., J. Res. Nat. Bur. Stand. (U.S.) 78A, 555 (1974). EL CL W

Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP

Trees, R. E., J. Opt. Soc. Am. 54, 651 (1964). PT Wyart, J. F., Blaise, J., and Camus, P., Phys. Scr. 9, 325 (1974). EL ND CL PT

[July 1976]

Pr III, Odd Parity

Configuration	Term	J	Level (cm ⁻¹)		Lead	ling per	centages
f ³	4I°	9/2	0.00	97		9	²H°2
,	_	11/2	1398.34	99		1	
		13/2	2893.14	100		•	
		15/2	4453.76	99		1	² K°
t3	4F°	3/2	9370.66	95		5	² D°1
		5/2	10138.18	98		2	$^{2}\mathrm{D}^{\circ}1$
		7/2	10859.06	93		4	² G°1
		9/2	11761.69	79		15	² H°2
r3	²H°2	9/2	10032.92	60		10	² G°1
		11/2	12494.63	82		13	² H°1
f^3	4S°	3/2	10950.24	95		4	² P°
f^3		7/2	13887.60	41	²G°1	29	² G°2
fз	4G°	5/2	14187.35	99			
		7/2	15443.48	75		15	² G°1
		9/2	15705.13	55		17	² G°1
		11/2	17409.58	95		3	² H°1
r3	2K°	13/2	16089.14	99		1	² I°
		15/2	17642.06	96		3	$^2\mathrm{L}^\circ$
f 3		9/2	16763.98	43	4G°	30	² G°1
f ³	² D°1	3/2	17095.63	50		40	² P°
		5/2	19046.09	98		2	⁴ F°
f^3	²P°	1/2	18693.65	95		5	⁴ D°
		3/2	20856.86	53		40	² D°1
r3	4D°	3/2	23091.70	82		15	² D°2
		5/2	23245.99	81		18	$^{2}\mathrm{D}^{\circ}2$
		1/2	23465.43	95		5	² P°
		7/2	24886.51	100		3	_
f3	² I°	11/2	24357.98	84		14	²H°1
		13/2	25391.75	99		1	²K°
f^3	² L°	15/2	25244.61	97		3	²K°
		17/2	26447.88	100		-	
f^3	²D°2	3/2	26921.49	80		16	4D°
		5/2	27597.13	77		19	
f³	²H°1	9/2	26979.66	87		11	²H°2
		11/2	28101.77	70		16	² I°
r3	²F°2	7/2	31787.93	82		17	² F°1
		5/2		73		21	

Pr III, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)		Lead	ing perce	ntages
1.09	²G°2	9/2	39225.60	59		41	² G°1
$4f^3$	-G 2	7/2	39940.72	59		40	
4.63	² F°1	7/2	53092.80	82		17	${}^{2}F^{\circ}2$
$4f^3$	- F 1	5/2	00000.00	77		23	
4.09/9II \C	(4, ¹ / ₂)°	7/2	58158.08	82		6	$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$ $^{4}\mathrm{H}^{\circ}$
$4f^2(^3\mathrm{H_4})6p_{1/2}$	(4, 72)	9/2	58174.15	95			
4 CO/STI \ \ C	$(5,^{1}/_{2})^{\circ}$	9/2	60166.20	79		7	$(^{3}\text{H}_{4}) \ (4,^{3}/_{2})^{\circ}$
$4f^2(^3\mathrm{H}_5)6p_{1/2}$	(3,-72)	11/2	60419.73	94			
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$		7/2	60520.32	43	4H°	33	(^3F) $^2G^\circ$
1 CO (OTT) C	$(4,^3/_2)^{\circ}$	9/2	61357.04	53		19	$4f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{F})$ $^{4}\text{I}^{\circ}$
$4f^2(^3\text{H}_4)6p_{3/2}$	(4, 72)	7/2	61605.66	80		7	$4f(^{2}F^{\circ})5d^{2}(^{3}F) ^{2}G^{\circ}$
		5/2	61717.98	72		18	$({}^{3}F_{2}) (2, {}^{1}/{}_{2})^{\circ}$
		11/2	62240.83	40		35	$(^{3}\text{H}_{6}) \ (6,^{1}/_{2})^{\circ}$
$4f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{F})$	4I°	9/2	62062.63	44		32	$4f^{2}(^{3}\text{H}_{4})6p_{3/2}$
4) (1)00 (1)		$^{11}/_{2}$	63816.91	50		24 5	$4f^2(^3\text{H}_5)6p_{3/2}$ $(^3\text{F})^4\text{H}^\circ$
		13/2	65967.15	86		5	(1) 11
		15/2	68305.1	95			(077) 4770
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$		9/2	62535.62	33	² G°	27	(3F) 4H°
4 CO (SII \ C	$(6,^{1}/_{2})^{\circ}$	11/2	62558.67	55		37	$(^{3}\text{H}_{4}) \ (4,^{3}/_{2})^{\circ}$
$4f^2(^3{ m H_6})6p_{1/2}$	(0, 72)	$^{13}_{/2}$	62678.70	89		6	$(^{3}\text{H}_{6}) \ (6,^{3}/_{2})^{\circ}$
$4f^2(^3\mathrm{F}_2)6p_{1/2}$	$(2, 1/2)^{\circ}$	3/2	63221.28	91			(077) (4.94) 0
4) (12)0p1/2	(=, 1=/	$^{5/_{2}}$	63576.27	75		20	$(^{3}\text{H}_{4}) \ (4,^{3}/_{2})^{\circ}$
$4f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{F})$	4H°	7/2	63232.14	42		20	
4) (1)00 (1)		$^{9}/_{2}$	64235.61	46		24	
		$\frac{11}{2}$ $\frac{13}{2}$	64865.15 66735.88	73 53		$\frac{15}{32}$	
	-	/2	00755.00				4f(2F°)5d2(3F) 4H°
$4f^2(^3{ m H}_5)6p_{3/2}$	$(5,^3/_2)^{\circ}$	9/2	63593.35	67		11 34	
•		$\frac{7}{2}$ $\frac{13}{2}$	63768.66 64215.45	47 86		8	
				42	4 I °	39	$4f^2(^3\text{H}_5)6p_{3/2}$
$4f(^{2}F^{\circ})5d^{2}(^{3}F)$		11/2	64150.94	42	1		,
$4f^2(^3\mathrm{F}_3)6p_{1/2}$	$(3,^{1}/_{2})^{\circ}$	5/2	64401.03	75		7 39	
· · · ·		7/2	65295.90	45			
$4f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{F})$		5/2	64817.53	31	${}^{2}\mathrm{F}^{\circ}$	27	$^{\prime}$ (3 F) 4 G $^{\circ}$
4 C9/2TI \C.:.	$(4,^{1}/_{2})^{\circ}$	9/2	64857.15	57		24	$(^{1}G_{4}) (4,^{1}/_{2})^{\circ}$
$4f^2(^3\mathrm{F_4})6p_{1/2}$	(4, 72)	7/2	64979.55	46		17	7
10 (OT)	4G°	5/2	65909.44	47		18	3 (3F) 4D°
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$	4 G	7/2	66852.87	47		18	
		9/2	68544.19	50		38	
		11/2	69978.08	62		1	1 (¹ D) ² H°
$4f^2(^3{ m H}_6)6p_{3/2}$	$(6,^3/2)^{\circ}$	11/2	65922.42	88			4 4f(2F°)5d2(3F) 4H°
4) (110)0po/2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	13/2	66148.40	51		2	$4f(^{2}F^{\circ})5d^{2}(^{3}F) ^{4}H^{\circ}$
		15/2	66301.35	96 60		1	$2 ({}^{1}G_{4}) (4, {}^{1}/_{2})^{\circ}$
		9/2	67049.18				
$4f(^{2}{\rm F}^{\circ})5d^{2}(^{3}{\rm F})$		7/2	65935.25	22	$^2\mathrm{F}^\circ$	1	•
$4f^2(^3\mathrm{F}_2)6p_{3/2}$	$(2,^{3}/_{2})^{\circ}$	1/2	66324.84	81			4 $4f(^{2}F^{\circ})5d^{2}(^{3}F) ^{2}S^{\circ}$
4j =(~r 2)0p3/2	(=, /2)	3/2	66867.09	76			7 $4f(^{2}F^{\circ})5d^{2}(^{3}F) ^{4}F^{\circ}$ 7 $4f(^{2}F^{\circ})5d^{2}(^{3}F) ^{4}G^{\circ}$
		7/2	67240.35	58			$4f(^{2}F^{\circ})5d^{2}(^{3}F) \ ^{4}G^{\circ}$ $4f(^{2}F^{\circ})5d^{2}(^{3}F) \ ^{4}F^{\circ}$
		5/2	67395.32	44	1	2	2 4) (1) 00 (1) T

Pr III, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)		Lead	ling per	centages
$4f(^{2}F^{\circ})5d^{2}(^{3}F)$	4F°	3/2		76		10	$4f^2(^3\mathbf{F_2})6p_{3/2}$
		5/2	66681.14	52		30	$4f^2(^3F_2)6p_{3/2}$
		7/ ₂	67679.21	32		32	$4f^2(^1G_4)6p_{1/2}$
		9/2	69686.26	65		8	$4f^2(^3\mathbf{F_4})6p_{1/2}$
$4f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{F})$		5/2	66943.04	24	⁴ D°	14	$4f^2(^3\mathbf{F_2})6p_{3/2}$
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{1}\mathrm{D})$		9/2	67398.79	29	²H°	20	(3F) 2H°
$4f^2(^3\mathrm{F}_3)6p_{3/2}$	(3, ³ / ₂)°	9/ ₂	67870.76	48		26	4f(2F°)5d2(3F) 4G°
		3/ ₂ 7/ ₂	67965.47 68492.43	91			4.C/9T39\E 39/9T3\ 4T39
		5/ ₂	68978.55	37 41		17 35	$4f(^{2}F^{\circ})5d^{2}(^{3}F) ^{4}F^{\circ}$ $(^{3}F_{4}) (4,^{3}/_{2})^{\circ}$
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$	2]°	11/2	68238.12	51		9.0	(¹G) ²I°
-J (- /ow (- /		13/2	70381.48	53		36 29	(-G) -1
$4f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{F})$		7/2	68331.73	22	4F°	21	$4f^2(^3\mathrm{F}_3)6p_{3/2}$
$4f^2({}^1\mathrm{G_4})6p_{1/2}$		9/2	68374.54	41	$(4,^1/_2)^{\circ}$	22	$(^3F_4) (4,^1/_2)^{\circ}$
$4f^2(^3\mathbf{F_4})6p_{3/2}$	(4, ³ / ₂)°	11/2	68525.62	53		20	(¹G ₄) (4,³/ ₂)°
$4f^2(^3\mathbf{F_4})6p_{3/2}$		7/2	68801.67	29	$(4,^3/_2)^{\circ}$	23	(1G ₄) (4,3/2)°
$4f(^{2}{ m F}^{\circ})5d^{2}(^{3}{ m F})$		7/2	68987.07	19	⁴ D°	15	(3P) 4G°
$4f^2(^3\mathrm{F_4})6p_{3/2}$		9/2	69138.28	36	$(4,^3/_2)^{\circ}$	32	(1G ₄) (4,3/ ₂)°
$f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$		11/2	69408.51	37	²H°	25	(¹D) 2G°
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$		7/2	69431.00	18	⁴ D°	17	(^3P) $^4G^\circ$
$f({}^{2}{ m F}^{\circ})5d^{2}({}^{3}{ m P})$	4G°	5/2	69681.6	83		6	(3F) 4P°
		9/2	71021.1	43		17	(^3P) $^2G^\circ$
		7/2	71385.6	58		24	(1D) 2G°
		11/2	73609.1	76		9	(3F) 2H°
$f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{P})$		3/2	71501.0	32	² D°	25	(3F) 4S°
$f^2(^1G_4)6p_{3/2}$	$(4,^3/_2)^{\circ}$	⁵ / ₂	71536.38	61		28	$(^{3}F_{4}) (4,^{3}/_{2})^{\circ}$
		9/ ₂	71592.34	51		37	
		$\frac{11}{2}$	71736.45 71978.52	65 48		29 38	
$f(^2\mathrm{F}^\circ)5d^2(^1\mathrm{D})$		5/ ₂	71994.81	26	² D°	17	(3P) 4D°
f(2F°)5d2(3P)		9/2	73029.9	36	⁴G°	25	(¹G) ²H°
	200				u		
$f(^2F^\circ)5d^2(^1G)$	² G°	7/ ₂ 9/ ₂	73378.42 75762.23	65 38		9 21	(³ P) ² G° (¹ G) ² H°
$f(^{2}\text{F}^{\circ})5d^{2}(^{1}\text{D})$	² G°	9/2	73606.17	42		12	(¹G) ²H°
$f(^{2}F^{\circ})5d^{2}(^{3}P)$		5/2	74105.2	27	⁴ D°	23	(3P) 4F°
$f(^{2}\text{F}^{\circ})5d^{2}(^{3}\text{P})$	4F°	3/2	74463.7	45		26	(3F) 2D°
		5/2		62		12	(3P) 4D°
		7/ ₂ 9/ ₂	75294.0	74 85		7 6	(3P) 4D° (3F) 4F°
$f^2(^1\mathrm{D}_2)6p_{1/2}$	$(2,^{1}/_{2})^{\circ}$	3/2	75409.58	79		8	(³ P ₂) (2, ¹ / ₂)°
J \/- [2/2	\—, 12/	5/2	75614.81	60		10	$4f({}^{2}F^{\circ})5d^{2}({}^{1}D) {}^{2}D^{\circ}$
$f(^2\mathbf{F}^\circ)5d^2(^3\mathbf{F})$		5/2	75560.75	35	² D°	18	$4f^2(^1\mathrm{D}_2)6p_{1/2}$
$f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$		11/2	75640.00	32	²H°	18	(¹D) ²H°

Pr III, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)		Leadi	Leading percentages					
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$		3/2	76892.4	30	² D°	27	(¹D) ²P°				
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{1}\mathrm{G})$	²F°	5/ ₂ 7/ ₂	77822.00 78463.6	70 58		5 20	$^{(3}\mathrm{F})~^{2}\mathrm{F}^{\circ} \ 4f^{2}(^{1}\mathrm{D}_{2})6p_{3/2}$				
$4f^2(^1\mathrm{D_2})6p_{3/2}$	$(2,^3/2)^{\circ}$	1/2	78312.91	68		11	$(^3P_2) \ (2,^3/_2)^\circ$				
		3/2	78889.14	76		8	$(^{3}P_{2}) (2,^{3}/_{2})^{\circ}$				
		5/ ₂ 7/ ₂	79366.65 79395.55	79 66		7 14	$(^{3}P_{2}) (2,^{3}/_{2})^{\circ} 4f (^{2}F^{\circ})5d^{2}(^{1}G) {^{2}F^{\circ}}$				
4£(9E)\F J9(1G)	210						(3F) 2I°				
$4f(^{2}\text{F}^{\circ})5d^{2}(^{1}\text{G})$	-1	11/ ₂ 13/ ₂	78694.57 79136.23	35 51		25 26	(3F) -1				
$4f^2(^3P_1)6p_{1/2}$	$(1,^{1}/_{2})^{\circ}$	1/2	79742.36	79		12	$(^{3}P_{0}) (0,^{1}/_{2})^{\circ}$				
-j (11)0p1/2	(2, 72)	3/2	80164.04	88		5	$(^{1}D_{2}) (2, ^{3}/_{2})^{\circ}$				
$4f^2(^1I_6)6p_{1/2}$	$(6,^{1}/_{2})^{\circ}$	11/2	80360.82	80		6	$4f(^{2}F^{\circ})5d^{2}(^{3}F)$ $^{2}I^{\circ}$				
•		13/2	80988.76	70		12	$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{1}\mathrm{G})$ $^{2}\mathrm{I}^{\circ}$				
$4f^2(^3P_2)6p_{1/2}$	$(2,^{1}/_{2})^{\circ}$	3/2	80897.85	75		7	$(^{1}D_{2}) (2,^{1}/_{2})^{\circ}$				
		5/2	81404.52	83		8					
$4f^2(^3\text{Po})6p_{3/2}$	$(0,^3/_2)^{\circ}$	3/2	82492.4	44		35	$4f(^{2}F^{\circ})5d^{2}(^{1}G) ^{2}D^{\circ}$				
$4f^2(^3P_1)6p_{3/2}$	$(1,^3/2)^{\circ}$	3/2	83025.91	43		23	$(^3P_0) (0, ^3/_2)^{\circ}$				
		1/2		51		35	$(^{3}P_{2}) (2, ^{3}/_{2})^{\circ}$				
		5/2	83426.55	79		10	$4f({}^{2}\mathrm{F}^{\circ})5d^{2}({}^{1}\mathrm{G}) {}^{2}\mathrm{D}^{\circ}$				
$4f^2(^1{ m I}_6)6p_{3/2}$	$(6,^3/_2)^{\circ}$	11/2	83607.32	87		7	$({}^{1}I_{6}) (6, {}^{1}/_{2})^{\circ}$				
		13/2	83703.43	87		11	$({}^{1}I_{6}) (6, {}^{1}/_{2})^{\circ}$				
		9/ ₂ 15/ ₂	84410.63 84992.04	78 98		8	$4f(^{2}\text{F}^{\circ})5d^{2}(^{1}\text{H}) ^{2}\text{H}^{\circ}$				
4f5d(3F°)6s	4F°	3/2	84409.93	62		11	$4f^2(^3\mathrm{P_1})6p_{3/2}$				
1) 00(1)00	_	5/2	04400.00	56		8	$4f({}^{2}F^{\circ})5d^{2}({}^{3}P) {}^{2}F^{\circ}$				
		7/2		70		15	(³ G°) ⁴ G°				
		9/2	88948.6	39		35	$(^3G^\circ)$ $^4G^\circ$				
$4f^2(^3\mathrm{P}_2)6p_{3/2}$	$(2,^3/_2)^{\circ}$	7/2	84430.98	85		9	$(^{1}\mathrm{D_{2}})~(2,^{3}/_{2})^{\circ}$				
		1/2		47		37	$(^{3}P_{1}) (1,^{3}/_{2})^{\circ}$				
		3/2		65		16	$4f({}^{2}\mathrm{F}^{\circ})5d^{2}({}^{1}\mathrm{G}) {}^{2}\mathrm{P}^{\circ}$				
		5/2	85306.10	52		19	$4f({}^{2}\mathrm{F}^{\circ})5d^{2}({}^{1}\mathrm{G}) {}^{2}\mathrm{D}^{\circ}$				
$4f5d(^{3}\mathrm{G}^{\circ})6s$	4G°	5/2		87		7	$(^3F^\circ)$ $^4F^\circ$				
		7/2	87511.6	52		26	(¹G°) ²G°				
		$\frac{9}{2}$ $\frac{11}{2}$	88220.2 90119.8	57 96		35	(3F°) 4F°				
$4f5d(^3\mathrm{H}^\circ)6s$	²H°	9/2	90629.2	79		5	4f(2F°)5d2(1D) 2H°				
4) 50(11)55	11	11/2	93296.5	80		9	(¹H°) ²H°				
4f5d(3G°)6s	² G°	7/2	92441.7	53		21	$(^3\mathrm{D}^\circ)$ $^4\mathrm{D}^\circ$				
-J		9/2	95147.9	77		8	$4f({}^{2}\mathrm{F}^{\circ})5d^{2}({}^{1}\mathrm{D}) {}^{2}\mathrm{G}^{\circ}$				
$4f(^{2}\mathrm{F}^{\circ})5d^{2}(^{1}\mathrm{S})$	2F°	5/2	92554.8	54		13	$4f5d(^{1}\mathrm{F}^{\circ})6s\ ^{2}\mathrm{F}^{\circ}$				
		7/2	93967.4	74		4	$4f5d(^{3}G^{\circ})6s \ ^{2}G^{\circ}$				
$4f5d(^{1}\mathrm{F}^{\circ})6s$	2F°	5/2		50		10	$(^3\mathrm{D}^\circ)~^2\mathrm{D}^\circ$				
		7/2	96830.5	51		23	$(^3F^\circ)$ $^2F^\circ$				
$4f^2(^3\text{H}_4)5f$	² [6]°	11/2	110295.1	83	or	74	$(^3\mathrm{H})$ $^4\mathrm{K}^\circ$				
		13/2	111110.3	87	or	59					
• •	² [4]°	7/2	110333.5	91	or	81	$(^3\mathrm{H})~^4\mathrm{H}^\circ$				
		9/2	110922.5	66	or	70	(^3F) $^4H^\circ$				
"	² [7]°	13/2	110530.9	97	or	89	$(^3\mathrm{H})$ $^4\mathrm{L}^\circ$				
		15/2	111335.1	82	\mathbf{or}	67					

Pr III, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)		Lea	ding pe	rcentages
$4f^2({}^3{ m H}_4)5f$	200	11/		 			
±) - (-114) 5 <i>j</i>	² [5]°	11/ ₂ 9/ ₂	110881.1 111993.0	78 72	or or	41 58	` '
,,	²[2]°	3/2	111268.7	92	or	80	(3H) 4F°
		5/2	111494.8	64	or	59	
"	²[3]°	7/2	111342.8	87	or	40	(3H) 2G°
		5/2	*.	63	or	52	
$4f^2(^3{ m H}_5)5f$	² [5]°	11/2	112643.2	66	or	61	(3H) 4H°
		9/2	113158.8	62		0.	(11) 11
"	²[7]°	13/2	112769.7	51	or	39	(3H) 2I°
		15/2	112896.3	88	or	72	
"	²[8]°	17/2	113023.5	94	or	94	(3H) 4L°
		15/2	113833.9	79	or	76	$(^3\mathrm{H})$ $^2\mathrm{L}^\circ$
"	²[4]°	⁷ / ₂	113291.8	50	or	44	
		9/2	113780.5	66	or	35	(3H) 2H°
,,	²[3]°	5/ ₂ 7/ ₂	113556.8	45	\mathbf{or}	23	(3H) 4D°
,,			113630.9	46	or	51	(3H) 4G°
,,	² [6]°	$\frac{13}{2}$ $\frac{11}{2}$	113600.3 113664.3	49 61	or	43	(3H) 2K° (3H) 4I°
	95030			01	or	67	(*H) *I*
	²[2]°	$\frac{3}{2}$ $\frac{5}{2}$	113825.5 113914.1	93 46	or or	45 38	(³ H) ² D° (³ H) ² F°
$f^2(^3\mathrm{H_6})5f$	2010				OI.	90	
:j -(-116)5j	²[8]°	$\frac{17}{2}$ $\frac{15}{2}$	114725.6 115672.2	95 71	or or	95 57	(³ H) ⁴ K° (³ H) ² K°
,,	²[6]°						
	-[6]	$\frac{13}{2}$ $\frac{11}{2}$	114797.2 115403.3	69 64	or or	48 34	(³ H) ⁴ H° (³ H) ² H°
,,	²[9]°	19/2	114970.7				
	[0]	17/2	116489.8	100 89	or or	100 89	(³ H) ⁴ L° (³ H) ² L°
,,	²[4]°	9/2	115324.3	46	0.34	95	
,,			•	40	or	35	(3H) 4F°
	² [7]°	$\frac{13}{2}$ $\frac{15}{2}$	115408.4 116238.8	64 78	or or	60 79	(³ H) ⁴ I° (³ H) ⁴ I°
,,				10		12	
		7/2	115420.8	36	² [3]° or	35	(3H) 4D°
"	²[5]°	9/2	115499.8	59	or	54	(3H) 2G°
		11/2	115933.2	50	or	41	(3H) 4G°
$f^2(^3F_2)5f$	² [4]°	7/ ₂	115670.0	89	or	82	(3F) 4H°
		9/2	116453.2	52	or	54	(3P) 4H°
$f^{2}(^{3}\mathrm{H_{6}})5f$	²[3]°	5/2	115800.0	48	or	47	(^3H) $^2D^\circ$
"		7/2	116021.8	41	² [3]° or	42	(3H) 2F°
$f^{2}(^{3}\mathbf{F_{2}})5f$	²[5]°	9/2		87			,
	[3]	11/2	116309.2	63	or or	71 31	(3H) 4H° (3F) 4I°
,,	²[3]°	5/2	116727.1	66	or	50	(3F) 4G°
	c-3	7/2	117044.6	57	or	50 21	(F) -G
f ² (³ F ₃)5f	²[6]°	13/2	117248.2	56	or	54	(3F) 4H°
-		11/2	117323.1	35	or	28	(1) 11
"		3/2	117540.5	26	² [1]° or	24	(3F) 2P°

Pr III, Odd Parity—Continued

Configuration	Term	. J	Level (cm ⁻¹)			Leadin	g perc	entages
$4f^{2(3}\mathbf{F}_{3})5f$	² [5]°	9/2		44	or		36	(3F) 2H°
i (1370)		11/2	117574.5	51	or		48	(^3F) $^2I^\circ$
,,	² [4]°	7/2	117647.2	64	or		33	(^3F) $^2F^\circ$
		9/2	118081.1	40	or		36	(^3F) $^2G^\circ$
"	²[3]°	5/2	117686.4	33	or		42	(^3F) $^4D^\circ$
		7/2	118318.6	60	or		41	(^3F) $^2G^\circ$
$4f^2(^3\text{F}_4)5f$		13/2	117775.3	28	² [6]°	or	61	(^3F) $^4I^\circ$
"	²[7]°	15/2	118063.0	70	or		65	(3F) 4I°
		13/2	118610.9	36	or		55	(^3F) $^2I^\circ$
$4f^2(^3\mathbf{F}_3)5f$	²[2]°	5/2		51	or		30	(^3F) $^2F^\circ$
		3/2	118201.4	59	or		34	(^3F) $^4F^\circ$
$4f^2(^3\mathbf{F_4})5f$		11/2	118271.6	22	²[5]°	or	32	(^3F) $^4G^\circ$
$4f^2(^3\text{H}_4)5f$		9/2	118468.8	36	² [5]°	or	36	(^3F) $^4G^\circ$
"		11/2	118879.3	35	² [5]°	or	37	(^3F) $^2H^\circ$
$4f^{2}(^{1}G_{4})5f$	²[6]°	13/2	120498.7	61	or		56	(1G) 2I°
, , , , , , , , , , , , , , , , , , ,		11/2	121532.5	35	or		31	
• •	² [5]°	11/2	121095.2	45	or		40	(^{1}G) $^{2}H^{\circ}$
		9/2	121382.6	51	or		46	
**	²[7]°	15/2	121119.2	73	or		67	(^{1}G) $^{2}K^{\circ}$
		13/2	121431.2	50	or		44	
$4f^{2}(^{1}\mathrm{D}_{2})5f$	²[1]°	3/2	128214.2	84	or		83	$(^{1}\mathrm{D})~^{2}\mathrm{P}^{\circ}$
		1/2		89	or		88	
11	² [5]°	9/2	128352.8	78	or		77	$(^{1}\mathrm{D})~^{2}\mathrm{H}^{\circ}$
		11/2	128381.6	89	or		88	
"	² [4]°	7/2	128453.2	87	\mathbf{or}		86	$(^{1}\mathrm{D})$ $^{2}\mathrm{G}^{\circ}$
		9/2	128568.6	79	or		78	
$4f^{2}(^{1}I_{6})5f$	² [9]°	17/2	133194.3	98	or		98	(^{1}I) $^{2}M^{\circ}$
		19/2	133242.3	100	or		100	
***	²[8]°	15/2	133352.2	98	or		98	(^{1}I) $^{2}L^{\circ}$
		17/2	133373.0	97	or		97	
Pr IV (3H ₄)	Limit		- 174407					

Pr III, Even Parity

Configuration	Term	J	Level (cm ⁻¹)		Le	ading perc	entages	
$-4f^2(^3{ m H})5d$	²H	9/2	12846.66	52			(^3H) 4I	
		11/2	14859.96	46		27		
(£2/3U\EJ	4K	11/2	13352.10	80				
$4f^2(^3\mathrm{H})5d$	-K	13/2	15454.16	95				
		15/2	17534.76	100				
		17/2	19649.67	100				
1.00/911\5 1	AT	9/	14550 00	50		26	(3H) 2H	
$4f^{2}(^{3}\mathrm{H})5d$	4 I	9/ ₂	14558.82 15525.50	59 68		20	(-11) 11	
		13/2	17113.19	98				
		15/2	18921.24	98				
						2-	(3E) 4C	
$f^{2}(^{3}{ m H})5d$	⁴G	5/2	15045.80	50		25	(^3F) 4G	
		7/2	16516.15	57		25		
		9/2	18063.36	56		25		
		11/2	19700.90	52		29		
$4f^{2}(^{3}\mathrm{H})5d$	4H	7/2	16135.97	76				
		9/2	17627.00	76		10	(^3H) 4G	
		11/2	19308.93	85				
		13/2	21238.78	77		13	(^3H) 2I	
$4f^{2}(^{3}\mathrm{H})5d$		5/2	18211.76	34	²F	21	(^3F) 2F	
$4f^{2}(^{3}\mathrm{H})5d$	2 <u>I</u>	11/2	18241.54	47		16	(¹G) ²I	
1) (11)00	_	13/2	19360.10	50		19	(3H) 4H	
4 CO (OTT) = 1	ATT	7.1	10000.00	00				
$4f^2(^3\mathrm{F})5d$	4H	7/2	18990.08	88				
		9/2	20315.65	89				
		11/2	21755.84	88		15	(^{3}H) ^{2}K	
		13/2	23175.09	71		15	(°H) -K	
$4f^{2}(^{3}\mathrm{H})5d$		7/2	19872.43	33	$^{2}\mathrm{F}$	23	(^3F) 2F	
$4f^{2}(^{3}\mathrm{H})5d$	4F	3/2	20160.36	78		16	(3F) 4F	
		5/2	20848.39	41		17	(3F) 4G	
		9/2	22747.69	49		13	(1G) 2H	
$4f^{2}(^{3}\mathrm{F})5d$	4P	3/2	21148.43	60		17	(^3F) 2P	
4) (1')00	. *	1/2	21110.10	75		13	(3F) 4D	
		5/2	21611.19	39		14	(^3H) 4F	
4.00(0TT) F 1	20	7.1	01004.00					
$4f^{2}(^{3}\mathrm{H})5d$	² G	7/ ₂ 9/ ₂	21294.89 24788.02	38 48		15	(^3F) 4F	
		/2	24100.02	10		10		
$4f^2(^3\mathrm{F})5d$	4G	5/2	21418.84	40		16	(3F) 4P	
		7/2	22080.94	40		27	(3H) 4F	
		9/2	23844.58	48		14	(3H) 4G	
		11/2	26095.23	42		24	(1G) 2H	
$4f^{2}(^{1}G)5d$		9/2	21535.17	33	²H	13	(3F) 4G	
$4f^2(^3\mathrm{F})5d$		3/2	22277.66	30	⁴ D	27	(^3F) 2D	
$4f^2(^3\mathrm{H})5d$		7/2	22527.70	22	4F	16	(3F) 4G	
$4f^{2}(^{3}F)5d$	4D	3/2	23050.61	30		23	(3F) 4P	
•		5/2	23751.57	76		10		
		1/2	23955.37	66		28	(^3F) 2P	
		7/2	24470.90	69				
$4f^2(^1\mathrm{G})5d$		11/2	23442.25	35	²H	22		
$4f^2(^3\mathrm{F})5d$		5/2	23532.86	23	4F	15	(³ H) ² F	
$4f^{2}(^{3}\text{H})5d$	²K	13/2	23647.77	71		19		
• • • • • • • • • • • • • • • • • • • •		15/2	25979.34	86		11	(1I) 2K	

Pr III, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	Lea	ding perc	entages
$4f^{2}({}^{1}\mathrm{G})5d$		7/2	23651.88	24 ² G	17	(^{1}G) ^{2}F
$4f^{2}(^{3}F)5d$	4F	3/2	24250.62	38	20	(^3F) 2P
4) (1)00		5/2	24461.24	43	18	(3F) 2D
		7/2	26446.97	34	21	(3H) 2F
		9/2	27604.26	56	26	(¹G) ²G
$4f^{2}(^{3}F)5d$		3/2	24309.20	28 ⁴ D	26	(3F) ² P
$4f^{2}({}^{1}G)5d$		9/2	25033.91	36 ² G	33	(^3H) 4F
$4f^{2}(^{3}F)5d$		7/2	25409.74	30 ⁴ F	25	(¹G) ²G
$4f^{2}({}^{1}\mathrm{G})5d$		5/2	25934.98	18 ² D	17	(^3F) 2F
$4f^{2}(^{3}F)5d$	² G	7/2	27138.55	42	17	(^{1}D) ^{2}G
i j (1)00		9/2	28720.71	52	15	(^3F) 2H
4f2(1C)5d	2 I	11/2	27380.31	64	17	$(^3\mathrm{H})$ $^2\mathrm{I}$
$4f^2(^1\mathrm{G})5d$	-1	$\frac{11/2}{13/2}$	29263.08	68	22	·/ -
4 (2) (1 (3) 7 3	970	E /	07450 45	56	27	(^{3}F) ^{2}D
$4f^2(^1\mathrm{G})5d$	² D	$\frac{5}{2}$ $\frac{3}{2}$	27452.45 28936.46	66	18	(T) D
4 C9/2TT \C	(4.1/.)	7/2	28399.43	97		
$4f^2(^3\text{H}_4)6s_{1/2}$	(4,1/2)	9/2	28885.14	93		
$4f^{2}({}^{1}\mathrm{G})5d$	2F	$^{5}/_{2}$	29267.86	55	23	(^3F) 2F
$4f^{2}(^{3}F)5d$	²H	9/2	29835.09	37	27	(^{1}G) ^{2}H
1) (1)00		11/2	30505.72	57	19	
$4f^2(^3\text{H}_5)6s_{1/2}$	(5, 1/2)	11/2	30733.53	98		
4) (113)031/2	(0, 72)	9/2	30994.55	95		
$4f^{2}(^{1}G)5d$		7/2	31254.71	35 ² F	27	(^3F) 2F
$4f^2(^1\mathrm{D})5d$	² S	1/2	31803.70	68	19	(^{1}D) ^{2}P
$4f^{2}(^{1}\mathrm{D})5d$	2P	3/2	32288.92	73	17	(^{3}P) ^{2}P
4) (D)00	-	1/2	34198.61	68	25	$(^{1}\mathrm{D})$ $^{2}\mathrm{S}$
4 C9 (9TT \) C .	(6.1/-)	13/2	32760.11	100		
$4f^2(^3\text{H}_6)6s_{1/2}$	$(6,^{1}/_{2})$	11/2	33466.41	97		
4 (2) (2) \ (2)	(0.1/.)	3/2	33338.37	98		
$4f^2(^3\mathbf{F_2})6s_{1/2}$	(2, 1/2)	5/ ₂	33659.99	89	9	$(^3F_3)$ $(3,^1/_2)$
	917	5 /	94590 97	53	18	(3P) 4F
$4f^{2}(^{1}D)5d$	² F	$\frac{5}{2}$	34520.27 36640.38	39	22	
4.62(3E-)Co	(3, 1/2)	7/2	34825.49	89		
$4f^2(^3\mathrm{F}_3)6s_{1/2}$	(5,-/2)	5/ ₂	35384.17	91	9	$(^3F_2) (2,^{1/2})$
4.69/1T)\F.1	² G	7/2	35024.49	48	19	(3F) ² G
$4f^{2}(^{1}D)5d$	-6	9/ ₂	35828.46	54	22	
$4f^2(^3\mathrm{P})5d$		3/2	35137.82	32 ⁴ F	31	(^{1}D) ^{2}D
$4f^2(^3\mathrm{F}_4)6s_{1/2}$	$(4,^1/2)$	9/2	35291.00	69	30	$(^{1}G_{4}) (4,^{1}/_{2})$
a) (1 4)001/2	(2, 12)	7/2	35801.12	50	39	•
$4f^{2}(^{3}P)5d$	4F	3/2	35863.74	65	15	
x) (1)000	1	$\frac{72}{5/2}$	36652.29	80	1	
		7/2	37919.58	61	2	
		9/2	39024.27	73	10	6 (1D) 2G

Pr III, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)		L	eading per	centages	
$4f^2(^1\mathrm{I})5d$	2 I	13/ ₂ 11/ ₂	36642.13 36670.57	69 92		26	(¹I) ²K	
$4f^{2}(^{3}P)5d$	4P	1/2	36683.21	57		35	(3P) 2P	
•		3/2	37197.64	40		32		
		5/2	38694.51	50		23		
$4f^{2}(^{3}P)5d$		5/2	37011.92	41	4 P	39	$(^{1}\mathrm{D})$ $^{2}\mathrm{D}$	
$4f^2(^1G_4)6s_{1/2}$	(4,1/2)	9/2	38448.38	68		30	$(^{3}F_{4})$ $(4,^{1}/_{2})$	
		7/2	38726.50	57		42	(14)(1,12)	
$4f^{2}(^{3}P)5d$		1/2	38549.90	35	4D	30	(3P) 4P	
$4f^{2}(^{1}I)5d$	²K	13/2	38701.59	63		28	(¹]) ²]	
		15/2	38785.76	72		16	(1) 2L	
$4f^{2}(^{3}\mathrm{P})5d$	4D	3/2	39120.49	56		22	(3P) 4P	
		1/2	39485.48	57		34	(³ P) ² P	
		5/2	40098.66	71		19	(¹D) ²D	
		7/2	41023.98	85		11	(¹ D) ² F	
$4f^2(^1\mathrm{I})5d$	² L	15/2	39725.99	83		16	(¹I) ²K	
		17/2	41026.87	100		10	(1) 11	
$4f^{2}(^{1}I)5d$	² H	11/2	39732.99	86				
		9/2	39870.17	81				
$4f^{2}(^{3}\mathrm{P})5d$		3/2	40205.74	32	²P	29	(3P) 4D	
$4f^{2}(^{3}P)5d$	² F	7/2	44679.98	77		10	(3F) 2F	
		5/2	44903.42	71		12	(¹D) ²F	
$4f^{2}(^{1}I)5d$	² G	9/2	45805.95	94				
		7/2	46673.78	98				
$4f^2(^1\mathrm{D}_2)6s_{1/2}$	(2,1/2)	5/2	45807.1	88		0	(3D ₋) (9.1/.)	
	(-, , -)	3/2	45844.65	90		9 8	$(^{3}P_{2}) (2,^{1}/_{2})$	
$4f^{2}(^{3}\mathrm{P})5d$	² D	3/2	48401.64	90				
•		5/2	48745.48	87				
$4f^2(^3P_1)6s_{1/2}$	$(1,^{1}/_{2})$	3/2	50227.79	97				
	,,,=/	1/2	50869.3	86		14	$(^{3}P_{0})$ $(0,^{1}/_{2})$	
$4f^2(^1{ m I}_6)6s_{1/2}$	(6,1/2)	11/2	50647.35	100				
• • • • • • • • • • • • • • • • • • • •	(0, 72)	13/2	50658.72	100 100				
$f^2(^3P_2)6s_{1/2}$	(2, 1/2)	5/2	51312.8	91		0	(ID.) (9.1/.)	
3 (= =,====	(=, /2)	$\frac{\frac{72}{3}}{2}$	52026.9	90		9 7	$(^{1}D_{2}) (2,^{1}/_{2})$	
$f^{2}(^{3}\mathrm{H}_{4})7s_{1/2}$	(4,1/2)	7/2						
j (== 3) (9 <u>1</u> . <u></u>	(1, 72)	9/2	100321.12					
$f^2(^3{ m H_4})6d_{3/2}$	$(4,^3/2)$	9/2	100430,29	96				
	. , . ,	11/2	100625.04	96				
		⁷ / ₂	100788.95	65		31	$(^{3}\text{H}_{4})\ (4,^{5}/_{2})$	
		5/2	101071.43	50			$(^{3}\text{H}_{4}) \ (4,^{5}/_{2})$	
$f^2(^3\text{H}_4)6d_{5/2}$	(4,5/2)	9/2	100947.18	94				
		11/2	101165.33	94				
		7/2	101446.27	64		28	$(^{3}\text{H}_{4})\ (4,^{3}/_{2})$	
		3/2		97				
		5/2	101665.58	52		43	$(^{3}\text{H}_{4})\ (4,^{3}/_{2})$	
		13/2	101680.38	84		10 .	$(^{3}\text{H}_{5})\ (5,^{3}/_{2})$	
$f^2(^3{ m H}_5)7s_{1/2}$	(5,1/2)	11/2	102435.67					
		9/2	102484.66					

Pr III, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)		Leading per	centages
$4f^2(^3 ext{H}_5)6d_{3/2}$	$(5,^{3}/_{2})$	11/2	102617.24	95		
4) -(*115)043/2	(3, 72)	9/2	102830.43	79	18	$(^{3}\text{H}_{5})\ (5,^{5}/_{2})$
		13/2	102981.94	51	47	$(^{3}\text{H}_{5}) \ (5,^{5}/_{2})$
		7/2	103308.53	93		(===, (, , , ,
$4f^2(^3{ m H}_5)6d_{5/2}$	(5, 5/2)	9/2	103335.06	74	18	$(^{3}\text{H}_{5})\ (5,^{3}/_{2})$
4) -(-115)005/2	(0, 72)	11/2	103344.35	96		
		15/2	103484.19	95		
		13/2	103805.38	48	39	$(^{3}\mathrm{H}_{5})\ (5,^{3}/_{2})$
		7/2	103895.83	95		
		5/2		94		
$4f^2(^3\text{H}_6)7s_{1/2}$	(6, 1/2)	13/2	104598.99			
•		11/2	104788.68			
$4f^2(^3{ m H}_6)6d_{3/2}$	$(6,^{3}/_{2})$	11/2	104904.55	93	4.0	(311) (6.5/)
		13/2	105019.06	86	13	$(^{3}\text{H}_{6})\ (6,^{5}/_{2})$
		9/2	105566.62	96		(211 \ (0.51 \
		15/2		54	41	
$4f^2(^3{ m He})6d_{5/2}$	(6, 5/2)	15/2	105049.72	57	42	$(^{3}\text{H}_{6})\ (6,^{3}/_{2})$
		11/2	105450.18	82		
		17/2		100		
		13/2	105632.16	85	12	
		9/2		69	19	
		7/2		86	5	$(^3F_3) (3,^3/2)$
$4f^2(^3\mathrm{F}_3)7s_{1/2}$	(3,1/2)	7/2	106665.07			
		5/2	106745.65			
$4f^2(^3\mathrm{F}_4)7s_{1/2}$	$(4,^1/2)$	9/2	107081.94			
		7/2				
$4f^2(^3\mathrm{F}_3)6d_{3/2}$	$(3,^3/2)$	7/2	107299.07	64	8	$(^3F_4) (4,^3/2)$
$4f^2(^3\mathrm{F_4})6d_{3/2}$		9/2	107854.46	32	$(4,^3/2)$ 20	$(^3F_3) (3,^3/2)$
$4f^2(^3\mathrm{F}_4)6d_{5/2}$	$(4,^5/_2)$	11/2	108559.40	42	21	$(^{1}G_{4}) (4, ^{5}/_{2})$
4f ² (³ H ₄)8s _{1/2}	$(4,^1/_2)$	7/2				
-J (/~ 5 ** #	\$ -7 1 -7	9/2	129106.1			
$4f^2(^3\text{H}_5)8s_{1/2}$	(5, 1/2)	11/2	131200.3			
V		9/2	131226.3			
$4f^2(^3\text{H}_6)8s_{1/2}$	(6, 1/2)	13/2	133393.2			
		11/2	133503.9			
$4f^2(^3\mathrm{F}_3)8s_{1/2}$	$(3,^{1}/_{2})$	7/2	135445.2			
	:	5/2				
$4f^2(^3\text{F}_4)8s_{1/2}$	$(4,^{1}/_{2})$	9/2	135868.8			
y (14)00112	, ,-,	7/2				
Pr IV (3H ₄)	Limit		174407			

Pr IV

(Ba I sequence; 56 electrons)

Z = 59

Ground state (1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6) 4f^{\,2}\,{}^3{\rm H}_4

Ionization energy 314400 \pm 200 cm $^{-1}$

 $38.98 \pm 0.02 \text{ eV}$

Identified even configurations $4f^2$, 4f5f, 4f6p, $5d^2$

Identified odd configurations 4f 5d, 4f 6d, 4f 6s, 4f 7s, 5d6p

Sugar [1965, 1971a] and Crosswhite, Dieke, and Carter [1965] have observed this spectrum as emitted by sliding-spark discharges. The line lists in the two 1965 references overlap up to 3021 Å, and Sugar's additional list of classified lines [1971a] extends downward to 691 Å. The analysis is from these three references. The two 1965 papers are in agreement on all levels of the $4f^2$, 4f5d, 4f6s, and 4f6p configurations, except for $4f^2$ S₀ and an interchange of designations for three pairs of 4f5d levels. The two-place level values are from Crosswhite et al. It is not clear that these values are more accurate than the one-place values of Sugar, however, from which they differ by up to 0.3 cm $^{-1}$. The $4f^2$ 1 S $_0$ level of Crosswhite et al. has been omitted as doubtful [Morrison and Rajnak, 1971], and Sugar's designations for the 4f5dlevels are preferred as supported by calculations. The levels of the remaining configurations are taken from Sugar [1971a], with the two possible $5d^2$ levels he judged as doubtful being omitted.

The compositions of the $4f^2$ levels are from Goldschmidt's thesis [1968]. Her calculation was later refined to include additional magnetic interactions, but the eigenvectors were essentially unaffected [Goldschmidt, Pasternak, and Goldschmidt, 1968; Pasternak, 1970]. Theoretical percentages for levels of the 4f6s, 4f6d, and 4f5f configurations are taken from Sugar's publications, supplemented by some of his unpublished results for alternate coupling schemes. Sugar recalculated for inclusion here the eigenvectors for the 4f5d and 4f6pconfigurations, with energy matrices including the appropriate effective interactions. Goldschmidt, Salomon, and Starkand [1974] have made similar calculations of 4f5d in Pr IV, Ce III, and La II.

The average purity of the 4f5f configuration in the j_1l coupling scheme is only slightly greater than in the LS scheme, but the former is preferred because none of the LS designations ¹F, ¹G, and ¹H is the leading component of any level. The 4f6p configuration exhibits strong j_1j_2 coupling, and in the 4f6d configuration the j_1 value of the 4f core is defined with greater than 90% purity for every level. Thus "no strong combinations involving a change of the 4f core level were observed" in the 4f6p-4f6d transition array [Sugar, 1971a].

Sugar [1971a] obtained a value for the ionization limit based on the 4f6s, 7s series. Sugar and Reader [1973] have revised the value using a semi-empirical method and knowledge of the system differences $4f^{N}-4f^{N-1}5d$.

References

Crosswhite, H. M., Dieke, G. H., and Carter, W. J., J. Chem. Phys. 43, 2047 (1965). EL CL W Hfs Goldschmidt, Z. B., Thesis, Hebrew Univ. Jerusalem, Israel, 487 pp. (1968). PT Goldschmidt, Z. B., Pasternak, A., and Goldschmidt, Z. H., Phys. Lett. 28A, 265 (1968). PT Goldschmidt, Z. B., Salomon, D., and Starkand, J., unpublished material (1974). PT Morrison, J. C., and Rajnak, K., Phys. Rev. A 4, 536 (1971). ND AT Pasternak, A., Thesis, Hebrew Univ. Jerusalem, Israel, 219 pp. (1970). PT

Sugar, J., J. Opt. Soc. Am. 55, 1058 (1965). EL CL W PT

Sugar, J., J. Opt. Soc. Am. 61, 727 (1971a). EL CL W IP PT

Sugar, J., unpublished calculations (1971b). PT

Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP

[July 1976]

Pr IV

Configuration	Term	J	Level (cm ⁻¹)		Lea	ding perc	entages
f ²	3H	4	0.00	97			
		5	2152.09	100			
		6	4389.09	100			
	³F	2	4996.61	98			
		3	6415.24	100			. ~
		4	6854.75	66		33	¹G
	¹G	4	9921.24	65		34	3F
2	¹D	2	17334.39	90		8	^{3}P
2	3P	0	21389.81	99			
		1	22007.46	100			15
		2	23160.61	92		8	¹D
	¹I	6	22211.54	100			
5d	¹G°	4	61170.95	63	or	70	$(5/2,3/2)^{\circ}$
5d	3F°	2	61457.48	69	\mathbf{or}	95	$(5/2,3/2)^{\circ}$
		3	64123.54	82	\mathbf{or}	67	$(5/2,5/2)^{\circ}$
		4	66518.01	73	or	91	$(7/2,5/2)^{\circ}$
5d	3G°	3	63355.94	77	or	85	$(5/2,3/2)^{\circ}$
		4	65639.95	87	\mathbf{or}	58	$(7/2,3/2)^{\circ}$
		5	67899.32	98	\mathbf{or}	70	$(7/2,5/2)^{\circ}$
5d	зН°	4	63580.59	68	\mathbf{or}	40	$(5/2,5/2)^{\circ}$
		5	65239.39	100	or	52	$(5/2,5/2)^{\circ}$
		6	68077.83	100	\mathbf{or}	100	$(7/2,5/2)^{\circ}$
d	¹ D°	2	65321.67	61	or	58	$(5/2,5/2)^{\circ}$
c5d	3D°	1	66967.72	95	or	63	$(5/2,3/2)^{\circ}$
		2	68411.51	92	\mathbf{or}	55	$(7/2,3/2)^{\circ}$
		3	68495.57	67	\mathbf{or}	59	$(7/2,3/2)^{\circ}$
5d	3P°	1	70755.33	93	or	70	$(5/2,5/2)^{\circ}$
		0	70842.93	100	\mathbf{or}	100	$(5/2,5/2)^{\circ}$
		2	72185.10	94	\mathbf{or}	54	(7/2,5/2)
5d	1F°	3	71724.77	65	or	95	$(7/2,5/2)^{\circ}$
$^{\circ}5d$	¹H°	5	75265.66	98	or	35	(5/2,5/2)
f5d	¹P°	1	78776.38	92	or	83	(7/2,5/2)
$f(^2\mathrm{F}^{\circ}_{5/2})6s_{1/2}$	(5/2,1/2)°	2	100258.48	100	\mathbf{or}	100	3F°
(F 5/2/081/2	(12, 12)	$\frac{2}{3}$	100258.48	99	or	69	³F°
$f(^{2}\mathrm{F}_{7/2}^{\circ})6s_{1/2}$	(7/2,1/2)°	4	103271.38	100	or	100	${}^3\mathrm{F}^\circ$
	(-, /2/	3	103753.75	99	or	69	¹F°
$f(^2\mathrm{F}^{\circ}_{5/2})6p_{1/2}$	(5/2,1/2)	3	136850.85	98	or	59	³G
		2	137175.04	94	or	69	$^3\mathrm{F}$
l^2	3F?	2?	139711.8				
		3	145362.7				
		4	149504.7				
$f(^2\mathrm{F}_{7/2}^{\circ})6p_{1/2}$	(7/2,1/2)	3	139875.31	93	or	53	
		4	140225.92	96	or	41	3 G
$f(^2\mathrm{F_{5/2}^{\circ}})6p_{3/2}$	(5/2,3/2)	3	141254.01	94	or	39	
•		2	142331.59	95	\mathbf{or}	54	
		4	142565.94	93	\mathbf{or}	56	OI _

Pr IV—Continued

Configuration	Term	J	Level (cm ⁻¹)		Le	ading per	entages	
$4f(^{2}\mathrm{F}_{7/2}^{\circ})6p_{3/2}$	(7/2, 3/2)	4	144925.33	90	or	55	¹G	_
		3	144943.27	94	\mathbf{or}	65	^{3}D	
		5	145281.20	100	or	100	³G	
		2	146577.13	99	\mathbf{or}	64	¹D	
$4f(^{2}\mathrm{F}^{\circ}_{5/2})6d_{3/2}$	$(5/2,3/2)^{\circ}$	2	193330.5	93	\mathbf{or}	75	3F°	
		4	193601.8	98	\mathbf{or}	72	3H°	
		3	193805.1	83	or	92	$^3\mathrm{C}^\circ$	
		1		55	or	92	ъD	
$4f(^{2}\mathrm{F}^{\circ}_{5/2})6d_{5/2}$	(5/2,5/2)°	4	194022.2	98	or	44	³G°	
		3		80	or	71	3D°	
		$\frac{2}{5}$	101777 09	90	or	44	3H°	
		0	194777.2?	91 100	or or	78 100	3P°	
		1		56	or	84	зP°	
5d6p	3F°	2						
aop	- r	$\frac{2}{3}$						
		4	195917.0					
$4f(^2{ m F}_{7/2}^{\circ})6d_{3/2}$	(⁷ / ₂ , ³ / ₂)°	4	196584.7	99	\mathbf{or}	51	3G°	
ij (1 7/2)003/2	(12,-12)	3	190504.7	95	or	38	3D _o	
		2	*	54	or	54	$^{3}\mathrm{D}_{\circ}$	
		5	198304.7	48	or	81	¹H°	
$4f(^{2}\mathrm{F}^{\circ}_{7/2})6d_{5/2}$	$(7/2,5/2)^{\circ}$	4	196800.0	100	\mathbf{or}	63	$^{3}\mathrm{F}_{\circ}$	
		5	197103.7	55	\mathbf{or}	85	3G°	
		6	197196.9	100	or	100	3P°	
		$\frac{2}{3}$	198155.4?	54	or	88 53	3D°	
		3 1	198155.4!	99 96	or or	53 77	¹P°	
4£(2ǰ)Ē£	207/ 1	9	100101.0	0.0		70	³G	
$4f(^2\mathbf{F_{5/2}})5f$	2[7/2]	$\frac{3}{4}$	199191.0 200202.6	86 69	or or	70 87	³G ³G	
"	2[11/2]	5	199595.8	68	or	57	3 I	
		6	200893.8	79	\mathbf{or}	90	3I	
$4f(^{2}\mathrm{F}^{\circ}_{5/2})7s_{1/2}$	(5/2,1/2)°	2						
, , , , , , , , , , , , , , , , , , , ,	(, =, , = ,	3	199727.7					
$4f(^2\mathbf{F}^{\circ}_{5/2})5f$	2[3/2]	1	199815.5	87	or	64	$^{3}\mathrm{D}$	
4) (1.5/2)0)	[[/2]	$\overset{1}{2}$	200697.1	55	or	89	^{3}D	
"	2[9/2]	5	200235.1	57	\mathbf{or}	39	3I	
		4	201985.3	85	or	82	3H	
"	2[5/2]	3	200417.0	73	or	36	$^{3}\mathrm{D}$	
		2	202819.0	74	\mathbf{or}	71	$^3\mathrm{F}$	
,,	² [1/ ₂]	1	201365.2	70	or	55	$^3\mathrm{S}$	
	[/2]	0	201909.2	89	or	87	^{3}P	
1440730 > 7.4	0504.7	_	202225				20	
$4f(^2\mathrm{F}_{7/2}^\circ)5f$	2[9/2]	5	202327.9	84	or	73	³G ³F	
		4	204541.7	55	or	43	or.	
5d6p	1F°	3	202487.0					
$4f(^2\mathrm{F}^{\circ}_{7/2})5f$	2[5/2]	3	202614.7	67	or	54	$^{3}\mathrm{D}$	
4) (°1°7/2)9J	-[-/2]	2	202614.7	74	or	54 50	¹ D	
"	² [13/ ₂]	7	202948.9	100	\mathbf{or}	100	3 <u>I</u>	
		6	206299.4	70	or	88	1 I	
"	2[3/2]	1	203265.4	52	or	51	¹P	
	[/2]	2	207046.3	84	or	72	³P	

Pr IV—Continued

Configuration	Term	J	Level (cm -1)	Leading percentages				
$4f(^2\mathbf{F}_{22}^2)5f$	2[11/2]	5 6	204032.1 204815.6	72 84	OL OL	84 90	3H	
	2[7/2]	3	204557.0 205748.3	54 69	or	86 50	3F 3F	
#*	2[1/2]	0	206369.4	47 89	or or	91 87	³ P	
Pr v (2F\$/2)	Limii		314400					

Pr v

(Cs I sequence; 55 electrons)

Z = 59

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ 4f ${}^2F^{\circ}_{5/2}$

Ionization energy 464000± 400 cm⁻¹

 $57.53 \pm 0.05 \text{ eV}$

Kaufman and Sugar observed 12 lines of Pr v in the region 840–2250 Å, with accuracies such that the uncertainties of the resulting levels are from 1 to 2 cm⁻¹. The term assignments are supported by comparisons along the isoelectronic sequence, the authors noting that the "quantum defect, doublet splitting, and term energy intervals were found to vary in a regular way through the Cs I sequence."

The hyperfine splitting of the 6s $^2S_{1/2}$ level was resolved. The component levels are given as 178969.4 cm⁻¹ (F=2) and 178972.3 cm⁻¹ (F=3), with the separation of 2.95 cm⁻¹ being accurate to about ± 0.05 cm⁻¹.

Kaufman and Sugar derived the ionization potential from the 6s and 7s levels. A slightly different value obtained from the same data is quoted here [Sugar, 1975]. The relatively high accuracy derives from a regularity in the quantum defects of such levels that holds throughout the rare-earth group.

References

Kaufman, V., and Sugar, J., J. Res. Nat. Bur. Stand. (U.S.) 71A, 583 (1967). EL CL W Hfs IP Sugar, J., J. Opt. Soc. Am. 65, 1366 (1975). IP

[July 1976]

Pr v

Configuration	Term	J	Level (cm ⁻¹)
$5p^{6}(^{1}S)4f$	²F°	5/ ₂ 7/ ₂	0.0 3027.4
$5p^{6}(^{1}S)5d$	² D	3/ ₂ 5/ ₂	115052.3 118513.8
$5p^{6}(^{1}{ m S})6s$	² S	1/2	178971.1
$5p^{6}(^{1}S)6p$	² P°	1/ ₂ 3/ ₂	223478.1 230039.5
$5p^{6}(^{1}\mathrm{S})7s$	² S	1/2	304511.5
Pr VI (¹ S ₀)	Limit		464000

NEODYMIUM

Nd I

60 electrons Z=60

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^46s^2$ 5I_4

Ionization energy 44562±5 cm⁻¹

 5.5250 ± 0.0006 eV

Identified even configurations

 $4f^46s^2$, $4f^45d6s$, $4f^35d6s6p$, $4f^35d^26p$, $4f^45d^2$, $4f^46s7s$

Identified odd configurations

4f 46s6p, 4f 35d6s2, 4f 35d26s, 4f 45d6p

Spectrum Observations, Early Analysis

The wavelengths and temperature classifications for 2863 Nd lines (2963-7005 Å) published by A. S. King in 1933 are still useful, especially since a complete list of lines based on the more recent observations has not been published.

Van de Vliet [1939] began a series of investigations of Nd spectra in the Zeeman Laboratory, Amsterdam, with his observations of the Zeeman effect. In 1946 Schuurmans gave the $4f^46s^2$ I levels of Nd I, which he had found with the aid of King's and van de Vliet's data. Klinkenberg [1946, 1955] and Hassan [1962, 1963] extended the observations. Klinkenberg located about 100 upper odd levels, but the analysis and interpretation were limited by the lack of sufficiently accurate wavelengths and Zeeman data [Hassan and Klinkenberg, 1963].

The more recent observations of Nd I and Nd II have yielded wavelengths for a total of more than 27000 lines in the range from 2450 Å to 4.1 μ m. About 25000 lines were photographed at the Argonne National Laboratory and measured with an automatic comparator at the Zeeman Laboratory [Hoekstra, 1969]. Wyart's thesis [1968] gives wavelengths from these measurements for about 2170 lines (4662–8713 Å) for which he measured the Zeeman effect; the complete line list has not been published. Blaise, Chevillard, Verges, and Wyart [1970], at the Aimé Cotton Laboratory, Orsay, measured 2049 Nd lines in the infrared region from 0.8 to 2.5 μ m, and Morillon's observations [1970] from 2.3 to 4.1 μ m gave wavelengths for 470 lines. Since 1965 the work on Nd I and Nd II at Amsterdam and Orsay has been carried out "in close and stimulating collaboration" [Blaise, Wyart, Hoekstra, and Kruiver, 1971].

Levels, g Values, and Theoretical Interpretation

The theses of Wyart [1968] and Hoekstra [1969] reported revisions and large extensions of the analysis of Nd I. About 700 energy levels were known by 1970. Most of the levels and g values given here are from the paper by Blaise, Chevillard, Verges, and Wyart [1970], with some additions and corrections from Blaise et al. [1971, 1976]. Many of the three-place level values are actually given to the nearest $0.005~{\rm cm}^{-1}$; the probable error for these levels is presumably somewhat larger than for the other three-place levels.

Blaise et al. [1971, 1976] found two low levels and three upper levels comprising a system not yet connected with the other levels. They tentatively assigned the two low levels to $4f^46s^2$ 5F_1 and 5F_2 . We have adjusted the levels to a value of 10200.00 cm⁻¹ for the 5F_1 level, approximately in agreement with the value they calculated for $4f^46s^2$ 5F_1 . The lack of a connection for the system is indicated by the notation "+x" following each of the five levels.

Hassan, Abbas, and Turki [1975] list 45 levels for Nd I. Several of their odd levels are confirmed by the more complete analyses used for this compilation.

Wyart derived most of the *g* values from his measurements of Zeeman-effect spectrograms (2900–11200 Å) obtained by M. Fred at the Argonne Laboratory [Wyart, 1968; Hoekstra, 1969; Blaise et al., 1970]. Most of these values are given to the nearest 0.005 units. Childs and Goodman [1972] measured the *g* values of the ⁵I ground-term levels to within uncertainties of two or three units in the fifth decimal place.

The available eigenvector percentages are limited to the four lowest configurations (two odd and two even). The percentages for the $^5\mathrm{I}$ ground-term levels are from Conway and Wybourne [1963], and the percentages for the $4f^45d6s$, $4f^35d6s^2$, and $4f^35d^26s$ levels are from Blaise et al. [1971]. The $4f^35d^26s$ percentages are based on the "real" $4f^3(^4\mathrm{I}^\circ)$ grandparent term (not pure LS-coupling basis states), and all $4f^35d^26s$ states based on higher $4f^3$ terms were neglected. Some details of the basic methods used for the calculations of $4f^45d6s$ and $4f^35d6s^2$ are given in Wyart's thesis [1968]. No configuration interaction has been included.

No calculations are available for two of the identified odd configurations nor for four of the identified even configurations listed above. Blaise et al. [1971] have outlined some of the criteria for the assignments of levels to these configurations. Only the configuration and final term assignments are given in the most complete list of levels [Blaise et al., 1970]. Following these assignments, we have grouped some of the levels into terms and also in some cases have supplied parentages. The designations of several of the resulting terms are followed by question marks to indicate that all of the grouped levels may not belong to the same term.

Isotope Shifts, Ionization Energy

Isotope-shift data have played an important role in the interpretation of the NdI spectrum [see, e.g., Rao and Gluck, 1964; Wyart, 1968; Blaise et al., 1971]; only a few of the pertinent references are listed below.

Worden, Conway, Paisner, and Solarz [1977] have observed high members of a series in Nd I by using laser techniques. These data became available too late for inclusion here, but the quoted ionization energy was determined by Worden et al. from the new series.

References

Blaise, J., Chevillard, J., Verges, J., and Wyart, J. F., Spectrochim. Acta, Part B 25, 333 (1970). EL CL W ZE Blaise, J., Wyart, J. F., Hoekstra, R., and Kruiver, P. J. G., J. Opt. Soc. Am. 61, 1335 (1971); unpublished additions and corrections (1976). EL ND ZE PT

Childs, W. J., and Goodman, L. S., Phys. Rev. A 6, 1772 (1972). ZE Hfs

Conway, J. G., and Wybourne, B. G., Phys. Rev. 130, 2325 (1963). PT

Gerstenkorn, S., Helbert, J. M., and Chabbal, R., C. R. Acad. Sci. 261, 1232 (1965). IS

Hassan, G. E. M. A., Thesis, Univ. Amsterdam, 175 pp. (1962). EL CL W ZE IS IP

Hassan, G. E. M. A., Physica (Utrecht) 29, 1119 (1963). EL ZE IP

Hassan, G. E. M. A., Abbas, A., and Turki, A. H., Indian J. Phys. 49, 729 (1975). EL ZE

Hassan, G. E. M. A., and Klinkenberg, P. F. A., Physica (Utrecht) 29, 1133 (1963). CL ZE IS

Held, S., Israel Atomic Energy Commission, IA-927, 37 pp. (1964). W

Hoekstra, R., Thesis, Univ. Amsterdam, 64 pp. (1969). EL W ZE

King, A. S., Astrophys. J. 78, 9 (1933). W

Klinkenberg, P. F. A., Physica (Utrecht) 12, 33 (1946). EL ZE

Klinkenberg, P. F. A., Thesis, Univ. Amsterdam (1955). EL CL W ZE

Morillon, C., Spectrochim. Acta, Part B 25, 513 (1970). CL W

Nöldeke, G., and Steudel, A., Z. Phys. 137, 632 (1954). IS Hfs

Paul, F. W., Phys. Rev. 49, 156 (1936). W

Rao, P. R., and Gluck, G., Proc. R. Soc. London, Ser. A 277, 540 (1964). IS

Schuurmans, Ph., Physica (Utrecht) 11, 419 (1946). EL CL

Smith, K. F., and Spalding, I. J., Proc. R. Soc. London, Ser. A 265, 133 (1961). ZE

van de Vliet, H. J., Thesis, Univ. Amsterdam, 85 pp. (1939). ZE

Worden, E. F., Conway, J. G., Paisner, J. A., and Solarz, R. W., unpublished material (1977). IP

Wyart, J. F., Thesis (Third Cycle), Univ. Paris, Orsay, 106 pp. (1968). EL ND CL W ZE IS PT

Wyart, J. F., J. Phys. (Paris) Suppl. Colloq. C 1 30, 50 (1969). EL ZE PT

[October 1976]

Nd I, Even Parity

Configuration	Term	J	Level (cm ⁻¹)	g		Leadi	ing percentages
	* T		0.000	0.60329	98	1	³ H4
$f^4 6s^2$	5 I	5	1128.056	0.90047	99	1	³ H4
		6	2366.597	1.06991	99		
			3681.696	1.17538	98	1	3 K2
		7 8	5048.602	1.24527	96	3	3K2
			0.455.955	0.505	99	1	(5I)(3D) 5K
$f^{4}(^{5}I)5d6s(^{3}D)$	$^{7}\mathrm{L}$	5	8475.355	0.505	94	3	(5I)(3D) 5L
		6	9115.092			4	$(^{5}I)(^{3}D)$ ^{5}L
		7	9939.704	0.965	93	4	(5I)(3D) 5L
		8	10897.998	1.085	93		(OT) FT
		9	11959.761	1.170	95	3	
		10	13101.411	1.225	97	2	(1)(b) b
		11	14304.110	1.265	100		
44(51) F 10 (2F)	7 K	4	9814.683	0.405	98	1	
$f^{4}(^{5}I)5d6s(^{3}D)$	IX	5	10376.842	0.770	94	3	
			11109.167	0.970	92	5	
		6	11918.353	1.055	65	18	$(^{5}I)(^{3}D)$ ^{5}L
		7	11918.333	1.180	87	5	THE PARTY OF THE
		8		1.245	90	4	$(^{5}I)(^{3}D)$ ^{5}L
		9	13953.585		95	5	
		10	15073.203	1.290	90	•	
$4f^4 6s^2$?	5F	1	10200.00 + x	0.0			
4) 00 .		2	10550.50 + x	0.99			
		3			Ì		
		4					
		5					
			10774 097	0.728	59	3	3 (⁵ I)(¹ D) ⁵ L
$4f^{4(5)}5d6s(^{3}D)$	5L	6	10774.927 12056.824	0.128	42	2	·
		7			59	3	
		8	13333.505	1.055	63	2	(4.T)\ FT
		9	14687.945	1.140 1.200	67		7 (⁵ I)(¹ D) ⁵ L
		10	16092.06	1.200	0.	_	,
A CA/ETYE 10 (3D)	7 I	3	11001.353	0.270	90		9 (5I)(3D) 5H
$4f^{4}(^{5}I)5d6s(^{3}D)$	1	4	11486.093	0.750	85		7 (⁵ I)(³ D) ⁵ H
		5	12178.643	0.963	80		6 (5I)(3D) 5K
		6	12917.422	1.105	74		9 (⁵ I)(³ D) ⁵ K
		7	13798.860	1.203	74		$8 (5I)(3D) ^7H$
			14780.090	1.270	77		8 (⁵ I)(³ D) ⁵ K
		8 9	15834.515	1.315	87	1	$_{10}$ (5I)(3D) 5K
				0.405	100		
$4f^{4(5)}5d6s(^{3}D)$	₹G	1	11841.78	-0.485	100		7 (⁵ I)(³ D) ⁵ G
J \ ~/- \ \ /		2	11990.02	0.77	90		14 (⁵ I)(³ D) ⁵ G
		3	12264.88	1.080	79		21 (⁵ I)(³ D) ⁵ G
		4	12624.175	1.060	68		19 (⁵ I)(³ D) ⁵ G
		5			67		19 (.T)(.D) G
		6					
		7					
	5 K	5	12065.807	0.715	56		26 (⁵ I)(¹ D) ⁵ K
$4f^{4}(^{5}I)5d6s(^{3}D)$, V	6	13195.169	0.935	53		26
		7	14327.638	1.070	55		23
			15533.960	1.160	57		21
		8 9	16791.257	1.230	60		21
4.54/51)5.d6o(3D)	5 H	3	12736.919	0.695	46		25 (⁵ I)(³ D) ³ G
$4f^{4(5I)}5d6s(^{3}D)$	1		13017.120	0.795	37	5 I	27 (5I)(3D) 3H
$4f^{4(5)}5d6s(^{3}D)$		4				5G	23 (⁵ I)(³ D) ⁵ H
$4f^{4}(^{5}I)5d6s(^{3}D)$		3	13781.840	0.710	38	ď	
	1		1	0.980	47		23 (⁵ I)(¹ D) ⁵ I

Nd I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
1/3(4I°)5d (5L°)6s6p(3P°)	⁷ M	6 7	20271.673 21240.345	0.595	$4f^{3}(^{4}\text{I}^{\circ})5d^{2}(^{3}\text{F}) \ (^{6}\text{M}^{\circ})6p$	7N	7	24856.360	0.85
		8	22680.963	0.830 0.975			6	24926.767	0.95
		9 10	24264.991	1.065			7	25005.315	0.90
		11					7	25026.390	1.02
		12		4.			8	25046.797	1.02
$1/^3 5d6s6p$	$^7\mathrm{L}$	5	20486.822	0.545			8	25189.930	1.11
1/35d6s6p	$^{7}\mathrm{K}$	4	21257.363	0.465			6	25207.070	0.90
$15^3 5d6s6p$	$^7\mathrm{L}$	5	21361.414	0.570			7	25383.854	0.97
1/35d6s6p	$^7\mathrm{L}$	6	21388.164	0.820			5	25450.400	0.82
N/4 5d2	7 M	6	21889.659	0.580			8	25529.411	0.99
$4f^3 5d6s6p$	$^{7}\mathrm{K}$	5	21924.137	0.780			7	25534.316	0.90
1/3 5d6s6p	$^7\mathrm{L}$	6	22121.676	0.765			5	25619.648	0.96
1/3 5d6s6p	$^7\mathrm{L}$	7	22615.179	0.845			7	25623.570	1.05
1/45d2	⁷ M	7	22705.580	0.810			6	25674.250	0.91
		6	22874.654	0.900			8	25703.655	1.09
1) 3 5d6s6p	⁷ I	3	22909.965	0.395			8	25740.206	1.09
		5	23065.496	0.835			6	25746.414	0.86
		6	23108.948	0.895			3	25822.628	0.66
		5	23175.246	0.785			6	26014.144	1.09
		6	23221.966	0.965			6	26027.860	1.08
		6	23242.421	1.115			2	26288.475	0.46
	⁷ I	3	23248.393	0.290			6	26303.870	0.99
$J^3 5d6s6p$	$^7\mathrm{L}$	7	23269.485	0.905			5	26331.356	0.83
		4	23275.398	0.580	$4f^{3(4I^{\circ})}5d^{2(3F)}$ (6M°)6p	7N	8	26333.118	0.89
		5	23281.089	0.545			5	26357.250	0.87
	7 I	4	23346.750	0.740			8	26425.327	1.13
		5	23565.210	0.760			7	26515.707	1.08
		4	23808.534	0.610			6	26668.475	1.02
		3	23866.080	0.450			4	26694.655	0.80
		8	23952.890	1.053			7	26835.359	0.86
J'4 5d2	7L	6	23964.137	0.815			6	26892.543	0.91
		6	23969.072	0.840			7	26898.411	1.04
		6	24146.624	0.890			9	26987.075	1.14
		5	24198.530	0.800			7	27000.108	1.05
$f^3 5d6s6p$	5 M	7	24217.847	0.870			6	27056.090	0.99
		4	24225.650	0.875			4	27222.174	0.86
		8	24231.280	1.065			7	27223.630	1.09
		7	24260.091	1.010			9	27265.575	1.04
f" 5d6s6p	⁷ M	9	24264.991	1.065			8	27324.410	1.040
f 4 5d2	⁷ M	9	24558.778	1.098			7	27381.805	1.00
		2	24559.635	0.245			6	27423.635	1.02
		5	24577.981	0.870			7	27502.595	1.08
f 4 5d2	7L	7	24793.359	0.965			7	27554.118	0.998
		7	24821.218	1.060			7	27567.908	1.000

Nd I, Even Parity—Continued

Nd I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		4	27588.440	0.790			5	29310.196	0.8
		6	27589.409	1.080			6	29314.777	0.9
		6	27633.729	0.975			9	29365.082	1.0.
		6	27679.543	1.130			8	29391.756	1.13
		6	27711.985	0.945			5	29493.945	0.83
		6	27755.134	1.045			9	29494.836	1.10
		9	27777.530	1.085			5	29535.427	0.9
		7	27805.365	1.020			8	29537.338	1.0
		8	27815.384	1.015			10	29570.770	1.0
		4	27852.748	0.845			8	29685.852	1.0
		9	27881.244	1.140			8	29802.070	0.9
		8	27922.081	1.125			6	29853.580	1.03
		5	27926.240	0.880			8	29873.308	1.1
		9	27961.248	0.975			7	30011.635	1.0.
		5	27988.786	1.000			5	30148.057	0.9
$f^{4(5)}6s7s(^{3}S)$	7 _I	3	28027.403	0.345			5	30200.650	0.8
, (=, = (=,		4	28229.220	0.710			8	30319.660	1.1
		5 6	28578.959 29522.78	$0.945 \\ 1.085$			6	30405.300	1.0
		7	30630.89	1.200			3	30475.205	0.6
		8 9	$31838.70 \\ 33106.00$	1.255 1.315			8	30489.865	1.1
		3		1.515			9	30644.708	1.0
		6	28040.725	0.840			5	31129.734	1.0
		5	28086.830	0.860			5	31151.150	0.8
		7	28105.805	1.045			4	31182.990	0.5
		5	28160.209	0.895			8	31235.494	1.0
		5	28220.326	0.895			7	31242.740	0.9
		7	28354.540	1.060			7	31381.920	1.0
		6	28356.954	0.980			7	31524.204	0.9
		7	28412.288	0.995			6	31529.965	1.1
		4	28438.783	0.880			4	31541.980	0.8
		8	28440.275	0.935			5	31555.724	0.7
		5	28525.930	1.075			7	31801.150	0.9
		5	28665.120	0.920			3	32226.230	0.8
		4	28695.460	1.085			.4	32265.520	0.9
		5	28731.205	0.870			2	32430.985	0.7
		6	28758.742	1.020			4	32617.700	0.6
	The state of the s	8	28839.355	1.070			7	33170.042	0.9
		6	28858.270	0.855			6	33634.150	0.9
		5	28885.798	0.825			6	34302.090	0.9
		7	28934.040	0.945			3	34867.271	0.6
		6	28950.824	0.735				04001.211	0.0
		8	29060.068	0.950					
		6	29280.696	0.720	Nd II (⁶ I _{7/2})	Limit		44562	

Nd I, Odd Parity

Configuration	Term	J	Level (cm ⁻¹)	g			Lea	iding percentages
27/410\F JC-2	5L°	6	6764.211	0.715	92		4	(2H°) 3K°
$^{3}(^{4}{ m I}^{\circ})5d6s^{2}$	- L	7	8402.487	0.905	95		2	(2H°) 3K°
		8	10160.612	1.035	97			(4I°) 5K°
		9	12162.142	1.113	98			(4I°) 5K°
		10			99		1	(2K°) 3M°
$3(4\mathrm{I}^\circ)5d6s^2$	5K°	5	6853.994	0.675	87		_	(4I°) 3I°
(1)5005		6	8411.900	0.905	94			(4I°) 3I°
		7	10017.790	1.045	94			(4I°) 3K° (4I°) 3L°
		8 9	11704.640	1.160	94 93			(4I°) 3L°
	73.40		8800.392	0.580	97		1	(4I°)(3F) (4L°) 5L°
³ (4I°)5d ² (3F) (6M°)6s	⁷ M°	6 7	9692.277	0.805	93		4	$(^{4}I^{\circ})(^{3}F) (^{6}M^{\circ}) ^{5}M^{\circ}$
		8	10784.929	0.960	92		5	(4I°)(3F) (6M°) 5M°
		9	11887.735	1.085	92		5	(4I°)(3F) (6M°) 5M°
		10	11007.700	-	-			
		11						
		12						
³ (4I°)5d6s ²	5Ι°	4	9083.813	0.615	90		6	(4I°) 3H°
(1)0000	1	5	10004.583	0.880	59		28	(4I°) 3I°
		6	11179.045	1.035	49		26	(4I°) 3I°
		7	12927.232	1.110	70		12	(4I°) 3I°
		8	14732.200	1.240	86		10	(4I°) 3K°
22/410\F 10 9	5H°	3	9927.387	0.570	76		16	(4I°) 3G°
$^{\circ 3}(^{4}{ m I}^{\circ})5d6s^{2}$	°n	4	10672.571	0.855	59		28	(4I°) 3H°
		5	12394.260	1.038	65		18	(4I°) 3I°
		6	14308.080	1.106	53		32	(4I°) 3I°
		7	15396.590	1.165	43		39	(4I°) 3I°
$^{-3}(^{4}{ m I}^{\circ})5d6s^{2}$		5	10918.755	0.900	35	5I°	30	(4I°) 3I°
f ³ (4I°)5d ² (3F) (6L°)6s	7L°	5	11108.813	0.510	95		3	(4I°)(3F) (4K°) 5K°
(1)00(1)		6	11812.804	0.790	88		4	(4I°)(3F) (6L°) 5L°
		7	12611.210	0.880	84		6	(4I°)(3F) (6L°) 5L°
		8	13726.950	1.080	79		6	$(^{4}I^{\circ})(^{3}F) (^{4}L^{\circ}) {^{5}L^{\circ}}$
		9						
		10 11						
			11000 001	0.410	97		5	(4I°)(3P) (6K°) 7K°
$f^{3}(^{4}{\rm I}^{\circ})5d^{2}(^{3}{\rm F})~(^{6}{\rm K}^{\circ})6s$	7K°	4	11360.794	0.410 0.775	87 83		5	(4I°)(3P) (6K°) 7K°
		5	12009.206	0.775	80		5	(4I°)(3F) (6K°) 5K°
		6	12837.035 13799.780	1.090	74		6	(4I°)(3F) (4K°) 5K°
		7 8	14931.230	1.180	69		7	(4I°)(3F) (6L°) 7L°
		9	14001200	1.130			·	
		10						
$f^{3}(^{4}{ m I}^{\circ})5d6s^{2}$	₅G°	2			94		4	
n (1)00008-		3	11375.770	0.875	59		23	(4I°) 3G°
		4	13116.887	0.990	48		31	(4I°) 3H°
		5	13896.372	1.170	55		14	(4I°) 5H°
		6	15739.680	1.270	67		15	(4I°) 3H°
$\int 3(^4\mathrm{I}^\circ)5d6s^2$		4	11992.388	0.960	28	5G°	23	(4I°) 5H°
$4f^{3}(4I^{\circ})5d^{2}(^{3}F)$ ($^{6}I^{\circ})6s$	7I°	3	12369.470	0.300	89		8	(4I°)(3F) (4H°) 5H°
		4	12878.503	0.775	84		5	
		5	13641.835	1.000	79		7	(*I)(*F) (*I) *I
		6						
		7						
	1	8	1	1	1			

Nd I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Lea	ding percentages
$4f^{3}(^{4}\text{I}^{\circ})5d6s^{2}$		6	12505.754	1.020	46 ⁵ [°	24	(4I°) 3K°
$4f^{3(4{ m I}^{\circ})}5d^{2}({}^{3}{ m F})$ (6 ${ m M}^{\circ}$)6 s	5 _M °	7 8 9 10	12731.804 14466.980	0.920 0.930	86 83	5 6	(4I°)(3F) (6M°) 7M° (4I°)(3F) (6M°) 7M°
$4f^3(^4\mathrm{I}^\circ)5d6s^2$		6	13276.820	0.990	36 ³ K°	26	(4I°) 5H°
$4f^3(^4{ m I}^\circ)5d^2(^3{ m F})~(^6{ m H}^\circ)6s$	7H°	2 3 4 5 6 7 8	13621.805 13733.497 13982.696 14677.896 15598.133 16746.954	0.030 0.670 0.930 1.090 1.210 1.265	88 78 70 43 41 24	8 6 9 16 13 20	$ \begin{array}{c} (^4I^\circ)(^3F) \ (^4G^\circ) \ ^5G^\circ \\ (^4I^\circ)(^3F) \ (^4G^\circ) \ ^5G^\circ \\ (^4I^\circ)(^3F) \ (^4H^\circ) \ ^5H^\circ \\ (^4I^\circ)(^3F) \ (^6K^\circ) \ ^5K^\circ \\ (^4I^\circ)(^3F) \ (^4H^\circ) \ ^5H^\circ \\ (^4I^\circ)(^3F) \ (^6I^\circ) \ ^7I^\circ \\ \end{array} $
$f^3(^4\mathrm{I}^\circ)5d6s^2$	33.0	3 4 5	13630.361 16209.840 18133.495	0.775 1.055 1.190	53 70 64	35 19 6	(⁴ I°) ⁵ G°
$4f^{4(5I)}6s6p(^{3}P^{\circ})$	⁷ K°	4 5 6 7 8 9	13672.851 14311.994 15220.805 16282.827 17440.298 18709.864 19934.485	0.440 0.780 0.985 1.110 1.190 1.230 1.290			
$f^{4(5{ m I})}6s6p({}^3{ m P}^\circ)$	710	3 4 5 6 7 8	14438.845 15235.585 15625.975 16658.427 17837.470 19093.934 20523.475	0.390 0.745 0.850 1.050 1.150 1.200 1.230			
$f^3(^4{ m I}^\circ)5d6s^2$		7	14722.161	1.160	29 ³ I°	26	(4I°) 5I°
$f^{3}(^{4}I^{\circ})5d^{2}(^{3}F)$ ($^{6}K^{\circ}$)6s	5K°	5	14797.102	0.760	52	15	$(^4I^\circ)(^3F)~(^6H^\circ)~^7H^\circ$
$f^4 6s6p$	5H°	4	14801.945	0.825			
$f^{3}(^{4}\text{I}^{\circ})5d6s^{2}$	3H°	5	15113.956	1.110	48	31	(4I°) 5G°
$f^4 6s6p$	⁷ H°	2	15382.310	0.030			
$f^4 6s6p$	7H°	3	15484.689	0.690			
£3/A19\F 19/3E1\ /&Clo\@	5K°	5	15522.917	0.855			(410) (011) (400) 500
$f^{3(4}I^{\circ})5d^{2}(^{3}F)$ (6G°)6s	$^7\mathrm{G}^\circ$	4	15599.985	0.630	55	22	(4I°)(3F) (4G°) 5G°
		4	15718.726	0.755			
f^46s6p	1H°	6	15780.356 15863.061	0.945 1.020			
f 3(4I°)5d2(3F) (4H°)6s	- 11	4 3	15898.902	0.600	27 5H°	21	(41°)(3F) (6H°) 5H°
j (±)Θω (£' j (*1±)Όδ		ა 5	16028.050	0.600	4(°II	21	(I)(I)(M)) M
		4	16059.191	0.713			
$f^{3}(^{4}\text{I}^{\circ})5d^{2}(^{3}\text{F}) \ (^{6}\text{K}^{\circ})6s$		6	16128.341	0.950	43 ⁵ K°	13	(4I°)(3F) (6H°) 7H°
, ,		5	16163.811	0.925	10 11	7.0	(= /(= / (= / 1 ±
		5	16257.778	0.957			
$f^{3(4I^{\circ})}5d\ 6s^{2}$		7	16387.532	1.175	41 31°	39	(4I°) 5H°
*		5	16757.037	1.035		30	· - /

Nd I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lead	ing percentages
4f ³ (4I°)5d ² (3P) (6K°)6s	⁷ K°	6	16796.783	0.955	59	,	8	$(^4\mathrm{I}^\circ)(^3\mathrm{F})~(^4\mathrm{L}^\circ)~^5\mathrm{L}^\circ$
		5	16844.843	1.015				
		7	16845.388	1.120				
		3	16979.352	0.520				
		4	17032.146	1.020				
$4f^{3}(^{4}{\rm I}^{\circ})5d6s^{2}$	зН°	6	17085.070	1.215	46		25	$(^4\mathrm{I}^\circ)~^5\mathrm{G}^\circ$
$f^4 6s6p$		5	17162.930	1.135				
$f^{3(4I^{\circ})}5d^{2}(^{3}F)$ ($^{6}H^{\circ})6s$		6	17237.450	1.190	24	7Н°	17	$(^{4}I^{\circ})(^{3}F) (^{6}G^{\circ}) {^{7}G^{\circ}}$
		7	17289.640	1.070				
		4	17319.761	0.865				
		5	17387.528	0.735				
$4f^{3}(^{4}{\rm I}^{\circ})5d^{2}(^{3}{\rm P})~(^{6}{\rm I}^{\circ})6s$	7 <u>I</u> °	4	17652.848	0.755	73		9	$(^{4}I^{\circ})(^{3}F) (^{4}I^{\circ}) {}^{5}I^{\circ}$
		6	17748.814	1.090				
$4f^3({}^4{ m F}^\circ)5d6s^2$	5H°	3	17786.992	0.600	88		5	(2D°) 3G°
, ,		4	18741.337	0.930	90		3 3	(2D°) 3G° (2H°) 3I°
		5 6	19815.981 20673.022	1.110 1.185	78 70		6	(2G°) 3I°
		7						
		4	17790.018	0.920				
		5	17790.613	1.005				
		8	17973.309	1.200				·
		3	17976.888	0.900				
		5	18029.780	0.970				
		5	18067.942	0.920				
		7	18143.686	1.090				
		6	18171.819	1.080				
4f ³ (⁴ I°)5d ² (³ F) (⁴ K°)6s		6	18249.275	0.945	13	5K°	11	$(^{4}I^{\circ})(^{3}P) \ (^{6}I^{\circ}) \ ^{7}I^{\circ}$
1 (1)000 (1) (10)		5	18249.784	1.010				
		7	18256.805	0.955				
		5	18304.400	0.845				
		4	18436.007	1.075				
		6	18446.541	1.180				
		3	18589.901	0.660				
		5	18627.302	0.945				
4f ³ (⁴ I°)5d ² (³ F) (⁶ I°)6s		6	18679.139	1.080	17	7 I °	16	$(^{4}I^{\circ})(^{3}P) \ (^{6}I^{\circ}) \ ^{7}I^{\circ}$
J (J) J J J J J J J J J J		5	18732.556	0.940				
		6	19152.080	0.930				
		4	19209.262	0.990				
		9	19218.140	1.270				
		5	19226.443	0.925				
$4f^{3}(^{4}I^{\circ})5d^{2}(^{3}F)$ ($^{6}G^{\circ})6s$	₹G°	7	19271.240	1.260	54		16	$(^4\mathrm{I}^\circ)(^3\mathrm{F})~(^4\mathrm{H}^\circ)~^5\mathrm{H}^\circ$
-y (1)0w (1) (0)00		6	19281.068	1.055				
		6	19428.540	1.040				
		4	19590.241	0.785				
		5	19648.022	1.070				

Nd I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages				
		5	19700.856	0.560					
		7	19746.204	1.090					
		4	19769.507	0.920					
		8	19862.845	1.290					
		4	19956.814	0.910					
		6	19994.716	0.920					
		4	20046.654	0.900					
$4f^{3}(^{2}{ m H}^{\circ})5d6s^{2}$		6	20118.994	1.015	23 ³ K° 16 (² H°) ³ I°				
		5	20176.912	0.960	20 (11) 1				
		3	20281.957	0.895					
$f^4 6s6p$	5K°	5	20300.875	0.775					
-		5 6	21543.326	0.900					
		7 8	22761.440	1.035					
		9	24121.478 25518.700	1.135 1.220					
$f^4 6s6p$	5I°	4	20360.673	0.735					
		6	20432.386	1.040					
		4	20478.962	0.895					
		5	20541.833	0.990					
		7	20583.890	1.070					
$^{3}(^{2} ext{H}^{\circ})5d6s^{2}$		3	20594.915	0.910	$32 \ ^{3}\text{G}^{\circ}$ $10 \ (^{4}\text{F}^{\circ}) \ ^{5}\text{G}^{\circ}$				
		6	20703.113	1.035					
		5	20827.652	0.985					
		6	20839.206	0.940					
		4	20859.563	1.080					
		6	20918.059	0.840					
		5	20963.071	0.990					
$f^4 6s6p$	5I°	5	21005.439	0.960					
		4	21009.134	1.280					
		7	21025.517	1.235					
		4	21184.881	0.920					
		3	21227.550	1.032					
		7	21239.427	1.250					
		5	21271.524	1.040					
		7	21285.976	1.050					
		6	21314.254	1.060					
		4	21314.439	0.985					
		6	21345.572	0.975	·				
		4	21345.837	0.880					
		7	21411.523	1.067					
		5	21469.140	1.220					
		4	21488.390	0.910					

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
$f^4 6s6p$	5H°	3	21572.610	0.650			6	23040.538	1.07
		7	21640.050	0.980			5	23049.760	1.06
		6	21718.328	0.960			4	23088.680	1.25
		5	21726.771	1.000			5	23198.130	1.08
		4	21758.278	0.735			4	23203.810	1.20
		6	21797.900	0.990			3	23217.930	1.06
		7	21908.639	0.970			5	23241.915	0.77
		4	21926.903	0.860			6	23283.635	1.04
		3	21951.870	1.070			6	23324.278	1.0
		4	22010.340	0.815			6	23350.793	0.8
		7	22041.570	1.020			5	23433.840	0.9
		6	22049.736	1.040			4	23438.440	0.8
		4	22076.640	1.035			8	23474.023	1.1
		6	22123.898	1.170			3	23487.080	0.6
		5	22128.600	1.060			6	23496.003	0.9
		5	22192.297	1.090			7	23517.752	1.0
		1	22215.05+x	1.395	4f4(5I)5d (6L)6p	7 M °	6	23553.851	0.7
		3	22222.240	1.245			7	24529.411	0.8
		3	22229.000	0.705			8 9	25596.944 26740.268	0.9
		5	22241.911	0.770			10	27970.520	1.1
		5	22255.855	1.030			11 12	29165.380 30484.586	1.2
		6	22303.048	1.080					
		7	22320.290	1.128			4	23562.766	0.9
		5	22367.268	1.085			5	23573.049	1.0
		5	22406.550	0.885			6	23578.372	0.9
		4	22471.210	0.995			8	23652.731	1.1
	1	7	22482.764	1.120			7	23744.797	1.0
		3	22490.970	0.830			6	23755.750	1.0
		5	22530.372	0.850			3	23761.870	1.1
		6	22560.071	1.135			5	23801.447	1.0
		5	22605.665	1.000			5	23829.550	1.1
		4	22622.000	1.280			4	23845.890	1.1
		4	22622.790	1.135			7	23876.922	1.0
		3	22631.490	1.130			6	23889.268	1.0
		4	22677.810	0.885			4	23953.397	0.8
		5	22736.693	1.070			5	23968.310	0.9
		6	22738.850	0.985			6	23985.826	1.1
		4	22814.600	0.975			7	23991.098	1.2
		5	22814.888	0.755			6	23996.513	1.0
		6	22870.686	1.164			4	24001.071	1.1
		3	22929.940	0.765			4	24070.241	0.8
		7	22938.734	1.065			8	24077.780	1.0
		3	22956.500	0.990			8	24168.695	1.10
		4	23016.512	0.810			4	24175.88	0.96

Nd I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		7	24212.928	1.060			8	25382.895	1.14
		4	24247.460	0.680			6	25422.219	0.91
		7	24270.715	0.990			4	25448.064	1.1
		5	24291.930	1.060			5	25470.463	0.58
		5	24364.440	1.090			4	25476.540	0.9
		5	24428.576	1.190			6	25478.135	1.0
		4	24479.510	0.835			3	25499.930	0.8
		5	24582.166	0.860			7	25503.978	1.1
		5	24586.233	1.110			8	25513.721	1.1
		6	24589.973	1.010			3	25545.110	0.7
			24606.125	0.840			5	25555.233	0.9
		4					7	25596.531	1.0
		4	24674.567	1.060			2		0.5
		8	24688.275	1.155				25604.770	
		6	24702.585	1.135			6	25609.372	0.8
		7	24729.558	1.150			4	25621.125	1.1
		5	24745.790	1.185			4	25640.896	1.1
		6	24751.047	0.925			3	25642.460	0.9
	I	8	24773.380	1.145			6	25662.081	1.1
		3	24775.168	1.352			6	25750.895	1.2
		5	24868.817	0.960			3	25787.780	0.9
		6	24922.410	1.080			4	25791.080	0.9
4f ⁴ (⁵ I)5d (⁶ L)6p?	a 7L°?	5	24934.498	0.625			7	25849.358	1.0
<u>1</u>) (1)θα (1)θρ:	а п.	6	25918.240	0.825	$4f^{4} 5d6p$?	<i>b</i> ⁷ L°?	5	25864.308	0.7
		7 8	26611.603 27328.386	$0.960 \\ 0.945$	2, эмэр.		6	26842.129	3.0
		9	28344.032	1.075			$\frac{7}{8}$	27785.804 28821.577	0.9
		10	29581.923	1.190 1.230			9	29886.558	1.1
		11	30874.252	1.230			10 11	30993.181 32107.527	1.2
		9	24935.096	1.150			11		
		7	24968.490	1.145			7	25885.747	0.9
		6	24984.183	1.210			5	25924.462	1.0
		7	25063.720	1.100			5	26029.075	1.0
		5	25074.779	1.020			3	26060.685	1.5
		6	25114.815	1.225	$4f^4 5d6p$?	5K°?	5	26072.305	0.8
		9	25141.541	1.120	4j - 3aop.	ΙΧ .	6	27391.160	0.9
		3	25164.400	1.050			7 8	28527.728 29754.930	1.0
		8	25190.770	1.195			9	31263.201	1.2
		6	25196.454	1.120			9	200000000	0.6
				1.120			3	26096.006	0.9
		ry m	25197.765	0.995			7	26154.957	0.9
		5	25227.122				3	26162.810	1.1
		8	25280.940				4	26232.250	1.0
		3	25282.385	1.360			7	26326.958	1.5
		6	25301.10	1.21			5	26345.236	1.1
		7	25349.575				3	26345.503	1.0
		6	25354.565	0.940			7	26394.658	1.4

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		3	26395.035	1.060			4	27489.817	1.085
		4	26449.260	0.870			7	27504.046	1.125
		3	26462.900	0.865			5	27523.700	0.970
		5	26484.161	1.035			3	27582.269	0.945
		5	26502.625	1.180			7	27620.780	1.120
		9	26510.903	1.165			3	27620.944	0.810
		6	26511.022	1.040			3	27694.579	1.060
		5	26595.445	1.015			7	27714.489	1.110
		4	26603.506	0.935			4	27716.710	0.890
		7	26634.857	1.125			4	27780.417	1.030
				1.000					
		4	26662.411				6	27831.090	1.035
		4	26683.773	1.130			10	27835.822	1.200
		6	26695.703	1.040			5	27841.055	0.990
		8	26763.662	1.210			9	27842.460	1.160
		4	26770.528	1.200			4	27860.481	1.125
		8	26782.921	1.118	$4f^4 5d6p$?	b 7K°?	4	27880.750	0.505
		6	26816.438	1.215			5 6	28514.218 29387.657	0.858
74(5I)5d (6L)6p?	5 M °?	7	26878.120	0.805			7	30266.607	1.088
(1)ou (1)op.		8	27961.346	0.995			8	31219.015 32314.250	1.120
	9 10	29309.910	1.025			9 10	33374.315	1.170	
	10	30476.670 31637.048	1.170 1.205			_	27002 569		
		0					5	27902.568	1.040
		6	26907.981	1.125			6	27913.665	0.910
$^{6} 5d6p?$	a ⁷ K°?	4	26962.959	0.545			7	27953.705	1.107
		$rac{5}{6}$	27691.315 28680.378	0.890 1.025			4	27989.990	0.930
		7	29606.670	1.073			3	27998.195	0.915
		8 9	30604.756 31686.040	1.160 1.173			5	28000.141	0.915
		10	32872.574	1.175			4	28058.160	0.795
'4 F 10 9	ET 00						4	28062.501	0.590
$^{4}5d6p$?	5L°?	$\frac{6}{7}$	27023.300	0.995			5	28178.960	0.965
		8	28160.690	1.032			4	28210.680	1.010
		9 10	29383.155 30608.650	1.115 1.183			4	28241.151	1.020
		10	50008.050	1.109			5	28280.559	1.070
		8	27044.344	1.015			6	28309.200	1.000
		7	27085.423	1.175			3	28311.270	0.800
		8	27130.927	1.17			4	28393.805	0.980
		4	27144.080	0.965			8	28426.752	0.945
		4	27230.298	1.125					
		3	27258.336	0.720			8	28514.659	1.150
		4	27328.788	0.570			5	28531.428	1.115
		3	27329.680	0.995			5	28567.235	1.090
							8	28589.855	1.175
		7	27374.385	1.235			6	28602.740	1.100
		2	27435.677	0.910			5	28661.687	0.960
		6	27454.721	1.035			4	28719.510	1.070
		5	27474.552	1.080					

Nd I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	ŋ
		5	28722.845	0.895			3	29998.232	1.0%
		3	28759.995	0.935			5	30014.270	1.03
		9	28781.120	1.215			5	30060.045	0.95
		8	28787.140	1.175			5	30090.733	0.96
		3	28825.468	1.090			5	30099.285	1.05
		5	28843.988	1.100			5	30139.860	1.07
		5	28862.723	0.945			5	30169.707	1.00
		6	28946.028	1.208			4	30202.415	1.00
		7	28947.443	1.090			2	30238.3	0.75
		7	29008.809	1.120	$4f^4 5d6p$?		10	30295.030	1.21
		9	29060.965	1.015			3	30399.600	0.89
		6	29177.585	0.960			4	30494.264	1.03
		4	29319.949	0.910		:	8	30726.324	1.14
		10	29340.570	1.217			8	30805.309	1.15
		5	29425.514	0.965			2	30875.395	0.79
		5	29473.175	1.120			6	31000.583	1.00
		6	29497.260	1.268	$4f^4 5d6p?$		10	31260.190	1.24
		6	29510.442				2	31331.36+x	0.87
		6	29564.876	1.047	$4f^4 5d6p$?		8	31412.145	1.06
		9	29764.815	1.185	$4f^4 5d6p?$		11	31666.660	1.10
		5	29766.715	0.893			9	31756.355	1.20
		7	29766.974	1.090			9	31904.270	1.24
		10	29826.357	1.020					
		9	29956.145	1.138			+		-
		8	29980.378	1.100	Nd II (6I _{7/2})	Limit		44562	

Nd II

(Pr I sequence; 59 electrons)

Z = 60

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)\ 4f^46s\ ^6\mathrm{I}_{7/2}$

Ionization energy 86500± 600 cm⁻¹

 $10.73 \pm 0.08 \text{ eV}$

Identified even configurations

 $4f^46s$, $4f^45d$, $4f^35d6p$

Identified odd configurations

 $4f^35d^2$, $4f^35d6s$, $4f^46p$

The original analysis of this spectrum by Albertson, Harrison, and McNally [1942] gave the $4f^4(^5\mathrm{I})6s$ levels, 20 of the low $4f^4(^5\mathrm{I})5d$ levels belonging to the 5 sextet terms, and 57 upper odd levels. The analysis was based on wavelengths measured for the MIT Wavelength Tables [1939], supplemented by King's temperature classifications of Nd lines, and on Zeeman-effect data obtained at fields up to 8.7 T. In his work at Amsterdam, Schuurmans [1946] independently duplicated part of the earlier analysis. His published data included the $4f^4(^5\mathrm{I})6s$ levels and the levels of the two lowest $4f^4(^5\mathrm{I})5d$ terms.

The more recent progress on Nd II at Amsterdam and at Orsay has paralleled the Nd I work [see Nd I]. Since the wavelength and Zeeman-effect observations include both spectra, the summary of these need not be repeated. The remarks concerning the three-place level values and g values for Nd I also apply to Nd II.

The main references for the levels of Nd II are the theses of Wyart [1968] and Hoekstra [1969], the 1970 paper by Blaise, Chevillard, Verges, and Wyart, and the report by Blaise, Wyart, Hoekstra, and Kruiver [1971]. About 500 odd levels and somewhat less than 200 even levels are now known. The positions and g values given here are mainly from the tables of Blaise et al. [1970], with a few additional levels [Hoekstra, 1969; Wyart, private correspondence, 1972] and some corrections kindly supplied by Blaise and Wyart.

In his 1973 thesis, Wyart extended his original calculations [1970] of Nd II $4f^46s$ and $4f^45d$ to include effective interactions and configuration interaction. The eigenvector percentages for 78 levels of these configurations are taken from the thesis.

The $10~4f^4(^5\mathrm{I})6s$ levels fall distinctly into $5~J_1j$ -coupling pairs [Schuurmans, 1946; Wybourne, 1965], and the experimental g values agree well with the theoretical values for J_1j coupling. The structure and g values for the levels of $4f^46s$ based on higher core terms do not lead to unambiguous J_1j designations, however, and no calculation in this scheme is available. We have thus listed J_1j designations only for the $10~4f^4(^5\mathrm{I})6s$ levels, as alternates to the usual $^6\mathrm{I}$, $^4\mathrm{I}$ designations of LS coupling. The J_1j names appear in the last column, following the purities in the LS scheme.

About 100 high even levels have been found, beginning with a $^6K_{9/2}$ level at 34608 cm $^{-1}$, but most of these have not been interpreted.

Some preliminary calculations for the odd configurations $4f^3(5d+6s)^2$ and $4f^4(^5I)6p$ have been carried out [Blaise et al., 1971], but the details have not been published. In their discussion of the odd levels, Blaise et al. state that "the theoretical interpretation ... has not yielded satisfactory results. Some of the difficulty must almost undoubtedly be attributed to the use of a truncated basis set $f^3ds+f^3(^4I)d^2$, the basis of f^3ds being complete." They were able, however, to assign a number of the odd levels to low terms of the three identified odd configurations. Since overlapping terms of the same type occur, most of the particular groupings are given as questionable.

No levels have yet been assigned to the $4f^36s^2$ configuration, which Blaise et al. [1971] suggest may begin around 14000 cm⁻¹.

The ionization energy is from Sugar and Reader.

References

Albertson, W. E., Harrison, G. R., and McNally, J. R., Jr., Phys. Rev. 61, 167 (1942). EL CL W ZE

Blaise, J., Chevillard, J., Verges, J., and Wyart, J. F., Spectrochim. Acta, Part B 25, 333 (1970). EL CL W ZE

Blaise, J., Wyart, J. F., Hoekstra, R., and Kruiver, P. J. G., J. Opt. Soc. Am. 61, 1335 (1971). EL ZE PT

Harrison, G. R., Massachusetts Institute Tech. Wavelength Tables, 429 pp. (John Wiley & Sons, New York, 1939; MIT Press, Cambridge, 1969). W

Hassan, G. E. M. A., Thesis, Univ. Amsterdam, 175 pp. (1962). EL CL W ZE IS

Held, S., Israel Atomic Energy Commission, IA-927, 37 pp. (1964). W

Hoekstra, R., Thesis, Univ. Amsterdam, 64 pp. (1969). EL W ZE PT

King, A. S., Astrophys. J. 78, 9 (1933). W

Klinkenberg, P. F. A., Physica (Utrecht) 12, 33 (1946). ZE

Klinkenberg, P. F. A., Thesis, Univ. Amsterdam (1955). EL CL W ZE

Morillon, C., Spectrochim. Acta, Part B 25, 513 (1970). CL W

Schuurmans, Ph., Physica (Utrecht) 11, 419 (1946). EL CL ZE

Sugar, J., and Reader, J., J. Opt. Soc. Am. 55, 1286 (1965). IP

van de Vliet, H. J., Thesis, Univ. Amsterdam, 85 pp. (1939). ZE

Wyart, J. F., Thesis (Third Cycle), Univ. Paris, Orsay, 106 pp. (1968). EL CL W ZE PT

Wyart, J. F., J. Phys. (Paris) 31, 559 (1970). EL ZE PT

Wyart, J. F., Thesis, Univ. Paris-Sud, Orsay, 194 pp. (1973). EL ND ZE PT [Parameter values for the Nd II calculation have been published by Wyart, J. F., Blaise, J., and Camus, P., Phys. Scr. 9, 325 (1974). PT]

Wybourne, B. G., Spectroscopic Properties of Rare Earths, pp. 50-53 (John Wiley & Sons Inc., New York, 1965). PT

[July 1976]

Nd II, Even Parity

Configuration	Term	J	Level (cm ⁻¹)	g		Leading	g percen	tages
4f4(5I)6s	eI	7/2	0.000	0.445	98	or		$(^{5}I_{4}) (4,^{1}/_{2})$
		9/2	513.322	0.805	70	or		$(^{5}I_{4})$ $(4,^{1}/_{2})$
	į į	11/2	1470.097	1.025	80	or		$(^{5}I_{5})$ $(5,^{1}/_{2})$
		$^{13}/_{2}$	2585.453	1.150	87	or		$(^{5}I_{6})(6,^{1}/_{2})$
		$^{15}/_{2}$	3801.917	1.235	93	or		$(^{5}I_{7})(7,^{1}/_{2})$
		17/2	5085.619	1.295	97	or		$(^{5}I_{8}) (8,^{1}/_{2})$
1f4(5I)6s	4]	9/2	1650.199	0.755	70	or		$(^{5}I_{5}) (5,^{1}/_{2})$
		11/2	3066.750	0.980	80	or		$(^{5}I_{6}) (6,^{1}/_{2})$
		13/2	4512.481	1.110	87	or		$(^{5}I_{7})(7,^{1}/_{2})$
		15/2	5985.571	1.205	92	or		$(^{5}I_{8}) (8,^{1}/_{2})$
$1f^{4(5)}5d$	eГ	11/2	4437.558	0.620	96		1	(3H4) 4K
		13/2	5487.657	0.850	97		1	$(^{3}H4)$ ^{4}K
	i i	$^{15}/_{2}$	6637.411	1.000	98		1	(5I) 6K
		17/2	7868.896	1.110	98		1	$(^{3}K2)$ ^{4}M
		19/2	9166.209	1.180	98		1	$(^{3}K2)$ ^{4}M
		21/2	10516.759	1.240	97		2	(3K2) 4M
f ⁴ (⁵ I)5d	eK	9/2	6005.271	0.550	95		2	(⁵ I) ⁴ I
		11/2	6931.800	0.840	96		1	(5I) 4I
		13/2	7950.070	1.015	96		1	(5I) 6I
		15/2	9042.743	1.130	96		1	(5I) 4L
		17/2	10194.786	1.200	95		2	(5I) 4L
		19/2	11392.171	1.250	93		3	(5I) 4L
$f^{4}(^{5}I)5d$	eI	7/2	7524.740	0.480	82		13	(⁵ I) ⁴ H
		9/2	8420.321	0.840	90		6	(5I) 4H
		11/2	9357.906	1.035	93		1	(5G) 6I
	İ	13/2	10337.097	1.140	92		2	(5I) 4K
		15/2	11373.472	1.230	90		4	(5I) 4K
		17/2	12459.978	1.280	88		5	(⁵ I) ⁴ K
$f^{4(5)}5d$	eG	3/2	8716.462	0.010	91		5	(5F) 6G
		5/2	8796.378	0.760	58		30	(5I) 4G
		7/2	9198.395	0.925	40		26	(⁵ I) ⁴ H
		9/2	10883.260	1.140	43		23	(⁵ I) ⁴ H
		11/2	12021.350	1.157	40		19	(5I) 6H
		13/2	12334.216	1.325	52		22	(⁵ I) ⁴ H

Nd II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Le	ading percentages
4f4(5I)5d	eН	5/2	9674.844	0.455	57		21	(5I) 6G
4) (1)00	**	7/2	10666.777	0.435				
					61		12	(5I) 4G
		9/2	11709.600	1.050	66		13	(⁵ I) ⁴ H
		11/2	12887.081	1.165	50		25	(⁵ I) ⁴ H
		13/2	13298.888	1.285	46		30	(5I) 6G
		15/2	14481.957	1.333	91		3	(⁵ I) ⁴ I
$4f^4(^5I)5d$		9/2	9877.173	1.095	34	eG	33	(⁵ I) ⁴ H
$4f^{4(5I)}5d$		7/2	9908.650	0.850	36	4H	29	(⁵ I) ⁶ G
$4f^{4}(^{5}F)6s$	6F	1/2	10256.056	-0.650	96		3	(³ D1) ⁴ D
		$^{3}/_{2}$	10439.238	1.050	92		4	(5F) 4F
		$^{5/2}$	10786.783	1.300	88		6	(5F) 4F
		7/2	11377.571	1.390	91		5	(5F) 4F
		9/2	12087.170	1.430	91		3	(5F) 4F
		11/2	13048.625	1.450	94		3	$(^3G2)$ 4G
4f4(5I)5d	4G	5/2	10887.246	0.520	43		35	(5I) 6H
• • •		7/2	12222.185	0.957	57		15	(5I) 6H
		9/2	13703.425	1.101	57		10	(⁵ I) ⁴ H
		11/2	15148.000	1.230	67		8	(⁵ I) ⁴ H
$4f^{4(5I)}5d$		11/2	10942.012	1.230	39	⁶ G	31	(⁵ I) ⁴ H
4f4(5F)6s	4F	3/2	11440.733	0.430	92		3	(5F) 6F
4) (1)00		5/2	12091.170	1.055	88		6	
		7/2	12879.050	1.230	88		4	
		9/2	13971.624	1.325	91		3	
4f4(5I)5d	4L	13/2	11580.863	0.805	84		5	(3K2) ⁴ L
4) (1)34		15/2	12906.575	0.970				(3K2) 4L
		· .			84		5	
		$\frac{17}{2}$ $\frac{19}{2}$	14301.794 15749.198	1.074 1.160	82 80		5 5	(³ K2) ⁴ L (⁵ I) ⁶ K
4f ⁴ (⁵ S)6s	6S	5/2	11748.832	1.980	94		4	(³ P2) ⁴ P
4f4(5I)5d	4K	11/2	12276.210	0.870	67		14	(⁵ I) ⁶ H
4) (1)34	1	$\frac{13}{2}$	13597.857	1.010				(5I) 6H
		15/2			68		11	
			14957.611	1.090	52		20	(3K2)6s 4K
		17/2	16610.554	1.170	57		16	(3K2)6s 4K
$4f^{4}(^{5}S)6s$	4S	3/2	12747.610	1.980	95		3	(³ P2) ² P
$4f^{4}(^{5}I)5d$	4 <u>I</u>	9/2	13246.181	0.815	66		12	(5I) 4G
		11/2	14624.778	1.008	66		8	(⁵ I) ⁴ G
		$^{13}/_{2}$	15923.260	1.115	69		12	(⁵ I) ⁴ H
		$^{15}/_{2}$	17001.500	1.195	76		2	(⁵ I) ⁴ K
4f4(3K2)6s	4K	11/2	14049.810	0.767	76		21	$(^{3}K1)$ ^{4}K
		$^{13}/_{2}$	14387.400	0.953	51		16	(3K2) 2K
		$^{15}/_{2}$	15357.954	1.073	40		25	(⁵ I)5d ⁴ K
		17/2	16295.726	1.171	46		20	(⁵ I)5d ⁴ K
$4f^4(^5\mathrm{I})5d$		13/2	14259.383	1.223	43	4H	24	(⁵ I) ⁶ H
$4f^4(^3 ext{K2})6s$	² K	13/2	15417.300	0.920	53		15	$(^{3}K1)$ ^{2}K
		15/2	16868.735	1.043	52		12	
	6K	9/2	34608.625	0.680				
$4f^{3}(^{4}I^{\circ})5d$ ($^{5}L^{\circ})6p$	eW	13/2	34782.470	0.785				
- , , , , ,		15/2	36704.880	0.907				
		17/2	38741.194	1.042				
		19/2	40832.415	1.118				•
		21/2	43005.780*	1.177				

Nd II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	
		13/2	34851.551	0.982			5/2	39901.515	0
		11/2	34889.574	0.905			17/2	40234.325	1
		11/2	34915.157	0.960			15/2	40247.310	1
		9/2	35827.550	0.705			3/2	40447.803	(
							9/2	40525.585	1
3.5d6p	еГ	$\frac{11}{2}$ $\frac{13}{2}$	36352.460 37531.565	0.735 0.845			15/2	40616.180	i
		15/2	38486.455	1.010			5/2	40647.585	
		17/ ₂ 19/ ₂	40136.516	1.097			9/2	40783.030	
		21/2					7/2	40837.590	
		11/2	36434.621	1.085			17/2	40857.160	
		13/2	36722.170	0.920			9/2	40982.115	
	eI	7/2	37305.750	0.500			15/2	41176.480	
		7/2	37431.863	0.645			5/2	41257.665	l
		11/2	37449.465	0.935			5/2	41277.210	
		9/2	37664.875	0.825			17/2	41352.438	
		13/2	37724.558	1.070			3/2	41532.990	
		11/2	37741.662	0.900			17/2	41751.770	İ
		9/2	37799.820	0.820			19/2	41912.860	
		11/2	37836.990	0.823			9/2	41944.192	i
		13/2	37890.200	0.945			15/2	42079.900	
		9/2	37935.155	0.825			15/2	42205.475	Ì
	eН	5/2	37979.815	0.560			7/2	42271.825	
		9/2	37985.185	0.840			5/2	42424.880	
		13/2	38033.720	0.990			5/2	42475.500	
		9/2	38060.876	1.020			9/2	42695.670	
		9/2	38111.085	0.985			9/2	42750.345	
		9/2	38134.666	0.875			19/2	42816.300	
		11/2	38275.035	0.933			17/2	42931.930	
		7/2	38431.770	0.590			19/2	42945.320	İ
		17/2	38629.635	1.170			9/2	43014.770	
	6K	9/2	38644.140	0.615			9/2	43062.054	
		9/2	38698.658	0.810			9/2	43176.118	
		11/2	38736.080	0.915			7/2	43212.630	
		13/2	38803.795	0.965			9/2	43291.858	
		11/2	38852.450	1.150			7/2	43326.700	
		9/2	38883.812	0.870			9/2	43354.940	
		15/2	38920.650	1.030			9/2	43422.595	
		15/2	38995.110	1.070			19/2	43499.935	
		15/2	39136.695	1.083			9/2	43883.572	
		7/2	39442.825	0.805	•		17/2	43938.545	
		7/2	39542.970	0.910			17/2	44103.625	
		15/2	39602.625	1.050			11/2	44104.990	
		11/2	39657.295	0.985			11/2	44205.836	
		15/2	39685.135	1.050			11/2	44596.330	

Nd II, Even Parity—Continued

Nd II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		11/2	44803.040	1.085			13/2	45802.216	1.055
	6H	5/2	45039.200	0.355			15/2	47020.370	1.154
		7/2	45097.375	0.766					
		9/2	45149.510	1.065					
		9/2	45338.830	0.950	Nd III (⁵ I ₄)	Limit		86500	

Nd II, Odd Parity

Nd II, Odd Parity

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
√ ³ (4I°)5d²(3F)	eW.	13/2	9228.755	0.690		4K°	11/2	13550.290	0.802
		15/ ₂ 17/ ₂	10667.120	0.880			9/2	13562.387	0.820
		19/2	12199.450 13819.760	1.010 1.103			11/2	13710.220	0.860
		21/2	15518.245	1.168		6H°	5/2	1	0.360
		23/2						13804.230	
4 ⁽³ (4I°)5d2(3F)?	6K°?	9/2	10091.380	0.560		eI.	9/2	13886.989	0.775
		11/2	11939.245	0.795		⁴ H°	7/2	14077.532	0.710
		13/ ₂ 15/ ₂	13337.340	1.000			9/2	14282.608	0.820
		17/2	14835.625 16395.062	1.137 1.220		eH.	7/2	14328.280	0.810
		19/2	18029.270	1.270			11/2	14365.015	0.800
∜ ⁽³ (4I°)5d²(3F)?	6L°?	11/2	11273.130	0.642		6H°	5/2	14487.855	0.320
4 (1)5a (1):	П.	13/2	12013.230	0.845		1	9/2		
		15/2	13479.555	1.007				14843.544	0.863
		17/ ₂ 19/ ₂	15130.550	1.116			9/2	15013.221	0.950
		21/2	16906.758	1.190			11/2	15139.616	1.000
							5/2	15207.207	0.575
4 ∫ ³ (4I°)5d (5K°)6s?	eK.	9/2	11310.295	0.585		4K°	13/2	15309.080	0.970
		11/ ₂ 13/ ₂	12491.294 13615.183	0.840 1.010		eH.	7/2	15345.880	0.820
		15/2	14894.196	1.110			3/2	15420.180	0.010
		17/2	16325.588	1.190			9/2	15492.750	0.975
		19/2	17888.700	1.230			5/2		
	eI°?	7/2	12232.706	0.520				15616.720	0.770
		9/2	13063.670	0.805			7/2	15777.398	1.010
		11/ ₂ 13/ ₂	14097.683	1.015			15/2	16113.148	1.130
		15/2	15299.680 16700.008	1.095 1.210		e L°	17/2	16123.834	1.118
		17/2	18171.385	1.260			7/2	16144.623	0.855
	6L°?	11/2	10000 715	0.715		6H°	9/2	16192.780	1.090
	- L	13/2	12306.715 13247.410	0.715 0.845			11/2	16237.065	0.925
		15/2	14673.177	1.012	4.60(470) 7.10(070) 0	CYZOO			
		17/2	17349.790	1.102	$4f^{3}(^{4}I^{\circ})5d^{2}(^{3}P)$?	6K°?	9/2	16374.100	0.622
		19/ ₂ 21/ ₂					11/2	16490.950	1.105
							9/2	16565.518	0.885
	eI。	7/2	12861.407	0.470		eI。	13/2	16570.747	1.150
√ 3 5d²?	4L°?	13/2	13545.970	0.885			9/2	16815.170	0.960
		15/2	15348.990	0.990			11/2	16817.242	0.868
		17/2	10.10% 007	1 150					
		19/2	19467.625	1.176			11/2	17186.885	0.925

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	ij
		7/2	17201.292	0.825			7/2	22850.552	0.755
		9/2	17356.849	1.045			11/2	23127.457	1.10 -
		13/2	17465.321	1.045			11/2	23159.979	1.06 -
	4K°	17/2	17544.545	1.205			9/2	23171.114	1.050
	eK.	11/2	17606.010	0.855		i	7/2	23197.787	1.01
	e L °	19/2	17701.145	1.191	$4f^{4(5)}6p$	eK.	9/2	23229.991	0.750
		11/2	17848.005	1.230	1) (1)0p		11/2	24445.389	0.91
	eH.	13/2	18007.940	1.205			13/ ₂ 15/ ₂	25524.485 26912.765	1.030 1.130
		7/2	18120.909	1.075			17/2	28418.965	1.200
		5/2	18354.613	0.340			19/2	30002.302	1.260
		11/2	18362.237	1.175		eK.	19/2	23292.475	1.240
		15/2	18527.325	1.320			11/2	23378.327	1.03.4
		13/2	18757.106	1.030			7/2	23397.385	0.84
	eK.	9/2	18831.219	1.090			9/2	23409.537	1.010
		7/2	19026.065	0.985			11/2	23458.954	1.030
		13/2	19113.633	1.085			9/2	23537.387	0.94
	eH.	15/2	19232.234	1.230			7/2	23636.759	1.130
		9/2	19698.640	1.145			5/2	23706.705	0.785
		11/2	19703.017	0.965			15/2	23737.463	1.060
		9/2	.19758.554	1.055			9/2	23771.040	1.010
		9/2	20058.494	1.152			13/2	23802.190	1.075
	eK.	15/2	20297.802	1.152			11/2	23857.278	1.010
		11/2	20617.814	1.175			13/2	23991.408	1.070
		13/2	20646.951	1.153			9/2	24003.714	1.050
	4 I °	9/2	20672.581	0.780			9/2	24053.354	0.96
	4H°	7/2	20830.048	0.690			7/2	24130.300	1.190
	4K°	11/2	20907.332	0.890			11/2	24134.095	1.029
		9/2	21050.626	1.070			13/2	24243.228	1.16
	eH.	5/2	21241.085	0.310			7/2	24316.040	1.14
		7/2	21291.761	0.825			9/2	24321.262	0.900
		7/2	21411.258	0.895			13/2	24418.720	1.100
		11/2	21506.550	1.080			7/2	24468.033	0.94
	eK.	17/2	21729.555	1.195		4K°	15/2	24547.470	1.179
		13/2	21870.565	1.095			9/2	24569.784	1.15
		7/2	21871.522	0.630			11/2	24685.721	1.100
	4H°	9/2	21918.068	0.940		⁴ I°	13/2	24721.059	1.050
		9/2	22187.658	0.980			9/2	24797.387	0.97
		11/2	22212.745	1.195			11/2	24842.878	0.9%
		9/2	22358.081	1.080			7/2	24913.863	0.860
		7/2	22389.854	0.755			13/2	24955.215	1.100
		9/2	22455.624	1.000			11/2	25014.930	1.129
	4K°	13/2	22578.175	0.995					
		9/2	22663.728	0.870					
	4I°	11/2	22696.885	0.965		1			

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
$4f^4(5I)6p$	eIo	7/2	25044.675	0.820			13/2	26328.010	1.083
		9/ ₂ 11/ ₂	25877.176 26772.093	0.950 1.020			7/2	26369.065	1.285
		13/2	27744.196	1.080			9/2	26380.727	1.035
		15/ ₂ 17/ ₂	28856.898 30246.771	1.160 1.220			7/2	26422.560	1.230
				4			11/2	26455.191	1.090
		11/2	25080.880	0.990			13/2	26459.602	1.250
		15/2	25120.324	1.165			15/2	26473.775	1.231
		7/2	25138.556	1.200			13/2	26489.150	1.150
		9/2	25190.458	1.150			9/2	26500.422	1.085
		11/2	25200.913	1.135		4K°	17/2		1
		5/2	25218.025	1.345		I K	9/2	26583.980	1.223
		15/2	25235.677	1.110				26670.590	1.155
		17/2	25286.074	1.185			7/2	26702.003	1.290
		7/2	25295.288	1.035			13/2	26738.805	1.090
		11/2	25352.384	1.150			9/2	26759.238	1.025
		15/2	25353.631	1.190			11/2	26761.110	1.130
		9/2	25389.217	1.030			7/2	26793.331	1.095
		13/2	25394.612	1.138			7/2	26907.528	1.460
		11/2	25481.274	1.025			9/2	26926.997	0.990
		7/2	25519.085	1.170			11/2	26991.889	1.200
		11/2	25561.194	1.360			9/2	27014.265	1.105
		7/2	25648.870	1.230			9/2	27069.997	1.095
		17/2	25678.424	1.135			13/2	27124.095	1.110
		5/2	25745.016				11/2	27146.571	1.225
		9/2		1.200			9/2	27179.602	0.915
			25771.527	0.985			9/2	27233.527	1.130
		7/2	25844.366	1.125			7/2	27244.020	1.190
		11/2	25873.144	1.175	$4f^{4(5I)}6p$	4K°	11/2	27245.453	0.055
1/4(5I)6p	eH.	5/2	25876.559	0.655	ij (1)0p	17	$^{13}/_{2}$	28563.485	0.955 1.044
		7/ ₂ 9/ ₂	26640.085 27425.015	0.970 1.170			$\frac{15}{2}$ $\frac{17}{2}$	30094.850	1.105
		11/2	28285.619	1.085			/2	31675.295	1.180
		13/ ₂ 15/ ₂	29434.270 30707.282	1.215 1.205			7/2	27299.543	1.015
							13/2	27308.940	1.090
		13/2	25918.386	1.228			11/2	27352.280	1.035
		15/2	26031.487	1.140			7/2	27444.545	1.070
	410	5/2	26041.212	0.940			15/2	27445.854	1.110
	4I°	15/2	26055.177	1.160			13/2	27448.715	1.135
		9/2	26108.345	1.055			7/2	27504.112	1.168
		5/2	26116.051	1.250			11/2	27518.405	1.020
		5/2	26170.820	1.250			9/2	27536.610	1.325
		11/2	26182.478	1.020			9/2	27553.523	1.125
		7/2	26206.821	0.925			15/2	27611.719	1.100
		13/2	26210.748	1.105			5/2	27614.956	0.730
		9/2	26227.110	1.050			7/2	27638.675	1.150
		11/2	26274.095	1.025			7/2	27694.620	0.725
		7/2	26292.502	1.215			13/2	27721.442	1.175

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	<i>g</i>
		11/2	27769.432	1.102			15/2	29362.528	1.140
		9/2	27774.135	1.025			11/2	29425.150	1.085
		11/2	27781.770	1.130			9/2	29521.740	1.075
		11/2	27798.540	1.065			11/2	29581.890	1.105
		7/2	27805.385	0.970			15/2	29622.172	1.035
		15/2	27816.793	1.160			13/2	29701.474	1.090
							11/2	29763.763	1.077
$f^{4(5)}6p$	4 I °	9/ ₂ 11/ ₂	27921.395 29484.600	1.035 1.022			13/2	29813.432	1.06
		13/2	31153.870	1.115			9/2	29864.657	0.99:
		15/2	32464.640	1.130			7/2	29878.830	1.21
		11/2	27923.620	0.980			5/2	29882.190	1.19
		9/2	27934.544	1.070			15/2	29955.418	1.120
		9/2	27990.040	1.285			5/2	30037.077	0.800
		11/2	27992.437	1.174			11/2	30161.616	1.04
		17/2	27993.254	1.175			9/2	30196.783	1.05
		13/2	28089.482	1.025				30210.725	1.15
		11/2	28129.850	1.070			11/2		0.79
		9/2	28170.456	1.025			5/2	30292.992	
		13/2	28196.156	1.070			15/2	30306.150	1.1:
	4110		28213.885	0.720			7/2	30321.425	1.1
$f^{4(5I)}6p$	⁴ H°	7/2		1.072			13/2	30348.340	1.1:
		9/2	28298.462	1.072			7/2	30393.800	1.10
		9/2	28340.549				15/2	30405.583	1.1:
		13/2	28354.410	1.130			5/2	30431.849	0.90
		7/2	28520.155				7/2	30453.341	0.99
		15/2	28540.957				13/2	30467.356	1.0
		11/2	28582.619				7/2	30552.490	1.0
		11/2	28597.560				13/2	30570.222	1.0
		9/2	28602.040				7/2	30571.874	1.0
		13/2	28725.933				9/2	30659.962	0.9
		15/2	28729.745				7/2	30681.265	0.9
		17/2	28748.524				11/2	30691.068	1.0
		9/2	28785.075				13/2	30700.780	1.1
		11/2	28860.16	1.110			17/2	30781.493	1.2
		13/2	28899.080	1.040			5/2	30795.119	1.0
		9/2	28926.250	0.890			7/2	30805.535	1.0
		17/2	29027.54	1			13/2	30813.108	1.
		7/2	29036.65				9/2	30818.335	1.3
$4f^{4(5)}6p$	⁴ H°	9/2	29043.45				5/2	30890.990	1.0
		11/2	29079.86				7/2	30893.730	1.0
		13/2	29088.72	4 1.126			7/2	30919.630	1.9
		9/2	29220.56	7 1.160			9/2	30927.645	1.
		11/2	29239.38	1 1.119			13/2	30952.181	1.
		15/2	29260.74	0 1.223			9/2	30990.485	1.0
		9/2	29298.63	2 0.900			11/2	30995.579	1.
		11/2	29336.73	4 1.025			,-		

Configuration	Term	J .	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		15/2	31069.500	1.040			11/2	32759.589	1.03
		11/2	31085.770	1.055			9/2	32798.423	1.20
		7/2	31128.940	1.020			13/2	32864.841	0.95
		9/2	31179.755	1.000			15/2	32905.325	1.08
		7/2	31186.580	1.050			9/2	32918.176	1.12
		13/2	31256.788	1.135			3/2	32964.210	1.14
		11/2	31274.810	1.145			11/2	33003.220	1.11
		9/2	31335.807	1.125			17/2	33097.724	1.23
		15/2	31362.117	1.020			11/2	33120.090	1.01
		13/2	31405.086	1.120			11/2	33192.940	1.05
		11/2	31438.956	1.165			17/2	33215.040	1.01
		9/2	31451.299	1.048			3/2	33239.917	0.95
		15/2	31489.109	1.110			13/2	33260.386	1.24
		7/2	31514.079	1.050			3/2	33301.335	1.21
		11/2	31528.633	1.000			7/2	33313.870	1.20
		9/2	31618.213	1.250			13/2	33452.835	1.06
		9/2	31692.997	1.237			3/2	33464.640	0.78
		17/2	31818.517	1.180			1/2	33520.220	0.78
		9/2	31834.827	1.089			17/2	33526.500	1.1
		7/2	31844.813	0.945			5/2	33542.165	0.83
		13/2	31857.296	1.180			13/2	33556.696	1.0
		15/2	31878.132	1.178			1/2	33640.336	1.08
		11/2	31900.596	1.185			11/2	33719.088	1.11
		9/2	31944.650	1.071			13/2	33759.632	1.06
		9/2	31993.640	0.957			11/2	33792.430	1.21
		7/2	32008.576	1.083			13/2	33809.180	1.19
		15/2	32093.646	1.130			1/2	33820.330	0.78
		7/2	32123.441	1.022			5/2	33861.325	1.17
		11/2	32144.445	1.190			17/2	33884.238	1.21
		9/2	32165.264	0.970			3/2	33940.640	0.8
		9/2	32192.051	1.060			13/2	34001.428	1.09
		5/2	32194.110	0.990			13/2	34087.960	1.15
		5/2	32211.650	1.135			17/2	34119.145	1.16
		15/2	32221.573	1.139			11/2	34127.822	1.0
		9/2	32253.730	0.985			3/2	34133.460	1.29
		11/2	32375.051	1.095			3/2	34226.090	1.70
		7/2	32394.087	1.240			11/2	34227.182	1.10
		13/2	32397.555	1.080			5/2	34241.915	1.06
		15/2	32423.943	1.030			1/2	34323.300	0.48
		11/2	32444.090	1.095			13/2	34399.930	1.10
		9/2	32482.730	1.160			3/2	34515.860	1.09
		11/2	32522.136	0.910			9/2	34526.890	1.1
		11/2	32650.760	1.110			15/2	34555.732	1.23
		9/2	32671.367	1.185			3/2	34563.810	0.92

Configuration	Term	J		g	Configuration	Term	J	Level (cm ⁻¹)	!
		5/2	34632.230	1.150			7/2	36393.740	0.9
		15/2	34671.738	1.115			9/2	36417.060	1.2
		13/2	34689.408	1.085			1/2	36434.470	1.3
		5/2	34695.523	1.440			13/2	36444.422	1.1
		7/2	34709.105	1.095			11/2	36512.740	1.0
		7/2	34746.565	1.130			1/2	36553.810	2.2
		7/2	34817.220	0.835			7/2	36571.480	1.0
		15/2	34841.070	1.130			3/2	36577.063	1.2
		1/2	34856.400	0.935			7/2	36621.025	1.
		5/2	34870.455	1.040			3/2	36706.520	1.
		15/2	34895.820	1.175			9/2	36707.400	1.3
		5/2	34938.750	1.100			7/2	36711.050	1.0
		7/2	34982.943	1.170			13/2	36728.888	1.9
		7/2	35056.130	0.990			5/2	36785.935	1.
		7/2	35094.035	1.085			5/2	36814.090	1.
		5/2	35100.115	1.135			3/2	36838.640	1.
		3/2	35124.315	0.885			9/2	37041.760	1.
		5/2	35165.905	0.970			5/2	37041.905	1.
		9/2	35169.610	1.175			11/2	37128.550	1.
		11/2	35225.210	1.240			13/2	37149.107	0.
		13/2	35241.818	1.095			13/2	37262.720	1.
		7/2	35280.020	1.060			13/2	37294.270	1.
		9/2	35331.480	1.030			9/2	37354.290	1.
		1/2	35344.395	0.435			7/2	37366.520	1.
		13/2	35403.450	1.175			5/2	37406.260	1.
		7/2	35444.230	1.300			7/2	37434.915	1.
		3/2	35447.030	1.125			11/2	37485.698	1
		5/2	35496.685	1.005			13/2	37495.400	1
		9/2	35606.691	1.035			5/2	37635.835	0
		15/2	35609.220	1.240			11/2	37637.360	1
		7/2	35651.980	0.940			13/2	37640.530	1
		3/2	35681.400	1.200			5/2	37720.755	1
		3/2	35734.450	1.435			7/2	37722.765	1
		5/2	35819.425	0.905			5/2	37741.260	0
		9/2	35871.490	1.015			7/2	37764.315	1
		7/2	35882.880	1.138			9/2	38152.895	1
		5/2	35962.900	1.375			9/2	38179.875	1
		9/2	35985.780	1.070			11/2	38253.770	1
		5/2	35996.995				15/2	38283.040	1
		9/2	36035.510				13/2	38297.145	0
		5/2	36138.560				11/2	38318.970	(
		15/2	36169.872				13/2	38429.465	1
		7/2	36262.706	1			15/2	38432.360	1
		5/2	36384.680	11			11/2	38484.820	1
							11/2	38787.450	

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	<i>g</i>
		15/2	38790.275	1.045			9/2	39603.150	1.220
		11/2	38867.790	1.190			13/2	39825.830	1.040
		13/2	39057.860	1.033			15/2	39858.695	1.004
		15/2	39172.735	0.968			15/2	39953.440	1.007
		13/2	39176.490	1.058			5/2	40269.060	1.200
		1/2	39290.645	1.450			1/2	40508.920	1.340
		11/2	39366.377	1.195			15/2	40919.565	1.052
		15/2	39464.210	1.140					İ
		13/2	39574.030	1.010	Nd III (⁵ I ₄)	Limit		86500	

Nd III

(Ce I sequence; 58 electrons)

Z = 60

Ground state (1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6) 4f^4\ ^5{\rm I}_4

Ionization energy 178600± 2400 cm⁻¹

 $22.1\pm0.3~\mathrm{eV}$

The levels and eigenvector percentages are from unpublished material furnished by Crosswhite, who is continuing her analysis of this spectrum. The line list for Nd III has about 9500 lines extending from 1810 Å to 8715 Å. Transitions from upper 4f 35d levels to the 4f 4 5 I ground-term levels account for all the lines now classified.

Sugar and Reader derived the ionization energy.

References

Crosswhite, H., unpublished material (1975, 1976). EL PT Sugar, J., and Reader, J., J. Chem. Phys. **59**, 2083 (1973). IP

[January 1977]

Nd III

Configuration	Term	J	Level (cm ⁻¹)		Le	ading per	centages	
4f 4	5 <u>I</u>	4	0.0	98				
7		5	1137.8	99				
		6	2387.6	99				
		7	3714.9	99				
		8	5093.3	97				
$4f^3(^4\mathrm{I}^\circ)5d$	5K°	5	15262.2	88		8	(4 I °) 3 I °	
		6	16938.1	94		4	(4I°) 3I°	
		7	18656.3	98		1	$(^4\mathrm{I}^\circ)$ $^3\mathrm{I}^\circ$	
		8	20410.9	98		1	$(^4\mathrm{I}^\circ)$ $^3\mathrm{L}^\circ$	
		9	22197.0	96		3	$(^4\mathrm{I}^\circ)~^3\mathrm{L}^\circ$	
4f³(4I°)5d	5 I °	4	18883.7	83		13	$(^4\mathrm{I}^\circ)~^3\mathrm{H}^\circ$	
		5	20388.9	79 .		12	(4I°) 3H°	
		6	22047.8	71		8	$(^4\mathrm{I}^\circ)$ $^3\mathrm{H}^\circ$	
		7	22702.9	52		24	$(^4\mathrm{I}^\circ)~^3\mathrm{I}^\circ$	
		8	24686.4	83		13	$(^4\mathrm{I}^\circ)~^3\mathrm{K}^\circ$	
4f³(4I°)5d	5H°	3	19211.0	69		18	$(^4\mathrm{I}^\circ)~^3\mathrm{G}^\circ$	
		4	20144.3	55		22	(4I°) 3H°	
		5	21886.8	62		18	(4I°) 3I°	
		6	23819.3	45		30	$(^4\mathrm{I}^\circ)~^3\mathrm{I}^\circ$	
		7						
$4f^3(^4\mathrm{I}^\circ)5d$		7	24003.2	35	5 I °	27	$(^4I^\circ)$ $^3I^\circ$	
$4f^3(^4I^\circ)5d$		6	26503.2	38	$^5\mathrm{G}^\circ$	32	$(^4I^\circ)$ $^3H^\circ$	
$4f^3(^4\mathrm{I}^\circ)5d$	3K°	8	27391.4	67		13	$(^4I^\circ)$ $^5I^\circ$	
$4f^3(4F^\circ)5d$		3	27569.8	36	5H°	15	$(^4F^\circ)$ $^5D^\circ$	
$4f^3(4F^\circ)5d$	5 H °	3	27788.2	49		15	$(^4F^\circ)$ $^5D^\circ$	
		4	28745.3	83		7	$(^4\mathrm{I}^\circ)~^5\mathrm{H}^\circ$	
		5	30232.3	58		11	$(^4\mathrm{F}^\circ)~^5\mathrm{G}^\circ$	
		6	31394.6	46		18	$(^4\mathrm{F}^\circ)~^5\mathrm{G}^\circ$	
		7	32832.6	44		32	$(^{2}H^{\circ}2)^{-3}K^{\circ}$	
$f^{3(4}\mathrm{F}^{\circ})5d$		5	29397.3	27	5 Н °	17	$(^2H^\circ2)$ $^3I^\circ$	
Nd IV (4I%/2)	Limit		178600					

(La I sequence; 57 electrons)

Z = 60

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{3}$ $^4I_{9/2}^{\circ}$

Ionization energy 326000± 3000 cm⁻¹

 $40.4 \pm 0.4 \text{ eV}$

The levels of the $4f^3$ configuration listed here are based on analysis of the spectrum of triply ionized Nd in a $LaCl_3$ host crystal [Crosswhite, Crosswhite, Kaseta, and Sarup, 1976]. Crosswhite et al. give the $4f^3$ levels to almost 40000 cm⁻¹; the list here is complete to 20000 cm⁻¹, with the levels being adjusted to a value of zero for the ground level and rounded off to the nearest 10 cm⁻¹. Dieke [1968] gives references for much of the work on the crystal spectra and analyses.

Crosswhite et al. calculated the eigenvector percentages.

The ionization energy is from Sugar and Reader, with the value rounded off to three significant figures and the estimated error doubled [Spector and Sugar, 1976].

References

Carnall, W. T., Fields, P. R., and Rajnak, K., J. Chem. Phys. 49, 4424 (1968). [EL] [CL] [W] PT

Crosswhite, H. M., Crosswhite, H., Kaseta, F. W., and Sarup, R., J. Chem. Phys. 64, 1981 (1976). [EL] [ND] [CL] [W] PT

Dieke, G. H., Spectra and Energy Levels of Rare Earth Ions in Crystals, Ed. H. M. Crosswhite and H. Crosswhite, pp. 202-232 (Interscience Publishers, New York, 1968). [EL] [CL] [W] [ZE]

Irwin, D. J. G., Thesis, Johns Hopkins Univ., Baltimore, 102 pp. (1968); (Univ. Microfilms, Ann Arbor, Mich., No. 69-21084). EL CL W PT

Rajnak, K., J. Chem. Phys. 43, 847 (1965). [ND] PT

Spector, N., and Sugar, J., J. Opt. Soc. Am. 66, 436 (1976).

Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP

Wybourne, B. G., J. Chem. Phys. 34, 279 (1961). PT

[October 1976]

[Nd IV]

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages				
$4f^3$	4 I °	9/2	0	97	3	² H°2		
* <i>)</i>		11/2	[1880]	99	1	$^{2}\mathrm{H}^{\circ}2$		
		13/2	[3860]	100				
		15/2	[5910]	99	1	² K°		
$4f^{3}$	4F°	3/2	[11290]	94	5	$^2\mathrm{D}^\circ 1$		
J		5/2	[12320]	98	2	$^{2}\mathrm{D}^{\circ}1$		
		7/2	[13280]	93	4	² G°1		
		9/2	[14570]	75	20	$^2\mathrm{H}^\circ2$		
$4f^{3}$	²H°2	9/2	[12470]	54	14	4F°		
J		11/2	[15800]	80	13	² H°1		
$4f^3$	4S°	3/2	[13370]	95	5	$^2\mathrm{P}^\circ$		
$4f^{3}$	⁴ G°	5/2	[16980]	99	1	${}^{2}\mathrm{F}^{\circ}2$		
- ,		7/2	[18890]	59	24	$^2\mathrm{G}^\circ 1$		
		9/2	[19290]	76	7	$^2\mathrm{G}^{\circ}1$		
		11/2	[21280]	92	4	² H°1		
$4f^3$		7/2	[17100]	41 ⁴ G°	31	$^2\mathrm{G}^\circ 1$		
$4f^{3}$	² K°	13/2	[19440]	99	1	$^2\mathrm{I}^\circ$		
J		15/2	[21430]	94	5	²L°		
Nd v (³ H ₄)	Limit		- 326000					

PROMETHIUM

Pm I

E=61 electrons

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^56s^2$ $^6\mathrm{H}^\circ_{5/2}$

Ionization energy 44800± 160 cm⁻¹

 $5.554 \pm 0.020 \text{ eV}$

All known isotopes of Pm have relatively short half-lives, and the element first became available after Marinsky, Glendenin, and Coryell [1947] separated and identified two of its isotopes from other fission products of uranium [Marinsky and Glendenin, 1948]. The various observations of Pm spectra have been carried out with sources containing the ¹⁴⁷Pm isotope, which is produced in nuclear reactors and has a half-life of 2.6 years.

In 1951 Meggers, Scribner, and Bozman published wavelengths and estimated relative intensities for more than 2200 Pm lines excited in arc and spark sources (2337–6873 Å). An experimental separation of the lines according to ionization stage was not feasible with these sources, but the authors thought it probable that most of the lines belonged to Pm II. They pointed out the futility of attempting an analysis until more complete and accurate data could be obtained.

In 1967 Reader and Davis published "the first results of our investigation to determine the electronic structure of neutral promethium," noting that "our experimental investigation of the spectrum of promethium has extended over several years, and has included the taking of hundreds of spectrograms on several instruments, under many different conditions." This first analysis of Pm I yielded the 2 low $4f^56s^2$ terms and 209 upper even levels classifying 714 lines. No more complete list of Pm I lines has yet been published.

The levels and all except two of the g values given here are from Reader and Davis. The even level at $27083.92~{\rm cm}^{-1}~(J=^{15}\!\!/_2)$ was given incorrectly as $27383.92~{\rm cm}^{-1}$ in their 1967 paper. The estimated uncertainty of the low odd levels is $\pm 0.01~{\rm cm}^{-1}$, and the even levels are accurate to about $\pm 0.03~{\rm cm}^{-1}$.

The g values quoted for the $4f^{5}6s^{2}$ $^{6}\mathrm{H}^{\circ}_{7/2}$ and $^{6}\mathrm{H}^{\circ}_{9/2}$ levels were obtained from atomic-beam magnetic-resonance measurements by Budick and Marrus [1963] and by Cabezas, Lindgren, and Marrus [1961], respectively. The respective uncertainties are 0.0004 and 0.004. Cabezas, Lindgren, and Marrus obtained J and g values for both the $^{6}\mathrm{H}^{\circ}_{7/2}$ and $^{6}\mathrm{H}^{\circ}_{9/2}$ levels, and were able to conclude that the ground level was almost certainly $4f^{5}6s^{2}$ $^{6}\mathrm{H}^{\circ}_{5/2}$.

The eigenvector percentages for the levels of the two low $4f^56s^2$ terms are from a calculation by Conway [1965]. He essentially repeated the calculation by Conway and Wybourne [1963], whose published results included eigenvectors only for levels below 5000 cm⁻¹. (In table III of Conway and Wybourne, the last of the four ${}^4G^{\circ}$ components in the eigenvector for the $4f^56s^2$ ${}^6H^{\circ}_{1/2}$ level should have seniority 3; and the four ${}^4F^{\circ}$ components listed for the ${}^6H^{\circ}_{11/2}$ level are ${}^4G^{\circ}$ components, in the same order as for the lower ${}^6H^{\circ}$ levels.) Judd, Crosswhite, and Crosswhite [1968] made an improved calculation of Pm I $4f^56s^2$, based partially on the experimental levels of the two low terms. They included spin-spin and spin-other-orbit interactions, as well as the Trees α parameter. The resulting values of the main (electrostatic and spin-orbit) parameters are significantly larger than the values assumed by Conway and Wybourne.

Reader and Davis [1967] note that most of the upper levels found by them must belong mainly to $4f^56s6p$ or $4f^45d6s^2$, and conclude on the basis of certain arguments that the latter configuration is preponderant.

The ionization energy is from Reader and Sugar.

References

Budick, B., and Marrus, R., Phys. Rev. 132, 723 (1963). ZE Hfs

Cabezas, A. Y., Lindgren, I., and Marrus, R., Phys. Rev. 122, 1796 (1961). ZE Hfs

Conway, J. G., unpublished material (1965). PT

Conway, J. G., and Wybourne, B. G., Phys. Rev. **130**, 2325 (1963). PT

Conway, J. G., and wyoourne, B. G., Fhys. Rev. 150, 2525 (1905). F1

Judd, B. R., Crosswhite, H. M., and Crosswhite, H., Phys. Rev. 169, 130 (1968). PT

Klinkenberg, P. F. A., and Tomkins, F. S., Physica (Utrecht) 26, 103 (1960). Hfs

Marinsky, J. A., and Glendenin, L. E., Chem. Eng. News 26, 2346 (1948).

Marinsky, J. A., Glendenin, L. E., and Coryell, C. D., J. Am. Chem. Soc. 69, 2781 (1947).

Meggers, W. F., Scribner, B. F., and Bozman, W. R., J. Res. Nat. Bur. Stand. (U.S.) 46, 85 (1951). W

Reader, J., and Davis, S. P., J. Opt. Soc. Am. 53, 431 (1963). Hfs

Reader, J., and Davis, S. P., J. Res. Nat. Bur. Stand. (U.S.) 71A, 587 (1967). EL CL ZE

Reader, J., and Davis, S. P., unpublished material (1974). ${\rm EL}$

Reader, J., and Sugar, J., J. Opt. Soc. Am. 56, 1189 (1966). IP

[October 1976]

Pm I

			Pr	n I				
	Term	J	Level (cm ⁻¹)	g			ng percentages	
$4f^{5} 6s^{2}$	eH°	5/2	0.00	0.305	96		G°4	
4) 00		7/2	803.82	0.8279	97		G°4	
		9/2	1748.78	1.068	98	1 4 1 4	G°4 I°3	
		11/2	2797.10	1.205 1.307	98 97	$\frac{1}{2}$	I°3	
		13/ ₂ 15/ ₂	3919.03 5089.79	1.33	95		I°3	
		12	3003.70	1.55				
$4f^5 6s^2$	6F°	1/2	5249.48	-0.68	97	1 4	D°2	
-		3/2	5460.50	1.051	95		F°3 F°3	
		5/2	5872.84	1.239	94		ro F°3	
		7/2	6562.86	1.385 1.440	95 96		F°3	
		$\frac{9}{2}$ $\frac{11}{2}$	7497.99 8609.21	1.440	96 97		G°3	
		1-/2	8003.21	1.400	•			
		7/2	17104.72	0.885				
		3/2	20006.04	0.068				
		7/2	20157.85	0.503				
		5/2	20265.98	0.527				
		5/2	20517.96	0.659				
		5/2	20567.76	0.910				
		7/2	20660.00	1.114				
		5/2	20675.81	1.075				
		7/2	20909.00	0.929				
		7/2	21100.10	1.319				
		7/2	21143.06	0.977				
		9/2	21237.49	0.841				
		7/2	21348.22	0.815				
		7/2	21371.05	0.927				
		3/2	21590.60	0.135				
		9/2	21625.45	1.117				
		5/2	21657.89	1.01				
		7/2	21666.80	0.696				
		9/2	21732.93	1.137				
		9/2	21920.49	0.986				
		3/2	21946.12	-0.01			٠	
		7/2	21976.26	1.218				

Pm I—Continued

Pm I—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		3/2	22013.40	0.887			7/2	23743.96	1.111
		5/2	22080.08	0.571			11/2	23760.57	
		7/2	22084.65	0.858			3/2	23926.91	1.754
		9/2	22205.44	0.974			13/2	23938.76	1.044
		1/2	22259.21	-0.32			13/2	24013.29	1.29
		9/2	22294.96	1.245			11/2	24038.82	1.08
		5/2	22301.24	0.976			9/2	24071.03	1.12
		7/2	22309.94	0.850			3/2	24091.39	1.395
		9/2	22355.68	1.374			13/2	24122.41	
		3/2	22388.06	0.84			13/2	24180.80	1.28
		11/2	22414.17	1.12			7/2	24204.37	0.670
		5/2	22425.58	0.83			9/2	24234.42	
		11/2	22446.20	1.531			13/2	24245.66	1.14
		9/2	22456.72	0.936			9/2	24338.33	1.17
		5/2	22522.90	0.735			7/2	24418.44	1.124
		9/2	22586.77	1.283			13/2	24443.15	1.17
		⁷ / ₂	22654.34	0.84			9/2	24443.57	1.037
		5/ ₂	22656.68	0.936			7/2	24471.10	0.83
		11/2	22761.33	1.296			11/2	24503.45	1.22
		11/2	22817.13	1.134			13/2	24520.23	1.34
		5/ ₂	22905.24	1.16			11/2	24533.27	1.183
		7/ ₂	22934.70	1.237			9/2	24558.56	1.39
		11/2	23006.35				9/2	24627.53	0.961
		11/2	23033.95	1.0			11/2	24681.68	0.895
		7/2	23178.13	1.150			15/2	24705.25	1.102
		⁵ / ₂	23188.54	1.48			9/2	24754.58	0.888
		11/2	23198.33	1.12			13/2	24770.04	1.17
		9/2	23276.10	0.83			9/2	24789.86	1.08
		7/2	23278.90	1.0			11/2	24884.90	
		⁵ / ₂	23334.10	0.571			11/2	24912.34	1.29
		7/2	23337.53	1.257			11/2	25104.27	1.15
		11/2	23345.07	1.323			15/2	25306.07	1.21
		9/ ₂	23435.40	1.00			3/2	25351.46	0.58
		5/2	23443.79	0.784			11/2	25357.24	
		9/2	23480.63	1.16			11/2	25402.61	1.211
		11/2	23501.57	1.283			13/2	25405.29	1.034
		5/2	23538.86	0.780			9/2	25448.28	1.14
		11/2	23550.60	1.170			15/2	25474.46	
		9/2	23571.27	1.26			9/2	25521.55	0.910
		7/2	23584.31	1.123			13/2	25537.36	1.39
		13/2	23629.06	1.09			15/2	25618.77	1.13
		7/2	23712.56	1.181			11/2	25755.17	1.016
		1/2	23732.57	3.24			13/2	25919.50	1.26
		13/2	23740.42				11/2	26015.94	

Pm I—Continued

Pm I—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	!
		1/2	26065.63	-0.36			3/2	27919.29	1.3
		17/2	26080.99	1.29			5/2	27923.37	0.8
		17/2	26096.75	1.25			9/2	27939.87	1.0
		13/2	26101.28				7/2	28008.09	
		11/2	26103.56	1.2			13/2	28030.99	1.3
		13/2	26181.98	1.55			9/2	28075.94	1.1
		7/2	26211.44	0.715			5/2	28084.28	0.9
		9/2	26237.84	1.43			11/2	28086.21	1.
		13/2	26282.20	0.95			7/2	28150.73	1.0
		7/2	26285.02	0.877			5/2	28153.69	0.0
		1/2	26300.30	0.955			7/2	28169.71	0.9
		13/2	26456.26				7/2	28186.31	1.9
		1/2	26468.80	-0.45			1/2	28196.56	2.4
		3/2	26479.61	0.731			7/2	28273.52	0.
		3/2	26522.35	1.135			9/2	28274.21	1.0
		17/2	26545.85	1.14			7/2	28325.13	1.3
		13/2	26555.44	1.07			5/2	28338.98	0.9
		13/2	26591.40	1.10			7/2	28467.52	0.
		5/2	26609.39	0.56			9/2	28490.35	1.
		5/2	26630.56	0.32			9/2	28565.66	1.
		11/2	26694.38	1.095			9/2	28607.33	1.
		5/2	26695.79				3/2	28608.57	1.
		13/2	26703.97	1.30			1/2	28657.02	0.5
		3/2	26725.52	0.65			7/2	28680.26	0.
		3/2	26830.74	0.794			11/2	28994.90	1.
		5/2	26841.36	1.38			3/2	28994.90	0.
		15/2	26955.22	1.50			į.		0.
		5/2	27036.66	0.931			9/2	29074.03	
		15/2	27042.18	0.551			9/2	29129.60	1.
		15/2	27083.92				9/2	29161.96	1.
		15/2	27109.75				11/2	29242.64	1.
		5/2	27245.99	0.761			11/2	29585.21	1.
			27272.46	0.761			9/2	29595.58	1.
		7/2,9/2					9/2	29648.42	
		15/2	27304.15	1.44			11/2	29705.77	
		7/2	27319.28	1.274			11/2	29757.69	
		5/2	27334.48	0.947			9/2	29784.08	
		7/2	27351.42	0.92			11/2	29856.72	1.
		3/2	27468.45	0.21			7/2	29883.87	1.
		7/2	27476.28	1.077			9/2	29908.90	
		5/2	27512.95	0.913			11/2	29960.42	1.
		13/2	27596.27	1.29			11/2	30008.40	1.
		7/2	27621.74				9/2	30063.62	1.3
		3/2	27685.89	2.049			11/2,13/2	30251.50	1.3
		9/2	27829.89	1.024			13/2	30281.98	

Pm I—Continued

Pm I—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		11/2	30374.95	1.226			9/2	32022.32	
		13/2	30457.44	1.226			13/2	32435.06	
		11/2	30541.28				15/2	33180.50	1.285
		9/2	30726.26				9/2	33246.65	
		9/2	30785.03	A.					
		11/2	31103.24		Pm II (7H2)	Limit		44800	
		11/2	31846.70		1 11 (112)	2011000		44000	

Pm II

(Nd I sequence; 60 electrons)

Z = 61

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^56s^{-7}H_2^6$

Ionization energy 87900± 600 cm⁻¹

 $10.90 \pm 0.08 \text{ eV}$

Davis and Reader have reobserved the Pm spectrum and "have prepared a line list with about 17500 entries from 3100 to 10000 Å, including lines from both neutral and singly ionized species. Most of the lines are not clearly separated according to ionization state" [1972a]. Some 2000 lines have been classified by energy levels, but the new line list has not been published. The 1951 list of Meggers, Scribner, and Bozman (described under Pm I) thus remains the most complete published table of wavelengths for Pm II. (Davis and Reader have confirmed that practically all of the strong lines in this list belong to Pm II.)

The levels, g values, and eigenvector percentages are from the unpublished and as yet incomplete analysis by Davis and Reader [1972b]. The calculation of the $4f^56s$ levels was carried out with matrices that included off-diagonal spin-orbit elements only between (quintet and septet) states having the same $4f^5$ sextet parent term. The resulting purity (leading percentage) is given for each level in both the LS and J_1s coupling schemes. Although these levels have sometimes been assigned J_1s designations, it is apparent that LS coupling is more appropriate.

No attempt has yet been made to interpret the upper even levels, about 150 of which have been found.

The ionization energy is from Sugar and Reader.

References

Davis, S. P., and Reader, J., J. Opt. Soc. Am. 62, 1370A (1972a). EL
Davis, S. P., and Reader, J., unpublished material (1972b). EL CL W ZE PT
Klinkenberg, P. F. A., and Tomkins, F. S., Physica (Utrecht) 26, 103 (1960). Hfs
Meggers, W. F., Scribner, B. F., and Bozman, W. R., J. Res. Nat. Bur. Stand. (U.S.) 46, 85 (1951). W
Reader, J., Phys. Rev. 141, 1123 (1966). Hfs
Reader, J., and Davis, S. P., J. Opt. Soc. Am. 53, 431 (1963). Hfs
Sugar, J., and Reader, J., J. Opt. Soc. Am. 55, 1286 (1965). IP

[October 1976]

Pm II

Configuration	Term	J	Level (cm ⁻¹)	g			Le	eading percentages
4f 5(6H°)6s	7 H °	2 3 4 5 6 7 8	0.00 446.45 1133.45 1983.52 2950.31 4000.15	0.000 0.728 1.038 1.190 1.29 1.34	100 89 89 92 95 97 100	or or or or or or	100 62 79 88 93 97 100	$\begin{array}{c} (^{6}\mathrm{H}_{5/2}^{\circ}) \ (^{5/2},^{1/2})^{\circ} \\ (^{6}\mathrm{H}_{5/2}^{\circ}) \ (^{5/2},^{1/2})^{\circ} \\ (^{6}\mathrm{H}_{7/2}^{\circ}) \ (^{7/2},^{1/2})^{\circ} \\ (^{6}\mathrm{H}_{7/2}^{\circ}) \ (^{7/2},^{1/2})^{\circ} \\ (^{6}\mathrm{H}_{9/2}^{\circ}) \ (^{9/2},^{1/2})^{\circ} \\ (^{6}\mathrm{H}_{11/2}^{\circ}) \ (^{11/2},^{1/2})^{\circ} \\ (^{6}\mathrm{H}_{13/2}^{\circ}) \ (^{13/2},^{1/2})^{\circ} \\ (^{6}\mathrm{H}_{15/2}^{\circ}) \ (^{15/2},^{1/2})^{\circ} \end{array}$
4f ⁵ (⁶ H°)6s	5H°	3 4 5 6 7	1602.97 2666.76 3812.31 5017.77	0.531 0.920 1.10 1.20	89 89 92 95 97	or or or or	62 79 88 93 97	$\begin{array}{c} (^{6}H_{7/2}^{\circ}) \ (^{7/2},^{1/2})^{\circ} \\ (^{6}H_{9/2}^{\circ}) \ (^{9/2},^{1/2})^{\circ} \\ (^{6}H_{1/2}^{\circ}) \ (^{11/2},^{1/2})^{\circ} \\ (^{6}H_{13/2}^{\circ}) \ (^{13/2},^{1/2})^{\circ} \\ (^{6}H_{15/2}^{\circ}) \ (^{15/2},^{1/2})^{\circ} \end{array}$

Pm II—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Le	eading percentages
4f ⁵ (⁶ F°)6s	7F°	0 1 2 3 4 5 6	5280.88 5391.46 5632.40 6048.50 6705.18	1.493 1.481 1.482 1.50	100 99 98 96 96 98 100	or or or or or or	100 53 74 87 94 97 100	$\begin{array}{c} (^{6}F_{1/2}^{\circ})\ (^{1}/_{2},^{1}/_{2})^{\circ} \\ (^{6}F_{1/2}^{\circ})\ (^{1}/_{2},^{1}/_{2})^{\circ} \\ (^{6}F_{3/2}^{\circ})\ (^{3}/_{2},^{1}/_{2})^{\circ} \\ (^{6}F_{5/2}^{\circ})\ (^{5}/_{2},^{1}/_{2})^{\circ} \\ (^{6}F_{7/2}^{\circ})\ (^{7}/_{2},^{1}/_{2})^{\circ} \\ (^{6}F_{9/2}^{\circ})\ (^{9}/_{2},^{1}/_{2})^{\circ} \\ (^{6}F_{1/2}^{\circ})\ (^{11}/_{2},^{1}/_{2})^{\circ} \end{array}$
4f ⁵ (⁶ H°)5d	⁷ K°	4 5 6 7 8 9	5332.36	0.412				
4f ⁵ (⁶ F°)6s	5F°	1 2 3 4 5	6629.40 7012.87 7701.09	0.00 1.010 1.23	99 98 96 96 98	or or or or	53 74 87 94 97	$ \begin{array}{c} (^{6}F_{3/2}^{\circ}) \ (^{3}/_{2},^{1}/_{2})^{\circ} \\ (^{6}F_{5/2}^{\circ}) \ (^{5}/_{2},^{1}/_{2})^{\circ} \\ (^{6}F_{7/2}^{\circ}) \ (^{7}/_{2},^{1}/_{2})^{\circ} \\ (^{6}F_{9/2}^{\circ}) \ (^{9}/_{2},^{1}/_{2})^{\circ} \\ (^{6}F_{1/2}^{\circ}) \ (^{11}/_{2},^{1}/_{2})^{\circ} \end{array} $
		3	15543.14					
		2	15968.09	0.365				
		5	17561.95					
		5	17609.00					
		6	17610.00					
		5	17612.84					
	,	5	17712.15					
		6	17834.96 18419.45					
		5 5	18635.29					
		6	18687.53	1.09				
		6	18736.10	1.00				
		6	19114.25					
		6	19750.03	1.1				
		6	20134.63					
		7	21139.14					
		2	22377.66	1.62				
		2	22774.24	0.571				
		3	23261.30	0.617				
		5	23302.12					
		2	23499.82	0.467				
		4	23541.00	1.168				
		3	23761.98	0.840				
		2	24023.04	0.36				
		3	24024.75	0.962				
		4	24157.20	0.855				
		4	24311.93	0.693				
		2	24404.51	1.073				
)		4	24464.73	1.039				

Pm II—Continued

Pm II—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		2	24505.57	0.961			1	27616.10	2.86
		3	24527.89	0.533			3	27622.53	1.27
		4	24762.58	0.990			6	27645.16	1.1
		5	24771.46	1.160			7	27678.03	
		3	25006.51	0.806			3	27765.61	0.90
		5	25015.69	1.110			3	27848.71	1.16
		6	25094.33	1.17			4	27894.03	9.69
		4	25099.22	0.74			3	27991.45	1.10
		4	25213.82	1.008			5	28061.10	
		5	25258.71				7	28066.15	1.23
		4	25264.46	0.912			4	28133.56	1.03
		2	25323.09	0.09			3	28166.72	1.0
		5	25365.66	1.14			4	28227.39	1.1
		1	25447.33	1.194			6	28271.15	
		5	25598.60	1.101			5	28296.71	
		2	25726.08	1.317			5	28324.75	
		3	25737.07	0.883			4	28401.54	
			26017.92	0.861			5	28444.27	
		2	26027.56	1.16			6	28487.33	0.9
		6	26038.04	0.95			2	28499.09	1.8
		5	26067.53	1.156			5	28507.50	
		4		0.943			1	28507.58	1.8
		5	26132.87				7	28516.85	1.2
		6	26169.85	1.20			5	28642.00	1.
		5	26309.89	1.116			4	28765.64	1.
		2	26320.95	0.714				28819.06	0.7
		6	26392.53	1.050			1	28930.06	1.0
		3	26460.58	1.273			4	29057.65	1.
		5	26574.58				5		1.
		3	26771.13	0.622			5	29368.84	
		6	26834.20	1.11			4	29400.84	
		4	27005.58	1.073			4	29468.44	0.
		2	27094.25	0.226			6	29586.34	1.
		6	27097.38	1.18			6	29662.69	1.
		7	27110.08				5	29693.40	0.
		4	27115.95	1.26			1	29802.52	0.
		3	27126.19	1.053			5	29863.62	
		4	27230.36	0.97			5,6	29967.46	
		2	27256.71	0.88			6	29987.92	1.
		5	27356.20				6	30089.49	
		6	27379.79	1.0			2	30142.21	1
		4	27399.87				1	30172.01	0
		5	27438.30				2	30216.86	. 1.
		3	27526.77				1	30402.81	1.
		$\frac{1}{2}$	27587.88	0.98			3	30477.48	1.

Pm II—Continued

Pm II—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		5	30532.47				5	32551.40	1.2
		5	30547.86				2	32700.82	1.198
		1	30612.37	0.32			3	32755.89	1.457
		6	30688.69	1.28			2	32847.03	1.47
		3	30736.73	1.117			2	32947.27	1.49
		7	30814.52				1	32973.73	0.95
		2	30996.26	0.901			6	32974.29	
		3	31085.12	1.11			1	33067.34	1.44
		5	31251.94	-			3	33079.50	1.536
		6?	31367.37				2	33111.77	0.71
		3	31474.36	1.081			1	33272.56	0.990
		4	31558.10	0.94			2	33380.55	1.23
		2	31632.30	1.05			1	33551.90	1.322
		3	31778.84	1.137			1	33641.58	1.980
		4	31805.86	1.02					
		7	31851.14						
		2	32321.10	1.581	Pm III(6H5/2)	Limit		87900	
		2	32420.83	1.18					

Pm III

(Pr I sequence; 59 electrons)

Z = 61

Ground state (1 $s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6$) 4 $f^{5\ 6}{
m H}^{\circ}_{5/2}$

Ionization energy 180000± 3000 cm⁻¹

 22.3 ± 0.4 eV

Although this spectrum has not been analyzed, the above designation of the ground state is not in significant doubt. The uncertainty of the ionization energy given by Sugar and Reader has been rounded off to one significant figure.

Reference

Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP

[October 1976]

[Pm IV]

(Ce I sequence; 58 electrons)

Z = 61

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{4\ 5}I_4$

Ionization energy 331000± 5000 cm⁻¹

 $41.1 \pm 0.6 \text{ eV}$

The spectrum of the free ion has not been analyzed. Carnall, Crosswhite, Crosswhite, and Conway have given the most complete interpretation of the spectrum of the Pm³+ ion in a LaCl₃ host crystal. Using both absorption and fluorescence spectra, they derived the 4f⁴ levels up to 31690 cm⁻¹. Only the levels of the three lowest terms are given here, the positions listed by Carnall et al. [1976] having been adjusted to a value of zero for the ground level and rounded off to the nearest 10 cm⁻¹. Carnall et al. evaluated the levels by first fitting a calculation to the experimental sublevels and then recalculating the levels with the crystal-field parameters set equal to zero. (Shifts of the levels due to the nephelauxetic effect are, of course, not removed by this procedure.) The eigenvector percentages are also from their calculation.

Carnall et al. [1976] took most of the energy levels based on absorption spectra from the measurements of Baer, Conway, and Davis [1973]. Gruber and Conway [1960] first observed the absorption spectrum using solutions, and the analysis by Carnall, Fields, and Rajnak [1968] was also based on solution absorption data.

Sugar and Reader derived the ionization energy, which has been rounded off to three significant figures. Following the suggestion of Spector and Sugar, we have approximately doubled the estimated uncertainty.

References

Baer, W., Conway, J. G., and Davis, S. P., J. Chem. Phys. 59, 2294 (1973). [EL] [CL] [W] PT Carnall, W. T., Crosswhite, H., Crosswhite, H. M., and Conway, J. G., J. Chem. Phys. 64, 3582 (1976). [EL] [CL] [W] PT Carnall, W. T., Fields, P. R., and Rajnak, K., J. Chem. Phys. 49, 4424 (1968). [EL] [CL] [W] PT Crozier, M. H., and Runciman, W. A., J. Chem. Phys. 35, 1392 (1961). ND PT Gruber, J. B., and Conway, J. G., J. Inorg. Nucl. Chem. 14, 303 (1960). [W] Hüfner, S., Z. Phys. 165, 397 (1961). ND PT Spector, N., and Sugar, J., J. Opt. Soc. Am. 66, 436 (1976). Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP

[October 1976]

[Pm IV]

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages				
4f4	5 I	4	0	97	2	³ H4		
7		5	[1490]	98	1	³ H4		
		6	[3110]	99				
		7	[4820]	98	1	3K2		
		8	[6580]	96	3	3K2		
4f4	5F	1	[12230]	95	4	³ D1		
•		2	[12670]	94	3	$^{3}D1$		
		3	[13520]	95	1	3F3		
		4	[14470]	91	3	3G2		
		5	[15800]	92	4	³ G2		
4f4	5S	2	[14100]	94	5	³ P2		
Pm V (4I _{9/2})	Limit		331000					

SAMARIUM

Sm I

62 electrons Z=62

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^66s^2$ ⁷F₀

Ionization energy 45519±8 cm⁻¹

 $5.6437 \pm 0.0010 \text{ eV}$

Identified even configurations $4f^66s^2$, $4f^65d6s$, $4f^66s7s$

Identified odd configurations

 $4f^{6}6s6p$, $4f^{5}5d6s^{2}$, $4f^{5}5d^{2}6s$?, $4f^{6}5d6p$?

Albertson gave the levels of the $4f^66s^2$ ⁷F ground term in his important 1935 paper, which included 175 levels. The analysis was extended somewhat in his 1937 article and again in the 1949 paper by Brix. Racah and Ganiel gave a theoretical interpretation for 70 of the $4f^6(^7\text{F})6s6p$ levels.

Carlier, Blaise, and Schweighofer [1968], Blaise, Morillon, Schweighofer, and Verges [1969], and Henny-Schweighofer [1970] have revised and extended the analysis to include 65 even levels and about 400 odd levels. The levels and g values are taken from this work at Orsay, with the exception of the g values for the ground-term levels. Blaise [1976] has supplied a few additions and revisions.

The five-place g values for the $4f^66s^2$ ⁷F levels are weighted averages of atomic-beam magnetic-resonance measurements by Pichanick and Woodgate [1961] and Childs and Goodman [1972], as given by the latter authors. The uncertainty is three or four units in the last place. The leading percentages for these levels are from Conway and Wybourne [1963]. (Childs and Goodman list detailed eigenvectors from Conway's refinement of this calculation.) The next lowest predicted term of $4f^66s^2$, the lowest of the three ⁵D terms, is expected to begin above $14000 \, \mathrm{cm}^{-1}$ (see Sm III $4f^6$). None of the higher $4f^66s^2$ terms has been identified, nor have any terms (of other configurations) based on higher $4f^6$ terms been identified.

The level compositions for $4f^6(^7\mathrm{F})5d6s$ and $4f^6(^7\mathrm{F})6s7s$ are from Carlier's thesis [1967], and the compositions for $(4f^5(^6\mathrm{H}^\circ,^6\mathrm{F}^\circ)5d6s^2+4f^6(^7\mathrm{F})6s6p)$ were calculated by Carlier et al. Sugar transposed the eigenvectors from the latter calculation by recoupling to the $f^6(^7\mathrm{F})sp(^3\mathrm{P}^\circ,^1\mathrm{P}^\circ)$ scheme given here. Designations assigned by Blaise et al. to levels that have not been calculated are listed with question marks, pending a more complete theoretical interpretation of this spectrum. Most of these tentative designations are for odd levels thought to belong to the $(4f^65d6p+4f^55d^26s)$ group. A few unpublished designations or revisions for the odd levels are included here [Blaise, 1976].

Albertson's analysis was based on the extensive furnace spectrum data of A. S. King [1935], which includes wavelengths and temperature classifications for about 2800 Sm I lines in the range of 2910-8718 Å, and on the absorption lines measured by Paul (1500 lines, 2503-8301 Å). Henny-Schweighofer's thesis gives more than 5000 Sm I and Sm II lines between 2628 and 9789 Å, about three-fourths of them being classified. Zeeman data or the g and J values derived from such data are listed for the lines. Isotope shift measurements are also given in this thesis, and in several other references listed below. Blaise et al. list 1812 lines for the spectrum of an electrodeless lamp between 8186 and 24558 Å, with 859 of the lines being classified by transitions in Sm I and Sm II. Morillon [1970] used a grid spectrometer to extend the infrared observations, obtaining 370 Sm lines (electrodeless lamp source) between 23820 and 41061 Å.

Parr and Inghram [1975] observed photoionization spectra of samarium vapor at different temperatures. Their paper gives the positions of 43 resonances ($42650-51070~{\rm cm}^{-1}$) due to autoionizing levels observed at a source temperature of 1270 K. A number of low levels were

significantly populated at the source temperatures, and no definite analyses of the spectra were possible. We give three tentative odd levels above the limit, based on the authors' statement that the first three lines they list are probably due to transitions from the $4f^66s^2$ 7F_5 level. (The high levels are followed by the letter "a" for autoionization.) Several of the other resonances have wavenumbers corresponding to a transition from a low level to one of these three tentative autoionizing levels. The authors discuss the probable configurations of the autoionizing levels involved in the stronger resonances.

Worden, Conway, Paisner, and Solarz [1977] have observed high members of a series in Sm I by using laser techniques. These data became available too late for inclusion here, but the quoted ionization energy was determined by Worden et al. from the new series.

References

Albertson, W., Phys. Rev. 47, 370 (1935); 52, 644 (1937). EL CL IP

Blaise, J., unpublished material (1976). EL ND ZE

Blaise, J., Morillon, C., Schweighofer, M. G., and Verges, J., Spectrochim. Acta, Part B 24, 405 (1969). EL CL W ZE

Brix, P., Z. Phys. 126, 431 (1949). EL CL IS

Carlier, A., Thesis (Third Cycle), Univ. Paris, Orsay, 128 pp. (1967). EL PT

Carlier, A., Blaise, J., and Schweighofer, M. G., J. Phys. (Paris) 29, 729 (1968). EL ZE PT

Childs, W. J., and Goodman, L. S., Phys. Rev. A 6, 2011 (1972). ZE Hfs PT

Conway, J. G., and Wybourne, B. G., Phys. Rev. 130, 2325 (1963). PT

Handrich, E., Steudel, A., Wallenstein, R., and Walther, H., J. Phys. (Paris), Colloq. Cl 30, 18 (1969). Hfs

Hansen, J. E., Steudel, A., and Walther, H., Z. Phys. 203, 296 (1967). IS

Heilig, K., Sauthoff, G., and Steudel, A., Z. Phys. 196, 39 (1966). ZE

Henny-Schweighofer, M. G, Thesis (Third Cycle), Univ. Paris, Orsay, 174 pp. (1970). EL CL W ZE IS

Kiess, C. C., Sci. Papers Bur. Stand. (U.S.) 18, 201 (1922). W

King, A. S., Astrophys. J. 82, 140 (1935). W

King, W. H., J. Opt. Soc. Am. 53, 638 (1963). IS

Martin, N. J., Sandars, P. G. H., and Woodgate, G. K., Proc. R. Soc. London, Ser. A 305, 139 (1968). SE Hfs

Morillon, C., Spectrochim. Acta, Part B 25, 513 (1970). CL W

Murakawa, K., Phys. Rev. 93, 1232 (1954). Hfs

Parr, A. C., and Inghram, M. G., J. Opt. Soc. Am. 65, 613 (1975). EL CL W

Paul, F. W., Phys. Rev. 49, 156 (1936). W

Pichanick, F. M. J., and Woodgate, G. K., Proc. R. Soc. London, Ser. A 263, 89 (1961). ZE

Racah, G., and Ganiel, U., J. Opt. Soc. Am. 56, 893 (1966). EL PT

Robertson, R. G. H., Waddington, J. C., and Summers-Gill, R. G., Can. J. Phys. 46, 2499 (1968). Hfs

Smith, K. F., and Spalding, I. J., Proc. R. Soc. London, Ser. A 265, 133 (1961). ZE

Striganov, A. R., Katulin, V. A., and Eliseev, V. V., Opt. Spektrosk. 12, 171 (1962). CL IS

Sugar, J., unpublished material (1971). PT

Worden, E. F., Conway, J. G., Paisner, J. A., and Solarz, R. W., unpublished material (1977). IP

[July 1976]

Sm I, Even Parity

Configuration	Term	J	Level (cm ⁻¹)	g		Lea	ading percentages	
4 CS C -2	7F	0	0.00		94	3	⁵ D1	
$4f^{6} 6s^{2}$	T.	1	292.58	1.49839	95	2	⁵ D1	
		$\frac{1}{2}$	811.92	1.49779	97	2	5D1	
		3	1489.55	1.49707	98	1	5D1	
		4	2273.09	1.49625	98	1	5F2	
		5	3125.46	1.49532	98	1	⁵ G1	
		6	4020.66	1.49417	97	1	⁵ G1	
4f ⁶ (⁷ F)5d (⁸ H)6s	9H	1	10801.10	-0.98	99			
4) (1)00 (11)03		2	11044.90	0.67	98			
		3	11406.50	1.08	98			
		4	11877.50	1.25	97			
		5	12445.35	1.33	97			
		6	13095.75	1.385	98			
		7	13814.90	1.410	99		*	
		8	14591.70	1.430	99			
	}	9	15418.65	1.445	100			

Sm I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Le	eading percentages
4f ⁶ (⁷ F)5d (⁸ D)6s	₉ D	2	12313.11	2.56	09	• •	(7E)(6D) 7D
i) (1)0a (1)03		$\begin{vmatrix} 2 \\ 3 \end{vmatrix}$	12846.64	2.05	83	11	(⁷ F)(⁶ P) ⁷ P
		4	13458.46	1.830	86		
					85		(7D) (8D) 0D
		5 6	14202.85 15082.94	1.715 1.66	85 89	10	(⁷ F) (⁸ F) ⁹ F
4.66/7ENT 1. (911) 0	711						
$4f^{6(7}F)5d$ (8H)6s	⁷ H	2	13050.05	0.02	88	10	$(^{7}F) (^{6}H) ^{7}H$
		3	13542.80	0.77	86	11	$(^{7}F)(^{6}H)^{7}H$
		4	14154.30	1.075	82	11	(⁷ F) (⁶ H) ⁷ H
		5	14856.20	1.240	76	12	$(^{7}F)(^{6}H)^{7}H$
		6	15617.45	1.36	65	14	(⁷ F) (⁸ G) ⁹ G
		7	16392.93	1.430	53	26	(⁷ F) (⁸ G) ⁹ G
		8	17270.96	1.435	50	34	(⁷ F) (⁸ G) ⁹ G
$4f^{6}(^{7}F)5d$ (8F)6s		1	13369.35	2.65	38 °F	31	(⁷ F) (⁸ G) ⁹ G
$4f^{6}(^{7}\text{F})5d$ (8G)6s	⁹ G	0	13551.20		96		
, , , , , <u>, , , , , , , , , , , , , , </u>		$\overset{\circ}{2}$	13687.75	1.780	54	35	(⁷ F) (⁸ F) ⁹ F
		1	13732.53	2.01	1		
		3	14056.70	1.63	59	20	(⁷ F) (⁶ P) ⁵ P
		3 4	14056.70		54	31	(7F) (8F) 9F
			14905.98	1.575	57	29	(7F) (8F) 9F
		5			57	26	(⁷ F) (⁸ F) ⁹ F
		6			51	25	(⁷ F) (⁸ F) ⁹ F
		7			39	29	$(^{7}F) (^{8}H) ^{7}H$
		8			65	32	(⁷ F) (⁸ H) ⁷ H
$4f^{6}(^{7}\text{F})5d$ (8F)6s	9F	1	14026.45	2.92	52	31	(⁷ F) (⁶ P) ⁵ P
-		2	14365.50	1.845	43	42	(⁷ F) (⁸ G) ⁹ G
		3	14920.45	1.74	55	31	(⁷ F) (⁸ G) ⁹ G
		4			43	33	(⁷ F) (⁸ G) ⁹ G
		5			60	33	(⁷ F) (⁸ G) ⁹ G
		6			63	32	(⁷ F) (⁸ G) ⁹ G
		7			64	34	(°F) (°G) °G
$4f^{6}(^{7}\mathrm{F})5d$ (6P)6s	7P	2	14550.50	2.340	56	14	(⁷ F) (⁸ P) ⁷ P
4f ⁶ (⁷ F)5d (⁸ P)6s	9P	3	14612.44	2.14	40	97	(7E)5J (6D)C - 7D
1) (1)00 (1)03		4	14012.44	2.14	48	25	(⁷ F)5d (⁶ P)6s ⁷ P (⁷ F)5d (⁶ P)6s ⁷ P
		5			43 57	16 25	(⁷ F)5d (⁸ D)6s ⁷ D
4.56/7E\\F.1. (8T\\0	$^{7}\mathrm{D}$	0	14500 51	1.00			
$4f^{6}(^{7}F)5d$ (8D)6s	о.	2	14783.51	1.93	43	27	(7F) (6P) 5P
		3	15524.56	1.84	53	20	$(^{7}F) (^{8}P) ^{9}P$
		1	1005100	1 2	56	31	(⁷ F) (⁶ P) ⁵ P
		4	16354.60	1.640	53	24	(7F) (8P) 9P
		5			43	37	(⁷ F) (⁸ P) ⁹ P
$4f^{6}(^{7}\mathrm{F})5d$ (8G)6s	₹G	1	15639.80	0.18	58	22	(⁷ F) (⁸ F) ⁷ F
		2	15955.24	1.085	52	16	(7F) (8F) 7F
		3			54	15	(⁷ F) (⁸ F) ⁷ F
		4			48	16	(⁷ F) (⁸ F) ⁷ F
		5			44	17	(⁷ F) (⁶ H) ⁵ H
		6			44	2 8	(⁷ F) (⁶ H) ⁵ H
		7			40	37	$(^{7}F) (^{6}H) ^{5}H$
$4f^{6}(^{7}F)5d$ (8F)6s	⁷ F	0	15793.68		74	12	$(^{7}F) (^{8}F)^{5}D$
$4f^{6}(^{7}\mathrm{F})5d$ ($^{6}\mathrm{P})6s$		3	15834.60	1.815	27 ⁷ P	21	(⁷ F) (⁸ P) ⁹ P
$4f^{6}(^{7}\mathrm{F})5d$ ($^{6}\mathrm{H})6s$	7H	2	18176.17	0.02	87	10	(⁷ F) (⁸ H) ⁷ H .
$4f^{6}(^{7}F)6s$ (8F)7s	9F	1	28708.20	3.36	95		
		2	29037.25	1.85	90		
	į l	3	29551.86	1.80	89		
		4	30191.24	1.68	90		
		5	30921.99	1.53	93		
		6	31725.70	1.59	96		
	i i	7	32567.76	1.57	1		

Sm I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
$4f^6 6s^2$?		2	29066.02	1.57		
$4f^{6(7}{ m F})6s~(^{8}{ m F})7s$	7 F	0 1 2 3 4 5 6	29469.59 29656.26 30148.40 30755.28 31508.12 32333.00 33202.66	1.48 1.67 1.47 1.515 1.515 1.49	88 74 67 66 69 73 78	12 (⁷ F) (⁶ F) ⁷ F 12 13 14 15 16 18
4f ⁶ 6s ² ? 4f ⁶ 6s ² ? 4f ⁶ (⁷ F)6s (⁶ F)7s	5F	2 5 2	30040.95 30931.62 31246.30	1.79 1.48 1.21	63	24 (⁷ F)6s (⁸ F)7s ⁷ F
$Sm II (^8F_{1/2})$	Limit		45519			,

Sm I, Odd Parity

Configuration	Term	J	Level (cm ⁻¹)	g		L	eading percentages
$4f^{6}(^{7}F)6s6p(^{3}P^{\circ})$	9G°	0	13796.36		94	5	(⁷ F)(¹ P°) ⁷ F°
• • • • • • • • • • • • • • • • • • • •		1	13999.50	1.50	95	4	(⁷ F)(¹ P°) ⁷ F°
		2	14380.50	1.50	95	4	(⁷ F)(¹ P°) ⁷ F°
		3	14915.83	1.49	94	3	(⁷ F)(¹ P°) ⁷ F°
		4	15579.12	1.500	94	3	(⁷ F)(¹ P°) ⁷ F°
		5	16344.77	1.505	94	2	(7F)(1P°) 7F°
		6	17193.73	1.50	96	1	(⁷ F)(¹ P°) ⁷ F°
		7	18118.86	1.49	98	1	$(^{7}\mathrm{F})(^{3}\mathrm{P}^{\circ})$ $^{7}\mathrm{G}^{\circ}$
		8	19138.80	1.50	100		
$4f^{6}(^{7}\mathrm{F})6s6p(^{3}\mathrm{P}^{\circ})$	9F°	1	14863.85	3.10	57	37	(⁷ F)(¹ P°) ⁷ D°
		3	16211.12	1.76	55	28	(⁷ F)(³ P°) ⁹ D°
		4	16890.59	1.605	67	18	(⁷ F)(¹ P°) ⁷ G°
		5	17587.46	1.545	68	26	(⁷ F)(¹ P°) ⁷ G°
		6	18298.30	1.52	62	30	(⁷ F)(¹ P°) ⁷ G°
		7	19005.65	1.51	60	37	$(^{7}\mathrm{F})(^{1}\mathrm{P}^{\circ})$ $^{7}\mathrm{G}^{\circ}$
$4f^{6}(^{7}\mathrm{F})6s6p(^{3}\mathrm{P}^{\circ})$		2	15039.59	2.365	41 ⁹ [)° 29	(7F)(1P°) 7D°
$4f^{6}(^{7}{ m F})6s6p(^{3}{ m P}^{\circ})$	aDo	3	15507.35	1.965	57	24	(7F)(1P°) 7D°
		2	15567.32	2.235	53	36	$(^{7}F)(^{3}P^{\circ}) \ ^{9}F^{\circ}$
		4	16131.53	1.79	70	18	$(^{7}F)(^{1}P^{\circ})^{-7}D^{\circ}$
		5	16859.31	1.705	81	10	(7F)(1P°) 7D°
		6	17654.54	1.650	88	6	$(^{7}F)(^{1}P^{\circ})^{-7}F^{\circ}$
$4f^{6}(^{7}\mathrm{F})6s6p(^{3}\mathrm{P}^{\circ})$	5D°	0	15586.30		74	22	$(^{7}F)(^{1}P^{\circ})^{-7}F^{\circ}$
$4f^{6}(^{7}{ m F})6s6p(^{1}{ m P}^{\circ})$	₹G°	1	15650.55	-0.13	79	10	(7F)(3P°) 5F°
		2	16116.42	0.960	80	9	$(^{7}F)(^{3}P^{\circ}) \ ^{5}F^{\circ}$
		3	16748.30	1.27	78	11	(⁷ F)(³ P°) ⁹ F°
		4	17504.63	1.395	75	18	(7F)(3P°) 9F°
		5	18350.40	1.44	71	26	(⁷ F)(³ P°) ⁹ F°
		6	19254.29	1.47	65	34	(⁷ F)(³ P°) ⁹ F°
		7	20211.95	1.475	60	39	(7F)(3P°) 9F°
$4f^{6}(^{7}\mathrm{F})6s6p(^{3}\mathrm{P}^{\circ})$	5D°	1	16112.33	1.50	59	16	(7F)(1P°) 7F°
$4f^{6}(^{7}\mathrm{F})6s6p(^{3}\mathrm{P}^{\circ})$		2	16681.74	1.77:	42 ⁵ D)° 22	(⁷ F)(³ P°) ⁹ F°

Sm I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ding percentages
$4f^{6}(^{7}\mathrm{F})6s6p(^{1}\mathrm{P}^{\circ})$	⁷ D°	1	16690.76	2.83:	53		30	(⁷ F)(³ P°) ⁹ F°
4.66(7E)(C-C(1D9)	7F°	2	17190.20	1.425	46		25	(⁷ F)(¹ P°) ⁷ D°
$4f^{6}(^{7}F)6s6p(^{1}P^{\circ})$	P	0	17190.20	1.420	65		20	$(^{7}F)(^{3}P^{\circ})$ $^{5}D^{\circ}$
				1 015				(⁷ F)(³ P°) ⁵ G°
		3	17830.80	1.215	41		37	
		4	19191.64	1.27:	60		20	(7F)(3P°) 5G°
		5	20153.47	1.44	68		19	(7F)(3P°) 5G°
		6	21055.76	1.455	65		26	(7F)(3P°) 5G°
$4f^{6}(^{7}{\rm F})6s6p(^{1}{\rm P^{\circ}})$		3	17243.55	1.62	35	$^7\mathrm{D}^\circ$	21	$(^{7}\mathrm{F})(^{3}\mathrm{P}^{\circ})$ $^{5}\mathrm{D}^{\circ}$
$4f^{6}(^{7}F)6s6p(^{3}P^{\circ})$	5G°	2	17462.37	0.755	74		8	$(^{7}F)(^{3}P^{\circ})$ $^{5}F^{\circ}$
		3	18209.04	1.39	36		27	$(^{7}F)(^{1}P^{\circ})^{-7}F^{\circ}$
		4	18503.49	1.365	41		27	$(^{7}F)(^{1}P^{\circ})^{-7}D^{\circ}$
		5	18811.11	1.45	47		17	$(^{7}F)(^{1}P^{\circ}) ^{7}F^{\circ}$
		6	19712.41	1.38	70		23	(7F)(1P°) 7F°
$4f^{6}(^{7}\mathrm{F})6s6p(^{1}\mathrm{P}^{\circ})$		1	17769.71	0.80:	26	7F°	17	(7F)(3P°) 5F°
$4f^{6}(^{7}\mathrm{F})6s6p(^{1}\mathrm{P}^{\circ})$		4	17959.27	1.52	30	⁷ D°	21	(⁷ F)(³ P°) ⁵ G°
•						_		
$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$	7H°	2	18075.67	0.41	56		11	$4f^{6}(^{7}F)6s6p(^{1}P^{\circ})^{-7}F$
		3	18948.78	0.94	45		11	$4f^{6}(^{7}F)6s6p(^{3}P^{\circ})^{5}I$
		4	19990.25	1.115	53		10	$(^6\mathrm{H}^\circ)$ $^7\mathrm{I}^\circ$
		5	21062.82	1.21	59		12	$(^6\mathrm{H}^\circ)$ $^7\mathrm{G}^\circ$
		6	22160.84	1.305	52		15	(6H°) 7G°
		7	23337.40	1.36	53		13	(6H°) 7G°
		8			74		14	(6F°) 7H°
$4f^{6}(^{7}\mathrm{F})6s6p(^{1}\mathrm{P}^{\circ})$		1	18225.13	0.695	31	7F°	21	$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$ $^{7}\mathrm{G}^{\circ}$
$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$	7F°	0	18309.02		74		13	$4f^{6}(^{7}F)6s6p(^{3}P^{\circ})^{-7}I$
, , ,		1	18475.28	0.96	65		13	$4f^{6}(^{7}F)6s6p(^{3}P^{\circ})^{5}I$
		$\overset{\circ}{2}$	18788.08	1.280	31		14	$4f^{6(7}F)6s6p(^{1}P^{\circ})^{-7}$
		$\frac{2}{3}$	19501.27	1.365	49		8	$4f^{6}(^{7}F)6s6p(^{3}P^{\circ})^{5}]$
		4	20163.00	1.390	30		14	$4f^{6}(^{7}F)6s6p(^{3}P^{\circ})^{5}$
		5	21458.89	1.425	42		18	(6H°) 7G°
		6	22944.38	1.475	61		23	$4f^{6}(^{7}F)6s6p(^{3}P^{\circ})^{-7}$
4 CF (CTTO) F 10 0	710	0	10000 41	0.00			_	(611°) 711°
$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$	7I°	3	18328.64	0.33	88		7	(6H°) 7H°
		4	19174.84	0.96:	86		9	(6H°) 7H°
		5	20183.35	1.03	84			(6H°) 7H°
		6	21296.45	1.12	82		12	$(^6\mathrm{H}^\circ)$ $^7\mathrm{H}^\circ$
		7	22468.87	1.235	82		12	$(^6\mathrm{H}^\circ)$ $^7\mathrm{H}^\circ$
		8			83		8	$(^6\mathrm{H}^\circ)$ $^7\mathrm{H}^\circ$
		9			89		11	(6H°) 7K°
$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$		2	18416.62	1.08	15	⁷ H°	13	$(^6\mathrm{H}^\circ)$ $^7\mathrm{F}^\circ$
$4f^{6}(^{7}\mathrm{F})6s6p(^{3}\mathrm{P}^{\circ})$	5 Fr°	1	18985.70	0.18	58		16	$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$ $^{7}\mathrm{G}^{\circ}$
± * /		2	19677.46	1.08	59		14	$({}^{7}{\rm F})({}^{3}{\rm P}^{\circ})~{}^{5}{\rm D}^{\circ}$
		3	20459.30	1.295	55		26	$({}^{7}F)({}^{3}P^{\circ}) {}^{5}D^{\circ}$
		5	21809.74	1.41	56		14	$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$ $^{7}\mathrm{F}^{\circ}$
$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$		2	19009.52	0.945	37	7G°	28	$(^6\mathrm{H}^\circ)$ $^7\mathrm{F}^\circ$
$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$		3	19210.09	1.27	22	7Н°	16	(6H°) 7F°
$4f^{6}(^{7}\mathrm{F})6s6p(^{1}\mathrm{P}^{\circ})$	7D°	5	19264.63	1.485	64		23	(7F)(3P°) 5G°
$4f^{5}(^{6}\text{H}^{\circ})5d6s^{2}$	7G°	3	19776.97	1.15	52		22	$4f^{6}(^{7}F)6s6p(^{3}P^{\circ})^{7}($
$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$	2120	1	20091.03	0.09	55		12	$(^6\mathrm{H}^\circ)$ $^7\mathrm{G}^\circ$
-		2	20762.82	0.99	53		11	$4f^{6}(^{7}F)6s6p(^{3}P^{\circ})^{7}($
		3	21700.89	1.235	46		15	(⁶ H°) ⁷ G°
		-		-				
		4	22893.05	1.345	32		20	(6H°) 5G°

Sm I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lead	ling percentages
$4f^{5}(^{6}{ m H^{\circ}})5d6s^{2}$		4	20396.67	1.405	24	7F°	14	$4f^{6(^{7}{\rm F})}6s6p(^{3}{\rm P}^{\circ})~^{5}{\rm F}^{\circ}$
		6	20593.06	1.23				
$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$		4	20712.83	1.29	37	₹G°	22	$4f^{6}(^{7}F)6s6p(^{3}P^{\circ})^{-7}G^{\circ}$
$4f^{6}(^{7}{ m F})6s6p(^{3}{ m P}^{\circ})$	⁷ D°	1	21193.68	2.93	87		8	$4f^{5}(^{6}\mathrm{F}^{\circ})5d6s^{2}$ $^{7}\mathrm{D}^{\circ}$
•		2	21813.22	1.94	85		8	$4f^{5}(^{6}\text{F}^{\circ})5d6s^{2}$ $^{7}\text{D}^{\circ}$
		3	22632.30	1.69	81		8	4f ⁵ (⁶ F°)5d6s ² ⁷ D°
		4	23594.84 24323.51	1.60 1.46	67		10 20	4f ⁵ (⁶ H°)5d6s ² ⁵ G° (⁷ F)(³ P°) ⁷ F°
		5	24323.31		35		20	
$4f^{6}(^{7}F)6s6p(^{3}P^{\circ})$		4	21243.30	1.385	45	5D°	44	(⁷ F)(³ P°) ⁵ F°
$4f^{6}(^{7}\mathrm{F})6s6p(^{3}\mathrm{P}^{\circ})$		5	21599.84	1.37	23	5F°	18	$4f^{5}(^{6}\text{H}^{\circ})5d6s^{2}$ $^{7}\text{G}^{\circ}$
$4f^{6}(^{7}\mathrm{F})6s6p(^{3}\mathrm{P}^{\circ})$	7F°	0	22041.02		58		32	$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$ $^{7}\mathrm{F}^{\circ}$
$4f^{6}(^{7}F)6s6p(^{3}P^{\circ})$	7F°	1	22313.63	1.480	53		31	$4f^{5}(^{6}\text{H}^{\circ})5d6s^{2}$ $^{7}\text{F}^{\circ}$
$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$	5G°	2	22491.94	0.52	65		16	$4f^{6}(^{7}F)6s6p(^{3}P^{\circ})$ $^{7}G^{\circ}$
$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$		6	22643.12	1.355	32	$^{7}\mathrm{G}^{\circ}$	19	$(^{6}\mathrm{H}^{\circ})$ $^{7}\mathrm{H}^{\circ}$
4f5(6H°)5d26s?	9I°?	2	22844.00	0.49:				
-, (,		3	23230.75	0.83				
		4	23802.10	0.975				
		5	24467.84	1.15				
		6	25259.80	1.25 1.275				
		7 8	26171.20 27196.73	1.275				
		9	28305.00	1.38				
		10	29467.69	1.395				
$4f^{6}(^{7}\mathrm{F})6s6p(^{3}\mathrm{P}^{\circ})$		2	22893.37	0.59:	44	$^7\mathrm{F}^\circ$	29	$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$ $^{7}\mathrm{F}^{\circ}$
$4f^{6}(^{7}\mathrm{F})6s6p(^{3}\mathrm{P}^{\circ})$	⁷ G°	1	22914.07	-0.480	57		21	$4f^{5}(^{6}\mathrm{F}^{\circ})5d6s^{2}$ $^{7}\mathrm{G}^{\circ}$
$4f^{5}(^{6}\mathrm{F}^{\circ})5d6s^{2}$	₹G°	1	23243.84	-0.475	67		22	$(^6\mathrm{H}^\circ)$ $^7\mathrm{G}^\circ$
$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$		3	23316.63	1.01	37	${}^5{ m G}^\circ$	30	$4f^{6}(^{7}\mathrm{F})6s6p(^{3}\mathrm{P}^{\circ})^{-7}\mathrm{G}^{\circ}$
$4f^{5}(^{6}\mathrm{F}^{\circ})5d6s^{2}$	7G°	2	23380.75	0.72	52		28	$4f^{6}(^{7}\mathrm{F})6s6p(^{3}\mathrm{P}^{\circ})$ $^{7}\mathrm{G}^{\circ}$
$4f^{5}(^{6}\mathrm{F}^{\circ})5d6s^{2}$		2	23546.54	0.795	30	⁷ H°	25	$(^6\mathrm{H}^\circ)$ $^7\mathrm{G}^\circ$
	°PH°?	1	23629.98	-0.80				
$4f^{6}(^{7}{ m F})6s6p(^{3}{ m P}^{\circ})$		3	23709.98	1.260	32	$^7\mathrm{F}^\circ$	26	$4f^{5}(^{6}\mathrm{F}^{\circ})5d6s^{2}$ $^{7}\mathrm{F}^{\circ}$
$4f^{6}(^{7}\mathrm{F})6s6p(^{3}\mathrm{P}^{\circ})$		7	23734.36	1.37	38	$^{7}\mathrm{G}^{\circ}$	31	$4f^{5}(^{6}{ m H}^{\circ})5d6s^{2}$ $^{7}{ m G}^{\circ}$
	9H°?	2	23847.25	0.60				
$4f^{5}(^{6}\mathrm{F}^{\circ})5d6s^{2}$	⁷ G°	3	23852.43	0.95	52		22	(6F°) 7H°
$4f^{5}(^{6}\mathrm{F}^{\circ})5d6s^{2}$	7H°	2	23986.48	0.32	52		16	$(^6\mathrm{F}^\circ)$ $^7\mathrm{G}^\circ$
		3	24150.80	1.105	37		15	(6H°) 7G°
		4	25065.37	1.21	52		24	(6F°) ⁷ G°
		5 c	26065.85	1.245	43		17	(6F°) 7G° (6F°) 7G°
		$\frac{6}{7}$	27129.49 27718.35	1.33 1.345	50 45		18 33	(°F°) °G°
		8	27710.00	1.545	80		12	(⁶ F°) ⁷ H°
$4f^{6}(^{7}{ m F})6s6p(^{3}{ m P}^{\circ})$		4	23996.55	1.045	35	⁷ G°	14	$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$ $^{5}\mathrm{G}^{\circ}$
	⁷ D°?	1	24184.05	2.21		,		
	°?	3	24244.80	1.08				
		4	24312.02	1.09				
		1	24375.60	2.49				
		_		1		7Н°	22	(6F°) 7G°

Sm I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Le	ading percentages
	⁷ D°?	2	24498.96	1.73			
		4	24570.03	1.04			
$4f^{5}(^{6}\mathrm{F}^{\circ})5d6s^{2}$		4	24633.75	1.325	20 7	F° 19) (6F°) ⁷ G°
$4f^{6}(^{7}{ m F})6s6p(^{3}{ m P}^{\circ})$		5	24668.79	1.53	32 7	D° 1′	7 (7F)(3P°) 7G°
$4f^{5}(^{6}\mathrm{F}^{\circ})5d6s^{2}$		4	24772.74	1.25		G° 25	
		2	24913.28	1.770			, (1 , 11
	7D°?	3	24967.14	1.56			
		5	24977.83	1.20			
$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$		4	25387.17	1.055	oc 5	r°	(611°) 5(1°)
$4f^{5}(^{6}F^{\circ})5d6s^{2}$						I° 18	
4) (1)0u0s		5	25390.91	1.29	25 7	H° 24	4 (6F°) 7G°
	775.00	5	25453.11	1.32			
	⁷ D°?	4	25572.10	1.40			
4.07.07.0		3	25604.76	1.645			
$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$		5	25615.55	1.39	15 7	G° 14	(6H°) 5F°
		4	25663.60	0.705			
$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$		5	25675.50	1.12	38 5	[° 25	(6F°) 7G°
$4f^{6}(^{7}F)5d6p(^{3}F^{\circ})$?	9I°?	2	25808.90	-0.22			
		3	26214.75	0.55			
		4	26752.26 27852.78	0.94 1.16			
		$\frac{5}{6}$	28864.89	1.16			
		7	29948.38	1.325			
		8	31129.79	1.360			
		9	32129.89	1.43			
		10	33808.29	1.42			
$4f^{6}(^{7}F)6s6p(^{3}P^{\circ})$		6	25840.31	1.48	40 70	G° 17	$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$ $^{7}\mathrm{G}^{\circ}$
$4f^{5}(^{6}\mathrm{F}^{\circ})5d6s^{2}$	⁷ P°	2	25979.30	2.535	95	2	$(^6F^\circ)$ $^5P^\circ$
		2	26054.05	2.34			
		1	26146.01				
		6	26180.92	1.29			
	⁷ H°?	2	26220.86	0.09			
	7I°?	3	26267.14	0.39			
$4f^{5}(^{6}{ m F}^{\circ})5d6s^{2}$	7F°	0			59	25	$4f^{6}(^{7}F)6s6p(^{3}P^{\circ})^{7}F^{\circ}$
		1	26281.09	1.50	58	25	
		2	26786.80	1.34:	58	25	
		3	27425.50	1.49	59	24	
		4	28180.95 29023.96	1.50 1.405	58	24	
		$\frac{5}{6}$	29023.96 30092.53	1.405	54 49	23 20	
	7D°?	5					
	D:		26311.45	1.50			
	9H°?	4	26382.25	1.57			
$f^{5}(^{6}\mathrm{F}^{\circ})5d6s^{2}$	"H" (1	26438.25	-0.81		T O	(CEO) RCC
g (1)5408*		6	26471.33	1.355	28 ⁷ H	H° 25	(6F°) 7G°
		5	26507.31	0.935			
		3	26619.16	1.935			
		4	26657.10	0.91			
		3	26703.85	1.900			

Sm I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
	7Н°?	3	26714.40	0.725		
	°?	2	26721.35	0.785		
		5	26776.98	1.190		
		1	26803.70	1.17:		
		0	26822.13			
$4f^{5}(^{6}{ m F}^{\circ})5d6s^{2}$	⁷ D°	1	26962.12	2.565	82	8 $4f^{6}(^{7}\text{F})6s6p(^{3}\text{P}^{\circ})^{-7}\text{D}^{\circ}$
		$\frac{2}{3}$	27671.35	1.955	84	8 $4f^{6}(^{7}F)6s6p(^{3}P^{\circ})^{7}D^{\circ}$
		4	28356.22 29365.03	1.59 1.60	74 51	8 ${}^{4}f^{6}({}^{7}{ m F})6s6p({}^{3}{ m P}^{\circ}){}^{7}{ m D}^{\circ}$ 14 ${}^{(6}{ m F}^{\circ}){}^{7}{ m P}^{\circ}$
		5	30233.64	1.55	68	8 (eL,) 2L,
		4	26962.12	0.85		
	°9H°?	3	27166.50	1.02 -		
		5	27255.97	1.55		
		7	27263.07	1.40		
		1	27267.94	0.475		
$4f^{6}(^{7}F)6s6p(^{3}P^{\circ})$	₹G°	7	27287.58	1.400	47	$24 ext{ } 4f^{5}(^{6}\text{H}^{\circ})5d6s^{2} ^{7}\text{G}^{\circ}$
	7H°?	2	27338.00	0.07		
		2	27398.92	1.675		
	⁷ H°?	4	27406.90	1.00		
		6	27509.09	1.080		
	°PH°?	1	27548.28	-0.86		
		4	27583.38	1.765		
		2	27627.25	1.525		
	7I°?	5	27654.90	1.03		
	°PH°?	2	27709.40	0.575		
		4	27734.99	1.685		
	077.00	6	27782.41	1.230		
	9H°?	4	27783.54	1.20		
	7H°?	7	27790.77	1.26		
	7D°?	3	27818.55	0.725		
	, n.	1	27888.93	2.84		
		2 0	27920.10	0.40		
		3	27925.31 27992.35	0.805		
		2	28065.45	0.805 1.49		
$f^{5(6\mathrm{F}^{\circ})}5d6s^{2}$		7	28138.00	1.49	90 7Cl°	00 (6179) 7110
· · · /· · · ·		3	28164.78	1.14	38 ⁷ G°	23 (⁶ F°) ⁷ H°
		0	28168.22	1.44		
		3	28224.05	0.86		
		1	28233.08	1.74:		
		7	28250.02	1.46		
		5	28331.84	1.135		
			1			
	⁷ D°?	2	28359.00	1.785		

Sm I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
		4	28401.00	1.42	
	7H°?	4	28425.30	1.01	
		2	28445.02	1.54	
		4	28465.30	1.140	
		2	28496.57	1.53	
		3	28505.72	1.56	
	9H°?	5	28534.04	1.300	
		3	28585.07	0.935	
	7I°?	6	28600.02	1.165	
	7D°?	1	28613.22	2.125:	
		5	28694.06	1.67	
		1	28704.25	1.725:	
		4	28705.58	1.53	
		3	28744.99	1.425	·
		4	28752.34	0.96	
		4	28853.25	1.19	
		3	28855.76	1.37	
		1	28913.97	0.27	
		3	28942.00	1.02	
		3	28998.13	1.48	
		2	29041.31	1.36	
		5	29069.90	1.33	
		1	29130.03	0.495	
	7H°?	5	29151.15	1.23	
		4	29152.26	1.45	
		2	29156.00	1.79	
		2	29200.62	1.33	
		4	29210.73	1.13	
		3	29226.71	1.68	
		3	29282.28	2.00	
$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$		6	29379.80	1.215	42 ⁵ H° 19 (⁶ F°) ⁵ H°
		5	29475.54	1.26	
		2	29478.74	2.06	
		4	29481.25	1.10	
		5	29490.40	1.20	
		2	29506.40	1.11	
		4	29521.75	1.36	
		4	29557.87	0.93	
	°? °H°?	9	29564.24	1.435	
		5	29602.09	1.20	
	7I°?	7	29627.02	1.25	
		2	29639.45	0.305	
		3	29648.85	1.230	
		4	29651.20	1.20	

Sm I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages	
$4f^{5}(^{6}{ m F}^{\circ})5d6s^{2}$	5G°	4	29673.01	1.26	54	18 (⁶ F°) ⁷ D°	
		2	29723.05	0.44			
		4	29731.00	1.64			
		8	29741.50	1.24			
		6	29746.53	1.34			
		3	29775.10	1.83			
		6	29803.32	1.575			
		5	29807.75	1.415		•	
		1	29817.84	1.21			
		4	29855.91	1.815			
		6	29929.38	1.30			
		1	30069.97	1.68			
		5	30089.27	1.35			
		1	30107.05	1.56			
		3	30125.74	1.565			
		2	30128.88	1.38			
	₹G°	1	30238.46	-0.14			
		3	30251.58	0.93			
		6	30256.40	0.96			
		7	30278.08	1.01			•
		5	30284.40	1.33			
		6	30312.27	1.215			
		3	30321.75	1.37			
$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s^{2}$	5H°	7	30330.78	1.275	47	28 (⁶ F°) ⁵ H°	
		5	30332.35	1.33			
		4	30337.45	1.35			
		2	30399.70	1.96			
		1	30412.50	1.27			
		5	30416.80	1.58			
		2	30435.00	0.84			
		3	30476.37	0.685			
		2	30537.33	1.42 0.585			
		3 6	30559.13	1.45			
		5	30560.04 30560.08	1.48			
		<i>3</i> 7	30569.18	1.37			
		6	30586.50	1.17			
		2	30596.20	1.57			
	⁷ D°?	4	30619.60	1.64			
	D :	5	30633.21	1.36			
		6	30659.34	1.40			
		5	30689.95	1.335			
	7I°?	8	30698.42	1.29			
	•	3	30753.65	1.49			

Sm I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	
		1	30753.72	1.32			2	31786.74	1.
		7	30770.00	1.37			3	31820.91	1.
		4	30775.70	0.68			6	31845.65	1.
		3	30788.75	0.75			6	31865.83	1
		2	30796.27	1.32			3	31893.78	1
		2	30823.54	1.72			4	31904.93	1
		3	30836.69	1.47			0	31923.80	
		2	30901.40	1.17			5	31924.70	1
		1	30911.22	1.54			2	31934.03	1
		3	30963.07	1.49			7	31960.69	1
		4	31009.20	1.425			5	32028.11	1
		6	31015.20	1.415			1	32086.66	1
		5	31024.75	1.41:			4	32125.53	1
		1	31041.00	0.60			4	32149.28	1
		5	31047.10	1.11:			4	32188.17	1
		2	31062.30	1.43			5	32197.35]
		6	31108.42	1.545			8	32242.45	:
		4	31156.40	1.64			3	32252.30	
		6	31174.68	1.29			5	32260.63	
		3	31185.20	1.50			6	32284.49	
		7	31207.22	1.435			4	32289.85	
		5	31210.33	1.27			2	32294.20 32340.69	
		1	31219.70	2.66			5		
		4	31234.62	1.21			$egin{array}{c} 4 \ 2 \end{array}$	32346.24 32401.65	
		3	31322.84 31342.95	1.29			1	32402.62	
		3	31352.05	1.50			2	32558.70	
		4	31364.15	1.20			5	32626.35	
		1	31391.80	0.19			6	32696.63	
		4	31421.00	1.32			5	32735.62	
		2	31439.15	0.765			3	32822.82	
		3	31483.52	1.43			5	32831.50	
		4	31493.41	1.16			1	32865.57	(
		1	31503.45	1.12			5	32868.71	
		6	31503.83	1.42			3	32907.64	
		8	31534.12	1.40			1	33030.91	(
		5	31568.40	1.04			6	33081.45	
		1	31584.91	2.77		ļ	2	33199.40]
		3	31597.53	1.73			8	33318.35]
		4	31665.43	1.52			4	33329.35	1
	9H °?	8	31699.20	1.400			2	33382.06	
		2	31716.41	1.950			6	33384.92	1
	7I°?	9	31746.67	1.35			7	33408.80	1
		5	31754.23	1.38			4	33411.09	1

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		4	33458.94	1.600			4	34514.74	1.45
		7	33507.28	1.350			6	34723.16	1.35
		2	33634.82	2.22			8	34761.78	1.430
		3	33733.00	1.505		9H°?	9	35176.51	1.43
		7	33739.36	1.460					
		3	33838.15	1.35					
		4	33983.40	1.48	Sm II (8F _{1/2})	Limit		45519	
		2	34044.11	2.03			4?	45775a?	
		3	34189.36	1.88			4,5,6	45865a?	
		5	34224.44		,		4,5,6	46015a?	

(Pm I sequence; 61 electrons)

Z = 62

Ground state (1 $s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6$) $4f^66s$ $^8\mathrm{F}_{_{1/2}}$

Ionization energy 89300 ± 600 cm⁻¹

 $11.07 \pm 0.08 \text{ eV}$

Identified even configurations

4f 66s, 4f 65d

Identified odd configurations

4f⁷, 4f⁶6p?, 4f⁵5d6s?

Albertson's analysis of this spectrum yielded about 40 low even levels, which he assigned to terms of the $4f^6(^7\mathrm{F})6s$ and $4f^6(^7\mathrm{F})5d$ subconfigurations, and more than 200 upper odd levels. The group at the Laboratoire Aimé Cotton, Orsay, has revised and extended the analysis to include 70 even levels and more than 300 upper odd levels. We have taken the levels and gvalues from their work as given in the article by Blaise, Morillon, Schweighofer, and Verges [1969] and in the theses of Carlier [1967] and Henny-Schweighofer [1970]. Carlier's calculation of the $(4f^6(^7\mathrm{F})6s+4f^6(^7\mathrm{F})5d)$ configurations is the source of the percentage compositions.

Blaise et al. found the $4f^{7}$ *S $^{\circ}_{7/2}$ term, which is the lowest known odd level. Most of the odd levels are expected to belong to the group of four configurations $(4f^66p+4f^5(5d+6s)^2)$; a calculation including these configurations and their interactions is needed. Although singleconfiguration assignments will no doubt be meaningless for some of these levels, the tentative assignments listed here may prove useful in correlating experimental and calculated levels. Albertson made most of the tentative assignments to $4f^6(^7F)6p$. Blaise [1976] has furnished additional tentative assignments, mostly to $4f^55d6s$, and has revised some of Albertson's designations. A few odd levels having low J values and distinctive g values were assigned octet designations by Blaise et al. (Six ${}^8F^{\circ}_{1/2}$ and five ${}^8G^{\circ}_{1/2}$ levels, for example, are known.)

The ionization potential is from Sugar and Reader.

The various observations of Sm spectra mentioned in the preceding text for Sm I included measurements of Sm II, and the description of these lists need not be repeated. King's 1935 list, which gives almost 1800 lines of Sm II, was extended somewhat for Sm II by King and Albertson, and was also supplemented by Zeeman data [Albertson, 1936]. Albertson's list of about 1200 classified Sm II lines has been extended by Henny-Schweighofer [1967], Blaise et al. [1969], and Morillon [1970].

In his 1936 paper Albertson also gave a noteworthy description of rare-earth spectra in general. He divided these into classes by character and noted that the order in which they were being analyzed corresponded to an increasing complexity. Using the different characters of the spectra and the known ground configurations for La I, Sm I, Eu I, Gd I, and Yb I, Albertson gave a table of ground configurations for all the neutral rare earths that has proved correct except for two elements.

References

Albertson, W., Astrophys. J. 84, 26 (1936). EL CL W ZE IP

Albertson, W., and King, A. S., Phys. Rev. 49, 209 (1936). ZE

Becher, J., Thesis, Johns Hopkins Univ., Baltimore, 135 pp. (1965); (Univ. Microfilms, Ann Arbor, Mich., No. 66-4956).

Blaise, J., private communication (1976). ND

Blaise, J., Morillon, C., Schweighofer, M. G., and Verges, J., Spectrochim. Acta, Part B 24, 405 (1969). EL CL W ZE

Carlier, A., Thesis (Third Cycle), Univ. Paris, Orsay, 128 pp. (1967). EL ND PT

Henny-Schweighofer, M. G., Thesis (Third Cycle), Univ. Paris, Orsay, 174 pp. (1970). EL CL W ZE IS

Kiess, C. C., Sci. Papers Bur. Stand. (U.S.) 18, 201 (1922). W

King, A. S., Astrophys. J. 82, 140 (1935). W

Morillon, C., Spectrochim. Acta, Part B 25, 513 (1970). CL W

Sugar, J., and Reader, J., J. Opt. Soc. Am. 55, 1286 (1965). IP

Sm II, Even Parity

			Sill II, Even	rarity			
Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentag	es
4f ⁶ (⁷ F)6s	*F	1/2	0.00	3.950	99		
• , ,		3/2	326.64	1.975	98		
		5/2	838.22	1.708	97		
		7/2	1489.16	1.610	97		
		9/2	2237.97	1.580	98		
		11/2	3052.65	1.550			
		13/2	3909.62	1.540	99 99		
4 CR/7TD\ 0	e F	1./	**				
4f ⁶ (⁷ F)6s	e F	1/2	1518.29	-0.595	99		•
		3/2	2003.23	1.085	98		
		5/2	2688.69	1.325	97		
		7/2	3499.12	1.400	97		
		9/2	4386.03	1.440	97		
		11/2	5317.56	1.455	98		
$4f^6(^7\mathrm{F})5d$	8H	3/2	7135.06	-0.385	99		
		5/2	7524.86	0.70	99		
		7/2	8046.00	1.055	99		
		9/2	8679.23	1.210	99		
		11/2	9406.63	1.300	99		
		13/2	10214.38	1.35	99		
		15/2					
			11094.06	1.38	99		
		17/2	12045.10	1.41	100		
$4f^6(^7\mathrm{F})5d$	8D	3/2	8578.70	2.62	84	13 ⁶ P	
		5/2	9410.00	2.01	90		
		7/2	10180.70	1.790	91		
		9/2	10960.16	1.685	92		
		11/2	11791.05	1.636	95		
$4f^6(^7\mathrm{F})5d$	8G	1/2	10371.51	0.360	70	28 ⁸ F	
4) (1°)50	٠ ا	3/2	10518.50				
		5/ ₂		1.335	65	31	
			10873.30	1.435	63	31	
		7/2	11395.40	1.465	64	29	
		9/2	12045.17	1.470	66	28	
		11/2	12789.81	1.47	69	27	
		13/2	13604.50	1.47	72	26	
		15/2	14503.67	1.455	97		
$4f^6(^7\mathrm{F})5d$	8F	1/2	10743.40	2.32	69	29 ⁸ G	
• • •		3/2	11155.30	1.64	61	34	
		5/2	11659.80	1.57	38	27	
		7/2	12232.34	1.532	62	33	
		9/2	12841.60	1.52	65	32	
		11/2	13466.50	1.52	68	32 29	
		$^{13}/_{2}$	14084.55	1.514	73	29 26	
4.00.0000 = 1	er.						
$4f^{6}(^{7}{ m F})5d$	eb	3/2	11047.30	2.510	84	12 ⁸ D	
	+	5/2	11798.60	1.99	35	32 ⁸ P	
		7/2	13777.05	1.78	61	34 ⁸ P	
$4f^{6}(^{7}\mathrm{F})5d$	8p	5/2	12566.80	2.16	51	42 ⁶ P	
• • •		7/2	12987.86	1.86	63	31 ⁶ P	
		9/2	14115.00	1.778	96	-	
$4f^{6}(^{7}\mathrm{F})5d$	eH	5/2	14193.43	0.295	98		
4) (T)0a	11	7/2	14195.45	0.295			
		9/ ₂	15242.95	1.080	96 96		
				LUOU	, un		
		$\frac{11}{2}$ $\frac{13}{2}$	15897.54 16615.50	1.21 1.295	96 97		

Sm II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Lea	ding percentages
$4f^{6}(^{7}\mathrm{F})5d$	6F	3/2	16077.75	1.35	46	26	₆ D
1) (1)00	_	1/2	16162.32	0.300	88	10	$_{\mathbf{e}}\mathrm{D}$
		7/2	17005.30	1.405	43	41	$_{6}\mathrm{D}$
		9/2	17717.86	1.52	46	42	$_{e}\mathrm{D}$
		11/2	18506.80		70	27	⁶ G
$4f^{6}(^{7}\mathrm{F})5d$	6D	5/2	16428.70	1.355	50	38	$^6\mathrm{F}$
-J (-) - · ·		1/2	17054.60		87	10	eF
		3/2	17568.38	1.58	66	27	$_{ m eF}$
		7/2	18807.69	1.52	43	35	^{6}G
		9/2	19400.27		48	33	${}_{\mathbf{e}}\mathrm{G}$
$4f^6(^7\mathrm{F})5d$		5/2	18050.94	1.54	37 ⁶ D	34	$^{ m eG}$
$4f^6(^7\mathrm{F})5d$	eG.	3/2	18478.13	0.01	71	25	6F
-J (- /- ·-		5/2	19035.41		59	33	e.E.
		7/2	19627.90	1.30	54	36	$^{ m eF}$
		9/2	20179.48	1.35	55	36	$^{ m eF}$
		13/2	20582.56		97		
		11/2	20648.02	1.35	70	28	$^{ m eF}$
Sm 111 (7F0)	Limit		89300				

Sm II, Odd Parity

Sm II, Odd Parity

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
$4f^7$	8S°	7/2	18288.85	2.01			5/2	24194.38	0.2
4f ⁶ (⁷ F)6p?	8G°	1/2	21250.75	-1.155			1/2	24221.81	2.4
4f ⁵ (⁶ H°)5d6s?	4	3/2	21507.87	0.19	$4f^{6}(^{7}\mathrm{F})6p$?		9/2	24257.37	1.4
4) *(-11)5008:	8F°	1/2	21655.42	3.735			7/2	24358.12	0.7.
$4f^{6}(^{7}\mathrm{F})6p$?	1	3/2	21702.33	0.515	$4f^{6}(^{7}\mathrm{F})6p$?		3/2	24429.52	1.03
4f 5(6H°)5d6s?		5/2	21813.61	0.255	$4f^{6}(^{7}\mathrm{F})6p$?		5/2	24582.59	1.23
$4f^{6}(^{7}F)6p$?		3/2	21904.12	1.81	$4f^{6}(^{7}\mathrm{F})6p$?		11/2	24588.00	1.3
4f ⁵ (⁶ H°)5d6s?		5/2	22039.98	0.70			3/2	24685.53	0.3
$4f^{6}(^{7}F)6p$?		5/2	22248.32	1.360	$4f^{6}(^{7}\mathrm{F})6p$?		7/2	24689.84	1.4
$4f^{6}(^{7}\mathrm{F})6p$?		5/2	22429.49	1.30	$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s?$		11/2	24816.28	1.3
4f ⁵ (⁶ H°)5d6s?		7/2	22788.68	1.045	-		5/2	24848.47	1.0
$4f^{6}(^{7}\mathrm{F})6p?$		7/2	22875.41	1.46			7/2	24897.91	0.8
$4f^{6}(^{7}F)6p$?		3/2	23177.49	0.70	4f ⁵ (⁶ H°)5d6s?		1/2	24919.90	-0.5
•		7/2	23260.95	1.355	$4f^{6}(^{7}\mathrm{F})6p$?		5/2	24928.80	1.:
$4f^{6}(^{7}\mathrm{F})6p$?		5/2	23321.24	0.37			3/2	25055.54	1.:
		1/2	23352.41	-0.505		8F°	1/2	25115.55	3.5
4.00(TT) 0 0			23646.90	1.35			5/2	25175.32	0.9
$4f^{6}(^{7}\mathrm{F})6p$?		9/2		0.235	4f ⁵ (⁶ H°)5d6s?		3/2	25178.45	0.9
		1/2	23659.99		$4f^{6}(^{7}F)6p?$		7/2	25304.09	1.:
$4f^{5}(^{6}\mathrm{H}^{\circ})5d6s?$		9/2	23752.70	1.32	-, (±)op.		9/2	25336.52	1.0
$4f^{6}({}^{7}{ m F})6p?$		5/2	23842.20	1.125	$4f^{6}(^{7}\mathrm{F})6p$?		3/2	25361.45	1.
$4f^{6}(^{7}\mathrm{F})6p$?		3/2	23962.25	1.25 0.83	$4f^{6}(^{7}F)6p?$		11/2	25385.36	1.
		3/2	24013.56	0.83	-3 (2)0p.				

Sm II, Odd Parity—Continued

Sm II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		5/2	25417.14	0.82	4f ⁶ (⁷ F)6p?		7/2	27464.20	1.206
		5/2	25546.03	0.77		8H°	3/2	27492.95	-0.225
		3/2	25552.80	1.86			7/2	27552.45	1.30
$\Phi^{\rm R}(^7{ m F})6p$?		7/2	25565.97	1.33	$4f^{5} 5d6s?$		5/2	27631.18	1.165
$4f''(^7F)6p?$		9/2	25597.70	1.535	$4f^{6}(^{7}\mathrm{F})6p$?		11/2	27638.83	1.315:
$4f^{6}(^{7}F)6p$?		13/2	25664.97	1.415			13/2	27639.40	1.26:
		7/2	25790.15	1.25	$4f^{5} 5d6s?$		13/2	27695.96	1.36
$4/5(6 \mathrm{H}^\circ)5d6s$?		13/2	25939.87	1.405			9/2	27824.78	1.105
∜ 5(6H°)5d6s?		5/2	25980.32	1.33			3/2	27829.77	1.185
$4f^6(^7\mathrm{F})6p?$		9/2	26046.35	1.34			9/2	27849.30	1.505
		7/2	26086.63	1.30			5/2	27923.96	0.760
		7/2	26159.60	1.28			3/2	27942.33	2.18
		5/2	26190.92	1.32:			11/2	27987.24	1.35
		5/2	26214.05	0.645:			7/2	27997.25	1.170
	8F°	1/2	26253.55	3.59			3/2	28011.88	0.155
		5/2	26357.90	1.20			9/2	28022.50	1.10
		11/2	26413.29	1.15	$4f^{5} 5d6s?$		7/2	28072.33	1.375
	8G°	1/2	26442.18	-1.21			1/2	28142.79	-0.470
		3/2	26484.66	0.25			11/2	28151.40	1.49
$1f^{6}(^{7}\mathrm{F})6p$?		11/2	26505.53	1.535			9/2	28191.96	1.46
		7/2	26509.67	0.835		8H°	3/2	28239.54	-0.025
1/6(7F)6p?		13/2	26540.12	1.51			7/2	28256.32	1.085
$\int_{0}^{6} (^{7}\mathrm{F})6p$?		9/2	26565.61	1.28			9/2	28314.18	1.30
		3/2	26599.08	1.630			$^{5}/_{2}$	28394.04	0.865
$f^5 5d6s$?	8G°	1/2	26690.30	-1.100			5/2	28429.38	1.775
		3/2	26723.87	1.05			⁷ / ₂	28445.43	1.225
		7/2	26771.62	0.785	$4f^{6}(^{7}F)6p?$		11/2	28540.12	1.46
4/5 5d6s?		9/2	26820.81	1.415			11/2	28554.98	0.775
$4f^{6}(^{7}F)6p$?		11/2	26828.29	1.315			5/2	28573.13	0.74
		11/2	26880.60	1.29			5/2	28672.08	1.215
$4f^5 5d6s?$		15/2	26889.18	1.395			9/2	28725.53	1.315
		7/2	26938.42	1.50			7/2	28730.14	1.11
		5/2	26974.67	0.980			3/2	28812.92	0.06
		9/2	27001.20	1.32			11/2	28850.60	1.50
4/5 5d6s?		3/2	27063.30	0.860			9/2	28913.99	1.380
		5/2	27078.30	0.84			5/2	28929.72	0.565
		7/2	27107.62	1.11			3/2	28938.55	0.92
		5/2	27165.35	0.92			1/2	28980.58	3.130
$4f^6(^7F)6p$?		7/2	27188.30	1.20			11/2	28988.79	1.31
		1/2	27210.12	-0.485	$4f^{5} 5d6s?$		9/2	28997.14	1.39
$4f^{6}(^{7}F)6p?$		15/2	27263.25	1.445			13/2	29123.57	1.38
		5/2	27284.69	1.47			11/2	29137.23	1.210
4f 5 5d6s?		9/2	27309.73	1.335			5/2	29238.56	0.645
		9/2	27386.69	1.060			7/2	29246.00	1.470

Sm II, Odd Parity—Continued

Sm II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	
		7/2	29310.16	1.31			7/2	30816.69	1.0
		11/2	29314.23	1.31	$4f^{5} 5d6s?$		13/2	30879.74	1.4
		9/2	29387.87	1.17			7/2	30954.05	1.1
		5/2	29391.38	0.76			9/2	30969.35	1.1
	8G°	1/2	29422.65	-1.185			13/2	30970.56	1.:
		11/2	29493.71	1.400			11/2	30981.48	1.1
		7/2	29509.60	1.23			5/2	31045.47	1.6
		3/2	29533.82	1.710			3/2	31052.45	1.0
		9/2	29591.12	1.37		8F°	1/2	31089.52	3.3
		7/2	29619.89	1.00			9/2	31120.96	1.0
$f^{6}(^{7}{ m F})6p$?		13/2	29640.51	1.505			11/2	31122.17	1.1
		3/2	29655.90	0.88		8D°	3/2	31171.00	2.0
		$^{5}/_{2}$	29732.66	2.250			1/2	31186.00	(),6
		11/2	29801.08	1.29			9/2	31189.83	1.:
		9/2	29804.88	1.27			5/2	31194.15	0.
		3/2	29894.23	-0.135			7/2	31215.08	1.
		13/2	29913.42	1.51			11/2	31255.90	1
f 5 5d6s?		11/2	29934.80	1.435			3/2	31309.40	1.5
		5/2	29986.54	1.15			9/2	31320.00	0.9
		9/2	29998.15	1.17			5/2	31332.65	1.
		5/2	30031.47	1.125			9/2	31352.93	1.0
		3/2	30082.93	0.150			15/2	31383.62	1.
		9/2	30104.78	1.145			15/2	31441.34	1.
		7/2	30112.78	1.06			11/2	31521.61	1.
		13/2	30123.89	1.36			7/2	31566.40	1.
	8F°	1/2	30252.90	3.86			11/2	31575.55	1.
	1	15/2	30278.46	1.38			5/2	31599.63	1.
		5/2	30302.73	1.015			3/2	31638.79	1.
		9/2	30345.63	1.605			15/2	31646.49	1.
				1.82:			5/2	31669.82	1.
		7/ ₂	30348.66	1.62.			9/2	31701.67	1.
		5/2	30443.22				5/2	31725.56	1.
		13/2	30445.87	1.33			11/2	31768.14	1.
		9/2	30449.12	0.74				-	1.
		7/2	30511.73	1.28			7/ ₂	31774.52 31830.06	1
		11/2	30513.43	1.255					-0
		9/2	30514.16	1.36			1/2	31902.10	
		3/2	30539.73	1.965			7/2	31915.67	1
		13/2	30546.75	1.27	$4f^5 5d6s?$		15/2	31926.40	1
	*G°	1/2	30599.86	-0.69			3/2	31954.10	1
		9/2	30652.56	0.90			11/2	31978.55	1
		5/2	30669.65	0.69			15/2	31998.58	1
		9/2	30681.79	1.200			9/2	32006.64	1
		11/2	30710.03	1.38			3/2	32053.66	1
		3/2	30756.88	2.24			11/2	32060.28	1

Sm II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		1/2	32067.40	-0.150			9/2	33772.54	1.14
		13/2	32130.57	1.33			11/2	33775.84	1.41
		7/2	32204.31	1.47			13/2	33809.85	1.310
		3/2	32223.45	1.285			9/2	33852.93	1.11
		13/2	32286.05	1.27			7/2	33881.94	1.44
		1/2	32296.32	2.74			15/2	33934.48	1.280
		9/2	32299.89	1.355			9/2	34040.37	1.35
		7/2	32344.44	1.310			5/2	34066.75	1.58
		9/2	32345.32	1.510			3/2	34068.41	1.540
		3/2	32358.56	1.42			11/2	34133.81	1.27
		7/2	32380.78	1.52			13/2	34145.44	1.440
		5/2	32397.48	1.06			11/2	34188.47	1.395
		9/2	32434.70	1.455			11/2	34205.91	1.26
		7/2	32451.66	1.22			11/2	34330.90	1.33
		3/2	32492.65	2.07			9/2	34374.70	1.21
		11/2	32513.09	1.230			11/2	34418.95	1.46
		7/2	32549.64	1.60			5/2	34453.83	0.95
		11/2	32589.29	1.230			13/2	34457.57	1.23
		5/2	32603.65	1.44			9/2	34496.00	1.090
		5/2	32675.17	1.16			7/2	34505.80	0.89
		5/2	32685.70	1.665			9/2	34722.26	1.43
		11/2	32690.37	1.240			13/2	34745.47	1.02:
		13/2	32726.78	1.205			13/2	34768.41	1.35:
		13/2	32852.81	1.360			13/2	34890.85	1.33
		9/2	32857.54	1.36			3/2	34910.60	0.58
		5/2	32935.43	1.175			5/2	34913.49	0.945
		9/2	32945.19	1.39			9/2	34951.90	1.320
		3/2	33069.10	1.83			7/2	35101.70	0.80
		5/2	33107.10	0.84			11/2	35192.21	1.09
		11/2	33153.69	1.42			15/2	35261.20	1.32
		5/2	33218.75	1.500			7/2	35303.60	1.12
		3/2	33227.9	1.73			9/2		1.36
								35348.60	
		9/2	33252.45	1.22			9/2	35463.91	1.295
		11/2	33286.30	1.25			1/2	35535.52	-1.19
		7/2	33333.40	1.43			11/2	35547.50	1.415
		9/2	33364.81	1.64			5/2	35583.40	0.98
		5/2	33539.60	1.55			3/2	35966.59	1.20
		7/2	33576.60	1.07			9/2	36107.66	1.270
		11/2	33598.70	1.39			1/2	37488.95	-0.40
		9/2	33613.43	1.12			3/2	37569.11	0.58
		7/2	33630.20	1.07			3/2	37586.27	0.55
	8F°	1/2	33661.26	3.00			19/2	38505.66	1.36
		5/2	33689.50	1.47					
		15/2	33763.45	1.34	Sm III (7Fo)	Limit		89300	

Sm III

(Nd I sequence; 60 electrons)

Z = 62

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{6}$ 7F_0

Ionization energy 189000± 2400 cm⁻¹

 $23.4 \pm 0.3 \text{ eV}$

All the levels except $4f^{6.5}D_03$ are from Dupont's analysis of spark emission spectra [1967]. His list of approximately 15000 lines (1800–9500 Å) assigned to Sm III has not been published. The levels given here classify about 100 lines in the region 1935–4033 Å as $4f^{6.7}F - 4f^{5}(^6H^{\circ},^6F^{\circ},^6P^{\circ})5d$ transitions [Dupont, 1966]. A number of tentative levels listed in Dupont's thesis but not included in the 1967 publication were also omitted here.

The spectra of $\mathrm{Sm^{2+}}$ ions in several different types of crystals have been observed [see compilation in Dupont, 1967]. We have listed only the lowest of the $4f^{6.5}\mathrm{D}$ levels from the BaClF: $\mathrm{Sm^{2+}}$ data of Kiss and Weakliem [1965] in order to approximately locate this important term. The position of this level in the free ion is probably higher; i.e., "x" is probably positive and may be as great as several hundred cm⁻¹. The $^5\mathrm{D}$ term extends to above 20000 cm⁻¹.

The leading percentages for the $4f^{6}$ TF and 5 D terms are from Ofelt's calculation [1963]. Dupont based the identifications of the $4f^{5}5d$ levels on the calculations of Becher [1965], who did not list the eigenvectors. The levels have been arranged into terms following Dupont's names; a number of the analogous Sm I $4f^{5}5d6s^{2}$ levels have eigenvector purities less than 50%.

The lowest predicted terms of the $4f^55d$ configuration are $(^6\mathrm{H}^\circ)^7\mathrm{K}^\circ$ and $^7\mathrm{I}^\circ$, with the $^7\mathrm{K}^\circ_4$ level predicted a little above 24000 cm $^{-1}$. These and some of the other missing terms of the $4f^55d$ configuration can probably be found after the analysis is extended to include the $4f^56s$ and $4f^56p$ configurations.

Sugar and Reader obtained the ionization energy.

References

Becher, J., Thesis, Johns Hopkins Univ., Baltimore, 135 pp. (1965); (Univ. Microfilms, Ann Arbor, Mich., No. 66-4956).
PT

Dupont, A., Thesis, Johns Hopkins Univ., Baltimore, 98 pp. (1966); (Univ. Microfilms, Ann Arbor, Mich., No. 66-7025). EL CL W

Dupont, A., J. Opt. Soc. Am. 57, 867 (1967), EL

Kiss, Z. J., and Weakliem, H. A., Phys. Rev. Lett. 15, 457 (1965). [EL]

Ofelt, G. S., J. Chem. Phys. 38, 2171 (1963), PT

Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP

Sm III

4f6 4f6	⁵D3	0 1 2 3 4 5 6	0.00 293.45 813.55 1492.66 2277.88 3131.54 4026.99	94 95 96 94 98	3 2 2 1	⁵ D1 ⁵ D1 ⁵ D1
4f ⁶	5D3	1 2 3 4 5 6	293.45 813.55 1492.66 2277.88 3131.54	95 96 94 98	2 2	⁵ D1 ⁵ D1
if e	5D3	3 4 5 6	1492.66 2277.88 3131.54	94 98		
1f e	5D3	4 5 6	2277.88 3131.54	98	1	
4f6	5D3	5 6	3131.54		_	⁵ D3
4 f6	⁵D3	6			1	5F2
$4f^6$	5D3		4026.99	98	1	⁵ G1
4f6	5D3	0		97	1	⁵ G1
		1	[14533]+x	48	29	⁵ D1
		1 2		52	31	
		3		56	33	
		4		56 55	$\frac{34}{34}$	
4f ⁵ (⁶ H°)5d	⁷ H°			00	94	
4) (11)00	'п	2 3	26283.55 27361.55			
		4	27301.55			
		5	29377.26			
		6				
		7				
		8				
$4f^{5}(^{6}{ m H}^{\circ})5d$	7F°	0				
		1	27885.89			
		2	28228.81			
		3	29121.36			
		4	30198.89			
		5	31376.56			
		6	32868.01			
$4f^{5}(^{6}\mathrm{H}^{\circ})5d$	⁷ G°	1	28634.34			
		2	29763.82			
		3	30608.25			
		4	31556.56			
		5	32341.80			
		6 7	33710.00			
1f ⁵ (⁶ F°)5d	₹G°	1	20018 18			
1) (1)6u		1	30048.48			
		$\frac{2}{3}$	30948.50 31657.02			
		4	32598.82			
		5	33771.89			
		$\ddot{6}$	30771.00			
		7				
<i>f</i> ⁵ (⁶ F°)5 <i>d</i>	7F°	0				
		1	34846.60			
		2	35314.66			
		3	35928.00			
		4	36826.12			
		5	37738.44			
		6	38758.03			
f ⁵ (⁶ F°)5d	7D°	1	36347.54			
		2	36931.88			
		3	37715.91			
		4	38714.36			
		5	39666.78			
f5(6P°)5d	7D°	1	51160.80			
		2	51432.29			
		3	51940.36			
		4 5	53149.58			
		Э				
m IV (⁶ H _{5/2})	Limit		189000			

(Pr I sequence; 59 electrons)

Z = 62

Ground state (1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6) 4f^{5-6}{\rm H}^{\circ}_{5/2}

Ionization energy 334000 ± 6000 cm⁻¹

 $41.4 \pm 0.7 \text{ eV}$

No analysis of the free-ion spectrum has been carried out. Most of the levels here are averages of corresponding sublevels of Sm3+ in LaCl3. Both absorption and fluorescence spectra were observed and analyzed at the Johns Hopkins University [Magno, 1958; Wybourne, 1962; Magno and Dieke, 1962; Dieke, 1968]; we have relied mainly on the data in Dieke's book [1968]. His values were tabulated with zero energy at the lowest sublevel arising from the $^6\mathrm{H}^\circ_{5/2}$ ground level, instead of at the average of the $^6\mathrm{H}^\circ_{5/2}$ sublevels (36 cm $^{-1}$ higher). No corresponding correction of the higher levels was made here, since overall better agreement with the solution absorption data of Carnall, Fields, and Rajnak [1968] is obtained without the correction. Four new levels not included in the earlier references are taken from Crosswhite, Crosswhite, and Oats [1976]. These levels are also based on the spectrum of Sm³⁺ in LaCl₃.

A number of levels above the range covered here are given by Dieke [1968] (to ${\sim}31500$ $cm^{-1})$ and by Carnall et al. [1968] (to $\overset{-}{47400}\ cm^{-1}).$

The g values are from Wybourne's compilation [1962]. Some references for the original Zeeman data are given below.

Carnall, Fields, and Rajnak [1974] calculated the tabulated eigenvector percentages; their matrices included spin-orbit and effective interactions.

The ionization energy is from Sugar and Reader. The estimated uncertainty has been approximately doubled, as recommended by Spector and Sugar, and the value rounded off accordingly.

References

Carnall, W. T., Fields, P. R., and Rajnak, K., J. Chem. Phys. 49, 4424 (1968). [EL] [CL] [W] PT

Carnall, W. T., Fields, P. R., and Rajnak, K., unpublished material (1974). ND PT

Crosswhite, H., Crosswhite, H. M., and Oats, M., unpublished material (1976). [EL] PT

Dieke, G. H., Spectra and Energy Levels of Rare Earth Ions in Crystals, Ed. H. M. Crosswhite and H. Crosswhite, pp. 233-242 (Interscience Publishers, New York, 1968). [EL] [CL] [W] [ZE]

Friederich, A., Hellwege, K. H., and Lämmermann, H., Z. Phys. 159, 524 (1960). [ZE]

Judd, B. R., Proc. Phys. Soc. London, Sect. A 69, 157 (1956). PT

Lämmermann, H., Z. Phys. 160, 355 (1960). [ZE]

Magno, M. S., Thesis, Johns Hopkins Univ., Baltimore (1958). [EL] [CL] [W] [ZE]

Spector, N., and Sugar, J., J. Opt. Soc. Am. 66, 436 (1976).

Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP

Wybourne, B. G., J. Chem. Phys. 36, 2301 (1962). ND PT

[Sm IV]

Configuration	Term	J	Level (cm ⁻¹)	g	Leading p	ercentag	es
4f ⁵	eH.	5/2	0		96	2	4G°4
		7/2	[1080]	0.79	97	2	
		9/2	[2290]	1.00	98	1	⁴а4
		11/2	[3610]		98	1	4I°3
	1	13/2	[4990]		98	2	4I°3
		15/2	[6470]		96	3	4I°3
$4f^{5}$	eL.	1/2	[6290]		97	1	⁴ D°2
		3/2	[6540]		96	1	4F°3
		5/2	[7050]		95	2	4F°3
		7/2	[7910]		95	2	⁴ F°3
		9/2	[9080]		96	2	4F°3
		11/2	[10470]	1.44	97	1	4G°3
$4f^{5}$		5/2	[17860]	0.79	29 ⁴ G°4	21	4F°3
$4f^{5}$	4F°3	3/2	[18860]	0.44	68	15	4F°1
$4f^{5}$		7/2	[20010]	1.08	34 ⁴ G°4	20	4F°3
$4f^{5}$	4I°3	9/2	[20560]		80	15	⁴ I°1
		11/2	[20980]		63	18	4K°1
		13/2	[21550]	1.02	46	22	4K°1
		15/2			47	15	4K°1
$4f^{5}$	⁴ M°	15/2	[20750]		74	8	4L°
		$^{17}/_{2}$	[22530]	İ	86	9	4L°
		$^{19}/_{2}$			91	7	4L°
		21/2			95	5	² N°
Sm V (5I4)	Limit		334000				

Sm XXXV

(Ni I sequence; 28 electrons)

Z = 62

Ground state $(1s^22s^22p^63s^23p^6) 3d^{10} {}^1S_0$

The levels are from Burkhalter, Nagel, and Whitlock, who classified the $3d^{10}$ 1 S $_{0}$ — $3d^{9}4p(J=1)$ and $3d^{10}$ 1 S $_{0}$ — $3d^{9}4f(J=1)$ resonance lines of Sm xxxv, Gd xxxvII, and Dy xxxIX. These authors produced spectra in the region 5–15 Å by focusing light from a pulsed laser onto rare-earth targets. We have converted the levels from units of eV to units of 10^{4} cm $^{-1}$ (equivalent to 1.23985 eV). The uncertainty of the measurements is about 2×10^{4} cm $^{-1}$.

Burkhalter et al. classified the transitions using regularities along the Ni I isoelectronic sequence and comparisons with calculated energies. The location of the $3d^94f(5/2,5/2)^{\circ}_1$ level is tentative in all three spectra.

Although the J_1j designations assigned by Burkhalter et al. are listed for both of the excited configurations, the $3d^94f$ levels may also be assigned fairly appropriate LS names (see Gd XXXVII).

Burkhalter et al. discuss the spectral and configurational assignments of several other groups of Sm, Gd, and Dy lines with wavelengths down to about 5 Å. Observations with higher resolution may be necessary before more detailed energy level classifications can be made.

Reference

Burkhalter, P. G., Nagel, D. J., and Whitlock, R. R., Phys. Rev. A 9, 2331 (1974). EL CL W [July 1976]

Sm xxxv

Configuration	Term	J	Level (104 cm ⁻¹)
$3d^{10}$	1S	0	0.0
$3d^{9}(^{2}\mathrm{D}_{3/2})4p_{1/2}$	$(3/2,1/2)^{\circ}$	1	836
$3d^{9}(^{2}\mathrm{D}_{5/2})4p_{3/2}$	(5/2,3/2)°	1	845
$3d^{9}(^{2}\mathrm{D}_{3/2})4p_{3/2}$	$(3/2,3/2)^{\circ}$	1	867
$3d^{9}(^{2}\mathrm{D}_{5/2})4f_{5/2}$	(5/2,5/2)°	1	1015?
$3d^9(^2\mathrm{D}_{5/2})4f_{7/2}$	(5/2,7/2)°	1	1040
$3d^9(^2\mathrm{D}_{3/2})4f_{5/2}$	(3/2,5/2)°	1	1069

EUROPIUM

Eu I

63 electrons Z=63

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^76s^2$ $^8S_{7/2}^{\circ}$

Ionization energy 45734.9 ± 0.2 cm⁻¹

 5.67045 ± 0.00003 eV

Identified odd configurations

 $4f^76s^2$, $4f^75d6s$, $4f^76s7s$, $4f^75d^2$, $4f^76s6d$, $4f^76s8s$,

 $4f^{7}6s7d, 4f^{7}6p^{2}$

Identified even configurations

 $4f^{7}6s6p, 4f^{7}5d6p, 4f^{6}5d6s^{2}, 4f^{6}5d^{2}6s, 4f^{7}6s7p-18p, 4f^{7}6s42p-67p, 4f^{7}6s5f?, 4f^{7}6s6f?, 4f^{7}6s14f?, 4f^{7}6s15f?, 4f^{7}5d7p?$

Spectrum Observations, Main Sources of the Levels

King [1939] observed 3950 europium lines from 2100 to 10165 Å and assigned almost 2200 lines to Eu I. More than 1100 lines were classified by Russell and King's extension [1939] of their earlier analysis of Eu I, including practically all the strong lines. In the tables here, the term designations preceded by a small letter, as well as the numerical designations assigned to some of the levels, are as given by Russell and King; their line list may be used directly to identify the combinations of these levels. The other odd levels and a number of the remaining even levels below the ionization limit were also found by Russell and King, but their original designations have been omitted or changed on the basis of more recent work (see below). Most levels with a question mark after the position were given as uncertain by Russell and King. We have omitted their z $^6F_{1/2}$ level (36586.37 cm $^{-1}$), as there appears to be no experimental basis for its existence independent of combinations of the y $^8D_{3/2}$ level (36586.35 cm $^{-1}$).

We assigned parentages for some of the terms designated by Russell and King that have not been calculated. In the case of one or two subconfigurations of the type $4f^7(^8S^\circ)6snl$ for which the best coupling order of the electrons was not clear, we chose the order $4f^7(^8S^\circ)6s$ ($^{9,7}S^\circ)nl$.

Smith and Tomkins [1975a, 1975b] have observed the Eu I absorption spectrum in the region 2100–7200 Å. Since all the lines were transitions from the $4f^76s^2$ $^8S_{7/2}^\circ$ ground level, the upper levels have even parity and one of the three J values 52 , 72 , or 92 . Most of the extensive system of even levels above about 40000 cm⁻¹ was found in this work. The more recent measurements begin at 27852 cm⁻¹, with the lowest new level, at 31203 cm⁻¹, belonging to the 10 I term of the newly found $4f^65d^26s$ configuration. We give an average level value wherever the wavenumber of an absorption transition to a previously known level differed by more than ± 0.1 cm⁻¹ from Russell and King's value for the level. The two long np series based on the Eu II $4f^7(^8S^\circ)6s$ $(^9S^\circ)$ and $(^7S^\circ)$ limits, respectively, were measured by Smith and Tomkins [1975a]. The members of these series below $n\cong 42$ are part of the complex absorption spectrum that has not yet been fully interpreted (see below).

g Values

All except a few of the g values for the even levels were derived by Smith and Tomkins [1975b] from Zeeman patterns observed in absorption. The uncertainties vary from one to a few units in the last decimal place, the less accurate values being obtained from perturbed or unresolved patterns. For a few even levels, mostly belonging to the $4f^{7}(^{8}\text{S}^{\circ})6s6p$ group, we derived g values from the Zeeman patterns of Russell, Albertson, and Davis by assuming (or

correcting to) the value 1.993 for the ground-level value. These values were averaged with those from Smith and Tomkins for levels included in both sets of data. The g values measured by Handrich, Kretzen, Lange, and Steudel [1968] were also used or averaged in for three of these levels.

The g value for the ground level is from Pichanick and Woodgate [1961], who give the uncertainty as ± 0.00007 . The leading percentages for this level are from Conway and Wybourne [1963], the more precise values being 97.5% and 2.4%.

Theoretical Interpretation, Calculations

Several calculations of various Eu I configurations have shown the need for new observations of the emission spectrum and further extension of the analysis. In deciding whether to include possibly doubtful or incorrect former designations we relied heavily on the comments of Smith and Wybourne [1965], who have given the most complete discussion of this spectrum based on modern calculations. The odd levels given here without term or numerical designations were assigned to $4f^7(^8\mathrm{S}^\circ)5d^2$ and $(^8\mathrm{S}^\circ)6s6d$ by Russell and King. These subconfigurations no doubt contribute strongly to the compositions of most of the undesignated odd levels around $35000~\mathrm{cm}^{-1}$, but Smith and Wybourne showed that the specific designations omitted here were unreliable. Some even levels previously assigned to the $(^8\mathrm{S}^\circ)6s7p$ or $(^8\mathrm{S}^\circ)5d6p$ subconfigurations are also listed without names.

The (${}^8S^{\circ}$)6s8s subconfiguration is perturbed, as evidenced by the position of the lower of the two ${}^8S^{\circ}_{7/2}$ levels below the ${}^{10}S^{\circ}_{9/2}$ level. Smith and Wybourne suggest that the (${}^8S^{\circ}$)6s8s ${}^8S^{\circ}_{7/2}$ levels are perturbed by the intervening (${}^8S^{\circ}$)5 d^2 ${}^8S^{\circ}_{7/2}$ level at 37994 cm⁻¹.

The $4f^{7}(^8S^{\circ})5d6s$, $(^8S^{\circ})6s6p$, and $(^8S^{\circ})5d6p$ subconfigurations were calculated by Goldschmidt and Nir, and the percentages for the latter two groups are from their results. These authors also discuss the coupling order of the electrons and the type of coupling for several configurations. The leading percentages for the $(^8S^{\circ})5d6p$ levels are given in each of two LS schemes which differ in coupling order. The second scheme (the direct coupling of the two external electrons) was used by Smith and Wybourne, and is the most appropriate order for the $(^8S^{\circ})6s6p$ levels.

Wyart has made a calculation of $4f^{7}(^{8}S^{\circ},^{6}P^{\circ})5d6s$ and fitted the known levels, which belong nominally to the four terms $a^{10}D^{\circ}$, $a^{8}D^{\circ}$, $b^{8}D^{\circ}$, and $a^{6}D^{\circ}$ of $(^{8}S^{\circ})5d6s$. The electrons were coupled in the order shown by Goldschmidt and Nir to be most appropriate, but Wyart's inclusion of the $4f^{7}(^{6}P^{\circ})$ core term gave eigenvector purities considerably lower than those previously obtained with the $4f^{7}(^{8}S^{\circ})5d6s$ approximation. The percentages given here are from Wyart. The compositions of the eight levels with J values common to the $a^{6}D^{\circ}$ and $b^{8}D^{\circ}$ terms (based on the $^{7}D^{\circ}$ parent) are rather strongly mixed by inclusion of the $4f^{7}(^{6}P^{\circ})$ grandparent.

The leading percentages for the ($^8S^\circ$)6s6p levels are given in both LS coupling and in the J_1J_2 scheme that Goldschmidt and Nir showed to be physically best. Bordarier, Judd, and Klapisch calculated the ($^8S^\circ$)6s6p group with the interaction parameters constrained to fit the experimental value of the ratio of the Eu II ($^8S^\circ$)6p 9P — 7P term difference to the ($^8S^\circ$)6s $^9S^\circ$ — $^7S^\circ$ difference. The analysis indicated a perturbation of Eu I ($^8S^\circ$)6s6p, with the ($^8S^\circ$)($^1P^\circ$) 8P term being most affected, and the hfs calculation gave a large deviation from experiment for the ($^8S^\circ$)($^1P^\circ$) $^8P_{9/2}$ level.

One known interaction of the ($^8S^\circ$)6s6 $p(^1P^\circ)$ 8P term is with the ($^8S^\circ$)5d ($^7D^\circ$)6p 8P term found by Smith and Collins near 42000 cm $^{-1}$. The latter term, which belongs mainly to ($^8S^\circ$)5d6 $p(^1P^\circ)$ 8P if calculated in the alternate coupling order, is even higher than had been predicted by Smith and Wybourne. Smith and Collins explained the discrepancy as due to interaction with the ($^8S^\circ$)6s6 $p(^1P^\circ)$ 8P term; they calculated a configuration admixture of about 15% between these two terms. Since the calculation of 4f $^7(^8S^\circ)6s6p+(^8S^\circ)5d6p$ is not available, the percentages given here unfortunately do not include this interaction. (Smith and Collins state that the configuration mixing of the other terms is small.)

Smith and Wilson assigned 17 even levels to terms of $4f^6(^7F)5d6s^2$, and the tabulated percentages are from their calculation. Their changes of the J values of two of the levels are accepted here. No levels of the predicted lowest term of this configuration, $4f^6(^7F)5d6s^2$ *H, are yet known. Smith and Wilson noted that the "102" and "110" levels are based on weak lines and apparently do not belong to $4f^6(^7F)5d6s^2$; "these may therefore be unreal."

High Even Levels Based on Absorption and Photoionization Spectra

The configuration and term designations for the even levels in the region 31000-45200 cm⁻¹ given without leading percentages are from Smith and Tomkins [1975b]. The interpretation of this complex system of high even levels based mainly on absorption spectra is still in progress. Overlapping configurations of the types $4f^65d6s^2$, $4f^65d^26s$, $4f^75dnp$, $4f^76snp$, and $4f^76snf$ are already known to contribute to the system. Many of the designations are given as tentative pending completion of the analysis.

Final term designations are omitted for the $4f^{7}(^{8}S^{\circ})6s$ ($^{9}S^{\circ})np$ and ($^{7}S^{\circ})np$ series members above 10p, pending a determination of the appropriate coupling scheme. These series are in general perturbed in the region below the very high members listed by Smith and Tomkins [1975a]. They conclude that most of the absorption lines in the region 45200-45655 cm⁻¹ can probably be accounted for by several highly perturbed series [Smith and Tomkins, 1975b]; only a few of the upper even levels corresponding to the stronger transitions in this region are listed here.

The levels above the Eu II ($^{8}S_{4}^{\circ}$) principal limit include, in addition to the high ($^{7}S^{\circ}$)np series members, a group of levels followed by the letter "a" (for autoionization). Parr [1971] obtained these levels from photoionization resonances. The technique involved absorption transitions from the $^{8}S_{7/2}^{\circ}$ ground level, and Smith and Tomkins [1975a] note that "... some feature is visible in our spectra at or near most of the maxima listed by Parr." The values for the two autoionizing levels tentatively assigned to the lower ^{8}P term of $4f^{7}(^{8}S^{\circ})5d7p$ are from absorption data [Smith and Tomkins, 1975b] that may be somewhat more accurate than Parr's determinations. These term assignments were suggested by Parr and also by Smith and Tomkins [1975b]; we have omitted more specific suggestions for the J values. Parr assigned eight more of these levels to $4f^{7}(^{8}S^{\circ})5dnp$ ^{8}P terms (n=7-10). The designations are consistent with quantum defect data, but are omitted here, pending a more detailed theoretical treatment. Configuration-interaction calculations for the ground level and for a number of high even configurations, especially those that can contribute ^{8}P components, will probably be required for interpretation of the complex absorption spectra in this region.

Ionization Energy

Smith and Tomkins [1975a] derived the value $47404.1\pm0.2~{\rm cm^{-1}}$ for the Eu II $4f^{7}(^{8}{\rm S^{\circ}})6s^{7}{\rm S^{\circ}_{3}}$ limit from the high members of the $(^{7}{\rm S^{\circ}_{3}})np$ series. This result gave a value of $45734.9\pm0.2~{\rm cm^{-1}}$ for the Eu II $4f^{7}(^{8}{\rm S^{\circ}})6s^{8}{\rm S^{\circ}_{4}}$ limit, which is the principal ionization energy. The new determination agrees well with the less accurate value of $45740~{\rm cm^{-1}}$ derived by Russell and King, and also with the value $45680\pm65~{\rm cm^{-1}}$ obtained by Parr from his photoionization measurements.

References

```
Bordarier, Y., Judd, B. R., and Klapisch, M., Proc. R. Soc. London, Ser. A 289, 81 (1965). Hfs PT
Conway, J. G., and Wybourne, B. G., Phys. Rev. 130, 2325 (1963). AT
Goldschmidt, Z. B., and Nir, S., Physica (Utrecht) 51, 222 (1971a). ND PT
Goldschmidt, Z. B., and Nir, S., unpublished material (1971b). PT
Handrich, E., Kretzen, H., Lange, W., Steudel, A., Wallenstein, R., and Walther, H., Proc. Int. Conf. Optical Pumping
    At. Line Shape, Ed. T. Skalinski, pp. 417-432 (Warsaw, June 25-28, 1968). ZE Hfs
King, A. S., Astrophys. J. 72, 221 (1930). W Hfs
King, A. S., Astrophys. J. 89, 377 (1939). W
Parr, A. C., J. Chem. Phys. 54, 3161 (1971). EL CL W IP
Pichanick, F. M. J., and Woodgate, G. K., Proc. R. Soc. London, Ser. A 263, 89 (1961). ZE
Russell, H. N., Albertson, W., and Davis, D. N., Phys. Rev. 60, 641 (1941). ZE
Russell, H. N., and King, A. S., Phys. Rev. 46, 1023 (1934). EL CL W IP
Russell, H. N., and King, A. S., Astrophys. J. 90, 155 (1939). EL CL W IP
Smith, G., and Collins, B. S., J. Opt. Soc. Am. 60, 866 (1970). EL CL PT
Smith, G., and Tomkins, F. S., Proc. R. Soc. London, Ser. A 342, 149 (1975a). EL CL W IP
Smith, G., and Tomkins, F. S., unpublished material (1975b). [This material is included in a recent publication: see
    Smith, G., and Tomkins, F. S., Philos. Trans. R. Soc. London, Ser. A, 283, 345 (1976).] EL ND CL W ZE IS
Smith, G., and Wilson, M., J. Opt. Soc. Am. 60, 1527 (1970). ND PT
Smith, G., and Wybourne, B. G., J. Opt. Soc. Am. 55, 121 (1965). ND PT
Wyart, J. F., Thesis, Univ. Paris-Sud, Orsay, 194 pp. (1973). PT
```

Eu I, Odd Parity

Configuration	Term	J	Level (cm^{-1})	g		Leading percentages
$4f^7 6s^2$	a ⁸ S°	7/2	0.00	1.99340	98	2 ⁶ P°
4f ⁷ (8S°)5d (9D°)6s	a 10D°	5/2	12923.72		94	
4) (B)64 (B)66	u b	7/2	13048.90		94 94	
		9/2	13222.04		93	
		11/2	13457.21		94	
		13/2	13778.68		95	
4f ⁷ (8S°)5d (9D°)6s	a ⁸ D°	3/2	15137.72		07	
i) (5)0a (D)0s		5/2	15157.72 15248.76	1	87 80	
		7/2	15421.25		86	
		9/2	15680.28		85	
		11/2	16079.76		85 87	
1.67/800\5 1.7750\4	470					
$4f^{7}(^{8}S^{\circ})5d^{-}(^{7}D^{\circ})6s$	<i>a</i> ⁶ D°	9/2	19273.24		66	
		7/2	19364.50		65	
		5/2	19462.05		70	
		3/2	19543.69		80	
		1/2	19599.16		94	
$4f^{7}(^{8}S^{\circ})5d^{-}(^{7}D^{\circ})6s$	b $^{8}\mathrm{D}^{\circ}$	11/2	19447.19		86	
		9/2	19631.26		59	
		7/2	19712.15		58	
		5/2	19763.78		63	
		3/2	19794.21		73	
4f ⁷ (8S°)6s (9S°)7s	e 10S°	9/2	28763.82			
4f ⁷ (8S°)6s (9S°)7s	e ⁸ S°	7/2	29517.86			
1f ⁷ (⁸ S°)6s (⁷ S°)7s	e ⁶ S°	5/2	30619.49			
$1f^{7(8}S^{\circ})6s \ (^{7}S^{\circ})7s$	f *S°	7/2	31217.30			
$4f^{7}(^{8}\mathrm{S}^{\circ})5d^{2}(^{3}\mathrm{P})$	e 10P°	7/2	31848.81	}		
		9/2	32209.88			
		11/2	32480.95			
	1°	5/2	34065.73			
	2°	3/2,5/2	34081.16			
	3°	7/2,9/2	34126.42			
	4°	7/2,9/2,11/2	34306.36			
$4f^{7}(^{8}\mathrm{S}^{\circ})6s$ ($^{9}\mathrm{S}^{\circ})6d$	e 10D°	5/2	34422.94			
		7/2	34440.50			
		9/2	34466.80			
		11/2	34505.55			
		13/2	34544.59			
	⁸ D°?	3/2	34913.59?			
	8D°?	5/2	34967.69			
	8D°?	7/2	35033.98			
$f^{7}(^{8}\text{S}^{\circ})5d^{2}$?	8P°?	7/2	35053.23			
	*D°?	9/2	35106.94			
$f^{7}(^{8}\text{S}^{\circ})5d^{2}$?	8P°?	5/2	35174.20			
	8D°?	11/2	35204.58			
$f^{7}(^{8}\mathrm{S}^{\circ})5d^{2}$?	⁸ P°?	9/2	35280.43			
	*D°?	$^{3}/_{2}$	35282.22			

Eu I, Odd Parity—Continued

Eu I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm^{-1})
	8D°?	7/2	35377.94	$4f^{7}(^{8}\mathrm{S}^{\circ})6p^{2}(^{3}\mathrm{P})$	f 10P°	7/2	40298.02
	*D°?	5/2	35398.16			9/2	40854.11
						11/2	41443.70
	BD°?	11/2	35460.74		5°	7/2	40576.00
	8D°?	9/2	35813.47		6°	5/2,7/2	40624.10
⁷ (8S°)6s (7S°)6d	g ⁸ D°	3/2	36045.39		7°	7/2	40650.51
		5/ ₂ 7/ ₂	36072.62 36097.64		60		
		9/2	36219.00		8°	9/2,11/2	40764.08
		11/2	36242.34		9°	9/2	40768.31
⁷ (8S°)6s (⁷ S°)6d	e $^{6}\mathrm{D}^{\circ}$	9/2	36566.64		10°	7/2,9/2	40993.18
		7/2	36589.28		110		-
		5/2	36608.42		11°	7/2,9/2	41037.58?
		$\frac{3}{2}$ $\frac{1}{2}$	36622.00 36630.46	4f ⁷ (8S°)6s (7S°)7d	f ⁶ D°	9/2	1117171
		/2	30030.40	4) (5)08 (5)14	J D	7/2	41174.74 41185.38
⁷ (8S°)6s (9S°)8s	g *S°	7/2	36659.31			5/2	41201.21
						3/2	41208.60
⁷ (8S°)6s (9S°)8s	f 10S°	9/2	37195.76			1/2	
$^{7}(^{8}\mathrm{S}^{\circ})5d^{2}(^{3}\mathrm{P})$	e ⁶ P°	7/2	37584.98		12°	9/2,11/2	41378.47
		5/2	38037.34		13°	9/2,11/2	41395.92
		3/2	38245.66				
$7^{7}(^{8}\mathrm{S}^{\circ})5d^{2}(^{1}\mathrm{S})$	h *S°	7/2	37993.98		14°	7/2,9/2	41631.37
⁷ (8S°)6s (⁷ S°)8s	f ⁶ S°	5/2	38933.74		15°	9/2,11/2	42721.09?
⁷ (8S°)6s (⁷ S°)8s	i *S°	7/2	39242.56		16°	7/2,9/2	43100.66
					17°	9/2,11/2	43212.06?
⁷ (8S°)6s (9S°)7d	f 10D°	⁵ / ₂ ⁷ / ₂	39267.62		18°	7/2,9/2,11/2	43466.82
		°/2 9/2	39284.73 39306.13		10	72,72,-72	43 400.0Z
		11/2	39332.68		19°	7/2,9/2	43508.06?
		13/2	39369.19				
⁷ (8S°)6s (9S°)7d	h ⁸ D°	11/2	39486.20	_			
		9/2	39491.49	Eu II (⁹ S ₄)	Limit		45734.9
		7/2	39496.56				
		5/2	39500.31				
		3/2					

Eu I, Even Parity

Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ding percentages
$4f^{7}(^{8}\mathrm{S}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$	z 10P	7/2	14067.86	2.198	92	or	64	$(^{8}\mathrm{S}^{\circ}_{7/2})(^{3}\mathrm{P}^{\circ}_{0})$
		9/2	14563.57	1.936	85	or	91	$(^{8}\mathrm{S}^{\circ}_{7/2})(^{3}\mathrm{P}^{\circ}_{1})$
		11/2	15581.58		100	or	100	$(^8\mathrm{S}^{\circ}_{7/2})(^3\mathrm{P}^{\circ}_2)$
$f^{7}(^{8}{ m S}^{\circ})6s6p(^{3}{ m P}^{\circ})$	z *P	5/2	15890.53	2.227	87	or	93	$(^8\mathrm{S}^{\circ}_{7/2})(^3\mathrm{P}^{\circ}_1)$
		7/2	15952.31	1.875	61	\mathbf{or}	51	$(^8\mathrm{S}^{\circ}_{7/2})(^3\mathrm{P}^{\circ}_1)$
		9/2	16611.79	1.797	83	or	91	$(^8\mathrm{S}^{\circ}_{7/2})(^3\mathrm{P}^{\circ}_2)$
$f^{7}(^{8}{ m S}^{\circ})6s6p(^{3}{ m P}^{\circ})$	z ⁶ P	7/2	17340.65	1.787	64	or	82	$(^8\mathrm{S}^{\circ}_{7/2})(^3\mathrm{P}^{\circ}_2)$
		5/2	17707.42	1.932	86	\mathbf{or}	92	$(^8\mathrm{S}^{\circ}_{7/2})(^3\mathrm{P}^{\circ}_2)$
		3/2	17945.49		100	or	100	$(^8\mathrm{S}^{\circ}_{7/2})(^3\mathrm{P}^{\circ}_2)$
$f^{7}(^{8}\mathrm{S}^{\circ})6s6p(^{1}\mathrm{P}^{\circ})$	y *P	5/2	21444.58	2.272	98	or	99	$(^{8}\mathrm{S}^{\circ}_{7/2})(^{1}\mathrm{P}^{\circ}_{1})$
•		7/2	21605.17	1.929	97	or	98	$(^{8}S_{7/2}^{\circ})(^{1}P_{1}^{\circ})$
		9/2	21761.26	1.772	96	or	98	$(^{8}\mathrm{S}^{\circ}_{7/2})(^{1}\mathrm{P}^{\circ}_{1})$
$^{6}(^{7}{ m F})5d6s^{2}$	8D	3/2						
•	_	5/2	27852.90	2.009	68		15	(7F) 6P
		7/2	28827.83	1.811	75		13	(7F) 8F
		9/2	29838.59	1.676	76		15	(⁷ F) ⁸ F
		11/2	30819.44		77		17	(⁷ F) ⁸ F
$f^{7}(^{8}{\rm S}^{\circ})5d~(^{9}{\rm D}^{\circ})6p$	z 10F	3/2	28519.97		94	or	94	$(^{8}\mathrm{S}^{\circ})5d6p(^{3}\mathrm{F}^{\circ})$ $^{10}\mathrm{F}$
(D) Op	~ 1	5/2	28667.39	2.194	93	or	93	(D)OWOP(I) I'
		7/2	28918.17	1.841	92	or	92	
		9/2	29186.32	1.70	92	or	92 92	
		11/2	29612.69	1.10	93	or	92 93	
		13/2	30211.09		97	or	93 97	
		15/2	30923.71		100	or	100	
	102	9/2	29045.75?					
$f^{6}(^{7}{ m F})5d6s^{2}$	*G	1/2						
(F)3008	- 4	3/2						
		5/2	29124.78	1.440	44		20	(⁷ F) ⁸ F
		7/2	29809.23	1.440	44 56		20 21	(⁷ F) ⁸ F
		9/2	30642.61	1.405	63			(⁷ F) ⁸ F
		11/2	50042.01	1.470	65		19	(·F) -F
		13/2	32598.00		cc		95	(⁷ F) ⁸ F
		15/2	52596.00		66		25	('F) -F
£6/7T2\E JC -2	870	5.1	00000 70	9.00			05	(7E) 6D
$f^{6}(^{7}{ m F})5d6s^{2}$	8P	5/2	29982.50	2.06	51		25	(7F) 6P
		7/ ₂ 9/ ₂	31116.38 32130.25	1.928 1.747	52 83		18 9	(⁷ F) ⁸ G (⁷ F) ⁸ D
			02100.20	1.141	00		Э	(\mathbf{r}) D
$f^{6}(^{7}\mathrm{F})5d6s^{2}$	$^{8}\mathrm{F}$	1/2						
		3/ ₂	90001.04	1.010	2-		00	(7E) 8C
		5/ ₂	30091.34	1.618	61		29	(⁷ F) ⁸ G
		7/ ₂	30783.64	1.551	50		16	(⁷ F) ⁸ G
		9/ ₂	31553.76	1.522	58		28	(⁷ F) ⁸ G
		11/ ₂ 13/ ₂	32326.73		67		23	(⁷ F) ⁸ G
£7/8CIO\F.J. (9T\O\A	0.70		90700 00	0.14	0.0		22	(800)E Ja(17)0\ 97)
$f^{7}(^{8}\mathrm{S}^{\circ})5d$ ($^{9}\mathrm{D}^{\circ})6p$	z ⁸ D	5/ ₂ 3/ ₂	30798.06 30800.71	2.14 2.80	86 89	\mathbf{or}	68 69	$(^{8}S^{\circ})5d6p(^{1}D^{\circ}) ^{8}D$
		7/2	30841.99	1.824	84		67	
	No.	9/2	30901.84	1.706	84	or or	67	
		11/2	31014.48	1.100	79	or	70	
	110	9/2,11/2	30819.14?					
f7(8 2° \5d (9 D °\6~	z 10D	5/_	20045.07	2.49	0.5	02	05	$(^{8}\text{S}^{\circ})5d6p(^{3}\text{D}^{\circ})^{-10}\text{D}$
$f^{7}(^{8}S^{\circ})5d \ (^{9}D^{\circ})6p$	z 10D	5/ ₂	30945.07		95	or	95 94	(-13)0w0p(°D') *°D
		7/ ₂	31138.11 31382.61	2.006 1.860	94	or	94	
		9/ ₂ 11/ ₂	31725.93	1.000	92	or	92	
		13/2	32117.10		84 63	or	84 69	
	1	/2	1 02111.10	i .	00	or	62	

Eu I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lead	ing percentages
4f ⁶ (⁷ F)5d6s ²	6P	3/ ₂ 5/ ₂ 7/ ₂	31107.28 32681.13	1.954 1.729	42 56		31 22	(7F) ⁸ P (7F) ⁸ P
4f ⁶⁽⁷ F)5d ² (³ F) (⁹ I)6s	10[3/ ₂ 5/ ₂ 7/ ₂ 9/ ₂ 11/ ₂ 13/ ₂ 15/ ₂ 17/ ₂ 19/ ₂	31203.49 31653.48 32224.19	0.540 0.97 1.172				
1f ⁷ (⁸ S°)5d (⁹ D°)6p	z *F	1/2 $3/2$ $5/2$ $7/2$ $9/2$ $11/2$ $13/2$	31735.76 31787.71 31876.09 32003.24 32184.65 32418.38 32761.74	1.719 1.628 1.615	81 79 77 73 68 61 48	or or or or or or	85 83 81 77 72 66 54	(8S°) $5d6p(^3F^\circ)$ 8F
1f ⁷ (⁸ S°)5d (⁹ D°)6p	y 10P	$\frac{7}{2}$ $\frac{9}{2}$ $\frac{11}{2}$	32398.25 32596.31 32948.41	2.195 1.93	95 91 89	or or or	95 91 89	$(^8{\rm S}^{\circ})5d6p(^3{\rm P}^{\circ})$ $^{10}{\rm P}$
$1 \int 6 (^{7} \text{F}) 5 d6 s^{2}$?	eH?	7/2	32961.85	0.857				
1/6(7F)5d ² 6s?		7/2	33245.85	1.483				
1f ⁶ (⁷ F)5d6s ² ?	eD.	1/ ₂ 3/ ₂ 5/ ₂ 7/ ₂ 9/ ₂	33614.42 34138.16 34738.80	1.479 1.495 1.542				
$4f^{6}(^{7}{ m F})5d^{2}$ 6s?		9/2	33779.50	1.48				
4f ⁷ (⁸ S°)5d (⁹ D°)6p	<i>x</i> ⁸ P	5/ ₂ 7/ ₂ 9/ ₂	33786.55 34101.78 34725.81	2.276 1.719	93 92 94	or or or	55 56 59	$(^8{ m S}^{\circ})5d6p(^3{ m P}^{\circ})\ ^8{ m P}$
$4f^{7}(^{8}{ m S}^{\circ})6s7p(^{3}{ m P}^{\circ})?$	10P?	$\frac{9}{2}$? $\frac{7}{2}$ $\frac{11}{2}$	33879.16 33908.77	1.97 2.180				
	121	5/2	33964.87?					
$4f^{6}(^{7}{ m F})5d6s^{2}?$	6F?	11/2 $1/2$ $3/2$ $5/2$ $7/2$ $9/2$ $11/2$	34316.97 34343.85 35050.64 36071.71	1.32 1.394 1.447				
$4f^{7}(^{8}{ m S}^{\circ})6s7p(^{3}{ m P}^{\circ})?$	8P?	9/ ₂ 5/ ₂ 7/ ₂	34366.13 34555.82 34561.87	1.803 2.27 1.91				
$4f^{6}(^{7}{ m F})5d^{2}$ 6s?	10P?	9/ ₂ 7/ ₂ ^{11/} ₂	34546.06 36005.73	1.96 2.150				

Eu I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Le	eading percentages
4f ⁷ (⁸ S°)5d (⁷ D°)6p	z ⁶ F	11/ ₂ 9/ ₂ 7/ ₂ 5/ ₂ 3/ ₂ 1/ ₂	35453.23 35731.62 36081.01 36284.82 36501.65	1.458 1.462 1.420	91 90 90 93 97 100	or or or or or	91 90 90 93 97 100	(⁸ S°)5d6p(³ F°) ⁶ F
$4f^{7}(^{8}{ m S}^{\circ})6s7p(^{3}{ m P}^{\circ})$	6P	3/ ₂ 7/ ₂ 5/ ₂	35612.47 35703.65	1.716 1.89				
	125	3/2	35762.12					
	126	3/2	35799.09					
	127	3/2,5/2	35941.51					
	128	5/2	36052.65	2.202	-			
	130	5/2,7/2	36107.85?					
	131	3/2	36334.52					
		7/2	36381.51	1.841				
		5/2	36410.96		-			
$4f^{7}(^{8}S^{\circ})6s7p(^{1}P^{\circ})?$	8P?	5/2	36441.77	2.224				
		9/2	36504.56	1.793				
		9/2	36548.83	1.810				
$4f^{7}(^{8}S^{\circ})5d^{-}(^{7}D^{\circ})6p^{-}$	y ⁸ D	5/2 3/2 7/2 11/2 9/2	36584.31 36586.35 36700.39 36867.04 36889.62	1.971 2.43 1.83 1.662 1.729	85 90 80 87 76	or or or or	67 71 64 73 61	(8S°)5d6p(3D°) 8D
		7/2	36600.83	1.91				
$4f^{6}(^{7}\text{F})5d6s^{2}$?	eGi	3/ ₂ 5/ ₂ 7/ ₂ 9/ ₂ 11/ ₂ 13/ ₂	36736.26 37152.55 37908.83	1.103 1.245 1.375				
		5/2	37001.69	1.297				
	132	11/2	37034.83					
	133	5/2	37093.81	1.99				
	134	9/2	37126.08	1.795				
	135	5/2	37266.36	2.380				
		7/2	37301.64	1.311				
	136	11/2,13/2	37392.64					
	137	5/2,7/2	37502.49					
	138	7/2	37504.76					
	139	5/2,7/2	37574.26?					
	140	7/2	37589.41	1.61				
	141	9/2	37591.21	1.58				
	142	11/2	37800.42					
	143	7/2	37812.80					
	144	7/2	37851.77	1.65				
		9/2	37988.09	1.389				
	146	7/2	38072.67	1.87				

Eu I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ding percentages
· · · · · · · · · · · · · · · · · · ·		5/2	38080.28	1.820				
(*S°)5d (7D°)6p	z ⁶ D	9/2 7/2 5/2 3/2 1/2	38167.16 38411.83 38457.26 38530.92 38563.98	1.491 1.598	77 80 77 71 67	or or or or	77 80 77 71 67	$(^{8}{\rm S}^{\circ})5d6p(^{3}{\rm D}^{\circ})\ ^{6}{\rm D}$
	147	9/2	38262.89	1.699				
	148	7/2?	38290.93					
	149	11/2,13/2	38292.17					-
	150	7/2	38305.27	1.432				
	151	9/2	38360.67	1.804				
	152	11/2,13/2	38534.17					
'(*S°)6s (*S°)5f?	y ¹⁰ F?	3/ ₂ 7/ ₂ 5/ ₂ 9/ ₂ 11/ ₂ 15/ ₂ 13/ ₂	38565.73 38569.48 38572.63 38580.53 38581.80 38585.65 38585.73	1.54				
	153	9/2	38661.42					
	154	7/2	38676.85	1.76				- -
	155	5/2?	38738.78	2.03				
	156	11/2	38852.45					
$^{7}(^{8}\mathrm{S}^{\circ})5d$ ($^{7}\mathrm{D}^{\circ})6p$	y ⁶ P	7/ ₂ 5/ ₂ 3/ ₂	38917.74 39022.47 39151.69*	1.796 2.07	84 90 97	or or	84 90 97	(*S°)5d6p(3P°) *P
⁷ (⁸ S°)6s (⁹ S°)8p?	8 P	7/ ₂ 9/ ₂ 5/ ₂	38975.14 39179.37	1.754 2.07				
		9/2	39015.09	1.42				
$^{7}(^{8}\mathrm{S}^{\circ})5d$ $(^{7}\mathrm{D}^{\circ})6p$	y *F	11/ ₂ 9/ ₂ 7/ ₂ 13/ ₂ 5/ ₂ 3/ ₂ 1/ ₂	39040.31 39051.76 39059.70 39063.29 39085.78* 39129.32* 39132.10		79 75 70 80 63 57 54	or or or or or or	83 78 73 85 66 61 57	(⁸ S°)5d6p(¹ F°) ⁸ F
		7/2	39126.90					
		5/2?	39136.89					
		9/2	39192.10	1.70				
⁷ (⁸ S°)6s (⁹ S°)8p	10P	7/ ₂ 9/ ₂ 11/ ₂	39203.83 39256.45	2.16 1.95				
		3/2	39278.83					
	150	1						
	158	11/2,13/2	39291.36	1 90				
		7/2	39328.30	1.80				
		5/2	39611.35	1.592				
		5/2?	39770.72	1.99				
		9/2	39782.62	1.639				

Eu I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
	159	5/2	40073.57	2.305	
f ⁷ (⁸ S°)6s (⁷ S°)5f?	y 6F?	11/ ₂ 9/ ₂ 7/ ₂ 3/ ₂ 5/ ₂ 1/ ₂	40198.00 40200.43 40201.14 40203.37 40203.68 40206.71		
f ⁷⁽⁸ S°)6s (⁷ S°)5f?	x *F?	1/ ₂ 3/ ₂ 11/ ₂ 7/ ₂ 5/ ₂ 13/ ₂ 9/ ₂	40217.90 40223.66 40236.14 40236.64 40237.35 40244.66 40249.68		
	160	9/2,11/2	40302.07		
$f^7(^6\mathrm{I}^\circ)6s6p?$		7/2	40323.65	1.042	
		9/2	40372.61	1.58	
		7/2	40373.63	1.436	
$4f^{7}(^{8}S^{\circ})6s \ (^{7}S^{\circ})8p?$	8P	9/ ₂ 7/ ₂ 5/ ₂	40455.51 40609.30 40629.82	1.768 1.89 2.264	
		7/2	40493.09	1.529	
	101	5/2	40792.43	1.605	
$f^{7}(^{6} ext{I}^{\circ})6s6p?$	161	9/2, ¹¹ / ₂ 9/ ₂	40838.66 40843.16	1.013	
			40045.10	1.015	
f ⁷⁽⁸ S°)6s (⁷ S°)8p	eb	3/ ₂ 7/ ₂ 5/ ₂	40862.41 40939.36	1.692 1.88	
		9/2	40962.39	1.64	
	162	11/2,13/2	41054.83?		
		5/2	41078.38	1.149	
1f ⁷ (*S°)6s (*S°)6f?	x 10F?	15/ ₂ 3/ ₂ 5/ ₂ 7/ ₂ 9/ ₂ 11/ ₂ 13/ ₂	41152.12 41166.02 41167.14 41169.20 41171.00 41176.73 41184.12		
		7/2	41223.58	1.708	
		5/2,7/2,9/2	41246.25		
		5/2,7/2,9/2	41247.86		
6f ⁷ (8S°)6s (9S°)9p	8P	5/2	41283.00	2.256	
		7/ ₂ 9/ ₂	41285.58	1.762	
		7/2	41335.67	1.775	
		5/2	41408.47	1.609	
		5/2	41497.75	1.357	
4f ⁷ (⁸ S°)6s (⁹ S°)9p	10P	7/ ₂ 9/ ₂	41515.52 41540.43	2.210 1.97	

Eu I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ading percentages
		7/2	41590.46	1.537				
		9/2	41620.68	0.95				
		9/2	41635.08	1.608				
		7/2	41692.92	1.466				
		5/2	41750.07	0.918				
		9/2	41841.47	1.637				
		7/2	41895.92	1.391				
		5/2	41909.69	1.692				
$f^7(^8\mathrm{S}^\circ)5d~(^7\mathrm{D}^\circ)6p$	8P	9/2	42010.25	1.771	81	or	53	$(^8{ m S}^{\circ})5d6p(^1{ m P}^{\circ})\ ^8{ m P}$
		7/ ₂ 5/ ₂	42087.02 42130.72	1.86 2.04	79 90	or or	52 55	
					90	OI	99	
		9/2	42048.40	1.596				
		5/2	42139.06	1.4				
		7/2	42147.42	1.642				
		7/2	42261.30	1.583				
		5/2	42325.67	1.463				
686p?		9/2	42364.85	1.232				
		5/2	42394.46	1.74				
$666^{\circ}686^{\circ}$?		9/2	42403.68	0.867				
		5/2?	42491.77	1.15				
		9/2	42499.72	1.657				
		9/2	42679.78	1.517				
f ⁷ (⁸ S°)6s (⁹ S°)10p	10P	7/ ₂ 9/ ₂ 11/ ₂	42787.00 42801.24	2.210 2.00				
		7/2	42885.69	1.88				
		5/2,7/2,9/2	42923.70	1.88				
C7(8S°)6s (9S°)10p	8P	9/2	42928.91	1.755				
		5/2,7/2,9/2	42945.76	1.895				,
		5/2	42958.67	1.569				
		9/2	42976.60	1.518				
		5/2	43074.75	1.645				
		9/2	43161.59	1.328				
f ⁷ (8S°)6s (⁷ S°)9p	6 P	3/ ₂ 7/ ₂	43168.06	1.619				
		5/2	43228.62	1.84				
		7/2	43226.63	1.620				
		7/2	43283.39	1.608				
⁶⁷ (8S°)6s (7S°)9p	8P	5/ ₂	43301.51	2.210				
		7/ ₂ 9/ ₂ ?	43330.23	1.787				
		9/2	43327.82	1.591				
		5/2,7/2,9/2	43361.03	2.05				
		9/2	43372.31	1.15				
		9/2	43380.42	1.15				

Eu I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	9
		7/2	43392.16	1.633			9/2	44561.58	1
		5/2,7/2,9/2	43428.78				5/2	44594.46	1
		5/2,7/2,9/2	43438.19	1.502			5/2,7/2,9/2	44599.50	2
		9/2	43479.74	1.253			5/2,7/2,9/2	44604.24	1
f ⁷ (8S°)6s (9S4)11p		7/2	43559.52	2.203			5/2,7/2,9/2	44614.11	
f ⁷ (8S°)6s (9S4)11p		9/2	43567.76	2.0			7/2	44644.09	1
-		5/2	43603.59	0.715			7/2	44654.31	1
f ⁷ (8S°)6s (9S4)11p		5/2,7/2,9/2	43634.86		$4f^{7}(^{8}S^{\circ})6s \ (^{9}S_{4}^{\circ})14p$		9/2	44659.84	2
f ⁷ (8S°)6s (9S ₄ °)11p		5/2,7/2,9/2	43637.11		$4f^{7}(^{8}S^{\circ})6s \ (^{9}S_{4}^{2})14p$		9/2	44671.42	1
		5/2	43673.46	1.794	$4f^{7}(^{8}S^{\circ})6s \ (^{9}S_{4}^{\circ})14p$		5/2	44698.5	2
		7/2	43703.57	1.359			9/2	44698.5	1
		5/2	43739.50	1.652			5/2	44723.05	1
		9/2	43751.97	1.321			7/2	44735.16	1
		7/2	43840.86	1.353			9/2	44749.99	1
		7/2	43889.05	1.632			7/2	44783.74	1
		9/2?	43947.66	1.002			5/2,7/2,9/2	44793.78	
		5/2,7/2,9/2	43955.82				5/2,7/2,9/2	44801.58	
		5/2,7/2,9/2	44035.19	1.63			5/2	44825.13	2
		5/2	44039.93	1.66	$4f^{7}(^{8}S^{\circ})6s \ (^{9}S_{4}^{\circ})15p$		5/2,7/2,9/2	44843.61	
⁷⁷ (8S°)6s (9S ₄ °)12p				2.15	$4f^{7}(^{8}S^{\circ})6s \ (^{9}S_{4}^{\circ})15p?$		5/2,7/2,9/2	44851.85	
6 (84)12p 6 (8S°)6s (9S4)12p		7/2	44061.21				7/2	44876.07	1.
77(8S°)6s (9S4)12p		9/2	44070.22	1.99	$4f^{7}(^{8}S^{\circ})6s \ (^{9}S_{4}^{\circ})15p$		5/2	44887.53	2
$^{7}(^{8}S^{\circ})6s \ (^{9}S_{4}^{\circ})12p$		7/2	44080.39	1.96	$4f^{7}(^{8}S^{\circ})6s \ (^{9}S_{4}^{\circ})15p$		7/2	44888.96	2
(b)08 (b4)12p		5/2	44092.10	2.18			7/2	44922.81	
		9/2	44096.79	1.610			5/2,7/2,9/2	44932.85	
		7/2	44159.26	1.653			9/2	44934.55	1.
		9/2	44171.58	1.616			5/2,7/2,9/2	44964.80	
		5/2	44199.87	1.461			5/2,7/2,9/2	44974.29	2.
		5/2,7/2,9/2	44226.56		$4f^{7}(^{8}S^{\circ})6s \ (^{9}S_{4}^{\circ})16p?$		5/2,7/2,9/2	44977.09	
		5/2,7/2,9/2	44238.08		4f ⁷ (8S°)6s (9S ₄ °)16p		5/2,7/2,9/2	44996.32	2.
		5/2,7/2,9/2	44239.46				9/2	45006.82	1.
		5/2,7/2,9/2	44244.47		4f ⁷ (8S°)6s (9S ₄)16p	:	5/2,7/2,9/2	45012.59	2.
		5/2,7/2,9/2	44334.75		J (2) 32 (2) 23 p		9/2?	45025.15	1.
		5/2,7/2,9/2	44336.86		$4f^{7}(^{8}\mathrm{S}^{\circ})6s \ (^{9}\mathrm{S}^{\circ}_{4})17p?$		7/2?	45025.15	1.
		7/2	44384.60	1.118	$4f^{7}(^{8}S^{\circ})6s \ (^{9}S_{4}^{3})14f?$		5/2,7/2,9/2	45099.21	
$^{7}(^{8}\text{S}^{\circ})6s \ (^{9}\text{S}^{2})13p$		9/2	44411.55	2.0	$4f^{7}(^{8}S^{\circ})6s \ (^{9}S_{4}^{3})17p$				0
		5/2,7/2,9/2	44424.82		$4f^{7}(^{8}S^{\circ})6s \ (^{9}S^{3})17p$		5/2,7/2,9/2	45106.83	2.
$^{7}(^{8}\text{S}^{\circ})6s \ (^{9}\text{S}_{4}^{\circ})13p$		7/2	44425.63	2.0	-) (10)00 (104)11/p		5/2,7/2,9/2	45111.10	2.
$^{7}(^{8}\mathrm{S}^{\circ})6s \ (^{9}\mathrm{S}^{\circ}_{4})13p$		5/2	44427.35	2.19			9/ ₂	45116.42	1.
⁷ (8S°)6s (⁷ S°)10p	6P	3/2					5/2?	45120.98	1.
		7/2	44450.86	1.744			5/2,7/2,9/2	45154.80	
		5/2?	44489.91	1.94	4£7(8C(9)C - (9C(9)4C) 9		5/2,7/2,9/2	45156.32	
		5/2,7/2,9/2	44503.02	1.882	$4f^{7}(^{8}S^{\circ})6s \ (^{9}S^{4})18p?$		7/2?	45168.30	
⁷ (8S°)6s (⁷ S°)10p	8p	9/2	44529.04	1.755	$4f^{7}(^{8}S^{\circ})6s \ (^{9}S^{\circ}_{4})18p?$		9/2?	45180.18	
(2)20p	1	7/ ₂ 7/ ₂ 5/ ₂	44576.83 44590.66	2.0	$4f^{7}(^{8}S^{\circ})6s \ (^{9}S_{4}^{3})15f?$		5/2,7/2,9/2	45185.63	

Eu I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	
4f ⁷ (8S°)6s (9S4)18p?		5/2?	45187.63		4f ⁷ (8S°)6s (9S4)57p		5/2,7/2,9/2	45695.50	
4/ ⁷ (8S°)6s (9S4)18p?		7/2?	45189.42		4f ⁷ (8S°)6s (9S4)58p		5/2,7/2,9/2	45696.87	
1f ⁷ (8S°)6s (9S4)18p?		9/2?	45191.23		$4f^{7}(^{8}S^{\circ})6s \ (^{9}S_{4}^{2})59p$		$^{5/2,7/2,9/2}$	45698.16	
		5/2,7/2,9/2	45258.76		$4f^{7}(^{8}S^{\circ})6s \ (^{9}S_{4}^{2})60p$		$^{5/2,7/2,9/2}$	45699.40	
		5/2,7/2,9/2	45260.00	£.	4f ⁷ (8S°)6s (9S4)61p		$^{5/2,7/2,9/2}$	45700.57	
		5/2,7/2,9/2	45262.44		$4f^{7}(^{8}S^{\circ})6s \ (^{9}S_{4}^{\circ})62p$		$^{5/2,7/2,9/2}$	45701.70	
		5/2,7/2,9/2	45298.60						
		5/2,7/2,9/2	45304.93		7 (20)				
		5/2,7/2,9/2	45321.20		Eu II (9S4)	Limit		45734.9	
		5/2,7/2,9/2	45337.71		$4f^{7}(^{8}S^{\circ})5d^{-}(^{9}D^{\circ})7p?$	8P?	$^{5/2,7/2,9/2}$	45754.4a	
		5/2,7/2,9/2	45339.82				$^{5/2,7/2,9/2}$	45975a	
		5/2,7/2,9/2	45364.35		$4f^{7}(^{8}S^{\circ})5d^{-}(^{9}D^{\circ})7p?$	8P?	$^{5/2},^{7/2},^{9/2}$	46145a	
		5/2,7/2,9/2	45367.53				$^{5/2,7/2,9/2}$	46346a	
		5/2,7/2,9/2	45403.19				$^{5/2,7/2,9/2}$	46394a	
		5/2,7/2,9/2	45407.95				$^{5/2,7/2,9/2}$	46539a	
		5/2,7/2,9/2	45420.78				$^{5/2,7/2,9/2}$	46684a	
		5/2,7/2,9/2	45423.50				$^{5/2,7/2,9/2}$	46781a	
		5/2,7/2,9/2	45427.36				$^{5/2,7/2,9/2}$	46983a	
		5/2,7/2,9/2	45447.46				$^{5/2,7/2,9/2}$	47088a	
		5/2,7/2,9/2	45469.87				$^{5/2,7/2,9/2}$	47289a	
		5/2,7/2,9/2	45471.70		$4f^{7}(^{8}S^{\circ})6s \ (^{7}S_{3}^{\circ})44p$		5/2,7/2,9/2	47337.15	
		5/2,7/2,9/2	45481.97		$4f^{7}(^{8}S^{\circ})6s \ (^{7}S_{3}^{\circ})45p$		5/2,7/2,9/2	47340.29	
		5/2,7/2,9/2	45490.70		$4f^{7}(^{8}S^{\circ})6s \ (^{7}S_{3}^{\circ})46p$		5/2,7/2,9/2	47343.21	
		5/2,7/2,9/2	45492.79		$4f^{7}(^{8}S^{\circ})6s \ (^{7}S_{3}^{\circ})47p$		5/2,7/2,9/2	47345.98	
		5/2,7/2,9/2	45509.92		$4f^{7}(^{8}S^{\circ})6s \ (^{7}S_{3}^{\circ})48p$		5/2,7/2,9/2	47348.63	
		5/2,7/2,9/2	45593.85		$4f^{7}(^{8}S^{\circ})6s \ (^{7}S_{3}^{\circ})49p$		5/2,7/2,9/2	47351.04	
		5/2,7/2,9/2	45601.92		$4f^{7}(^{8}S^{\circ})6s \ (^{7}S_{3}^{\circ})50p$		5/2,7/2,9/2	47353.29	
		5/2,7/2,9/2	45607.71		$4f^{7}(^{8}S^{\circ})6s \ (^{7}S_{3}^{\circ})51p$		5/2,7/2,9/2	47355.41	
		5/2,7/2,9/2	45608.95		$4f^{7}(^{8}S^{\circ})6s \ (^{7}S_{3}^{\circ})52p$		5/2,7/2,9/2	47357.43	
f ⁷ (8S°)6s (9S4)42p		5/2,7/2,9/2	45658.74		$4f^{7}(^{8}S^{\circ})6s \ (^{7}S_{3}^{\circ})53p$		5/2,7/2,9/2	47359.29	
f ⁷ (8S°)6s (9S4)43p		5/2,7/2,9/2	45662.57		$4f^{7}(^{8}S^{\circ})6s \ (^{7}S_{3}^{\circ})54p$		5/2,7/2,9/2	47361.02	
f ⁷ (8S°)6s (9S4)44p		5/2,7/2,9/2	45666.13		$4f^{7}(^{8}S^{\circ})6s \ (^{7}S_{3}^{\circ})55p$		5/2,7/2,9/2	47362.69	
lf ⁷ (8S°)6s (9S4)45p		5/2,7/2,9/2	45669.43		$4f^{7}(^{8}S^{\circ})6s \ (^{7}S_{3}^{\circ})56p$		5/2,7/2,9/2	47364.27	
lf ⁷ (8S°)6s (9S4)46p		5/2,7/2,9/2	45672.53		$4f^{7}(^{8}S^{\circ})6s \ (^{7}S_{3}^{\circ})57p$		5/2,7/2,9/2	47365.76	
If 7(8S°)6s (9S4)47p		5/2,7/2,9/2	45675.37		4f ⁷ (8S°)6s (⁷ S3)58p		5/2,7/2,9/2	47367.15	
f ⁷ (8S°)6s (9S4)48p		5/2,7/2,9/2	45678.00		$4f^{7}(^{8}S^{\circ})6s \ (^{7}S_{3}^{\circ})59p$		5/2,7/2,9/2	47368.49	
$f^{7}(^{8}S^{\circ})6s \ (^{9}S^{\circ})49p$		5/2,7/2,9/2	45680.53		4f ⁷ (8S°)6s (⁷ S3)60p		5/2,7/2,9/2	47369.75	
f ⁷ (8S°)6s (9S4)50p		5/2,7/2,9/2	45682.86		4f ⁷ (8S°)6s (⁷ S3)61p		5/2,7/2,9/2	47370.90	
$f^{7}(^{8}\text{S}^{\circ})6s \ (^{9}\text{S}^{2})51p$		5/2,7/2,9/2	45685.03		4f ⁷ (8S°)6s (7S3)62p		5/2, ⁷ /2, ⁹ /2	47372.02	
4f ⁷ (8S°)6s (9S4)52p		5/2,7/2,9/2	45687.12		4f ⁷ (8S°)6s (⁷ S3)63p		5/2,7/2,9/2	47373.10	
4f ⁷ (8S°)6s (9S4)53p		5/2,7/2,9/2	45689.05		4f ⁷ (8S°)6s (⁷ S3)64p		5/2,7/2,9/2	47374.10	
1f ⁷ (8S°)6s (9S4)54p		5/2,7/2,9/2	45690.82		4f ⁷ (8S°)6s (⁷ S3)65p		⁵ /2, ⁷ /2, ⁹ /2	47375.04	
4f ⁷ (8S°)6s (9S4)55p		5/2,7/2,9/2	45692.50		4f ⁷ (8S°)6s (7S3)66p		5/2, ⁷ /2, ⁹ /2	47375.96	
4f ⁷ (8S°)6s (9S4)56p		5/2,7/2,9/2	45694.05		4f ⁷ (8S°)6s (⁷ S3)67p		5/2,7/2,9/2	47376.87	

Eu I, Even Parity-Continued

Eu I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm^{-1})	g
Eu II (7S03)	Limit		47404.1				5/2,7/2,9/2	51274a	
		5/2,7/2,9/2	47483a				5/2,7/2,9/2	51556a	
		5/2,7/2,9/2	48241a				5/2,7/2,9/2	51806a	
		5/2,7/2,9/2	48490a				5/2,7/2,9/2	52185a	
		5/2,7/2,9/2	49860a				5/2,7/2,9/2	52572a	
		5/2,7/2,9/2	50040a				5/2,7/2,9/2	53000a	
		5/2,7/2,9/2	50435a				5/2,7/2,9/2	53355a	
		5/2,7/2,9/2	50935a				5/2,7/2,9/2	53887a	
		5/2,7/2,9/2	51137a				5/2,7/2,9/2	54073a	

Eu II

(Sm I sequence; 62 electrons)

Z = 63

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^76s$ ${}^9S_4^{\circ}$

Ionization energy 90665±50 cm⁻¹

11.241± 0.006 eV

Identified odd configurations

4f⁷6s, 4f⁷5d, 4f⁷7s, 4f⁶5d6p?, 4f⁷6d, 4f⁷8s

Identified even configurations

4f⁷6p, 4f⁶5d6s, 4f⁶5d², 4f⁸?

Albertson's 1934 note on this spectrum gave all the levels of $4f^7(^8S^\circ)6s$, $(^8S^\circ)6p$, and $(^8S^\circ)7s$, as well as the $4f^7(^8S^\circ)5d^9D^\circ$ levels. His discovery that the Eu II ground configuration has a single external (6s) electron led to the conclusions that the Eu III ground configuration would have no such electrons $(4f^7$ ground configuration) and that the normal Eu I configuration would probably be $4f^76s^2$. Albertson's prediction for Eu I was confirmed later in the same year by Russell and King [1934, see Eu I]; these results were the first experimental contradiction of the previous usual view that all neutral rare-earth atoms had ground configurations of the type $4f^{\,N}5d6s^2$.

The levels and LS-coupling designations are from the 1941 extension of the analysis by Russell, Albertson, and Davis. This analysis was based on 1861 lines (2109–10165 Å) definitely assigned to Eu II by A. S. King [1939] and on extensive Zeeman-effect data. All of the strongest lines are classified by transitions between levels based on the $4f^7(^8S^\circ)$ parent term; the 156 known levels classify a total of 467 lines. If all lines in King's list that probably belong to Eu II are included, more than 2200 lines remain unclassified. Russell et al. note that most of these lines must involve levels based on higher terms of $4f^7$.

The $4f^7(^8\mathrm{S}^\circ)5d$ levels have high purity in the LS-coupling scheme, as shown by the percentages taken from the calculation of Eremin and Maryakhina. The $4f^7(^8\mathrm{S}^\circ)6p$ levels have been assigned J_1j names by analogy with this configuration in Gd III; Callahan remarked that the corresponding levels of $4f^7(^8\mathrm{S}^\circ)6p$ in Eu II and Gd III fall very near each other on the LS-to- J_1j coupling diagram. The two pairs of levels having the same J value (J=4 and J=3) have significantly mixed compositions in the LS scheme; the percentages are from Bordarier, Judd, and Klapisch, as quoted by Guthöhrlein.

The two $4f^{7}(^8S^{\circ})6s$ levels have high purity in either LS or J_1j coupling, since the $(^8S^{\circ})$ parent has high LS purity (see Eu I). In a single-configuration pure-coupling approximation the 6s-6p lines are therefore probably best regarded as transitions from levels of the J_1j terms $(^8S^{\circ}_{7/2})6p_{1/2}$ and $(^8S^{\circ}_{7/2})6p_{3/2}$ to the two $(^8S^{\circ}_{7/2})6s_{1/2}$ levels. Analysis of the hyperfine structure of four of these lines (3819-4523 Å) by Guthöhrlein and by Guthöhrlein, Himmel, and Steudel shows the $(^8S^{\circ}_{7/2})6p$ levels to be perturbed, probably due to interaction with $4f^{6}(^7F)5d6s$ levels.

In cases where Russell et al. assigned both a numerical and a (tentative) term designation to a level, we give here the numerical name; these were used in the list of line classifications. The even levels that were given as belonging to one of three terms z^7D , x^7P , or y^9D are listed here (in order of position) with tentative designations. The LS assignments are strongly indicated by the observed g values, but until the analysis is further developed the term groupings appear uncertain. The higher even levels probably belong mainly to $4f^65d6s$ and $4f^65d^2$, but the irregular z^7F term ($\sim 56000~\rm cm^{-1}$) is tentatively assigned to $4f^8$. (This term is called z^7F in the text and in tables II and V of Russell et al., but is given as x^7F in tables VIII and XII.) Russell et al. state that this configuration is more probable than $4f^65d^2$ "on account of the isolation and great strength of the $[a^7D^\circ-z^7F]$ multiplet," and the resulting position of $4f^8$ is reasonable. If the level identifications are correct, the term is perturbed, since the levels should lie in the regular order for an inverted term.

Russell et al. assigned the x 9P and y 7P terms to 4f $^6(^7F)5d^2$, the y 7P assignment being tentative. Koniordos and Winkler have observed that the hyperfine structure of the a 7S_3 —y 7P_2 transition does not support the 4f $^65d^2$ assignment for the y 7P_2 level.

The grouping of a few of the high odd levels into the $e^{-7}F^{\circ}$ and $f^{-7}D^{\circ}$ terms is tentatively retained here. According to Russell et al., these terms belong to the $(4f^{-6}6s6p+4f^{-6}5d6p)$ group, with the latter configuration being more probable.

A fit of the $(^8S^\circ)6s,7s,8s, ^9S_4^\circ$ series to the Ritz formula, as was done by Russell et al., yields a value of 90713 cm⁻¹ for the Eu III $4f^7(^8S_{7/2}^\circ)$ limit. We have adjusted this value downward by 48 cm⁻¹, the correction being derived from data on the systematic behavior of ns series [Reader, 1973]. The uncertainty is conservatively taken as equal to the correction, although the consistency of the systematic behavior would indicate a considerably smaller error.

The identification of Eu II in the spectrum of the A-type star α^2 Canum Venaticorum more than 60 years ago was one of the first indications of the peculiarity of the spectra of many stars of this type. It is now known that the light rare-earth elements are greatly overabundant (relative to the solar abundances) in the atmospheres of many "peculiar" A stars. The study of these puzzling objects furnishes one of the best examples of the need for more complete data on rare-earth spectra and energy levels.

References

Albertson, W., Phys. Rev. 45, 499 (1934). EL CL
Bordarier, Y., Judd, B. R., and Klapisch, M., unpublished results quoted by G. Guthöhrlein (1968). Hfs PT
Callahan, W. R., J. Opt. Soc. Am. 53, 695 (1963). PT
Eremin, M. V., and Maryakhina, O. I., Opt. Spectrosc. (USSR) 26, 479 (1969). PT
Guthöhrlein, G., Z. Phys. 214, 332 (1968). Hfs IS PT
Guthöhrlein, G., Himmel, G., and Steudel, A., J. Phys. (Paris) Colloq. C 1 30, 66 (1969). Hfs
King, A. S., Astrophys. J. 72, 221 (1930). W Hfs
King, A. S., Astrophys. J. 89, 377 (1939). W
Koniordos, I., and Winkler, R., Phys. Lett. 27A, 198 (1968). IS
Reader, J., private communication (1973). IP
Russell, H. N., Albertson, W., and Davis, D. N., Phys. Rev. 60, 641 (1941). EL CL ZE IP
Wybourne, B. G., J. Opt. Soc. Am. 54, 267 (1964). PT

Eu II

Configuration	Term	J	Level (cm ⁻¹)	g			Le	ading percentages	
4f ⁷ (8S°)6s	a ⁹ S°	4	0.00	1.984		or		(8S ² / ₂)68 _{1/2}	
$4f^{7}(^{8}\mathrm{S}^{\circ})6s$	a ⁷ S°	3	1669.21	1.981		or		$(^8\mathrm{S}^{\circ}_{7/2})6s_{1/2}$	
$4f^{7}(^{8}\text{S}^{\circ})5d$	a ⁹ D°	9	9923.00	2.641	100				
4, (2 / 3 2	W B	2 3	10081.65	2.041	100				
		4	10312.82	1.842	99		1	(8S°) 7D°	
		5	10643.48	1.726	99		1	(8S°) 7D°	
		6	11128.22	1.659	100		_		
4f7(8S°)5d	a ⁷ D°	5	16860.72	1.592	99		1	(8S°) 9D°	
		4	17004.06	1.628	99		1	(8S°) 9D°	
		$\frac{3}{2}$	17140.87	1.728	100			,	
			17247.67	1.981	100				
		1	17324.66	2.972	100				
$4f^{7}(^{8}\mathrm{S}^{\circ}_{7/2})6p_{1/2}$	$(^{7}/_{2},^{1}/_{2})$	3	23774.28	2.195		or	87	(8S°) z 9P	
		4	24207.86	1.877		or	63	(12) 12 -	
$4f^{7}(^{8}\mathrm{S}_{7/2}^{\circ})6p_{3/2}$	(7/2,3/2)	5	26172.83	1.789		or	100	(8S°) z 9P	
-		4	26838.50	1.801		or	63	$(^8S^\circ) z^{-7}P$	
		3	27104.07	1.943		or	87	$(^8S^\circ) z^{7}P$	
		2	27256.35	2.312		or	100	(8S°) z 7P	
$4f^{6}(^{7}\mathrm{F})5d$ (8D)6s	z ⁹ D	2	30189.31	2.511					
		3	31500.82	2.002					
		4	32486.10	1.824					
		5	33420.20	1.710					
		6	34764.97	1.687					
	101	4	33779.95	1.565					
	102	3	33919.70	1.681					
	103	2	33944.49	1.690					
4f ⁶ (⁷ F)5d (⁸ P)6s	<i>y</i> ⁹ P	3	34393.57	2.037					
		4	35527.02	1.898					
		5	36648.95	1.749					
	104	3	34546.10	1.307					
	105	4	34617.73	1.603					
	106	3	34923.43	1.669					
	107	4	35045.98	1.966					
	108	3	35440.88	2.004					
	109	3	35567.74	1.434					
	~ 709	1							
	z ⁷ D?	$\frac{1}{2}$	35846.96	1.931					
		4	35846.96	1.931					
		3	37167.90	1.702					
		5	51101.50	1.100					
	110	4	35935.81	1.591					
	111	4	36428.89	1.472					
$4f^{6}(^{7}\mathrm{F})5d^{2}(^{3}\mathrm{F})$	<i>x</i> ⁹ P	3	36628.00	2.163					
· · · · · · · · · · · · · · · · · · ·		4	37223.78	1.892					
		5	37849.34	1.715					
	112	3	36821.20	1.428					

Eu II—Continued

Eu II—Continued

	Eu II—Cont			T 11		Eu II—Con			
Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
	114	5	37000.00	1.578		141	4,5	43461.07	
	115	2	37003.23	2.151		142	5	43643.12	1.6
$f^{6(7}\text{F})5d^{2}$?	y ⁷ P	$\frac{2}{3}$	37336.83	2.196		143	5	44947.15	
		$rac{3}{4}$	38804.98 39134.72	1.916 1.746		144	4	46032.03	1.4
	116	6	37583.63	1.775		145	4	46584.45	
	117	3	37605.51	1.735		146	2	48171.51	1.4
	118	3,4	37622.87			147	1,2	48180.68	
	119	2	37799.89	1.744		148	5	48378.03	$\begin{cases} 1.7 \\ 1.4 \end{cases}$
	120	5	37932.19	1.460		149	2	48522.28	(1.1
	121	4	37993.64	1.322		150	3	48536.61	1.5
	122	4	38058.03	1.436		151	4	48872.85	1
	x 7P?	2	38146.44	2.364		152	3	48910.95	
		$\frac{3}{4}$	38463.66 39554.43	1.716 1.694		153	4,5	49003.10	
	123	3	38295.89	1.703		154	2	49043.00	1.3
	124	1	38582.08	3.155					
	125	7	38725.32	1.576:	$4f^{7}(^{8}\mathrm{S}^{\circ})7s$	e ⁹ S°	4	49128.03	1.9
	126	5	38784.47	1.601		155	2	49254.68	1.5
	127	4	38995.52	1.566		156	3	49480.46	
	128	2	39099.43	2.016	4f ⁷ (8S°)7s	e ⁷ S°	3	49646.62	1.9
	129	6	39601.80	1.756		157	2	49720.89	
	130	3	39767.55	1.750?		158	1	50947.46	2.8
	150	9	30101.55	2.374?	4f 6 5d6p?	e ⁷ F°	6 5	52963.40	1.5
	131	6	40316.92	1.632			4 3	53150.34 53490.44	1.5
	132	4	40870.72	1.892			2	53861.26	1.5
	133	6	41099.11				1 0		
	134	5	41223.24	1.661		1°	4	53783.01	1.8
	135	4	41438.13	1.694:	$4f^{7(8}S^{\circ})6d$	e ⁵D°	2	54273.98	2.0
	136	4	41666.81	1.505			3 4	54320.69 54380.30	1.5
	137	4	41714.84				5 6	54484.27 54565.04	1.
	138	2	42391.03	1.935	$4f^{7}(^{8}\mathrm{S}^{\circ})6d$	$e^{-7}\mathrm{D}^\circ$	4	54295.02	
	y ⁹ D?	2	42438.56		4) (5)00		5 1	54428.76 54435.41	1. 2.
		3	43193.46	1.987			2	54490.63	
		4 5	44075.84 45126.78	1.672 1.602			3	54589.10	
		6	46029.14	1.621		2°	3,4	54600.07	
	139	4	42710.14			3°	3	55156.18	
	140	3,4	42939.45						

Eu II—Continued

Eu II—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
	4 °	3	55193.08			11°	3,4	57360.05	
	5°	3	55559.02			162	1,2	57363.68	
f ^{*#} ?	z ⁷ F	6 3	55651.82 55967.88	1.490 1.460		163	3	57388.87	1.73
		0 5	55986.45 55991.33	1.460		164	2,3	57415.06	
		4	56067.39 56245.61	1.466 1.494		165	3,4	57634.02	
		2	56571.04	1.451		166	2	58920.64	1.502
	159	2	55693.94	1.115		12°	3	59045.49	2.06
	160	2	55807.25	1.090		167	1	59145.26	1.486
	6°	3,4	56158.66			168	2	59334.70	
	161	3	56229.17	1.381		169	4,5	59343.45	
	f 'D'?	5 4	56271.40 56293.33	1.662 1.649:		13°	3	59765.77	
		3 1	56309.21 56310.89	2.962		170	3,4	59995.34	
		2	56321.27	1.792	4f ⁷ (⁸ S°)8s	f °S°	4	66598.00	
	7°	2,3	56421.62	1.844	4f ⁷ (8S°)8s	f 'S°	3	66836.16?	
	8°	5	56781.20	1.454					
	9°	3,4	57127.26		Eu III (8S ² / ₂)	Limit		90665	
	10°	4	57270.14						

Eu III

(Pm I sequence; 61 electrons)

Z = 63

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{7/8}S_{7/9}^{\circ}$

Ionization energy 201000± 800 cm⁻¹

 $24.92 \pm 0.10 \text{ eV}$

Sugar and Spector [1974] list almost 900 lines for this spectrum in the range 2026-8582 Å, with all but 22 of the lines lying below 3360 Å. The 105 levels obtained from their analysis, given here, classify about 300 of the observed lines.

The leading percentages for all levels except the ground level are also from Sugar and Spector [1974, 1975]. They calculated $4f^6(^7F)6p$ with matrices truncated to include only terms based on the 7F core term, using the "real core" approximation. The 1974 paper gives the first two percentages for each level in the J_1j coupling scheme most appropriate for this configuration; we have omitted the second J_1j percentages, and listed instead the leading percentages in LS coupling [Sugar and Spector, 1975].

The calculation of $(4f^65d+4f^66s)$ was expanded to include terms based on the three $^5\mathrm{D}$ terms of $4f^6$, but still more complete matrices apparently are needed to fit the observed levels, g values, and intensities more accurately [Sugar and Spector, 1974]. The intensities of the transitions to the ground level indicate that the level having J=5/2 at 39769 cm⁻¹ has a larger $4f^6(^7\mathrm{F})5d^8\mathrm{P}$ component than the level at 40897 cm⁻¹, contrary to the results of the 1974 calculation. We have thus followed Sugar and Spector in retaining the original $^8\mathrm{P}$ designation for the lower of these levels [Martin and Sugar, 1973].

Baker and Williams obtained a g value of 1.9926 ± 0.0003 for the $4f^{7~8}S_{7/2}^{\circ}$ ground level by fitting their electron paramagnetic resonance data for Eu²⁺ ions (calcium fluoride host). An assumption that the observed g value is due to a mixture of $^8S_{7/2}^{\circ}$ and $^6P_{7/2}^{\circ}$ wavefunctions (see Eu I) gives a $^6P_{7/2}^{\circ}$ percentage of $2.9\pm0.1\%$ in the eigenvector for the ground level [Baker and Williams, 1962]. The g values for six upper levels are from Russell, Albertson, and Davis [1941], with some corrections noted by Martin and Sugar.

The ionization potential is from Sugar and Spector, who were able to improve the accuracy of the value obtained earlier by Sugar and Reader [1973].

References

Baker, J. M., and Williams, F. I. B., Proc. R. Soc. London, Ser. A 267, 283 (1962). ZE Hfs Martin, W. C., and Sugar, J., Astrophys. J. 184, 671 (1973). EL ND CL ZE PT Russell, H. N., Albertson, W., and Davis, D. N., Phys. Rev. 60, 641 (1941). EL CL ZE Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP Sugar, J., and Spector, N., J. Opt. Soc. Am. 64, 1484 (1974). EL ND CL W IP PT Sugar, J., and Spector, N., unpublished material (1975). PT

Eu III

Configuration	Term	J	Level (cm ⁻¹)	g		Le	Leading percentages				
4f ⁷	*S°	7/2	0.00	1.9926	97	3	6P°				
4f7	6P°	7/2	28200.06								
*)	1	5/2	28628.54	İ							
		3/2	20020.04								
4.67	ero.										
$4f^{7}$	eI。	7/ ₂	31745.99								
		9/ ₂ 17/ ₂	31954.21								
		11/2	32073.30 32179.55								
		15/2	32307.78								
		13/2	32314.14								
$4f^6(^7\mathrm{F})5d$	8H	3/2	22056 20		0.5		(FD1) 60				
4) (1°)0a	11	$\frac{5}{2}$	33856.22 34394.41		97	2	(5D1) 6G				
		7/2	35108.86		97	1					
		9/2	35972.13		97	1	(5D1) 6G				
		11/2	36962.29		98	1	(5D1) 6G				
		13/2	38067.33		99 99	1 1	(⁷ F) ⁶ H (⁷ F) ⁶ H				
		15/2	39289.69		99	1	(⁷ F) ⁶ H				
		17/2	40659.41		100	1	(F) II				
$4f^{6}(^{7}\mathrm{F})5d$	8D	3/2	35627.36		5.0	80	(7E) 6D				
-J (1)0w		$\frac{72}{5/2}$	33021.30		56 74	38	(⁷ F) ⁶ P (⁷ F) ⁶ P				
		$\frac{72}{7/2}$	38229.07		90	19 4	(°F) °P (°F) °P				
		9/2	39225.71		90 95	3	(⁷ F) ⁸ F				
		11/2	40133.12		97	1	(⁷ F) ⁶ F				
$4f^{6}(^{7}\mathrm{F})5d$	*G	1/2	38050.11		25		(7D) 8D				
1) (1)60	4	$\frac{72}{3/2}$	38316.66	,	65	27	(7F) 8F				
		5/2	38828.56		61 61	30 29	(⁷ F) ⁸ F (⁷ F) ⁸ F				
		7/2	39579.66		63	29 29	(⁷ F) ⁸ F				
		9/2	40518.43		67	28	(⁷ F) ⁸ F				
		11/2	41573.22		72	25	(⁷ F) ⁸ F				
		13/2	42658.20		79	17	(⁷ F) ⁸ F				
		15/2	43658.96		93	7	(⁷ F) ⁶ H				
$4f^{6}(^{7}F)5d$	*F	1/2			65	28	(⁷ F) ⁸ G				
		3/2	39014.36		61	33	(1) G				
		$^{5/_{2}}$	39636.88	1.592	52	20					
		$^{7}/_{2}$	40371.65		59	33					
		9/2	41159.52		66	30					
		11/2	41987.90		71	26					
		13/2	42850.07		80	17					
$4f^{6}(^{7}\mathrm{F})5d$	8P	⁵ / ₂	39769.05	2.025	39	23	(⁷ F) ⁶ P				
		7/2	40870.60	1.885	69	25	(⁷ F) ⁶ P				
		9/2	42084.25	1.762	97	2	(7F) ⁶ D				
$4f^{6}(^{7}\mathrm{F})5d$		5/2	40897.66	2.027	45	³ P 39	(7F) 6P				
$4f^{6}(^{7}\mathrm{F})5d$	6P	3/2			55	41	(⁷ F) ⁸ D				
		⁷ / ₂	42530.91	1.860	64	27	(⁷ F) ⁸ P				
$4f^6(^7\mathrm{F})5d$	eH	5/2	43395.75		95	2	(5D1) 4G				
		7/2	43885.27		95	2	(⁷ F) ⁶ G				
		9/2	44553.80		94	3	(7F) 6G				
		11/2	45313.75		95	3	(7F) 6G				
		13/ ₂	46150.85		94	3	(7F) 8G				
		15/2	47069.87		92	7	(⁷ F) ⁸ G				
$4f^{6}(^{7}\mathrm{F})6s$	*F	1/2	46096.40		92	2	(5D1) 6D				
		3/ ₂	46519.26		94	2	(5D1) 6D				
		5/ ₂	47173.34		94	2	(7F) 6F				
		7/ ₂ 9/ ₂	47993.76		95	2	(7F) 6F				
		$\frac{9}{2}$ $\frac{11}{2}$	48925.15 49925.96		96 98	2	(⁷ F) ⁶ F (⁷ F)5d ⁸ F				
		- 12	422(4) 20	1	чx	1	1 ' P 15/7 ' O H '				

Eu III—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lead	ding percentages
$4f^{6}(^{7}\mathrm{F})5d$	6F	1/2			55		35	(⁷ F) ⁶ D
1) (1)00		3/2			47		39	(7F) 6D
		5/2	46108.79		54		31	(7F) 6D
					l .			(⁷ F) ⁶ D
		7/2	46793.38		59		25	
		9/2	47714.74		64		21	(7F) 6D
		11/2	49086.13		81		15	(⁷ F) ⁶ G
$4f^{6}(^{7}\mathrm{F})6s$	6F	1/2	48259.62		93		2	(7F)5d 6F
		$^{3}/_{2}$	48828.91		87		8	(7F)5d 6G
		$^{5/_{2}}$	49610.81		78		15	(7F)5d ⁶ G
		7/2	50805.58		54		27	(7F)5d 6G
		9/2	51848.18		91		4	(7F)5d 6G
		11/2	52960.08		97		1	(7F) 8F
$4f^{6}(^{7}\mathrm{F})5d$	6D	1/2			54		33	(⁷ F) ⁶ F
4) -(· r)3a	-D							
		3/2			49		35	(7F) 6F
		$^{5}/_{2}$	48496.43		54		21	(⁷ F) ⁶ F
		$^{7/_{2}}$	49292.56		57		24	(⁷ F) ⁶ G
		9/2	49956.73		63		23	(⁷ F) ⁶ G
$4f^6(^7\mathrm{F})5d$	eG.	$^{3}/_{2}$			78		10	(⁷ F) ⁶ F
2) (1)00		5/ ₂	49905.64		58		18	(7F)6s 6F
			43303.04					(⁷ F) ⁶ F
		9/2			59		21	
		$^{11}/_{2}$	51650.77		80		15	(7F) 6F
		$^{13}/_{2}$	52099.87		95		2	(⁷ F) ⁸ F
$4f^{6}(^{7}\mathrm{F})6s$		7/2	50426.33		42	$^{ m eF}$	37	$(^{7}\mathrm{F})5d$ $^{6}\mathrm{G}$
$4f^{6}(^{7}\mathrm{F}_{0})6p_{1/2}$	(0,1/2)°	1/2	78981.86		69	or	88	$(^{7}\mathrm{F})$ $^{8}\mathrm{G}^{\circ}$
$4f^{6}(^{7}\mathrm{F}_{1})6p_{1/2}$	$(1,^{1}/_{2})^{\circ}$	3/2	79437.18		80	or	84	(7F) 8G°
4) (1 1)0p1/2	(1, 72)	1/2	79639.31		72	or	56	(7F) 6D°
		-/2	79059.51		12	OI	90	(F) D
$4f^6(^7\mathrm{F}_2)6p_{1/2}$	$(2,^{1}/_{2})^{\circ}$	$^{5/_{2}}$	80153.47		85	or	81	(7F) 8G°
4) (12)0p1/2	(2, 72)	3/2	80253.58		83		48	(⁷ F) ⁶ D°
		0/2	80253.58		83	or	40	(T) D
$4f^{6}(^{7}\mathrm{F}_{3})6p_{1/2}$	$(3,^{1}/_{2})^{\circ}$	7/2	81059.49		87	\mathbf{or}	77	(7F) 8G°
ij (10)0pi/2	(3, 72)	5/2	81067.28		87	or	38	(7F) ⁶ D°
A CECTE NO	(4.1/.)9	7.1	04005 40		00		40	(⁷ F) ⁸ D°
$4f^{6}(^{7}\mathrm{F}_{4})6p_{1/2}$	$(4,^{1}/_{2})^{\circ}$	7/2	81985.13		89	\mathbf{or}	42	
		9/2	82101.85		89	\mathbf{or}	70	(7F) 8G°
$4f^{6}(^{7}\mathrm{F}_{5})6p_{1/2}$	(5, ¹ / ₂)°	9/2	82954.63		90	\mathbf{or}	60	$(^{7}\mathrm{F})$ $^{8}\mathrm{D}^{\circ}$
$4f^{-6}(F5)6p_{1/2}$	(3,-72)				1			(⁷ F) ⁸ G°
		11/2	83248.29		91	\mathbf{or}	58	(T) *G
$4f^6(^7{ m F}_1)6p_{3/2}$	$(1,^3/2)^{\circ}$	$^{3}/_{2}$	83009.54		44	or	82	(⁷ F) ⁸ D°
-) () - [-0.2	\ \-, \-\	5/2	83776.98		55	or	55	(⁷ F) ⁸ D°
		1/2	84563.08		68	or	56	(⁷ F) ⁸ F°
4.66/7TC \C	(6.1/)0	11/2	83959.93		91	or	79	(⁷ F) ⁸ D°
$4f^{6}(^{7}\mathrm{F}_{6})6p_{1/2}$	$(6,^{1}/_{2})^{\circ}$	$\frac{11/2}{13/2}$	84486.76		95	or	41	(⁷ F) ⁶ G°
4 CE (TE) 0	(0.21.)9						0.7	(7E) 6C°
$4f^{6}(^{7}\mathrm{F_{0}})6p_{3/2}$	$(0,^{3}/_{2})^{\circ}$	3/2	84510.34		54	or	67	(7F) 6G°
$4f^{6}(^{7}\mathrm{F}_{2})6p_{3/2}$	$(2,^3/_2)^{\circ}$	7/2	84640.56		79	or	53	$(^{7}\mathrm{F})$ $^{8}\mathrm{F}^{\circ}$
-) (1 2/0p3/2	(2, 12)	5/2	84938.40		52	or	62	(⁷ F) ⁶ G°
		3/2	04000.40		61	or	35	(⁷ F) ⁸ F°
		1/2			67	or	35 85	(⁷ F) ⁶ F°
4.00.000	(2.51.)		07.75					
$4f^{6}(^{7}\mathrm{F}_{3})6p_{3/2}$	$(3,^3/2)^{\circ}$	9/2	85479.93		91	\mathbf{or}	47	(7F) 8F°
		7/2	85705.11		75	or	54	$(^{7}\mathrm{F})$ $^{6}\mathrm{G}^{\circ}$
		5/2	85928.29		60	\mathbf{or}	37	$(^{7}\mathrm{F})$ $^{6}\mathrm{D}^{\circ}$
		3/2	86933.53		72	or	76	(7F) 6F°
$4f^{6}(^{7}\mathrm{F_{4}})6p_{3/2}$	(4, ³ / ₂)°	11/2	86282.06		93	or	38	(7F) 8G°
τ _j (1 4) Ο μ 3/2	(3, 12)	9/2	86760.09		90	or	46	(7F) 6G°
								(⁷ F) ⁶ D°
		7/2	86944.83		58	or	45	(T) 5D (7D) 6D?
		5/2	87820.98		71	or	72	$(^{7}\mathrm{F})~^{6}\mathrm{F}^{\circ}$

Eu III—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ding percentages
$4f^{6(7}{ m F_5})6p_{3/2}$	(5, ³ / ₂)°	13/ ₂ 11/ ₂ 9/ ₂ 7/ ₂	87041.33 87959.80 88166.46 88753.45		95 97 53 67	or or or	61 47 55 68	(7F) *G° (7F) *F° (7F) *D° (7F) *F°
4f ⁶ (⁷ F ₆)6p _{3/2}	(6, ³ / ₂)°	15/ ₂ 13/ ₂ 9/ ₂ 11/ ₂	87710.15 89178.53 89639.17 90155.04		100 100 59 92	or or or	100 59 64 81	(7F) 8G° (7F) 8F° (7F) 6F° (7F) 6F°
Eu IV (7F ₀)	Limit		201000					

[Eu IV]

(Nd I sequence; 60 electrons)

Z = 63

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{6}$ ⁷F₀

Ionization energy 344000± 5000 cm⁻¹

 $42.7 \pm 0.6 \text{ eV}$

The spectrum of the free ion has not been analyzed. The $4f^6$ ⁷F and ⁵D levels given here are centers-of-gravity of the corresponding sublevels of the ion in hexagonal LaCl₃, rounded off to the nearest 10 cm⁻¹. DeShazer and Dieke derived the sublevels by analysis of both absorption and fluorescence spectra. Levels for higher terms are listed by Dieke [1968] and by Carnall, Fields, and Rajnak [1968] (to 41370 cm⁻¹).

Ofelt has given the septet and quintet components of the eigenvectors for the $4f^6$ levels up to $40000~\rm cm^{-1}$. The percentages here are from an unpublished calculation by Carnall et al. [1974].

Sugar and Reader derived the ionization energy. Their estimate of the uncertainty has been doubled, as recommended by Spector and Sugar.

References

Carnall, W. T., Fields, P. R., and Rajnak, K., J. Chem. Phys. 49, 4450 (1968). [EL] [CL] [W] PT

Carnall, W. T., Fields, P. R., and Rajnak, K., unpublished material (1974). PT

DeShazer, L. G., and Dieke, G. H., J. Chem. Phys. 38, 2190 (1963). [EL] [CL] [W] [ZE] PT

Dieke, G. H., Spectra and Energy Levels of Rare Earth Ions in Crystals, Ed. H. M. Crosswhite and H. Crosswhite, pp. 242-249 (Interscience Publishers, New York, 1968). [EL] [CL] [W] [ZE]

Ofelt, G. S., J. Chem. Phys. 38, 2171 (1963). PT

Spector, N., and Sugar, J., J. Opt. Soc. Am. 66, 436 (1976).

Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP

[July 1976]

[Eu IV]

Term	J 0	Level (cm ⁻¹)	Leading percentages				
$^{7}\mathrm{F}$		0	93	3 ⁵ D1			
	1	[370]	95	$3^{-5}D1$			
	2	[1040]	96	2 ⁵ D1			
	3	[1890]	97	$1^{-5}D1$			
	4	[2860]	98	1 ⁵ F2			
	5	[3910]	98	$1^{-5}G1$			
	6	[4940]	96	2 ⁵ G1			
5D3	0	[17270]	46	30 ⁵ D1			
	1	[19030]	51	32			
	2	[21510]	55	35			
	3	[24390]	56	36			
	4	[27640]	53	36			
T : .,		211000					
	⁷ F	⁷ F 0 1 2 3 4 5 6 6 5 D3 0 1 2 3 4	Term J (cm ⁻¹) 7F 0 0 0 1 [370] 2 [1040] 3 [1890] 4 [2860] 5 [3910] 6 [4940] 5D3 0 [17270] 1 [19030] 2 [21510] 3 [24390] 4 [27640]	Term J (cm ⁻¹) 7F 0 0 93 1 [370] 95 2 [1040] 96 3 [1890] 97 4 [2860] 98 5 [3910] 98 6 [4940] 96 5D3 0 [17270] 46 1 [19030] 51 2 [21510] 55 3 [24390] 56 4 [27640] 53	Term J (cm ⁻¹) Leading percentages 7F 0 0 93 3 5D1 1 [370] 95 3 5D1 2 [1040] 96 2 5D1 3 [1890] 97 1 5D1 4 [2860] 98 1 5F2 5 [3910] 98 1 5G1 6 [4940] 96 2 5G1 5D3 0 [17270] 46 30 5D1 1 [19030] 51 32 2 [21510] 55 35 3 [24390] 56 36 4 [27640] 53 36		

GADOLINIUM

Gd I

64 electrons Z=64

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6) 4f^75d6s^2 {}^9D_9^9$

Ionization energy 49603±5 cm⁻¹

 $6.1500 \pm 0.0006 \text{ eV}$

Identified odd configurations

 $4f^75d6s^2$, $4f^75d^26s$, $4f^75d^3$, $4f^75d6s7s$, $4f^75d6s8s$, $4f^76s^27s$,

 $4f^{7}6s6p^{2}, 4f^{8}6s6p$

Identified even configurations

 $4f^86s^2$, $4f^85d6s$, $4f^86s7s$, $4f^76s^26p$, $4f^75d6s6p$, $4f^75d^26p$

Spectrum Observations

King [1943] gave wavelengths and temperature classifications for 5775 Gd lines in the range 2135–10667 Å. By comparing intensities in the spectra from the furnace, an arc, and a spark, he separated the lines of Gd I and Gd II. A much richer spectrum has been obtained from an electrodeless lamp containing ¹⁵⁸Gd. P. E. Noorman photographed the spectrum from this source with the 9-m spectrograph at the Argonne National Laboratory. The measurements of these plates by Hoekstra and Slooten [1971] gave more than 18500 Gd lines in the range 2468–8752 Å, about 11000 of which belong to Gd I. Also at Argonne, Tomkins and Camus have observed 850 Gd I lines in absorption in the region 2200–2800 Å. The new lists are unpublished, but van Kleef, Blaise and Wyart [1971] used them in their analysis, and some 5300 Gd I lines are now classified. Practically all of the 1400 strongest Gd I and Gd II lines are classified [Meggers, Corliss, and Scribner, 1975; the energy levels for the classifications in this reference were taken from Blaise, Chevillard, Verges, Wyart, and van Kleef, 1971].

Spector and Held [1970] photographed and measured 950 Gd lines between 7200 and 12315 Å, and assigned about 900 lines to either Gd I or Gd II. Blaise, Chevillard, Verges, Wyart, and van Kleef [1971] give 966 Gd lines between 8331 and 24552 Å, with most of the 760 classified lines belonging to Gd I.

History of the Analysis

In his remarkable 1935 paper Albertson gave the first analyses of both Sm I and Gd I, including the ground term and its configuration assignment in each case. In addition to the 5 levels of the Gd I $4f^{7}(^{8}S^{\circ})5d6s^{2}$ $^{9}D^{\circ}$ ground term, he found 30 upper even levels and classified 71 lines in a then unpublished list of King.

The analysis was continued by Russell [1942, 1950] and greatly extended to include the $4f^{7}(^{8}S^{\circ})5d6s^{2}$ $^{8}D^{\circ}$ term, the low $4f^{7}(^{8}S^{\circ})5d^{2}6s$ $^{9}F^{\circ}$ and $^{11}F^{\circ}$ terms, the high $4f^{7}(^{8}S^{\circ})5d6s7s$ $^{9}D^{\circ}$, $^{11}D^{\circ}$ and $4f^{7}(^{8}S^{\circ})6s^{2}7s$ $^{9}S^{\circ}$ terms, and about 200 even levels. He classified 1200 lines from King's list, including most of the stronger lines.

Klinkenberg [1946] first obtained g values for the levels of the ground term and for 17 upper even levels. He independently assigned several of the even levels to the two lowest 9 D terms of $4f^{7}(^8S^{\circ})5d6s6p$ and noted that the low even 9 P term belonged to $4f^{7}(^8S^{\circ})6s^26p$. Mainly on the basis of more extensive Zeeman data (see below), Pinnington [1967] identified two $4f^{7}(^8S^{\circ})6s^26p$ P levels and assigned a number of other even levels to new $4f^{7}(^8S^{\circ})5d6s6p$ terms. Spector [1971] corrected the assignments of two low even levels and arranged the $4f^{7}(^8S^{\circ})6s^26p$ levels into two J_1j -coupling terms.

A collaborative effort of spectroscopists at the Zeeman Laboratory, Amsterdam, and the Laboratoire Aimé Cotton, Orsay, has greatly extended the analysis to include 236 odd levels and 371 even levels [van Kleef, Slooten, Blaise, and Camus, 1970; Blaise, Wyart, and van Kleef, 1970; Blaise, Chevillard, Verges, Wyart, and van Kleef, 1971; van Kleef, Blaise, and Wyart,

1971]. All level values are taken from the last two references; the levels are given to three decimal places, but it is apparent that many of the values were quoted only to the nearest 0.005 cm⁻¹. In addition to the new wavelength measurements mentioned above, these authors also had available extensive new Zeeman data (see below). Their results include a number of revisions of the previous analysis.

Theoretical Interpretation, Calculations

All identified levels are based on one of the two core terms $4f^{7}(^{8}S^{\circ})$ or $4f^{8}(^{7}F)$; the next lowest term of the $4f^{7}$ core, the $^{6}P^{\circ}$ term, is predicted to be about 32500 cm^{-1} above the $^{8}S^{\circ}$ term. The identification of the entire system based on $4f^{8}(^{7}F)$ is due to the Amsterdam-Orsay group.

The eigenvector percentages for the odd levels are from Wyart's thesis [1973]. His calculations included the $(4f^7(^8\mathrm{S}^\circ,^6\mathrm{P}^\circ)5d6s^2+4f^7(^8\mathrm{S}^\circ)5d^26s+4f^7(^8\mathrm{S}^\circ)5d^3)$ subconfigurations with their interactions, and he also calculated the $4f^7(^8\mathrm{S}^\circ)5d6s7s$ group. No calculations of configurations based on the $4f^8$ core are available. Van Kleef et al. [1971] note that the $4f^86s6p$ configuration assignments, which begin at 25658 cm⁻¹, are based mainly on strong transitions to the $4f^86s^2$ T levels. These assignments have been listed tentatively above 32000 cm⁻¹, pending a calculation of the odd configurations in this region. Van Kleef et al. did not list term assignments for the $4f^86s6p$ levels but noted the appropriateness of a J_1j coupling scheme. An example of the scheme is the designation $4f^8(^7\mathrm{F}_6)6s6p(^3\mathrm{P}_2^\circ)$ for the tentative level having J=8 at 27797 cm⁻¹.

Much of the interpretation of the even level system above about 26000 cm⁻¹ appears as yet uncertain. Only the analysis of Russell was available to Nir [1969] when he calculated the group $(4f^7(^8S^\circ)6s^26p+4f^7(^8S^\circ)5d6s6p+4f^7(^8S^\circ)5d^26p)$, and no more complete calculations are available. All eigenvector percentages are from Nir, but a number of the levels belonging mainly to this group were subsequently found and assigned independently of his calculation [van Kleef et al., 1971]. The $4f^{8}(^{7}F)5d6s$ subconfiguration is especially prominent among the additional even groups found by van Kleef et al. to overlap the above group. The strong configuration interaction and intermediate coupling already evident in Nir's results obviate any meaningful names for many of the levels, and these effects can only be increased if additional configurations are included. In the arrangement here we have omitted term names indicated as inappropriate by the assigned eigenvectors, and almost all of the designations of levels above 30000 cm⁻¹ are given as questionable. In cases of disagreement we usually followed the suggested interpretation of van Kleef et al. (the data available to them being much more extensive) or omitted configuration and/or term assignments for the levels in question. The configuration assignments of a number of the levels are based partly on measured isotope shifts; some recent suggestions made by Ahmad, Saksena, and Venugopalan [1976] on this basis have been taken into account. A few of the suggested assignments of levels to Nir's eigenvectors were made by us. More complete calculations of both the even and odd levels for this spectrum are badly needed.

g Values, Ionization Energy

Smith and Spalding [1961] measured g values for the levels of the $4f^75d6s^2$ $^9D^\circ$ ground term, using an atomic-beam magnetic-resonance method. Their g values are given here for the lowest three levels, the uncertainties being four to six units in the fourth place. All of the three-place g values and some of the two-place values represent weighted averages that include Pinnington's results [1967]. His measurements of optical Zeeman-effect patterns gave g values for 118 levels of Gd I, with probable errors varying from 0.001 to 0.01. The majority of the g values are from the very complete measurements of the Zeeman effect by van Kleef, Blaise, and Wyart. These authors used Zeeman-effect spectrograms (2700–11400 Å) photographed at Argonne by Noorman and Fred. Van Kleef et al. gave values to the nearest 0.005, but we have truncated their values to two decimals to distinguish them from the three-place averages. The latter are usually taken close to Pinnington's values if the probable error is ≤ 0.005 ; the overall agreement of the two sets of measurements is satisfactory. Spector's unpublished measurements of the g values for about 20 levels were also used in the averages. Some of the levels noted by van Kleef et al. or by Blaise [1976] as showing the Paschen-Back

effect are indicated here by colons following the g values.

Worden, Conway, Paisner, and Solarz [1977] observed high series members in GdI using a stepwise laser photoionization technique. These data became available too late for inclusion here, but the quoted ionization energy was determined from the new series.

References

Ahmad, S. A., Saksena, G. D., and Venugopalan, A., Physica (Utrecht) 81C, 366 (1976). ND CL IS

Albertson, W., Phys. Rev. 47, 370 (1935). EL CL

Blaise, J., private communication (1976). ND ZE

Blaise, J., Chevillard, J., Verges, J., Wyart, J. F., and van Kleef, T. A. M., Spectrochim. Acta, Part B 26, 1 (1971). EL CL W ZE

Blaise, J., Wyart, J. F., and van Kleef, T. A. M., C. R. Acad. Sci., Ser. B 270, 261 (1970). EL ZE

Eremin, M. V., and Maryakhina, O. I., Opt. Spectrosc. (USSR) 26, 479 (1969). ND PT

Hoekstra, R., and Slooten, R., Spectrochim. Acta, Part B 26, 341 (1971). Wavelength Accuracy

King, A. S., Astrophys. J. 97, 323 (1943). W

Klinkenberg, P. F. A., Physica (Utrecht) 12, 33 (1946). EL ZE

Meggers, W. F., Corliss, C. H., and Scribner, B. F., Nat. Bur. Stand. (U.S.), Monogr. 145, Part I, 387 pp. (1975). CL

Nir, S., Thesis, Hebrew Univ. Jerusalem, Israel, 216 pp. (1969). ND PT

Pinnington, E. H., J. Opt. Soc. Am. 57, 1252 (1967). EL ND ZE

Russell, H. N., Astrophys. J. 96, 11 (1942). EL CL IP

Russell, H. N., J. Opt. Soc. Am. 40, 550 (1950). EL CL IP

Smith, K. F., and Spalding, I. J., Proc. R. Soc. London, Ser. A 265, 133 (1961). ZE

Spector, N., unpublished material (1967). ZE

Spector, N., J. Opt. Soc. Am. 61, 1350 (1971). ND

Spector, N., and Held, S., Astrophys. J. 159, 1079 (1970). W

van Kleef, T. A. M., Blaise, J., and Wyart, J. F., J. Phys. (Paris) 32, 609 (1971). EL ZE PT

van Kleef, T. A. M., Slooten, R., Blaise, J., and Camus, P., C. R. Acad. Sci., Ser. B 270, 204 (1970). EL ZE

Worden, E. F., Conway, J. G., Paisner, J. A., and Solarz, R. W., unpublished material (1977). IP

Wyart, J. F., C. R. Acad. Sci., Ser. B 271, 849 (1970). PT

Wyart, J. F., Thesis, Univ. Paris-Sud, Orsay, 194 pp. (1973). ND PT

[July 1976]

Gd I, Odd Parity

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
$4f^{7}(^{8}\mathrm{S}^{\circ})5d6s^{2}$	aD _o	2	0.000	2.6514	95
		3	215.124	2.0708	94
		4	532.977	1.8392	93
		5	999.121	1.720	92
		6	1719.087	1.660	95
$4f^{7}(^{8}\mathrm{S}^{\circ})5d^{2}(^{3}\mathrm{F})$ ($^{10}\mathrm{F}^{\circ}$)6s	11 F °	2	6378.146	2.980	98
		3	6550.395	2.237	98
		4	6786.184	1.935	98
		5	7103.420	1.781	98
		6	7480.348	1.72	98
		7	7947.294	1.695	98
		8	8498.434	1.62	99
$f^{7}(^{8}\mathrm{S}^{\circ})5d6s^{2}$	7D°	5	6976.508	1.600	90
		4	7234.910	1.65	90
		3	7426.710	1.744	90
		2	7562.457	1.995:	91
		1	7653.927	2.979:	91

Gd I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
4f ⁷ (8S°)5d ² (3F) (10F°)6s	9F.₀	1	10222,233	3.466	79
y (= / (= / (= /)	1	$\overset{1}{2}$	10359.905	2.144	78
		3	10576.410	1.814	77
		4	10883.505	1.684	75
		5	11296.465	1.619	75 74
		6	11830.393	1.519	
		7	12486.547	1.56	70 70
£7/8C!\\T J9/3D\\\ /10D\\\C.	1170	4	11005 501	2.10	
$f^{7}(^{8}S^{\circ})5d^{2}(^{3}P) (^{10}P^{\circ})6s$	11 P °	$rac{4}{5}$	11685.594 12057.164	2.19 1.96	98
		6	12345.966	1.90	98 94
(7/9CI0) F 19/9T) (10T)0) A	0.200				
$f^{7}(^{8}S^{\circ})5d^{2}(^{3}P) (^{10}P^{\circ})6s$	a b o	3	15173.639	2.23	83
		$rac{4}{5}$	15519.180 15720.715	1.92 1.75	71 51
			13720.713	1.79	91
$f^{7}(^{8}S^{\circ})5d^{2}(^{3}F) (^{8}F^{\circ})6s$	9F°	2	15744.826	2.08:	74
		3	15758.277	1.81:	68
		1	15758.651	3.33:	79
		4	15833.797	1.71	59
		5	15989.463	1.65	46
		6	16228.822	1.60	57
		7	16758.940	1.57	68
$f^{7}(^{8}\text{S}^{\circ})5d^{2}(^{3}\text{F}) \ (^{8}\text{F}^{\circ})6s$	7F°	0	15972.270		87
, (2,5% (1) (1,56		1	16012.884	1.64:	82
		$\overset{1}{2}$	16078.047	1.57:	76
		3	16165.993	1.54	71
		4	16296.617	1.55	68
		5	16534.515	1.53	62
		6	17015.950	1.52	76
$f^{7}(^{8}S^{\circ})5d^{2}(^{1}D) (^{8}D^{\circ})6s$	aD.	2	17332.222	2.64:	00
(°S)3a ² (°D)(°D)68	l _o D	3		2.04:	89
			17362.198		78
		4	17439.747	1.83	69
		$\frac{5}{6}$	17600.818 17906.737	1.71 1.63	67 75
					10
$f^{7}(^{8}S^{\circ})5d^{2}(^{1}D)$ ($^{8}D^{\circ})6s$	7D°	3	18993.172	1.73	72
		2	19014.075	2.00	80
		4	19022.740	1.63	65
		1	19062.222	2.96	89
		5	19085.785	1.58	40
$f^{7}(^{8}\text{S}^{\circ})5d^{2}(^{1}\text{G})$ ($^{8}\text{G}^{\circ})6s$	9G°	0	19361.800		94
, (= , = , , , , , , , , , , , , , , ,		1	19375.576	1.49	93
		2	19403.104	1.50	93
		3	19445.555	1.50:	85
		4	19507.993	1.51	86
		5	19592.485	1.51	90
		6	19682.130	1.50	92
		7	19781.555	1.51	94
		8	19850.132	1.50	96
f ⁷ (8S°)5d ² (3P) (8P°)6s	9P°	3	19574.024	2.22	71
y (D)00 (I) (I)00		4	19718.720	1.92	66
		5	19978.775	1.76	63
CT/OCONT 10/2TD (CTONC)	ETTO	0	20200 070	1.05	or.
$f^{7}(^{8}\text{S}^{\circ})5d^{2}(^{3}\text{F}) \ (^{6}\text{F}^{\circ})6s$	5F°	3	20299.870	1.25:	65 56
		2	20303.800	0.93:	56
		1	20306.942	0.03:	50
		$\frac{4}{2}$	20324.722	1.37	73
		5	20588.292	1.49	39
$f^{7}(^{8}S^{\circ})5d^{2}(^{3}P)$ ($^{8}P^{\circ})6s$	7P°	2	20565.620	2.27	79
, , , , , , , , , , , , , , , , , , , ,		$\overline{3}$	20759.674	1.86	68
		4	21152.850	1.72	66

Gd I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentage
$4f^{7}(^{8}S^{\circ})5d^{2}(^{1}G)$ ($^{8}G^{\circ})6s$	₹G°	6	21389.502	1.42	94
		5	21439.715		90
		7	21514.952		97
		4	21544.680		72
		3	21647.935		66
		2	21745.650		55
		1	21815.645	-0.36	50
$4f^{7}(^{8}\mathrm{S}^{\circ})5d^{3}(^{4}\mathrm{F})$	11F°	2	22429.156		98
		3	22602.550		98
		4	22835.400		98
		5	23128.224		98
		6 7	23479.211		98
		8	23883.504 24332.715	!	98
$f^{8}(^{7}{ m F})6s6p$					98
•		6	25658.055	1.58	
f ⁸ (⁷ F)6s6p		7	25676.890	1.54	
$f^{8}(^{7}\text{F})6s6p$		5	26651.912	1.57	
$f^{7}(^{8}\text{S}^{\circ})5d^{3}(^{4}\text{P})$	11P°	4	27026.088	2.18	97
		5	27258.986	1.95	97
		6	27715.350	1.81	99
$f^8(^7\mathrm{F})6s6p$		6	27343.873	1.48	
$f^{8}(^{7}\mathrm{F})6s6p$		5	27628.230	1.50	
$f^8(^7\mathrm{F})6s6p$		4	27648.774	1.66	
$f^{8}(^{7}\text{F}_{6})6s6p(^{3}\text{P}_{2}^{\circ})$	(6,2)°	8	27797.603?	1.50?	
$f^8(^7\mathrm{F})6s6p$		6	27829.680	1.55	
$^{f8}(^{7}\mathrm{F})6s6p$		7	27981.472	1.46	
$^{c8}(^{7}\mathrm{F})6s6p$		6	28366.491	1.53	
$77(8S^{\circ})5d^{3}(4F)$	9F°	2	28725.150	2.16:	96
		1	28741.590	3.45:	98
		$egin{array}{c} 3 \ 4 \end{array}$	29041.722 29174.580	1.80	94
		5	29439.330	$\begin{array}{c} 1.67 \\ 1.61 \end{array}$	91
		6	29867.535	1.58	90
		7	30367.361	1.56	93
⁸ (⁷ F)6s6p		5	28837.240	1.51	
8(7F)6s6p		5	28938.287	1.44	
$^{8}(^{7}\mathrm{F})6s6p$ $^{8}(^{7}\mathrm{F})6s6p$		5	29312.770	1.52	
³ (⁷ F)6s6p		6	29420.675	1.47	
$B(^{7}F)6s6p$		4	29672.515 30289.386	1.49	
$3(^7\mathrm{F})6s6p$		4	30289.386	1.46 1.64	
$3^{(7}\mathrm{F})6s6p$		6	30749.194	1.64	
$6(^7\mathrm{F})6s6p$		3	31542.413	1.66	
		5	31633.995	1.71	
7(7F)6s6p		5	31766.595	1.35	

Gd I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
$4f^{7}(^{8}S^{\circ})5d \ (^{9}D^{\circ})6s \ (^{10}D^{\circ})7s$	11D°	3	31907.020	2.496	99
y (-5)5a (-D)0s (-D)1s		4	32176.447	2.09	98
		5	32547.600	1.89	97
		6	33061.555	1.77	97
		7	33804.505	1.71	100
$4f^8 6s6p$?		2	32167.925	1.17	
		3	32181.645	2.19	
$4f^{8} 6s6p$?		2	32220.343	1.78	
$4f^{8} 6s6p$?		1	32660.836	2.81	
$4f^{7}(^{8}\mathrm{S}^{\circ})5d^{3}(^{4}\mathrm{P})$	a b ∘	3			44
		4	32925.478	1.93	55
		5	33491.370	1.78	78
$4f^8 6s6p?$		7	32928.702	1.44	
$4f^{7}(^{8}\mathrm{S}^{\circ})5d$ ($^{9}\mathrm{D}^{\circ})6s$ ($^{10}\mathrm{D}^{\circ})7s$	aD.	2	32957.765	2.65	93
		3	33195.300	2.07	92
		4	33534.711	1.85	91
		5 c	34044.330	1.72 1.62	90 94
		6	34754.990		94
$4f^{8} 6s6p$?		4	33088.337	1.46	
$4f^{8} 6s6p$?		3	33189.474	1.00	
$4f^{7}(^{8}\text{S}^{\circ})5d^{3}(^{4}\text{P})$		4	33734.095	1.93	32 ⁹ P°
$4f^{7}(^{8}\text{S}^{\circ})5d^{3}(^{2}\text{D2})$		5	33782.140	1.77	37 ⁹ D°
$4f^{8} 6s6p$?		5	33823.080	1.50	
		3	33951.525	2.22	
$4f^{7}(^{8}{\rm S}^{\circ})5d^{3}(^{4}{\rm F})$	7F°	4	34554.985	1.54:	73
		6	34623.935	1.44	
$4f^{8} 6s6p$?		4	34698.222	1.56	
$4f^{7}(^{8}\mathrm{S}^{\circ})6s^{2} 7s$	9S°	4	34719.128	1.98	
		5	34720.193	1.50	
$4f^{8} 6s6p$?		6	34811.786	1.48	
		2	34906.200	1.94	
$4f^{8} 6s6p$?		5	34911.443	1.46	
$4f^{7}(^{8}\mathrm{S}^{\circ})6s^{2}7s$	7S°	3	34984.563	1.88	
		3	35045.755	1.80	
$4f^{7}(^{8}\mathrm{S}^{\circ})5d$ ($^{9}\mathrm{D}^{\circ})6s$ ($^{8}\mathrm{D}^{\circ})7s$	⁷ D°	1	35254.585	2.98	91
		2	35435.990	1.99	79
		3	35716.787	1.84 1.67	50
		4 5	36326.630 37204.746	1.51	66 81
		e e	51204.140		
$4f^{7}(^{8}\text{S}^{\circ})6s6p^{2}(^{4}\text{P})$	11 P °	4	35561.302	2.18	k
-		5	36381.675	1.91	
		6	37460.787	1.78	
$4f^{8} 6s6p$?	1	4	35603.585	1.42	1

Gd I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentage
4f ⁷ (8S°)5d (9D°)6s (8D°)7s	aD.	2	35606.143	2.61	74
, , , , , , , , , , , , , , , , , , , ,		3	35860.584	1.99	46
		4	36060.122	1.74	65
		5	36541.260	1.68	72
		6	37150.790	1.65	66
$4f^8 6s6p$?		3	35997.029	1.29	
		4	36179.444	1.69:	
		3	36182.700	1.78:	
4f 8 6s6p?		2	36268.455	0.97	
$4f^{8} 6s6p$?	⁷ G°	1	36360.088	-0.41	
$4f^{8} 6s6p$?		4	36386.383	1.52	
$4f^{8} 6s6p$?		3	36576.972	1.46	
		4	36616.719	1.51	
$4f^{8} 6s6p$?		5	36653.970	1.58	
$4f^8 6s6p$?		5	36853.110	1.56	
4f 8 6s6p?		2	36895.845	1.41	
$4f^8 6s6p$?		4	37041.205	1.44	
4f 8 6s6p?		4	37123.736	1.58	
$4f^8 6s6p$?		3	37215.945	1.39	
$4f^8 6s6p?$		1	37246.590	1.04	
$4f^{7}(^{8}{ m S}^{\circ})5d^{3}(^{2}{ m G})$. 700	3	37248.528	1.60	
4J ·(°S)5a°(2G)	₹G°	6	37288.663	1.47	
	°?	2			
		3	37313.720	2.07	
		4	37544.290	1.80	
		5	37908.489	1.68	
		6	38024.800	1.65	
$4f^{7}(^{8}\mathrm{S}^{\circ})5d^{3}(^{2}\mathrm{F})$	aL.	1	37385.210	3.58:	
		4	37463.818	1.60	85
		2	37529.785	2.07:	87
		3	37548.383	1.80:	88
		5			
		6 7			
$4f^8 6s6p$?		2	37416.590	1.51	
		2	37424.457	1.97:	
$4f^8 6s6p$?		0	37531.095		
$4f^{8} 6s6p$?		1	37544.453	0.29	
4f8 $6s6p$?		3	37604.950	1.82	
		3	37648.503	1.98	
		3	37669.207	2.08	
$4f^7(^8\mathrm{S}^\circ)5d^3$	⁷ P°	4	37702.758	1.74	
		5	37722.087	1.88	
$4f^{8} 6s6p$?		2	37913.508	1.89	
		3	37933.446	1.50	
100000		3	38108.217	2.18	
$4f^{8} 6s6p$?		1	38173.340	2.91	
	1	6	38245.743	1.64:	

Gd I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
		5	38275.950	1.80	
		7	38376.280	1.64	
		5	38403.922	1.91	
	11F°?	3	38582.555	2.16	
	11F°?	4	38589.360	1.89	
		8	38693.480	1.60	
		7	38825.148	1.58	
$4f^{7}(^{8}S^{\circ})5d^{-}(^{7}D^{\circ})6s(^{8}D^{\circ})7s$	aD.	6 5	39458.410	1.66	69 63
		$\frac{4}{3}$	40125.073	1.72	50 54
		2	40452.283	2.00	71
		7	39805.273	1.52	
		3	39 884 . 550	2.23	
$4f^{7}(^{8}S^{\circ})5d^{-}(^{7}D^{\circ})6s(^{6}D^{\circ})7s$		4	39897.703	1.71	41 $^{7}\mathrm{D}^{\circ}$
		6	40041.250	1.62	
		5	40058.095	1.69	
		3	40078.843	1.85	
		5	40153.473	1.87	
		5	40284.423	1.77	
		3	40588.967	2.29	
		5	40894.570	1.56	
		4	41021.507	1.83	
		6	41212.620	1.61	
		4	41370.473	1.99	
		6	41714.780	1.58	
	₹G°	1	41883.740	-0.41	
		2	41982.749	0.80	
		3	42103.120	1.17	
		2	42167.604	2.38	
		6	42213.821	1.51	
		7	42582.594	1.51	
		4	42839.422	2.03	
	aD.	6	43963.900	1.60	
$4f^{7}(^{8}\text{S}^{\circ})5d6s8s?$					

Gd I, Even Parity

Configuration	Term	J	Level (cm ⁻¹)	g		Lea	ding percentages
/'H 68 ²	7F	6	10947.210	1.48			
		5	12519.997	1.49			
		4	13506.051	1.50			
		3	14253.948	1.51			
		0					
		2	14777.975	1.51			
		1	15121.220	1.49			
		0	15289.035				
$^{7}(^{8}\mathrm{S}^{\circ})6s^{2}6p$	эP	3	13433.851	2.22	70		
		4	13926.311	1.89	57		
		5	15665.424	1.80	69		
⁷ (8S°)5d (9D°)6s6p(3P°)	11F	2	14036.026	2.96	92		
		3	14298.311	2.22	90		
		4	14669.148	1.92	88		
		5	15174.000	1.78	86		
		6	15852.245	1.70	85		
		7	16775.024	1.63			
		8	16775.024	1.63	89 99		
				1.02	שה		
$^{7}(^{8}S^{\circ})5d (^{9}D^{\circ})6s6p(^{3}P^{\circ})$	11D	3	16061.273	2.42	86		
		4	16195.999	1.97	56		
		5	16885.739	1.88	83		
		6	17318.942	1.77	87		
		7	18014.403	1.70	88		
$^{77}(^{8}\text{S}^{\circ})5d~(^{9}\text{D}^{\circ})6s6p(^{3}\text{P}^{\circ})$		4	16824.589	1.90	34 ¹¹ D	33	$4f^{7}(^{8}\text{S}^{\circ})6s^{2}6p^{7}\text{P}$
$f^7(^8{ m S}^\circ)6s^26p$	⁷ P	3	16920.400	1.994:	61	10	$(^{8}{\rm S}^{\circ})5d~(^{9}{\rm D}^{\circ})6s6p(^{3}{\rm P}^{\circ})~^{7}{\rm P}$
		2	16923.378	2.354:	60	15	-
⁷⁷ (8S°)5d (9D°)6s6p(3P°)	9F	1	17227.969	3.33	67		
, - , - , - , - , - , - , - , - , - , -		$ar{2}$	17380.827	2.105	63		
		3	17617.767	1.79			
					60		(8C0) (0D0) (2D0) 0D
		4	17973.611	1.69	38	24	(8S°) (9D°)(3P°) 9D
		5	18509.198	1.61	53	17	(8S°) (9D°)(3P°) 7D
		6	19480.008	1.59	72		
		7	20434.115	1.57	81		
$^{67}(^{8}\text{S}^{\circ})5d \ (^{9}\text{D}^{\circ})6s6p(^{3}\text{P}^{\circ})$	aD	2	17749.978	2.606	73		
		3	17795.267	2.076	83		
		4	17930.516	1.83	50	18	(8S°) (9D°)(3P°) 9F
		6	18070.257	1.71:	46	32	(8S°) (9D°)(3P°) 11P
		5	18083.642	1.75:	56	21	(8S°) (9D°)(3P°) 11P
7(8S°)5d (9D°)6s6p(3P°)	11 p	4	19164.774	2.17	86		
(\(\) \(\	•	5	19525.374	1.905	71		
		6	20160.144	1.78		95	(8S°) (9D°)(3P°) 9D
		U	20100.144	1.10	59	35	ער דין ערין נט
$^{7}(^{8}S^{\circ})5d \ (^{9}D^{\circ})6s6p(^{3}P^{\circ})$	^{7}D	1	19285.485	3.111:	71		
, , , , , , , , , , , , , , , , , , , ,		$\ddot{2}$	19330.624	2.039:	67		
		3	19399.839	1.775:	62		
		4	19507.332	1.665	58	23	(8S°) (9D°)(3P°) 9F
		5	19700.606	1.665	56	23 21	
						41	
$^{7}(^{8}S^{\circ})5d \ (^{9}D^{\circ})6s6p(^{3}P^{\circ})$	₹F	0	21347.427	1 50	79		
		1	21381.514	1.50	77		
		$\frac{2}{3}$	21450.164	1.49	73		
		3	21543.156	1.560	60		
		4	21674.730	1.561	39	27	(8S°) (9D°)(3P°) 9P
		5	21905.353	1.57	48	11	
		6	22452.867	1.54	62		
⁷⁷ (8S°)5d (9D°)6s6p(3P°)	9P	3	21857.475	2.169	71		
· / · · //	_	4	22225.537	1.855	45	22	(8S°) (9D°)(3P°) 7F
		5	22718.314	1.70	43	13	(8S°) (7D°)(3P°) 9D
						10	
$^{7}(^{8}S^{\circ})5d \ (^{9}D^{\circ})6s6p(^{1}P^{\circ})$		2	22334.508	2.631	33 ⁹ D	29	(8S°) (7D°)(3P°) 9D

Gd I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lead	ding percentages
4f ⁷ (8S°)5d (7D°)6s6p(3P°)	9D	3	22563.824	2.077	40		27	(8S°) (9D°)(1P°) 9D
		4	22820.895	1.849	50		17	(8S°) (9D°)(1P°) 9D
		5	23196.410	1.74	44		22	$(^{8}S^{\circ}) (^{9}D^{\circ})(^{3}P^{\circ}) ^{9}P$
		6 2	23229.298 24655.639	1.65 2.632	62		22	(8S°)5d2(3F) (10F°)6p 9D
A£7(8C!9\E J2(3E)\ (10E)9\C		_			45	~		•
$4f^{7}(^{8}S^{\circ})5d^{2}(^{3}F) (^{10}F^{\circ})6p$		1	23103.660	3.549:	29	11G	25	(*S°)5d (*D°)6s6p(1P°) *F
$4f^{7}(^{8}S^{\circ})5d (^{9}D^{\circ})6s6p(^{1}P^{\circ})$		2	23215.028	2.176:	25	9F	25	$(^{8}S^{\circ})5d^{2}(^{3}F) (^{10}F^{\circ})6p ^{11}G$
$4f^{7}(^{8}S^{\circ})5d (^{9}D^{\circ})6s6p(^{1}P^{\circ})$		3	23389.782	1.833	24	9F	20	$(^8{ m S}^{\circ})5d^2(^3{ m F})\;(^{10}{ m F}^{\circ})6p^{-11}{ m G}$
$4f^{7}(^{8}S^{\circ})5d (^{9}D^{\circ})6s6p(^{1}P^{\circ})$		4	23644.156	1.696	23	9F	18	$(^8{ m S}^{\circ})5d^2(^3{ m F})\;(^{10}{ m F}^{\circ})6p\;^9{ m F}$
$4f^{7}(^{8}S^{\circ})5d (^{9}D^{\circ})6s6p(^{1}P^{\circ})$		5	23999.912	1.631	21	9F	18	$(^8{ m S}^{\circ})5d^2(^3{ m F})\;(^{10}{ m F}^{\circ})6p\;^9{ m F}$
$4f^{8}(^{7}\text{F})5d$ (8G)6s	aG.	7 8	24255.103	1.51				
		6	24854.297	1.555				
		5	25380.885	1.63				
		4	25820.720	1.580				
		3	26247.609	1.60				
		2	26588.338	1.70				
		1 0	26834.311	2.26				
4.07.00007.1.00000.0.0000			27089.815					
4f ⁷ (*S°)5d (*D°)6s6p(1P°)		6	24430.425	1.580	20	9F	17	(*S°)5d ² (3F) (10F°)6p 9F
$4f^{7}(^{8}S^{\circ})5d (^{9}D^{\circ})6s6p(^{3}P^{\circ})$	7P	2	24458.988	2.31	64			
		3	24860.040	1.87	70			
		4	25920.888	1.58	63			
$4f^{7}(^{8}S^{\circ})5d^{-}(^{7}D^{\circ})6s6p(^{3}P^{\circ})?$		5	24660.325	1.51	44	5F	35	(8S°) (7D°)(3P°) 7D
$4f^{7}(^{8}S^{\circ})5d^{-}(^{7}D^{\circ})6s6p(^{3}P^{\circ})$		3	24714.841	2.042	34	aD	23	$(^{8}S^{\circ})5d^{2}(^{3}F) (^{10}F^{\circ})6p {}^{9}D$
$4f^{7}(^{8}S^{\circ})5d \ (^{7}D^{\circ})6s6p(^{3}P^{\circ})$		4	24849.514	1.82	22	aD	16	$(^{8}S^{\circ}) (^{9}D^{\circ})(^{1}P^{\circ}) ^{9}D$
$4f^{7}(^{8}S^{\circ})5d^{-}(^{7}D^{\circ})6s6p(^{3}P^{\circ})$	$^{7}\mathrm{D}$	4	24988.884	1.65	44		9	(8S°) (9D°)(3P°) 5P
		3	25253.838	1.784	58		16	$(^{8}S^{\circ})5d^{2}(^{3}F) (^{10}F^{\circ})6p ^{11}G$
		2	25337.755	2.06:	65			
		1	25352.706 25732.850*	3.07:	73		0.1	(8CIO) (7T)0)(3T)0) 5T3
4 CT (OCO) T 1 (OCO) 0 0 (CC)		5		1.50	43		31	(8S°) (7D°)(3P°) 5F
$4f^{7}(^{8}S^{\circ})5d (^{9}D^{\circ})6s6p(^{1}P^{\circ})$		5	25043.649	1.65	30	вD	25	$(^{8}S^{\circ})5d^{2}(^{3}F) (^{10}F^{\circ})6p \ ^{9}D$
$4f^{7}(^{8}S^{\circ})5d^{2}(^{3}F) (^{10}F^{\circ})6p$	11G	1	25069.179	3.764:	66			
		2	25164.640	2.21:	57		13	(8S°)5d (7D°)6s6p(3P°) 7D
		$\frac{3}{4}$	25403.265 25571.672*	1.857 1.70	49		15	(8S°)5d (9D°)6s6p(1P°) 9F
		5	25940.122	1.64	35 60		25	$(^{8}S^{\circ})5d \ (^{7}D^{\circ})6s6p(^{3}P^{\circ}) \ ^{5}F$
		6	26337.071	1.61	53		11	(8S°)5d (9D°)6s6p(1P°) 9D
		7	26870.393	1.57	85		••	(= /500 (= /500p(1) D
		8	27536.397	1.56	92			
		9	28432.859	1.54	100			
$4f^{7}(^{8}S^{\circ})5d (^{9}D^{\circ})6s6p(^{1}P^{\circ})$		7	25376.313	1.58	32	9F	23	$(^8S^{\circ})5d^2(^3F) (^{10}F^{\circ})6p \ ^9F$
$4f^{7}(^{8}S^{\circ})5d^{-}(^{7}D^{\circ})6s6p(^{3}P^{\circ})?$		4	25621.293	1.57	35	5D	30	(8S°) (7D°)(3P°) 7F
$4f^{7}(^{8}S^{\circ})5d \ (^{7}D^{\circ})6s6p(^{3}P^{\circ})$		6	25661.340	1.62	21	₈ D	21	(8S°) (7D°)(3P°) 7F
$4f^{8}(^{7}\text{F})5d$ (*D)6s	aD	6	25815.330	1.55				
		5	26335.661	1.58				
		4	27704.965	1.73				
		3	28215.140	1.96				
	1	2	28785.230	2.31				

Gd I, Even Parity—Continued

6	Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ading percentages
6	4f7(8S°)5d (7D°)6s6p(3P°)	7F	3		1.38	41		29	(8S°) (7D°)(3P°) 5D
5	-				1.55				
1			5	26615.044	1.55	52			
## 1 2665.355 1.565 49			1	26616.320	1.18	1			
4 28666.385* 1.565 4.2 11 (*S*) (*P*)(*P*) *F* 7 26146.865 1.500 27041.751 1.67: 27041.751 1.67: 27041.751 1.67: 27131.751 1.68: 27131.751 1			0	26742.308*		1			
4 27040.856 1.60; 1.60			4	26866.385*	1.565	i			
3		9F							
2 27118.725 1.84: 1 2718.238 1.53 1.5									
1									
5									
6									
2 26397.885 1.29 30 *D 27 (*S") (*D")(*P") *F 4 26451.785 1.48 32 **** 1*** 1*** 1*** 25 (*S") (*D")(*Sep(*P") *D 5 3 26730.757 1.42 49 25 (*S") (*D")(*Sep(*P") *D 7(*S")5d (*D")6s6p(*P") *F 2 26882.867 1.28 56 19 (*S") (*D")(*P") *D 7(*S")5d (*G")6s6p(*P") *F 2 26882.867 1.28 1.50 7(*S")5d (*G")6s6p(*P") *F 1 26954.853 1.25 1.50 1.17 1.70 29039.445 1.18 1.70 29039.445 1.18									
4 26451.785 1.48 32 11G 25 (*S")6d (*D")6s6p(*P") *D			6	27336.898	1.53				
7(*S*)5d (*D*)6s6p(*P*) **F **S*	• 1		2	26397.585	1.29	30	5D	27	(8S°) (7D°)(3P°) 7F
(qS*)5d (TD*)6s6p(PP*) sF 2 28882.867 1.28 56 19 (*S*) (TD*)(*P*) *D (qTF)5d (*G7)6s rG r 28824.825 1.48 1.50 1.51 1.50 1.51 1.50 1.51 1.50 1.51 1.50 1.51 1.51 1.52 1.52 1.52 1.54 1.50 1.51 1.52 1.54 1.50 1.51 1.52 1.52 1.54 1.52 1.54 1.52 1.54 1.52 1.54 1.52 1.54 1.52 1.54 1.52 1.54 1.52 1.54 1.52 1.54 1.52 1.54 1.54 1.52 1.54 1.52 1.54 1.52 1.54 1.54 1.52 1.54 1.52 1.54 1.52 1.54	⁷⁷ (⁸ S°)5d ² (³ F) (¹⁰ F°)6p?		4	26451.785	1.48	32	11G	25	(8S°)5d (7D°)6s6p(3P°) 5D
Typical (*G?)6s **Typical (*G.)6s** **Typical (*G.)6s** **Typical (*G.)6s** **Typical (*G.)6s** **Typical (*G.)6s** **Typical (*G.)6s** **Typical	77(8S°)5d (7D°)6s6p(3P°)	5F	3	26730.757	1.42	49		25	(8S°) (7D°)(3P°) 5D
6 27081.048 1.50 5 27571.672 1.61 4 28188.665 1.54 3 28648.530 1.25 2 29089.945 1.17; 1 29323.963 -0.42 7(*S*)5d (*D*)6s6p(*P*) ***	$f^7(^8S^\circ)5d^{-}(^7D^\circ)6s6p(^3P^\circ)$	5F	2	26882.867	1.28	56		19	(8S°) (7D°)(3P°) 5D
6 27081.048 1.50 5 27571.672 1.61 4 28188.665 1.54 3 28648.530 1.25 2 29089.945 1.17; 1 29323.963 -0.42 7(*S*)5d (*D*)6s6p(*P*) ***	f ⁸ (⁷ F)5d (⁸ G?)6s	7G	7	26924 525	1 48	1			
28168.665									
28648.530									
2 29089.945 1.17: 29089.945 -0.42 1 29089.945 -0.42 1 29089.945 -0.42 1 29089.945 -0.42 1 29089.945 -0.42 1 26955.249 0.63 87 (*S*)5d (*D*)6s6p(*P*)									
1 29323.963									
7(°S°)5d (°D°)6s6p(¹P°)									
7(*S°)5d (*D°)6s6p(*P°) 4 27425.245	$^{7}(^{8}S^{\circ})5d~(^{7}D^{\circ})6s6p(^{3}P^{\circ})$	5F	1	26955.249	0.63	87			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	⁶⁷ (8S°)5d (9D°)6s6p(1P°)	ab.	3	27135.695	2.240	53		14	(8S°)5d2(1D) (8D°)6p 9P
P(F)5d (*H)6s 9H 9 27556.066 1.44 28892.913 1.40 6 29444.875 1.36 5 29888.205 1.36: 1.42 7 28892.913 1.40 6 29444.875 1.36: 1.36: 1.44 3 21 1 1 1 1 1 1 1 1 1 1 1 1	$f^{7}(^{8}S^{\circ})5d \ (^{9}D^{\circ})6s6p(^{1}P^{\circ})$		4	27425.245	1.914	37	9P	24	(8S°) (7D°)(3P°) 9P
S	⁶⁷ (8S°)5d (7D°)6s6p(3P°)		3	27475.740	1.58	26	9F	25	(8S°) (7D°)(3P°) 7F
7(*S°)5d*(*D°)6s6p(*P°) 11F 2 27660.440 2.88 3 27861.093 2.223 90 4 28111.670 1.83 91 5 28450.948 1.78 91 6 28841.676 1.70 88 8 29794.750 1.57 70 27731.202 1.62 30 *P 26 (*S°) (*D°)(*P°) *F 27736.681 1.65 39 *D 26 (*S°) (*TD°)(*P°) *F 27736.681 1.65 39 *D 26 (*S°) (*TD°)(*P°) *F 27736.681 1.65 39 *D 26 (*S°) (*TD°)(*P°) *F 27736.681 1.65 52 24 (*S°) (*TD°)(*P°) *F 28892.913 1.36 1.36: 1.36: 1.36: 29888.205 1.36: 20888.205 1.36: 20888.205 1.36: 20888.205 1.36: 20888.205 1.36: 20888.205 1.36: 20888.205 1.36: 2.223 30 30 30 30 30 30 30 30 30 30 30 30 30	^{C8} (⁷ F)5d (⁸ H)6s	9H		1					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				29888.205	1.36:				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			3						
3 27861.093 2.223 90 4 28111.670 1.83 91 5 28450.948 1.78 91 6 28841.676 1.70 88 7 29293.618 1.63 81 8 29794.750 1.57 70 (*S°)5d (*D°)6s6p(*P°) 5 27731.202 1.62 30 °P 26 (*S°) (*D°)(*P°) °F (*S°)5d (*TD°)6s6p(*P°) 2 27736.681 1.65 39 °D 26 (*S°) (*TD°)(*P°) °F (*S°)5d (*TD°)6s6p(*P°) 5 1 27880.718 1.56 52 24 (*S°) (*TD°)(*P°) °F (*S°)5d (*TD°)6s6p(*P°) 5 27880.718 1.56 52 24 (*S°) (*TD°)(*P°) °F (*S°)5d (*TD°)6s6p(*P°) 5 27880.718 1.56 52 24 (*S°) (*TD°)(*P°) °F (*S°)5d (*TD°)6s6p(*P°) 5 27949.912 57 23 (*S°) (*TD°)(*P°) °F			2 1						
3 27861.093 2.223 90 4 28111.670 1.83 91 5 28450.948 1.78 91 6 28841.676 1.70 88 7 29293.618 1.63 81 8 29794.750 1.57 70 (*S°)5d (*D°)6s6p(*P°) 5 27731.202 1.62 30 °P 26 (*S°) (*D°)(*P°) °F (*S°)5d (*TD°)6s6p(*P°) 2 27736.681 1.65 39 °D 26 (*S°) (*TD°)(*P°) °F (*S°)5d (*TD°)6s6p(*P°) 5 1 27880.718 1.56 52 24 (*S°) (*TD°)(*P°) °F (*S°)5d (*TD°)6s6p(*P°) 5 27880.718 1.56 52 24 (*S°) (*TD°)(*P°) °F (*S°)5d (*TD°)6s6p(*P°) 5 27880.718 1.56 52 24 (*S°) (*TD°)(*P°) °F (*S°)5d (*TD°)6s6p(*P°) 5 27949.912 57 23 (*S°) (*TD°)(*P°) °F	⁷ (8S°)5d ² (3F) (10F°)6p	1117	2	27660.440	2.88	02			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. , , - ,		3						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				1	1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1 1					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	⁷ (*S°)5d (*D°)6s6p(1P°)		5	27731.202	1.62	30	9P	26	(8S°) (7D°)(3P°) 9F
$^{(8S^{\circ})5d}$ ($^{7}D^{\circ}$)686 $p(^{3}P^{\circ})$ 5D 0 27949.912 57 23 ($^{8}S^{\circ}$) ($^{7}D^{\circ}$)($^{3}P^{\circ}$) ^{7}F	⁷ (8S°)5d (7D°)6s6p(3P°)		2	27736.681	1.65	39	5D	26	(8S°) (7D°)(3P°) 7F
	$^{7}(^{8}S^{\circ})5d~(^{7}D^{\circ})6s6p(^{3}P^{\circ})$	5D	1	27880.718	1.56	52		24	(8S°) (7D°)(3P°) 7F
7F? 5 28414.925 1.55	$^{7}(^{8}S^{\circ})5d~(^{7}D^{\circ})6s6p(^{3}P^{\circ})$	5D	0	27949.912		57		23	(8S°) (7D°)(3P°) 7F
	⁸ (⁷ F)5d6s?	7F?	5	28414.925	1.55				

Gd I, Even Parity—Continued

$4f^{7}(^{8}S^{\circ})5d^{-}(^{7}D^{\circ})6s6p(^{3}P^{\circ})$	⁵ P	3 2 1	28486.854 28716.819	1.71	64	
	9F?	2	28716 810			
	aŁ;	1		2.00	72	
	aE.	_	29191.604	2.74	90	
		7	28504.435	1.55		
	1	6	28731.590	1.58		
		4	28793.370	1.60		
		$\frac{5}{3}$	29119.955	1.64		
		3	29426.450	1.93		
		1	29557.785	3.41		
		2	29717.231	2.24:		
$4f^{7}(^{8}\mathrm{S}^{\circ})5d^{2}(^{3}\mathrm{F})~(^{10}\mathrm{F}^{\circ})6p$	9G	0	28971.965		73	
		1	28984.690	1.54:	73	
		2	29005.609	1.30:	72	
		3	29125.847	1.515:	71	
		4	29209.220*	1.603:	67	
		5	29628.388	1.509	66	
		6	30007.307	1.50	62	
		7	30505.374	1.51	61	
		8	31171.622	1.50	59	
$4f^{8}(^{7}\mathrm{F})5d6s?$	⁷ F?	4	29141.205	1.49		
$4f^{7}(^{8}S^{\circ})5d^{-}(^{7}D^{\circ})6s6p(^{3}P^{\circ})?$	7P?	4	29358.628	1.66	54	10 (8S°) (9D°)(3P°) 7P
		3	29681.305	1.86:	38	25 (8S°) (7D°)(3P°) 5P
		2	29835.103	2.29	59	17 (8S°) (7D°)(3P°) 5P
		6	29362.593	1.51		
$4f^{7}(^{8}\mathrm{S}^{\circ})5d6s6p?$		5	29451.356	1.69		
	,	4	29501.640	1.63		
$4f^{7}(^{8}\mathrm{S}^{\circ})5d^{2}(^{3}\mathrm{F}) \ (^{10}\mathrm{F}^{\circ})6p$	11D	3	29631.255	2.26	44	26 (8S°)(3P) (10P°) 11D
		4	29876.618	2.04:	52	31
		5	30242.293	1.80	67	
		6	30652.018	1.78	74	
		7	31146.456	1.72	74	
$4f^{8(7}F)5d6s?$	⁷ H?	8	29754.908	1.39		
$4f^{7}(^{8}\mathrm{S}^{\circ})5d^{2}6p?$	¹¹ D?	3	29878.477	1.76		
$f^{8}(^{7}{ m F})5d6s?$	⁷ D?	5	30197.296	1.52		
		4	30834.958	1.50		
		3	31327.520	1.58		
		2	31549.730	1.71		
		1	31602.931	2.31		
$f^{7}(^{8}\mathrm{S}^{\circ})5d6s6p?$		4	30307.480	1.89		
		2	30394.640	1.77		
$f^{8}(^{7}\mathrm{F})5d6s$?	7F?	6	30409.890	1.42		
$f^{7}(^{8}\text{S}^{\circ})5d^{2}(^{3}\text{F}) \ (^{10}\text{F}^{\circ})6p$	9F	1	30555.827	3.427	62	
		2	30694.874	2.136	58	22 $(^{8}S^{\circ})5d (^{9}D^{\circ})6s6p(^{1}P^{\circ})$ 9]
		3	30881.658	1.878	38	17 $(^{8}S^{\circ})(^{3}P) (^{10}P^{\circ}) ^{11}D$
		4	31135.795	1.685	45	13 $(^{8}S^{\circ})5d (^{9}D^{\circ})6s6p(^{1}P^{\circ})$ 9]
		5 6	31457.179*	1.614	42	15 (${}^{8}S^{\circ}$)5d (${}^{9}D^{\circ}$)6s6 $p({}^{1}P^{\circ})$ 9
		$\frac{6}{7}$	32091.730 32729.502	1.57 1.56	51 46	15 (8S°)5d (9D°)6s6p(1P°) 9] 20 (8S°)(3P) (10P°) 11D
$f^{8}(^{7}\mathrm{F})5d6s?$	5F?	5	30629.495	1.44	. •	(~ / . / . / .

Gd I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Le	ading percentages
$f^{8(7}\text{F})5d6s$?	₹G?	7	30680.188	1.45				
		6	32221.202	1.43				
		5 4	32931.787 33436.430	1.42				
		3	33942.500	1.41 1.28				
		2	34285.465	0.85				
		1	34466.621	-0.30				
$67(8S^{\circ})5d6s6p?$		3	30809.375	2.15				
		1	30909.913	2.16				
'9/7T\\T 10 0		5	31279.165	1.46				
⁸ (7F)5d6s?	⁷ H?	8	31546.432	1.36				
⁸ (⁷ F)5d6s?	⁷ H?	5	31676.675	1.24				
7 ⁷ (8S°)5d (7D°)6s6p(1P°)?		5	31777.972	1.62:				
⁸ (⁷ F)5d6s?	7179	6	31794.775	1.48	28	7F	20	$(^{8}S^{\circ})5d^{2}(^{3}P) (^{10}P^{\circ})6p ^{11}D$
$^{(7)}5dos$? $^{(10}F^{\circ})6p$?	7F?	4	31847.478	1.50:		115		(000) = 1 (5=0) = -
$7^{(8}S^{\circ})5d^{2}(^{3}P) (^{10}P^{\circ})6p$?		4	31859.283	1.64:	17	11D	14	
$6^{7}(^{8}S^{\circ})5d^{2}(^{3}P)$ ($^{10}P^{\circ})6p$?		$\frac{2}{3}$	31865.242 31869.139	2.58:	38	aD	24	(8S°)(3F) (10F°) 9D
77(8S°)5d (7D°)6s6p(1P°)?		ა 3	31869.139	2.12: 1.57	30	9D 7₽	21	(8S°)(3F) (10F°) 9D
-			010.66610	1.91	24	$^{7}\mathrm{F}$	22	(8S°) (7D°)(1P°) 7D
6 (7F)5 $d6s$?	⁷ F?	6	22222					
		5 4	32020.340	1.54				
		$\frac{4}{3}$	32549.565 33087.060	1.59 1.45				
		2	33602.413	1.38				
		1	33955.639	1.30				
		0	34096.945					
$^{8}(^{7}\mathrm{F})5d6s?$	7H?	4	32061.483	1.32:				
$^{7}(^{8}S^{\circ})5d \ (^{7}D^{\circ})6s6p(^{1}P^{\circ})?$		3	32133.125	1.65	23	$^{7}\mathrm{D}$	21	(8S°) (7D°)(1P°) 7F
$^{7}(^{8}S^{\circ})5d \ (^{7}D^{\circ})6s6p(^{1}P^{\circ})?$		2	32149.515	1.70:	28	$^{7}\mathrm{F}$	19	(8S°) (7D°)(1P°) 7D
$^{7}(^{8}\mathrm{S}^{\circ})5d^{2}6p?$		4	32157.092	1.90				
$7(^{8}S^{\circ})5d^{2}(^{3}P) (^{10}P^{\circ})6p?$		4	32206.820	1.728	18	$^{9}\mathrm{D}$	12	$(^{8}{ m S}^{\circ})5d~(^{7}{ m D}^{\circ})6s6p(^{1}{ m P}^{\circ})~^{7}{ m F}$
⁸ (⁷ F)5d6s?	5G?	6						
		5	32226.746	1.31				
		4	32984.305	1.23				
		$\frac{3}{2}$	33552.455 34120.150	$1.25 \\ 0.67$				
$7(^8{ m S}^\circ)5d~~(^7{ m D}^\circ)6s6p(^1{ m P}^\circ)?$		1	32251.757	2.23	33	$^{7}\mathrm{F}$	15	(8S°) (7D°)(1P°) 7D
- '		3	32272.125	1.59	35	-	10	(~/(D/(I/D
⁷ (8S°)5d (7D°)6s6p(1P°)?		2	32336.079	1.79	27	$^{7}\mathrm{D}$	19	(8S°) (7D°)(1P°) 7F
$^{7}(^{8}S^{\circ})5d~(^{7}D^{\circ})6s6p(^{1}P^{\circ})?$	⁷ F?	0	32341.098		49		20	$(^{8}S^{\circ})5d^{2}(^{3}F) (^{8}F^{\circ})6p ^{7}F$
$7(^8S^\circ)5d$ $(^7D^\circ)6s6p(^1P^\circ)?$		1	32356.085	2.25	31	$^{7}\mathrm{D}$	22	(8S°)5d ² (3F) (8F°)6p 7D
³ (⁷ F)5d6s?	5F?	3	32384.000	1.44				
		3	32448.112	1.448				
		5	32563.597	1.74				
$7(^8S^\circ)5d^2(^3P) (^{10}P^\circ)6p?$		5	32585.125	1.75	33	11D	24	$(^8{ m S}^\circ)(^3{ m P})~(^{10}{ m P}^\circ)~^9{ m D}$
		4	32785.115	1.832				
		4	32886.276	1.82				
$f(^{7}F)5d6s?$	5F?	2	32949.825	0.98				
$7(^{8}S^{\circ})5d^{2}(^{3}P) (^{10}P^{\circ})6p?$	11D?	6	32966.862	1.69	52		19	(8S°)(3P) (10P°) 9D

Gd I, Even Parity—Continued

Configuration	Term	\boldsymbol{J}	Level (cm ⁻¹)	\boldsymbol{g}		Leading percentages
4f 8(7F)5d6s?	7H?	6	33013.830	1.26		
$f^{7}(^{8}\text{S}^{\circ})5d^{2}(^{3}\text{P}) \ (^{10}\text{P}^{\circ})6p?$	¹¹ S?	5	33231.096	1.95	84	
		5	33348.226	1.81		
		4	33568.045	1.88		
		3	33704.627	1.75		
		4	33724.517	1.51		
		- 5	33732.275	1.47		
		6	33851.828	1.73		
		5	33923.459	1.97		
		2	34147.343	2.119		
		7	34175.835	1.68		
		4	34458.220	2.13:		
		3	34465.872	2.23:		
$^{67}(^{8}\text{S}^{\circ})5d^{2}6p$?	11P?	5	34517.671	1.95		
$f^{8}(^{7}\text{F})5d6s?$	5H?	4	34524.661	0.97		
		4	34635.520	1.73		
		4	34698.190	1.53		
$f^{7}(^{8}S^{\circ})5d^{2}(^{3}F)$ ($^{8}F^{\circ})6p$?	°G?	0	34704.810		67	
		1	34711.445	1.47:	65	
		2 3	34722.925	1.48:	60 50	(80%)/10\ (80%) 90
		3 4	34765.635 34836.980	1.48: 1.47:	52 44	14 (8S°)(1G) (8G°) 9G 14 (8S°)(1G) (8G°) 9G
		5	34951.016	1.47	36	16 (8S°)(3F) (8F°) 7G
		6	35149.140	1.46	27	25 (8S°)(3F) (8F°) 7G
		7	36482.515	1.48	45	33 (8S°)(3F) (8F°) 7G
		8	36731.590	1.49	69	
		3	34913.620	1.66		
		6	34938.434	1.80		
		2	35342.327	2.65		
27/070) 7 70 0 0		3	35360.405	1.89		
C7(8S°)5d2 6p?	770	3	35442.715	1.94		
6 (7F)5 $d6s$?	⁷ P?	4	35498.790	1.68		
$67(8S^{\circ})5d^{2}6p$?		3	35553.915	1.46:		
-		4	35566.145	1.84		
$^{67}(^{8}S^{\circ})5d^{2}(^{3}F)$ ($^{8}F^{\circ})6p$?	⁷ G?	7	35579.553	1.47	39	19 (8S°)(3F) (8F°) 9G
		1 2	35744.507 35766.831	-0.42: 0.85:	84 78	
		3	35811.565	1.22:	71	
		4	35883.613	1.35	65	
		5 6	36000.475 36203.224	1.42 1.55	54 42	24 (8S°)(3F) (8F°) 9G 34 (8S°)(3F) (8F°) 9G
28/7E\5 JC - 9	7770				44	D*(T*)(T-)(G') 46
^{°8} (⁷ F)5d6s?	7H?	3	35593.010	1.03		
		5	35794.634	1.72		
		1	35908.957	2.71		

Gd I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
4f7(8S°)5d2(3F) (8F°)6p?	°F?	1	36024.050	3.39:	65
V (= /== (= / (= /=p)		2	36037.230	2.16:	9 (8S°)(3P) (10P°) 9D
		3	36087.265	1.83	47 7 (8S°)(3F) (8F°) 9G
		4	36191.722	1.69	49 6 (8S°)(3F) (8F°) 9G
		5	36394.507	1.62	47 12 (8S°)(3F) (8F°) 9D
		6	36772.153	1.59	45 21 (8S°)(3F) (8F°) 9D
		7	37343.174	1.55	72
		5	36060.305	1.55	
		6	36147.130	1.59	
$4f^{7}(^{8}S^{\circ})5d^{2}6p$?		2	36203.602	2.30	
$4f^{7}(^{8}S^{\circ})5d^{2}6p$?	°D?	2	36850.345	2.65	
		3	36954.050	1.98	
		4	37090.080	1.84	
		5 6	37279.343 37809.508	1.74 1.62	
		3	37284.744	2.29	
		3	37385.063	2.29	
		4	37401.692	1.87	
		5	37425.155	1.67	
		2	37486.970	1.60	
		2	37505.570	2.16	
		3	37541.235	1.58	
		4	37661.975	1.70	
		5	37904.060	1.63	
		3	38275.565	2.13	
		2	38322.000	2.31	
		6	38348.325	1.48	
		3 4	38434.970 38495.824	1.54 1.86	
		6	38586.520	1.73	
A 57/8CI9\F 39 C 0	7700				
$4f^{7}(^{8}S^{\circ})5d^{2}6p$?	7D?	1	38627.695	3.02	
		2	38669.490	2.04	
		3	38775.670 39022.720	1.84 1.70	
		4 5	39192.375	1.70	
		5	38687.305	1.58	
		6	38792.563	1.43	
4f ⁷ (⁸ S°)5d ² (³ F) (⁶ F°)6p?	5F?		39017.320	0.05:	
ı, (ω /υμ-(-r) (-r /υp:	~F!	1			
		2 3	39028.020 39043.934	0.76: 1.14:	
		4	39079.645	1.14:	
		5	39113.910	1.53:	
		2	39243.930	2.67	
	эP	4	39323.062	1.92	
4f ⁷ (*S°)5d² 6p?	9F?	1	39367.155	3.26	
-	••	2	39426.712	2.04	
		3	39519.795	1.89	
		4	39625.560	1.69	
		5	39790.120	1.60	
		6	39949.445	1.57	
	1	7	40234.024	1.49	

Gd I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
		3	39404.167	2.00	
		5	39593.830	1.72	
		7	39605.305	1.54	
		6	39608.405	1.65	
		3	39668.382	1.94	
		4	39819.045	1.68	
		4	39938.046	1.63:	
		5	39971.374	1.54	
$^{c7}(^8S^{\circ})5d^26p?$	9H?	8	40127.198	1.45	
		6	40160.870	1.49	
		5	40200.540	1.64:	
		5	40330.415	1.44	
		6	40382.555	1.54	
		4	40391.540	1.47	
$f^{8(^{7}\mathrm{F})}6s$ ($^{8}\mathrm{F})7s$	эF	7 6 5 4 3 2	40439.513 41069.210	1.55 1.52	
		1			
		9	40450.605	1.44	
		5	40463.758	1.59	
		4	40487.655	1.72	
	,	4	40554.495	1.21:	
		6	40632.680	1.60	
		3	40684.910	1.34	
		5	40707.970	1.70	
		2	40786.235	2.32:	
		3	40803.185	1.90	
		5	40865.900	1.41	
		4	40963.685	1.89	
		7	41097.255	1.47	
		4	41127.460	1.55	
		5	41150.915	1.57	
		1	41231.060	1.63	
		5	41283.160	1.38	
		4	41296.165	1.75	
		8	41461.330	1.41	
		6	41624.405	1.40	
		5	41665.212	1.46	
		5	41692.155	1.89	
† 11 (10D5/2)	Limit		49603		

(Eu I sequence; 63 electrons)

Z = 64

Ground state (1 $s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6$) $4f^75d6s^{-10}{
m D}^\circ_{5/2}$

Ionization energy 97500± 600 cm⁻¹

 $12.09 \pm 0.08 \text{ eV}$

Identified odd configurations

4f $^{7}5d6s$, 4f $^{7}6s^{2}$, 4f $^{7}5d^{2}$, 4f $^{8}6p$

Identified even configurations

4f 86s, 4f 85d, 4f 76s6p, 4f 75d6p

The original analysis of Gd II by Albertson, Bruynes, and Hanau yielded the $4f^7(^8S^\circ)5d6s^{-10}D^\circ$ ground term, the $(^8S^\circ)5d6p^{-10}F$ term (thus accounting for the fundamental multiplet of the spectrum), and a few other low odd and high even levels. Using King's list of more than 2600 Gd II lines, Russell [1950] greatly extended the system based on the $4f^7(^8S^\circ)$ core to include 137 levels classifying 1177 lines. Blaise and van Kleef [1969], Spector [1970a, 1970b], and Blaise, van Kleef, and Wyart [1971] have recently extended the analysis further and identified levels based on the $4f^8$ core configuration.

More than 300 levels are now known, about equally divided between the two parities. The values here are from Blaise, van Kleef, and Wyart, who found more than half of these levels.

The principal line lists are described in the first section of the text for Gd I. More than 2200 Gd II lines are now classified, but the most complete description of the spectrum has not been published [see Hoekstra and Slooten, 1971].

q Values

Blaise, van Kleef, and Wyart also derived g values for all the known Gd II levels, using Zeeman spectrograms (2700–11400 Å) photographed at Argonne by Noorman and by M. Fred. Blaise et al. gave values rounded off to the nearest 0.005, and most of the two-place values given here result from a further rounding-off of these values. This allows a distinction between such values and the three-place values obtained from weighted averages of the values of Desmarais and Pinnington [1967] and of Blaise, van Kleef, and Wyart. Desmarais and Pinnington derived g values for 67 levels of Gd II, with estimated errors from ± 0.001 to ± 0.02 . The agreement between the two sets of observations is in general very good. About 30 of the two-place g values given here also result from averages.

Some odd levels gave Zeeman patterns with significant Paschen-Back effects [Blaise, 1976]. The g values of these levels are followed by colons.

Calculations of the Odd Levels

Zeldes [1953] noted that his calculations of the $(4f^{7}(^{8}S^{\circ})5d6s+(^{8}S^{\circ})5d^{2})$ odd subconfigurations and the $(4f^{7}(^{8}S^{\circ})6s6p+(^{8}S^{\circ})5d6p)$ even subconfigurations could be improved by including the effects of intermediate coupling. Smith and Wybourne [1965], Goldschmidt and Nir [1965, 1971], and Wyart [1973] have since carried out such calculations.

The percentages listed here for levels of the low odd group are from Wyart's calculation of $(4f^7(^8\mathrm{S}^\circ,^6\mathrm{P}^\circ)6s^2+4f^7(^8\mathrm{S}^\circ,^6\mathrm{P}^\circ)5d6s+4f^7(^8\mathrm{S}^\circ,^6\mathrm{P}^\circ)5d^2)$. Although the $^6\mathrm{P}^\circ$ term of the $4f^7$ core configuration is very high, Wyart's inclusion of this core term significantly affected the eigenvectors for the levels nominally based on the $4f^7(^8\mathrm{S}^\circ)$ core. Wyart did not list second components for the eigenvectors, but gave total percentages from the three configurations; instead of second components we list the *total* percentage from a *second* configuration wherever a second configuration contributes most of the remaining eigenvector percentage (after the leading component). For several of the lowest terms the configuration interaction has a regularity expected for LS coupling. For example, practically all of the $\sim 20\%$ mixture of $4f^75d^2$ into the eigenvectors of the nominal $4f^7(^8\mathrm{S}^\circ)5d$ ($^7\mathrm{D}^\circ)6s$ $^8\mathrm{D}^\circ$ levels is due to

 $4f^{7}(^{8}\mathrm{S}^{\circ})5d^{2}$ $^{8}\mathrm{D}^{\circ}$ [Smith and Wybourne, 1965; Goldschmidt and Nir, 1965]. On the other hand, the combined effects of this configuration interaction and intermediate coupling make it impossible to assemble a physically meaningful $4f^{7}(^{8}\mathrm{S}^{\circ})5d^{2}$ $^{8}\mathrm{D}^{\circ}$ term from the calculated eigenvectors. Smith and Wybourne [1965] and Goldschmidt and Nir [1965] assigned several previously unidentified levels to $4f^{7}(^{8}\mathrm{S}^{\circ})5d^{2}$, and the latter authors also found several new levels of this subconfiguration. Blaise, van Kleef, and Wyart [1971] found and assigned several of the highest $(^{8}\mathrm{S}^{\circ})5d^{2}$ levels.

A large group of uninterpreted odd levels begins only a little above the $4f^{\,8}(^{\,7}F_{\,6})6p_{\,1/2}$ pair (~32600 cm⁻¹), which are the lowest levels of this subconfiguration. However, most of the 37 expected levels of $4f^{\,8}(^{\,7}F)6p$ have been found and unambiguously identified, even though the calculations included only this subconfiguration [Blaise and van Kleef, 1969; Spector, 1970a; Blaise, van Kleef, and Wyart, 1971]. The eigenvector percentages given here are from Blaise, van Kleef, and Wyart. A few of the $4f^{\,8}(^{\,7}F)6p$ assignments probably should not be regarded as definite until more complete calculations of the odd configurations in this region are made; three levels for which the agreement between experimental and calculated g values is relatively poor are followed by asterisks. The designation of the level at $36565.69 \text{ cm}^{-1} (J=\%)$ as the upper level of the $4f^{\,8}(^{\,7}F_{\,6})6p_{\,3/2}$ term is also given as tentative, since Ahmad, Saksena, and Venugopalan [1976] find the isotope shift of this level to be more consistent with assignment to the $4f^{\,7}5d6s$ configuration.

Spector [1970a] found that the J_1j coupling scheme is best for the $4f^8(^7{\rm F})6p$ configuration. He discussed the coupling in other Gd II configurations and noted that in some cases the spins of the parent terms are good quantum numbers to an unexpected degree. This explained, for example, the failure to observe any lines of the nominal $4f^7(^8{\rm S}^\circ)$ $5d(^9{\rm D}^\circ)6s$ $^8{\rm D}^\circ-4f^8(^7{\rm F})6s$ $^8{\rm F}$ multiplet (in the near-infrared spectrum); the multiplet is spin forbidden because of the high purities of the respective spins of the $^9{\rm D}^\circ$ and $^7{\rm F}$ parent terms.

Calculations of the Even Levels

The low even levels belong to the $4f^{8}(^{7}\mathrm{F})6s$ and $4f^{8}(^{7}\mathrm{F})5d$ subconfigurations, both of which are completely known. Spector's calculation [1970b] has been used for the $4f^{8}(^{7}\mathrm{F})5d$ level percentages. The experimental g values of the levels designated $^{8}\mathrm{D}_{3/2}$ and $^{8}\mathrm{F}_{3/2}$ differ by only 0.05, as compared with the calculated g values of 2.57 and 2.11, respectively. Thus the experimental g values indicate a stronger mixing of $^{8}\mathrm{D}$ and $^{8}\mathrm{F}$ for $J=^{3}\!\!/_{2}$ than the calculated eigenvectors show, and the assigned designations probably mean very little; in fact, the names assigned by Blaise and van Kleef [1969] are reversed from those indicated by the eigenvectors. Similar comments apply to the $^{8}\mathrm{D}_{5/2}$, $^{8}\mathrm{F}_{5/2}$ pair of levels.

The leading percentages for the levels of $(4f^7(^8S^\circ)5d6p+(^8S^\circ)6s6p)$ are from Goldschmidt and Nir [1965, 1971]. Their calculations and those of Smith and Wybourne showed that previous term assignments for several $(^8S^\circ)5d6p$ levels were inappropriate. Zeeman-effect measurements by Desmarais and Pinnington [1967] confirmed these results and also indicated that some additional interchanges of designations should be made. Wyart's [1973] calculation of this group included the effects of the $4f^7(^6P^\circ)$ core term, but the eigenvectors are not much different from those of Goldschmidt and Nir. The assignments appear to be unambiguous except for two pairs of levels having J=% (32263 and 32490 cm⁻¹) and J=% (39251 and 39537 cm⁻¹); these levels are followed by an asterisk to indicate the possibility of interchanges of their compositions.

We have omitted any names for a number of levels of this group. The levels at 29198 cm⁻¹ $(\bar{J}=^{5/2})$ and 29242 cm⁻¹ $(J=^{7/2})$, for example, have usually been designated $4f^{7}(^8S^{\circ})6s6p(^3P^{\circ})^8P$, although both levels have somewhat larger components of $(^8S^{\circ})5d$ $(^9D^{\circ})6p$ ^{10}D and belong about equally to $4f^{7}6s6p$ and $4f^{7}5d6p$. The leading percentages for the corresponding two levels assigned to the ^{10}D term $(J=^{5/2})$ and $J=^{7/2}$ are also only $\sim 40\%$; the retention of these two not very meaningful names to complete this term is perhaps justified by the positions of the levels and the fact that they do belong mainly to $4f^{7}5d6p$.

Goldschmidt and Nir [1971] discuss in some detail the coupling in the configurations based on the $4f^{7}(^{8}S^{\circ})$ core, including the effects of the interaction between $4f^{7}(^{8}S^{\circ})5d6p$ and $(^{8}S^{\circ})6s6p$ on the coupling in these subconfigurations.

Ionization Energy

Sugar and Reader derived the quoted value for the ionization energy.

Gd II—Continued

References

Ahmad, S. A., Saksena, G. D., and Venugopalan, A., Physica (Utrecht) 81C, 366 (1976). ND CL IS

Albertson, W. E., Bruynes, H., and Hanau, R., Phys. Rev. 57, 292 (1940). EL CL ZE

Blaise, J., private communication (1976). ZE

Blaise, J., Chevillard, J., Verges, J., Wyart, J. F., and van Kleef, T. A. M., Spectrochim. Acta, Part B 26, 1 (1971). EL CL W ZE

Blaise, J., and van Kleef, T. A. M., C. R. Acad. Sci., Ser. B 268, 792 (1969). EL ZE

Blaise, J., van Kleef, T. A. M., and Wyart, J. F., J. Phys. (Paris) 32, 617 (1971). EL ZE PT

Brix, P., Z. Phys. 132, 579 (1952). ND IS

Brix, P., and Lindenberger, K. H., Z. Phys. 141, 1 (1955). Hfs IS

Desmarais, D., and Pinnington, E. H., J. Opt. Soc. Am. 57, 1245 (1967); 59, 1391 (1969). ND ZE

Goldschmidt, Z. B., and Nir, S., unpublished material (1965). ND PT

Goldschmidt, Z. B., and Nir, S., Physica (Utrecht) 51, 222 (1971). ND PT

Hoekstra, R., and Slooten, R., Spectrochim. Acta, Part B 26, 341 (1971). Wavelength Accuracy

King, A. S., Astrophys. J. 97, 323 (1943). W

Kopfermann, H., Krüger, L., and Steudel, A., Ann. Phys. (Leipzig) [61] 20, 258 (1957). IS

Meggers, W. F., Corliss, C. H., and Scribner, B. F., Nat. Bur. Stand. (U.S.), Monogr. 145, Part I, 403 pp. (1975). CL

Russell, H. N., J. Opt. Soc. Am. 40, 550 (1950). EL CL IP

Smith, G., and Wybourne, B. G., J. Opt. Soc. Am. 55, 1278 (1965). ND PT

Spector, N., J. Opt. Soc. Am. 59, 488A (1969). EL

Spector, N., J. Opt. Soc. Am. 60, 763 (1970a). EL CL PT

Spector, N., J. Phys. (Paris) Colloq. C 4 32, 173 (1970b). EL CL PT

Spector, N., Astrophys. J. 159, 1091 (1970c). CL

Spector, N., and Held, S., Astrophys. J. 159, 1079 (1970). W

Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP

Wyart, J. F., C. R. Acad. Sci., Ser. B 271, 849 (1970). PT

Wyart, J. F., Thesis, Univ. Paris-Sud, Orsay, 194 pp. (1973). PT

Zeldes, N., Phys. Rev. 90, 413 (1953). ND PT

[July 1976]

Gd II, Odd Parity

Configuration	Term	J	Level (cm ⁻¹)	g		Leadir	ng percentages
4f ⁷ (8S°)5d (9D°)6s	10D°	5/2	0.000	2.557	96		
		7/2	261.841	2.082	95		
		9/2	633.273	1.862	94		
		11/2	1158.943	1.74	94		
		13/2	1935.310	1.70	97		
4f ⁷ (8S°)5d (9D°)6s	*D°	3/2	2856.678	2.804	80	14	$4f^7 5d^2$
		5/2	3082.011	2.044	79	14	
		7/2	3427.274	1.870	76	13	
		9/2	3972.167	1.70	78	13	
		11/2	4841.106	1.63	79	17	
$4f^{7}(^{8}\mathrm{S}^{\circ})6s^{2}$	*S°	7/2	3444.235	1.92	93	4	$4f^7 5d6s$
$4f^{7}(^{8}\mathrm{S}^{\circ})5d^{2}(^{3}\mathrm{F})$	10F°	3/2	4027.161	3.163	87	10	$4f^7 5d6s$
		5/2	4212.756	2.206	87	9	
		7/2	4483.854	1.894	87	8	
		9/2	4852.304	1.76	88	8	
		11/2	5339.477	1.657	86	9	
		13/2	5897.264	1.63	95		
		15/2	6605.154	1.60	96		
4f ⁷ (8S°)5d (7D°)6s	*D°	11/2	8551.049	1.64	74	21	$4f^7 5d^2$
		9/2	8884.809	1.73	72	22	-
		7/2	9142.904	1.798	73	22	
		5/2	9328.864	2.055	74	21	
		3/2	9451.697	2.79	74	21	

Gd II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Lea	ading percentages
4f ⁷ (8S°)5d (7D°)6s	eD.	9/2	10091.567	1.55	92		
,	2	7/2	10391.789	1.60	75	10	$4f^7 5d^2$
		$\frac{72}{5/2}$	10633.083	1.67		18	4j · 5a-
					93		
		3/2	10802.621	1.87:	94		
		1/2	10908.223	3.33:	95		
$4f^{7}(^{8}\text{S}^{\circ})5d^{2}(^{3}\text{P})$	10P°	7/2	10599.743	2.22	77	20	4f ⁷ $5d6s$
		$^{9}/_{2}$	11066.865	1.95	92		-
		$^{11}/_{2}$	11492.204	1.78	90	7	4f ⁷ $5d6s$
$4f^{7}(^{8}\text{S}^{\circ})5d^{2}(^{3}\text{F})$	*F°	1/2	12662.186	3.99:	94		
		$\frac{3}{2}$	12703.450	1.98:	93		
		$\frac{5}{2}$	12776.067	1.709	92		
		$\frac{7}{2}$	12891.692	1.612			
		$\frac{12}{9/2}$			90		
			13076.050	1.57	88		
		$\frac{11}{2}$ $\frac{13}{2}$	13377.976 13925.734	$1.56 \\ 1.54$	87 94		
A 67/8G0\ 7 10 (07)	T. I.						
$4f^{7}(^{8}S^{\circ})5d^{2}(^{3}F)$		11/2	17725.052	1.53	43 ⁶ F	0	
$4f^{7}(^{8}\text{S}^{\circ})5d^{2}(^{1}\text{D})$		9/2	17817.123	1.59	32 ⁸ D	0	
$4f^{7}(^{8}S^{\circ})5d^{2}(^{3}P)$		7/2	17869.878	1.71	35 ⁸ P	0	
$4f^{7}(^{8}\mathrm{S}^{\circ})5d^{2}(^{3}\mathrm{P})$		5/2	17971.595	1.69	33 ⁸ P	0	
$4f^{7}(^{8}\text{S}^{\circ})5d^{2}(^{1}\text{G})$	8G°	1/2	17007 007	1.10			
1) (15)64 (14)	-G		17987.607	-1.12:	77		
		3/ ₂	18001.302	0.94:	75		
		5/ ₂	18095.705	1.72:	61		
		7/2	18150.637	1.49	62		
		9/2	18319.239	1.52	53		
		11/2	18641.357	1.48	75		
		$^{13}/_{2}$	18676.965	1.45	95		
		$^{15}/_{2}$	18753.034	1.43	96		
$4f^{7}(^{8}\text{S}^{\circ})5d^{2}(^{1}\text{D})$	8D°	3/2	18369.326	2.76	66	24	4f ⁷ $5d6s$
$4f^{7}(^{8}\text{S}^{\circ})5d^{2}(^{3}\text{P})$	8P°	5/2	18955.050	2.17	49		
		7/2	19223.207	1.86	44		
		9/2	19401.977	1.65	41		
$4f^{7}(^{8}\mathrm{S}^{\circ})5d^{2}(^{3}\mathrm{F})$	eF.	11/	10750 111	1.50			
I) (D)00 (I')	, r	$\frac{11}{2}$ $\frac{9}{2}$	19750.111	1.52	49		
		7/2	19946.775	1.55	42		
		7/ ₂	20047.344	1.41	67		
		5/2	20227.868	1.33	72		
		3/2	20369.257	1.05	74		
		1/2	20453.647	-0.73	75		
$4f^{7}(^{8}\mathrm{S}^{\circ})5d^{2}(^{3}\mathrm{P})$	eb.	7/2	24113.296	1.73	86		
		$^{5}/_{2}$	24791.510	1.89	91		
		3/2	24965.843	2.40	91		
$4f^{7}(^{8}\text{S}^{\circ})5d^{2}(^{1}\text{S})$	8S°	7/2	29224.352	2.01	98		
$4f^{8}(^{7}\mathrm{F}_{6})6p_{1/2}$	$(6,^{1}/_{2})^{\circ}$	11/2	32595.348	1.56	96	or 44	(⁷ F) ⁸ D°
	(0, 72)	13/2	32677.540	1.46		or 44 or 56	(⁷ F) ⁸ F°
		9/2	33785.507	1.64			
		11/2	34029.883	1.53			
$4f^8(^7{ m F}_5)6p_{1/2}$	/E 1/ \0						(TE) 0E2
z) (1.9)0h1/2	$(5,^{1}/_{2})^{\circ}$	$\frac{9}{2}$ $\frac{11}{2}$	34108.475 34608.122	1.56		or 52	(7F) 8F°
		/2	54000.122	1.45	95 (or 33	(7F) 8G°
$4f^{8(7}$ F ₄) $6p_{1/2}$	$(4,^1/_2)^{\circ}$	7/2	34900.473	1.62	91 (or 59	(⁷ F) ⁸ F°
-J (= -) - P	(-, /-/	9/2					

Gd II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Leadi	ng percentages
$4f^{8}(^{7}\text{F}_{6})6p_{3/2}$	(6, ³ / ₂)°	13/2	35111.830	1.48	88	or	48	(7F) 8G°
•		$\frac{15}{2}$ $\frac{11}{2}$	35272.546	1.47	100	or	100	(⁷ F) ⁸ G° (⁷ F) ⁶ F°
		9/2	35605.266 36565.693*	1.50 1.58	99 90	or or	64 87	(7F) 6D°
		3/2	35298.183	2.67				
		13/2	35362.630	1.50				
		5/2	35404.833	1.92				
		9/2	35822.697	1.47				
$4f^{8}(^{7}\mathrm{F}_{3})6p_{1/2}$	(3, ¹ / ₂)°	⁵ / ₂ ⁷ / ₂	35938.545 36398.500*	1.62 1.50	93 82	or or	62 50	(7F) ⁸ F° (7F) ⁸ G°
		7/2	35991.374	1.55				
		5/2	36144.683	1.75				
$4f^{8(^{7}F_{2})}6p_{1/2}$	(2,¹/2)°	3/ ₂ 5/ ₂	36373.530 36819.318	1.78 1.39	89 99	or or	64 56	(7F) 8F° (7F) 8G°
		7/2	36632.006	1.58				
$4f^{8}(^{7}\mathrm{F}_{1})6p_{1/2}$	$(1,^{1}/_{2})^{\circ}$	1/2	36687.528	2.80	86	or	67	(7F) 8F°
J. C. S. P.		3/2	37007.228	1.19	96	or	59	(⁷ F) ⁸ G°
$4f^8(^7{ m F}_5)6p_{3/2}$	(5, ³ / ₂)°	11/2	36723.695	1.47	89	or	46	(7F) 8F°
		$\frac{13}{2}$ $\frac{9}{2}$	36821.816	1.44	97 85	or or	72 46	(⁷ F) ⁶ G°
		7/2	37522.667	1.54	60	or	72	(7F) ⁶ D°
		9/2	36778.403	1.44				
$4f^8(^7{ m F_0})6p_{1/2}$	(0,1/2)°	1/2	37058.115	-0.27	90	or	66	(7F) 8G°
		3/2	37567.768	1.87				
$4f^{8}(^{7}\mathrm{F}_{4})6p_{3/2}$	(4, ³ / ₂)°	$\frac{11}{2}$ $\frac{9}{2}$ $\frac{7}{2}$ $\frac{5}{2}$	37569.531 37642.838	1.45 1.42	90 83 75 68	or or or	50 44 50 61	(4.1) eD. (4.1) eD. (4.1) eQ.
		3/2	37632.423	1.99				
		5/2	37703.968	1.54				
		11/2	37831.032	0.89				
		11/2	37871.723	1.29				
		9/2	37992.923	1.45				
		11/2	38010.603	1.57				
		9/2	38230.334	1.54				
$4f^8(^7\mathrm{F}_3)6p_{3/2}$	(3,3/2)°	7/ ₂ 9/ ₂ 5/ ₂	38386.557* 38679.364	1.39 1.33	74 86 65	or or	36 61 62	(7F) 6G° (7F) 8D°
		$\frac{3}{2}$	39280.808	1.81	68	or	48	(7F) 6D°
		9/2	38467.016	1.10				
		9/2	38555.861	1.20				
		9/2	38573.218	0.93				
		7/2	38877.200	1.51				

Gd II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Leading percentages	
$4f^{8(^{7}\mathrm{F}_{2})}6p_{3/2}$	(2,3/2)°	5/2	38922.487*	1.00				
•	(2, 72)	7/2	39237.448	1.30 1.24	60	or	27 (7F) 6F°	
		3/2	33.031.144	1.24	80 55	or or	72 (⁷ F) ⁶ G° 72 (⁷ F) ⁸ D°	
		1/2			67	or	$52 (^{7}F) ^{6}D^{\circ}$	
		7/2	39050.438	1.74				
		13/2	39077.206	1.43				
$4f^{8}(^{7}\mathbf{F_{1}})6p_{3/2}$	(1,3/2)°	3/2	39367.258	1.23	68	or	27 (⁷ F) ⁶ F°	
		1/2	39610.733	-0.70	63	or	56 (7F) 6F°	
		5/2	39635.683	1.01	68	\mathbf{or}	83 (⁷ F) ⁶ G°	
		5/2	39543.658	1.69				
		5/2	39715.248	1.75				
		5/2	39780.771	1.63				
		5/2	39818.862	0.48				
$4f^8(^7\text{Fo})6p_{3/2}$	(0,3/2)°	3/2	39936.597	0.16	55	or	92 (⁷ F) ⁶ G°	
		3/2	40024.553	2.32				
		9/2	40086.838	1.55				
		3/2	40096.902	2.24				
		1/2	40244.310	-1.08				
		1/2	40309.427	2.45				
		5/2	40364.755	1.46				
		3/2	40379.452					
		5/ ₂	41142.312	0.99				
		7/ ₂	41256.420	1.97				
		15/ ₂	41284.124	1.69				
		11/ ₂	1	1.44				
		13/ ₂	41 439.557	1.46				
			41497.450	1.45				
		9/2	41784.500	1.58				
		11/2	42255.655	1.60				
		11/2	42289.546	1.46				
		13/2	42359.716	1.44				
		11/2	42574.565	0.94				
		9/2	42626.235	1.38				
		15/2	42636.966	1.44				
		13/2	42825.332	1.39				
		11/2	42916.750	1.52				
		$^{1}/_{2}$	43187.545	-1.24				
		5/2	43225.224	1.36:				
		3/2	43237.460	1.04:				
		7/2	43275.645	1.33				
		11/2	43279.248	1.35				
		9/2	43372.522	1.37				
		5/2	43439.102	1.33				
		9/2	43476.925					
		7/2	43476.925	1.48 1.38:				

Gd II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
		13/2	43518.298	1.48	
		7/2	43673.490	1.30	
		9/2	43744.110	1.40	
		13/2	44197.741	1.40	
		9/2	45064.987	1.44	
		9/2	45170.039	1.60	
		9/2	45185.749	1.59	
		3/2	45212.690	0.04	
		5/2	45214.65 8	1.87	
		5/2	45394.925	1.09	
		7/2	45563.276	1.24	
Gd III (9D2)	Limit		97500		

Gd II, Even Parity

Configuration	Term	J	Level (cm ⁻¹)	g		Lea	ading percentages
4f ⁸ (⁷ F)6s	8F	13/2	7992.268	1.54			
1) (1)00		11/2	9092.491	1.51			
		9/2	10292.567	1.56			
		7/2	11084.335	1.59			
		5/2	11669.863	1.70			
		3/2	12071.778	1.99			
		1/2	12309.508	3.98			
1 f ⁸ (⁷ F)6s	6 F	11/2	9943.779	1.50			
		9/2	11343.525	1.45			
		7/2	12318.288	1.41			
		5/2	13030.786	1.32			
		3/2	13515.189	1.08			
		1/2	13800.345	-0.63			
4f ⁸ (⁷ F)5d	*G	15/2	18366.854	1.46	98		
		13/2	18389.122	1.46	72		(ST) ST
		11/2	18690.096	1.51	56	30	(⁷ F) ⁸ F
		9/2	19376.999	1.51	56	30	
		7/2	20098.274	1.44	66	25	
		5/2	20631.090	1.32	79		
		3/2	21005.895	1.01	90		
		1/2	21227.621	-1.22	98		
4f ⁸ (⁷ F)5d	*D	11/2	20093.245	1.51	56	30	(7F) 8G
• •		9/2	20574.163	1.58	50	32	(7F) 8G
		7/2	21364.923	1.67	48	25	(7F) *G
		5/2	23697.401	1.83	53	40	(⁷ F) ⁸ F
		3/2	23731.959	2.37	72	25	(⁷ F) ⁸ F
4f ⁸ (⁷ F)5d	*F	13/2	21157.496	1.51	76		(27) 07
, , , ,		5/2	22062.405	1.86	40	40	(⁷ F) ⁸ D
		11/2	22533.110		56	32	
		3/2	22677.320	2.32	64	26	
		9/2	23025.282		55	27	
		1/2	23255.821	3.95	98		
		7/2	23473.095	1.66	50	40	

Gd II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Le	ading percentages
$4f^{8}(^{7}\mathrm{F})5d$	OTT	17/	00501.000				
4) -(· r)0a	8H	17/2	22531.290	1.41	100		
		15/2	23270.336	1.37	88		
		13/2	23970.178	1.35	92		
		11/2	24528.042	1.35	90		
		9/2	24852.273	1.21	90		
		7/2	25167.167	1.05	94		
		$^{5/_{2}}$	25404.022	0.69	98		
		3/2	25570.698	-0.36	98		
$4f^8(^7\mathrm{F})5d$	ьF	11/2	24412.685	1.47	90		
		9/2	25438.335	1.41	85		
		7/2	26372.991	1.38	86		
		5/2	27130.397	1.30	90		
		3/2	27662.215	1.05	94		
		1/2	27989.933	-0.61	100		
$4f^{8}(^{7}\mathrm{F})5d$	⁶ G	13/2	25277.136	1.37	94		
		11/2	26639.861	1.32	84		
		9/2	27546.000	1.28	77		
		7/2	28220.168	1.20	79		
		5/2	28790.113	0.34	88		
		3/2	29146.959	0.05	96		
$4f^{8}(^{7}\mathrm{F})5d$	eH	15/2	25502.560?	1.34	90		
		13/2	26931.602	1.33	86		
		11/2	28124.301	1.22	84		
		9/2	28876.600	1.10	86		
		7/2	29417.045	0.35	88		
		5/2	29819.766	0.34	94		
$4f^{8}(^{7}\mathrm{F})5d$	8P	9/2	05000.040	1.77	00		
-i (1)θu	-1	7/ ₂	25609.049	1.75	83		
		$\frac{5}{2}$	27417.652	1.90	90		
			28629.017	2.321	96		
$4f^{7}(^{8}S^{\circ})6s6p(^{3}P^{\circ})$	10P	$^{7}/_{2}$	25668.692	2.185	80	12	$(^{8}{ m S}^{\circ})5d~(^{9}{ m D}^{\circ})6p~^{10}{ m P}$
		9/2	26455.446	1.816	64	15	• •
		11/2	28502.312	1.75	46	23	
$4f^{7}(^{8}S^{\circ})5d^{-}(^{9}D^{\circ})6p^{-}$	10F	3/2	25960.073	3.094	83	15	(8S°) (9D°) 8D
•		5/2	26211.912	2.171	80	15	(8S°) (9D°) 8D
		7/2	26595.222	1.863	76	14	(8S°) (9D°) 8D
		9/2	27162.224	1.731	72	12	(8S°) (9D°) 8D
		11/2	27864.534	1.67	51	18	(8S°) (9D°) 8D
		13/2	29353.344	1.61	77	11	(8S°) (9D°) 8F
		15/2	31145.651	1.57	100	11	

Gd II, Even Parity—Continued

		Gan	i, Even Pari	ty—Conti	nuea			
Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ding percentages
4f ⁷ (8S°)5d (9D°)6p	8D	3/2	29877.937	2.839	81		16	(8S°) (9D°) 10F
		5/2	29965.752	2.040	73		17	(5)(2) 1
		7/2	30008.894	1.832	62		19	
		9/2	30027.378	1.78	39		35	
$4f^{7}(^{8}\mathrm{S}^{\circ})5d~(^{9}\mathrm{D}^{\circ})6p$		11/2	30101.366	1.75	41	10F	36	(8S°) (9D°) 8D
$4f^8(^7\mathrm{F})5d$	6P	7/2	30144.962	1.65	86			
		5/2	31237.931	1.84	92			
		3/2	31915.795	2.34	98			
$4f^{7}(^{8}\mathrm{S}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$	8P	9/2	30849.648	1.784	67		11	(8S°)5 d (9D°)6 p 8D
$4f^{7}(^{8}{ m S}^{\circ})6s6p(^{3}{ m P}^{\circ})$	6P	7/2	31908.123	1.86	57		28	(8S°)(3P°) 8P
		5/2	32750.423	1.94	79			
		3/2	33181.598	2.35	93			
$4f^{7}(^{8}S^{\circ})5d (^{9}D^{\circ})6p$	8F	1/2	31977.393	3.97	85		14	(8S°) (7D°) 8F
		$^{3}/_{2}$	32048.837	2.00	83		14	(8S°) (7D°) 8F
		5/2	32150.143	1.81	77		13	(8S°) (7D°) 8F
		7/2	32262.787*	1.743	69		11	(8S°) (7D°) 8F
		9/ ₂	32684.712	1.623	68		10	(8S°) (7D°) 8F
		11/ ₂	32946.196	1.55	67		10	(8S°) (7D°) 8F
		13/2	33557.951	1.53	74		11	(8S°) (9D°) 10D
$4f^{7}(^{8}S^{\circ})5d (^{9}D^{\circ})6p$		5/2	32260.120	2.172	37	⁸ P	23	$(^{8}S^{\circ})6s6p(^{3}P^{\circ})$ ^{8}P
$4f^{7}(^{8}S^{\circ})5d$ ($^{9}D^{\circ})6p$		7/2	32490.510*	1.791	36	8P	17	$(^{8}S^{\circ})6s6p(^{1}P^{\circ})$ ^{8}P
$4f^{7}(^{8}S^{\circ})5d$ ($^{9}D^{\circ})6p$		9/2	32304.409	1.747	42	8P	25	$(^{8}{\rm S}^{\circ})6s6p(^{3}{\rm P}^{\circ})\ ^{8}{\rm P}$
$4f^{7}(^{8}S^{\circ})5d^{-}(^{9}D^{\circ})6p^{-}$	10P	⁷ / ₂	33211.481	2.155	80			
-J (:= /:-F	_	9/2	33596.027	1.93	75			
		11/2	34178.776	1.81	68			
$4f^{7}(^{8}S^{\circ})5d^{-}(^{7}D^{\circ})6p^{-}$	8D	11/2	36461.156	1.58	46		37	(8S°) (7D°) 6F
		9/2	36647.241	1.67	64			
		⁷ / ₂	36711.176	1.79	74			
		5/2	36845.366	2.030	83			
		3/2	36995.778	2.745	90			
		9/2	37845.943	1.50				
$4f^{7}(^{8}S^{\circ})5d \ (^{7}D^{\circ})6p$		9/2	38029.848	1.43	37	$^{6}\mathrm{F}$	36	(8S°) (7D°) 6D
		9/2	38057.954	1.14				
$4f^{7}(^{8}S^{\circ})5d^{-}(^{7}D^{\circ})6p^{-}$		7/2	38320.173	1.54	35	$^{ m eF}$	33	(8S°) (7D°) 6D
		11/2	38509.608	1.17				
$4f^{7}(^{8}S^{\circ})5d (^{7}D^{\circ})6p$	6F	11/2	38553.210	1.48	53		43	(8S°) (7D°) 8D
	1	9/2	39250.737*	1.66	42		21	(8S°) (7D°) 8D
		7/2	39777.217	1.50	43		40	(8S°) (7D°) 6D
		5/2	39971.223	1.44	68		23	(8S°) (7D°) 6D
		3/ ₂	40091.597	1.19	85		10	$(^{8}S^{\circ}) (^{7}D^{\circ}) ^{6}D$
		1/2	40162.389	-0.43	96			
$4f^{7}(^{8}S^{\circ})5d \ (^{7}D^{\circ})6p$		⁵ / ₂	38628.604	1.66	35	eD	25	(8S°) (7D°) 6F
$4f^{7}(^{8}S^{\circ})5d$ ($^{7}D^{\circ})6p$		3/2	38828.402	1.83	39	₆ D	38	(8S°) (7D°) 8F

Gd II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	\boldsymbol{g}		Lea	ding percentages
4f ⁷ (*S°)5d (⁷ D°)6p	8F	1/2	38934.150	3.53	48	40	(8S°) (7D°) 6D
3 (2) 5		13/2	40773.207	1.52	89	10	(8S°) (9D°) 8F
		11/2	40785.114	1.53	84		
		9/2	40924.927	1.56	74		
		7/2	41097.146	1.61	61	21	(8S°) (7D°) 6D
		5/2	41260.194	1.70	49	37	(8S°) (7D°) 6D
4f ⁷ (8S°)5d (7D°)6p	8P	5/2	39024.491	2.20	49	22	(8S°)6s6p(1P°) 8P
• • • • • • •		7/2	39170.192	1.83	43	14	$(^{8}S^{\circ})6s6p(^{1}P^{\circ})$ ^{8}P
		9/2	39537.159*	1.61	38	30	(8S°) (7D°) 6D
4f 8 6s?	4G?	11/2	40888.843	1.31			
$4f^{7}(^{8}\mathrm{S}^{\circ})5d$ ($^{7}\mathrm{D}^{\circ})6p$	eD	3/2	41391.647	1.93	50	41	(8S°) (7D°) 8F
$4f^{7}(^{8}\mathrm{S}^{\circ})5d~(^{7}\mathrm{D}^{\circ})6p$	eD	1/2	41475.630	3.61	58	36	(⁸ S°) (⁷ D°) ⁸ F
4f ⁷ (8S°)5d (7D°)6p	6P	7/2	42628.167	1.70	90		
1) (15)64 (15)6p		5/2	42745.310	1.84	88		
		3/2	42964.576	2.40	89		
		3/2	44358.240	1.91			
4f ⁷ (8S°)6s6p(1P°)	8P	9/2	49053.743	1.77	59	25	(*S°)5d (7D°)6p *P
- (-)000p(-)		7/2	49332.231	1.94	55	31	•
		5/2	49547.120	2.28	52	37	
		7/2	49291.082	1.60			
		5/2	49497.835	2.10			
Gd III (⁹ D ₂ °)	Limit		97500				

Gd III

(Sm I sequence; 62 electrons)

Z = 64

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6) 4f^75d^{-9}D_2^{\circ}$

Ionization energy 166400±800 cm⁻¹

 $20.63 \pm 0.10 \text{ eV}$

Callahan [1962, 1963] observed this spectrum over the range 1900-11000 Å using a mild spark discharge. His thesis has about 8200 lines assigned to Gd III, with the "largest concentration" of the lines lying in the region 2100-3200 Å. Kielkopf [1969] also measured thousands of Gd lines in connection with his investigation of Gd IV, and his thesis gives the stronger Gd III lines from 1720 to 6000 Å. The line lists of Callahan and Kielkopf differ considerably with regard to particular spectra in some regions. Both lists have many lines experimentally assigned to Gd III that are now known to belong to Gd II.

Callahan's analysis of the $4f^7(^8S^\circ)5d-6p$ and $4f^7(^8S^\circ)6s-6p$ transitions in Gd III classified 42 lines (2043-3177 Å) and yielded all the $4f^7(^8S^\circ)5d,6s$, and 6p levels [Callahan, 1963]. Johansson and Litzén [1973] found the $4f^{8}$ F levels by observing and classifying eight lines of the $^7F-^7D^\circ$ multiplet in the infrared (1.43-2.56 μ m). Kielkopf [1976] has reevaluated the Gd III levels, taking his own wavelength determinations into account. He supplied the values given here except for the two $4f^7(^8S^\circ)7s$ levels, which were recently located by Wyart [1976].

The eigenvector percentages, which are from Callahan [1963], are based on the assumption of a pure $4f^{7}(^{8}S^{\circ})$ core state. As he remarks, the actual purity of this state is about 97%.

The ionization energy is from Sugar and Reader.

References

Callahan, W. R., Thesis, Johns Hopkins Univ., Baltimore, 117 pp. (1962). EL CL W PT Callahan, W. R., J. Opt. Soc. Am. 53, 695 (1963). EL CL W PT Johansson, S., and Litzén, U., Phys. Scr. 8, 43 (1973). EL CL W Kielkopf, J., Thesis, Johns Hopkins Univ., Baltimore, 121 pp. (1969). W Kielkopf, J., unpublished material (1976). EL Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP Wyart, J. F., private communication (1976). EL

[July 1976]

Gd III

Configuration	Term	J 2	Level (cm ⁻¹)	Leading percentages				
4f7(8S°)5d	aD.		0.00	99	1 (8S°) 7D°			
		3	279.32	98	2			
		4	694.37	98	2			
		5	1310.13	97	3			
		6	2282.83	100				
∮ f8	7F	6	2381.24					
-		5	3996.71					
		4	5015.20					
		3	5789.97					
		2	6334.17					
		1						
		0						
4f ⁷ (8S°)6s	9S°	4	9195.04					

Gd III—Continued

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages				
$4f^{7}(^{8}\mathrm{S}^{\circ})5d$	⁷ D°	5	9356.30	97	3	(8S°) 9D°		
•		4	9717.70	98	2			
		3	10014.75	98	2			
		2	10234.49	99	1			
		1	10387.30	100				
$4f^{7}(^{8}\mathrm{S}^{\circ})6s$	⁷ S°	3	11549.50					
$4f^{7}(^{8}\mathrm{S}^{\circ}_{7/2})6p_{1/2}$	(7/2,1/2)	3	43019.99	98	2	$(^8\mathrm{S}^{\circ}_{7/2})\ (^7/_2,^3/_2)$		
		4	43611.69	95	5			
$4f^{7}(^{8}\mathrm{S}^{\circ}_{7/2})6p_{3/2}$	(7/2, 3/2)	5	47233.93	100				
		4	48339.14	95	5	$(^8S_{7/2}^{\circ}) \ (^7/_2, ^1/_2)$		
		3	48859.62	98	2			
		2	49194.70	100				
$4f^7(^8\mathrm{S}^\circ)7s$	9S°	4	87754.4					
$4f^{7}(^{8}\mathrm{S}^{\circ})7s$	7S°	3	88563.2					
		+						
Gd IV (8S _{7/2})	$Limit$		166400					

[Gd IV]

(Pm I sequence; 61 electrons)

Z = 64

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{7}$ $8S_{7/2}^{\circ}$

Ionization energy 355000± 6000 cm⁻¹

 $44.0 \pm 0.7 \text{ eV}$

Kielkopf [1969] observed the Gd spark spectra using a pulsed hollow-cathode source. The line list in his thesis includes the strongest lines experimentally assigned to Gd IV in the region 1265–6000 Å, with most such lines lying below 2500 Å. The levels from a preliminary analysis of Gd IV by Kielkopf and Crosswhite [1970] are omitted here, pending confirmation by further work on this spectrum [Kielkopf and Crosswhite, 1976].

Some of the research on the spectra of the Gd^{3+} ion in crystal hosts is summarized in Dieke's book [1968]. Absorption transitions from the $4f^{7}$ 8S°_{7/2} ground level to levels of several upper $4f^{7}$ terms have been identified. Only the lowest excited term, $^{6}\mathrm{P}^{\circ}$, is given here; the levels are averages of the corresponding sublevels of the ion in a LaCl_{3} host crystal [Piksis, Dieke, and Crosswhite, 1967], rounded off to the nearest 10 cm⁻¹. Crosswhite [1976] furnished the eigenvector percentages from a new calculation of this configuration.

In deriving the quoted ionization energy, Sugar and Reader [1973] used a value of 91200 cm⁻¹ for the lowest level of the $4f^65d$ configuration. Most of the uncertainty given for the ionization energy here arises from the uncertainty in this $4f^7-4f^65d$ energy difference [Spector and Sugar, 1976].

References

Crosswhite, H. M., unpublished material (1976). PT

Dieke, G. H., Spectra and Energy Levels of Rare Earth Ions in Crystals, Ed. H. M. Crosswhite and H. Crosswhite, pp. 249-253 (Interscience Publishers, New York, 1968). [EL] [CL] [W]

Kielkopf, J. F., Jr., Thesis, Johns Hopkins Univ., Baltimore (1969). EL CL W PT

Kielkopf, J. F., and Crosswhite, H. M., J. Opt. Soc. Am. 60, 347 (1970). EL ND CL W

Kielkopf, J. F., and Crosswhite, H. M., private communication (1976).

Piksis, A. H., Dieke, G. H., and Crosswhite, H. M., J. Chem. Phys. 47, 5083 (1967). [EL] [CL] [W] PT

Spector, N., and Sugar, J., J. Opt. Soc. Am. 66, 436 (1976).

Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP

[July 1976]

[Gd IV]

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages		
4f ⁷	8S°	7/2	o	97	3 6P°	
4f7	6P°	7/ ₂ 5/ ₂ 3/ ₂	[32120] [32720] [33290]	75 82 90	13 ⁶ D° 14 8	
Gd v (⁷ F ₀)	Limit		- 355000			

Gd XXXVII

(Ni I sequence; 28 electrons)

Z = 64

Ground state (1 $s^22s^22p^63s^23p^6$) $3d^{10}\ ^1{
m S}_0$

Burkhalter, Nagel, and Whitlock excited this spectrum in the region 5–15 Å by focusing light from a pulsed laser onto a Gd target. They classified the $3d^{10}$ $^{1}\mathrm{S}_{0}$ — $3d^{9}4p(J=1)$ and $3d^{10}$ $^{1}\mathrm{S}_{0}$ — $3d^{9}4f(J=1)$ resonance lines by comparison with calculations and by use of isoelectronic regularities. The levels listed by Burkhalter et al. have been converted to units of 10^{4} cm⁻¹ (equivalent to 1.23985 eV).

Cowan has also calculated these configurations, and the leading percentages are from his results. The levels of both excited configurations are listed with J_1j -coupling designations, with alternative LS names and percentages shown for the $3d^{10}4f(J=1)$ levels.

Burkhalter et al. note that the line classified as $3d^{10}$ $^{1}S_{0}$ — $3d^{9}4p$ $(^{3}\!\!2,^{1}\!\!2)^{\circ}_{1}$ is too strong to belong entirely to Gd XXXVII; following a suggestion of Burkhalter we list the corresponding upper level as tentative. Burkhalter also supplied the tentative level at 1129×10^{4} cm⁻¹ (1400 eV) as being a more probable position for $3d^{9}4f$ $(^{5}\!\!2,^{5}\!\!2)^{\circ}_{1}$ than the published tentative value of 1376 eV.

References

Burkhalter, P. G., private communication (1975). EL CL Burkhalter, P. G., Nagel, D. J., and Whitlock, R. R., Phys. Rev. A 9, 2331 (1974). EL CL W Cowan, R. D., unpublished material (1975). AT

[July 1976]

Gd xxxvii

Configuration	Term	J	Level (10 ⁴ cm ⁻¹)		Lead	ding percentages
	1S	0	0.0			
$3d^{9}(^{2}\mathrm{D}_{3/2})4p_{1/2}$	(3/2,1/2)°	1	917?	99		
$3d^{9}(^{2}\mathrm{D}_{5/2})4p_{3/2}$	(5/2,3/2)°	1	930	98		
$3d^{9}(^{2}\mathrm{D}_{3/2})4p_{3/2}$	(3/2,3/2)°	1	955	99		
$3d^{9}(^{2}\mathrm{D}_{5/2})4f_{5/2}$	(5/2,5/2)°	1	1129?	90	or	77 ³ P°
$3d^{9}(^{2}\mathrm{D}_{5/2})4f_{7/2}$	(5/2, ⁷ /2)°	1	1140	72	or	64 ³ D°
$3d^{9}(^{2}\mathrm{D}_{3/2})4f_{5/2}$	(3/2,5/2)°	1	1171	81	or	82 ¹P°

TERBIUM

Tb I

E=65 electrons

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)\ 4f^96s^2\ ^6{
m H}^{\circ}_{15/2}$

Ionization energy 47295±5 cm⁻¹

5.8639±0.0006 eV

Identified odd configurations

 $4f^{\,9}6s^{2},\,4f^{\,9}5d6s?,\,4f^{\,8}6s^{2}6p,\,4f^{\,8}5d6s6p,\,4f^{\,8}5d^{2}6p?,\,4f^{\,9}6s7s$

Identified even configurations

4f 85d6s2, 4f 85d26s, 4f 96s6p

Main References for Wavelengths, Energy Levels, and g Values

The most complete description of this spectrum has been obtained by Klinkenberg [1966], whose original unpublished list had about 30000 Tb I and Tb II lines over the region 2335–9285 Å. The wavelengths were derived from spectrograms of electrodeless-discharge sources photographed at the Argonne National Laboratory. The analysis of the Tb I spectrum at the Zeeman Laboratory, Amsterdam, is described in the papers of Klinkenberg [1964; 1966; 1967; 1972a], Klinkenberg and Meinders [1966; 1969], Meinders and Klinkenberg [1968], and Klinkenberg and van Kleef [1970]. The measurements were extended photographically to 11650 Å, and later to 2.4 μ m by Verges at Orsay using the SISAM technique [Klinkenberg, 1972a]. Most of the above references include an extensive list of classified lines; by 1972 some 5400 Tb I lines had been assigned as transitions between 451 high odd levels and 46 low even levels (the "A" system) [Klinkenberg, 1972a].

The energy levels in the papers of Klinkenberg and his collaborators are given with respect to a value of $0.000~\rm cm^{-1}$ for the lowest level of the "A" system, $4f^{8}(^{7}F)5d6s^{2}\,^{8}G_{13/2}$. In 1970 Klinkenberg and van Kleef determined that this level lay 285.58 cm⁻¹ above the ground level of Tb I, $4f^{9}6s^{2}\,^{6}H^{\circ}_{15/2}$. The value of this connection between the "A" and "B" systems has recently been more accurately determined as $285.500\pm0.005~\rm cm^{-1}$ [Blaise and Verges, 1976]. The great majority of the levels given here are from a list furnished by Klinkenberg [1972b], adjusted to the new value for the connection. Most of the levels are given to two decimal places only, with some low levels being given to the nearest $0.005~\rm cm^{-1}$ as in the original lists. Some additional levels and g values, as well as a few revisions, are from recent work at Laboratoire Aimé Cotton, Orsay, and at Amsterdam [Blaise and Verges, 1976, 1977; Klinkenberg, 1976, 1977; some of the recent results for Tb I are described in the compilation by Blaise, Camus, and Wyart, 1976]. New measurements of the Zeeman effect [Klinkenberg, 1976, 1977] and of the infrared spectrum by means of Fourier spectrometry [Blaise and Verges, 1976] have been carried out, and the analysis is being continued.

The main observations of the optical Zeeman effect for Tb were made by Davis [1960] and by Klinkenberg and his coworkers [Klinkenberg, 1966; Meinders and Klinkenberg, 1968]. Klinkenberg and collaborators derived most of the approximately $450\ g$ values given here, many of which have not previously been published [Klinkenberg, 1977]. The accuracy of most of the three-place values (usually given to the nearest 0.005) and two-place values is limited by hyperfine structure. The 1964 paper by Bender, Penselin, and Schlüpmann gave J and g values for five low levels of Tb I as determined by the atomic-beam magnetic-resonance technique. The five-place g values listed here for the three lowest odd levels and 14 lowest even levels are from the magnetic-resonance measurements of Childs [1970], who extended the earlier work on hyperfine structure in Tb I by Childs and Goodman [1969]. The uncertainty of most of these values is two to four units in the fifth place, the main exception being an uncertainty of three units in the fourth place for the $4f^8(^7\text{F})5d6s^2$ $^8\text{G}_{1/2}$ level.

240

Worden, Conway, Paisner, and Solarz [1977] observed high series members in Tb I using a stepwise laser photoionization technique. These data became available too late for inclusion here, but the quoted ionization energy was determined from the new series.

Theoretical Interpretation

Details of the steps in the analysis of this spectrum are given in the papers of Klinkenberg and his coworkers. Their interpretation began with the identification of the low even terms, and this complex group constitutes the best understood portion of the known structure. Arnoult and Gerstenkorn [1966] and Spector [1970] calculated the $4f^8(^7F)5d6s^2$ subconfiguration. The $4f^85d6s^2$ eigenvector percentages given here are from the recent calculation by Bauche-Arnoult, Sinzelle, and Bachelier [1977], who constructed the matrices for the complete configuration. Our arrangement of the lower even levels into term groups of $4f^8(^7F)5d6s^2$ excludes only the $J=^{9}/_{2}$ level at 1371 cm⁻¹, but it should be noticed that several of the levels included in the three lowest terms have no really satisfactory designations: particular examples are the nominal $^8G_{11/2}$, $^8G_{9/2}$, $^8D_{3/2}$, and $^8F_{3/2}$ levels. The designations of a few levels have been changed to conform better with the new and more accurate eigenvectors.

Klinkenberg and Meinders [1969] were able to extract the levels of a $4f^85d^26s^{10}G$ term beginning at 8190 cm⁻¹, and some other assignments to higher even terms have been made or suggested [Klinkenberg, 1972a, 1976; Blaise and Verges, 1976, 1977]. A number of designations are given tentatively, pending calculations of the complex $(4f^85d6s^2+4f^85d^26s)$ group. The eigenvector compositions of many of these levels are certain to be very mixed in any coupling scheme. The levels assigned to the important upper even group $4f^9(^6H^\circ)6s6p$ are designated in a J_1J_2 coupling scheme [Klinkenberg and van Kleef, 1970]. Sugar [1962] classified three of the strongest Tb I lines as resonance transitions from three of these levels to the $4f^96s^2$ $^6H^\circ_{15/2}$ level, but the correct configurational assignment and extension of the upper even group was accomplished by Klinkenberg and van Kleef with much more extensive data.

The development and interpretation of the system of lower odd levels is less complete than for the even group, and interpretation of the extensive group of high odd levels has hardly begun [Klinkenberg, 1971]. Conway and Wybourne [1963] gave eigenvectors for the lowest three levels of the $4f^96s^2$ ⁶H° ground term; the leading percentages here are from a more recent calculation by Crosswhite [1976].

Klinkenberg [1972a] and Spector [1971] have discussed the identification of the $4f^8(^7\mathrm{F})6s^26p$ levels, some designations of which are given here in the J_1j coupling scheme considered by both authors. Some additional assignments to the $4f^8(5d+6s)^26p$ group or to $4f^9(^6\mathrm{H}^\circ)5d6s$ are listed tentatively, pending calculation of the important odd configurations [Klinkenberg, 1976; Blaise and Verges, 1976, 1977; see Blaise, Camus, and Wyart, 1976].

References

Bender, I., Penselin, S., and Schlüpmann, K., Z. Phys. 179, 4 (1964). ZE $\,$ Blaise, J., Camus, P., and Wyart, J. F., in Gmelin Handbuch der Anorganischen Chemie, Vol. 39, Part B4 (Springer-Verlag, Berlin, 1976). EL ND CL ZE Hfs Blaise, J., and Verges, J., unpublished material (1976, 1977). EL ZE Childs, W. J., Phys. Rev. A 2, 316 (1970). ZE Hfs Childs, W. J., and Goodman, L. S., J. Opt. Soc. Am. 59, 875 (1969). ZE Hfs Conway, J. G., and Wybourne, B. G., Phys. Rev. 130, 2325 (1963). PT Crosswhite, H. M., unpublished material (1976). PT Davis, S. P., Astrophys. J. 132, 486 (1960). ZE Hfs King, A. S., Astrophys. J. 72, 221 (1930). W Hfs Klinkenberg, P. F. A., Z. Phys. 180, 174 (1964). EL ZE Klinkenberg, P. F. A., Physica (Utrecht) 32, 1113 (1966). EL CL W ZE Klinkenberg, P. F. A., Physica (Utrecht) 37, 197 (1967). EL CL W ZE Klinkenberg, P. F. A., Physica (Utrecht) 57, 594 (1972a). EL CL W ZE Klinkenberg, P. F. A., unpublished material (1972b, 1976, 1977). EL ZE Klinkenberg, P. F. A., and Meinders, E., Physica (Utrecht) 32, 1617 (1966). EL CL W ZE Klinkenberg, P. F. A., and Meinders, E., Physica (Utrecht) 42, 213 (1969). EL CL W ZE Klinkenberg, P. F. A., and van Kleef, T. A. M., Physica (Utrecht) 50, 625 (1970). EL CL W ZE

Meinders, E., and Klinkenberg, P. F. A., Physica (Utrecht) 38, 253 (1968). EL CL W ZE

Spector, N., J. Phys. (Paris) Colloq. C 4 31, 173 (1970). PT

Arnoult, C., and Gerstenkorn, S., J. Opt. Soc. Am. 56, 177 (1966). Hfs PT

Bauche-Arnoult, C., Sinzelle, J., and Bachelier, A., J. Opt. Soc. Am., in press (1977). Hfs PT

Spector, N., J. Opt. Soc. Am. 61, 1350 (1971). ND Sugar, J., J. Res. Nat. Bur. Stand. (U.S.) 66A, 321 (1962). CL Worden, E. F., Conway, J. G., Paisner, J. A., and Solarz, R. W., unpublished material (1977). IP

[March 1977]

Tb I, Odd Parity

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages	
r 9 6s²	eH.º	15/ ₂ 13/ ₂ 11/ ₂ 9/ ₂ 7/ ₂ 5/ ₂	0.000 2771.675 4670.455 6174.925	1.32513 1.27625 1.20610	95	
$f^{8}(^{7}\text{F}_{6})6s^{2}6p_{1/2}$	(6,¹/2)°	11/ ₂ 13/ ₂	13616.27 13622.69	1.555 1.45		
$f^{8}(^{7}{ m F})5d6s6p?$	¹ºH°?	13/2	14998.90			
f ⁹ (⁶ H°)5d6s?		15/2	15098.95			
f ⁸ (⁷ F)5d6s6p?		11/2	15189.23	1.590		
$f^{8(7F)}5d6s6p$?	10H°?	15/2	15201.02	1.48?		
$1/8(^{7}F_{5})6s^{2}6p_{1/2}?$	(5, ¹ / ₂)°?	9/ ₂ 11/ ₂	15339.73 15953.66	1.57 1.47		
If ⁸ (⁷ F)5d6s6p?	10H°?	17/2	15798.64			
$f^{8(7F)}5d6s6p?$		9/2	15825.17	1.62		
		13/2	16043.56	1.370		
4f ⁸ (⁷ F)5d6s6p?		15/2	16051.64	1.475		
$4f^{8}(^{7}\text{F}_{6})6s^{2}6p_{3/2}?$	(6, ³ / ₂)°?	13/2	16286.23	1.430		
		7/2	16453.50	1.63		
		11/2	16543.94	1.535	·	
$4f^{8}(^{7}\text{F}_{6})6s^{2}6p_{3/2}?$	$(6,^{3}/_{2})^{\circ}$?	15/2	16719.01	1.35		
		7/2	16722.56	1.590		
$4f^{8} 5d6s6p$?		13/2	17052.22	1.52		
		11/2	17118.72	1.50		
		9/2	17162.53	1.44		
		5/2	17293.33	1.69		
		13/2	17341.92			
		11/2	17350.98	1.340		
$4f^{8}(^{7}\text{F})5d6s6p?$	10H°?	19/2	17401.22			
4f8 $5d6s6p$?		15/2	17409.62	1.55		
		9/2	17417.01	1.660		
		13/2	17441.07			
		5/2	17560.82	1.56		
$4f^8 5d6s6p?$		11/2	17740.60	1.64		
-		9/2	17753.38	1.520		
$4f^{8} 5d6s6p$?		17/2	17932.42	1.51		
$4f^{8(^{7}F_{2})}6s^{2}6p_{1/2}?$	$(2,^{1}/_{2})^{\circ}$?	3/2	17936.55	1.78		
4f8 $5d6s6p$?		15/2	18043.09	1.48		

Tb I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	5
		7/2	18120.77	1.56			7/2	20032.52	1.
$f^{8} 5d6s6p?$		13/2	18135.88	1.46			9/2	20035.06	1.
		11/2	18182.98	1.47			5/2	20042.63	1.
		3/2	18192.91	1.480			13/2	20140.04	
		7/2	18260.38	1.48			11/2	20250.48	ĺ
		11/2	18343.68	1.45			13/2	20306.01	
$f^{8}(^{7}F_{1})6s^{2}6p_{1/2}?$	$(1,^{1}/_{2})^{\circ}$?	1/2	18397.56	2.35			11/2	20373.50	1.
f ⁹ 5d6s?		15/2	18410.55				9/2	20435.91	1.
f8 $5d6s6p$?		11/2	18461.87	1.555			7/2	20473.43	1
		9/2	18497.20	1.465			17/2	20534. 69	1.
		1/2	18572.92	0.51			5/2	20606.69	1.
f8 $5d6s6p$?		13/2	18607.24	1.48			9/2	20626.26	1
		9/2	18611.47	1.38			7/2	20684.03	1
		9/2	18645.50	1.54			3/2	20688.02	1
		5/2	18709.99	1.596			15/2	20700.64	1
		13/2	18805.02	1.435	$4f^{8} 5d6s6p?$	10I°?	19/2	20750.70	1
		9/2	18850.90	1.310			7/2	20762.60	1
		15/2	18881.74	1.46			13/2	20793.11	1
		11/2	18882.27	1.44			11/2	20796.05	1
		5/2	18915.43	1.385			5/2	20823.35	1
		7/2	19025.06	1.54			13/2	20928.12	1
f8 $5d6s6p$?		15/2	19080.13	1.48			13/2	20989.87	
		3/2	19108.85	1.75			5/2	21004.78	1
f ⁸ $5d6s6p$?		17/2	19131.45	1.41	$4f^{8} 5d6s6p?$		15/2	21083.72	1
		9/2	19155.06	1.600			9/2	21130.59	1
f 8 $5d6s6p$?		17/2	19162.31	1.30			11/2	21197.15	1
		13/2	19269.98	1.35			13/2	21217.93	1
		3/2	19276.50	1.065			7/2	21223.58	
		1/2	19310.33 19313.20	1.584 3.50	4f° 5d6s?		5/ ₂	21282.61 21324.37	
		11/2	19317.28	1.36			15/2	21397.91	1
1.C8 E JC oC m?		11/2	19317.28	1.52			7/2	21422.05	
4f * 5d6s6p?		1/2	19421.90	-1.06			11/2	21479.41	1
		9/2	19450.45	1.58			5/2	21496.23	
		15/2	19598.19	1.40			9/2	21518.77	
1f * 5d6s6p?		13/2	19606.52	1.54			11/2	21673.72	
y onosop.		13/2	19658.41	1.455			5/2	21679.30	
If 8 5d6s6p?		9/2	19691.12	1.650			7/2	21729.64	
., o		7/2	19694.70	1.422			3/2	21731.92	
		5/2	19759.83	1.90			7/2	21772.73	
		11/2	19781.23	1.43			15/2	21812.08	
		7/2	19901.15	1.52	$4f^{8} 5d6s6p?$		17/2	21837.92	Ì
		7/2	19941.34	1.46			13/2	21854.83	
		11/2	19958.55	1.508			11/2	21872.93	

Tb I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		5/2	21879.38	2.20	4f * 5d6s6p?		15/2	23464.78	1.4
		9/2	21887.16	1.355			5/2	23487.88	2.0
5d6s6p?	10I°?	21/2	21946.46?				5/2	23492.50	
		11/2	21987.34	1.58			9/2	23519.94	
		9/2	22011.12	1.33			13/2	23689.81	1.3
		15/2	22084.34	1.490			13/2	23720.34	1.4
		3/2	<i>22178.66</i>	2.345			9/2	23725.23	1.4
		5/2	22183.77	1.37			3/2	23756.97	1.5
		9/2	22202.52	1.634			17/2	23797.22	
		13/2	22222.58				13/2	23847.54	1.3
		15/2	22223.87	1.375			15/2	23889.75	1.3
		1/2	22264.59	3.620			15/2	23 9 07.28	1.4
		11/2	22278.93				11/2	23951.55	1.4
6d6s6p?	8I°?	19/2	22311.58	1.41			9/2	<i>23957.26</i>	1.59
		9/2	22327.98	1.45			13/2	24003.73	1.44
		13/2	22382.12	1.36			7/2	24032.11	1.5
		5/2	22394.69	1.910			13/2	24049.29	
		13/2	<i>224</i> 92.9 8	1.44			7/2	24075.69	1.3
		11/2	22524.15			'	15/2	24085.58	1.3
		7/2	22556.78	1.69			13/2	24088.51	1.3
		3/2	22617.87	1.78			9/2	24092.09	
		13/2	22644.55				17/2	24188.61	
		9/2	22663.07	1.34			13/2	24243.36	1.3
		5/2	22706.51	1.515			5/2	24271.04	1.2
		13/2	22727.88				15/2	24325.67	1.3
		17/2	22736.76	1.42			9/2	24363.28	1.3
		11/2	22754.99				11/2	24392.79	1.3
		11/2	22830.55				3/2	24420.32	1.5
		15/2	22838.79				11/2	24438.71	1.0
		9/2	22842.94	1.41			3/2	24443.57	1.8
		3/2	22868.81	1.950			9/2	24481.11	1.4
		5/ ₂	22927.63 22933.38	1.452			11/2	24490.95	1.2
		7/ ₂	22959.01	1.155 1.50			3/2	24551.64	1.3
		9/2	23019.01	1.50			9/2	24557.68	1.4
		11/2	23103.41	1.52			5/2	24613.87	1.8
		9/2	23191.65	1.02			13/2	24636.94	1.4
		15/2	23213.87	1.38			15/2	24638.54	1.3
		13/2	23248.17	1.00			11/2	24658.90	1.4
		1/2	23248.17	3.555			11/2	24701.62	1.3
		11/2	23394.47	1.47			13/ ₂	24769.12	1.3
		11/2	23425.83	1.46			9/2	24775.29	1.4
		11/2	23438.36	1.44			11/2	24819.21	1.3
		5/2	23455.34	1.98			13/2	24824.89	
		12	~0.400.04	1.00			9/2	24843.50	

Tb I, Odd Parity—Continued

Tb I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	,
		17/2	24891.99				11/2	26297.75	i
		15/2	24938.29	1.539	1		9/2	26301.35	1
		9/2	25014.66	1.28	1		13/2	26318.00	İ
		7/2	25045.93	1.35			11/2	26334.67	1
		9/2	25065.78	1.45			13/2	26385.99	
		15/2	25076.26	1.42			7/2	26394.48	1
		13/2	25122.34	1.374			3/2	26403.01	I
		11/2	25131.17	1.42			11/2	26 411.89	1
		7/2	25134.81	1.42			11/2	26438.75	1
		13/2	25210.80				9/2	26441.33	1
		11/2	25211.61	1.41			13/2	26488.10	
		9/2	25226.69	1.40			11/2	26521.43	
		7/2	25241.44	1.73			7/2	26522.48	1
		3/2	25340.54				9/2	26580.61	1
		9/2	25348.99	1.38			13/2	26584.75	
		13/2	25393.16	1.28			7/2	26594.05	
		7/2	25433.81	1.045			7/2	26668.76	
		5/2	25476.12				9/2	26673.59	1
		9/2	25509.79	1.29			15/2	26708.32	
		9/2	25584.72	1.41			5/2	26728.63	
		7/2	25652.48	1.38			9/2	26757.16	
		5/2	25676.81	0.74			13/2	26787.51	
		13/2	25724.41				7/2	26792.54	
		11/2	25753.40	1.12			11/2	26808.33	
		5/2	25782.97	1.14			1/2	26858.68	- (
		13/2	25806.10	1.54			11/2	26916.91	
		11/2	25818.28	1.45			13/2	26950.31	
		11/2	25859.31				9/2	26966.53	
		9/2	25859.83	1.39			13/2	26973.81	
		7/2	25908.59	1.46			11/2	27019.91	
		9/2	26006.65	1.37			9/2	27023.13	
		13/2	26043.00	1.44			5/2	27025.22	
		7/2	26 051.19	1.37			13/2	27046.18	
		13/2	26086.25	1.3			11/2	27061.52	
85d6s6p?		17/2	26087.13	1.406			9/2	27102.94	
		11/2	26091.79	1.30			9/2	27152.53	
		15/2	26097.92	1.31			15/2	27154.07	
		9/2	26118.30	1.192			11/2	27220.46	
		7/2	26123.52	1.59			7/2	27259.08	
		13/2	26157.32	1.32			13/2	27295.14	
		5/2	26231.14	1.66			3/2	27308.16	
		11/2	26240.55	1.54			9/2	27314.12	
		13/2	26253.55				13/2	27344.14	
		7/2	26280.29	1.38			5/2	27355.22	

Tb I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level	g
CN 5 J2 C 9								(cm ⁻¹)	-
$^{\circ H} 5d^2 6p?$		13/2	27399.10	1.43			3/2	28425.93	0.39
		11/2	27402.68	1.38			1/2	28453.45	3.1
		15/2	27420.09	1.406			5/2	28456.91	
(N 5 J2 C 9		9/2	27450.52	1.38			15/2	28488.40	1.3
$^{\circ}$ 5 d^2 6 p ?		17/2	27458.75	1.365			11/2	28500.52	
		15/2	27473.13	1.39			7/2	28503.79	1.3
		11/2	27492.32	1.41			5/2	28508.80	1.5
		5/2	27525.58	1.21			13/2	28518.76	1.3
		13/2	27528.34	1.61			9/2	28522.59	1.5
		7/2	27531.99	1.26			11/2	28553.97	1.3
		11/2	27576.77	1.42			5/2	28585.93	1.7
		9/2	27581.87	1.32			7/2	28605.10	1.2'
" $5d^2 6p$?		15/2	27611.74	1.42			3/2	28670.03	1.4
		3/2	27633.57	1.805			5/2	28683.95	1.6
		13/2	27664.77	1.20			7/2	28759.89	1.6
		3/2	27684.64	1.52			9/2	28781.76	1.3
		13/2	27698.95	1.29			9/2	28860.49	1.7
		5/2	27758.18	1.18			13/2	28890.24	1.5
		13/2	27833.58				9/2	28916.53	
		13/2	27848.42	1.32			11/2	28919.14	1.4
		7/2	27914.33	1.42			11/2	28971.23	
$5d^2 6p$?		9/2	27923.11	1.54			11/2	28971.64	1.41
		13/2	27935.09	1.39			9/2	28989.47	1.11
		13/2	27941.95				7/2	29041.65	1.77
		9/2	27952.26				1/2	29064.13	1.79
		11/2	27959.07	1.24			13/2	29103.40	1.10
		3/2	27964.82	1.25			9/2	29126.41	1.40
		11/2	27991.54				5/2	29204.26	1.46
		9/2	28048.09	1.32			9/2	29210.56	1.46
		11/2	28065.44	1.42			11/2	29244.64	1.37
		5/2	28070.33	1.08			17/2	29306.28	1.01
		13/2	28096.73				11/2	29326.10	
		5/2	28156.97	1.54			7/2	29366.03	1.40
		11/2	28188.70				15/2	29388.78	1.38
$5d^2 6p$?		17/2	28193.17	1.40			19/2	29391.66	1.00
		7/2	28220.24	1.28			5/2	29399.99	1 19
		7/2	28306.08	1.81			9/2		1.13
		11/2	28315.50				9/2	29433.01	1.41
		9/2	28318.45	1.35				29465.99	1.46
		7/2	28358.13	1.36			5/ ₂	29483.46	1.32
		13/2	28372.18				13/2	29543.01	1.40
		11/2	28417.42				7/2	29577.08	1.34
		9/2	28420.95	1.46			11/2	29613.14	* 00
		7/2	28421.89	1.42			11/2	29638.28	1.39

ı

Tb I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	
		9/2	29726.86				11/2	31221.87	
		11/2	29727.09	1.42			5/2	31307.25	
		7/2	29729.33	1.610			7/2	31333.25	
		11/2	29737.61	1.50			9/2	31366.57	
		3/2	29769.46	0.42			11/2	31400.97	
		3/2	29831.99	1.16			15/2	31406.00	
		15/2	29859.73				9/2	31477.50	
		11/2	29861.37	1.37			5/2	31480.38	
		13/2	29867.24	1.36			7/2	31492.90	
		7/2	29920.10	1.49			13/2	31542.01	
		11/2	30054.07	1.35			15/2	31563.57	
		17/2	30058.22				9/2	31576.16	
$4f^8 5d^2 6p?$		15/2	30068.35	1.43			5/2	31595.48	
g ων ορ. Lf ⁹ (6H°)6s7s		17/2	30095.53				19/2	31613.90	
y (11)0010		9/2	30248.43	1.37			11/2	31695.19	
		5/2	30253.95	1.590			5/2	31706.41	
		7/2	30272.65	1.23			9/2	31715.80	
		19/2	30358.22				13/2	31800.43	
		13/2	30405.08				9/2	31859.31	
		7/2	30410.44	1.2			7/2	31901.42	
		7/2	30437.06	1.33			3/2	31967.40	
		9/2	30546.75	1.37			15/2	32015.99	
		13/2	30550.07	1.66			5/2	32071.19	
		15/2	30577.26				7/2	32158.93	
		9/2	30598.84	1.36			9/2	32163.47	
4f ⁹ (⁶ H°)6s7s		15/2	30607.47				5/2	32217.55	
1) (11)0010		9/2	30643.49	1.27			5/2	32269.95	
		5/2	30647.81	1.51			5/2	32516.84	
		17/2	30666.00				7/2	32583.24	
		7/2	30680.26	1.41			13/2	32605.35	
		11/2	30695.07	1.355			5/2	32643.88	
		9/2	30698.72	1.35			11/2	32656.68	
		3/2	30774.74	1.740			7/2	32749.98	
		9/2	30789.68	1.07			5/2	32787.16	
		13/2	30825.57	1.41			5/2	32829.70	
		3/2	30852.95				11/2	32832.09	
		11/2	30916.01				11/2	32911.90	
		1/2	30928.77	1.685			5/2	32961.21	
		13/2	30947.95	1.5			23/2	33051.16	
		15/2	30958.07				11/2	33151.06	
		5/2	30969.15				13/2	33293.14	
		11/2	30976.92	1.51			19/2	33307.42	
		7/2	31093.42	1.5			3/2	33348.70	-
		5/2	31131.43	1.31			11/2	33454.94	- !

Tb I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		11/2	33568.03	1.52			9/2	34139.40	
		9/2	33638.32	1.53			13/2	34150.86	
		21/2	33669.32				21/2	34223.95	
		1/2	33696.38	3.880			7/2	34447.21	1.76
		7/2	33727.01	Å			19/2	34616.23	
		9/2	33771.57	1.46			19/2	34999.92	
		11/2	33839.15	1.60					
		5/2	34114.89	1.638	Tb II (6Hîs/2)681/2 (15/2,1/2)8	Limit		47295	

Tb I, Even Parity

			101, 1246	in Farity			
Configuration	Term	J	Level (cm ⁻¹)	g		L	eading percentages
f 8(7F)5d6s2	8G	13/2	285.500	1.46448	65	24	(7F) 8F
		15/2	462.080	1.45624	91	4	
		11/2	509.845	1.51654	35	30	
		7/2	2419.480	1.47678	56	25	
		9/2	2840.170	1.54375	47	38	
		5/2	3174.575	1.35525	73	36 16	
		$\frac{3}{2}$	3705.820	1.02220	86	7	
		1/2	4018.210	-1.19125	92	3	, ,
$f^{8}(^{7}\text{F})5d6s^{2}$		9/2	1371.045	1.54110	33 ⁸ G	29	(⁷ F) ⁸ F
$f^{8(7}\text{F})5d6s^{2}$	*8D	11/2	2310.090	1.53020	48	40	(⁷ F) ⁸ G
		7/2	3819.850	1.64184		43	
		5/2	4695.505	1.83129	52	29	(7F) 8G
		3/2	5483.980	2.32	56	21	(7F) 8F
		12	0400.000	2.32	51	37	(⁷ F) ⁸ F
$^{^{\circ}8}(^{7}{ m F})5d6s^{2}$	8F	13/2	3719.705	1.50473	71	22	(⁷ F) ⁸ G
		11/2	5353.370	1.545	54	21	(7F) 8D
		9/2	5829.860	1.58	56	13	(⁷ F) ⁸ P
		1/2	6259.090	3.84	91	3	(⁵ D1) ⁶ D
		7/2	6488.280	1.635	58	21	(⁷ F) ⁸ D
		5/2	6801.190	1.80	55	31	(⁷ F) ⁸ D
		3/2	6849.720	2.335	48	42	(⁷ F) ⁸ D
6 7 F) $5d6s^{2}$	8H	17/2	4646.830	1.40626	95	2	(5G1) 6I
		15/2	5425.060	1.370	64	27	(⁷ F) ⁶ H
		13/2	6351.750	1.350	74	10	(⁷ F) ⁶ H
		11/2	6988.820	1.315	74	7	(⁷ F) ⁶ H
		9/2	7441.030	1.240	74	8	(7F) ⁶ G
		7/2	7839.850	1.05	82	5	(⁷ F) ⁶ G
		5/2	8130.680	0.705	87	-	
		3/2		-0.36	89	5	(7F) 6G
		/-	0000.010	0.00	09	4	(⁷ F) ⁶ G
$^{8}(^{7}\mathrm{F})5d6s^{2}$	eF.	11/2	6674.155	1.32	71	12	(7F) ⁶ G
		9/2	7824.190	1.433	66	12	(⁷ F) ⁶ D
		7/2	8994.660	1.414	71	12	(⁷ F) ⁶ D
		5/2	10030.350	1.305	79	6	(⁷ F) ⁶ D
		3/2			85	4	(7F) 6G
		1/2			91	3	(5D1) 4D
	1	. 1			01	9	(DI) D

Tb I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
$4f^{8(^{7}\mathrm{F})}5d6s^{2}$	⁶ G	13/ ₂ 11/ ₂ 9/ ₂ 7/ ₂ 5/ ₂ 3/ ₂	7059.900 8932.120 9986.73 11107.07	1.38 1.47	75 64 60 53 73 82	11 (7F) 6H 11 (7F) 6F 17 (7F) 6D 14 (7F) 6F 6 (7F) 6D 4 (7F) 8H
4f*(7F)5d6s²	eН	15/ ₂ 13/ ₂ 11/ ₂ 9/ ₂ 7/ ₂ 5/ ₂	7767.015 9763.020 10997.850 11956.255 12714.050?	1.342 1.30 1.21	67 73 75 78 70 89	28 (7F) ⁸ H 15 (7F) ⁸ H 11 (7F) ⁸ H 8 (7F) ⁸ H 7 (7F) ⁶ D 3 (⁵ D1) ⁴ G
$4f^{8(7}\text{F})5d6s^{2}$	8P	9/ ₂ 7/ ₂ 5/ ₂	8097.875 10324.740	1.75 1.916	64 68 83	17 (7F) ⁸ D 16 (7F) ⁶ P 6 (7F) ⁶ P
4f ⁸ (⁷ F)5d ² (³ F) (⁹ G)6s	10G	15/ ₂ 13/ ₂ 17/ ₂ 11/ ₂ 11/ ₂ 9/ ₂ 7/ ₂ 5/ ₂ 3/ ₂ 1/ ₂	8190.465 8277.040 8506.710 8646.210 9145.230 9867.650 10456.670 10920.180	1.54 1.57 1.53 1.60 1.67 1.68 1.80 2.145		
4f 8(7F)5d2(3F) (9D)6s?	¹⁰ D?	9/2	9897.730	1.81		
$4f^{8}(^{7}\mathrm{F})5d6s^{2}$	eD	9/2	10680.17		59	16 (⁷ F) ⁶ F
$4f^{8}(^{7}F)5d^{2}(^{3}F)$ ($^{9}F)6s$?	10F?	11/2	11260.41	1.68		
$4f^{8(7}F)5d^{2(3}F)$ (9H)6s?	10H?	19/2	11331.14	1.46		
$4f^{8(7}F)5d^{2}(^{3}F)$ ($^{9}F)6s$?	10F?	13/2	11425.94			
$4f^{8(7}\text{F})5d^{2}(^{3}\text{F}) (^{9}\text{F})6s?$	10F?	15/2	11580.68			
$4f^{8(7}\text{F})5d^{2}(^{3}\text{F})$ (9H)6s?	¹⁰ H?	17/2	11879.20	1.43		
		9/2	12228.28			
		7/2	12250.99			
$4f^{8(7}\text{F})5d^{2}(^{3}\text{F})$ ($^{9}\text{I})6s$	10]	21/2	12283.30			
$4f^{8}(^{7}\text{F})5d6s^{2}$?	_e D.	5/2	12296.45?		60	17 (⁷ F) ⁶ P
$4f^{8}(^{7}\text{F})5d^{2}6s$?	8G?	11/2	12453.14			
$4f^{8}(^{7}\text{F})5d^{2}6s$?	8G?	13/2	12475.74			
$4f^{8}(^{7}F)5d^{2}(^{3}F)$ ($^{9}H)6s$?	¹⁰ H?	15/2	12628.67			
$4f^{8}(^{7}\text{F})5d6s^{2}$?		7/2	12645.32		38 eD	31 (⁷ F) ⁶ P
$4f^{8}(^{7}\text{F})5d^{2}6s$?	8G?	9/2	12776.31			
		13/2	12906.60			
$4f^{8}(^{7}\text{F})5d^{2}6s$?	8G?	15/2	12932.66			
		11/2	13071.30			

Tb I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
		13/2	13116.48		
$0.4(7 \mathrm{F})5d^2 6s$?	*G?	7/2	13277.23		
$^{\text{CH}(7}\text{F})5d^2(^3\text{F})$ ($^9\text{I})6s$?	10I?	19/2	13398.40		
		11/2	13666.46		
		7/2	13729.12		
		9/2	13751.41		
$^{\circ} 5d^2 6s?$		17/2	14016.91		
" $5d^2 6s$?		15/2	14569.67?		
* 5d ² 6s?		17/2	14718.11	1.400	
$^{9}(^{6}\mathrm{H}^{\circ}_{15/2})6s6p(^{3}\mathrm{P}^{\circ}_{0})?$	(15/2,0)?	15/2	14888.11	1.391	
$^{8}5d^{2}6s?$	8H?	17/2	15189.26	1.409	
		15/2	15387.79	1.367	
		15/2	16343.30	1.397	
96s6p?		15/2	16431.13	1.46?	
$^{9}(^{6}\mathrm{H}^{\circ}_{15/2})6s6p(^{3}\mathrm{P}^{\circ}_{2})?$	(15/2,2)?	17/2	17249.59		
$^{9}(^{6}\mathrm{H}^{\circ}_{15/2})6s6p(^{3}\mathrm{P}^{\circ}_{2})?$	(15/2,2)?	13/2	17875.98		
		15/2	19920.41		
		15/2	23031.84	1.24	
$9(^{6}\mathrm{H}^{\circ}_{15/2})6s6p(^{1}\mathrm{P}^{\circ}_{1})$	(15/2,1)	13/ ₂ 17/ ₂ 15/ ₂	23043.43 23107.25 23147.92	1.391 1.289 1.339	
$P(^{6}\text{H}^{\circ}_{13/2})6s6p(^{3}\text{P}^{\circ}_{2})?$	(13/2,2)?	15/2	23112.35		
		13/2	25373.85	1.354	
		13/2	25553.46	1.328	
$p(^6{ m H}^\circ_{13/2})6s6p(^1{ m P}^\circ_{1})$	(13/2,1)	$^{11/2}_{13/2}_{15/2}$	25637.87 25717.68 25825.53	1.334 1.300 1.246	
		11/2	26553.26		
		13/2	26592.90		
II (⁶ H [°] _{15/2})68 _{1/2} (¹⁵ / ₂ , ¹ / ₂) ⁸	Limit		47295		

Tb II

(Gd I sequence; 64 electrons)

Z = 65

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{9}(^6\mathrm{H}^{\circ}_{15/2})6s$ $(^{15}\!\!/_2,^{1}\!\!/_2)^{\circ}_8$

Ionization energy 92900± 600 cm⁻¹

 $11.52 \pm 0.08 \text{ eV}$

Identified odd configurations $4f^96s$, $4f^95d$, $4f^86s6p$?, $4f^85d6p$?

Identified even configurations $4f^85d6s$, $4f^86s^2$, $4f^85d^2$?, $4f^96p$

Meinders carried out the basic analysis of this spectrum using a list of 8550 lines (2850–7600 Å) obtained from observations made at the Argonne National Laboratory and at the Zeeman Laboratory, Amsterdam [Meinders, 1969, 1970]. Relying more on hyperfine-structure regularities than on the Zeeman data, she discovered two systems of energy levels based respectively on the 4f *5d6s and 4f *6s configurations. Verges recorded the infrared spectrum (0.72–3.3 μ m) at the Laboratoire Aimé Cotton, Orsay, and Blaise classified several infrared transitions connecting the two systems [Blaise, Camus, and Wyart, 1976]. The connection has been confirmed in further work by Meinders and Klinkenberg [1975], who furnished their unpublished list of levels and g values for this compilation. Some additional data and a few revisions due to Blaise and Verges (Orsay) and to Meinders and Klinkenberg (Amsterdam) have been taken from the article by Blaise et al. [1976]. Levels given in the original lists to the nearest 0.005 cm⁻¹ have been truncated to two decimal places.

The wavelength lists for Tb II mentioned above have not been published, but Meinders' 1969 paper gives about 140 lines (2809–5348 Å) with energy-level classifications. The g values are from unpublished Zeeman-effect observations over the range 2850–7700 Å [Meinders, 1970]. The accuracies are in general limited by hyperfine broadening.

The lowest few 4f %6s levels occur in J_1s -coupling pairs [Meinders, 1970], and we have also listed the leading LS-coupling eigenvector percentages for these levels. The percentages for both the 4f %6s and 4f %5d levels are from preliminary calculations by Crosswhite [1977]. The four lowest 4f %5d levels also form a good J_1j -coupling term, 4f %6 $H_{15/2}^{\circ}$)5d $H_{3/2}^{\circ}$, as was noted by Wyart, Blaise, and Camus [1974]; these authors located the J=9 level of this term, the other three levels having been given by Meinders. The identified 4f %5d levels are here designated in the LS scheme, which may be as appropriate for a larger part of this configuration. Second percentages $\leq 5\%$ are omitted for these levels.

No definite interpretation of the upper odd levels yet exists. A few assignments to the $4f^86s6p$ and $4f^85d6p$ configurations are given tentatively [Blaise, Camus, and Wyart, 1976].

Meinders [1970] established that the lowest even levels belong to $4f^8(^7\mathrm{F})5d6s$ $^9\mathrm{G}$, $^9\mathrm{D}$, $^7\mathrm{G}$, and $^7\mathrm{F}$ terms, or to mixtures of these, and she also deduced that the $^7\mathrm{F}_6$ level at $5898.35~\mathrm{cm}^{-1}$ belongs to either $4f^86s^2$ or $4f^85d^2$. The eigenvectors from a preliminary calculation of $4f^8(^7\mathrm{F})5d6s$ by Crosswhite [1977] give no meaningful term designations for several of these levels; no ordering by terms has been attempted here. A few additional levels and tentative assignments to $4f^86s^2$ and $4f^85d^2$, from recent work at Amsterdam and Orsay, have been included [Blaise et al., 1976]. A calculation of the $4f^8(5d+6s)^2$ configurations with their interactions would no doubt be helpful in extending the analysis of the even levels. Meinders [1970] has interpreted several of the upper even levels as belonging to J_1j -coupling terms of the $4f^9(^6\mathrm{H}^\circ)6p$ subconfiguration.

Sugar and Reader derived the ionization energy.

References

Blaise, J., Camus, P., and Wyart, J. F., in Gmelin Handbuch der Anorganischen Chemie, Vol. 39, Part B4 (Springer-Verlag, Berlin, 1976).
EL ND CL ZE Hfs
Crosswhite, H. M., unpublished material (1977).
PT
Davis, S. P., Astrophys. J. 132, 486 (1960).
ZE Hfs
Dekker, J. W. M., Bloemhof, H. F., Brouwer, J. H., and Klinkenberg, P. F. A., Physica (Utrecht) 46, 119 (1970).
Hfs

King, A. S., Astrophys. J. 72, 221 (1930). W Hfs Meinders, E., Physica (Utrecht) 42, 427 (1969). EL CL W ZE Hfs

Meinders, E., Thesis, Amsterdam, 75 pp. (1970). EL ND ZE Hfs PT Meinders, E., and Klinkenberg, P. F. A., unpublished material (1975). EL ND ZE Hfs Sugar, J., and Reader, J., J. Opt. Soc. Am. 55, 1286 (1965). IP

Wyart, J. F., Blaise, J., and Camus, P., Phys. Scr. 9, 322 (1974). EL

[May 1977]

Tb II, Odd Parity

Configuration	Term	J	Lev ė l (cm ⁻¹)	g			Leading	g percentages
4f ⁹ (6H° _{15/2})6s _{1/2}	(15/2,1/2)°	8 7	0.00 1016.38	1.37	94 90	or or	94 69	(6H°) 7H° (6H°) 5H°
$4f^{9}(^{6}\mathrm{H}^{\circ}_{13/2})6s_{1/2}$	(13/2,1/2)°	7 6	3010.03 3542.40	1.286	93 85	or or	71 54	(6H°) 7H°
$4f^{9}(^{6}\mathrm{H}^{\circ}_{11/2})6s_{1/2}$	(11/2,1/2)°	6 5	5171.76 5234.98		80 80	or or	52 70	(6H°) 5H° (6H°) 7H°
$4f^{9}(^{6}F^{\circ}_{11/2})6s_{1/2}$	(11/2,1/2)°	6 5	6372.95	1.40	92 55	or or	92 61	$^{(6}F^{\circ})$ $^{7}F^{\circ}$ $^{(6}F^{\circ})$ $^{7}F^{\circ}$
$4f^{9}(^{6}\text{H}^{\circ}_{9/2})6s_{1/2}$	(9/2,1/2)°	4 5	6912.49	1.10	80 77	or or	81 65	(6H°) ⁷ H° (6H°) ⁵ H°
4f ⁹ (⁶ H°)5d	7H°	8 7 6 5 4 3 2	11261.56 12200.40 13605.22 15212.59 16475.05 17475.20	1.368 1.339 1.330 1.221 1.058 0.780	79 65 54 66 72 77 81		10 15 18 13 8 10 12	(6H°) 7I° (6H°) 7G° (6H°) 7G° (6H°) 7G° (6H°) 7G° (6F°) 7H° (6F°) 7H°
4f ⁹ (⁶ H°)5d	7 <u>I</u> °	9 8 7 6 5 4 3	13518.25 15289.16 17125.82 17811.61	1.324 1.290 1.282 1.230	88 61 48 62 73 78 85		15 17 13	(⁶ H°) ⁵ I° (⁶ H°) ⁷ G° (⁶ H°) ⁷ G°
$4f^{9}(^{6}\mathrm{H}^{\circ})5d$	7F°	6	15023.80	1.442	61		17	$(^6\mathrm{H}^\circ)$ $^7\mathrm{H}^\circ$
$4f^9(^6\mathrm{H}^\circ)5d$	₹G°	7	15844.44	1.37	62		24	$(^6\mathrm{H}^\circ)$ $^7\mathrm{I}^\circ$
$4f^{9}(^{6}\mathrm{H}^{\circ})5d$	7 F °	5	17061.53	1.445	54		15	$(^6\mathrm{F}^\circ)$ $^7\mathrm{F}^\circ$
$4f^{9}(^{6}\mathrm{H}^{\circ})5d$	5 I °	8	17926.11	1.250	73		15	$(^6\mathrm{H}^\circ)$ $^7\mathrm{I}^\circ$
4f ⁹ (⁶ H°)5d	5H°	7	18790.52	1.25	51		32	$(^6\mathrm{H}^\circ)~^5\mathrm{I}^\circ$
4f 8 6s6p? 4f 8 5d6p? 4f 8 5d6p?		7 6 7 6	29100.78 29912.92 30225.87 30764.04	1.58				
4f 8 5d6p? 4f 8 5d6p?		8 7 5 6 6	30809.64 31794.62 32296.44 32646.47 33800.91 33841.71					

Tb II, Odd Parity—Continued

Configuration	Term	Ī	Level (cm ⁻¹)	g	Leading percentages
$4f^{8} 5d6p$?		7	33873.19		
i suspi		6	33906.62		
$4f^{8}5d6p$?		7	34090.44		
J		5	34265.59		
4f * 5d6p?		8	34282.35	1.42	
J == I		5	34465.42	1.555	
4f * 5d6p?		8	34480.63	1.44	
		6	34658.50		
		8	34683.53		
		6	34788.42		
		6	35075.68		
		5,6	35232.47		
		5	35373.35		
		6	35451.55		
		5,6	35468.02		
		7	35486.83		
		6	35590.71		
		7	35798.38		
		6	36000.42		
		5,6	36055.04		
		6	36381.24		
		7	36685.66		
		7	37182.22		
		6	37365,20		
		5,6	37423.07		
		6	37526.84		
		6	37565.23		
		7	37721.41		
		7	37754.98		
		7	37773.92		
		8	37926.24		
		6	38096.48		
		6	38260.92		
		7	38331.30		
		6	38592.88		
		5	39035.12		
		6	39335.01		
		5,6	39612.10		
		6	40328.21		
		7	43282.56		
Tb III (⁶ H _{15/2})	Limit		92900		

Tb II, Even Parity

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
4f 8(7F)5d (8G)6s	⁹ G	7	3235.18		64	28 (⁷ F)(⁸ F) ⁹ F
$4f^{8}(^{7}F)5d$ (8G)6s	9G	8	3423.28		92	4 (7F)(8H) 9H
$4f^{8}(^{7}\text{F})5d$ (8G)6s		6	3440.81	1.53	36 °G	34 (7F)(8F) 9F
$4f^{8}(^{7}F)5d$ (8G)6s		5	4158.72	1.54	33 °G	32 (⁷ F)(⁸ F) ⁹ F
4f8(7F)5d (8D)6s		6	5147.23	1.593	48 ⁹ D	37 (7F)(8G) 9G
$4f^{8}(^{7}\text{F})5d$ (8G)6s		5	5761.28	1.59	41 ⁹ G	40 (7F)(8D) 9D
4f 8 6s²	$^{7}\mathrm{F}$	6	5898.35	1.46		
4f 8(7F)5d (8G)6s?	₹G?	7	6223.39	1.43	69	12 (⁷ F)(⁸ F) ⁹ F
4f ⁸ (⁷ F)5d (⁸ G)6s	₹G	6	6428.73	1.456	53	27 (⁷ F)(⁸ F) ⁷ F
4f ⁸ (⁷ F)5d (⁸ G)6s		5	6582.89	1.531	32 ⁷ F	26 (7F)(8D) 7D
4f ⁸ (⁷ F)5d (⁸ F)6s?	°F?	7	7187.85		56	18 (7F)(8G) 7G
4f 8 6s ² ?	7F?	5	8278.04	1.464		
$4f^{8(7}\text{F})5d^{2}$?	9G?	7	8903.62	1.498		
$4f^{8(7}\text{F})5d^{2}$?	9G?	6	8991.10			
4f ⁸ (⁷ F)5d ² ?	9G?	8	9273.06			
		8	11160.18	1.38		
4f 8(7F)5d6s?		6	11638.64	1.53		
4f 8(7F)5d6s?		7	11813.17			
4f 8(7F)5d (6H)6s?	7H?	8	13593.44	1.38	77	17 (7F)(8H) 7F
4f 8(7F)5d6s?		6	14964.95	1.644		
		8	19710.26	1.30		
		8	21035.56			
		7	21521.06			
•		7	22008.54			
		7	23653.66	1.38		
		6	23678.13			
		8	25138.49	1.34		
		7	25376.50	1.29		
$f^{9(6 m H^{\circ}_{15/2})6}p_{1/2}$	(15/2,1/2)	7 8	25804.68 25975.20	1.37 1.30		
		7	26385.71	1.358		
		6	26731.50	1.40		
		7	27244.25			

Tb II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentag
⁹ (⁶ H _{15/2})6 <i>p</i> _{3/2}	(15/2,3/2)	8 7 6 9	28014.90 28209.47 28339.32 28488.83	1.29 1.35 1.32 1.326	
		8	28560.96		
$^{9(^{6}\mathrm{H}^{\circ}_{13/2})6p_{1/2}}$	(13/2,1/2)	7	28649.13	1.26	
		7	29407.02		
		6	29803.36		
		5	29995.37		
		6	30068.29		
⁵ H _{11/2})6 <i>p</i> _{1/2}	(11/2,1/2)	$\frac{5}{6}$	30148.67	1.27	
			30639.48	1.20	
		7	30364.74		
		7	30476.12	1.34	
		3	30703.63		
		7	30895.47	1.30	
$f^{9(6} ext{H}^{\circ}_{13/2})6p_{3/2}$	$(^{13}/_2,^3/_2)$	8	31078.49	1.28	
		7	31365.86	'	
$^{\circ}9(^{6}\mathrm{H}^{\circ}_{13/2})6p_{3/2}$	$(^{13}/_2, ^3/_2)$	6 c	31566.42	1.32	
		6 5	31879.15 32023.68	1.27	
		5,6	32369.10	1.2.	
		6	32687.20		
		6	32853.61	1.31	
		6	33488.95		
		5	34318.93	1.14	
		6	34577.23		
		7	34804.92		
		6	34875.62	1.64	
		7	35007.90	1.15	
		8	35080.26		
		7	35196.20		
		5	35227.65		
		4	36074.16		
		8	36602.00	1.17	
		4 8	37109.47 37193.86	1.11	
		7	37210.37		
		6,7	38030.16		
$II (^6H_{15/2}^{\circ})$	Ĩa mi i		92900		

Tb III

(Eu I sequence; 63 electrons)

Z = 65

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{9}$ 6 H $_{15/2}^{\circ}$

Ionization energy 176700±800 cm⁻¹

 $21.91 \pm 0.10 \text{ eV}$

Identified odd configurations

 $4f^{9}$ and $4f^{8}6p$

Identified even configurations

4f 85d and 4f 86s

Meinders, van Kleef, and Wyart have analyzed the Tb III spectrum obtained from a pulsed hollow-cathode source. The spectrum was photographed over the range 2000–6800 Å at the Argonne National Laboratory; most of the approximately 2500 Tb III lines in the unpublished list are in the range 2000–3220 Å. The authors classified 442 lines in this region, including most of the 100 strongest lines, and an additional 43 lines above 5000 Å.

All eigenvector percentages are from Meinders et al. In calculating the $4f^{8}(^{7}F)nl$ subconfigurations, they used the "real core" ^{7}F levels in matrices truncated to include only terms based on the ^{7}F parent.

Most of the $4f^8(^7\mathrm{F})6p$ levels have appropriate names in J_1j coupling. A few of the higher known or predicted levels of $4f^8(^7\mathrm{F})6p$ having low eigenvector purities are listed with names in order to complete the J_1j terms or to indicate missing levels. The authors omitted the odd J=52 level at 55706 cm⁻¹ in fitting the theoretical parameters to the experimental levels of $4f^8(^7\mathrm{F})6p$; they suggest this level may be perturbed by $4f^75d^2$.

The terms of $4f^{8}(^{7}F)6s$ and $4f^{8}(^{7}F)5d$ are complete except for five levels of the latter subconfiguration. The calculations of these subconfigurations included configuration interaction and "all two-particle operators acting only on the electron orbit." We have interchanged the $4f^{8}(^{7}F)5d^{-8}D_{3/2}$ and $^{8}F_{3/2}$ designations from those of Meinders et al. to conform with the assigned eigenvectors.

Sugar and, Reader obtained the ionization energy.

References

Becher, J., Thesis, Johns Hopkins Univ., Baltimore, 135 pp. (1965). PT Meinders, E., van Kleef, T. A. M., and Wyart, J. F., Physica (Utrecht) 61, 443 (1972). EL ND PT Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973), IP

[January 1977]

Tb III

Configuration	Term	J	Level (cm ⁻¹)		Leading percentages
4f 9	eH.	15/2	0.00	94	4 4100
·		13/2	2804.67		4 4I°3
				97	2 4I°3
		11/2	4734.52	94	$_{1}$ $_{\mathrm{eF}^{\circ}}$
		9/2	6258.08	94	2 ${}^4G^{\circ}4$
		7/2	7422.21	94	3 ${}^4G^{\circ}4$
		5/2	8285.885	93	4 4G°4
$4f^{9}$	eF.	11/2	6470.11	95	2 ⁶ H°
		9/2	7621.565	90	6 ⁴ F°3
		7/2	9144.98		
		5/2		93	4 ⁴ F°3
			10220.38	93	2^{-4} F°3
		3/2		92	$3 ^4D^{\circ}2$
		1/2		92	4 ⁴ D°2
$4f^{8}(^{7}\mathrm{F})5d$	*G	13/2	8972.29	73	23 (⁷ F) ⁸ F
		11/2	9218.63	47	30 (7F) 8F
		15/2	9275.42		50 (T) T
		9/2	10070.38	96 51	(7D) 07
		7/2		51	28 (⁷ F) ⁸ F
			10996.01	70	21 (⁷ F) ⁸ F
		5/2	11678.865	83	13 (⁷ F) ⁸ F
		3/2	12165.155	92	• •
		1/2	12454.365	97	
$f^{8(7}\text{F})5d$	8D	11/2	11217.785	54	38 (⁷ F) ⁸ G
		9/2	11752.295		
		7/2	12775.40	50	36 (⁷ F) ⁸ G
				55	21 (⁷ F) ⁸ G
		5/2	13689.615	52	34 (⁷ F) ⁸ F
		3/2		57	40 (7F) 8F
$f^{8}(^{7}\mathrm{F})5d$	$^8\mathrm{F}$	13/2	12986.505	76	21 (7F) 8G
		3/2	14515.35	53	41 (⁷ F) ⁸ D
		11/2	14771.12	61	26 (⁷ F) ⁸ D
		1/2	1111111		26 (F) D
		9/2	15970.00	97	
			15278.90	61	18 (⁷ F) ⁸ D
		7/2	15820.87	57	30 (⁷ F) ⁸ D
		5/2	16066.485	51	42 (7F) ⁸ D
⁶ 8(7F)5d	8H	17/2	14890.375	100	
		$^{15}/_{2}$	15516.735	76	19 (⁷ F) ⁶ H
		13/2	16261.835	83	
		$^{11/2}$	16757.805		11 (⁷ F) ⁶ H
		9/2		85	
		7/2	17169.285	89	
		7/2	17499.43	93	
		5/2	17755.55	95	
		3/2		98	
$^{8(7}{ m F})5d$	6F	11/2	17437.515	80	10 (⁷ F)6s ⁶ F
		9/2	18776.53	80	10 (1)00 T
		7/2	20012.85		
		5/2		83	
			20968.37	87	
		3/2	21640.59	89	
		1/2		92	
⁸ (⁷ F)6s	8F	13/2	17676.265	99	
		11/2	19181.10	62	28 (⁷ F) ⁶ F
		9/2	20648.99		40 (T) T
		7/2	21641.865	88	
				92	
		5/2	22384.795	97	
		$\frac{3}{2}$ $\frac{1}{2}$	22898.245 23203.55	98	
2/712/5 1				99	
³ (7F)5d	⁶ G	13/2	18158.91	94	
		11/2	19902.04	76	12 (⁷ F)6s ⁸ F
		9/2	21142.53	86	(-)
	1	7/2	$22067.435 \pm$	80	
		$\frac{7}{2}$ $\frac{5}{2}$	$\begin{array}{c c} 22067.435 \\ 22774.735 \end{array}$	89 81	12 (⁷ F) ⁸ P

Tb III—Continued

Configuration	Term	J	Level (cm ⁻¹)	L	eading perc	entages
4f 8(7F)5d	8P	9/2	18761.675	80	15	(7F) 8D
1) (1)000		7/2	21296.02	89		
		$\frac{5}{2}$	22980.56	83	12	(7F) ⁶ G
4f8(7F)5d	6H	15/2	18796.25	80	20	(7F) 8H
, , ,		13/2	20940.41	85	12	(^{7}F) ^{8}H
		$\frac{11}{2}$	22216.87	88		
		9/2	23239.99	91		
		$\frac{7}{2}$	24011.27	94		
		5/2	24592.495	97		
4f 8(7F)6s	6F	11/2	20317.60	60	26	(7F) 8F
	1	9/2	22475.34	57	24	$(^{7}F)5d ^{6}D$
		7/2	23357.625	74		` '
		5/ ₂	24307.445	54	33	$(^{7}F)5d^{6}D$
		3/2	24862.595	61	35	(7F)5d ⁶ D
		1/2	25241.355	87	90	(1)00 2
4f8(7F)5d	6D	9/2	22115.795	66	26	(7F)6s ⁶ F
	_	7/2	22913.07	69	13	(7F)6s 6F
		5/2	24189.895	58	37	(7F)6s 6F
		3/2	24924.195	62	31	
		1/2		91	01	(1)00 1
4f8(7F)5d	6P	7/2	24981.97	85	13	(7F) 6D
		5/2	26632.53	95		` '
		3/2	27945.64	98		
$4f^{8(7}F_{6})6p_{1/2}$	(6,1/2)°	11/2	52039.185	96		
•		13/2	52252.635	92		
$4f^{8}(^{7}\text{F}_{5})6p_{1/2}$	$(5,1/2)^{\circ}$	9/2	53831.125	93		
		11/2	54632.46	95		
$4f^{8}(^{7}F_{4})6p_{1/2}$	$(4,^1/_2)^{\circ}$	7/2	54965.075	93		
		9/2	55932.24	96		
$4f^{8}(^{7}F_{3})6p_{1/2}$	(3, ¹ / ₂)°	⁵ /2	55705.84*	93		
2) (10)0[2.2		7/2	56857.39	97		
		3/2	56025.375			
		7/2	56474.84			
		⁵ /2	56694.12			
$4f^{8}(^{7}\text{F}_{6})6p_{3/2}$	$(6,^{3}/_{2})^{\circ}$	13/2	56779.125	84		
$\pm j = (-1.6) \cup p3/2$	(0, -/2)	$\frac{15}{2}$	57036.08	84 100		
		$\frac{11}{2}$	57620.57			
		9/2	58722.65	99 92		
				92		
		3/2	57134.15			
$4f^{8(7}F_{2})6p_{1/2}$	$(2,^{1}/_{2})^{\circ}$	$^{3}/_{2}$		92		
-		5/2	57433.545	97		
$4f^{8}(^{7}F_{1})6p_{1/2}$	$(1,^{1}/_{2})^{\circ}$	1/2		87		
-		3/2	57773.445	96		
$4f^{8}(^{7}\text{F}_{0})6p_{1/2}$	(0,1/2)°	1/2	57893.975	91		
$4f^{8}(^{7}\text{F}_{5})6p_{3/2}$	$(5,^3/2)^{\circ}$	11/2	58811.23	73	23	$(^{7}F_{4}) (4,^{3}/_{2})^{\circ}$
		$^{13}/_{2}$	59189.825	92		
		9/2	59712.255	92		
		$^{7}/_{2}$	60440.755	76	20	$(^{7}F_{4}) (4,^{3}/_{2})^{\circ}$

Tb III—Continued

Configuration	Term	J	Level (cm ⁻¹)	L	eading percentages	
$4f^{8(7}F_{4})6p_{3/2}$	$(4,^{3}/_{2})^{\circ}$	9/2	60089.475	65	$32 \ (^{7}F_{3}) \ (3,^{3}/_{2})^{\circ}$	
		11/2	60687.115	77	22 $(^{7}F_{5}) (5, ^{3}/_{2})^{\circ}$	
		7/2	61009.61	68	$16 \ (^{7}F_{5}) \ (5,^{3}/_{2})^{\circ}$	
		5/2	61435.10	74	$20 \ (^{7}F_{3}) \ (3,^{3}/_{2})^{\circ}$	
$4f^{8(7}F_{3})6p_{3/2}$	(3,3/2)°	7/2	61131.515	55	$33 \ (^{7}F_{2}) \ (2,^{3}/_{2})^{\circ}$	
		9/2	61847.625	66	$31 \ (^{7}F_{4}) \ (4,^{3}/_{2})^{\circ}$	
		5/2	61973.18	38	$34 \ (^{7}F_{1}) \ (1,^{3}/_{2})^{\circ}$	
		3/2		67	24 $(^{7}F_{2}) (2,^{3}/_{2})^{\circ}$	
		5/2	61883.195			
$4f^{8}(^{7}F_{2})6p_{3/2}$	$(2, 3/2)^{\circ}$	5/2	62157.57	40	33 $(^{7}F_{3}) (3,^{3}/_{2})^{\circ}$	
		3/2		33	$32 \ (^{7}F_{0}) \ (0,^{3}/_{2})^{\circ}$	
		1/2		62	$37 \ (^{7}F_{1}) \ (1,^{3}/_{2})^{\circ}$	
		7/2	62733.445	54	40 $(^{7}F_{3}) (3,^{3}/_{2})^{\circ}$	
		5/2	62578.475			
$4f^{8(7}F_{1})6p_{3/2}$	$(1,^3/2)^{\circ}$	1/2		57	31 $(^{7}F_{2}) (2, ^{3}/_{2})^{\circ}$	
-		5/2	63383.965	45	$45 \ (^{7}F_{2}) \ (2,^{3}/_{2})^{\circ}$	
		3/2	63721.245	48	40 $(^{7}\text{Fo}) (0, ^{3}/_{2})^{\circ}$	
Tb IV (⁷ F ₆)	Limit		176700			

(Sm I sequence; 62 electrons)

Z = 65

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ 4f 8 ⁷F₆

Ionization energy 317500±800 cm⁻¹

 $39.37 \pm 0.10 \text{ eV}$

Spector and Sugar have classified 48 lines of Tb IV in the region 1176-2436 Å. The terms are from their analysis; they note that "the rms error in the fit of the wavenumbers of the lines to the final level values is 0.1 cm⁻¹."

The eigenvector percentages of the $4f^7(^8S^\circ)5d$ and $4f^7(^8S^\circ)6p$ levels are also from Spector and Sugar, the calculations having been carried out with matrices including only terms based on the $4f^7(^8S^\circ)$ parent term. The six $4f^7(^8S^\circ)6p$ levels comprise two J_1j -coupling terms of high purity. The less appropriate LS-coupling names of these levels are given with corresponding percentages after the word "or." The two $4f^7(^8S^\circ)6s$ levels are designated as $^9S^\circ$ and $^7S^\circ$ terms, but the J_1j -coupling term which constitutes an alternate designation for this pair is also shown.

In their searches for the $4f^{8\ 5}F$ levels, Spector and Sugar made use of the approximate positions of these levels as determined from crystal spectra [Dieke, 1968]. Absorption transitions involving levels of higher terms of $4f^8$ have been observed in both crystal and solution spectra [Dieke, 1968; Carnall, Fields, and Rajnak, 1968]. The lowest $4f^8$ level above the 7F term is a 5D_4 level around 20000 cm $^{-1}$. We took the leading percentages for the levels of the 7F term from Ofelt's calculation.

Spector and Sugar obtained the quoted ionization energy by adjusting an earlier result of Sugar and Reader [1973] to the experimental value of $4f^{7}(^{8}S^{\circ})6s$ relative to the ground level.

References

Carnall, W. T., Fields, P. R., and Rajnak, K., J. Chem. Phys. 49, 4447 (1968). [EL] [CL] [W] PT
Dieke, G. H., Spectra and Energy Levels of Rare Earth Ions in Crystals, Ed. H. M. Crosswhite and H. Crosswhite, pp.
253-268 (Interscience Publishers, New York, 1968). [EL] ND
Ofelt, G. S., J. Chem. Phys. 38, 2171 (1963). ND ZE PT
Spector, N., and Sugar, J., J. Opt. Soc. Am. 66, 436 (1976). EL CL IP PT

Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP

[October 1976]

Tb IV

Configuration	Term	J	Level (cm ⁻¹)	Lead	ing percentages
.f8	$^{7}\mathrm{F}$	6	0.0	96	2 ⁵ G1
J		5	2051.6	97	1 ⁵G1
		4	3314.2	95	1 ⁵D1
		3	4292.3	95	2 ⁵ D1
		2	4977.9	95	3 ⁵D1
		1	5431.8	95	3 ⁵D1
		0	5653.8	95	3 ⁵ D1
f ⁷ (8S°)5d	aD _o	2	51404.0	99	
		3	51800.8	98	
		4	52399.6	97	
		5	53316.6	97	
		6	54882.5	100	
f ⁷ (8S°)5d	⁷ D°	5	62680.6	97	
-		4	63281.4	97	
		3	63746.2	98	
		2	64081.4	99	
		1	64312.2	100	

Tb IV—Continued

Configuration	Term	J	Level (cm ⁻¹)		Leading pe	rcentage	s
$4f^{7}(^{8}\mathrm{S}^{\circ})6s$	9S°	4	84954.5		or		$(^{8}\mathrm{S}^{\circ}_{7/2}) \ (^{7}/_{2},^{1}/_{2})^{\circ}$
$4f^7(^8\mathrm{S}^\circ)6s$	⁷ S°	3	87573.4		or		$(^{8}\mathrm{S}^{\circ}_{7/2}) \ (^{7}/_{2},^{1}/_{2})^{\circ}$
$4f^{7}(^{8}\mathrm{S}_{7/2}^{\circ})6p_{1/2}$	(7/2,1/2)	3 4	127839.3 128636.4	98 97	or or	86 60	(8S°) 9P
$4f^{7}(^{8}S_{7/2}^{\circ})6p_{3/2}$	(7/2,3/2)	5 4 3 2	134285.2 135692.7 136396.2 136869.2	100 97 98 100	or or or	100 60 86 100	(8S°) 9P (8S°) 7P (8S°) 7P (8S°) 7P
Tb v (8S _{7/2})	Limit		317500				

DYSPROSIUM

Dy I

66 electrons

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{10}6s^2$ 5I_8

Ionization energy 47900± 5 cm⁻¹

 5.9389 ± 0.0006 eV

Identified even configurations

 $4f^{10}6s^2$, $4f^{9}6s^26p$, $4f^{9}5d6s6p$, $4f^{10}5d6s$, $4f^{10}6s7s$, $4f^{10}6s6d$

Identified odd configurations

 $4f^{9}5d6s^{2}$, $4f^{9}5d^{2}6s$, $4f^{10}6s6p$, $4f^{10}5d6p$?, $4f^{10}6s7p$, $4f^{9}5d6s7s$

Main References for Wavelengths and Energy Levels

The most complete description of the Dy I and Dy II spectra is given in the 1970 UCRL report by Conway and Worden. More than 22000 lines are listed between 2300 and 11400 Å, and Zeeman data are included for the range 2300 to 9000 Å. Sharp-line spectra were obtained by the use of electrodeless lamps containing only the isotope ¹⁶²Dy. About 85% of the lines are assigned to either Dy I or Dy II, with almost 10000 lines being listed for Dy I. King's earlier temperature classifications of 4584 Dy lines were used in confirming and extending the separation of the two spectra [King, Conway, Worden, and Moore, 1970].

Conway and Worden [1970, 1971] found more than 300 levels in the first analysis of Dy I, and classified almost 2000 of the Dy I lines. The levels of the $4f^{10}6s^2$ ⁵I ground term were identified and a number of the lowest odd levels were assigned to terms of $4f^95d6s^2$.

Camus and Masmoudi observed 1418 Dy I lines in absorption between 2478 and 4100 Å, and found 81 new high levels [Masmoudi, 1972; Camus and Masmoudi, 1973]. Since the published values of the low levels are given to only two decimal places, we have for consistency rounded off the upper levels to two places.

Spector identified six upper even levels as belonging to the two J_1j -coupling terms of $4f^9(^6{\rm H}^\circ_{15/2})6s^26p$, and Griffin, Ross, and Cowan extended the interpretation of the odd levels to include 62 assignments to eigenvectors of $4f^{10}6s6p$ and $4f^95d6s^2$.

In his 1973 thesis, Wyart gives a large extension of the Dy I analysis and some revisions. He lists a total of almost 400 even levels and more than 300 odd levels. Wyart notes that a list of 9500 lines of Dy I and Dy II having energy-level classifications or Zeeman data will be given in a separate report. High-resolution infrared spectra (0.8 to 2.6 μ m) obtained by Verges with a Fourier spectrometer were among the new data available to Wyart.

The levels and eigenvector percentages given here are primarily a rearrangement of the data in Wyart's thesis [1973], including some additions and revisions made later [Wyart, 1975; 1976]. A few uninterpreted levels without g values and listed by only one investigator were marked as tentative.

g Values

The J and g values of the ground level of Dy I were determined by atomic-beam magnetic-resonance techniques in 1961 [Cabezas, Lindgren, and Marrus; Smith and Spalding]; these measurements gave the first direct experimental evidence that the ground level was $4f^{10}6s^2$ 5I_8 . The five-place g values listed here are from more recent work by Childs [1970] and by Ferch, Dankwort, and Gebauer [1974]. The latter authors found the g value of the ground level to be 1.2415869±.0000010, and Childs gives uncertainties of ±0.00003 and ±0.00005 for his determinations of the g values of the g va

The remaining g values are from Conway and Worden or from Wyart [1973, 1976]. Some values given by Wyart to the nearest 0.005 have been truncated to two places to distinguish them from the three-place values. The three-place values from Conway and Worden are accurate to about ± 0.003 and most of the two-place values are accurate to ± 0.01 or 0.02.

Calculations, Theoretical Interpretation

All of Wyart's calculations of Dy I configurations except $4f^{10}6s^2$ and $4f^{10}6s7s$ were performed with truncated matrices. Calculation of the subconfigurations $(4f^{10}(^5I)5d6s+4f^9(^6H^\circ,^6F^\circ)6s^26p)$ allowed him to interpret 42 of the even levels. The $4f^{10}(^5I)5d6s$ percentages are for basis states with "real core" wavefunctions $(4f^{10})$ electrons in intermediate coupling); the corresponding percentages for pure-coupling basis states would in general be lower. In addition to the effect of truncation, Wyart noted that the omission of additional configurations, particularly $4f^95d6s6p$, from this calculation must significantly affect some of the eigenvectors. He showed that $4f^95d6s6p$ probably begins with the level at 23031.46 cm⁻¹ (J=8). The configuration assignments of most even levels above this point that have not been assigned to calculated eigenvectors are given as tentative.

The eigenvector percentages for the odd levels are from Wyart's calculation [1973, 1974] of the subconfigurations $(4f^9(^6\mathrm{H}^\circ,^6\mathrm{F}^\circ)5d6s^2+4f^9(^6\mathrm{H}^\circ,^6\mathrm{F}^\circ)5d^26s+4f^{10}(^5\mathrm{I})6s6p)$. Wyart [1973] made a separate calculation of $4f^{10}(^5\mathrm{I})6s6p$ in J_1J_2 coupling, but did not transform to this scheme in his calculation including all three subconfigurations. The levels belonging mainly to $4f^{10}(^5\mathrm{I})6s6p$ are thus listed here in J_1J_2 coupling without percentages, and the leading percentages in LS coupling are given after the word "or." Murakawa and others had noted the appropriateness of J_1J_2 coupling for this subconfiguration, and the resultant strong effects on the intensities of the $4f^{10}(^5\mathrm{I})6s^2-4f^{10}(^5\mathrm{I})6s6p$ transitions have been mentioned by several authors. (Similar effects occur for $4f^N6s^2-4f^N6s6p$ transitions in general.) Cowan [1973] has calculated transition probabilities for some of these lines.

Wyart remarks that the three calculated odd subconfigurations are expected to account for the levels up to about $28000~\rm cm^{-1}$. Interpretation of the odd levels above this point would thus require the inclusion of higher terms in the $4f^N$ cores of these configurations, and also additional configurations. Wyart [1975] has tentatively assigned a number of levels above $34000~\rm cm^{-1}$ to the $4f^{10}5d6p$ configuration because they combine mainly with $4f^{10}5d6s$ levels. The assignments of several levels near $36000~\rm cm^{-1}$ to $4f^{10}6s7p$ and the location of two $4f^{9}5d6s7s$ levels above $40000~\rm cm^{-1}$ are also due to Wyart [1975, 1976].

Hyperfine Structure, Isotope Shifts, Ionization Potential

Hyperfine structure and isotope shifts in Dy I have been investigated extensively; only a few of the more recent references are included below. Griffin et al. and Wyart used the isotope shifts of particular levels as a help in making configuration assignments.

Worden, Conway, Paisner, and Solarz [1977] have observed high members of two series in Dy I by using laser techniques. These data became available too late for inclusion here, but the quoted ionization energy is a new determination from these series.

References

```
Cabezas, A. Y., Lindgren, I., and Marrus, R., Phys. Rev. 122, 1796 (1961). ZE Hfs
Camus, P., and Masmoudi, K., Spectrochim. Acta, Part B 28, 79 (1973). EL CL W ZE
Childs, W. J., Phys. Rev. A 2, 1692 (1970). ZE Hfs
Conway, J. G., and Worden, E. F., Univ. Calif. Radiation Lab., Berkeley, UCRL-19944, 613 pp. (1970). (Available from National Technical Information Service, Springfield, Va. 22161.) EL CL W ZE PT
Conway, J. G., and Worden, E. F., J. Opt. Soc. Am. 61, 704 (1971). EL CL W ZE PT
Cowan, R. D., Nucl. Instrum. Methods 110, 173 (1973). AT
Dekker, J. W. M., Klinkenberg, P. F. A., and Langkemper, J. F., Physica (Utrecht) 39, 393 (1968). IS
Ebenhöh, W., Ehlers, V. J., and Ferch, J., Z. Phys. 200, 84 (1967). Hfs
Ferch, J., Dankwort, W., and Gebauer, H., Phys. Lett. A 49, 287 (1974). ZE Hfs
Golovin, A. F., and Striganov, A. R., Sov. Phys.-Usp. (Engl. Transl.) 10, 658 (1968). IS
Griffin, D. C., Ross, J. S., and Cowan, R. D., J. Opt. Soc. Am. 62, 571 (1972). ND IS PT
King, A. S., Astrophys. J. 72, 221 (1930). W
```

King, A. S., Conway, J. G., Worden, E. F., and Moore, C. E., J. Res. Nat. Bur. Stand. (U.S.) 74A, 355 (1970). W Masmoudi, K., Thesis (Third Cycle), Univ. Paris-Sud, Orsay, 130 pp. (1972). EL CL W ZE

Miller, G. E., and Ross, J. S., J. Opt. Soc. Am. 66, 585 (1976). IS

Murakawa, K., Phys. Rev. A 7, 416 (1973). Hfs

Rosén, A., and Nyqvist, H., Phys. Scr. 6, 24 (1972). Hfs

Ross, J. S., J. Opt. Soc. Am. 62, 548 (1972). IS

Smith, K. F., and Spalding, I. J., Proc. R. Soc. London, Ser. A 265, 133 (1961). ZE

Spector, N., J. Opt. Soc. Am. 61, 1350 (1971). ND PT

Worden, E. F., Conway, J. G., Paisner, J. A., and Solarz, R. W., unpublished material (1977). IP Wyart, J. F., C. R. Acad. Sci., Ser. B 273, 763 (1971). EL ND

Wyart, J. F., Thesis, Univ. Paris-Sud, Orsay, 194 pp. (1973). EL ND CL ZE IS IP PT Wyart, J. F., Physica (Utrecht) 75, 371 (1974). EL ND ZE PT

Wyart, J. F., unpublished material (1975, 1976). EL ND ZE PT

[July 1976]

Dr. I. Erron David

	Dy I, Even Parity									
Configuration	Term	J	Level (cm ⁻¹)	g	I per	eading centages				
$4f^{10} 6s^2$	5 <u>I</u>	8	0.00	1.24159	94					
		7	4134.23	1.17346	97					
		6	7050.61	1.07155	96					
		5	9211.58	0.911	93					
		4	10925.25	0.618	91					
$4f^{10}(^{5}\text{I}_{8})5d6s(^{3}\text{D})$	³[8]	9	17514.50	1.316	90					
		8	18903.21	1.22	39					
		7	21074.20*	1.24	38					
"	3[7]	8	17613.36	1.33	61					
	[7	18937.78	1.28	47					
		6	21159.79	1.24	58					
,,	³[6]	7	1000450	1.00						
	-[0]	7 6	18094.52	1.38	84					
		5			69					
		0			67					
"	3[9]	10	18462.65	1.282	90					
		9	19240.82	1.217	69					
		8	20193.60	1.16	63					
$4f^{10} 6s^2$	³K2	8	19019.15	1.14	57					
$4f^{10}(^{5}\text{I}_{8})5d6s(^{3}\text{D})$	³ [10]	11	19348.72	1.27	100					
		10	19797.96	1.21	86					
		9	20209.00	1.14	77					
$4f^{9}(^{6}\mathrm{H}^{\circ}_{15/2})6s^{2}6p_{1/2}$	$(^{15}/_{2},^{1}/_{2})$	7	20614.32*	1.32						
5 (=====, = 0	(12, 12)	8	20789.85	1.32	55 54					
			20103.03	1.02	54					
$4f^{10}(^{5}\text{I}_{7})5d6s(^{3}\text{D})$	³ [7]	8	21603.04	1.26	47					
"	³ [6]	7	21778.43	1.26	49					
$4f^{10}(^{5}\mathrm{I_{8}})5d6s(^{1}\mathrm{D})$	1[9]	9	22045.79	1.22	49					
"	¹[10]	10	22487.14	1.197	68					
$4f^{9(6}\text{H}^{\circ})5d~(^{7}\text{H}^{\circ}_{8})6s6p(^{3}\text{P}^{\circ}_{0})$	(8,0)?	8	23031.46	1.37						
$4f^9 5d6s6p?$		9	23218.59	1.37	*					
$4f^{10}(^{5} ext{I}_{7})5d6s(^{3} ext{D})$		8	23280.46	1.176	37	3[9]				
$4f^{10}(^{5} ext{I}_{7})5d6s(^{3} ext{D})?$		6	23333.92	1.16	19	³ [7]				
$4f^{10}(^{5}\text{I}_{7})5d6s(^{3}\text{D})$		7	23360.66	1.222	26	³ [7]				
$4f^{10} 5d6s$?		8	23388.95	1.22						

Dy I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Lea percei	
$4f^{9(6}\mathrm{H}^{\circ}_{15/2})6s^{2}6p_{3/2}$	(15/2,3/2)	8 7 9 6	23534.50 23591.27 23780.26	1.31 1.26 1.34	56 30 84 34	
$4f^{10}(^{5}\text{I}_{7})5d6s(^{3}\text{D})$	3[8]	7	23655.36	1.174	55	
$4f^{9}(^{6}\mathrm{H}^{\circ}_{13/2})6s^{2}\frac{6}{6}p_{1/2}?$		6	23683.87	1.30	28	$(^{13}/_{2},^{1}/_{2})$
$4f^9 5d6s6p$?		7	23799.41	1.38		
$4f^{10}(^{5}\text{I}_{7})5d6s(^{3}\text{D})$		9	23841.90	1.16	44	³ [9]
$4f^{10} 5d6s?$		7	23972.34	1.24		
$4f^{10} 6s^2$		6	24062.88	1.217	44	³ H4
$4f^{10}(^{5}\text{I}_{7})5d6s(^{3}\text{D})$		6	24302.02	1.20	35	³ [6]
11		7	24430.27	1.26	30	³ [7]
$4f^{9}(^{6}\mathrm{H}^{\circ}_{13/2})6s^{2}6p_{1/2}$		6	24867.17	1.33	27	$(^{13}/_{2},^{1}/_{2})$
$4f^9 6s^2 6p$?		6	24899.06	1.35		
$4f^9 5d6s6p$?		10	24978.98	1.38		
$4f^9 5d6s6p$?		8	25095.66	1.408		
$4f^{10}(^{5}I_{6})5d6s(^{3}D)$		7	25502.82	1.16	34	³ [6]
4) (16)0003(D)		6	25506.38	1115	19	³ [6]
11		5	25744.35	1.08	37	³ [6]
$4f^9 5d6s6p$?		7	25879.15	1.35	٥.	[0]
4 <i>j</i> 50050 <i>p</i> :		5	25993.57	1.18		
		7	26200.05?	1.10		
$4f^9 5d6s6p$?		9	26244.60	1.37		
4j * 5aosop:		5	26284.69	1.20		
$4f^9 5d6s6p$?		8	26349.49	1.34		
$4f^9 5d6s6p$?		6	26387.81	1.48		
$4f^{\circ} 5d6s6p$?		7	26425.15	1.46		
•			20425.15	1,24		
$4f^{10}(^{5}\text{I}_{6})5d6s(^{3}\text{D})$	3[7]	8 7 6	26435.71	1.14	41 46 70	
		5	26506.51	1.32		
		6	26533.88	1.14		
$4f^9 5d6s6p?$		10	26752.29	1.36		
$4f^{10}(^{5}\text{I}_{6})5d6s(^{3}\text{D})$	3[8]	7			85	
4j(-16)5a0s(-D)	-[6]	8	26759.81		64	
		9			49	
$4f^{9}(^{6}\mathrm{H}^{\circ}_{13/2})6s^{2}6p_{3/2}$	$(^{13}/_2,^3/_2)$	6	26785.45	1.28	51	
		7 8	26848.46 27059.89	1.28 1.29	69 89	
		5	21000.00	1.20	03	
		9	26955.00	1.37		
4f9(6U%)Go2 Gm		6	27068.94	1.22	29	$(^{13}/_2,^3/_2)$
$4f^{9}(^{6}\mathrm{H}^{\circ}_{13/2})6s^{2}6p_{3/2}$		9	27390.97	1.35	29	(12, 12
			27390.97	1.34		
		8				
		7	27462.41	1.413		
		6	27474.64	1.35		

Dy I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
$4f^{10}(^{5}\text{I}_{5})5d6s(^{3}\text{D})$		4	27578.02	0.98	42 ³ [5]
$4f^9 6s^2 6p$?		5	27680.12	1.317	
		8	27896.80	1.33	
		7	27959.98	1.36	
	4	6	27987.90	1.32	
		4	28082.47	1.12	
		9	28158.51	1.33	
		4	28235.74	1.12	
		5	28265.78	1.32	
$4f^9 6s^2 6p$?		5	28309.18	1.20	
		6	28326.48	1.33	
		7	28358.70	1.35	
$4f^{9}(^{6}\mathrm{F}^{\circ}_{11/2})6s^{2}6p_{3/2}$	$(^{11}/_2,^3/_2)$	5	28379.82	1.40	50
		10	28433.41	1.33	
		8	28539.57	1.32	
		5	28666.31	1.30	
$4f^{9}(^{6}\mathrm{F}^{\circ}_{11/2})6s^{2}6p_{1/2}$	$(^{11}/_2,^{1}/_2)$	6	28849.06	1.36	69
		6	28909.39	1.38	
		8	28971.42	1.35	
		5	28987.02	1.317	
		6	29159.93	1.20	
		7	29169.98	1.313	
		8	29291.32	1.36	
		9	29465.04	1.32	
		5	29496.33	1.18	
		7	29512.27	1.36	
$4f^9 6s^2 6p$?		7	29532.42	1.24	
		3	29626.20	0.82	
		6	29682.16	1.36	
		10	29706.72	1.32	
		9	29714.72	1.31	
		11	29742.49	1.34	
		8	29841.69	1.32	
		7	29877.37	1.38	
		6	30015.44	1.287	
		5	30033.06	1.34	
		6	30102.59	1.29	
		10	30106.65	1.28	
		7	30163.33	1.36	
		7	30444.88	1.30	
		9	30459.64	1.26	
		6	30475.95	1.34	
		5	30512.73	1.29	

Dy I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
$4f^{10}(^{5}\mathrm{I}_{8})6s7s(^{3}\mathrm{S}_{1})$	(8,1)	9	30560.56	1.32	99
		8 7	30979.53 31509.12	1.26 1.18	92 99
					33
		8	30600.15 30621.87	1.31 1.27	
		7 4	30662.79	1.25	
		9	30716.06	1.26	
		8	30739.79	1.32	
		4	30896.57	1.48	
		6	30988.25	1.332	
		8	31061.18	1.306	
		5	31079.52	1.223	
		7	31124.80	1.34	
		6	31180.01	1.26	
		8	31233.57	1.34	
		9	31287.04	1.35	
		7	31362.62	1.26	
		7	31423.04	1.32	
		8	31423.04		
		10	31489.64	1.42 1.276	
		6	31529.68	1.42	
		5	31545.99	1.38	
		7	31674.08	1.31	
		5	31742.14	1.393	
		9	31775.65	1.27	
		8	31820.28	1.204	
		10	31838.24	1.307	
		7	32036.51	1.32	
		9	32206.27	1.24	
		7	32382.29	1.37	
		6	32392.59	1.32	
		7	32411.25	1.32	
		10	32428.08	1.35	
		8	32428.66	1.32	
			32470.81	1.32	
		7	32554.86	1.32	
		8		1.27	
		8	32675.52		
		3	32712.54	1.26	
		7	32722.87	1.33	
		9	32763.21	1.29	
		8	32940.47	1.35	
		6	32945.30	1.33	
		9	33086.26	1.29	
		7	33110.16	1.28	

Dy I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
		6	33210.13	1.32	
		8	33246.13	1.24	
		9	33252.28	1.31	
		4	33358.79	1.07	
		5	33381.16	1.382	
		8	33406.06	1.31	
		6	33474.30	1.37	
		7	33475.72	1.33	
		7	33552.39	1.28	
		6	33656.96	1.28	
		7	33746.82	1.27	
		8	33753.11	1.31	
		7	33806.12	1.204	
		6	33911.02	1.30	
		7	34027.70	1.26	
		7	34060.16	1.13	
		7	34131.12	1.29	
		9	34174.66	1.31	
		6	34179.68	1.190	
		7	34196.55	1.32	
		6	34296.69	1.36	
		7	34324.66	1.35	
		6	34547.46	1.31	
		5	34573.07	1.30	
		8	34676.95	1.24	
		6	34679.75	1.488	
		9	34689.19	1.28	
		5	34742.71	1.24	
		7	34742.84	1.34	
		10	34776.04	1.278	
		9	34829.30	1.27	
		5	34841.48	1.36	
		7	34843.11	1.29	
$9(51_7)6s7s(3S_1)$	(7,1)	8 7	34922.08 35135.33	1.27 1.20	97 96
		6	35421.17	1.10	97
		7	35003.75	1.31	
		8	35053.56	1.32	
		3	35141.43	0.98	
		5	35184.56	1.30	
		9	35219.85	1.28	
		7	35221.98	1.32	
		8	35249.13	1.32	
		5	35354.27	1.38	

Dy I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
		8	35377.51	1.28	
		10	35385.78	1.27	
		5	35523.35	1.16	
		5	35578.47	1.21	
		7	35695.77	1.34	
		7	35737.77	1.20	
		6	35744.63	1.32	
		9	35762.55	1.32	
		7	35866.60	1.24	
		8	35938.74	1.35	
		9	35940.35	1.32	
		6	35970.10	1.40	
		6	36093.54	1.27	
		7	36119.46	1.25	
		8	36308.08	1.27	
		6	36365.09		
		8	36392.11	1.33	
		7	36417.25	1.29	
		9	36487.20	1.31	
		10	36490.07	1.25	
		7	36491.05		
		7	36508.79	1.34	
		8	36553.84	1.38	
		8	36599.44	1.29	
		7	36608.28	1.18	
		6	36612.84	1.262	
$f^{10}(^{5}\text{I}_{7})6s7s(^{1}\text{S}_{0})$	(7,0)	7	36667.78		91
, , , , , ,		9	36708.15	1.32	
		9	36717.57	1.29	
$f^{10} 6s6d?$		8	36760.64	1.24	
g 000w.		8	36807.39	1.34	
		9	36822.27	1.25	
		7	36865.40	1.31	
$f^{10} 6s6d$?		10	36905.44	1.25	
., 000a.		7	36924.54	1.22	
		8	36954.35	1.30	
4f 10 6s6d?		9	36964.32	1.21	
$4f^{10} 6s6d$?		10	37007.58	1.22	
±j 0800:		7	37015.22	1.27	
$4f^{10}(^{5}\mathrm{I_{8}})6s6d(^{3}\mathrm{D})?$		11	37039.00	1.28	
±j(~18)080a(~D):		6	37058.60	1.31	
		8	37087.47	1.33	
		9	37121.97	1.27	

Dy I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
		6	37125.45	1.33	
		7	37135.33	1.20	
		6	37163.16	1.29	
		5	37182.19	1.26	
		7	37212.06	1.30	
		5	37231.26	1.26	
		7	37295.97	1.28	
		11	37299.36	1.26	·
		6	37324.62	1.24	
$f^{10} 686d$?		8	37339.89	1.25	
		7	37366.09	1.32	
		8	37398.46	1.25	
		5	37472.68	1.34	
		7	37501.58	1.243	
		8	37527.15	1.24	
		7	37551.19	1.30	
		5	37559.17	1.27	
$f^{10} 686d$?		9	37591.83	1.212	
		7	37607.89	1.29	
		5	37646.62	1.20	
		6	37650.98	1.4	·
		8	37676.89	1.32	
		7	37694.25	1.26	
$f^{10} 6s6d?$		10	37706.12	1.203	
		9	37751.03	1.29	
		7	37751.34		
$f^{10} 6s6d$?		8	37820.22	1.14	
		8	37841.84	1.29	
		6	37856.42	1.247	
		9	37933.63	1.377	
		7	37980.03	1.191	
		8	37992.78	1.187	
		7	38054.61	1.333	
6 $^{10}(^{5}$ $^{16})6s7s(^{3}$ S $_{1})$	(6,1)	6 5 7	38070.03 38093.85 38123.30	1.11 1.08 1.20	95 96 91
		8	38078.12	1.19	
		5	38101.89	1.20	
		8	38150.52	1.38	
		5	38164.83	1.257	
		6	38214.81	1.22	
		8	38254.97	1.29	
		7	38264.28	1.34	
		9	38285.36	1.25	

Dy I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
		10	38329.91	1.30	
		5	38334.20		
		8	38356.27	1.36	
		7	38366.31	1.333	
		4	38431.81	1.26	
		9	38444.35	1.28	
		7	38452.46	1.238	
		7	38515.31	1.298	
		8	38516.86	1.222	
		7	38524.52	1.34	
		8	38551.45	1.25	
		5	38673.50	1.30	
		9	38674.91	1.28	
		6	38715.04	1.26	
		7	38737.66	1.29	
		6	38852.60	1.19	
		7	38861.55		
		8	38870.01	1.25	
		5	38890.92		
		7	38954.01	1.31	
		5	38964.68	1.28	
		8	38973.45	1.24	
		9	39035.85	1.24	
		5	39048.18	1.38	
		7	39078.14	1.28	
		4	39084.97	1.33	
		8	39096.06		
		7	39097.74	1.21	
		9	39120.61	1.34	
		10	39176.58	1.26	
		5	39201.13	1.10	
		9	39332.82	1.28	
		7	39332.97	1.29	
		8	39376.93	1.33	
		4	39378.71	0.98	
		5	39411.02	1.272	
		4	39420.80	1.20	
		4	39430.94	1.14	
		9	39513.68	1.30	
		7	39516.88	1.288	
¹⁰ (⁵ I ₆)6s7s(¹ S ₀)	(6,0)	6	39545.90		84
		10	39573.04	1.28	
		11	39627.83	1.27	

Dy I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
		7	39681.94	1.32	
		9	39692.49	1.25	
		5	39748.26	1.25	
		10	39750.08	1.29	
		7	39777.62	1.253	
•		5	39780.02	1.29	
		6	39786.30	1.25	
		6	39849.81	1.33	
		4	39853.98	1.39	
		9	39895.76	1.24	
		8	39909.55	1.28	
		10	40005.82	1.23	
$f^{10}(^{5}{ m I}_{5})6s7s(^{3}{ m S}_{1})$	(5,1)	4 5 6	40023.04 40213.21 40520.48	0.82 0.968 1.18	96 92 83
		7	40245.78	1.28	
		3	40295.08	1.28	
		7	40396.05	1.31	
		6	40410.19	1.31	
		8	40472.96	1.25	
		6	40491.53		
		3	40621.22	1.03	
		4	40625.90	1.26	
		8	40639.33	1.268	
		9	40683.59	1.29	
		3	40782.04	1.30	
		5	40796.42	1.30	
		8	40833.31	1.26	
		4	40835.60	1.34	
		8	40871.39	1.24	
		4	40924.80	1.24	
		5	40931.58	1.30	
		4	40973.37	1.14	
		3	40983.60	1.20	
		9	41029.59	1.222	
		8	41037.23		
		7 8	41053.08	1.05	
		9	41098.71	1.25	
		8	41135.13	1.316	
		9	41203.90 41210.30	1.26	
		9	41235.96	1.25 1.222	
		7	41371.37	1.23	
		8	41371.37	1.20	

Dy I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
		4	41458.22	1.22	
$4f^{10}(^{5}\text{I}_{4})6s7s(^{3}\text{S}_{1})$	(4,1)	3	41492.41	0.44	99
	, , ,	4	41859.44	0.80	92
		5	42490.50	1.00	81
		7	41503.84	1.27	
		8	41638.55		
		4	41957.18	1.22	
		4	42146.02	1.22	
		3	42220.12	1.26	
		4	42236.05	1.22	
		10	42668.10	1.35	
		4	42892.94	1.12	
		8	42921.39		
		4	42940.96	1.23	
		7	42984.71	1.21	
		5	43020.84	1.30	
		7	43222.10		
		8	43728.57		
		8	44487.65		
		6	45703.64		
		7	46391.45		
		8	47354.04		
Dy II (⁵ I ₈)6s _{1/2} (8, ¹ / ₂) _{17/2}	Limit		47900		

Dy I, Odd Parity

			2, 1, 0			
Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages	
4f ⁹ (⁶ H°)5d6s ²	7H°	8 7 6 5 4 3 2	7565.60 8519.20 10088.80 12298.56 13952.00 15254.94	1.35246 1.336 1.36 1.24 1.082 0.77	81 60 33 56 66 75 82	
$4f^{9}(^{6}\mathrm{H}^{\circ})5d6s^{2}$	7 I °	9 8 7 6 5 4 3	9990.95 12007.10 14367.80 14970.70 16684.73	1.32 1.28 1.27 1.24 1.082	89 50 50 39 67 79	
$4f^{9}(^{6}\mathrm{H}^{\circ})5d6s^{2}$	$^7\mathrm{F}^\circ$	6	11673.49	1.392	47	
$4f^{9}(^{6}\mathrm{H}^{\circ})5d6s^{2}$	⁷ G°	7	12655.13	1.36	64	

Dy I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Leading percentages			
f ⁹⁽⁶ H°)5d6s ²	7K°	10	12892.76	1.29	99					
		8	16288.73	1.19	46					
		9	16717.79	1.24	64					
		7	17687.90	1.16	44					
		6	19182.66	1.036	72					
		$egin{array}{c} 5 \ 4 \end{array}$	4		81 89					
		•			09					
$^{6}(^{6}{ m H}^{\circ})5d6s^{2}$	⁵ K°	9	13495.92	1.23	65					
		8	19688.59	1.22	57					
		7 6	21783.42 23464.02	1.15 0.96	70 50		1.4			
		5	24881.85	0.50	52 67					
^{F9(6} H°)5d6s ²	7F°	5	14153.49	1.42	51					
C9/8TT 0\ 7 .10 . 9	ETO	0								
f ⁹ (⁶ H°)5d6s ²	⁵ I°	8 7	14625.64 18339.80*	1.25 1.21	67 26					
		6	20554.73	1.21	26 45					
		5	22294.88	1.02	39					
		4	23686.81	0.767	70					
⁶ (⁶ H°)5d6s ²	5H°	7	15194.83	1.26	78					
6 $^{10}(^{5}\mathrm{I_{8}})6s6p(^{3}\mathrm{P_{0}^{3}})$	(8,0)°	8	15567.38	1.31		or	58 (⁵ I)(³ P°) ⁷ H°			
6 (6H°)5 $d6s^{2}$		6	15862.64	1.257	43	5G°				
$^{610}(^{5}\mathrm{I_{8}})6s6p(^{3}\mathrm{P_{1}^{\circ}})$	(8,1)°	9	15972.35	1.29		\mathbf{or}	64 (⁵ I)(³ P°) ⁷ I°			
		7	16693.87	1.22		\mathbf{or}	29 (⁵ I)(³ P°) ⁵ H°			
		8	16733.20	1.20		or	32 (⁵ I)(³ P°) ³ K°			
⁶ (⁶ F°)5d6s ²	⁷ P°	4	16069.98	1.62	47					
6 (6 F $^{\circ}$) 5 6 6		4	16412.80	1.51	35	⁷ P°				
$^{6}{ m (^6H^{\circ})}5d6s^2$		6	16591.38	1.348	42	₹G°				
f ⁹ (⁶ F°)5d6s ²		5	17502.89	1.45	24	$^7\mathrm{D}^\circ$				
$f^{10}(^{5}\mathrm{I_{8}})6s6p(^{3}\mathrm{P_{2}^{\circ}})$	(8,2)°	10	17513.33	1.30		or	99 (5I)(3P°) 7K°			
		9	17727.15	1.25		\mathbf{or}	51 (⁵ I)(³ P°) ⁵ K°			
		8	18021.89	1.23		or	39 (5I)(3P°) 5I°			
		7 6	18433.76* 18711.93	1.20 1.172		or or	35 (5I)(3P°) 3I° 33 (5I)(3P°) 3H°			
°9(6H°)5d6s²	5F°	5	17804.24	1.322	54					
^{C9} (⁶ H°)5d6s ²		6	18172.87	1.34	39	5H°				
⁹ (⁶ H°)5d ² (³ F) (⁸ G°)6s	9G°	8	18472.71	1.46	48					
°9(6H°)5d2(3F) (8G°)6s		7	18528.55	1.467	25	${}^9{ m G}^\circ$				
^{r9} (⁶ F°)5d6s ²		6	18561.20	1.27	18	⁷ G°				
^{C9} (⁶ F°)5d6s ²		7	18857.04	1.335	22	7Н°				
°9(6F°)5d6s²	7Н°	8	19092.30	1.33	91					
^c (1)5d5 ^c (6H°)5d ² (3F) (8F°)6s		6	19304.26	1.54	36	$^3\mathrm{F}^\circ$				
^{c9} (⁶ F°)5d6s ²		5	19480.87	1.35	29	⁷ G°				
^{r9} (⁶ H°)5d ² (³ F) (⁸ I°)6s		9	19557.83	1.39	36	aI.o				
^c 9(6H°)5d ² (3F) (8K°)6s		10	19797.96	1.367	40	9K°				
^{c9} (6H°)5d6s ²				1.270	33	5H°				
		5	19813.98							
^{c9} (⁶ F°)5d6s ²	1	6	19856.88	1.35	40	⁷ H°				

Dy I, Odd Parity—Continued

19(41)6s6p(PF)	Configuration	Term	J	Level (cm ⁻¹)	g		Le	ading percentages
7 2076629 1.16 or 30 (PIOPP) SK 20817.81 1.13 or 21 (PIOPP) SK 20817.81 1.13 or 21 (PIOPP) SK 20817.81 1.13 or 21 (PIOPP) SK 20817.81 1.13 or 21 (PIOPP) SK 20817.81 1.13 or 21 (PIOPP) SK 20817.81 1.13 or 21 (PIOPP) SK 20817.81 1.13 or 21 (PIOPP) SK 20817.81 1.13 or 21 (PIOPP) SK 20817.81 1.13 or 21 (PIOPP) SK 20817.81 1.13 or 21 (PIOPP) SK 20817.81 1.13 or 21 (PIOPP) SK 20817.81 1.13 or 21 (PIOPP) SK 20817.81 1.14 1.35 or 22 (PIOPP) SK 20817.81 1.15 or 22 (PIOPP) SK 20817.81 1.15 or 22 (PIOPP) SK 20817.81 1.15 or 22 (PIOPP) SK 2	$4f^{10}(^{5}\text{I}_{7})6s6p(^{3}\text{P}_{0}^{8})$	(7,0)°	7	19907.51	1.23	(or 26	(5I)(3P°) 7I°
6	$4f^{10}(^{5}\text{I}_{7})6s6p(^{3}\text{P}_{1}^{\circ})$	(7,1)°		20341.32	1.23		or 30	(5I)(3P°) 7K°
29(H)56682 4 20430.11 1.28 33 Th** 29(H)56622 4 2047.19 1.30 31 *G** 29(P)56632 7G** 7 2048.34.0 1.375 63 29(P)564632 7G** 7 2048.34.0 1.375 63 29(P)564622 5 2084.65 1.32 31 *G** 29(P)564624 6 21392.40 1.46 29 *P** 29(P)564632 21 2084.55 1.30 35 *H** 29(P)564632 21 2150.08 1.46 29 *P** 29(P)564632 21** 7 2085.18 1.41 30 *P** 29(P)564632 21** 7 2155.08 1.34 39 *H* 29(P)564632 21** 7 21657.28 1.25 6 2100.59 1.25 4 24040.59 1.25 1.25 0** 0** 62 (21)GP**) TK* 29(P)1564634 10 21788.93 1.34 33 *K* 10(P)17964(1				
9(PI)5d6e² 9(PI)5d6e² 9(PI)5d6e² 9(PI)5d7(PI) (PI)6e 8	$4f^9(^6{ m H}^\circ)5d6s^2$		4	20430.11	1.28	33 ⁷ F	0	
"Q"H")5d662" 7G" 7 20485.40 1375 63 "Q"H")5d662" 7G" 7 20485.40 1375 63 "Q"H")5d7Q"F) ("G")68 8 20884.87 1.36 29 9" "Q"H")5d7Q"F) ("G")68 5 2084.64 1.32 31 "G" "Q"H")5d7Q"F) ("G")68 6 2035.18 1.41 30 "F" "Q"H")5d7Q"F) ("H")68 9 2154.68 1.44 30 "H" "Q"H")5d7Q"F) ("H")68 9 2154.68 1.34 30 "H" "Q"H")5d7Q"F) ("H")68 9 2154.68 1.34 30 "H" "Q"H")5d7Q"F) ("K")68 10 21782.93 1.34 33 "K" "Q"H")5d7Q"F) ("K")68 10 21892.22 1.0 or 32 (*H)(P") "H" "Q"H")5d7Q"F) ("L")68	$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$ ($^{8}\mathrm{K}^{\circ})6s$	9K°	11	20448.44		87		
"("F")5d6s2" 7G" 7 20485.40 1.375 63 "("H")5d2"("F") ("G")6s 8 20881.87 1.36 29 11" "("H")5d2"("F") ("F")6s 5 20891.61 1.32 31 9G" "("H")5d2"("F") ("F")6s 7 20854.18 1.41 30 9F" "("H")5d2"("F") ("H")6s 6 21392.40 1.46 29 9D" "("H")5d2"("F") ("H")6s 9 21575.28 1.32 33 9H" "("H")5d2"("F") ("H")6s 120 126 44 4 26404.11 1.046 53 3 27601.33 0.84 0.8 "("H")5d2"("F") ("H")6s 10 21788.93 1.34 33 9K" "("H")5d2"("F") ("H")6s 10 21788.93 1.34 33 9K" "("H")5d2"("F") ("H")6s 10 21788.93 1.34 33 9K" "("H")5d2"("F") ("H")6s 10 21788.93 1.34 33 9K" "("H")5d2"("F") ("H")6s 10 21788.93 1.34 33 9K" "("H")5d2"("F") ("H")6s 10 21788.93 1.20 0r 32 ("H)("P") "H" "("H")5d662" 4 22099.06 1.059 41 5H" "("H")5d2"("F") ("H")6s 9L" 11 22757.88 1.33 35 "("H")5d2"("F") ("H")6s 7 22857.51 1.26 49 9 27555.10 27 34 8 27556.34 1.24 28 "("H")5d2"("F") ("K")6s 4 22698.62 1.487 35 9G" "("H")5d2"("F") ("K")6s 4 22988.03 1.07 24 5H" "("H")5d2"("F") ("G")6s 4 22988.03 1.07 24 5H" "("H")5d2"("F") ("G")6s 4 22988.03 1.07 24 5H" "("H")5d2"("F") ("G")6s 4 22988.03 1.07 24 5H" "("H")5d2"("F") ("G")6s 4 22988.03 1.07 24 5H" "("H")5d2"("F") ("G")6s 6 22988.03 1.07 24 5H" "("H")5d2"("F") ("G")6s 6 22988.03 1.07 24 5H" "("H")5d2"("F") ("G")6s 6 22988.03 1.07 24 5H" "("H")5d2"("F") ("G")6s 6 22988.03 1.07 24 5H" "("H")5d2"("F") ("G")6s 6 22988.03 1.07 24 5H" "("H")5d2"("F") ("G")6s 6 22988.03 1.07 24 5H" "("H")5d2"("F") ("F")6s 6 22988.03 1.07 24 5H" "("H")5d2"("F") ("F")6s 6 22988.03 1.07 24 5H" "("H")5d2"("F") ("F")6s 6 22988.03 1.07 24 5H" "("H")5d2"("F") ("F")6s 6 22988.03 1.07 24 5H" "("H")5d2"("F") ("F")6s 6 22988.03 1.07 0 r 22 ("H)("P")	$4f^{9}(^{6}\mathrm{H}^{\circ})5d6s^{2}$		4				0	
\$\begin{align*}	$4f^{9}(^{6}\mathrm{F}^{\circ})5d6s^{2}$	⁷ G°	7	20485.40				
\$\frac{9(4\)}{6}\) \$\frac{6}{6}\] \$\frac{9}{2}\] \$\frac{9}{6}\] \$\frac{9}{2}\] \$\frac{9}{6}\] \$\frac{9}{2}\] \$\frac{9}{6}\] \$\frac{9}{2}\] \$\frac{9}{6}\] \$\frac{9}{2}\] \$\frac{9}{6}\] \$\frac{9}{2}\] \$\frac{9}{6}\] \$\frac{1}{2}\] \$\frac{9}{6}\] \$\frac{9}{6}\] \$\frac{9}{6}\] \$\frac{9}{6}\] \$\frac{9}{6}\] \$\frac{9}{6}\] \$\frac{9}{6}\] \$\frac{9}{6}\] \$\frac{9}{6}\] \$\frac{9}{6}\] \$\frac{9}{6}\] \$\frac{9}{6}\] \$\frac{9}{6}\] \$\frac{9}{6}\] \$\frac{9}{6}\]	$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$ ($^{8}\mathrm{I}^{\circ})6s$		8	20884.87	,			
(P(H*)5d6*2*) 5 20921.55 1.30 35 *H* **(P(H*)5d2*(*P)**)*(*P**)*68 7 20954.18 1.41 30 9F** **(P(H*)5d2*(*P)**(*P**)*66* 6 21392.40 1.46 29 9D** **(P(H*)5d2*(*P)**(*H**)*66* 9 21540.68 1.34 39 *H** **(P(H**)5d2*(*P)**(*H**)*66* 10 21788.93 1.22 62 44 **(P(H**)5d2*(*F)**(*K**)*68* 10 21788.93 1.34 33 *K** **(P(F**)5d6**)**(*K**)*68* 10 21788.93 1.34 33 *K** **(P(F**)5d6**)**(*K**)*68* 10 21788.93 1.34 33 *K** **(P(F**)5d6**)**(*K**)*68* 10 21788.93 1.34 33 *K** **(P(H**)5d2*(*F)**(*F**)*68* 4 22091.29 1.18 or 22 (*P(*P(*P)**)*** **(P(H**)5d2*(*F)**(*F**)*68* *P.*** 12 22541.18 1.33 99 **(P(H**)5d2*(*F)**(*F**)*68* *P.*** 12 22541.1	$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$ ($^{8}\mathrm{G}^{\circ})6s$		5					
***(P(H))5d²(3F) (**P)*6s 7 20854.18 1.41 30 °F** **(P(H))5d²(3F) (**P)*6s 6 21392.40 1.46 29 °P)* **(P(H))5d²(3F) (**H)*6s 9 2154.668 1.34 39 °H** **(P(H))5d²(3F) (**K)*6s 10 21782.81 1.22 62 **(P(H))*5d²(3F) (**K)*6s 10 21788.93 1.34 33 °K** **(P(H))*5d²(3F) (**K)*6s 1.25 or 62 (**D(*P**)**TK** **(P(H))*5d²(3F) (**L)*66s² 4 22362.87 1.15 or 28 (**D(*P**)**TF** **(P(H))*5d²(3F) (**L)*66s² 4 22697.81 1.28 78 1.28 78 **(P(H))*5d²(3F) (**K)*6s **G** 6 22633.23 1.29 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50	$4f^{9}(^{6}\mathrm{H}^{\circ})5d6s^{2}$		5	20921.55				
2	$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$ ($^{8}\mathrm{F}^{\circ})6s$			20954.18				
9(9H°)5d2(3F) (*H°)68 9(21540.68 1.34 39 °H° 9(8F°)5d68² 5H° 7 21675.28 1.22 62 6 24040.50 1.26 44 2640.41 1.046 53 3 27601.33 0.84 68 10 21788.93 1.34 33 °K° 10(51)686p(3P3) (7,2)° 9 21838.55 1.25 or 62 (51)(3P°) 7K° 8 21899.22 1.20 or 33 (51)(3P°) 7T° 1 6 22286.87 1.15 or 38 (71)(3P°) 7T° 6 22286.87 1.15 or 38 (71)(3P°) 7T° 1 6 22286.87 1.15 or 38 (71)(3P°) 7T° 1 7 22651.29 1.18 1.333 99 9(6H°)5d2(3F) (*K°)68 10 21788.93 1.34 33 °K° 10(51)686p(3P3) (7,2)° 9 21838.55 1.25 or 62 (51)(3P°) 7K° 1 7 22661.29 1.18 or 28 (71)(3P°) 7T° 1 6 22286.87 1.15 or 38 (71)(3P°) 7T° 1 7 22651.29 1.18 1.333 99 1 1 24875.74 1.26 49 1 1 24875.74 1.26 49 1 1 24875.74 1.26 49 1 27556.34 1.24 28 1 10 24875.74 1.26 49 1 27556.34 1.24 28 1 12 2264.94 1.34 22 °K° 1 12 2264.94 1.34 22 °K° 1 12 2264.94 1.34 22 °K° 1 12 2266.82 1.487 35 °G° 1 12 2264.94 1.34 22 °K° 1 12 2266.82 1.487 35 °G° 1 12 2264.94 1.34 22 °K° 1 12 2266.84 1.34 22 °K° 1 12 2266.85 1.35 °G° 1 12 2264.94 1.34 22 °K° 1 12 2266.84 1.34 22 °K° 1 12 2266.84 1.34 22 °K° 1 12 2266.84 1.34 22 °K° 1 12 2266.84 1.34 22 °K° 1 12 2266.84 1.34 22 °K° 1 12 2266.84 1.34 22 °K° 1 12 2266.84 1.34 22 °K° 1 12 2266.84 1.34 22 °K° 1 12 2266.84 1.34 22 °K° 1 12 2266.84 1.34 22 °K° 1 13 3 °K° 1 14 °F° 1 15 °F°	$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})~(^{8}\mathrm{D}^{\circ})6s$			•				
9(eF°)5d6s² 5H° 7 21675.28 1.22 6 24040.59 1.26 4 264.0.41 1.046 53 3 27601.33 0.84 68 9(eH°)5d2(3F) (*K*)68 10 21788.93 1.34 33 3K* 10(517)6s6p(eP\$) (7,2)° 9 21838.55 1.25 8 21899.22 1.20 1.18 0r 28 (*1)(eP*)71° 6 22286.71 1.15 0r 38 (*1)(eP*)71° 1.16 24852.421 1.04 9(eH°)5d6s² 4 22090.06 1.059 41 *H° 9(eH°)5d2(3F) (*L°)6s 9L° 12 22541.18 1333 99 2(eH°)5d2(3F) (*L°)6s 10 24858.74 1.26 49 29955.10 1.27 34 88 77 27556.34 1.24 28 9 9(eH°)5d2(3F) (*K°)6s 7 22647.94 1.34 22 9K° 9(eH°)5d2(3F) (*G°)6s 4 22696.82 1.487 35 9G° 9(eH°)5d3(3F) (*G°)6s 4 22938.03 1.07 24 5H° 9(eH°)5d2(2F) (*G°)6s 9 22971.74 1.33 41 91° 23440.12 1.39 28 7G° 1.31 30° 9(eH°)5d2(2F) (*G°)6s 9 22971.74 1.33 41 91° 23450.17 1.39 28 7G° 1.31 1.33 1.34 1.37 1.37 1.37 1.37 1.37 1.38 1.39 1.39 1.31 1.39 28 1.35 1.30 1.39 1.39 28 1.37 1.31 28 1.36 1.36 1.37 1.37 1.38 1.39	4f ⁹ (⁶ H°)5d ² (³ F) (⁸ H°)6s							
6		F770						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4) °(°r)3a682	3H°						
9(eH°)5d2(3F) (8K°)6s 10 21788.93 1.34 33 °K° or 62 (5I)(3P°) 7K° 8 21899.22 1.20 or 33 (5I)(3P°) 7I° 7 22061.29 1.18 or 22 (5I)(3P°) 7I° 6 22286.87 1.15 or 38 (5I)(3P°) 7I° 7 22062.29 1.18 or 22 (5I)(3P°) 7I° 8 22524.21 1.04 4 22099.06 1.059 41 °SH° 9(eH°)5d6s² 9(eH°)5d6s² 9(eH°)5d2(3F) (8L°)6s 9L° 12 22541.18 1.333 99 11 23677.38 1.288 78 10 24,858.74 1.26 99 9 25955.10 1.27 34 8 7 27556.34 1.24 22 9(eF°)5d6s² 6 22633.23 1.29 9(eF°)5d6s² 9(eF°)5d6s² 1 22647.94 1.34 22 °SK° 9(eF°)5d6s² 1 22647.94 1.34 22 °SK° 9(eF°)5d6s² 1 22647.94 1.34 22 °SK° 9(eF°)5d6s² 1 22666.82 1.487 35 °G° 9(eF°)5d6s² 1 22666.82 1.487 35 °G° 9(eF°)5d6s² 1 22666.82 1.487 35 °G° 9(eF°)5d6s² 1 22666.82 1.487 35 °G° 9(eF°)5d6s² 1 22666.82 1.487 35 °G° 9(eF°)5d6s² 1 22666.82 1.487 35 °G° 9(eF°)5d6s² 1 22666.82 1.487 35 °G° 9(eF°)5d6s² 1 22938.03 1.07 24 °SH° 9(eF°)5d6s² 1 22938.03 1.07 24 °SH° 9(eF°)5d6s² 1 22938.03 1.07 24 °SH° 9(eF°)5d6s² 1 22938.03 1.07 24 °SH° 9(eF°)5d6s² 1 22938.03 1.07 24 °SH° 9(eF°)5d6s² 1 22938.03 1.07 24 °SH° 9(eF°)5d6s² 1 22938.03 1.07 24 °SH° 9(eF°)5d6s² 1 22938.03 1.07 24 °SH° 9(eF°)5d6s² 1 22938.03 1.07 24 °SH° 9(eF°)5d6s² 1 22938.03 1.07 24 °SH° 9(eF°)5d6s° 1 22938.03 1.07 24 °SH° 9(eF°)5d6s° 1 22966.84 1.06 1.36 1 °F° 1 2340.15 1 °F° 1 2340.16 1 °F° 1 2440.16 1 °F° 1 2440.16 1 °F° 1 2440.16 1 °F° 1 2440.16 1 °F° 1 2440.16 1 °F° 1 2440.16 1 °F			4			i		
(7,2)° 9 21838.55 1.25 or 62 (51)(3P°) 7K° 8 21899.22 1.20 or 33 (51)(3P°) 7K° 8 21899.22 1.20 or 33 (51)(3P°) 7F° 6 22268.87 1.15 or 28 (51)(3P°) 7F° 9(6H°)5d6s² 4 22099.06 1.059 41 5H° 9(6H°)5d6s² 4 22099.06 1.059 41 5H° 9(6H°)5d2(3F) (8L°)6s 9L° 12 22541.18 1.333 99 11 23677.38 1.288 78 10 24858.74 1.26 49 9 25955.10 1.27 34 8 275556.34 1.24 28 6 40 9(6F°)5d6s² 5G° 6 22633.23 1.29 50 9(6H°)5d2(3F) (8K°)6s 7 22647.94 1.34 22 9K° 9(6H°)5d2(3F) (8G°)6s 8 22767.83 1.34 43 9G° 9(6H°)5d6s² 4 22938.03 1.07 24 5H° 10(516)686p(3Pô) (6,0)° 6 22956.84 1.06 or 24 (51)(3P°) 7K° 10(516)686p(3Pô) (6,0)° 6 22956.84 1.06 or 24 (51)(3P°) 7K° 10(516)686p(3Pô) (6,0)° 6 23359.82 1.35 30 7F° 10(516)686p(3Pô) (6,1)° 7 23440.46 1.36 17 9F° 10(516)686p(3Pô) (6,1)° 7 22449.77 1.13 or 35 (51)(3P°) 7K° 10(516)686p(3Pô) (6,1)° 7 22449.77 1.13 or 32 (31)(3P°) 7K° 10(516)686p(3Pô) (6,1)° 7 22449.77 1.13 or 32 (31)(3P°) 7K° 10(516)686p(3Pô) (6,1)° 7 22449.77 1.13 or 32 (31)(3P°) 7K° 10(516)686p(3Pô) (6,1)° 7 22449.77 1.13 or 32 (31)(3P°) 7K° 10(516)686p(3Pô) (6,1)° 7 22449.77 1.13 or 32 (31)(3P°) 7K° 10(516)686p(3Pô) (6,1)° 7 22449.77 1.13 or 32 (31)(3P°) 7K° 10(516)686p(3Pô) (6,1)° 7 22449.77 1.13 or 32 (31)(3P°) 7K° 10(516)686p(3Pô) (6,1)° 7 22449.77 1.13 or 32 (31)(3P°) 7K° 10(516)686p(3Pô) (6,1)° 7 22449.77 1.13 or 32 (31)(3P°) 7K° 10(516)686p(3Pô) (6,1)° 7 22449.77 1.13 or 32 (31)(3P°) 7K° 10(516)686p(3Pô) (6,1)° 7K°			3	27601.33	0.84	68		
8	$4f^{9}(^{6}\text{H}^{\circ})5d^{2}(^{3}\text{F}) \ (^{8}\text{K}^{\circ})6s$		10	21788.93	1.34	33 ⁹ K		
9(6H°)5d6s² 9(6H°)5d6s² 9(H°)5d6s² 1.27 2.7556.34 1.24 2.8 40 9(H°)5d(2)F) (8C°)68 4 2.2633.23 1.29 9(H°)5d(2)F) (8G°)68 8 2.2767.83 1.34 2.29 K° 2.2647.94 1.34 2.29 K° 2.20 K° 2.2	$4f^{10}(^{5} ext{I}_{7})6s6p(^{3} ext{P}_{2}^{\circ})$	(7,2)°		1		o	or 62	
6 22286.87 1.15 or 38 (*1)(*3P*) *TH* 9(**GH*)5d6**2 4 22099.06 1.059 41 *SH* 9(**GH*)5d2(**F) (**L*)68 9L** 12 22541.18 1.333 99 11 23677.38 1.288 78 110 23858.74 1.26 49 9 25955.10 1.27 34 8 70 27556.34 1.24 28 9(**GH*)5d2(**F) (**K*)68 9(**GH*)5d2(**F) (**K*)68 9(**GH*)5d2(**F) (**G*)68 9(**GH*)5d2(**F) (**G*)68 8 22696.82 1.487 35 9G* 9(**GH*)5d3(**F) (**G*)68 8 22767.83 1.34 43 9G* 9(**GH*)5d6*2 4 22938.03 1.07 24 *SH* 10(*SL*)686p(*3På) 10(*SL*)686p(*3På) 10(*SL*)686p(**F) (**G*)68 10(*SL*)686p(**F) (8	ľ				
5				l .				
9(6H°)5d²(3F) (8L°)68 9L° 12 22541.18 11, 333 99 124858.74 126 49 25955.10 127 34 8 7 27556.34 1.24 28 6 9(6F°)5d68² 7 22647.94 1.34 22 9K° 9(6F°)5d683 1.487 35 9G° 9(6F°)5d683 1.487 35 9G° 9(6F°)5d683 1.487 35 9G° 9(6F°)5d684 1.487 35 9G° 9(6F°)5d685 4 22696.82 1.487 35 9G° 9(6F°)5d6864 4 22938.03 1.07 24 5H° 10(5I ₆)686p(3P ₆) (6,0)° 6 23359.82 1.35 30 7F° 1.34 1.34 1.36 1.37 1.37 1.38 1.39				22524.21				\ -/\ - / -2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$4f^{9}(^{6}{ m H}^{\circ})5d6s^{2}$		4	22099.06	1.059	41 ⁵ H	o	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})~(^{8}\mathrm{L}^{\circ})6s$	a L °	12	22541.18	1.333	99		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			8					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				27556.34	1.24			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{9}(^{6}\mathrm{F}^{\circ})5d6s^{2}$	5G°	6	22633.23	1.29	50		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})~(^{8}\mathrm{K}^{\circ})6s$		7	22647.94	1.34	22 ⁹ K°		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})~(^{8}\mathrm{G}^{\circ})6s$		4	22696.82	1.487	35 ⁹ G°	ı	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{P})~(^{8}\mathrm{G}^{\circ})6s$		8	22767.83	1.34	43 ⁹ G°		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{9}(^{6}{ m H}^{\circ})5d6s^{2}$		4	22938.03	1.07	24 ⁵ H°	>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$f^{10}(^{5}{ m I_6})6s6p(^{3}{ m P_0^{\circ}})$	(6,0)°	6	22956.84	1.06	o	r 24	(5I)(3P°) 7K°
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$f^{9}(^{6}\text{H}^{\circ})5d^{2}(^{3}\text{P}) \ (^{8}\text{I}^{\circ})6s$		9	23271.74	1.33	41 ⁹ I°		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$ ($^{8}\mathrm{G}^{\circ})6s$		7	23340.12	1.39			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F}) \ (^{8}\mathrm{F}^{\circ})6s$		6	23359.82				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$ ($^{8}\mathrm{F}^{\circ})6s$			23440.46				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1f^{10}(^{5}{ m I_{6}})6s6p(^{3}{ m P_{1}^{\circ}})$	(6,1)°	7	23479.77	1.13	O.	r 35	(5])(3P°) 7K°
			5	23552.65	1.07			(5I)(3P°) 7I°
(6U°\5.42(3E) (8D°\C-			6	23687.87	1.076	0:	r 29	(5I)(3P°) 7K°
$(^{\circ}H)_{5}a^{2}(^{\circ}F)$ ($^{\circ}D^{\circ})_{6}s$ 6 23529.01 1.41 20 $^{\circ}D^{\circ}$	$f^{9}(^{6}\text{H}^{\circ})5d^{2}(^{3}\text{F})$ ($^{8}\text{D}^{\circ})6s$		6	23529.01	1.41	20 ⁹ D°		

Dy I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ding percentages
$4f^{10}({}^5{ m I}_8)6s6p({}^1{ m P}_1^\circ)$	(8,1)°	9 8 7	23736.60 23877.75 24708.96	1.22 1.29 1.26		or or or	97 93 83	(⁵ I)(¹ P°) ⁵ K° (⁵ I)(¹ P°) ⁵ I° (⁵ I)(¹ P°) ⁵ H°
If ⁹ (⁶ H°)5d6s ²	5H°	3	23824.68	0.68	56			
Mf9(6H°)5d2(3F) (8K°)6s		8	23832.07	1.32	24	9K°		
f ⁹ (⁶ H°)5d ² (³ F) (⁸ K°)6s		10	23953.30	1.30	29	7Κ°		
lf ⁹ (⁶ H°)5d ² (³ F) (⁸ I°)6s		8	24204.19	1.30	25	7I°		
Mf9(6H°)5d2(3F) (8K°)6s		- 9	24229.22	1.287	33	7Κ°		
f ⁹ (⁶ H°)5d ² (³ P) (⁸ G°)6s		7	24353.58	1.33	41	9G°		
$f^{9}(^{6}\mathrm{F}^{\circ})5d6s^{2}$		5	24634.07	1.21	42	5F°		
f ⁹ (⁶ F°)5d6s ² ?		3	24668.59	1.20	36	7F°		
$f^{10}(^{5}{ m I_{6}})6s6p(^{3}{ m P_{2}^{\circ}})$	(6,2)°	4	24841.04	0.90		or	38	(5I)(3P°) 7H°
		7	24906.86	1.14		or	27	(5I)(3P°) 7I°
		6 8	24931.63 24999.58	1.128 1.19		or or	31 44	(⁵ I)(³ P°) ⁷ I° (⁵ I)(³ P°) ⁵ K°
		5	25082.02*	1.064		or	33	(5I)(3P°) 7H°
$f^{9}(^{6}\text{H}^{\circ})5d^{2}(^{3}\text{F})$ ($^{8}\text{K}^{\circ})6s$?		5	24993.47	1.03	23	9K°		
$f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{P})$ ($^{8}\mathrm{I}^{\circ})6s$		8	25012-21	1.34	28	aIo		
$f^{9}(^{6}\text{H}^{\circ})5d^{2}(^{3}\text{P}) (^{8}\text{H}^{\circ})6s$		9	25084.80	1.277	33	aH.		
$f^{10}(^{5}{ m I_{5}})686p(^{3}{ m P_{0}^{\circ}})$	(5,0)°	5	25127.52	1.04		or	35	(5I)(3P°) 7K°
$f^{9}(^{6}{ m F}^{\circ})5d6s^{2}$		4	25203.92	1.242	40	5G°		
$f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{P})$ ($^{8}\mathrm{I}^{\circ})6s$		7	25268.87	1.28	19	$_{ m b}{ m I}_{\circ}$		
$f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$ ($^{8}\mathrm{I}^{\circ})6s$		7	25567.53	1.288	22	7I°		
$f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{P})$ ($^{8}\mathrm{G}^{\circ})6s$		6	25670.45	1.33	38	9G°		
$f^{10}(^51{ m s})6s6p(^3{ m Pi})$	(5,1)°	4 6 5	25687.20 25825.83 25912.63	0.94 1.00 0.98		or or or	47 31 39	(5I)(3P°) 5H° (5I)(3P°) 7K° (5I)(3P°) 3H°
f ⁹ (⁶ H°)5d ² (³ F) (⁸ K°)6s?		8	25760.39	1.263	23	7K°		
f ⁹ (⁶ H°)5d ² (³ F) (⁸ F°)6s		4	25761.77	1.35	28	7F°		
f ⁹ (⁶ H°)5d ² (³ F) (⁸ I°)6s		10	25774.39	1.33	34	aI.		
		6	25868.00	1.30	-			
$f^{9(6}{ m H^{\circ}})5d^{2}(^{3}{ m F})~(^{8}{ m F^{\circ}})6s$		6	25920.88	1.33	17	$^7\mathrm{F}^\circ$		
$f^{9}(^{6}\mathrm{F}^{\circ})5d6s^{2}$		5	26135.21	1.22	34	5H°		
$f^{10}(^{5}I_{5})6s6p(^{3}P_{2}^{\circ})$	(5,2)°	3	26607.16	0.58		or	59	(5I)(3P°) 7I°
,/ <u>r</u>	(-,-/	4	26998.27	0.86		or	44	(5I)(3P°) 7H°
		$rac{5}{6}$	27109.93 27199.20	1.01 1.16		or or	21 30	(5I)(3P°) 7I° (5I)(3P°) 5I°
		7	27427.08	1.06		or	48	(5I)(3P°) 5K°
$f^{10}(^{5}\text{I}_{4})6s6p(^{3}\text{P}_{6})$	(4,0)°	4	26662.41	0.59		or	64	(5I)(3P°) 7K°
		8	26868.07	1.24				
		3	26886.01	1.02				
		9	27014.02	1.23				
$f^{9(6}F^{\circ})5d^{2}(^{3}F)$ ($^{8}F^{\circ})6s$		6	27190.74	1.263	33	${}_{ m e}{ m F}_{ m o}$		
$f^{9}(^{6}\text{H}^{\circ})5d^{2}(^{3}\text{P}) (^{8}\text{G}^{\circ})6s$		7	27316.49	1.32	35	7G°		
		8	27319.08	1.22	1			

Dy I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Le	ading percentages
$4f^{10}(^{5}\mathrm{I}_{4})6s6p(^{3}\mathrm{P}_{1}^{\circ})$	(4,1)°	3 5 4	27321.26 27685.87 27751.46	0.58 0.77 0.81	or or or	25 44 47	(5I)(3P°) 5H° (5I)(3P°) 5K° (5I)(3P°) 3H°
		3	27643.57	1.17			
$4f^{9}(^{6}{ m F}^{\circ})5d6s^{2}$		4	27659.02	1.17	32 ⁵ G°		
•		4	27714.33	1.032			
$4f^{10}(^{5} ext{I}_{7})6s6p(^{1} ext{P}_{1}^{\circ})$	(7,1)°	8 7	27817.99 27834.93	1.21 1.22	or	94 85	(5I)(1P°) 5K° (5I)(1P°) 5I°
		6	28119.94	1.198	or or	73	
		7	27837.54	1.26			
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{P})~(^{8}\mathrm{I}^{\circ})6s$		8	27851.43	1.24	28 ⁷ I°		
$f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})~(^{8}\mathrm{L}^{\circ})6s$		7	27984.50	1.24	27 ⁹ L°		
		8	28029.68	1.09			
		8	28177.14	1.27			
		6	28197.66	1.10			
$4f^{10}(^{5}\text{I}_{4})6s6p(^{3}\text{P}_{2}^{\circ})$	(4,2)°	2	28407.01	0.06			
•		2 3	28594.51	0.55	or	52	(5I)(3P°) 5H°
		4 5	28923.05 29054.36	0.78 0.84	or or	27 39	(5I)(3P°) 3H° (5I)(3P°) 3I°
		6	29447.11	0.90	or	62	
		8	28518.30	1.26			
		8	28795.26	1.22			
		7	28822.50	1.34			
		9	29119.11	1.20			
		7	29161.38	1.24			
		7	29878.69	1.32			
		6	30426.59	1.227			
		7	30528.36	1.22			
		8	30544.57	1.22			
		7	30566.07	1.39			
$4f^{10}({}^{5}{ m I}_{6})6s6p({}^{1}{ m P}_{1}^{\circ})$	(6,1)°	7 6 5	30711.70 30778.96	1.09 1.17	or	82	(5I)(1P) 5I°
4f ⁹ (⁶ F°)5d ² (³ F) (⁸ H°)6s		6	30840.73	1.269	11 ⁷ H°		
		5	30904.89	1.286			
		5	30946.73	1.267			
		7	31132.30	1.289			
		5	31200.96	1.31			
		7	31229.29	1.207			
		6	31341.39	1.145			
		6	31399.49	1.255			
		5	31410.95	1.242			
		7	31423.02	1.18			•
			-	1.22			
		7	31519.57	1.44			

Dy I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		8	31547.01		$4f^{10}(^{5}\text{I}_{4})6s6p(^{1}\text{P}_{1}^{\circ})$	(4.1)0			
		6	31555.97	1.26		(4,1)°	5 4	34470.70	0.915
		7	31580.28	1.19			3		
		7	31698.32	1.131			4	34486.89	1.213
		5	31763.85	1.32			5	34488.42	1.20
		7	31878.42	1.208			5	34662.11	1.16
		9	31900.74	1.24	$4f^{10}(^{5}I)5d6p?$		7	34695.42	1.32
		7	31946.72	1.25	4.040.077.7		4	34720.68	0.761
		7	32016.83	1.30	$4f^{10}(^{5}I)5d6p?$		8	34755.07	0.18
		6	32082.00	1.284			6	34770.30	1.195
		6	32111.44	1.119			6	34793.49	
		6	32126.16	1.23			8	34803.87	1.174
		5	32263.16	1.26			7	34921.87	1.198
		5	32359.02	1.223	$4f^{10(5I)}5d6p$?		6	34938.33	1.22
		6	32431.61	1.121	$4f^{10}(^{5}I)5d6p?$		7	34975.00	1.28
		7	32564.97	1.00	$4f^{10}(^{5}I)5d6p?$		8	35029.50	1.29
		6	32607.88	1.227	4) (1)300p;		8	35082.98	1.28
		9	32711.90 32790.66	1.203	$4f^{10}(^{5}I)5d6p$?		3	35107.23	1.033
		6 6	32834.29	1.175 1.195	1) (1)600p.		7	35107.28	1.30
		5	32889.19	1.138	$4f^{10}(^{5}I)5d6p$?		3	35136.67	1.06
		7	32920.20	1.235	-j (1)5wop.		9	35221.27	1.236
		9	32927.76	1.187			3	35231.23	0.958
		6	32970.87	1.177	$4f^{10}(^{5}I)5d6p$?		4	35316.31	1.272
10/51 \C C (1D0\	(F 1)0		3.010.01	1.1.1	$4f^{10}(^{5}\mathrm{I})6s7p$		8	35450.17? 35518.27	1.277
$^{10}(^{5}\text{I}_{5})6s6p(^{1}\text{P}_{1}^{\circ})$	(5,1)°	6 5	33025.64	1.01	$4f^{10}(^{5}\mathrm{I})6s7p$		9	35580.84?	1.277
		4	33324.06	0.89	•		8	35777.79	1.21
		5	33139.24	0.89	$4f^{10}(^{5}I)5d6p$?		7	35802.73	1.23
		8	33165.77	1.25			8	35894.36	1.22
		7	33311.52	1.296			8	35899.94	1.23
		8	33358.83?		$4f^{10}(^{5}I)5d6p$?		10	35945.02	1.22
		5	33652.23	1.16	$4f^{10}(^{5}{\rm I})6s7p$		10	36094.42	1.288
		8	33721.52	1.25			7	36248.02	1.30
		5	33788.79	1.31	$4f^{10}(^{5}I)5d6p$?		9	36260.17	1.183
		5	33871.70	1.17	$4f^{10}(^{5}I)5d6p$?		8	36288.48	1.25
		5	33947.13	1.307	$4f^{10}(^{5}I)5d6p$?		7	36316.42	1.23
		4	33952.33	1.30			9	36341.53	1.282
		4	34038.46	1.30	$4f^{10}(^{5}{\rm I})6s7p$		9	36440.21	
		4	34137.43	1.18			7	36441.99	1.174
		7	34213.65				6	36462.09	1.09
		6	34359. 56	1.26			8	36534.04	1.24
		4	34559.80	1.14	$4f^{10}(^{5}{ m I})6s7p$		8	36546.78	1.267
		5	74400.67	1.123			8	36618.34?	
					$4f^{10}(5I)5d6p$?		10	36640.90	1.17

Dy I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	.,
4 C10/ET \ F 10 9		10	36868.73	1.178	$4f^{10}(^{5}I)5d6p?$		7	38362.65	
$4f^{10}(^{5}\text{I})5d6p?$		8	36892.10	1.188	$4f^{10}(^{5}I)5d6p?$		7	38421.29	1:
			37041.02	1.19			8	38438.87	1 '
		8	37073.86	1.288	$4f^{10}(^{5}I)5d6p?$		9	38563.33	1 '
$4f^{10}(51)5d6p?$		9	37073.86	1.208			7	38779.77	
$4f^{10}(51)5d6p$?		8	37146.54	1.233			8	38814.46?	
$4f^{10}(^{5}I)5d6p?$			37182.98	1.23	$4f^{10}(5I)5d6p$?		8	39135.32	11
$4f^{10}(^{5}\text{I})5d6p?$		11	37182.98	1.12	$4f^{10}(^{5}I)5d6p?$		10	39182.40	1:
$4f^{10}(^{5}I)5d6p?$		8	37355.00	1.12			6	39188.23	
		7		1.109			7	39325.28	
		7	37366.93		$4f^{10}(^{5}I)5d6p?$		8	39398.10	1:
$4f^{10}(^{5}I)5d6p?$		7	37471.09?	1.23	$4f^{10}(^{5}I)5d6p?$		9	39602.47	1:
		7	37587.58 37635.26?	1.25	$4f^{10}(^{5}I)5d6p?$		8	39714.20	1
$4f^{10}(^{5}I)5d6p?$		8		1.09	$4f^{10}(^{5}I)5d6p?$		9	39903.34	I
		8	37646.28		$4f^{10}(^{5}I)5d6p?$		9	40030.48	1
$4f^{10}(^{5}I)5d6p?$		8	37721.06	1.199	4f ⁹ (⁶ H°)5d6s7s		9	40594.03	1
$4f^{10}(^{5}I)5d6p?$		9	37836.50	1.18	_		8	40605.98	1
$4f^{10}(^{5}I)5d6p?$		8	37843.38	1.265	4f 9(6H°)5d6s7s		8	41136.59	1
		10	38019.12	1.152			6	41577.18	
$4f^{10}(5I)5d6p?$		9	38102.92	1.19			7	41642.79	
$4f^{10}(^{5}I)5d6p?$		8	38202.48	1.313	$4f^{10}(^{5}I)5d6p?$		6	41656.46	1
$4f^{10}(^{5}I)5d6p?$		10	38247.38	1.22			6	42375.03	1
		7	38251.55				5	42479.83	1
$4f^{10}(^{5}I)5d6p?$		10	38297.52	1.244					
$4f^{10}(^{5}I)5d6p?$		7	38342.48	1.323					
		8	38358.88	1.095	Dy II $(^{5}I_{8})6s_{1/2}$ $(8,^{1}/_{2})_{17/2}$	Limit		47900	

(Tb I sequence; 65 electrons)

Z = 66

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)\ 4f^{10}(^5{\rm I}_8)6s\ (8,\frac{1}{2})_{_{17/2}}$

Ionization energy 94100 ± 600 cm⁻¹

 $11.67 \pm 0.08 \text{ eV}$

Identified even configurations

 $4f^{10}6s$, $4f^{10}5d$, $4f^{9}6s6p$, $4f^{9}5d6p$

Identified odd configurations

 $4f^95d6s$, $4f^96s^2$, $4f^95d^2$, $4f^{10}6p$

In the earlier work on this spectrum, one or more real energy differences were found or confirmed by Paulson [1914], Meggers [1942], Blank [1952], and Corliss and Corliss [1953]. Blank's analysis was greatly aided by his measurements of the Zeeman patterns of 510 lines. He classified 100 lines according to four wavenumber differences, but his Zeeman data showed that the differences involved eight separate low levels. The J and g values of these levels indicated $^6\mathrm{I}$ and $^4\mathrm{I}$ terms, as expected for a $4f^{10}6s$ ground configuration. Blank concluded that the $^6\mathrm{I}_{17/2}$ level was probably the ground level. Corliss and Corliss [1953] derived a single connected system consisting of the four lowest levels and a number of upper odd levels. Their analysis yielded classifications for 80 of the stronger Dy II lines tabulated by Meggers, Corliss, and Scribner [1961].

Vander Sluis and McNally [1970] at Oak Ridge and Conway and Worden [1970, 1971] at the Lawrence Laboratory made new observations of Dy I and Dy II using electrodeless lamps containing the separated isotope 162 Dy. The UCRL report by Conway and Worden has more than 9000 lines assigned to Dy II in the range 2300-11400 Å. Conway and Worden extended the analysis to include all ten levels of the ground subconfiguration $4f^{10}(^5\text{I})6s$, the two levels of $4f^{10}(^5\text{F}_5)6s$, two other low even levels, and 214 upper odd levels. About 1000 lines were classified. The analysis was partly based on new measurements of Zeeman patterns, and g values were obtained for most of the levels. In a separate investigation, Vander Sluis and McNally used Zeeman spectra photographed at MIT to derive g values for the ten lowest levels of $4f^{10}6s$ and for 77 upper odd levels.

Wyart has greatly extended the analysis to include about 550 levels. He worked with the line list of Conway and Worden, and with new data including additional measurements of Zeeman patterns. Wyart has also made extensive calculations that are the basis for the interpretation of the levels given here. All eigenvector percentages are from his results.

Conway and Worden state the uncertainty of their three-place g values to be ± 0.003 , whereas the standard deviations of the g values obtained for the $4f^{10}(^5\mathrm{I})6s$ levels by Vander Sluis and McNally lie between 0.001 and 0.016. We have taken suitable averages of g values included in both sets of measurements. The measurements of Vander Sluis and McNally for the high odd levels were usually weighted according to the number of determinations. The g values given by Wyart to the nearest 0.005 have been rounded to two places to distinguish them from the generally more accurate three-place values.

The J_1j -coupling of the $4f^{10}6s$ ground configuration, as exhibited by the pairing of the low levels, was noted by Conway and Worden. Vander Sluis and McNally pointed out the good agreement of the experimental g values with theoretical J_1j -coupling values. No eigenvector percentages in this scheme are available, but we have listed the leading percentages in LS coupling after the word "or." The percentages are from Wyart's recent calculation of $(4f^{10}6s+4f^{10}5d)$ including configuration interaction [1976]. The known $4f^{10}5d$ levels belong mainly to the $4f^{10}5d$ subconfiguration; Spector [1971] located several of the low levels of this group, but the detailed interpretation required experimental g values and an expansion of the analysis [Wyart, 1971; 1973; 1976].

Wyart [1972b] has been able to assign all but a few of the 141 high even levels (36000–54000 cm⁻¹) to eigenvectors of $(4f^9(^6\mathrm{H}^\circ,^6\mathrm{F}^\circ)6s6p+4f^9(^6\mathrm{H}^\circ,^6\mathrm{F}^\circ)5d6p)$. All of the assigned levels of this group have $J \ge \frac{7}{2}$. Wyart notes that transitions from these levels to levels of $4f^9(5d+1)$

 $6s)^2$ account for the strongest lines originating on high even levels, although levels of $4f^{10}6s$ and $4f^{10}5d$ must also lie in this region.

The eigenvector percentages for the odd levels are from Wyart's calculation of $(4f)^9(5d+6s)^2+4f^{10}(6p)$, the three configurations based on $4f^9$ being limited to the subconfigurations from the $4f^9$ 'H' and 'F' terms [Wyart, 1972a]. All interpreted odd levels have $J \ge \%$. An extension of the calculation to include levels based on higher terms of $4f^9$ would probably allow interpretation of many of the levels above 30000 cm⁻¹; some 240 uninterpreted odd levels are listed, the bulk lying between 32000 and 42000 cm⁻¹. Wyart notes, however, that a meaningful extension of his calculation would require matrices of order greater than 500.

Sugar and Reader determined the quoted ionization energy.

References

Blank, J. M., Thesis, Mass. Inst. Tech., Cambridge, Mass., 93 pp. (1952). EL W ZE

Conway, J. G., and Worden, E. F., Univ. Calif. Radiation Lab., Berkeley, UCRL-19944, 613 pp. (1970). (Available from National Technical Information Service, Springfield, Va. 22161.) EL ND CL W ZE PT

Conway, J. G., and Worden, E. F., J. Opt. Soc. Am. 61, 704 (1971). EL ND CL W ZE PT

Corliss, C. H., and Corliss, E. L. R., unpublished material (1953); see Meggers et al. (1961).

King, A. S., Astrophys. J. 72, 221 (1930). W

King, A. S., Conway, J. G., Worden, E. F., and Moore, C. E., J. Res. Nat. Bur. Stand. (U.S.) 74A, 355 (1970). W

Meggers, W. F., Rev. Mod. Phys. 14, 96 (1942). EL

Meggers, W. F., Corliss, C. H., and Scribner, B. F., Tables of Spectral Line Intensities, Nat. Bur. Stand. (U.S.), Monogr. 32, Part I, 473 pp. (1961); more recent data are given in the second edition, Nat. Bur. Stand. (U.S.), Monogr. 145, Part I, 403 pp. (1975). EL CL

Paulson, E., Astrophys. J. 40, 298 (1914). EL

Spector, N., J. Opt. Soc. Am. 61, 672A (1971). EL

Sugar, J., and Reader, J., J. Opt. Soc. Am. 55, 1286 (1965). IP

Vander Sluis, K. L., and McNally, J. R., Jr., J. Opt. Soc. Am. 60, 1209 (1970). EL CL W ZE

Wyart, J. F., C. R. Acad. Sci., Ser. B 272, 933 (1971). EL ND ZE PT

Wyart, J. F., Physica (Utrecht) 61, 182 (1972a). EL ND PT

Wyart, J. F., Physica (Utrecht) 61, 191 (1972b). EL ND ZE PT

Wyart, J. F., Thesis, Univ. Paris-Sud, Orsay, 194 pp. (1973). EL ND ZE PT

Wyart, J. F., unpublished material (1975, 1976). EL ZE $\,$

Wyart, J. F., Physica (Utrecht) 83C, 361 (1976). EL ND ZE PT

[July 1976]

Dy II, Even Parity

			Dj II, Liveir	i wiity					
Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages			
$4f^{10}(^{5}\mathrm{I}_{8})6s_{1/2}$	$(8,^{1}/_{2})$	17/2	0.00	1.290	i .	or	95	(5 <u>I</u>) 6 <u>I</u>	
		15/2	828.31	1.203		or	72	(⁵ I) ⁴ I	
$4f^{10}(^{5}I_{7})6s_{1/2}$	$(7,^{1}/_{2})$	15/2	4341.10	1.225		or	75	(⁵ I) ⁶ I	
•		13/2	4755.66	1.130		or	50	(⁵ I) ⁴ I	
$4f^{10}(^{5}I_{6})6s_{1/2}$	$(6,^{1}/_{2})$	11/2	7463.88	1.015		or	69	(⁵ I) ⁶ I	
	(-, , -,	13/2	7485.09	1.134	l .	or	49	(-/ -	
$4f^{10}(^{5}I_{5})6s_{1/2}$	$(5,^{1}/_{2})$	9/2	9432.07	0.825		or	82	(⁵ I) ⁶ I	
•		11/2	9870.99	0.997		or	66	(⁵ I) ⁴ I	
$4f^{10}(^{5}I_{4})6s_{1/2}$	$(4,^1/_2)$	7/2	10953.94	0.470		or	92	(⁵ I) ⁶ I	
		9/2	11801.01	0.756		or	80	(⁵ I) ⁴ I	
$4f^{10}(^{5}\mathrm{F}_{5})6s_{1/2}$	$(5,^{1}/_{2})$	11/2	13338.27	1.413		or	85	(5F) 6F	
		9/2	14126.93	1.32		or	62	(5F) 4F	
$4f^{10}(^{5}I)5d$	eI	17/2	14845.91	1.25	78		13	(⁵ I) ⁶ K	
$4f^{10}(^{5}I)5d$	eH	15/2	14952.14	1.30	56		28	(5I) 6I	
$4f^{10}(^{5}I)5d$	eG	13/2	15691.99	1.34	65		21	(5I) 6H	

Dy II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Lead	ding per	centages
$4f^{10}(^{5}\mathrm{S}_{2})6s_{1/2}$	(2,1/2)	5/ ₂ 3/ ₂	15889.87 16758.92	1.85 1.72	or or	81 72	(⁵ S) ⁶ S (⁵ S) ⁴ S
$4f^{10}(^{5}\mathrm{F}_{4})6s_{1/2}$	$(4,^1/_2)$	9/ ₂ 7/ ₂	15979.27 16418.93	1.40 1.309	or or	70 52	(5F) 6F
$4f^{10}(^{5}I)5d$	6K	19/2	16117.40	1.24	75	12	(⁵ I) ⁶ L
$4f^{10}(^{5}\mathrm{I})5d$	eГ	21/2	17406.59	1.24	94	4	(³ K2) ⁴ M
$4f^{10}(^{5}I)5d$	4K	17/2	17589.52	1.20	52	23	(⁵ I) ⁶ K
$4f^{10}(^5\mathrm{F}_3)68_{1/2}$	$(3,^1/2)$	5/ ₂ 7/ ₂	17779.98 17912.80	1.29 1.30	or or	78 52	(⁵ F) ⁶ F (⁵ F) ⁴ F
$4f^{10}(^{5}I)5d$	4L	19/2	17788.82	1.17	62	16	(⁵ I) ⁶ K
$4f^{10}(^{5}I)5d$		$^{13}/_{2}$	18219.72	1.24	29 ⁶ I	25	(5I) 6G
$4f^{10}(^{5}I)5d$		15/2	18234.95	1.24	34 ⁶ H	33	(5I) 6I
$4f^{10}(^{5}I)5d$	⁶ G	11/2	18866.51	1.26	48	29	(5I) 6H
$4f^{10}(^{5}I)5d$		17/2	20700.59	1.16	36 ⁴ K	27	(5I) 6K
$4f^{10}(^{5}I)5d$		13/2	20748.43	1.17	35 ⁶ I	29	(⁵ I) ⁴ H
$4f^{10}(^{5}I)5d$	6K	15/2	21076.07	1.13	46	16	(⁵ I) ⁴ I
$4f^{10}(^{5}I)5d$		11/2	21177.84	1.15	42 ⁶ I	23	(⁵ I) ⁶ G
$4f^{10}(^{5}I)5d$	4 I	15/2	21338.35	1.18	50	24	(⁵ I) ⁶ I
$4f^{10}(^{5}I)5d$		17/2	21627.53	1.12	39 ⁴ L	30	(⁵ I) ⁶ K
$4f^{10}(^{5}I)5d$	еL	19/2	21806.92	1.17	69	25	(⁵ I) ⁴ L
$4f^{10}(^{5}I)5d$		9/2	21813.12	1.10	41 ⁶ H	36	(5I) 6G
$4f^{10}(^{5}I)5d$		13/2	22116.32	1.20	40 ⁴ H	31	(5I) 6H
$4f^{10}(^{5}I)5d$		11/2	23309.80	1.105	32 ⁶ H	24	(⁵ I) ⁶ I
$4f^{10}(^{5}I)5d$		13/2	23375.41	0.994	29 ⁶ K	20	$(^3\mathrm{K}2)6s$ $^4\mathrm{K}$
4f ¹⁰ (3K2)6s		13/2	23479.89	1.00	26 ⁴ K	23	$(^5\mathrm{I})5d$ $^6\mathrm{K}$
$4f^{10}(^{5}I)5d$	eI	9/2	23495.20	1.00	48	34	(⁵ I) ⁶ G
$4f^{10}(^{5}I)5d$	еГ	15/2	23840.25	1.036	59	19	(⁵ I) ⁴ K
$4f^{10}(^{5}I)5d$	6H	7/2	23976.76	0.837	46	24	(⁵ I) ⁶ G
$4f^{10}(^{5}I)5d$		15/2	24685.63	1.10	34 ⁴ K	32	(⁵ I) ⁶ K
$4f^{10}(^{5}I)5d$		17/2	25051.49	1.10	48 ⁴ L	42	(5I) 6L
$4f^{10}(^{5}I)5d$	eK	11/2	25086.95	0.89	63	11	(⁵ I) ⁶ I
$4f^{10}(^{5}I)5d$		9/2	25214.39	1.01	38 eH	19	(5I) 6G
$4f^{10}(^{5}I)5d$	eI	7/2	25292.49	0.743	55	32	(5I) 6G
$4f^{10}(^{5}I)5d$	еГ	13/2	25746.58	0.888	70	7	(⁵ I) ⁴ L
$4f^{10}(^{5}I)5d$	eH	5/2	25933.69	0.45	62	25	(5I) 6G
$4f^{10}(^{5}I)5d$		7/2	26550.05	0.91	35 ⁶ G	35	(5I) 6H
$4f^{10}(^{5}I)5d$	⁶ G	5/2	27494.66	0.75	66	21	(5I) 6H
$4f^{10}(^{5}I)5d$	4L	15/2	27519.67	1.00	62	22	(⁵ I) ⁶ L
$4f^{10}(^{5}I)5d$	eG	3/2	28214.92	0.04	90	4	$(^{3}H4)$ ^{4}F
$4f^{9}(^{7}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$	8G	15/2	36212.19	1.405	45		
$4f^{9}(^{7}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$	8H	17/2	36522.90	1.373	59		
4f ⁹ (⁷ H°)5d (⁷ H°)6p	:	15/2	37817.31	1.333	20 ⁸ G		
$4f^{9}(^{7}\text{H}^{\circ})6s6p(^{3}\text{P}^{\circ})$		13/2	37878.55	1.303	20 ⁶ H		

Dy II, Even Parity—Continued

		Dy II, Even Parity—Continued											
Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages							
4f ⁹ (⁷ H°)5d (⁷ H°)6p		17/2	38402.40	1.326	23	8H							
$4f^{9}(^{7}\text{H}^{\circ})5d$ ($^{7}\text{H}^{\circ})6p$		15/2	38427.36	1.317	19	8H							
$4f^{9}(^{7}\text{H}^{\circ})5d \ (^{7}\text{H}^{\circ})6p$		13/2	38939.69	1.381	22	8G							
$4f^{9}(^{7}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		13/2	39896.72	1.24	20	8H							
• • • • •		13/2	39944.24	1.23									
$4f^{9}(^{7}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$	*I	19/2	40158.04	1.36	69								
4f ⁹ (⁷ H°)5d (⁷ H°)6p		11/2	40194.02	1.34	18	8H							
$4f^{9}(^{7}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		17/2	40455.73	1.326	39	eI							
$4f^{9}(^{7}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		15/2	40516.80	1.35	17	8I							
$4f^{9}(^{7}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		15/2	40604.11	1.295	24	4[
J (== /== -p(= /		15/2	40626.42	1.093									
4f ⁹ (⁷ H°)5d (⁷ H°)6p		19/2	40807.20	1.332	44	8I							
$4f^{9}(^{7}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		11/2	40841.63	1.326	20	8H							
$4f^{9}(^{7}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		13/2	41004.07	1.26	15	eI							
$4f^{9}(^{7}\text{H}^{\circ})6s6p(^{3}\text{P}^{\circ})$		15/2	41111.11	1.32	40	eH							
4f ⁹ (⁷ H°)5d (⁷ H°)6p		17/2	41583.90	1.33	25	eI							
$4f^{9}(^{7}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		13/2	41878.48	1.314	16	4H							
4f ⁹ (⁷ H°)5d (⁷ F°)6p		11/2	42083.59	1.33	24	8D							
$4f^{9}(^{7}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		13/2	42137.31	1.33	32	⁶ G							
		11/2	42150.67	1.10									
4f ⁹ (⁷ H°)5d (⁷ H°)6p		9/2	42256.43	1.23	27	8H							
4f ⁹ (⁷ H°)5d (⁷ H°)6p		13/2	42289.33	1.348	30	6G							
4f ⁹ (⁷ H°)5d (⁷ H°)6p		19/2	42478.98	1.31	35	8 I							
4f ⁹ (⁷ H°)5d (⁷ H°)6p		15/2	42550.09	1.34	26	eH							
4f ⁹ (⁷ H°)5d (⁷ H°)6p		17/2	42741.69	1.32	12	8H							
4f ⁹ (⁷ H°)6s6p(³ P°)		11/2	42813.08	1.208	13	4G							
$4f^{9}(^{7}\text{H}^{\circ})5d$ ($^{7}\text{F}^{\circ})6p$		13/2	42883.01	1.367	19	8F							
$4f^{9}(^{7}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		9/2	42911.59	1.21	33	8H							
$4f^{9}(^{7}\text{H}^{\circ})5d$ ($^{7}\text{H}^{\circ})6p$		15/2	43002.98	1.33	20	8H							
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{7}\text{H}^{\circ})6p$		17/2	43066.19	1.343	35	8I							
$4f^{9}(^{6}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		13/2	43422.06	1.307	19	8 I							
$4f^{9}(^{6}\mathrm{F}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$	8D	11/2	43689.99	1.401	45								
$4f^{9}(^{6}{ m H}^{\circ})6s6p(^{3}{ m P}^{\circ})$		15/2	43794.35	1.298	20	8I							
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{7}\text{H}^{\circ})6p$		7/2	43838.10	1.04	33	8H							
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{7}\text{G}^{\circ})6p$		15/2	43891.33	1.31	21	6H .							
$4f^{9}(^{6}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		13/2	44049.22	1.312	12	eH							
$4f^{9}(^{6}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		17/2	44074.41	1.31	25	8I							
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{7}\text{I}^{\circ})6p$	8K	21/2	44156.98	1.317	73								
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{7}\text{H}^{\circ})6p$		13/2	44189.52	1.31	20	eH							
$4f^{9}(^{6}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		11/2	44331.36	1.242	16	eI							
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{7}\text{H}^{\circ})6p$		9/2	44352.01	1.17	22	81							
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{7}\text{I}^{\circ})6p$		19/2	44501.98	1.32	43	8I							
$4f^{9}(^{6}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		7/2	44529.45	1.00	?	⁸ H							
$4f^{9}(^{6}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		17/2	44545.25	1.28	24	8I							

Dy II, Even Parity—Continued

						
Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
4f ⁹ (⁶ H°)5d (⁷ H°)6p		15/2	44653.18	1.318	12	6 Н
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{7}\text{H}^{\circ})6p$		9/2	44737.52	1.38	11	8G
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{7}\text{H}^{\circ})6p$		13/2	44812.00	1.39	14	$^8\mathrm{G}$
$4f^{9}(^{6}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		11/2	44903.87	1.31	15	4H
$4f^{9}(^{6}\mathrm{F}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		13/2	45123.11	1.323	19	8F
$4f^{10}(^{1}\text{K}_{7})6s_{1/2}$?		15/2	45132.74	1.09		
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{7}\text{H}^{\circ})6p$		15/2	45139.88	1.24	26	8I
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{7}\text{I}^{\circ})6p$		17/2	45240.02	1.33	31	8H
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{7}\text{F}^{\circ})6p$		11/2	45241.75	1.34	11	8D
4f ⁹ (⁶ H°)5d (⁷ I°)6p		15/2	45317.04	1.28	29	eI
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{7}\text{H}^{\circ})6p$		13/2	45356.53	1.448	13	8H
$4f^{9}(^{6}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		9/2	45427.49	1.26	13	8D
4f ⁹ (⁶ H°)5d (⁷ F°)6p		11/2	45545.68	1.36	24	6F
4f ⁹ (⁶ H°)5d (⁷ I°)6p		19/2	45701.64	1.29	36	8K
4f ⁹ (⁶ H°)5d (⁷ F°)6p		13/2	45773.90	1.29	23	8F
4f ⁹ (⁶ H°)5d (⁷ H°)6p		9/2	45800.00	1.282	28	6G
4f ⁹ (⁶ H°)5d (⁷ K°)6p	8K	²¹ / ₂	45934.94	1.30	53	
4f ⁹ (⁶ H°)5d (⁷ K°)6p		19/2	46066.65	1.24	25	8K
4f ⁹ (⁶ H°)5d (⁷ G°)6p		15/2	46082.83	1.303	13	8G
$4f^{9}(^{6}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		9/2	46091.32	1.278	19	$^{6}\mathrm{G}$
4f ⁹ (⁶ H°)6s6p(³ P°)		9/2	46161.85	1.305	13	4G
4f ⁹ (⁶ H°)5d (⁷ I°)6p		13/2	46220.92	1.310	16	8I
4f ⁹ (⁶ H°)5d (⁷ I°)6p		17/2	46256.77	1.275	22	eI
4f ⁹ (⁶ H°)5d (⁷ I°)6p		13/2	46490.31	1.229	23	6H
4f ⁹ (⁶ H°)6s6p(³ P°)		11/2	46498.62	1.275	14	4H
4f ⁹ (⁶ H°)5d (⁷ F°)6p		11/2	46647.75	1.338	10	.8D
4f ⁹ (⁶ H°)5d (⁷ I°)6p		17/2	46694.14	1.274	20	8I
4f ⁹ (⁶ H°)6s6p(³ P°)		13/2	46779.06	1.297	14	8 I
4f ⁹ (⁶ H°)5d (⁷ H°)6p		7/2	46798.32	1.11	14	6G
4f ⁹ (⁶ H°)5d (⁷ F°)6p		15/2	46853.71	1.28	21	8G
4f ⁹ (⁶ H°)5d (⁷ H°)6p		13/2	46943.02	1.23	27	8I .
4f ⁹ (⁶ H°)5d (⁷ H°)6p		11/2	46976.07	1.24	12	8H
4f ⁹ (⁶ H°)5d (⁷ H°)6p		11/2	47023.09	1.32	6	8G
$4f^{9}(^{6}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		15/2	47091.91	1.35	41	eI
4f 9(6H°)5d (7K°)6p		17/2	47208.15	1.24	14	⁶ K
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{7}\text{H}^{\circ})6p$		13/2	47357.74	1.22	17	eI
$4f^{9}(^{6}\mathrm{F}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		11/2	47401.40	1.22	18	*G
$4f^{9}(^{6}\text{H}^{\circ})5d^{-}(^{7}\text{H}^{\circ})6p^{-}$		9/2	47462.43	1.32	13	⁸ G
$f^{9}(^{6}\mathrm{F}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		15/2	47597.73	1.262	33	8G
$f^{9}(^{6}\text{H}^{\circ})5d~(^{7}\text{G}^{\circ})6p$		17/2	47718.75	1.278	19	8H
		11/2	47833.92	1.16		
$f^{9}(^{6}\text{H}^{\circ})5d~(^{7}\text{K}^{\circ})6p$	8L	23/2	47960.83	1.31	100	
$4f^{9}(^{6}\text{H}^{\circ})5d \ (^{7}\text{G}^{\circ})6p$		17/2	48022.12	1.248	17	8H
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{7}\text{H}^{\circ})6p$		13/2	48035.88	1.31	8	eI

Dy II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
4f ⁹ (⁶ H°)5d (⁷ I°)6p		15/2	48052.16	1.29	14 ⁸ H
$4f^{9}(^{6}\mathrm{H}^{\circ})5d~(^{7}\mathrm{K}^{\circ})6p$		21/2	48059.91	1.28	34 ⁸ K
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{7}\text{I}^{\circ})6p$		19/2	48069.10	1.273	34 ⁶ K
$4f^{9}(^{6}\mathrm{H}^{\circ})5d$ ($^{7}\mathrm{I}^{\circ})6p$		11/2	48240.94	1.28	23 ⁸ K
$4f^{9}(^{6}\text{H}^{\circ})5d~(^{5}\text{K}^{\circ})6p$		19/2	48346.29	1.23	26 ⁴ L
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{7}\text{I}^{\circ})6p$		11/2	48469.08	1.29	13 ⁶ H
$4f^{9}(^{6}\mathrm{F}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		13/2	48487.13	1.46	33 ⁶ G
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{-}(^{7}\mathrm{G}^{\circ})6p$		15/2	48489.05	1.35	17 ⁸ G
$4f^{9}(^{6}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		9/2	48684.98	1.20	15 ⁶ G
$4f^{9}(^{6}\mathrm{H}^{\circ})5d~(^{7}\mathrm{I}^{\circ})6p$		13/2	48831.17	1.27	10 ⁶ I
		13/2	48844.85	1.26	
$4f^{9}(^{6}\mathrm{F}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		11/2	48863.45	1.32	18 ⁶ F
4f ⁹ (⁶ H°)5d (⁵ I°)6p		15/2	48950.09	1.222	12 ⁶ H
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{7}\text{G}^{\circ})6p$		15/2	48988.85	1.27	19 ⁸ G
		11/2	49058.03	1.38	
$4f^{9}(^{6}\text{F}^{\circ})5d\ (^{7}\text{F}^{\circ})6p$		13/2	49132.94	1.23	12 ⁸ G
$4f^{9}(^{6}\mathrm{H}^{\circ})5d~(^{7}\mathrm{K}^{\circ})6p$		15/2	49233.16	1.23	15 ⁶ K
$4f^{9}(^{6}\mathrm{H}^{\circ})5d~(^{7}\mathrm{K}^{\circ})6p$		13/2	49340.48	1.253	9 ⁸ K
		11/2	49462.33	1.29	
4f ⁹ (⁶ H°)5d (⁵ I°)6p		17/2	49537.65	1.222	27 ⁶ I
4f ⁹ (⁶ H°)5d (⁵ K°)6p		19/2	49544.70	1.278	20 ⁶ K
$4f^{9}(^{6}\mathrm{H}^{\circ})6s6p(^{3}\mathrm{P}^{\circ})$		13/2	49603.11	1.32	29 ⁶ I
		11/2	49607.50	1.15	
$4f^{9}(^{6}\text{H}^{\circ})5d~(^{5}\text{I}^{\circ})6p$		17/2	49675.74	1.19	18 ⁴ K
$4f^{9}(^{6}\text{H}^{\circ})5d~(^{5}\text{H}^{\circ})6p$		13/2	49680.29	1.35	18 ⁶ G
4f ⁹ (⁶ H°)5d (⁷ K°)6p		15/2	49813.64	1.273	9 ⁶ K
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{7}\text{K}^{\circ})6p$		13/2	49856.57	1.23	9 eI
4f ⁹ (⁶ H°)5d (⁷ K°)6p		19/2	50017.73	1.278	39 ⁸ I
		13/2	50051.48	1.26	
		13/2	50101.90	1.11	
$4f^{9}(^{6}{ m H}^{\circ})5d~(^{5}{ m H}^{\circ})6p$		15/2	50129.27	1.212	18 ⁴ I
$4f^{9}(^{6}{ m H}^{\circ})5d~(^{7}{ m G}^{\circ})6p$		15/2	50206.50	1.21	14 ⁸ H
		13/2	50408.821	1.18	
$4f^{9}(^{6}\text{H}^{\circ})5d \ (^{7}\text{K}^{\circ})6p$		17/2	50457.94	1.28	20 ⁸ I
$4f^{9}(^{6}{ m H}^{\circ})5d~(^{5}{ m H}^{\circ})6p$		15/2	50521.44	1.244	17 ⁴ I
		11/2	50768.52	1.35	
$4f^{9}(^{6}\mathrm{H}^{\circ})5d$ ($^{7}\mathrm{G}^{\circ})6p$		15/2	50783.98	1.322	12 ⁸ H
$4f^{9}(^{6}\mathrm{H}^{\circ})5d~(^{5}\mathrm{G}^{\circ})6p$		13/2	50858.43	1.30	19 ⁴ H
$f^{9}(^{6}\text{H}^{\circ})5d \ (^{7}\text{G}^{\circ})6p$		13/2	51087.71	1.31	18 ⁸ G
$f^{9}(^{6}\text{H}^{\circ})5d~(^{5}\text{I}^{\circ})6p$		15/2	51124.24	1.23	35 ⁴ I
		17/2	51406.04	1.28	
$f^{9}(^{6}\text{H}^{\circ})5d \ (^{7}\text{K}^{\circ})6p$	8T	21/2	51593.35	1.25	46
$f^{9}(^{6}\text{H}^{\circ})5d \ (^{7}\text{K}^{\circ})6p$		19/2	51640.22	1.25	25 ⁸ K
$f^{9}(^{6}\text{H}^{\circ})5d$ ($^{5}\text{I}^{\circ})6p$		17/2	51716.65	1.232	18 ⁴ K

Dy II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
4f ⁹ (⁶ H°)5d (⁷ K°)6p		13/2	52008.95	1.22	9	8K
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{7}\text{K}^{\circ})6p$		15/2	52395.07	1.26	15	8I
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{5}\text{H}^{\circ})6p$	eI	17/2	53002.56	1.26	71	
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{5}\text{K}^{\circ})6p$	eT	21/2	53641.33	1.23	69	
$4f^{9}(^{6}F^{\circ})5d$ ($^{7}H^{\circ})6p$		17/2	53738.08	1.27	13	8H
	<u> </u>					
Dy III (⁵ I ₈)	Limit	 	94100			

Dy II, Odd Parity

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentage
4f 9(6H°)5d (7H°)6s	8H°	17/2	10594.19	1.400	83
		15/2	11394.91	1.383	67
		13/2	12674.69	1.350	56
		11/2	14347.21	1.302	55
		9/2	16015.40	1.193	61
		7/ ₂ 5/ ₂			
		3/2			
$4f^9 6s^2$	eH.	15/2	12336.29	1.333	90
		13/2	15822.15	1.275	64
		11/ ₂ 9/ ₂	18121.46	1.215	90
		7/2			
		5/2			
$4f^{9}(^{6}\mathrm{H}^{\circ})5d$ ($^{7}\mathrm{I}^{\circ})6s$	8I.º	19/2	13408.62	1.364	93
		17/2	14895.06	1.315	58
		13/ ₂ 11/ ₂	17596.36 19183.73	1.28 1.163	41
		9/2	19183.73	1.105	59
		7/2			
		5/2			
4f ⁹ (⁶ H°)5d (⁷ H°)6s	eH.	15/2	13610.71	1.33	65
4f ⁹ (⁶ H°)5d (⁷ F°)6s	8F°	13/2	14421.87	1.438	51
4f ⁹ (⁶ H°)5d (⁷ H°)6s		13/2	15530.11	1.358	26 ⁶ H°
4f ⁹ (⁶ H°)5d (⁷ G°)6s 4f ⁹ (⁶ H°)5d (⁷ F°)6s		15/ ₂ 11/ ₂	16260.40	1.365	43 ⁸ G° 36 ⁸ F°
4f ⁹ (⁶ H°)5d (⁷ G°)6s		15/2	16601.97 16875.90	1.408 1.328	36 $^8\mathrm{F}^\circ$ 30 $^8\mathrm{G}^\circ$
4f ⁹ (⁶ H°)5d (⁷ K°)6s	8K°	21/2	16881.33	1.33	100
4) (II)OW (IX)OS	-K	19/2	17606.65	1.33	100 54
		17/2	18549.16	1.22	31
		15/2	20467.71	1.204	26
		13/2	22172.64	1.145	44
		11/2			
		9/ ₂ 7/ ₂			
4f ⁹ (⁶ H°)5d (⁷ H°)6s		11/2	17007.10	1.317	39 ⁶ H°
4f ⁹ (⁶ H°)5d (⁷ I°)6s	eI.º	17/2	17036.55	1.29	62
4f9(6H°)5d (7F°)6s		11/2	18494.59	1.40	31 ⁶ F°

Dy II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		eading centage
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{5}\text{I}^{\circ})6s$		15/2	18678.44	1.272	27	4I°
$4f^{9}(^{6}\mathrm{H}^{\circ})5d~(^{7}\mathrm{F}^{\circ})6s$		9/2	18738.41	1.42	27	8F°
$4f^{9}(^{6}\text{F}^{\circ})5d$ ($^{7}\text{H}^{\circ})6s$		9/2	18955.57	1.21	44	6H°
$4f^{9}(^{6}\text{H}^{\circ})5d~(^{7}\text{G}^{\circ})6s$		13/2	18978.23	1.331	22	8G°
$4f^{9}(^{6}\text{H}^{\circ})5d~(^{5}\text{I}^{\circ})6s$	eI°	17/2	19251.81	1.28	65	
$4f^{9}(^{6}\text{H}^{\circ})5d~(^{5}\text{H}^{\circ})6s$		15/2	19451.35	1.39	31	eH°
$4f^{9}(^{6}F^{\circ})5d$ ($^{7}P^{\circ})6s$	8P°	9/2	19467.23	1.660	58	
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$		13/2	19492.15	1.436	26	8G°
$4f^{9}(^{6}\mathrm{H}^{\circ})5d~(^{7}\mathrm{K}^{\circ})6s$	eK.	19/2	19571.75	1.267	54	
$4f^9 6s^2$	6F°	11/2	19927.64	1.445	84	
$4f^{9}(^{6}\text{H}^{\circ})5d~(^{7}\text{G}^{\circ})6s$		13/2	19956.65	1.310	19	6G°
$4f^{9}(^{6}\mathrm{H}^{\circ})5d~(^{5}\mathrm{H}^{\circ})6s$		15/2	20166.45	1.313	43	6H°
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$		11/2	20517.39	1.463	33	8F°
$4f^{9}(^{6}\mathrm{H}^{\circ})5d~(^{5}\mathrm{K}^{\circ})6s$		17/2	20793.13	1.225	40	4K°
$4f^{9}(^{6}\mathrm{H}^{\circ})5d~(^{7}\mathrm{G}^{\circ})6s$		11/2	20817.16	1.44	40	8G°
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$		17/2	20884.42	1.35	33	8I°
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{5}\text{H}^{\circ})6s$	4H°	13/2	20896.37	1.33	66	
$4f^{9}(^{6}\text{H}^{\circ})5d^{-}(^{7}\text{K}^{\circ})6s$		19/2	20985.62	1.29	35	8K°
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{7}\text{I}^{\circ})6s$		13/2	21134.77	1.24	19	$\rm eI_{\circ}$
4f ⁹ (⁶ H°)5d (⁷ I°)6s		15/2	21272.07	1.21	28	$_{\rm eI_{\circ}}$
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{5}\text{G}^{\circ})6s$	eG.	13/2	21358.06	1.31	53	
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$		19/2	21464.98	1.316	36	$_{8}I_{\circ}$
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$	8K°	21/2	22031.98	1.322	87	
4f ⁹ (⁶ F°)5d (⁷ G°)6s		13/2	22083.31	1.402	29	$^{6}\mathrm{G}^{\circ}$
4f ⁹ (⁶ F°)5d (⁷ H°)6s		15/2	22467.10	1.314	44	8H°
		9/2	22653.44	1.45		
4f ⁹ (⁶ H°)5d (⁵ I°)6s		15/2	22672.54	1.364	21	$\rm eI_{\circ}$
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{5}\text{I}^{\circ})6s$		15/2	22854.69	1.28	26	$_{\rm eI_{\circ}}$
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$		13/2	22871.20	1.387	29	$^8\mathrm{F}^\circ$
4f ⁹ (⁶ H°)5d (⁷ K°)6s		17/2	22908.05	1.24	31	$^{6}\mathrm{K}^{\circ}$
$4f^{9}(^{6}F^{\circ})5d$ ($^{7}H^{\circ})6s$	8H°	17/2	22990.86	1.40	91	
4f ⁹ (⁶ H°)5d (⁵ K°)6s		$^{15}/_{2}$	23202.72	1.186	29	4K°
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{5}\text{H}^{\circ})6s$		$^{13}/_{2}$	23303.06	1.31	31	eH°
		11/2	23561.58	1.368		
$4f^{9}(^{6}F^{\circ})5d^{-}(^{7}H^{\circ})6s$		$^{13}/_{2}$	23575.15	1.330	20	8H°
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$		19/2	23707.18	1.30	29	8K°
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$		17/2	23765.80	1.27	28	8H°
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{5}\text{I}^{\circ})6s$		13/2	24104.44	1.173	28	⁴ I°
$4f^{9}(^{6}\text{H}^{\circ})5d$ ($^{5}\text{K}^{\circ})6s$	eK.	17/2	24316.09	1.23	45	
$4f^{9}(^{6}\text{H}^{\circ})5d\ (^{7}\text{K}^{\circ})6s$		13/2	24506.80	1.10	25	6K°
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$	8L°	23/2	24786.37	1.303	99	
$4f^9 5d^2$		15/2	24806.67	1.28		
$4f^9 5d^2$		13/2	24818.31	1.303		
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$		13/2	24967.31	1.283	16	₈ I°

Dy II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading rcentages
4f ⁹ (⁶ F°)5d (⁷ H°)6s		11/2	25036.76	1.335	36	· 8H°
$4f^{10}(^{5}\mathrm{I})6p$		15/2	25192.03	1.293	22	6H°
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{P})$		17/2	25343.42	1.255	17	$_{8}I_{\circ}$
4f ⁹ (⁶ H°)5d (⁵ I°)6s		13/2	25468.58	1.15	31	eI_o
		11/2	25648.90	1.02		
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$	8L°	21/2	25756.29	1.26	57	
$4f^{9}(^{6}\mathrm{H}^{\circ})5d$ ($^{7}\mathrm{G}^{\circ})6s$		13/2	25772.86	1.37	29	8G°
$4f^{10}(^{5}\mathrm{I})6p$		17/2	25818.43	1.27	37	4K°
$4f^{9}(^{6}\text{F}^{\circ})5d$ ($^{7}\text{H}^{\circ})6s$		15/2	25833.38	1.22	22	eH°
		11/2	26047.86	1.15		
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{P})$		19/2	26279.67	1.26	19	$_{8}I_{\circ}$
		11/2	26407.42	1.11		
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{P})$		15/2	26634.20	1.290	21	8G°
$4f^9 5d^2$		13/2	26853.72	1.320		
$4f^{9}(^{6}\mathrm{F}^{\circ})5d~(^{5}\mathrm{H}^{\circ})6s$		13/2	27193.05	1.295	15	4H°
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$		19/2	27209.91	1.22	37	${}_8\Gamma_\circ$
$4f^{9}(^{6}\mathrm{F}^{\circ})5d$ ($^{5}\mathrm{H}^{\circ})6s$		15/2	27216.93	1.30	34	eН°
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$		17/2	27232.69	1.24	36	eI.
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{P})$		15/2	27435.12	1.308	16	$_{8}I_{\circ}$
		11/2	27462.39	1.18		
		9/2	27476.88	1.18		
		13/2	27502.93	1.20		
		13/2	27792.48	1.18		
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$		15/2	27885.60	1.251	21	eI.
		11/2	27990.27	1.291		
$4f^9 5d^2$		19/2	28005.87	1.32		
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$		13/2	28019.70	1.25	21	eG°
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{1}\mathrm{G})$		17/2	28252.34	1.235	15	eI_{\circ}
$4f^{10}(^{5}\mathrm{I})6p$	6K°	19/2	28306.83	1.26	76	
$4f^{9}(^{6}\text{F}^{\circ})5d$ ($^{7}\text{H}^{\circ})6s$		13/2	28456.12	1.25	16	eH.
$4f^{9}(^{6}\mathrm{F}^{\circ})5d~(^{5}\mathrm{H}^{\circ})6s$		13/2	28550.72	1.25	17	eH.
		7/2	28648.88	0.965		
		13/2	28784.49	1.03		
$4f^{10}(^{5}\mathrm{I})6p$		15/2	28885.37	1.254	25	6K°
		11/2	28908.29	1.23		
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$		17/2	29014.43	1.256	15	8K°
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$		15/2	29109.09	1.230	16	${}_8\Gamma_\circ$
$4f^{10}(^{5}I)6p$	eI。	17/2	29336.06	1.268	52	
$4f^9 5d^2$		21/2	29376.94	1.26		
$4f^{10}(^{5}I)6p$		15/2	29436.60	1.222	42	4I °
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$		19/2	29681.75	1.21	42	4L°
		11/2	29685.14	1.26		
		17/2	29765.74	1.19		
$4f^9(^6{ m H}^\circ)5d^2(^3{ m F})$		13/2	29769.30	1.250	16	€G°

Dy II, Odd Parity—Continued

Dy II, Odd Parity—Continued										
Configuration	Term	J	Level (cm ⁻¹)	g		eading entages				
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$		13/2	29877.52	1.406	32	$^8\mathrm{F}^\circ$				
$4f^{9}(^{6}{ m H}^{\circ})5d^{2}(^{1}{ m G})$		15/2	30112.92	1.208	30	$_{ m eI_{\circ}}$				
$4f^{10}(^{5}\mathrm{I})6p$		13/2	30287.36	1.216	18	eH.				
$4f^{10}(^{5}\mathrm{I})6p$	4H°	13/2	30361.80	1.194	53					
$4f^{9}(^{6}{ m H}^{\circ})5d^{2}(^{3}{ m F})$		15/2	30399.10	1.201	23	$_{\rm eH_{\circ}}$				
		11/2	30553.63	1.31						
		17/2	30580.57	1.33						
		13/2	30638.55	1.20						
		11/2	30718.22	1.300						
$4f^{9}(^{6}\mathrm{F}^{\circ})5d^{2}(^{3}\mathrm{F})$		15/2	30747.02	1.32	13	8H°				
		9/2	30831.15	1.350						
		19/2	30894.44	1.32						
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$		13/2	30973.97	1.139	35	$^{8}\Gamma_{\circ}$				
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{1}\mathrm{G})$		13/2	31183.10	1.16	18	eI.o				
$4f^{9}(^{6}{ m H^{\circ}})5d^{2}(^{3}{ m F})$		15/2	31306.47	1.22	30	4I°				
		11/2	31313.36	1.375						
		11/2	31529.11	1.04						
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{1}\mathrm{G})$		19/2	31536.69	1.26	38	6K°				
•		9/2	31667.43	1.14						
		11/2	31701.66	1.075						
		13/2	31715.10	0.94						
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{1}\mathrm{D})$		15/2	31826.35	1.33	23	$_{\rm eH_{\circ}}$				
		9/2	31866.89	1.28						
$4f^{10}(^{5}I)6p$	eK.	17/2	31879.66	1.17	46					
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{P})$		$^{13}/_{2}$	31978.85	1.232	30	$^{6}\mathrm{G}^{\circ}$				
$4f^{10}(^{5}I)6p$		$^{13}/_{2}$	32218.48	1.157	40	${}_{\rm e}{ m K}_{\circ}$				
		17/2	32281.84	1.20						
		11/2	32386.50	1.22						
		13/2	32591.49	1.10						
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{3}\mathrm{F})$		17/2	32613.41	1.19	24	$^4\mathrm{L}^\circ$				
		9/2	32679.28	1.13						
$4f^{10}(^{5}I)6p$	eI.	15/2	32709.97	1.20	48					
		11/2	32903.81	1.10						
$4f^{10}(^{5}I)6p$		13/2	32914.90	1.210	37	4 I °				
		9/2	32919.48	1.180						
		11/2	33001.21	1.370						
		19/2	33035.57	1.232						
		9/2	33097.32	1.093						
		11/2	33306.71	1.29						
		13/2	33319.21	1.18						
		15/2	33465.39	1.273						
		11/2	33507.29	1.12						
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{1}\mathrm{G})$		17/2	33529.34	1.30	18	$_{ m eI_{\circ}}$				

Dy II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
		13/2	33616.81	1.259	
		11/2	33677.88	1.137	
		9/2	33701.13	1.076	
		13/2	33817.65	1.24	
		15/2	33950.19	1.13	
		13/2	34110.17	1.309	
		11/2	34216.48	1.132	
		13/2	34255.72	1.272	
		9/2	34298.38	1.14	
		19/2	34307.62	1.233	
$4f^{9}(^{6}\mathrm{H}^{\circ})5d^{2}(^{1}\mathrm{G})$		17/2	34396.87	1.28	24 ⁶ K°
		15/2	34423.22	1.148	
		17/2	34519.09	1.22	
		11/2	34524.06	1.102	
		11/2	34691.55	1.151	
		15/2	34692.39	1.16	
		9/2	34712.23	1.077	
		7/2	34730.20	1.184	
		13/2	34759.15	1.28	
		9/2	34864.90	1.03	
		11/2	34884.43	1.272	
		11/2	35000.63	1.30	
		15/2	35207.83	1.132	
		13/2	35230.58	1.14	
		17/2	35266.61	1.266	
		11/2	35268.41	1.20	
		9/2	35294.74	0.976	
		15/2	35365.10	1.21	
		7/2	35387.84	0.794	
		13/2	35434.55	1.13	
		17/2	35495.93	1.23	
		15/2	35565.89	1.17	
		11/2	35657.83	1.46	
		11/2	35685.84	1.229	
		15/2	35707.07	1.25	
		9/2	35841.78	1.04	
		9/2	36001.25	0.96	
		13/2	36003.95	1.028	
		11/2	36057.03	1.21	
		17/2	36058.90	1.158	
		13/2	36173.95	1.14	
		9/2	36260.74	0.953	
		11/2	36264.62	1.14	
		13/2	36282.61	1.21	

Dy II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		9/2	36340.06	1.155			13/2	38297.44	1.:
		11/2	36350.70	1.07			7/2	38322.19	1.3
		15/2	36377.84	1.347			9/2	38457.65	1.1
		13/2	36387.03	1.226			11/2	38495.04	1.
		9/2	36466.34	1.08			11/2	38559.41	1.
		7/2	36643.97	1.26			7/2	38583.10	1.
		7/2	36699.50	1.11			3/2	38599.78	1.
		15/2	36719.64	1.23			9/2	38604.25	1
		9/2	36805.43	1.225			7/2	38635.84	1.
		9/2	36859.32	1.37			15/2	38656.68	1
		13/2	36884.70	1.26			5/2	38723.21	1
		11/2	36970.68	1.20			9/2	38735.83	1
		7/2	37036.56	0.97			13/2	38758.89	1
		13/2	37060.94	1.28			3/2	38774.19	1
		9/2	37066.56	1.20			15/2	38804.02	1
		11/2	37076.28	1.209			7/2	38818.29	1
		13/2	37150.73	1.24			9/2	38972.58	1
		11/2	37187.31	1.397			13/2	39021.89	1
		15/2	37188.01	1.264			9/2	39050.67	1
		7/2	37199.97	1.088			7/2	39081.24	1
		11/2	37363.99	1.250			11/2	39117.83	
		13/2	37382.90	1.30			7/2	39209.26	1
		11/2	37517.38	1.24			11/2	39215.90	
		9/2	37527.89	1.164			13/2	39231.25	
		15/2	37623.10	1.242			13/2	39293.76	
		11/2	37637.95	1.123					
		13/2	37671.30	1.320			9/ ₂ 7/ ₂	39301.45 39308.62	
		3/2	37703.36	1.53			9/2		
		7/2	37764.84	1.054			5/2	39336.52 39377.02	
		11/2	37795.70	1.208			11/2	39416.22	'
		7/2	37839.46	0.76			7/2	39499.72	
		9/2	37895.05	0.78			9/2	39517.39	
		13/2	37905.71	1.11			11/2	39549.11	
		15/2	37942.19	1.25					'
		9/2	37958.42	1.165			7/ ₂	39607.30	
		11/2	38078.02	1.097			9/2	39691.58	
		13/2	38110.71	1.09			9/2	39735.10	
		13/2		1.228			11/2	39791.15	
		ļ	38130.17				13/2	39814.97	1
		11/2	38156.00	1.177		e.	9/2	39838.11	1
		5/2	38162.59	1.183			11/2	39854.90	1
		9/2	38214.89	1.22			5/2	39957.42	1
		7/2	38255.29	1.05			11/2	39985.33	1
		17/2	38266.59	1.152			7/2	40036.03	. 1
		11/2	38290.17	1.15			7/2	40060.35	1

Dy II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		9/2	40091.48	0.97			5/2	42752.23	1.05
		5/2	40137.54	1.32			9/2	42796.25	1.05
		11/2	40146.37	1.07			7/2	42831.46	1.17
		5/2	40209.88	0.832			3/2	43048.38	1.16
		11/2	40223.84	1.075			7/2	43150.78	1.13
		5/2	40264.90	1.151			7/2	43165.66	1.35
		9/2	40315.09	1.06			5/2	43250.10	1.42
		9/2	40343.72	1.19			9/2	43534.34	1.24
		3/2	40454.94	1.55			5/2	43586.31	0.99
		7/2	40477.77	1.09			7/2	43668.47	1.15
		3/2	40526.09	1.32			9/2	43672.95	1.17
		9/2	40541.00	1.21			5/2	43828.98	1.02
		11/2	40635.58	0.96			3/2	43924.53	0.66
		7/2	40694.78	1.32			5/2	43939.40	1.22
		11/2	40945.42	1.137			11/2	44043.04	1.2
		9/2	40977.16	1.148		:	7/2	44119.99	1.18
		13/2	41070.62	1.12			3/2	44211.30	1.10
		5/2	41266.26	1.41			5/2	44449.17	1.0
		5/2	41274.20	1.41		i	7/2	44524.40	1.2
		11/2	41305.27	1.12			3/2	44532.86	1.43
		9/2	41317.47	1.12			7/2	44647.33	1.10
		7/2	41335.44	1.04			5/2	44865.63	1.3
		7/2	41 455.39	1.10			9/2	<i>45056.80</i>	1.2
		9/2	41472.39	1.10			3/2	45066.73	0.9
		13/2	41546.61	1.20			7/2	45101.52	1.1
		9/2	41547.15	1.15			9/2	45138.51	1.2
		9/2	41594.26	1.148			5/2	45160.67	1.4
		5/2	41638.63	1.346			5/2	45210.54	1.1
		7/2	41689.34	1.382			7/2	45227.67	1.2
		7/2	41702.39	1.21			7/2	45331.71	1.0
		9/2	41747.56	0.99			7/2	45358.28	1.2
		7/2	41808.88	1.01			5/2	45500.67	1.2
		7/2	41912.70	1.18			5/2	45521.69	1.0
		5/2	42060.49	1.28			7/2	45624.03	1.2
		11/2	42067.67	1.15			7/2	45967.45	1.3
		9/2	42286.35	1.14			3/2	46010.41	1.4
		5/2	42322.32	1.39			5/2	47564.56	1.4
		13/2	42333.66	1.17					
		3/2	42451.74	1.59		T		0.4100	
		7/2	42628.84	1.23	Dy III (5I8)	Limit		94100	
		5/2	42662.83	1.46					

Dy III

(Gd I sequence; 64 electrons)

Z = 66

Ground state (1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6) 4f^{10}\ ^5\mathrm{I}_8

Ionization energy 183800± 2400 cm⁻¹

 $22.8 \pm 0.3 \text{ eV}$

The spectrum has not been analyzed. Hussain [1973] gives the wavelengths of more than 500 lines assigned to Dy III, mostly in the region 2000-4450 Å. Spector and Sugar have photographed the spectrum at the National Bureau of Standards, and an analysis is planned.

The $4f^{10.5}I_8$ designation for the ground level is practically certain. The lowest level from another configuration is expected to belong to $4f^{9}5d$, beginning about 17000 cm⁻¹ above the ground level [Brewer, 1971; Martin, 1971; Sugar and Reader, 1973].

Sugar and Reader derived the quoted ionization energy.

References

Brewer, L., J. Opt. Soc. Am. 61, 1666 (1971).

Hussain, R., Thesis, Johns Hopkins Univ., Baltimore, 142 pp. (1973); (Univ. Microfilms, Ann Arbor, Mich., No. 74-10419). W

Martin, W. C., J. Opt. Soc. Am. 61, 1682 (1971).

Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP

[January 1977]

[Dy IV]

(Eu I sequence; 63 electrons)

Z = 66

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{9}$ $^6\mathrm{H}^{\circ}_{15/2}$

Ionization energy 334000± 3000 cm⁻¹

 $41.4 \pm 0.4 \text{ eV}$

Hussain [1973] lists about 300 of the strongest lines assigned to Dy IV on the basis of his observations of the spectra of pulsed sparks between Dy electrodes (1250–2510 Å). A few of the lines are given as classified by transitions of the types of $4f^86s-4f^86p$ or $4f^85d-4f^86p$, but no connection between the resulting level system and the $4f^9$ ground configuration was found; Hussain notes that measurements below 1200 Å are needed. Pending a more complete analysis, we have not included any levels obtained from the spark spectrum.

Dieke [1968] has reviewed work on the absorption and fluorescence spectra of Dy³+ ions in crystal hosts. The 4f 9 6 H° and 6 F° levels given here are from Axe and Dieke, who derived them from corresponding experimental sublevels of Dy³+ in LaCl₃ [Crosswhite and Dieke; Dieke]. The levels are adjusted to a value of zero for the ground level, and rounded off to the nearest 10 cm^{-1} . The 6 H° $_{9/2}$ and 6 F° $_{11/2}$ levels, which are not given here, are both near 7600 cm $^{-1}$; the Stark components of these levels overlap, and Axe and Dieke did not derive free-ion values. No transitions to the 6 F° $_{1/2}$ level have been observed. Dieke gives additional levels to above 26000 cm $^{-1}$, and the levels obtained by Carnall, Fields, and Rajnak [1968] from solution absorption spectra extend to 41700 cm $^{-1}$.

Wybourne [1962] and Carnall et al. [1968] have published the results of calculations for Dy IV $4f^9$. The eigenvector percentages given here are from an unpublished calculation by Carnall et al. [1974].

Sugar and Reader [1973] obtained a value of 334500±1600 cm⁻¹ for the ionization energy. We have rounded the value to three significant figures, on the low side of the former value, based on the results obtained for Tb IV by Spector and Sugar [1976]. The estimated error has been approximately doubled, as suggested by Spector and Sugar.

References

Axe, J. D., and Dieke, G. H., J. Chem. Phys. 37, 2364 (1962). [EL] PT

Carnall, W. T., Fields, P. R., and Rajnak, K., J. Chem. Phys. 49, 4424 (1968). [EL] [CL] [W]

Carnall, W. T., Fields, P. R., and Rajnak, K., unpublished material (1974). ND PT

Crosswhite, H. M., and Dieke, G. H., J. Chem. Phys. 35, 1535 (1961). [EL] ND [CL] [ZE]

Dieke, G. H., Spectra and Energy Levels of Rare Earth Ions in Crystals, Ed. H. M. Crosswhite and H. Crosswhite, pp. 268-279 (Interscience Publishers, New York, 1968). [EL] ND [CL] [W] [ZE]

Hussain, R., Thesis, Johns Hopkins Univ., Baltimore, 142 pp. (1973); (Univ. Microfilms, Ann Arbor, Mich., No. 74-10419). EL CL W PT

Spector, N., and Sugar, J., J. Opt. Soc. Am. 66, 436 (1976).

Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP

Wybourne, B. G., J. Chem. Phys. 36, 2301 (1962). PT

[July 1976]

[Dy IV]

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages				
4f 9	6Н°	15/2	0	94	5	4I°3		
± <i>y</i>	••	13/2	[3460]	96	2	4I°3		
		11/2	[5780]	92	3	$^{ m eF_{\circ}}$		
		9/2		93	3	4 G $^{\circ}4$		
		7/2	[9060]	93	4	4 G $^{\circ}4$		
		5/2	[10100]	92	5	4G°4		
4f9	6F°	11/2		93	3	eH°		
-5		9/2	[8950]	88	7	$^{4}\mathrm{F}^{\circ}3$		
		7/2	[10870]	92	4	$^3\mathrm{F}^{\circ}3$		
		5/2	[12270]	93	2	$^{4}\mathrm{F}^{\circ}3$		
		3/2	[13060]	90	3	$^{4}\mathrm{D}^{\circ}2$		
		1/2		91	4	⁴ D°2		
Dy v (⁷ F ₆)	Limit		334000					

Dy XXXIX

(Ni I sequence; 28 electrons)

Z = 66

Ground state (1 $s^22s^22p^63s^23p^6$) $3d^{10}\ ^1{
m S}_0$

Burkhalter, Nagel, and Whitlock excited the spectrum of this ion in the 5–15 Å region by focusing light from a pulsed laser onto a Dy target. Using isoelectronic regularities and comparisons with calculated energies, they were able to classify the $3d^{10}$ $^{1}\text{S}_{0}-3d^{9}4p(J=1)$ and $3d^{10}$ $^{1}\text{S}_{0}-3d^{9}4f(J=1)$ transitions. We have converted the levels from units of eV to units of 10^{4} cm⁻¹ (equivalent to 1.23985 eV).

The coupling in the excited configurations should be very similar in Gd XXXVII and Dy XXXIX; leading eigenvector percentages have been calculated for the Gd case (see Gd XXXVII).

Reference

Burkhalter, P. G., Nagel, D. J., and Whitlock, R. R., Phys. Rev. A 9, 2331 (1974). EL CL , [July 1976]

Dy XXXIX

Configuration	Term	J	Level (10 ⁴ cm ⁻¹)
$3d^{10}$	1S	0	0.0
$3d^{9}(^{2}\mathrm{D}_{3/2})4p_{1/2}$	$(3/2,1/2)^{\circ}$	1	1004
$3d^{9}(^{2}\mathrm{D}_{5/2})4p_{3/2}$	(5/2,3/2)°	1	1019
$3d^{9}(^{2}\mathrm{D}_{3/2})4p_{3/2}$	$(^3/_2, ^3/_2)^{\circ}$	1	1049
$3d^{9}(^{2}\mathrm{D}_{5/2})4f_{5/2}$	(5/2,5/2)°	1	1207?
$3d^9(^2\mathrm{D}_{5/2})4f_{7/2}$	(5/2, ⁷ / ₂)°	1	1247
$3d^{9}(^{2}\mathrm{D}_{3/2})4f_{5/2}$	(3/2,5/2)°	1	1278

HOLMIUM

Ho I

E=67 electrons

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)\ 4f^{11}6s^2\ ^4\Gamma_{^{15/2}}^\circ$

Ionization energy 48567±5 cm⁻¹

 6.0216 ± 0.0006 eV

Identified odd configurations $4f^{11}6s^2$, $4f^{10}6s^26p$, $4f^{11}5d6s$, $4f^{10}5d6s6p$, $4f^{11}6s7s$

Identified even configurations $4f^{10}5d6s^2$, $4f^{10}5d^26s$, $4f^{11}6s6p$, $4f^{11}6s7p$

Levels, Ionization Energy, Wavelength Observations

Extensive data on the level structure of most neutral rare-earth atoms had been obtained before the analysis of Ho I by Blaise, Camus, Guelachvili, Verges, and Wyart [1972a, 1972b]. The remarkable achievement of these authors in identifying at least six of the above configurations very early in the analysis of this complex spectrum was no doubt aided by the available data from other spectra. The levels, identifications, and eigenvector percentages given here are from unpublished material communicated by Wyart [1975, 1976]; many new data from the continuing analysis are included, as well as some revised level values. Wyart [1976] notes that 20 of the even levels originally based on absorption lines [Blaise et al., 1972a] have been definitely confirmed by additional emission transitions. These levels are included here.

Worden, Conway, Paisner, and Solarz [1977] have observed high members of two series in Ho I by using laser techniques. These data became available too late for inclusion here, but the quoted ionization energy is a new determination from these series.

Meggers, Corliss, and Scribner list about 950 lines assigned to either Ho I or Ho II (2502–8916 Å), with Ho I classifications from the earlier lists of energy levels [Blaise et al., 1972a; 1972b]. Spector's [1977] list of 460 Ho lines in the near infrared (0.759–1.2 μ m) also has spectrum assignments to Ho I or Ho II. Unpublished infrared spectra obtained at Orsay (0.8–4.2 μ m) have yielded many resolved hyperfine structures [Camus, Verges, and Wyart, 1975]. The absorption spectrum was photographed at Argonne over the range 2400–4000 Å [unpublished data mentioned by Blaise et al., 1972a].

g Values

The g value for the ground level is from the atomic-beam magnetic-resonance data of Haberstroh, Moran, and Penselin [1972], rounded off to five places. Dankwort and Ferch [1974] have reevaluated these measurements to obtain a value of 1.1951429 ± 0.0000025 . The original determinations of the g and J values of this level were consistent with the $4f^{11}6s^2$ $^4I_{15/2}^{\circ}$ designation [Childs and Goodman, 1961; Cabezas, Lindgren, and Marrus, 1961; Goodman, Kopfermann, and Schlüpmann, 1962]. Livingston and Pinnington [1971] tentatively classified a transition to the ground level on the basis of their optical Zeeman-effect data. We have listed g values for two other levels of the ground term and for six upper levels, as derived from these data and the known levels. More recent observations of the Zeeman effect by Camus and Fred at Argonne have not been published.

Interpretation of Even Levels

Some levels of the low even configurations $4f^{10}5d6s^2$ and $4f^{11}6s6p$ are designated in the J_1j and J_1J_2 coupling schemes, respectively [Blaise et al., 1972a; 1972b; Wyart, 1973; 1975; 1976]. No eigenvector percentages are given in these schemes, but leading percentages in LS coupling from Wyart's [1975] calculation of $(4f^{10}5d6s^2+4f^{11}6s6p)$ are listed for most of these levels. No LS percentages from $4f^{11}(^4I^\circ)6s6p$ quartet terms are given, since Wyart did not use the $6s6p(^3P^\circ,^1P^\circ)$ parentage scheme in his calculation. In some cases, total percentages from one or both configurations are given instead of term percentages. The J_1j -coupling percentages given by Wyart [1973] for the lower $4f^{10}5d6s^2$ levels are not listed because the earlier calculation did not include interaction with $4f^{11}6s6p$.

Wyart [1975] calculated the $4f^{10}(^5\mathrm{I})5d^26s$ group of levels separately, with matrices truncated to include only this subconfiguration. The twelve known levels of $4f^{11}6s7p$ are arranged into four complete $4f^{11}6s(J_1)7p(j)$ terms, built on the lowest two levels of Ho II $(J_1=8,7)$ [Wyart, 1975]. We list the two J_1 parent levels as belonging to the $4f^{11}(^4\mathrm{I}_{15/2}^\circ)6s$ $(^{15}\!2,^{1}\!2)_{8,7}^\circ$ ground term of Ho II, in accordance with the coupling in this parent configuration (see Ho II).

Interpretation of Odd Levels

Aside from the $4f^{11}6s^2$ ground configuration, the most important configurations in accounting for the known odd levels are $4f^{10}6s^26p$, $4f^{10}5d6s6p$, and $4f^{11}5d6s$. The eigenvector percentages are from Wyart's [1976] calculation of $(4f^{10}6s^26p+4f^{11}5d6s)$; no detailed interpretation of the $4f^{10}5d6s6p$ levels has yet been made. A calculation including the interactions between all three configurations may be needed. The $4f^{10}6s^26p$ levels are designated in J_1j coupling [Blaise et al., 1972b; Spector, 1974; Wyart, 1976], with the leading percentages in LS coupling listed after the word "or."

References

Belyanin, V. B., Opt. Spektrosk. 3, 322 (1957). Hfs

Blaise, J., Camus, P., Guelachvili, G., Verges, J., and Wyart, J. F., C. R. Acad. Sci. Ser. B 274, 1302 (1972a). EL PT

Blaise, J., Camus, P., Guelachvili, G., Verges, J., and Wyart, J. F., C. R. Acad. Sci. Ser. B 275, 81 (1972b). EL ND PT

Cabezas, A. Y., Lindgren, I., and Marrus, R., Phys. Rev. 122, 1796 (1961). ZE Hfs

Camus, P., Verges, J., and Wyart, J. F., unpublished material (1975). CL W Hfs

Childs, W. J., and Goodman, L. S., Phys. Rev. 122, 591 (1961). ZE

Dankwort, W., and Ferch, J., Z. Phys. 267, 239 (1974). ZE Hfs

Goodman, L. S., Kopfermann, H., and Schlüpmann, K., Naturwiss. 49, 101 (1962). Hfs and J value

Goodman, L. S., and Schlüpmann, K., Z. Phys. 178, 235 (1964). ZE Hfs

Haberstroh, R. A., Moran, T. I., and Penselin, S., Z. Phys. 252, 421 (1972). ZE Hfs

King, A. S., Astrophys. J. 72, 221 (1930). W

Livingston, A. E., Jr., and Pinnington, E. H., J. Opt. Soc. Am. 61, 1429 (1971). ZE

Meggers, W. F., Corliss, C. H., and Scribner, B. F., Tables of Spectral-Line Intensities, Nat. Bur. Stand. (U.S.), Mono. 145, Part I, 403 pp. (1975). CL W

Spector, N., Phys. Scr. 9, 313 (1974). ND

Spector, N., Astrophys. J. 211, 600 (1977). W

Worden, E. F., Conway, J. G., Paisner, J. A., and Solarz, R. W., unpublished material (1977). IP

Wyart, J. F., Thesis, Univ. Paris-Sud, Orsay, 194 pp. (1973). PT

Wyart, J. F., unpublished material (1975, 1976). EL ND PT

[October 1976]

Ho I, Odd Parity

Configuration	Term	J	Level (cm ⁻¹)	g		Lead	ling percentages
$4f^{11}6s^2$	4I°	$\frac{15}{2}$ $\frac{13}{2}$	0.00 5419.70	1.19514	97 99	$\frac{3}{1}$	² K° ² K°
		$\frac{11}{2}$	8605.16	1.012	86	12	² H°2
		9/2	10695.75	0.866	61	16	² H°2
$4f^{10}(^{5}\mathrm{I}_{8})6s^{2}6p_{1/2}$	(8, ¹ / ₂)°	$\frac{15}{2}$ $\frac{17}{2}$	18572.28 18737.79		or or	57 42	(5I) 6H° (5I) 6I°
$4f^{11}(^{4}{ m I}^{\circ})5d6s(^{3}{ m D})$	eG°	13/2	18867.40		82	13	$(^4\mathrm{I}^\circ)(^3\mathrm{D})~^6\mathrm{H}^\circ$
4f ¹¹ (⁴ I°)5d6s(³ D)	eH.	15/2	19276.94		82	11	$(^4\mathrm{I}^\circ)(^3\mathrm{D})$ $^6\mathrm{I}^\circ$
4f ¹¹ (⁴ I°)5d6s(³ D)		11/2	20060.76		37 $^4G^{\circ}$	30	$(^4\mathrm{I}^\circ)(^3\mathrm{D})~^6\mathrm{G}^\circ$
$4f^{11}(^{4} ext{I}^{\circ})5d6s(^{3} ext{D})$		19/2	20124.25		37 ⁶ L°	31	$(^4\mathrm{I}^\circ)(^3\mathrm{D})~^4\mathrm{L}^\circ$
$4f^{11}(^{4}I^{\circ})5d6s(^{3}D)$	e L°	21/2	20210.60		97	3	$(^2\mathrm{K}^\circ)(^3\mathrm{D})$ $^4\mathrm{M}^\circ$
$4f^{11}(^{4}I^{\circ})5d6s(^{3}D)$		17/2	20315.89		25 $^4\mathrm{L}^\circ$	23	$(^4\mathrm{I}^\circ)(^3\mathrm{D})~^6\mathrm{K}^\circ$
$4f^{11}(^4I^\circ)5d6s(^3D)$		13/2	20493.77		35 $^4\mathrm{H}^\circ$	23	$(^4\mathrm{I}^\circ)(^3\mathrm{D})~^6\mathrm{H}^\circ$
$4f^{11}(^{4}I^{\circ})5d6s(^{3}D)$		17/2	20613.81		34 ⁶ I°	27	$(^4\mathrm{I}^\circ)(^3\mathrm{D})~^2\mathrm{L}^\circ$
$4f^{11}({}^{4}{\rm I}^{\circ})5d6s({}^{3}{\rm D})$	6K°	19/2	20831.18		60	31	$(^4\mathrm{I}^\circ)(^3\mathrm{D})~^4\mathrm{L}^\circ$
$4f^{11}(^{4}I^{\circ})5d6s(^{3}D)$		15/2	21069.22		27 ⁴ K°	18	$(^4\mathrm{I}^\circ)(^3\mathrm{D})~^2\mathrm{K}^\circ$
•					or	38	(5I) 6I°
$4f^{10}(^{5}\mathrm{I}_{8})6s^{2}6p_{3/2}$	(8, ³ / ₂)°	$\frac{17}{2}$ $\frac{19}{2}$	21378.54 21485.02		or	91	(5I) 6K°
		$^{15}/_{2}$	21682.90		or	48	(5I) 4I°
		$^{13}/_{2}$	22024.20		or	52	(⁵ I) ⁴ H°
$4f^{11}(^{4}\text{I}^{\circ})5d6s(^{3}\text{D})$		17/2	21552.02		34 ⁴ K°	28	$(^{4}I^{\circ})(^{3}D) \ ^{6}I^{\circ}$
$4f^{11}(^{4}\text{I}^{\circ})5d6s(^{3}\text{D})$		15/2	22014.13		30 $^4\mathrm{I}^\circ$	27	$(^4\mathrm{I}^\circ)(^3\mathrm{D})~^2\mathrm{K}^\circ$
$4f^{11}(^{4}\text{I}^{\circ})5d6s(^{3}\text{D})$		$^{9}/_{2}$	22157.88		36 $^4\mathrm{G}^\circ$	31	$(^4\mathrm{I}^\circ)(^3\mathrm{D})~^2\mathrm{G}^\circ$
$4f^{11}(^{4}\text{I}^{\circ})5d6s(^{3}\text{D})$		13/2	22392.88		36 2 I $^{\circ}$	25	$(^4\mathrm{I}^\circ)(^3\mathrm{D})~^4\mathrm{I}^\circ$
$4f^{11}(^{4}\text{I}^{\circ})5d6s(^{3}\text{D})$		11/2	22518.59		28 ² H°	28	$(^4\mathrm{I}^\circ)(^3\mathrm{D})~^4\mathrm{H}^\circ$
$4f^{11}(^4G^{\circ})6s^2$	4G°	11/2	22593.53		55	32	$^2\mathrm{H}^\circ2$
$4f^{11}(^{4}\text{I}^{\circ})5d6s(^{1}\text{D})$		13/2	23585.31		38 ⁴ H°	15	$4f^{10}(^{5}I)6s^{2}6p^{-6}H^{\circ}$
$4f^{10}(^{5}I_{7})6s^{2}6p_{1/2}$	(7,¹/2)°	$\frac{15}{2}$ $\frac{13}{2}$	23818.54 23942.71		or or	31 26	(⁵ I) ⁶ K° (⁵ I) ⁴ H°
$4f^{11}(^4{ m I}^\circ)5d6s(^1{ m D})$	4K°	17/2	23885.74		89	6	$({}^{4}{\rm I}^{\circ})({}^{1}{\rm D}) {}^{4}{\rm L}^{\circ}$
$4f^{10}(^{5}\text{I})5d6s6p$		15/2	24112.04				
$4f^{10}(^{5}\text{I})5d6s6p$		17/2	24115.17				
$4f^{11}(^{4}I^{\circ})5d6s(^{1}D)$	4 I °	15/2	24357.90		80	10	$({}^{4}{\rm I}^{\circ})({}^{1}{\rm D}) {}^{4}{\rm K}^{\circ}$
•	1	13/2	24594.75				
$4f^{10}(^{5}I)5d6s6p$ $4f^{10}(^{5}I)5d6s6p$		19/2	24678.25				
$4f^{11}(^{4}I^{\circ})5d6s(^{3}D)$		15/2	25591.43		37 ⁴ L°	37	$(^4{ m I}^\circ)(^3{ m D})~^6{ m L}^\circ$
		11/2	25616.46		44 ⁴ G°	17	(4I°)(3D) 6G°
4f ¹¹ (⁴ I°)5d6s(³ D)	eL°	17/2	25660.40		58	21	$(^{4}I^{\circ})(^{3}D) \ ^{2}L^{\circ}$
$4f^{11}(^{4}I^{\circ})5d6s(^{3}D)$		9/2	25805.04		34 ² G°	33	(4I°)(3D) 6G°
4f ¹¹ (4I°)5d6s(3D)		21/2	25980.35				
$4f^{10}(^{5}\text{I})5d6s6p$	ë 1	15/2	26023.52				
$4f^{10}(^{5}I)5d6s6p$			26127.22				
$4f^{10}(51)5d6s6p$		13/ ₂ 17/ ₂	26143.57				
$4f^{10}(51)5d6s6p$					37 6K°	28	8 (4I°)(3D) 4I°
$4f^{11}(^{4}\text{I}^{\circ})5d6s(^{3}\text{D})$	į	15/2	26198.39		24 eK°	1'	4770
$4f^{11}(^{4}\text{I}^{\circ})5d6s(^{3}\text{D})$		$^{13}/_{2}$	26225.76		24 K 26 4H°	1	6 (4I°)(3D) 6H°

Ho I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ding percentages
$4f^{11}(^{4}\text{I}^{\circ})5d6s(^{3}\text{D})$		11/2	26443.11	-	32	²H°	30	(4I°)(3D) 6H°
$1f^{10}(^{5}I_{7})6s^{2}6p_{3/2}$	(7,3/2)°	15/2	26456.72			or	43	(5I) 6I°
, , , ,		$^{17}/_{2}$	26637.82			\mathbf{or}	60	(5I) 6K°
		$\frac{11}{2}$ $\frac{13}{2}$	26664.67 26 6 73.72			or or	43 37	(5I) 6H°
$f^{11}(^{4}\text{I}^{\circ})5d6s(^{3}\text{D})$		17/2	26480.47		39	eK.	19	(4I°)(3D) 4K°
f 10(5I)5d6s6p		11/2	26529.83					
f ¹⁰ (⁵ I)5d6s6p		$\frac{19}{2}$ $\frac{15}{2}$	26770.17 26811.32					
$f^{10(5{ m I})5}d6s6p$ $f^{11(4{ m I}^\circ)5}d6s({ m ^3D})$		15/2	26922.41		42	eI.	14	(4I°)(3D) 2K°
$f^{11}(^4{ m I}^\circ)5d6s(^3{ m D})$		13/ ₂	26977.37		41	eI.	14	(4I°)(3D) 4K°
$f^{11}(^{4}{ m I}^{\circ})5d6s(^{3}{ m D})$		11/2	27049.80		25	4I°	16	(4I°)(3D) 6I°
$f^{10}(^{5}\text{I})5d6s6p?$		²¹ / ₂	27358.81			•	10	(- / (- / -
	40.04.30							(ET) CT/0
$f^{10(5{ m I}_6)6s^2}6p_{1/2}$	(6,1/2)°	$\frac{13}{2}$ $\frac{11}{2}$	27423.79 27643.13			or or	40 73	(⁵ I) ⁶ K° (⁵ I) ⁴ H°
$f^{10}(^{5}{ m I})5d6s6p?$		19/2	27470.27					
$f^{10}(^{5}{ m I})5d6s6p?$		15/2	27649.51					
$f^{10}(^{5}{ m I})5d6s6p?$		19/2	27670.98					
$f^{10}(^{5}{ m I})5d6s6p?$		23/2	27697.56					
$f^{10}(^{5}\text{I})5d6s6p$?		13/2	27724.36					
$f^{10}(^{5}\text{I})5d6s6p$?		17/2	27923.18					
$f^{10}(^{5}{\rm I})5d6s6p?$		17/2	28244.29					
$f^{10}(^{5}I)5d6s6p?$		17/2	28315.79					
$f^{10}(^{5}I)5d6s6p?$		19/2	28393.24					
$4f^{10}(^{5}{ m I})5d6s6p?$		21/2	28481.24					
· · · · · · · · · · · · · · · · · · ·		15/2	28561.18					
$f^{11}(^4{ m I^\circ})5d6s(^1{ m D})$	4L°	17/2	28861.41		91		6	(4I°)(1D) 4K°
$f^{10}(^{5}\text{I})5d6s6p$?		21/2	28887.78					
		15/2	29086.67					
$4f^{10(5)}5d6s6p?$		23/2	29266.91					
		17/2	29443.09					
$f^{10}(^{5}{ m I})5d6s6p?$		19/2	29465.60			ř		
$1f^{10}(^{5}I)5d6s6p?$		21/2	29558.07					
$4f^{10}(^{5}I)5d6s6p?$	8M°?	²⁵ / ₂	29576.42					
$4f^{10}(^{5}{ m I})5d6s6p?$		19/2	29692.67					
		15/2	29834.05					
		15/2	29979.51					
$4f^{10}(^{5}\mathrm{I})5d6s6p?$		23/2	30011.00					

Ho I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Lead	ling percentages	
$4f^{10}(^{5}{ m I}_{6})6s^{2}6p_{3/2}$	(6,3/2)°	13/ ₂ 11/ ₂ 15/ ₂ 9/ ₂	30029.36 30146.15		or or	39 47	(⁵ I) ⁶ I° (⁵ I) ⁴ I°	
		15/2	30049.10					
$4f^{10}(^{5}\text{I})5d6s6p?$		17/2	30135.31					
$4f^{10}(^{5}\text{I})5d6s6p?$		17/2	30327.49					
		13/2	30338.72					
$4f^{10}(^{5}\text{I})5d6s6p$?		19/2	30425.58					
$4f^{10}(^{5}\text{I})5d6s6p?$		21/2	30484.68					
$4f^{10}(^{5}{ m I})5d6s6p?$		17/2	30582.15					
		15/2	30773.59					
$4f^{10}(^{5}\text{I})5d6s6p?$		17/2	30805.90					
$4f^{10}(5I)5d6s6p?$		19/2	31018.63					
		15/2	31042.44					
$4f^{11}(^4I_{15/2}^\circ)6878(^3S_1)$	(15/2,1)°	17/ ₂ 15/ ₂ 13/ ₂	31116.22 31443.26 31816.26					
$4f^{10}(^{5}\text{I})5d6s6p?$		23/2	31515.70					
		15/2	31540.19					
$4f^{10}(^{5}I)5d6s6p?$		17/2	31793.06					
		15/2	32671.45					
$4f^{11}(^{4}\mathrm{I}_{15/2}^{\circ})6s7s(^{1}\mathrm{S}_{0})$	(15/2,0)°	15/2	33005.31					
		15/2	33091.50					
		13/2	34653.56					
$4f^{11}(^4 ext{I}^\circ_{13/2})6878(^3 ext{S}_1)$	(13/2,1)°	15/ ₂ 13/ ₂ 11/ ₂	36731.23 36873.76 37029.70					
		15/2	37623.09					
$4f^{11}(^{4}\mathrm{I}^{\circ}_{13/2})6s7s(^{1}\mathrm{S}_{0})$	(13/2,0)°	13/2	38397.18					
Ho II (4I°5/2)6s (15/2,1/2)8	Limit		48567					

Ho I, Even Parity

Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ding percentages
4f ¹⁰ (⁵ I 8)5d _{3/2} 6s ²	(8,3/2)	17/ ₂ 15/ ₂ 13/ ₂ 19/ ₂	8378.91 8427.11 9147.08 9741.50			or or or	73 53 67 66	(5I) 6I (5I) 6G (5I) 6K
$4f^{10}({}^5{ m I}_8)5d_{5/2}~6s^2$	(8,5/2)	21/ ₂ 17/ ₂ 19/ ₂ 15/ ₂ 11/ ₂	11322.31 11530.56 11689.77 12339.04 16937.43			or or or or	93 52 56 35 49	(5]) 6L (5]) 4K (5]) 4L (5]) 6H (5]) 4G
$4f^{10(5 ext{I}_7)5}d_{3/2}6s^2$	(7,3/2)	13/ ₂ 11/ ₂ 17/ ₂ 15/ ₂	12344.55 13082.93 15130.31 15136.06			or or or	27 51 33 53	(5I) 6I (5I) 6G (5I) 6L (5I) 4I
$4f^{10}(^{5}{ m I})5d6s^{2}$		13/2	15081.12				46	(⁵ I) ⁴ H
$4f^{10}(^{5}{ m I})5d6s^{2}$		11/2	15792.13				36	(5I) 6I
$4f^{11}(^4 ext{I}^\circ_{15/2})686p(^3 ext{P}^\circ_0)$	(15/2,0)	15/2	15855.28			or	38	(4I°)(3P°) 6H
$1f^{10}5d6s^2$		15/2	16154.21		62		38	$4f^{11} 6s6p$
$f^{10}(^{5} ext{I}_{7})5d_{5/2} \ 6s^{2}$	(7,5/2)	17/2	16438.01			or	38	(⁵ I) ⁶ K
$f^{10}(^{5} ext{I}_{7})5d_{5/2} 6s^{2}$	(7,5/2)	19/2	16683.52			or	69	(⁵ I) ⁶ L
$4f^{11}(^4{ m I}_{15/2})6s6p(^3{ m Pi})$	(15/2,1)	17/ ₂ 15/ ₂ 13/ ₂	16709.82 16882.28 17059.35			or or	42 33 30	(4I°)(3P°) ⁶ I (4I°)(3P°) ² K 4f ¹⁰ 5d6s ²
$f^{10}(^{5}{ m I}_{6})5d_{3/2}~6s^{2}$	$(6,^3/2)$	9/2	16719.62			or	41	(5I) 6G
$f^{10} 5d6s^2$		13/2	16735.95		70		30	$4f^{11} 6s6p$
$4f^{11}(^4\mathrm{I}^\circ_{15/2})6s6p(^3\mathrm{P}^\circ_2)$	(15/2,2)	19/ ₂ 17/ ₂ 15/ ₂ 11/ ₂ 13/ ₂	17883.57 18337.80 18651.53 18821.25 18858.19			or or or	97 50 41 37	(4I°)(3P°) 6K (4I°)(3P°) 6I (4I°)(3P°) 2H (4I°)(3P°) 2I
$1f^{10}5d6s^2$		11/2	18491.21		85		15	$4f^{11} 6s6p$
$f^{10}(^{5}{ m I}_{6})5d_{3/2}6s^{2}$	(6,3/2)	13/2	18564.90			or	44	(⁵ I) ⁶ K
$f^{10}(^{5}{ m I}_{6})5d_{3/2}\ 6s^{2}$	(6,3/2)	15/2	18756.22	1.03		or	55	(5I) 6L
$1f^{10}(^{5}{ m I})5d6s^{2}$		9/2	18757.87				47	(⁵ I) ⁶ I
$f^{10}(^5{ m I}_6)5d_{5/2}~6s^2$	(6,5/2)	15/2	20074.89			or	35	(⁵ I) ⁶ K
$4f^{10}(^{5}{\rm I})5d^{2}(^{3}{\rm F})$ ($^{7}{\rm G})6s$	8G	15/2	20167.17		58		32	(5I)(3F) (7H) 8H
$f^{10}(^{5}{ m I}_{6})5d_{5/2}\ 6s^{2}$	(6,5/2)	13/2	20241.31			or	42	(⁵ I) ⁴ I
$f^{10}(^{5}{ m I})5d^{2}(^{3}{ m F})$ (7F)6s	8F	13/2	20258.27		57		31	(⁵ I)(³ F) (⁷ G) ⁸ G
$f^{10}(^{5}{ m I})5d6s^{2}$		11/2	20493.40				55	(⁵ I) ⁶ K
$f^{10}(^{5}{\rm I})5d^{2}(^{3}{\rm F})$ (7H)6s	8H	17/2	20498.73		60		29	(⁵ I)(³ F) (⁷ I) ⁸ I
$f^{10} 5d6s^2$		11/2	20849.13		96		4	$4f^{11} 6s6p$
$f^{10}(^{5}{ m I}_{5})5d_{3/2} \ 6s^{2}$	$(5,^3/2)$	13/2	21044.81			or	66	(⁵ I) ⁶ L
$4f^{10}(^{5}{\rm I})5d^{2}(^{3}{\rm F})$ (7I)6s	8I	19/2	21217.11		54		33	$(^{5}I)(^{3}F)$ (^{7}K) ^{8}K
$4f^{10}(^{5}\mathrm{I})5d6s^{2}$		9/2	21373.17				62	(⁵ I) ⁴ G

Ho I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lead	ling percentages
4f ¹⁰ (⁵ I)5d ² (³ F) (⁷ K)6s	8K	21/2	21494.89		56		34	$(^{5}I)(^{3}F)$ (^{7}L) ^{8}L
$4f^{11}(^4 ext{I}^\circ_{13/2})6s6p(^3 ext{P}^\delta_0)$	(13/2,0)	13/2	21584.89					
$4f^{10}(^{5}\text{I})5d^{2}(^{3}\text{F})$ ($^{7}\text{L})6s$	8 L	23/2	21980.67		84		14	$(^{5}I)(^{3}F)$ (^{7}M) ^{8}M
$4f^{11}(^4 ext{I}^\circ_{13/2})6s6p(^3 ext{P}^\circ_1)$	(13/2,1)	13/ ₂ 15/ ₂ 11/ ₂	22157.86 22227.34 22413.14			or	43	$(^4\mathrm{I}^\circ)(^3\mathrm{P}^\circ)$ $^6\mathrm{K}$
$4f^{10}(^{5}\text{I})5d^{2}(^{3}\text{F})$ ($^{7}\text{F})6s$		13/2	22414.04		24	8F	20	$(^{5}I)(^{3}F) (^{7}H) {}^{8}H$
$4f^{10}(^{5}{\rm I})5d^{2}(^{3}{\rm F})$ (7K)6s		17/2	22476.89		22	8K	18	$(^5I)(^3F) \ (^7H) \ ^8H$
$4f^{10}(^{5}{\rm I})5d^{2}(^{3}{\rm F})$ ($^{7}{\rm G})6s$		15/2	22500.62		21	*G	20	$(^5{\rm I})(^3{\rm F})~(^7{\rm I})~^8{\rm I}$
$4f^{10}(^{5}\mathrm{I})5d^{2}(^{3}\mathrm{F})$ ($^{7}\mathrm{I})6s$		19/2	22866.55		25	8I	20	$(^5I)(^3F) \ (^7L) \ ^8L$
$4f^{10}(^5{ m I}_5)5d_{5/2}6s^2$	(5,5/2)	13/2	22978.19			or	41	(⁵ I) ⁴ K
$4f^{10}(^{5}{\rm I})5d^{2}(^{3}{\rm F})$ ($^{7}{\rm K})6s$		21/2	23366.71		27	8K	17	$(^5{\rm I})(^3{\rm F})~(^5{\rm L})~^6{\rm L}$
$4f^{10}(^{5}\text{I})5d^{2}(^{3}\text{F})$ ($^{7}\text{M})6s$	8M	²⁵ / ₂	23375.28		100			
$4f^{10}(^{5}{ m I}_{5})5d_{5/2}~6s^{2}$	(5,5/2)	11/2	23379.31			or	24	(⁵ I) ⁴ I
$4f^{10}(^{5}{ m I}_{5})5d_{5/2}6s^{2}$	(5,5/2)	15/2	23445.28	1.012		or	59	(⁵ I) ⁴ L
$4f^{11}(^4\Gamma_{13/2}^{\circ})6s6p(^3P_2^{\circ})$	(13/2,2)	17/ ₂ 15/ ₂ 9/ ₂	23498.57 23834.94 23861.17 23946.16			or or	59 43	(4I°)(3P°) 6K (4I°)(3P°) 6I
		$\frac{11}{2}$ $\frac{13}{2}$ $\frac{7}{2}$	23955.69				14	$4f^{10} 5d6s^2$
$4f^{10}(^{5}I)5d^{2}(^{3}F)$ ($^{7}M)6s$		$^{23}/_{2}$	24006.23		41	8M	37	(⁵ I)(³ F) (⁵ M) ⁶ M
$4f^{11}(^4\mathrm{I}^{\circ}_{15/2})6s6p(^1\mathrm{P}^{\circ}_{1})$	(15/2,1)	$\frac{13}{2}$ $\frac{17}{2}$ $\frac{15}{2}$	24014.22 24360.81 24660.80			or or		(4I°)() 4K (4I°)() 4I
$4f^{10}5d6s^2$		11/2	24141.21		95		5	$4f^{11} 6s6p$
$4f^{10}(^{5}\text{I})5d^{2}(^{3}\text{P})$ ($^{7}\text{H})6s$		17/2	24263.96		27	8H	14	(5I)(3F) (7I) 8I
$4f^{10} 5d6s^2$		9/2	24355.64		96		4	$4f^{11}$ $6s6p$
$4f^{10}(^{5}\text{I})5d^{2}(^{3}\text{F})$ ($^{7}\text{H})6s$		15/2	24376.91		16	8H	10	$(^5I)(^3F)\ (^5K)\ ^6K$
$4f^{10}(^{5}I)5d^{2}(^{3}F)$ ($^{5}M)6s$		19/2	24404.19		12	⁶ М	11	$(^{5}I)(^{3}F) \ (^{7}K) \ ^{8}K$
$4f^{10}(^{5}I)5d^{2}(^{3}F)$ ($^{5}M)6s$		21/2	24714.34		24	⁶ М	14	$(^5I)(^3F)\;(^3M)\;^4M$
$4f^{10}5d6s^2$		13/2	24740.52		82		18	$4f^{11} 6s6p$
$4f^{10}(^{5}\text{I})5d^{2}(^{3}\text{F})$ ($^{7}\text{G})6s$		13/2	24760.13		18	⁸ G	10	(5I)(3F) (7I) 8I
$4f^{10}(^{5}\text{I})5d^{2}(^{3}\text{P})$ ($^{7}\text{H})6s$	8H	17/2	24795.58		64		6	$(^{5}I)(^{3}F) (^{7}H) {^{8}H}$
$4f^{10}5d6s^2$		11/2	25261.55	0.90	63		37	$4f^{11} 6s6p$
$4f^{10}5d6s^2$		15/2	25272.63				76	(5F) 6H
$4f^{10}(^{5}\text{I})5d^{2}(^{3}\text{P})$ (7K)6s	8K	21/2	25545.07		86		6	$(^5{\rm I})(^1{\rm D})~(^5{\rm L})~^6{\rm L}$
$4f^{10}(^{5}\text{I})5d^{2}(^{3}\text{F})$ ($^{3}\text{M})6s$		19/2	25548.26		22	² M	11	$(^5{\rm I})(^3{\rm F})~(^5{\rm L})~^6{\rm L}$
$4f^{10}(^{5}\text{I}_{4})5d_{5/2}6s^{2}$	(4,5/2)	13/2	25930.66			or	75	(⁵ I) ⁴ L
$4f^{10}(^{5}\text{I})5d^{2}(^{3}\text{F})$ ($^{7}\text{H})6s$		15/2	25967.69		35	eH	11	$(^5{\rm I})(^3{\rm F})~(^7{\rm I})~^6{\rm I}$

Ho I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ding percentages
$4f^{10}5d6s^2$		9/2	26039.99		88		12	4f 11 6s6p
4f ¹⁰ (⁵ I)5d ² (³ F) (⁷ I)6s		17/2	26655.52		43	eI	21	(5I)(3F) (7K) 6K
$4f^{11}(^4 ext{I}^{\circ}_{11/2})6s6p(^3 ext{P}^{\circ}_{2})$	(11/2,2)	15/2	26957.70					
$4f^{11}(^4I^{\circ}_{13/2})6s6p(^1P^{\circ}_{1})$	(13/2,1)	11/ ₂ 15/ ₂ 13/ ₂	29069.78 29642.60 29751.91					
$4f^{10}5d6s^2$		9/2	32039.76	1.267			20	(⁵ G) 6d
		9/2	32784.83					
$4f^{10}5d6s^2$		11/2	34366.07	1.104	64		36	$4f^{11} 6s6p$
		9/2	35040.75	1.139				
$4f^{11}(^4\mathrm{I}^{\circ}_{15/2})6s \ (^{15}/_{2},^{1}/_{2})^{\circ}_{8} \ 7p_{1/2}$	(8,1/2)	15/ ₂ 17/ ₂	36344.52 36367.65					
$4f^{11}(^4{ m I}_{15/2}^\circ)6s~(^{15}/_{2,1}/_{2})_7^\circ7p_{1/2}$	(7,1/2)	13/ ₂ 15/ ₂	36663.94 36860.75					
$4f^{11}(^4{ m I}_{15/2}^{\circ})6s~(^{15}/_2,^1/_2){ m 8}~7p_{3/2}$	(8,3/2)	19/ ₂ 17/ ₂ 13/ ₂ 15/ ₂	36726.65 36791.24 36895.69 36958.59					
$4f^{11}(^4{ m I}^\circ_{15/2})6s~(^{15}/_2,^{1}/_2)^\circ_7~7p_{3/2}$	(7,3/2)	15/ ₂ 17/ ₂ 13/ ₂ 11/ ₂	37324.64 37388.72 37404.27 37438.53					
		17/2	37356.81					
		15/2,13/2	37404.14					
		15/2,13/2	37481.94					
		15/2	37651.71					
		15/2,13/2	37865.77					
		15/2,13/2	38244.65					
		13/2	38513.79					
		13/2	38828.16					
		15/2,13/2	39098.76					
		15/2,13/2	39171.93					

Ho I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
		13/2	39554.49		
		15/2	39676.57		
		15/2	39904.45		
		ļ 			
Ho II (4I°5/2)6s (15/2,1/2)8	Limit		48567		

Ho II

(Dy I sequence; 66 electrons)

Z = 67

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{11}(^4I_{15/2}^{\circ})6s$ $(^{15}\!\!/_2,^{1}\!\!/_2)_8^{\circ}$

Ionization energy 95200± 600 cm⁻¹

 $11.80 \pm 0.08 \text{ eV}$

Sugar and Spector identified the ground-term pair of levels in Ho II by classifying "several pairs of lines originating from common upper levels and terminating on the two lowest levels of the $4f^{11}6s$ configuration..." [Sugar, 1968]. Only two upper even levels were listed in connection with Sugar's study of the hyperfine structure, but Livingston and Pinnington [1971] gave eight additional upper levels and the corresponding pairs of lines. The identification of the excited configurations was begun by Wyart, Blaise, and Camus [1974], who designated several $4f^{11}(^4I^{\circ}_{15/2})5d$ and $4f^{11}(^4I^{\circ}_{15/2})6p$ levels that classified a group of infrared lines. Wyart found the three upper pairs of levels that complete the $4f^{11}(^4I^{\circ})6s$ subconfiguration, as well as additional $4f^{11}(^4I^{\circ})5d$ and $4f^{11}(^4I^{\circ})6p$ levels [Wyart, Koot, and van Kleef, 1974; Wyart, 1975; 1976]. The term designations for all three configurations are in J_1j coupling schemes. Spector [1976] gave several new levels to extend the $4f^{11}(^4I^{\circ})5d$ and $4f^{11}(^4I^{\circ})6p$ structures.

The analysis is still at an early stage. Although the Zeeman effect for this spectrum is complicated by hyperfine structure, Wyart has made use of some Zeeman data in his analysis. The levels and interpretation as given here include several additions and corrections by Wyart [1975, 1976]. The hyperfine widths of some of the even levels indicate large contributions from the $4f^{10}5d6s$ configuration [Livingston and Pinnington; Wyart, Blaise, and Camus], which is expected to begin below 12000 cm⁻¹. A satisfactory analysis will probably require the calculation of the $(4f^{11}6p+4f^{10}(5d+6s)^2)$ group [Wyart, Koot, and van Kleef]. The leading percentages listed for some of the even levels are from a calculation of the $4f^{11}6p$ configuration alone [Wyart, Koot, and van Kleef]. Some of these levels are known to be perturbed, and two of the $4f^{11}(^4I_{15/2}^{\circ})6p_{3/2}$ assignments are given specifically as uncertain (asterisks after levels) [Wyart, 1976].

Sugar gave eigenvectors for the ground-term pair of levels in the J_1j coupling scheme. No percentages in this scheme are available for the other $4f^{11}(^4I^\circ)6s$ and $4f^{11}(^4I^\circ)5d$ even levels. The leading percentages for these levels in the LS scheme (given after the word "or") are from eigenvectors calculated by Wyart [1975].

Several of the published lists of Ho lines are noted in the text for Ho I. More complete lists for Ho I and Ho II based on recent observations are not yet available. Wyart is using measurements from spectrograms obtained at Argonne and, for the infrared region, Fourier-transform spectra observed by Verges at Orsay. Spector [1977] prepared a list of Ho lines for the infrared region $0.759-1.2~\mu m$. His 1976 paper gives 40 classified Ho II lines, mostly in this region.

Sugar and Reader derived the ionization energy.

References

King, A. S., Astrophys. J. 72, 221 (1930). W
Livingston, A. E., Jr., and Pinnington, E. H., J. Opt. Soc. Am. 61, 1429 (1971). EL CL Hfs
Meggers, W. F., Corliss, C. H., and Scribner, B. F., Tables of Spectral-Line Intensities, Nat. Bur. Stand. (U.S.), Monogr.
145, Part I, 403 pp. (1975). CL W
Spector, N., Phys. Scr. 13, 181 (1976). EL ND CL W PT
Spector, N., Astrophys. J. 211, 600 (1977). W
Sugar, J., and Reader, J., J. Opt. Soc. Am. 55, 1286 (1965). IP
Sugar, J., J. Opt. Soc. Am. 58, 1519 (1968). EL CL Hfs PT
Wyart, J. F., unpublished material (1975, 1976). EL ND PT
Wyart, J. F., Blaise, J., and Camus, P., Phys. Scr. 9, 322 (1974). EL ND CL W
Wyart, J. F., Koot, J. J. A., and van Kleef, T. A. M., Physica (Utrecht) 77, 159 (1974). EL PT

[October 1976]

Ho II

Configuration	Term	J	Level (cm ⁻¹)		Leading per	centages	
$4f^{11}(^{4}\text{I}^{\circ}_{15/2})6s_{1/2}$	(15/2,1/2)°	8	0.00	97	or	97	5 I °
		7	637.40	97	or	72	3 <u>I</u> °
$4f^{11}(^4 ext{I}^\circ_{13/2})6s_{1/2}$	$(^{13}/_{2},^{1}/_{2})^{\circ}$	7	5617.04		039	77.4	5 I °
4) (113/2/001/2	(/2, /2)	6	5849.74		or or	74 54	5 I °
4£11/4 T ° \C-	(11/ 1/)0						
$4f^{11}(^{4} ext{I}_{11/2}^{\circ})6s_{1/2}$	$(^{11}/_{2},^{1}/_{2})^{\circ}$	$\frac{5}{6}$	8850.55 9001.65		or	69 48	3 I °
			3001.03		or	40	
$4f^{11}(^{4}I^{\circ}_{9/2})6s_{1/2}$	(9/2,1/2)°	4	10838.85		or	67	5 I °
		5	11204.50		\mathbf{or}	45	$_{ m 3I}_{ m \circ}$
$4f^{11}(^4 ext{I}^\circ_{15/2})5d_{3/2}$	$(^{15}/_{2},^{3}/_{2})^{\circ}$	6	16281.60		or	80	$^5\mathrm{G}^\circ$
		7	16748.98		\mathbf{or}	82	5H°
		9 8	17713.75 18404.87		or	48	3L° 5I°
			10404.87		or	47	-1
$4f^{11}(^{4} ext{I}_{15/2}^{\circ})5d_{5/2}$	$(^{15}/_{2},^{5}/_{2})^{\circ}$	10	18258.95		or	97	5L°
		9 5	19111.47		or	74	5K°
		8	19882.92 20029.35		or or	57 43	5G° 3K°
		6	20314.90		or	43 49	⁵H°
		7	20492.00		or	46	$^3I_\circ$
		5	19000.54				
		7,8	21688.7				
		7	24712.0				
		7,8	26008.3				
$f^{11}(^4{ m I}_{15/2}^{\circ})6p_{1/2}$	$(^{15}/_2,^1/_2)$	7	26234.19	95			
		8	26330.85	97			
$f^{11}(^4\mathrm{I}^\circ_{15/2})6p_{3/2}$	$(^{15}/_2, ^3/_2)$	9	28926.70	97			
-		8	29412.38	97			
		6	29588.49*	94			
		7	29899.21*	94			
		6	29074.26				
		7,8	29275.0				
		7,8	29325.2				
		7	29810.85				
		7,8	30884.7				
$f^{11}(^4 ext{I}^\circ_{13/2})6p_{1/2}$	$(^{13}/_2,^{1}/_2)$	$\frac{6}{7}$	31505.0 31556.3	95 97			
		6	33882.7				
		6	34099.0				
		5	34653.7				
$^{c_{11}(4\mathrm{I}_{11/2}^{\circ})6p_{1/2}}$	(11/2,1/2)	$\frac{5}{6}$	34770.4	45 51			
$^{c_{11}(^{4}\mathrm{I}_{13/2}^{\circ})6p_{3/2}}$	(13/2,3/2)	7	34779.1	98			
·	12, 12)	8	34802.8	98 99			
		6	35067.2	58			
		5		52			
		7,8	35559.3				

Ho II—Continued

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages
		4	36055.8	
		4	36884.1	
		5	37159.2	
		5	37499.0	
$4f^{11}(^4 ext{I}^\circ_{11/2})6p_{3/2}$	(11/2,3/2)	7 4 5 6	37779.1	85 79 80 83
		5	40332.8	
Ho III (4I°5/2)	Limit		95200	

Ho III

(Tb I sequence; 65 electrons)

Z = 67

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{11}$ $^4I^{\circ}_{15/2}$

Ionization energy 184200± 800 cm⁻¹

 $22.84 \pm 0.10 \text{ eV}$

Identified odd configurations $4f^{11}$

 $4f^{11}$ and $4f^{10}6p$

Identified even configurations

 $4f^{10}5d$ and $4f^{10}6s$

The original analysis of this spectrum by McElaney [1964, 1967] gave 42 levels, including the $4f^{11}$ 4 I° ground-term levels and levels assigned to the other three known configurations. The designations were based in part on calculations made by Becher [1965]. Hussain [1973] added several levels to the analysis.

The levels here are from a recent extension of the analysis by Wyart, Crosswhite, and Hussain [1977]. Some 80 of the 120 known levels were found in their investigation, with most of the new levels belonging to the $4f^{10}5d$ configuration. The additions to $4f^{11}$ include the $^4F^{\circ}$ term, and the new $4f^{10}6s$ and $4f^{10}6p$ levels incorporate some revisions of Hussain's analysis.

The eigenvector percentages are from Crosswhite and Wyart [1976], whose calculation for the even group $(4f^{10}5d+4f^{10}6s)$ included configuration interaction. Some of the percentages differ slightly from the values published by Wyart, Crosswhite, and Hussain because of insignificant differences in the energy parameters used.

The known portions of the $4f^{10}6s$ and $4f^{10}6p$ configurations have clear J_1j -coupling structures. A number of the $4f^{10}5d$ levels have no meaningful names in either the J_1j or LS coupling schemes, but some of the lower levels of this configuration have been grouped into J_1j terms. The leading percentages in LS coupling are given for the $4f^{10}6s$ and $4f^{10}5d$ levels, instead of second percentages in J_1j coupling. Only second percentages $\geqslant 10\%$ in the J_1j scheme are listed for the $4f^{10}6p$ levels.

McElaney's thesis [1964] has about 9000 lines (1920–10877 Å) assigned to the first four Ho spectra. Electrodeless-discharge spectra (2500 Å – 4 μ m) obtained at the Laboratoire Aimé Cotton enable a more reliable separation of the Ho II and Ho III lines, but the newly classified Ho III lines have not been published. About 660 Ho III lines are now classified as transitions between the known levels. The lines typically have wide hyperfine structures, especially the $4f^{10}6s-4f^{10}6p$ transitions. The positions of the $4f^{10}6s$ levels are based on the third diagonal hyperfine component of such transitions, the second decimal place for these levels having little significance otherwise.

Wyart, Crosswhite, and Hussain note that attempts to find levels based on higher terms of the $4f^{10}$ core have been mostly unsuccessful, and searches for the lowest $4f^{10}6d$ and $4f^{10}7s$ levels were inconclusive. They attribute most of the unclassified lines to configurations based on the $4f^9$ core $(4f^95d^2, 4f^95d6s, 4f^95d6p, 4f^96s6p)$ and to transitions between higher levels of $4f^{11}$ and $4f^{10}5d$.

The ionization energy is from Sugar and Reader.

References

Becher, J., Thesis, Johns Hopkins Univ., Baltimore, 135 pp. (1965). PT Crosswhite, H. M., and Wyart, J. F., unpublished material (1976). PT Hussain, R., Thesis, Johns Hopkins Univ., Baltimore, 142 pp. (1973). EL CL Hfs PT McElaney, J. H., Thesis, Johns Hopkins Univ., Baltimore (1964). EL CL W Hfs PT McElaney, J. H., J. Opt. Soc. Am. 57, 870 (1976). EL Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP Wyart, J. F., Crosswhite, H. M., and Hussain, R., Physica (Utrecht) 85C, 386 (1976). EL ND PT

[February 1977]

Ho III

			Ho III						
Configuration	Term	J	Level (cm ⁻¹)			Leadir	ng per	centages	
4f 11	4 I °	15/2	0.00	97			3	²K°	
T)	1	13/2	5438.53	99			1	2K°	
		11/2	8644.59	85			12	$^{2}\mathrm{H}^{\circ}2$	
		9/2	10770.40	61			16	$^{2}\mathrm{H}^{\circ}2$	
4f 11	4F°	9/2	13329.42	66			18	4 I °	
		7/2	17868.42	93			4	$^{2}G^{\circ}1$	
		5/2	19375.33	86			11	$^{2}\mathrm{D}^{\circ}1$	
		3/2		66			17	² D°1	
4f 11	²H°2	11/2	16891.20	48			38	⁴G°	
$4f^{10}(^{5}\mathrm{I_{8}})5d_{3/2}$	(8, 3/2)	15/2	18033.40	83	\mathbf{or}		52	(5I) 6H	
		17/2	18099.14	67	\mathbf{or}		73	(5I) 6I	
		13/2	19010.09	87	or		62	(5I) 6G	
		19/2	19940.47	62	or		64	(5I) 6K	
4f 11		9/2	21533.75	22	$^4\mathrm{F}^\circ$		19	² G°1	
$4f^{10}(^{5}I_{8})6s_{1/2}$	(8, 1/2)	17/2	21824.15	94	\mathbf{or}		79	(5I) 6I	
		15/2	22993.98	92	or		69	(⁵ I) ⁴ I	
$4f^{10}(^{5}\mathrm{I}_{8})5d_{5/2}$	(8,5/2)	21/2	22153.79	93	\mathbf{or}		93	$(^5\mathrm{I})~^6\mathrm{L}$	4
$4f^{10}(^{5}I_{8})5d_{5/2}$	(8, 5/2)	17/2	22243.06	58	\mathbf{or}		36	(⁵ I) ⁴ K	
$4f^{10}(^{5}I_{7})5d_{3/2}$	$(7,^{3}/_{2})$	13/2	22431.10	58	or		35	(⁵ I) ⁶ I	
J (= 1,7 = 11 = 1	(1,7-)	11/2	23212.29	67	or		45	(5I) 6G	
	ļ	17/2	25557.75	79	or		35	(5I) 6L	
		15/2	26081.47	45	\mathbf{or}		41	(5I) 6K	
$4f^{10}(^{5}\mathrm{I}_{8})5d_{5/2}$	(8,5/2)	19/2	22504.08	60	or		52	$(^5\mathrm{I})~^4\mathrm{L}$	
$4f^{10}(^{5}I_{7})5d_{3/2}$		15/2	22637.87	41	$(7,^3/2)$	or	33	(5I) 6H	
4f 11	⁴G°	11/2		59			29	²H°2	
v		9/2	23884.67	81			14	$^{2}\mathrm{H}^{\circ}2$	
		7/2	24648.07	45			24	${}^{2}G^{\circ}1$	
		5/2	28960.42	93			3	${}^{2}F^{\circ}2$	
$4f^{10}(^{5}I_{6})5d_{3/2}$		13/2	25699.23	25	$(6,^3/2)$	or	27	(⁵ I) ⁶ I	
$4f^{10}(^{5}I_{6})5d_{3/2}$	$(6,^{3}/_{2})$	11/2	25973.40	55	or		45	(⁵ I) ⁶ I	
-j (10)000.	(5, 72)	9/2	26603.07	59	or		42	(5I) 6H	
		13/2	28867.24	40	or		42	(5I) 6K	
		15/2	29162.57	86	\mathbf{or}		57	(5I) 6L	
$4f^{10}(^{5}I_{7})5d_{5/2}$	(7,5/2)	15/2	27074.39	50	or		44	(⁵ I) ⁴ I	
$4f^{10}(^{5}I_{7})6s_{1/2}$	(7,1/2)	15/2	27180.12	95	or		70	(⁵ I) ⁶ I	
y (11)001/2	(1, 12)	13/2	27735.94	93	or		50	(5I) 6I	
$4f^{10}(^{5}I_{7})5d_{5/2}$	(7,5/2)	17/2	27260.26	76	or		42	(⁵ I) ⁶ K	
$4f^{10}(^{5}I_{7})5d_{5/2}$	(7,5/2)	19/2	27666.77	94	or		67	(⁵ I) ⁶ L	
$1f^{10}(^{5}\mathrm{I}_{8})5d_{5/2}$		13/2	27913.71	34	(8, 5/2)	or	49	(5I) 4H	
$4f^{10}(^{5}I_{5})5d_{3/2}$	(5.31-)	9/2	28683.36			01			
ty -(-15)0U3/2	$(5,^{3}/_{2})$	7/2	28083.36 29148.88	51 48	or or		$\frac{45}{42}$	(5I) 6H	
		11/2	30618.22	53	or		42 55	(⁵ I) ⁶ K	
		13/2	31313.51	81	or		61	(5I) 6L	
$f^{10}(^{5}I_{6})5d_{5/2}$		11/2	28724.89	32	(6, 5/2)	or	32	(5I) 6H	
$f^{10}(^{5}\mathrm{I}_{8})5d_{5/2}$	(8, 5/2)	11/2	28809.29	49	or		67	(⁵ I) ⁴ G	
$f^{10}(^{5}I_{4})5d_{3/2}$		7/2	30887.77	42	$(4,^3/2)$	or	50	(5I) 6I	
V . V		, –			(-, 14)	J.	50	(- / -	

Ho III—Continued

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Configuration	Term	J	Level (cm ⁻¹)		I	Leadin	g per	entages
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{10}(^{5}I_{6})6s_{1/2}$	(6,1/2)							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{10}(^{5}I_{5})5d_{5/2}$		$^{9}/_{2}$	31046.42	41	(5, 5/2)	or	32	(5I) 6H
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{10}(^{5}\mathrm{I}_{6})5d_{5/2}$	(6,5/2)	$^{15}/_{2}$	31150.22	77	or		37	(⁵ I) ⁴ K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{10}(^{5}I_{4})5d_{3/2}$		$^{5}/_{2}$	31666.95	39	$(4,^3/_2)$	or	63	(5I) 6H
$\begin{array}{c} 4f^{10}(\circ 1_4)5d_{3}2 \\$	$4f^{10}(^{5}I_{6})5d_{5/2}$	(6,5/2)	17/2	31707.90	86	or		51	(⁵ I) ⁴ L
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{10}(^{5}I_{6})5d_{5/2}$		$^{13}/_{2}$	31903.06	43	(6, 5/2)	or	44	(⁵ I) ⁴ I
$ 4f^{10}(^{3}I_{4})5d_{5}c_{2} \\ 4f^{10}(^{3}I_{4})5d_{5}c_{$	$4f^{10}(^{5}I_{4})5d_{3/2}$	$(4,^3/_2)$	9/2	32157.15	59	or		66	$(^5\mathrm{I})$ $^6\mathrm{K}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{10}(^{5}I_{6})5d_{5/2}$		$^{11}/_{2}$	32349.13	34	(6, 5/2)	or	41	$(^5\mathrm{I})$ $^4\mathrm{H}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{10}(5I_4)5d_{5/2}$	(4,5/2)	$\frac{5}{2}$ $\frac{3}{2}$ $\frac{11}{2}$ $\frac{13}{2}$	33923.10 36607.82 37300.35	62 90 69 84	or or or		71 87 41 76	(5I) 6G (5I) 6G (5I) 4K (5I) 4L
$ 4f^{10}(\$I_5)68_{1/2} \qquad (5, 1/2) \qquad \frac{9}{2} \qquad 33277.20 \\ 33875.59 \qquad 88 \qquad \text{or} \qquad 69 \qquad (\$I) \ \$I \\ 4f^{10}(\$I_5)5d_{3/2} \qquad \qquad \frac{9}{2} \qquad 33609.78 \qquad 43 (5, 3/2) \text{or} \qquad 39 (\$I) \ ^4G \\ 4f^{10}(\$I_5)5d_{3/2} \qquad \qquad \frac{11}{2} \qquad 33644.25 \qquad 35 (5, 3/2) \text{or} \qquad 40 (\$F) \ ^6F \\ 4f^{10}(\$I_5)5d_{5/2} \qquad (5, 5/2) \qquad \frac{13}{2} \qquad 34066.99 \qquad 57 \text{or} \qquad 26 (\$I) \ ^4K \\ 4f^{10}(\$I_5)5d_{5/2} \qquad (5, 5/2) \qquad \frac{15}{2} \qquad 34666.32 \qquad 71 \text{or} \qquad 55 (\$I) \ ^4L \\ 4f^{10}(\$I_5)5d_{3/2} \qquad (5, 3/2) \qquad \frac{13}{2} \qquad 34759.72 \qquad 49 \text{or} \qquad 29 (\$F) \ ^6H \\ 4f^{10}(\$I_4)68_{1/2} \qquad (4, 1/2) \qquad \frac{7}{2} \qquad 35067.71 \qquad 89 \text{or} \qquad 89 (\$I) \ ^6I \ ^1I \\ 4f^{10}(\$I_5)5d_{5/2} \qquad (5, 5/2) \qquad \frac{11}{2} \qquad 3523.80 \qquad 50 \text{or} \qquad 32 (\$I) \ ^4I \\ 4f^{10}(\$I_5)5d_{5/2} \qquad (5, 5/2) \qquad \frac{11}{2} \qquad 3523.80 \qquad 50 \text{or} \qquad 32 (\$I) \ ^4I \\ 4f^{10}(\$I_5)5d_{5/2} \qquad (5, 5/2) \qquad \frac{11}{2} \qquad 35839.95 \qquad 70 \text{or} \qquad 67 (\$F) \ ^6H \\ 4f^{10}(\$I_5)5d_{5/2} \qquad (5, 5/2) \qquad \frac{11}{2} \qquad 35876.89 \qquad 32 (4, 3/2) \text{or} \qquad 32 (\$F) \ ^6H \\ 4f^{10}(\$I_6)5d_{5/2} \qquad (5, 1/2) \qquad \frac{11}{2} \qquad 37450.31 \qquad 81 \text{or} \qquad 80 (\$F) \ ^6F \\ 4f^{10}(\$I_5)5d_{5/2} \qquad (5, 1/2) \qquad \frac{11}{2} \qquad 38529.09 \qquad 76 \text{or} \qquad 54 (\$F) \ ^4H \\ 4f^{10}(\$I_5)5d_{5/2} \qquad (4, 5/2) \qquad \frac{13}{2} \qquad 38680.01 \qquad 29 (4, 5/2) \text{or} \qquad 44 (\$I) \ ^4H \\ 4f^{10}(\$I_4)5d_{5/2} \qquad (4, 5/2) \qquad \frac{13}{2} \qquad 39388.26 \qquad 49 \text{or} \qquad 49 (\$F) \ ^6G \\ 4f^{10}(\$I_4)5d_{3/2} \qquad (4, 3/2) \qquad \frac{5}{2} \qquad 39633.40 \qquad 45 \text{or} \qquad 66 (\$I) \ ^4G \\ 4f^{10}(\$I_4)5d_{3/2} \qquad (4, 3/2) \qquad \frac{5}{2} \qquad 39633.40 \qquad 45 \text{or} \qquad 66 (\$I) \ ^4G \\ 4f^{10}(\$I_6)5d_{3/2} \qquad (4, 3/2) \qquad \frac{5}{2} \qquad 39633.40 \qquad 45 \text{or} \qquad 66 (\$I) \ ^4G \\ 4f^{10}(\$I_6)5d_{3/2} \qquad (4, 3/2) \qquad \frac{5}{2} \qquad 39633.40 \qquad 45 \text{or} \qquad 66 (\$G) \ ^6G $	$4f^{10}(^{5}\text{I}_{4})5d_{3/2}$	$(4,^3/2)$	11/2	33046.50	86	or		78	(⁵ I) ⁶ L
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$4f^{10}(^{5}I_{7})5d_{5/2}$		9/2	33146.66	30	(7,5/2)	or	30	(⁵ I) ⁴ G
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{10}(^{5}I_{5})6s_{1/2}$	(5, 1/2)							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{10}(^{5}\mathrm{F}_{5})5d_{3/2}$		9/2	33609.78	43	$(5,^3/2)$	or	39	(⁵ I) ⁴ G
$ 4f^{10}(5 5)5d_{5/2} \qquad (5,5/2) \qquad 15/2 \qquad 34666.32 \qquad 71 \qquad \text{or} \qquad 55 \qquad (5 1) \ ^4L \qquad 4f^{10}(5 5)5d_{5/2} \qquad (5,3/2) \qquad 13/2 \qquad 34759.72 \qquad 49 \qquad \text{or} \qquad 29 \qquad (5 5) \ ^6H \qquad 4f^{10}(5 4)6s_{1/2} \qquad (4,1/2) \qquad ^{7/2} \qquad 35067.71 \qquad 89 \qquad \text{or} \qquad 89 \qquad (5 1) \ ^6I \qquad \\ 4f^{10}(5 5)5d_{5/2} \qquad (5,5/2) \qquad ^{11/2} \qquad 35203.80 \qquad 50 \qquad \text{or} \qquad 32 \qquad (5 1) \ ^4I \qquad \\ 4f^{10}(5 5)5d_{5/2} \qquad (5,5/2) \qquad ^{11/2} \qquad 35203.80 \qquad 50 \qquad \text{or} \qquad 32 \qquad (5 1) \ ^4I \qquad \\ 4f^{10}(5 5)5d_{5/2} \qquad (5,5/2) \qquad ^{15/2} \qquad 35639.95 \qquad 70 \qquad \text{or} \qquad 67 \qquad (5 5) \ ^6H \qquad \\ 4f^{10}(5 5)5d_{5/2} \qquad 9/2 \qquad 35822.86 \qquad 33 \qquad (5,5/2) \qquad \text{or} \qquad 32 \qquad (5 1) \ ^4H \qquad \\ 4f^{10}(5 6)5d_{5/2} \qquad 11/2 \qquad 35876.89 \qquad 32 \qquad (4,3/2) \qquad \text{or} \qquad 32 \qquad (5 5) \ ^6H \qquad \\ 4f^{10}(5 6)5d_{5/2} \qquad 7/2 \qquad 36622.07 \qquad 41 \qquad (6,5/2) \qquad \text{or} \qquad 58 \qquad (5 1) \ ^4G \qquad \\ 4f^{10}(5 5)5d_{5/2} \qquad [5,1/2] \qquad ^{11/2} \qquad 37450.31 \qquad 81 \qquad \text{or} \qquad 80 \qquad (5 5) \ ^6F \qquad \\ 4f^{10}(5 5)5d_{5/2} \qquad [5,1/2] \qquad ^{11/2} \qquad 38529.09 \qquad 76 \qquad \text{or} \qquad 54 \qquad (5 5) \ ^4F \qquad \\ 4f^{10}(5 5)5d_{5/2} \qquad [7/2 \qquad 38680.01 \qquad 29 \qquad (4,5/2) \qquad \text{or} \qquad 23 \qquad (5 5) \ ^4H \qquad \\ 4f^{10}(5 4)5d_{5/2} \qquad [7/2 \qquad 38680.01 \qquad 29 \qquad (4,5/2) \qquad \text{or} \qquad 44 \qquad (5 1) \ ^4H \qquad \\ 4f^{10}(5 4)5d_{5/2} \qquad [4,5/2] \qquad ^{13/2} \qquad 39388.26 \qquad 49 \qquad \text{or} \qquad 49 \qquad (5 5) \ ^6G \qquad \\ 4f^{10}(5 4)5d_{3/2} \qquad [4,3/2] \qquad 5/2 \qquad 39399.24 \qquad 30 \qquad (2,3/2) \qquad \text{or} \qquad 47 \qquad (5 5) \ ^6H \qquad \\ 4f^{10}(5 4)5d_{3/2} \qquad [4,3/2] \qquad 5/2 \qquad 39399.24 \qquad 30 \qquad (2,3/2) \qquad \text{or} \qquad 47 \qquad (5 5) \ ^6H \qquad \\ 4f^{10}(5 4)5d_{3/2} \qquad [4,3/2] \qquad 5/2 \qquad 39399.24 \qquad 30 \qquad (2,3/2) \qquad \text{or} \qquad 47 \qquad (5 5) \ ^6H \qquad \\ 4f^{10}(5 4)5d_{3/2} \qquad [4,3/2] \qquad 5/2 \qquad 39399.24 \qquad 30 \qquad (2,3/2) \qquad \text{or} \qquad 47 \qquad (5 5) \ ^6H \qquad \\ 4f^{10}(5 4)5d_{3/2} \qquad [4,3/2] \qquad 5/2 \qquad 39633.40 \qquad 45 \qquad \text{or} \qquad 66 \qquad (5 1) \ ^4G \qquad 4f^{10}(5 4)5d_{3/2} \qquad (4,3/2) \qquad 5/2 \qquad 39633.40 \qquad 45 \qquad \text{or} \qquad 66 \qquad (5 1) \ ^4G \qquad 4f^{10}(5 4)5d_{3/2} \qquad (4,3/2) \qquad 5/2 \qquad 39633.40 \qquad 45 \qquad \text{or} \qquad 66 \qquad (5 1) \ ^4G \qquad 4f^{10}(5 4)5d_{3/2} \qquad (4,3/2) \qquad 5/2 \qquad 39633.40 \qquad 45 \qquad \text{or} \qquad 66 \qquad (5 1) \ ^4G \qquad 4f^{10}(5 4)5d_{3/2} \qquad (4,3/2) \qquad 5/2 \qquad 39633.40 \qquad 45 \qquad \text{or} \qquad 66 \qquad (5 1) \ ^4G \qquad 4f^{10}(5 4)5d_{3/2} \qquad (4,3/2) \qquad 5/2 \qquad 39633.40 \qquad 45$	$4f^{10}(^{5}\mathrm{F}_{5})5d_{3/2}$		11/2	33644.25	35	$(5,^3/2)$	or	40	(5F) 6F
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{10}(^{5}I_{5})5d_{5/2}$	(5,5/2)	13/2	34066.99	57	or		26	(⁵ I) ⁴ K
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{10}(^{5}I_{5})5d_{5/2}$	(5,5/2)	¹⁵ / ₂	34666.32	71	or		55	$(^5\mathrm{I})$ $^4\mathrm{L}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{10}(^{5}\mathrm{F}_{5})5d_{3/2}$	$(5,^3/2)$	13/2	34759.72	49	or		29	(5F) 6H
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{10}(^{5}I_{4})6s_{1/2}$	$(4,^1/2)$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{10}(^{5}I_{5})5d_{5/2}$	(5, 5/2)	11/2	35203.80	50	or		32	(⁵ I) ⁴ I
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{10}(^{5}\mathrm{F}_{5})5d_{5/2}$	(5,5/2)	15/2	35639.95	70	or		67	$(^5\mathrm{F})$ $^6\mathrm{H}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{10}(^{5}I_{5})5d_{5/2}$		9/2	35822.86	33	(5,5/2)	or	38	(⁵ I) ⁴ H
$ 4f^{10}(^{5}F_{5})6s_{1/2} $ (5,1/2)	$4f^{10}(^{5}\mathrm{F}_{4})5d_{3/2}$		11/2	35876.89	32	$(4,^3/2)$	or	32	$(^5\mathrm{F})$ $^6\mathrm{H}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{10}(^{5}\mathrm{I}_{6})5d_{5/2}$		7/2	36622.07	41	(6, 5/2)	or	5 8	(⁵ I) ⁴ G
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4f^{10}(^{5}\mathrm{F}_{5})6s_{1/2}$	(5, 1/2)							
$ 4f^{10}(^{5}F_{4})5d_{5/2} $ (4,5/2) $^{13}/_{2}$ 39388.26 49 or 49 (^{5}F) ^{6}G 4 $f^{10}(^{5}F_{2})5d_{3/2}$ 5/2 39399.24 30 (2,3/2) or 47 (^{5}F) ^{6}H 4 $f^{10}(^{5}I_{4})5d_{3/2}$ (4,3/2) 5/2 39633.40 45 or 66 (^{5}I) ^{4}G 4 $f^{10}(^{5}G_{6})5d_{3/2}$ 11/2 42095.85 40 (6,3/2) or 26 (^{5}G) ^{6}G	$4f^{10}(^{5}\mathrm{F}_{5})5d_{5/2}$		13/2	38551.49	43	(5,5/2)	or	23	(5F) 4H
$ 4f^{10}(^{5}F_{2})5d_{3/2} $ $ 4f^{10}(^{5}F_{2})5d_{3/2} $ $ 4f^{10}(^{5}I_{4})5d_{3/2} $ $ 4f^{10}(^{5}G_{6})5d_{3/2} $ $ 4f^{10}(^{5}G_{6})5d_{3/2} $ $ 5/2 $ $ 39399.24 $ $ 30 (2,^{3}/_{2}) $	$4f^{10}(^{5}I_{4})5d_{5/2}$		7/2	38680.01	29	(4,5/2)	or	44	(⁵ I) ⁴ H
$4f^{10}(^{5}I_{4})5d_{3/2}$ $(4,^{3}/_{2})$ $^{5}/_{2}$ 39633.40 45 or 66 (^{5}I) ^{4}G $4f^{10}(^{5}G_{6})5d_{3/2}$ $^{11}/_{2}$ 42095.85 40 $(6,^{3}/_{2})$ or 26 (^{5}G) ^{6}G	$4f^{10}(^{5}\mathrm{F}_{4})5d_{5/2}$	(4,5/2)	13/2	39388.26	49	or		49	$(^5\mathrm{F})$ $^6\mathrm{G}$
$4f^{10}(^{5}G_{6})5d_{3/2}$	$4f^{10}(^{5}\mathrm{F}_{2})5d_{3/2}$		5/2	39399.24	30	$(2,^3/2)$	or	47	$(^5\mathrm{F})$ $^6\mathrm{H}$
	$4f^{10}(^{5}I_{4})5d_{3/2}$	$(4,^3/_2)$	5/2	39633.40	45	or		66	(⁵ I) ⁴ G
$4f^{10}(^{5}G_{6})5d_{3/2}$ $(6,^{3}/_{2})$ $^{13}/_{2}$ 42626.94 49 or 36 (^{5}G) ^{6}G	$4f^{10}(^{5}G_{6})5d_{3/2}$		11/2	42095.85	40	$(6,^{3}/_{2})$	or	26	$(^5\mathrm{G})$ $^6\mathrm{G}$
	$4f^{10}(^{5}\text{Ge})5d_{3/2}$	$(6,^{3}/_{2})$	13/2	42626.94	49	or		36	$(^5\mathrm{G})$ $^6\mathrm{G}$

Ho III—Continued

	Term	J	Level (cm ⁻¹)	Leading percentages			
$4f^{10}(^{5}G_{6})6s_{1/2}$	(6,1/2)	13/2	44242.39	81	or 81	(5G) 6G	
$4f^{10}(^{5}I_{8})6p_{1/2}$	(8,1/2)°	15/2	57497.72	93			
ty (18)0p1/2	(0, 12)	17/2	57853.14	92			
$4f^{10}(5I_7)6p_{1/2}$	$(7, 1/2)^{\circ}$	13/2	62484.48	84	12	(⁵ I ₈) (8, ³ / ₂)°	
ij - (-17)0p1/2	(1, 12)	15/2	62844.11	77	18	(10) (0, 72)	
$1f^{10}(^{5}I_{8})6p_{3/2}$	(8,3/2)°	17/2	62804.69	92			
J (-7 1	() . /	19/2	62912.63	93			
		$^{15}/_{2}$	63468.62	74	19	$(^{5}I_{7}) (7,^{1}/_{2})^{\circ}$	
		13/2	64115.86	80	12	$(^{5}I_{7}) (7,^{1}/_{2})^{\circ}$	
$f^{10}(^{5}I_{6})6p_{1/2}$	$(6, 1/2)^{\circ}$	11/2	66128.33	89			
•		13/2	66493.62	92			
$f^{10(5}$ I ₇) $6p_{3/2}$	$(7,^{3}/_{2})^{\circ}$	15/2	67896.30	95			
- · •		17/2	68104.87	97			
		13/2	68266.03	93			
		11/2	68755.93	70	20	$(^{5}I_{5}) (5,^{1}/_{2})^{\circ}$	
$4f^{10}(^{5}I_{5})6p_{1/2}$	$(5, 1/2)^{\circ}$	9/2	68788.48	85			
- -		11/2	69148.27	69	20	$(^{5}\mathrm{I}_{7}) \ (7,^{3}/_{2})^{\circ}$	
$4f^{10}(^{5}I_{4})6p_{1/2}$	$(4,^{1}/_{2})^{\circ}$	7/2	70979.23	85			
		9/2	71052.23	88			
$4f^{10}(^{5}I_{6})6p_{3/2}$	$(6,3/2)^{\circ}$	13/2	71499.30	92			
		11/2	71611.84	91			
		15/2	71784.40	94			
		9/2	72090.65	86			
$4f^{10}(^{5}F_{5})6p_{1/2}$	$(5, 1/2)^{\circ}$	9/2	72978.94	77			
		11/2	73420.46	76	10	$({}^{3}G_{5}2) (5, {}^{1}/_{2})^{\circ}$	
$4f^{10}(^{5}I_{5})6p_{3/2}$	$(5, ^3/_2)^{\circ}$	9/2	74140.80	84			
-		11/2	74209.17	86			
		7/2	74280.00	83			
		13/2	74530.99	89			
$4f^{10}(^{5}I_{4})6p_{3/2}$	$(4,^3/_2)^{\circ}$	5/2	75867.06	89			
		7/2	76237.80	83			
		9/2	76355.20	87			
		11/2	76810.88	88			
$4f^{10}(^{5}\mathrm{F}_{5})6p_{3/2}$	(5, ³ / ₂)°	13/2	78048.95	76		(50) (6.11.)	
		11/2	78290.61	55	26	$({}^{5}G_{6}) (6, {}^{1}/{}_{2})^{\circ}$	
		9/2	79047.71	71	10	$({}^{3}G_{5}2) (5, {}^{3}/_{2})^{\circ}$	
		7/2		77	10	$(^{3}G_{5}2) (5, ^{3}/_{2})^{\circ}$	
$4f^{10}(^{5}G_{6})6p_{1/2}$	$(6, \frac{1}{2})^{\circ}$	11/2	80190.52	50	21	$(^5F_5) (5,^3/_2)^{\circ}$	
		13/2	80360.21	77			
 Ho IV (⁵ I ₈)	Limit		184200				

[Ho IV]

(Gd I sequence; 64 electrons)

Z = 67

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{10}$ 5I_8

Ionization energy 343000 ± 5000 cm⁻¹

 $42.5 \pm 0.6 \text{ eV}$

No analysis of the Ho IV free-ion spectrum is available. The $4f^{10}$ levels given here are based on the absorption and fluorescence spectra of $\mathrm{Ho^{3+}}$ in $\mathrm{LaCl_3}$, mainly as observed by Dieke and Pandey. All but three of the values are centers-of-gravity of the corresponding sublevels in the crystal [Rajnak and Krupke], adjusted to a value of zero for the c.g. of the ground level. The ${}^5\mathrm{F_1}$, ${}^3\mathrm{K_62}$, and ${}^5\mathrm{G_2}$ levels are from Crosswhite, Crosswhite, Edelstein, and Rajnak [1976], who have extended the interpretation of the $\mathrm{Ho^{3+}}$:LaCl $_3$ spectrum. They derived the level positions by first fitting a calculation to the observed sublevels. All levels are rounded off to the nearest $10~\mathrm{cm^{-1}}$.

Transitions to other 4f ¹⁰ levels, mostly above those given here, have been observed in crystal spectra [Dieke, 1968, and references therein; Crosswhite et al., 1976] and in solution absorption spectra [Carnall, Fields, and Rajnak, 1968].

Crozier and Runciman interpreted the levels of the ⁵I, ⁵F, and ⁵S terms, as well as several higher levels, in 1961. Eigenvector percentages may be found in their paper and in the papers of Rajnak and Krupke [1967], Carnall et al. [1968], and Crosswhite et al. [1976]. The percentages given here are from unpublished calculations made by Carnall et al. [1974] with matrices including effective interactions.

Sugar and Reader obtained the ionization energy, which is rounded off to three significant figures. The estimated uncertainty has been approximately doubled, in accordance with the suggestion of Spector and Sugar.

References

Carnall, W. T., Fields, P. R., and Rajnak, K., J. Chem. Phys. 49, 4424 (1968). [EL] ND [CL] [W]
Carnall, W. T., Fields, P. R., and Rajnak, K., unpublished material (1974). PT
Crosswhite, H., Crosswhite, H. M., Edelstein, N., and Rajnak, K., unpublished material (1976). [EL] ND [CL] [W] PT
Crozier, M. H., and Runciman, W. A., J. Chem. Phys. 35, 1392 (1961). [EL] ND [CL] [W] PT
Dieke, G. H., Spectra and Energy Levels of Rare Earth Ions in Crystals, Ed. H. M. Crosswhite and H. Crosswhite, pp.
279-294 (Interscience Publishers, New York, 1968). [EL] ND [W] [CL]
Dieke, G. H., and Pandey, B., J. Chem. Phys. 41, 1952 (1964). [EL] [CL] [W]
Rajnak, K., and Krupke, W. F., J. Chem. Phys. 46, 3532 (1967). [EL] ND PT
Spector, N., and Sugar, J., J. Opt. Soc. Am. 66, 436 (1976).

[October 1976]

Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP

[Ho IV]

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages		
4f 10	5 <u>I</u>	8	0	93	5	3K2
-5	_	7	[5050]	97	2	3K2
		6	[8550]	95	2	³ H4
		5	[11110]	90	4	³ H4
		4	[13180]	90	5	³ H4
$4f^{10}$	5F	5	[15370]	80	10	$^3\mathrm{G2}$
		4	[18450]	91	4	3 F3
		$\frac{3}{2}$	[20510]	90	4	$^{3}D1$
		2	[20960]	63	14	$^5\mathrm{S}$
		1	[22180]	80	15	³ D1
$4f^{10}$	5S	2	[18320]	71	14	³ P2
$4f^{10}$	3K2	8	[21240]	56	18	3K1
·		7	[26030]	64	20	
		6	[29920]	74	17	
$4f^{10}$	5G	6	[21990]	82	10	³ H4
		4	[25710]	58	15	3 G2
		5	[27540]	47	16	³ H4
		3	[28700]	76	8	³ F4
		2	[30670]	51	11	³ D1
		5	[23830]	43 ⁵ G	19	³ G2
Ho v (6H° _{15/2})	Limit		343000			

ERBIUM

Er I

68 electrons Z=68

Ground state (1 $s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6$) $4f^{12}6s^2$ 3 H_6

Ionization energy 49262±5 cm⁻¹

 6.1078 ± 0.0006 eV

Identified even configurations $4f^{12}6s^2$, $4f^{12}5d6s$, $4f^{11}6s^26p$, $4f^{11}5d6s6p$, $4f^{12}6s7s$,

4f 126s8s, 4f 126s6d

Identified odd configurations $4f^{11}5d6s^2$, $4f^{11}5d^26s$, $4f^{12}6s6p$, $4f^{11}5d6s7s$

Energy Levels, Lists of Lines

The first analysis of Er I by Marquet and Davis [1965] was based on accurate wavelength measurements of about 8000 Er I and Er II lines [Marquet, 1964] and on the Zeeman-effect data of Lindner and Davis [1958]. The levels of the $4f^{12}6s^2$ H ground term and of the $4f^{12}6s^2$ F term were among those identified. Marquet's thesis [1964] gives the energy-level classifications for 172 Er I lines (2780–6781 Å). Several investigators soon extended the analysis and interpretation to include the $4f^{11}5d6s^2$ and $4f^{12}6s6p$ configurations [Marquet and Behring, 1965; Spector, 1965; 1966; 1967; Racah, Goldschmidt, and Toaff, 1965]. Spector's 1966 paper gives classifications for more than 300 Er I lines (2724–9927 Å), and a few more are given in his 1967 paper. The most complete available lists of Er I and Er II lines with experimental separation of the two spectra are given in Held's 1966 report; a total of about 4500 lines are divided between the spectra over the range 2260–6900 Å. Spector and Held [1971] published wavelengths for 980 lines of Er I and Er II in the range 6614–11962 Å, and Held [1971] classified twelve of the Er I lines as transitions from three new even levels.

Heilig and Kircher [1968] and Vander Sluis and McNally [1969] observed the Zeeman effect, and their additional g values in general confirmed the analysis. Vander Sluis and McNally give classifications and Zeeman patterns for about 75 lines (3181–4745 Å) and list all levels for which g values had been determined.

The energy levels here are from unpublished lists of van Kleef and Koot, who are continuing the analyses of Er I and Er II in collaboration with Wyart [van Kleef and Koot, 1973; Wyart, Koot, and van Kleef, 1974; van Kleef and Koot, 1975]. Much of the work is based on extensive new measurements of the spectra by van Kleef and Koot, but their lists of lines and classifications have not been published. Unpublished contributions to the Er I and Er II analyses as available in 1973 were, however, used in the preparation of the Er line list given by Meggers, Corliss, and Scribner [1975]; classifications are included for more than 900 of the stronger Er I and Er II lines (2341–8870 Å). Spector's 1974 paper gives 45 Er I lines (3794–11657 Å) classified as transitions from the $4f^{12}(^3\mathrm{H}_6)6s7s$ levels, which he had identified.

g Values, Ionization Energy

Most of the g values are from van Kleef and Koot [1975], who give their results to the nearest 0.005 units. Other investigators of the optical Zeeman effect in Er have determined g values for a smaller number of levels, and the determinations for several of the lowest levels of each parity have stated probable errors as small as 0.001 to 0.003 [see especially the summary tables of Vander Sluis and McNally]. We have tried to take suitable averages wherever more than one determination was available. Smith and Spalding [1961] and Cabezas, Lindgren, and Marrus [1961] first determined the J and g values of the $4f^{12}6s^2$ 3 H $_6$ ground

Er I—Continued 315

level by the atomic-beam magnetic-resonance technique. Doyle and Marrus [1963] used this technique to obtain the g value quoted here for this level; they give the estimated error as ± 0.00005 .

Worden, Conway, Paisner, and Solarz [1977] have observed high members of two series in Er I by using laser techniques. These data became available too late for inclusion here, but the quoted ionization energy is a new determination from the series.

Theoretical Interpretation of the Even Levels

The eigenvector percentages for the $4f^{\,12}6s^2\,^3H$ and 3F levels are from Goldschmidt's thesis, second percentages less than 10% having been omitted for the even levels throughout. Goldschmidt independently located the 3F_3 and 3F_2 levels; no higher terms of the ground configuration are yet known.

Wyart et al. [1974] noted that their calculation of the $4f^{11}6s^26p$ levels "represents a first step of a progressive theoretical study of the even energy levels." The percentages here are from their later calculation of $(4f^{11}6s^26p+4f^{12}5d6s)$ [Wyart, Koot, and van Kleef, 1976]. No levels of this group having $J \leq 2$ have as yet been confirmed by the calculation. Wyart points out that the $4f^{11}5d6s6p$ configuration should be added in a more complete calculation. Some assignments to $4f^{11}5d6s6p$ are listed [van Kleef and Koot, 1975], but some preliminary assignments to configurations and terms that have not yet been calculated are not given here. A few of the assignments to eigenvectors of the $(4f^{11}6s^26p+4f^{12}5d6s)$ group are listed as tentative; these involve levels for which experimental g values have not yet been obtained.

The assignments of the $4f^{\,12}6s7s$ and $4f^{\,12}6s8s$ levels to terms in the J_1J_2 -coupling scheme are from van Kleef and Koot [1975]. Wyart et al. [1976] supplied the percentages for the $4f^{\,12}6s7s$ levels in this scheme. Some assignments to the $4f^{\,12}(^3\mathrm{H})6s6d$ subconfiguration are included tentatively in the region above $38000~\mathrm{cm}^{-1}$ [van Kleef and Koot, 1975]; the $4f^{\,11}5d6s6p$, $4f^{\,11}5d^26p$, and $4f^{\,12}6p^2$ configurations are also known or expected to contribute to the levels in this region.

Theoretical Interpretation of the Odd Levels

The lower odd levels belong to the $4f^{11}(^4\mathrm{I}^\circ)5d6s^2$ and $4f^{12}(^3\mathrm{H})6s6p(^3\mathrm{P}^\circ)$ subconfigurations. The term structures in this region clearly exhibit J_1j and J_1J_2 coupling, respectively, as was noted by Spector [1965; 1966; 1967] and by Racah et al. [1966]. Above about 21000 cm⁻¹, however, very little term structure in any coupling scheme is apparent, and the system is further complicated by the $4f^{11}(^4\mathrm{I}^\circ)5d^26s$ subconfiguration beginning with the $^7\mathrm{F}_6^\circ$ level at 20166 cm⁻¹ [van Kleef and Koot, 1975]. Thus all levels following the $4f^{11}(^4\mathrm{I}^\circ)_{11/2})5d_{5/2}6s$ term are given here simply in order of position.

A major advance in the interpretation has been achieved with the calculation of $(4f^{12}6s6p+$ $4f^{11}5d6s^2+4f^{11}(^4I^\circ)5d^26s)$ by Wyart et al. [1976]. All percentages given here are from this calculation, which at its present stage accounts for most of the odd levels up to about 35000 cm⁻¹. The eigenvectors from the calculation are so far available only in LS coupling. The leading percentages in LS coupling for the low $4f^{11}(^4\mathrm{I}^\circ)5d6s^2$ and $4f^{12}(^3\mathrm{H})6s6p(^3\mathrm{P}^\circ)$ levels are given following the word "or," since these levels are grouped into J_1j and J_2j terms. Pending a coupling transformation to these latter schemes, we have not entered any term designations for the remaining levels of $4f^{11}5d6s^2$ and $4f^{12}6s6p$; the LS term notations for the leading percentages are given under "Leading Percentages," regardless of the percentage. LS-coupling names are listed for some of the $4f^{11}(^4I^{\circ})5d^26s$ levels, however, according to our usual convention. Wyart et al. coupled the electrons in the $4f^{12}6s6p$ configuration in a different order from that shown here, with the result that we do not list a percentage for any $4f^{12}6s6p$ term having the same multiplicity as its $4f^{12}$ grandparent term. Depending on the possible relative sizes of such components in the eigenvectors, only partial information on the leading components is given for many of the assigned levels; a number of such levels are listed entirely without configuration or term notations. Preliminary designations for levels not yet included in the calculations are also omitted here.

Van Kleef and Koot [1975] have assigned several of the highest known odd levels, beginning at 41724 cm⁻¹, to the $4f^{11}(^4I^\circ)5d6s7s$ subconfiguration. The identifications are based on the relative strength and character of transitions from these levels down to $4f^{11}(^4I^\circ)5d6s6p$ levels.

References

Cabezas, A. Y., Lindgren, I., and Marrus, R., Phys. Rev. 122, 1796 (1961). ZE

Doyle, W. M., and Marrus, R., Phys. Rev. 131, 1586 (1963). ZE Hfs

Goldschmidt, Z. B., Thesis, Hebrew Univ. Jerusalem, Israel, 487 pp. (1968). EL PT

Heilig, K., and Kircher, O., Z. Phys. 212, 243 (1968). ZE

Held, S., Israel, A.E.C. Report IA-1037, 163 pp. (1966). W

Held, S., Astrophys. J. 167, 203 (1971). EL CL

Lindner, J. W., and Davis, S. P., J. Opt. Soc. Am. 48, 542 (1958). ZE W

Marquet, L. C., Thesis, Univ. California, Berkeley, 130 pp. (1964). EL CL W ZE PT

Marquet, L. C., and Behring, W. E., J. Opt. Soc. Am. 55, 576 (1965). EL

Marquet, L. C., and Davis, S. P., J. Opt. Soc. Am. 55, 471 (1965). EL ZE

Meggers, W. F., Corliss, C. H., and Scribner, B. F., Nat. Bur. Stand. (U.S.) Monogr. 145, Part I, 403 pp. (1975). CL W

Racah, G., Goldschmidt, Z. B., and Toaff, S., J. Opt. Soc. Am. 56, 407 (1966). EL

Smith, K. F., and Spalding, I. J., Proc. R. Soc. London, Ser. A 265, 133 (1961). ZE

Spector, N., J. Opt. Soc. Am. 55, 576 (1965). EL

Spector, N., J. Opt. Soc. Am. 56, 341 (1966). EL CL PT

Spector, N., J. Opt. Soc. Am. 57, 308 (1967). EL CL

Spector, N., J. Opt. Soc. Am. 61, 1350 (1971). EL CL W PT

Spector, N., Phys. Scr. 9, 313 (1974). EL ND

Spector, N., and Held, S., Astrophys. J. 167, 193 (1971). W

van Kleef, T. A. M., and Koot, J. J. A., J. Opt. Soc. Am. 63, 1315A (1973).

van Kleef, T. A. M., and Koot, J. J. A., unpublished material (1975). EL ND CL ZE

Vander Sluis, K. L., and McNally, Jr., J. R., J. Opt. Soc. Am. 59, 1202 (1969). EL CL ZE

Worden, E. F., Conway, J. G., Paisner, J. A., and Solarz, R. W., unpublished material (1977). IP

Wyart, J. F., Koot, J. J. A., and van Kleef, T. A. M., Physica (Utrecht) 77, 159 (1974). EL ND ZE PT

Wyart, J. F., Koot, J. J. A., and van Kleef, T. A. M., unpublished material (1976). PT

[May 1977]

Er I, Even Parity

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
$4f^{12}6s^2$	3H	6 5 4	0.000 6958.329 10750.982	1.16381 1.031 0.936	99 100 65	23 ³ F
$4f^{12} 6s^2$	3F	$\begin{array}{c} 4 \\ 3 \\ 2 \end{array}$	5035.193 12377.534 13097.906	1.147 1.065 0.750	68 100 79	25 ¹ G 20 ¹ D
$4f^{11}(^4 ext{I}^{\circ}_{15/2})6s^2 6p_{1/2}$	(15/2,1/2)	7 8	16464.934 16727.479	1.237 1.175	95 97	
$4f^{11}(^4\Gamma_{15/2})6s^26p_{3/2}$	(15/2,3/2)	9 8 6 7	19355.149 19723.271 19816.936 19915.789	1.225 1.210 1.165 1.185	97 97 96 94	
$4f^{12}(^{3}\mathrm{H_{6}})5d6s(^{3}\mathrm{D})$	3[4]	5 4 3	19362.105 20497.641 22391.431	1.390 1.280	92 76 89	12 (³ H ₆)(¹ D) ¹ [4]
$4f^{12}(^{3}\mathrm{H}_{13/2})5d6s(^{3}\mathrm{D})$	7[5]	6 5 4	21035.201 22056.785 23300.042	1.325 1.195 1.125	92 72 57	12 (3H ₆)(3D) 3[6] 17 (3H ₆)(1D) 1[4]
4f ¹² (³ H ₆)5d6s(³ D)	Spo _u	8 7 9	21069.365 21101.510 21204.465	1.155 1.025 1.215	93 95 99	
$4f^{12}(^{3}\text{H}_{6})5d6s(^{3}\text{D})$	2[6]	7 5 6	22521.790 23314.115 23432.428	1.215 1.050 1.100	52 81 49	40 (3H ₆)(3D) 3[7] 12 (3H ₆)(3D) 3[5] 34 (3H ₆)(3D) 3[7]
4f ¹² (³ H ₆)5d6s(³ D)	3[7]	6 8 7	22691.855 22810.531 23336.111	1.095 1.210 1.185	53 92 46	38 (3H ₆)(3D) 3[6] 27 (3H ₆)(3D) 3[6]

Er I, Even Parity—Continued

$4f^{11}(^{4}I^{\circ})5d6s6p$ $4f^{11}(^{4}I^{\circ}_{13/2})6s^{2} 6p_{1/2}$ $4f^{11}(^{4}I^{\circ})5d6s6p$ $4f^{12}(^{3}H_{6})5d6s(^{1}D)$	(13/2,1/2) 1[4] 1[8]	6 6 7 7 4	22979.591 23144.252 23223.335 23628.936	1.415 1.150 1.070	86 77	10	4f ¹² (³ H ₆)5d6s(³ D) ³ [7]
$4f^{11}(^4{ m I}^\circ)5d6s6p$ $4f^{12}(^3{ m He})5d6s(^1{ m D})$	1[4]	7 7	23223.335			10	Af 12(311 a) 5 dG a(31) \ 3177
$4f^{12}(^{3}\text{He})5d6s(^{1}\text{D})$			23628.936			12	
		4	1	1.360			
	¹ [8]		24007.135	1.175	56	26	(³ H ₆)(³ D) ³ [5]
$4f^{12}(^{3}\text{H}_{6})5d6s(^{1}\text{D})$		8	24105.439	1.130	96		
$4f^{11}(^{4}I^{\circ})5d6s6p$		8	24721.193	1.295			
$4f^{11}(^{4}I^{\circ})5d6s6p$		5	24991.084	1.295			
$4f^{12}(^{3}\text{H}_{6})5d6s(^{1}\text{D})$	¹ [5]	5	25167.750	1.225	79		
$4f^{11}(^{4}\text{I}^{\circ})5d6s6p$		9	25220.194	1.110			
$4f^{11}(^{4} ext{I}^{\circ})5d6s6p$		6	25479.243	1.255			
$4f^{11}(^{4}\text{I}^{\circ})5d6s6p$		10	25619.339	1.165			
$4f^{12}(^{3}\text{H}_{6})5d6s(^{1}\text{D})$	1[7]	7	25705.006	1.125	96		
$4f^{11}(^{4} ext{I}^{\circ})5d6s6p$		7	25861.232	1.275			
$4f^{12}(^{3}\text{H}_{6})5d6s(^{1}\text{D})$	¹ [6]	6	25894.942	1.160	90		
$4f^{11}(^4\Gamma^{\circ}_{13/2})6s^26p_{3/2}$	(13/2,3/2)	8 5 6 7	25942.577 26038.897 26208.982 26271.240	1.160 1.075 1.065 1.145	99 85 84 98	10	$(^4\mathrm{I}^{\circ}_{11/2})\;(^{11}\!/_2,^{1}\!/_2)$
$4f^{11}(^{4}I^{\circ})5d6s6p$		9	26099.600	1.175	30		
$4f^{11}(^{4}I^{\circ})5d6s6p$		7	26136.777	1.305			
$4f^{12}(^{3}\text{F}_{4})5d6s(^{3}\text{D})$		3	26154.466		32 3[[3] 17	(3F ₄)(3D) 3[2]
$4f^{12}(^{3}\text{F}_{4})5d6s(^{3}\text{D})$		4	26164.487		36 ³[(3H ₅)(1D) 1[4]
4f ¹¹ (4I°)5d6s6p		8	26268.076	1.125			(/(- / [-]
$4f^{12}(^{3}\text{F}_{4})5d6s(^{3}\text{D})$		5	26554.001	1.200	33 ³[.	5] 28	(3F ₄)(3D) 3[4]
$4f^{12}(^{3}F_{4})5d6s(^{3}D)$	3[5]	6 4 5	26721.260 26993.949 27467.826	1.235 1.190	50 50 35	13 16 25	(3F ₄)(3D) 3[6] (¹ G ₄)(3D) 3[5] (3F ₄)(3D) 3[4]
4f ¹¹ (4I°)5d6s6p		11	26786.589	1.210	00	20	(14)(D) [4]
$4f^{11}(^4\Gamma_{11/2}^{\circ})6s^2 6p_{1/2}$	(11/2,1/2)	5 6	26830.768 26910.890	1.070 1.060	57 68	12 13	$(^{2}\mathrm{H}^{\circ}_{11/2}^{2})(^{11}\!/_{2},^{1}\!/_{2})$
$4f^{12}(^{3}\text{F}_{4})5d6s(^{3}\text{D})$		3 6	26857.624 26993.004	1.240	27 ³ [2		(³ H ₄)(¹ D) ¹ [3]
$4f^{12}(^{3}F_{4})5d6s(^{3}D)$		5	27022.594	1.000	28 ³ [6	6] 17	(³ F ₄)(³ D) ³ [4]
$4f^{11}(^{4} ext{I}^{\circ})5d6s6p$		8	27178.899	1.270			· · · · · · · · · · · · · · · · · · ·
$4f^{11}(^{4} ext{I}^{\circ})5d6s6p$		9	27198.075	1.265			
$4f^{12}(^{3}F_{4})5d6s(^{3}D)$ $4f^{11}(^{4}I^{\circ})5d6s6p$		6 10	27336.241 27380.309	1.130 1.235	34 ³ [6	6] 20	$(^{3}F_{4})(^{3}D)^{3}[5]$

Er I, Even Parity—Continued

			Even Turity		T			
Configuration	Term	J	Level (cm ⁻¹)	g			Lead	ling percentages
$4f^{12}(^{3}\text{Hs})5d6s(^{3}\text{D})$?		4	27391.885		44	³ [3]	12	(³ F ₄)(³ D) ³ [4]
$4f^{11}(^{4}\text{I}^{\circ})5d6s6p$		7	27459.437	1.250				
$4f^{11}(^{4}\text{I}^{\circ})5d6s6p$		8	27578.745	1.280				
$4f^{12}(^{3}F_{4})5d6s(^{3}D)$	³ [6]	7	27625.541	1.225	52		20	$(^{1}G_{4})(^{3}D)^{3}[6]$
		5	27747.206	1.240				
$4f^{12}(^{3}\text{Hs})5d6s(^{3}\text{D})$	³[7]	6 7	27819.334	1.030	91			
		8	28579.006	1.120	100			
$4f^{12}(^{3}F_{4})5d6s(^{3}D)$?		3	27839.291		15	3 [3]	14	$(^{3}H_{4})(^{1}D)^{-1}[3]$
		6	27932.038	1.105				
$4f^{11}(^{4}\text{I}^{\circ})5d6s6p$		10	27977.129	1.205				
$4f^{11}(^{4}\text{I}^{\circ})5d6s6p$		9	28043.271	1.230				
$4f^{12}(^{3}\text{H}_{5})5d6s(^{3}\text{D})?$	³ [3]?	3	28109.637		53		13	$(^{3}H_{5})(^{3}D)^{3}[4]$
$4f^{11}(^{4} ext{I}^{\circ})5d6s6p$		7	28288.072	1.180				
$4f^{11}(^{4}\text{I}^{\circ})5d6s6p$		8	28397.139	1.185				
$4f^{12}(^{3}\text{H}_{5})5d6s(^{3}\text{D})?$		4	28405.430		36	3 [3]	16	$(^{3}F_{4})(^{3}D)^{3}[4]$
$4f^{11}(^{4}\text{I}^{\circ})5d6s6p$		9	28406.458	1.195				
$4f^{11} 5d6s6p$		5	28516.337	1.175				
$4f^{11}(^{4}\text{I}^{\circ})5d6s6p$		10	28598.169	1.235				
$4f^{11} 5d6s6p$		8	28699.849	1.180				
$4f^{11}(^{4}I_{9/2}^{\circ})6s^{2}6p_{1/2}?$	(9/2,1/2)?	$\frac{4}{5}$	28754.019 28980.740		39 44		17 19	$(^{2}\mathrm{H}_{9/2}^{\circ}2)(^{9\!/}_{2},^{1\!/}_{2})$
$4f^{11} 5d6s6p$		9	28839.974	1.160				
$4f^{11} 5d6s6p$		7	28918.439	1.140				
$4f^{11}(^{4}\text{I}^{\circ})5d6s6p$		11	29013.821	1.230				
$4f^{12}(^{3}\text{H}_{5})5d6s(^{3}\text{D})$	3[4]	5 4 3	29069.482 29269.579 29422.769	1.195 1.110	76 64 53		10	(3H ₅)(3D) 3[3]
		6	29138.739	1.135				
		9	29201.811	1.150				
$4f^{11}(^{4} ext{I}^{\circ})5d6s6p$		12	29280.254					
$4f^{12}(^{3}\mathrm{H_{5}})5d6s(^{3}\mathrm{D})$	³ [6]	5 6 7	29372.716 29445.385 30091.528	0.955 1.130 1.165	54 43 92		31 43	(³ H ₅)(³ D) ³ [5] (³ H ₅)(³ D) ³ [5]
		8	29451.894	1.270				
$4f^{11}(^{4} ext{I}^{\circ})5d6s6p$		10	29648.807	1.205				
$4f^{11}(^4\mathrm{I}^{\circ}_{11/2})6s^26p_{3/2}$	$(^{11}/_{2},^{3}/_{2})$	7	29681.661	1.070	83		15	$(^{2}\mathrm{H}^{\circ}_{11/2}2)(^{11}\!/_{2},^{3}\!/_{2})$
		$\frac{4}{5}$	29682.975 29829.740	1.020	71 71		11 13	
		$\overset{3}{6}$	29989.842	1.140	74		13	
		8	29760.553	1.115				
		6	29801.226	1.185				
$4f^{12}(^{3}F_{4})5d6s(^{1}D)$	¹ [5]	5	29907.781	1.095	66		18	$({}^{1}G_{4})({}^{1}D) {}^{1}[5]$

Er I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
		8	29930.780	1.215	
		7	29967.871	1.235	
		4	29973.606		
		10	30108.818	1.250	
$4f^{12}(^{3}\text{H}_{5})5d6s(^{3}\text{D})$?	³ [5]?	5	30126.549		52 26 (³ H ₅)(³ D) ³ [6]
		5	30149.954	1.205	
		6	30178.876	1.195	
		9	30207.544	1.120	
$4f^{12}(^{3}F_{4})5d6s(^{1}D)$?		3	30228.456		33 ¹ [3] 14 (³ H ₅)(¹ D) ¹ [3]
$4f^{12}(^{3}F_{4})5d6s(^{1}D)$?	¹ [4]?	4	30266.098		52 15 (¹G₄)(¹D) ¹[4]
		6	30287.344		
		9	30377.872	1.220	
		6	30468.385	1.200	
		7	30482.255	1.080	
		7	30693.281	1.245	
		8	30726.736	1.180	
		7	31105.652	1.165	
		5	31122.407	1.155	
		9	31165.788	1.275	
		4	31264.872	1.100	
		10	31270.736	1.280	
		6	31338.460	1.025	
		5	31414.487	1.180	
		6	31523.757	1.150	
		8	31559.825	0.990	
		7	31565.930	1.200	
		4	31712.639	1.150	
$4f^{12}(^{3}\text{H}_{6})6s7s(^{3}\text{S}_{1})$	(6,1)	7	31719.664	1.285	99
		6 5	31946.417 32218.588	1.195 1.050	98 99
		8	31826.551	1.180	
$4f^{12}(^{3}\text{H}_{4})5d6s(^{3}\text{D})$	³[6]	5	31852.671	0.880	60 31 (3F ₄)(3D) 3[6]
		$\begin{array}{ c c }\hline & 6 \\ 7 \\ \hline \end{array}$	32846.488	1.110	62 26 (3F ₄)(3D) 3[6]
		6	31878.788	1.175	
		9	31906.689	1.220	
		7	32001.445	1.105	
		5	32023.763	1.100	
		6	32036.165	1.020	
		6	32212.455	1.115	
		7	32245.395	1.065	
		9	32301.601	1.120	
		6	32368.230	1.075	1

Er I, Even Parity—Continued

			Even Parity	-contin	lucu		
Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages	
		8	32525.666	1.170			
		7	32799.498	1.075			
		8	32884.867	1.145			
		5	32962.601	1.130			
$4f^{12}(^{3}\text{H}_{4})5d6s(^{3}\text{D})$		5	33034.654	1.050	35 ³ [5]	14 (³ H ₄)(³ D) ³ [4]	
y (11 1)00000(2)		6	33139.808	1.065	00 [0]	14 (114)(D) [4]	
4f ¹² (³ H ₆)6s7s(¹ S ₀)	(6,0)	6	33519.739	1.180	98		
		10	33619.332	1.160			
$4f^{12}(^{3}\text{H}_{4})5d6s(^{3}\text{D})$	³ [5]	6	33750.645	1.100	52	20 (¹G ₄)(³D) ³[5]	
y ([[6	33853.872	1.240	02	20 (04)(D) [0]	
		10	33942.292	1.118			
		6	34055.264	1.190			
		7	34153.760	1.160			
		9	34224.049	1.205			
		8	34288.437	1.190			
		6	34313.100	1.235			
			34393.833				
		5		1.070			
		5	34447.758	1.090			
		6	34457.999	1.183			
		9	34587.802	1.135			
		7	34596.396	1.025			
		9	34724.897	1.165			
		7	34733.243	1.110			
		8	34756.580	1.140			
		8	34990.233	1.135			
		7	35014.743	1.190			
		5	35185.409	1.140			
		7	35191.459	0.965			
		6	35218.609	1.080			
		8	35300.412	1.125			
		5	35328.671	1.125			
		6	35370.371	1.195			
		7	35394.592	1.130			
		9	35402.733	1.170			
		4	35428.605	1.105			
		8	35493.301	1.170			
		6	35557.173	1.085			
		8	35632.606	1.180			
		6	35667.077	1.060			
		5	35680.994	1.155			
		7	35717.098	1.210			
		8	35794.481	1.220			
		7	35833.788	1.050			

Er I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
		6	35918.454	1.095		
		5	35952.787	1.005		
		6	35963.366	1.085		
		6	36026.864	1.185		
		6	36051.449	1.195		
		7	36123.034	1.180		
		8	36130.860	1.050		
		9	36136.191	1.165		
		6	36306.253	0.975		
		9	36321.915	1.130		
		7	36418.402	1.130		
		10	36461.845	1.180		
		9	36494.167	1.140		
		6	36511.221	1.175		
		5	36516.831	1.155		
		5	36710.827	1.150		
		10	36712.578	1.120		
		7	36735.742	1.195		
		6	36876.457	1.160		
$f^{12}(^{3}F_{4})6s7s(^{3}S_{1})$	(4,1)	5	36883.886	1.255	70	21 $({}^{1}G_{4})({}^{3}S_{1})$
		4	37014.608	1.135	67	22
		3	37144.092	0.890	66	24
		5	36898.613	1.110		
		6	36979.594	0.940		
		4	36997.475	1.055		
	_	8	37021.273	1.170		
		6	37044.419	1.125		
		9	37062.822	1.170		
		7	37178.437	1.180		
		6	37199.912	1.070		
		9	37271.015	1.095		
		8	37378.443	1.195		
		7	37391.232	1.100		
		6	37542.792	1.150		
		10	37593.886	1.205		
		8	37645.754	1.200		
		7	37714.613	1.205		
		7	37806.983	1.090		
		8	37843.845	1.170		
		8	38164.906	1.225		
		5	38169.753	1.085		
		9	38172.809	1.190		
		7	38195.326	0.970		
f ¹² (³ H)6s6d?		5	38225.984	1.370		

Er I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
		8	38253.685	1.160	
		7	38301.613	1.095	
		8	38343.693	1.135	
4f ¹² (³ H)6s6d?		6	38407.470	1.320	
4f ¹² (³ H)6s6d?		9	38424.655	1.210	
		6	38457.832	1.130	
		9	38487.253	1.220	
4f ¹² (³ H)6s6d?		7	38545.334	1.130	•
4f ¹² (³ H)6s6d?		8	38556.751	1.180	
J . ,		7	38560.986	1.100	
4f ¹² (³ H)6s6d?	•	4	38587.912	1.210	
9 (/		6	38604.588	1.095	
		4	38657.464	1.120	
		7	38664.249	1.170	
4f ¹² (³ H)6s6d?		6	38667.799	1.150	
4f ¹² (³ H)6s6d?		8	38668.310	1.195	
iy (11)00000.		5	38703.037	1.110	
		8	38734.243	1.135	
4f ¹² (³ H)6s6d?		7	38751.622	1.180	
ty (11)050cc.		6	38786.542	1.005	
4f ¹² (³ H)6s6d?		5	38795.477	1.165	
4f ¹² (³ H)6s6d?		7	38797.084	1.075	
ty (11)030α.		5	38831.967	1.170	
4f ¹² (3H)6s6d?		8	38834.142	1.130	
i) (11)050cc.		7	38857.639	1.150	
4.019/9TT \ \ 0. FT \ (20. \)	(5.1)	c	38870.770	1.180	100
$4f^{12}(^{3}\text{H}_{5})6s7s(^{3}\text{S}_{1})$	(5,1)	$\begin{array}{c c} & 6 \\ & 5 \end{array}$	38893.172	1.045	100
		4	38921.185	0.855	98
4f ¹² (³ H)6s6d?		6	38923.586	1.105	
-J (/ -		7	38986.765	1.075	
		6	39010.445	1.050	
		8	39049.481	1.180	
		10	39062.614	1.255	
4f ¹² (³ H)6s6d?		7	39070.645	1.145	
4) (22/000000		6	39075.883	1.145	
4f ¹² (³ H)6s6d?		5	39125.605	1.040	
1) (11)000001		7	39145.450	1.130	
		6	39164.268	1.140	
4f ¹² (³ H)6s6d?		6	39193.564	1.115	
4f ¹² (³ H)6s6d?		4	39237.878	1.040	
4) (**/00000.		6	39256.456	1.140	
		6	39350.505	1.155	
		7	39359.683	1.175	
		8	39432.657	1.160	

Er I, Even Parity—Continued

5 3856.183 1.135 8 3855.683 1.110 6 3855.184 1.110 7 38738.475 1.150 6 3974.336 1.140 5 38612.042 0.965 8 3844.429 1.180 6 40024.539 1.60 6 40024.539 1.60 6 40024.539 1.60 6 40140.639 1.000 7 40150.218 1.185 6 40140.639 1.100 7 40150.218 1.185 8 40429.677 1.180 9 4040.073 1.060 14 40471.75 1.150 14 40471.75 1.150 15 4084.03 1.170 16 4084.03 1.150 17 40878.887 1.150 18 41183.15 1.030 19 41269.66 1.200 19 41269.66 1.200 10 41289.88 1.150 11 4129.88 1.150 12 4129.89 1.150 13 4129.76 1.145 14 4139.89 0.955 14 4107.318 1.150 14	Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
9 38661400 1.190 6 39658.188 1.110 7 39788.475 1.150 8 39747.396 1.140 5 38712.042 0.985 8 38813.429 1.180 6 40024.839 1.060 6 40024.839 1.060 6 40140.639 1.060 7 401513.226 1.150 6 40140.639 1.000 7 40159.218 1.185 6 40383.428 1.146 8 40429.677 1.180 9 40440.079 1.060 4071.732 1.170 5 40961.359 1.050 6 40714.266 0.990 6 40769.043 1.120 7 40873.837 1.150 8 41168.151 1.030 7 40878.887 1.150 8 41168.151 1.030 7 40878.887 1.150 8 41168.151 1.030 7 40878.887 1.150 8 41168.151 1.030 7 40878.887 1.150 8 41168.151 1.030 7 40878.887 1.150 8 41168.151 1.030 7 41269.956 1.200 6 41396.325 1.200 6 41407.821 1.150 8 4168.851 1.100 47*2*(Ho)668*(So)?** (6,0)? 6 4238.837 1.170 5 42560.935 1.110 47*2*(Ho)668*(So)?** (6,0)? 6 4238.837 1.110 47*2*(Ho)668*(So)?** (6,0)? 6 4238.837 1.110 47*2*(Ho)668*(So)?** (6,0)? 6 4238.837 1.110 47*2*(Ho)668*(So)?** (6,0)? 6 4238.837 1.110 47*2*(Ho)668*(So)?** (6,0)? 6 4238.837 1.110 47*2*(Ho)668*(So)?** (6,0)? 6 4238.837 1.110 47*2*(Ho)668*(So)?** (6,0)? 6 4238.837 1.110 47*2*(Ho)668*(So)?** (6,0)? 6 4238.837 1.110 47*2*(Ho)668*(So)?** (6,0)? 6 4238.837 1.110 47*2*(Ho)668*(So)?** (6,0)? 6 4238.837 1.110 47*2*(Ho)668*(So)?** (6,0)? 6 4238.837 1.110 47*2*(Ho)668*(So)?** (6,0)? 6 4238.837 1.110 47*2*(Ho)668*(So)?** (6,0)? 6 4238.837 1.110 47*2*(Ho)668*(So)?** (6,0)? 6 4238.837 1.110			5	39506.183	1.135	
6 39658.188 1.110 7 39738.475 1.150 6 3974.336 1.140 5 38812.042 0.985 8 36843.429 1.180 6 3971.070 1.040 6 40024.539 1.060 5 4003.465 1.105 7 40131.326 1.150 6 40140.639 1.000 7 40159.218 1.185 6 4033.576 1.020 5 4063.368 1.145 6 4040.079 1.060 7 4040.079 1.060 7 4040.079 1.060 7 4040.079 1.060 7 40712.26 0.990 6 40712.26 0.990 6 4078.997 1.150 7 4083.383 1.155 6 40840.332 1.155 6 40840.332 1.155 6 40840.332 1.155 6 40840.332 1.155 6 40840.332 1.155 6 40840.332 1.150 7 40878.897 1.150 8 41168.151 1.030 7 41269.956 1.200 6 41386.325 1.200 6 41386.325 1.200 6 41386.325 1.200 6 41386.325 1.100 7 41269.956 1.100 7 41269.956 1.100 7 41899.756 1.110 7 41899.756 1.145 7 41899.756 1.145 7 41899.756 1.145 8 41267.318 1.135 7 41899.756 1.145 8 42878.279 1.110 9 42878.297 1.110 9 42878.297 1.110 9 42878.297 1.110 9 42878.297 1.110 9 42878.297 1.110 9 42878.297 1.110 9 42878.297 1.110 9 42878.297 1.110 9 42878.297 1.110 9 42878.297 1.110 9 42878.297 1.110			8	39525.603	1.110	
7 39738.475 1.150 6 39747.386 1.140 5 39812.042 0.985 8 38943.429 1.180 6 40024.539 1.060 6 40024.539 1.060 7 40131.326 1.150 6 40140.639 1.060 7 4013.266 1.150 6 40333.767 1.185 6 40333.276 1.120 7 40437.423 1.145 8 40429.677 1.180 9 40440.079 1.060 9 40440.079 1.060 10 4071.763 1.170 10 40874.23 1.285 40 4071.763 1.170 7 40873.983 1.155 6 40769.043 1.120 7 40873.983 1.155 6 40840.982 1.110 7 40878.897 1.150 8 41168.151 1.030 7 41269.956 1.200 6 4179.951 1.150 6 4179.951 1.150 7 4189.955 1.205 6 4179.398 1.150 7 4189.765 1.145 6 4179.398 1.150 7 4189.765 1.145 6 4190.7318 1.130 6 4276.272 1.200 7 4289.995 1.110 4712(Ha)688(PSa)? (6,0)? 6 42387.990 1.130 8 4276.272 1.200 6 42387.990 1.130 7 4289.995 1.110 7 4712(PHa)688(PSa)? (6,0)? 6 42387.990 1.135 7 41898.925 1.110 7 4712(PHa)688(PSa)? (6,0)? 6 42387.990 1.135 7 41898.925 1.110 7 4712(PHa)688(PSa)? (6,0)? 6 42387.990 1.135 7 4289.995 1.110 7 40878.897 1.110 8 4276.272 1.200 9 42811.411 0.705 63 26 (PFa)4Sa)			9	39561.400	1.190	
6 39747.336 1.140 5 38812.042 0.985 8 38842.9 1.180 6 40024.539 1.060 6 40024.539 1.060 5 40034.65 1.105 7 40131.326 1.150 6 40140.639 1.000 7 40159.218 1.185 6 4033.576 1.020 5 40343.428 1.145 8 40429.677 1.180 9 40440.079 1.060 4/12(3Ha)688s(3S)? (6,1)? 7 40487.423 1.25 6 4071.735 1.170 5 40901.359 1.030 5 40714.266 0.990 6 40769.043 1.120 7 4083.983 1.155 6 40840.932 1.110 7 40878.897 1.150 8 41168.151 1.030 7 41269.956 1.200 6 41386.325 1.205 6 41407.821 1.150 6 41407.821 1.150 6 41739.398 0.995 7 41808.765 1.145 6 41890.765 1.145 6 41790.398 0.995 7 41890.765 1.145 6 41790.398 0.995 7 41890.765 1.145 6 41790.398 0.995 7 41890.765 1.145 6 41790.398 1.135 7 41889.925 1.110 7 4269.966 1.200 6 42387.920 1.135 7 41889.925 1.110 7 42889.925 1.110 7 42889.925 1.110 7 42889.925 1.110 7 42889.925 1.110 7 42889.925 1.110 7 42889.925 1.110 7 42889.925 1.110 7 42889.925 1.110 7 42889.925 1.110 7 42889.925 1.110 7 42889.925 1.110 7 42889.925 1.110 7 42889.925 1.110 7 42889.925 1.110 7 42889.925 1.110 7 42889.925 1.110 7 42889.925 1.110 7 42889.925 1.110			6	39658.188	1.110	
5 39812.042 0.985 8 38943.429 1.180 6 40024.539 1.060 5 40053.465 1.105 7 40131.326 1.150 6 40140.639 1.000 7 40159.218 1.185 6 40333.576 1.020 7 4040.079 1.060 8 4040.079 1.060 9 4040.079 1.060 4/12(3Ha)(688s(3S))?			7	39738.475	1.150	
8 39843.429 1.180 6 39971.070 1.040 6 40024.539 1.060 5 40033.465 1.105 7 40131.326 1.150 6 4040.639 1.090 7 40159.218 1.185 6 40333.576 1.020 5 40343.428 1.145 8 40429.977 1.180 9 40440.079 1.060 4/12(**Ph.)6s&s(**Ps.)?** (6,1)? 7 40497.422 1.225 6 4071.753 1.170 6 40769.043 1.120 7 40833.983 1.155 6 40769.923 1.110 7 4083.987 1.150 8 41168.151 1.030 7 41269.956 1.200 6 41769.956 1.200 6 41769.956 1.200 6 41769.956 1.200 6 41769.956 1.130 6 41793.238 0.995 7 41899.765 1.145 6 41793.318 1.135 6 42387.920 1.135 7 41989.955 1.110 7 41989.955 1.110 7 41989.955 1.110 7 4274h.)6s&s(*Ps.)?** (6,0)? 6 42387.920 1.135 5 42542.173 1.110 7 4274h.)6s&s(*Ps.)?** (4,1) 3 42611.413 0.705 68 25 25 (7.54)(*Ps.)			6	39747.336	1.140	
6 39971.070 1.040 6 40024.539 1.060 5 40053.465 1.105 7 40131.825 1.150 6 40140.639 1.000 7 40159.218 1.185 6 4033.3.76 1.020 5 40440.079 1.060 47 12(3He)6s8s(3S)? (6,1)? 7 4049.079 1.060 47 40671.753 1.170 5 4069.043 1.120 7 40833.983 1.155 6 40760.043 1.120 7 40878.897 1.150 8 41168.151 1.030 7 41269.966 1.200 6 41386.325 1.206 6 41407.821 1.150 6 41407.821 1.150 6 41907.818 1.135 7 41809.765 1.145 6 41907.318 1.135 7 41989.925 1.110 7 42(3He)6s8s(4So)? (6,0)? 6 42353.837 1.170 5 42360.935 1.130 8 42376.272 1.200 6 42387.920 1.135 8 42376.272 1.200 6 42387.920 1.135 7 42542.173 1.110			5	39812.042	0.985	
6 40024.539 1.060 5 40063.465 1.105 7 40151.256 1.150 6 40140.639 1.000 7 40159.218 1.185 6 40333.576 1.020 5 40333.428 1.145 8 40429.677 1.180 9 40440.079 1.060 4/ 12(*He)6s8s(*Si)?			8	39843.429	1.180	
5 40053.465 1.105 6 4010.639 1.000 7 40159.218 1.185 6 40333.576 1.020 5 40343.428 1.145 8 40429.677 1.180 9 40440.079 1.060 4/ 12(°4H ₀)6s8s(°S1)? (6,1)? 7 40497.423 1.285 6 40761.359 1.030 5 40769.043 1.120 6 40769.043 1.120 7 40839.893 1.155 6 40840.932 1.110 7 40878.897 1.150 8 4116.151 1.030 7 40289.865 1.200 6 41289.866 1.200 6 41289.866 1.200 6 41386.325 1.205 6 41407.821 1.150 6 41789.398 0.995 7 41809.765 1.146 6 4179.318 1.135 7 41899.955 1.110 6 4179.318 1.135 7 41899.955 1.110 6 42363.837 1.170 6 42367.272 1.200 6 42367.272 1.200 6 42367.272 1.200 6 42367.272 1.200 7 42611.413 0.705 63 26 (%Fe)(%S ₅)			6	39971.070	1.040	
7 40131.326 1.150 6 40140.639 1.000 7 40159.218 1.185 6 4033.576 1.020 5 4033.428 1.145 8 40429.677 1.180 9 40440.079 1.060 4f '12(**The)6s8s(**S.i)*? (6.1)* 7 40497.422 1.285 40671.753 1.170 40497.422 1.285 1.030 5 40714.266 0.990 6 40769.043 1.120 7 40883.983 1.155 6 40840.932 1.110 7 40878.897 1.150 8 41168.151 1.030 7 41269.956 1.200 6 41868.325 1.205 6 41407.821 1.150 1 4163.348 1.130 6 4173.348 0.995 7 41809.765 1.145 6 41997.318 1.135 6 41997.318 1.135 7 41989.925 1.110 f '12(**The)6s8s(*(1So))* (6,0)* 6 42363.837 1.170 1 4269.956 1.200 6 42387.930 1.135 6 42367.930 1.135 6 42367.930 1.135 7 41989.925 1.110 1 4244.)6s7s(**S.i) (4,1) 3 42611.413 0.705 63 28 (**F.i)(**S.i)			6	40024.539	1.060	
6 40140.639 1.000 7 40159.218 1.185 6 4033.876 1.020 5 40843.428 1.145 8 40429.677 1.180 9 40440.079 1.060 4/12(3Ha)6s8s(3S1)? (6,1)? 7 40497.422 1.285 6 40671.753 1.170 5 40961.359 1.030 5 40714.266 0.990 6 40769.038 1.155 6 40840.932 1.110 7 40873.897 1.150 8 41168.151 1.030 7 41269.956 1.200 6 41386.325 1.205 6 41407.821 1.150 5 41603.847 1.130 6 41739.398 0.995 7 41809.765 1.145 6 4197.318 1.135 7 41989.925 1.110 f 12(3Ha)6s8s(1Sa)? (6,0)? 6 42353.837 1.170 5 42360.385 1.130 8 42276.272 1.200 6 42387.990 1.135 5 42542.173 1.110			5	40053.465	1.105	
7			7	40131.326	1.150	
6 40333.576 1.020 5 40343.428 1.145 8 40429.677 1.180 9 40440.079 1.060 4f 12(3He)6e8s(3S1)? (6,1)? 7 40497.423 1.170 5 40961.359 1.030 5 40714.266 0.990 6 40769.043 1.120 7 40833.983 1.155 6 40840.932 1.110 7 40878.897 1.110 7 40878.897 1.110 7 41869.956 1.200 6 41386.325 1.205 6 41407.821 1.150 5 41603.847 1.130 6 41739.398 0.995 7 41809.765 1.145 6 41907.318 1.135 7 41989.925 1.110 1f 12(3He)6e8s(1So)? (6,0)? 6 42353.837 1.170 5 42360.935 1.130 8 42376.272 1.200 6 42387.920 1.135 5 42542.173 1.110			6	40140.639	1.000	
5			7	40159.218	1.185	
8 40429.677 1.180 9 40440.079 1.060 4f '12(3He)6s8s(3S1)? (6,1)? 7 40497.423 1.285 6 40671.753 1.170 5 40961.359 1.030 5 40714.266 0.990 6 40769.043 1.120 7 40833.983 1.155 6 40840.932 1.110 7 40878.897 1.150 8 41168.151 1.030 7 41269.956 1.200 6 41386.325 1.205 6 41407.821 1.150 5 41603.847 1.130 6 41739.398 0.995 7 41809.765 1.145 6 41907.318 1.135 7 41989.925 1.110 f '12(3He)6s8s(1So)? (6,0)? 6 42353.837 1.170 5 42360.935 1.130 8 42376.272 1.200 6 42387.920 1.135 5 42542.173 1.110			6	40333.576	1.020	
4f ¹² (³ H ₀)6s8s(² S ₁)? (6,1)? 7 40407.423 1.285 40671.753 1.170 5 40961.359 1.030 5 40769.043 1.150 6 40840.932 1.110 7 40878.897 1.150 8 41168.151 1.030 7 41269.956 1.200 6 41386.325 1.205 6 41407.821 1.150 5 41603.847 1.130 6 41739.398 0.995 7 41809.765 1.145 6 41907.318 1.135 7 41989.925 1.110 f ¹² (³ H ₀)6s8s(¹ S ₀)? (6,0)? 6 42353.837 1.170 5 42360.935 1.130 8 42376.272 1.200 6 42387.920 1.135 5 42542.173 1.110 f ¹² (³ H ₀)6s7s(³ S ₁) (4,1) 3 42611.413 0.705 6 3 26 (³ F ₀)(³ S ₁)			5	40343.428	1.145	
4f ¹² (³ H ₆)6s8s(³ S ₁)? (6,1)? 7 40497.423 40671.753 1.170 40961.359 1.030 5 40714.266 0.990 6 40769.043 1.120 7 40839.383 1.155 6 40840.932 1.110 7 40878.897 1.150 8 41168.151 1.030 7 41269.956 1.200 6 41386.325 1.205 6 41407.821 1.150 5 41603.847 1.130 6 41739.398 0.995 7 41809.765 1.145 6 41907.318 1.135 7 41989.925 1.110 f ¹² (³ H ₆)6s8s(¹ S ₆)? (6,0)? 6 42363.837 1.170 5 42360.935 1.130 8 42376.272 1.200 6 42387.920 1.135 5 42542.173 1.110 (4,1) 3 42611.413 0.705 63 26 (³ F ₄)(³ S ₅)			8	40429.677	1.180	
6 40671.753 1.170 40961.359 1.030 5 40714.266 0.990 6 40769.043 1.120 7 40833.983 1.155 6 40840.932 1.110 7 40878.897 1.150 8 41168.151 1.030 7 41269.956 1.200 6 41386.325 1.205 6 41407.821 1.150 5 41603.847 1.130 6 41739.398 0.995 7 41809.765 1.145 6 41907.318 1.135 7 41989.925 1.110 6 42353.837 1.170 6 42360.935 1.130 8 42376.272 1.200 6 42387.920 1.135 5 42542.173 1.110			9	40440.079	1.060	
6 40769.043 1.120 7 40833.983 1.155 6 40840.932 1.110 7 40878.897 1.150 8 41168.151 1.030 7 41269.956 1.200 6 41386.325 1.205 6 41407.821 1.150 5 41603.847 1.130 6 41739.398 0.995 7 41809.765 1.145 6 41907.318 1.135 7 41989.925 1.110 6 42353.837 1.170 5 42360.935 1.130 8 42376.272 1.200 6 42387.920 1.135 5 42542.173 1.110	4f ¹² (³ H ₆)6s8s(³ S ₁)?	(6,1)?	6	40671.753	1.170	
7 40833.983 1.155 6 40840.932 1.110 7 40878.897 1.150 8 41168.151 1.030 7 41269.956 1.200 6 41386.325 1.205 6 41407.821 1.150 5 41603.847 1.130 6 41739.398 0.995 7 41809.765 1.145 6 41907.318 1.135 7 41989.925 1.110 1f '12(3H ₆)6s8s(¹S ₀)? (6,0)? 6 42353.837 1.170 5 42360.935 1.130 8 42376.272 1.200 6 42387.920 1.135 5 42542.173 1.110 f '12(9H ₄)6s7s(9S ₁) (4,1) 3 42611.413 0.705 63 26 (3F ₄)(2S ₁)			5	40714.266	0.990	
6 40840.932 1.110 7 40878.897 1.150 8 41168.151 1.030 7 41269.956 1.200 6 41386.325 1.205 6 41407.821 1.150 5 41603.847 1.130 6 41739.398 0.995 7 41809.765 1.145 6 41907.318 1.135 7 41989.925 1.110 f 12(3H ₆)6s8s(1S ₆)? (6,0)? 6 42353.837 1.170 5 42360.935 1.130 8 42376.272 1.200 6 42387.920 1.135 5 42542.173 1.110 f 12(3H ₆)6s7s(3S ₁) (4,1) 3 42611.413 0.705 63 26 (3F ₆)(3S ₁)			6	40769.043	1.120	
6 40840.932 1.110 7 40878.897 1.150 8 41168.151 1.030 7 41269.956 1.200 6 41386.325 1.205 6 41407.821 1.150 5 41603.847 1.130 6 41739.398 0.995 7 41809.765 1.145 6 41907.318 1.135 7 41989.925 1.110 f 12(3H ₆)688s(1S ₆)? (6,0)? 6 42353.837 1.170 5 42360.935 1.130 8 42376.272 1.200 6 42387.920 1.135 5 42542.173 1.110 f 12(3H ₆)687s(3S ₁) (4,1) 3 42611.413 0.705 63 26 (3F ₆)(3S ₁)			7	40833.983	1.155	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			6	40840.932	1.110	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			7	40878.897		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			8	41168.151		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			7	41269.956		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			6	41386.325		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			6	41407.821	I	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			5	41603.847	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			6	41739.398		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			7	· · · · · · · · · · · · · · · · · · ·		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			6	41907.318		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			7	41989.925	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f^{12}(^{3}\text{H}_{6})688s(^{1}\text{S}_{0})?$	(6,0)?	6	42353.837	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			5	42360.935	1.130	
$ \begin{vmatrix} 6 & 42387.920 & 1.135 \\ 5 & 42542.173 & 1.110 \\ 42611.413 & 0.705 & 63 & 26 & (^3F_4)(^3S_1) \end{vmatrix} $			ľ			,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1	I		
$42011.415 \mid 0.705 \mid 63 26 (3F_4)(3S_1)$			i		1	
20 (-1/4)(-1/3)	$f^{12}(^{3}\text{H}_{4})6s7s(^{3}\text{S}_{1})$	(4,1)	3	42611.413	0.705	63 oe (3E \\/3C \
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			4	42681.708	1.010	62 25

Er I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
		6	42627.566	1.165		
		8	42632.533	. 1.170		
		7	42671.747	1.130		
		8	42797.550	1.130		
		9	42806.697	1.200		
		6	42882.350	1.110		
		6	43191.617	1.105		
		6	43298.210	1.135		
		7	43518.518	1.205		
		8	43537.586	1.140		
		8	43586.058	1.130		
		7	43826.668	1.090		
		6	43870.496	1.170		
		6	43934.136	1.255		
		9	43982.879	1.215		
		7	44039.685	1.160		
		8	44041.430	1.135		
		10	44112.202	1.095		
		6	44194.771	1.190		
		8	44201.047	1.030		
		8	44301.508	1.120		
$4f^{12}(^{3}F_{3})6s7s(^{3}S_{1})$	(3,1)	3 2 4	44308.935 44347.866	1.150 0.870	93 93	
		7	44394.215	1.125		
		8	44410.891	1.150		
		9	44525.705	1.140		
		7	44827.907	1.100		
		12	44872.599	1.190		
$4f^{12}(^{3}F_{2})6s7s(^{3}S_{1})$	(2,1)	1 2 3	44886.482 45060.489 45246.857	0.105 0.850 1.105	82 75 73	$17 (^{1}D_{2})(^{3}S_{1})$ 16 16
		11	45195.732	1.195		
		7	45325.988	1.125		
		7	45874.406	1.050		
		7	46970.808	1.145		
Er II (3H ₆)6s _{1/2} (6, ¹ / ₂) _{13/2}	Limit		49262			

Er I, Odd Parity

Configuration	Term	J	Level (cm ⁻¹)	g		Lea	ding percentages
$4f^{11}(^4I_{15/2}^{\circ})5d_{3/2}6s^2$	(15/2,3/2)°	6	7176.503	1.302	or	78	(4I°) 5G°
4) (115/2/00/3/2/06	(12, 12)	7	7696.956	1.266	or	78	(4I°) 5H°
		9	8620.565	1.150	or	47	(4I°) 3L°
		8	9350.106	1.180	or	42	$(^4\mathrm{I}^\circ)~^5\mathrm{I}^\circ$
$4f^{11}(^4I^{\circ}_{15/2})5d_{5/2}6s^2$	(15/2,5/2)°	10	9655.848	1.194	or	96	(4I°) 5L°
		9	10557.916	1.178	or	71	(4I°) 5K°
		5 8	11401.197	1.205 1.178	or	50 46	(4I°) 5G° (4I°) 5I°
		6	11557.670 11799.778	1.178	or or	38	(4I°) 5H°
		7	11887.503	1.153	or	47	(4I°) 3I°
$4f^{11}(^4\mathrm{I}^{\circ}_{13/2})5d_{3/2}6s^2$	(13/2,3/2)°	8	15083.114	1.050	or	53	$(^4{ m I}^\circ)~^5{ m L}^\circ$
		$\begin{matrix} 8 \\ 5 \\ 7 \end{matrix}$	15185.352	1.160	or	55	(4I°) 3G°
			15846.549	1.070	or	44	(4I°) 5K°
		6	16070.095	1.200	or	48	(4I°) 3H°
$4f^{12}(^{3}\text{H}_{6})6s6p(^{3}\text{P}_{6}^{\circ})$	(6,0)°	6	16321.110	1.220	or	71	$(^3H)(^3P^\circ)$ $^5G^\circ$
$4f^{11}(^4 ext{I}^{\circ}_{13/2})5d_{5/2}6s^2$	(13/2,5/2)°	4	16472.783	1.075	or	64	(4I°) 5G°
		9 5	16501.416 17029.058	1.155 1.150	or or	$\frac{67}{32}$	(⁴ I°) ⁵ L° (⁴ I°) ⁵ H°
		5 8	17297.668	1.105	or	58	(4I°) 5K°
		$\overset{\circ}{6}$	17456.383	1.070	or	23	(4I°) 5I°
		7	17796.139	1.110	or	50	$(4\tilde{I}^{\circ})^{5}\tilde{I}^{\circ}$
$4f^{12}(^{3}\text{H}_{6})6s6p(^{3}\text{P}_{1}^{\circ})$	(6,1)°	6	17073.800	1.070	or		$(^{3}H)(^{3}P^{\circ})$ $^{3}I^{\circ}$
		7	17157.307	1.195	or	40	(3H)(3P°) 5I°
		5	17347.860	1.175			
$4f^{12}(^{3}\text{H}_{6})6s6p(^{3}\text{P}_{2}^{\circ})$	(6,2)°	8	18335.496	1.250	or	99	$(^3H)(^3P^\circ)$ $^5I^\circ$
		$\frac{4}{7}$	18816.623	1.050		05	(311)/3D°\ 511°
		7 5	19125.253 19201.343	1.235 1.060	or	67	$(^{3}H)(^{3}P^{\circ})$ $^{5}H^{\circ}$
		6	19326.598	1.180	or		$(^{3}H)(^{3}P^{\circ})$ $^{3}H^{\circ}$
$4f^{11}(^{4}\mathrm{I}^{\circ}_{11/2})5d_{3/2}6s^{2}$	(11/2,3/2)°	7	18774.123	0.965	or	47	(4I°) 5L°
		4	19047.815	1.010	or	25	(4I°) 3G°
		6	19508.432	0.960	or	36	(4I°) 5K°
		5	19563.116	0.990	or	22	(⁴ I°) ⁵ I°
$4f^{11}(^4 ext{I}^{\circ}_{11/2})5d_{5/2}6s^2$	$(^{11}/_{2},^{5}/_{2})^{\circ}$	3	19269.640	1.050	or	47	(4I°) 5G°
		8	20566.805 20619.731	$1.050 \\ 1.065$	or	42	(4I°) 3L° (4I°) 5H°
		$\frac{4}{7}$	21168.430	1.065 1.065	or or	26 33	(4I°) 3K°
		5	21392.817	1.005	or	17	(4I°) 3I°
·		$\overset{\circ}{6}$	21701.885	1.055	or	26	(4I°) 3I°
$4f^{11}(^{4}I^{\circ})5d^{2}(^{3}F) (^{6}F^{\circ})6s$	7F°	6	20166.130	1.485	85	13	$(^4I^\circ)(^3F)~(^6G^\circ)~^7G^\circ$
$4f^{11}(^{4} ext{I}^{\circ})5d\ 6s^{2}$		6	20737.723	0.855	50 ⁵ L°		
$f^{11}(^{4}{ m I}^{\circ})5d~6s^{2}$		5	20917.276	0.980	23 ⁵ K°		
$4f^{11}(^{4} ext{I}^{\circ})5d\ 6s^{2}$		4	20929.873	1.050	29 ³ G°		
$4f^{12}(^{3}F)6s6p(^{3}P^{\circ})$		4	21551.919	1.245	28 ⁵ D°		
$4f^{11}(^{4}\text{I}^{\circ})5d^{2}(^{3}\text{F}) \ (^{6}\text{G}^{\circ})6s$	7 G°	7	21787.932	1.350	48	31	$(^{4}I^{\circ})(^{3}F) \ (^{6}H^{\circ}) \ ^{7}H^{\circ}$
$4f^{11}(^{4}I^{\circ})5d^{2}(^{3}F) (^{6}I^{\circ})6s$		8	21979.181	1.295	38 ⁷ I°	37	$(^{4}I^{\circ})(^{3}F) (^{6}H^{\circ}) ^{7}H^{\circ}$
$4f^{11}(^{4}I^{\circ})5d^{2}(^{3}F)$ ($^{6}I^{\circ})6s$	7I°	9	22102.844	1.270	51	36	$(^{4}I^{\circ})(^{3}F) (^{6}K^{\circ}) {^{7}K^{\circ}}$
$4f^{12}(^{3}F)6s6p(^{3}P^{\circ})$		5	22124.268	1.285	29 ⁵ F°		
		3	22269.457	1.065			
4.C11./410\F J9/3T1\ /C170\A		4	22361.651	1.045	40 7130		
$f^{11}(^{4}I^{\circ})5d^{2}(^{3}F) (^{6}F^{\circ})6s$		5	22450.111	1.360	40 ⁷ F°		
$4f^{11}(^{4}\text{F}^{\circ})5d\ 6s^{2}$		6	22583.504	1.130	37 ⁵ G°		

Er I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ading percentages
$4f^{11}(^{4}\text{I}^{\circ})5d\ 6s^{2}$		4	22649.973	0.985	36	5 I °		
$4f^{11}(^4I^\circ)5d\ 6s^2$		5	22672.766	1.040	25	5K°		
$4f^{11}(^{4}I^{\circ})5d^{2}(^{3}F)$ ($^{6}K^{\circ})6s$	ηK°	10	22673.147	1.260	73		18	$(^4{ m I}^\circ)(^3{ m F})~(^6{ m L}^\circ)~^7{ m L}^\circ$
$4f^{11}(^{4}I^{\circ})5d\ 6s^{2}$		7	23080.952	1.010	41	$^{3}\Gamma_{\circ}$		
$4f^{11}(^{4}\text{I}^{\circ})5d^{2}(^{3}\text{F})$ ($^{6}\text{H}^{\circ})6s$		6	23311.577	1.250	22	7 Н °		
$4f^{11}(^4I^\circ)5d^2(^3F)$ ($^6G^\circ)6s$		7	23364.853	1.225	26	$^{7}\mathrm{G}^{\circ}$		
$4f^{12}(^{3}\text{H})6s6p$		5	23447.079	1.080				
$4f^{11}(^{4}I^{\circ})5d^{2}(^{3}F)$ ($^{6}M^{\circ})6s$	7M°	11	23472.602	1.215	52		24	(4I°)(3F) (4M°) 5M°
$4f^{11}(^{4}I^{\circ})5d^{2}(^{3}F)$ ($^{6}H^{\circ})6s$		8	23502.223	1.240	31	7Н°		
		9	23619.088	1.090				
4f 11(4I°)5d2(3F) (4M°)6s		10	23696.036	1.150	33	5 M °	23	(4I°)(3F) (6M°) 7M°
4f 11(4I°)5d2(3F) (6M°)6s	⁷ M°	12	23720.930	1.250	99		1	$(^{4}I^{\circ})(^{1}G) (^{4}N^{\circ}) ^{5}N^{\circ}$
$4f^{12}(^{3}F)6s6p(^{3}P^{\circ})$		6	23831.359	1.250	57	5G°	*	/ -/ - / - /
$4f^{12}(^{3}F)6s6p(^{3}P^{\circ})$		5	23855.654	1.140	30	5F°		
-		4	23883.631	1.160				
$4f^{12}(^{3}\text{H})6s6p$		5	23885.406	1.100				
- · · · · •		3	24068.358	1.065				
$4f^{12}(^{3}\text{H})6s6p$		5	24083.166	1.128				
$4f^{12}(^{1}G)6s6p(^{3}P^{\circ})$		2	24089.615	0.805	31	3F°		
Ψ (-)		9	24228.006	1.130	01	•		
$4f^{12}(^{3}\text{H})6s6p(^{3}\text{P}^{\circ})$		6	24246.146	1.085	44	5 I °		
4f ¹² (³ H)6s6p		4	24348.910	1.045	44	1		
4f ¹¹ (4I°)5d 6s²		6	24457.139	1.050	25	3K°		
4f ¹¹ (4I°)5d 6s ²		3	24712.734	0.970	49	3G°		
4f ¹¹ (4I°)5d ² (3F) (6L°)6s	7L°	11	24754.413	1.235	71	ď	10	(4I°)(3F) (4M°) 5M°
1) (1)00 (1) (1) (00		8	24883.530	1.120	11		19	(-1)(-F)(-MI) -MI
$4f^{12}(^{3}\mathrm{H})6s6p$		7	24943.272	1.120				
$4f^{11}(^4{ m I}^\circ)5d~6s^2$		4	25000.729	1.060	29	₃Н∘		
4f ¹¹ (4I°)5d ² (3F) (6F°)6s		4		1.310		7F°		
4) (1)000 (1) (1)00		7	25145.891 25159.143	1.170	27	·P		
$4f^{11}(^{4} ext{I}^{\circ})5d\ 6s^{2}$		5			01	$_{ m 3}{ m I}_{\circ}$		
4f ¹¹ (⁴ I°)5d ² (³ F) (⁶ G°)6s			25162.553	1.010	21			
4f ^1(4I°)5d²(3F) (6L°)6s		6 10	25268.259 25318.549	1.185	20	⁷ G°		(AT9)/3T3\
τη (1 /ου (T) (D /08				1.190	32	7L°	28	$(^{4}I^{\circ})(^{3}F) (^{4}L^{\circ}) {^{5}L^{\circ}}$
$4f^{11}(^{4}\mathrm{F}^{\circ})5d\ 6s^{2}$		5 6	25364.012	1.180		5C1°		
•		6	25392.779	1.075	24	⁵G°		
4f ¹² (³ H)6s6p		3	25463.519	0.810		5T°		
4f ¹² (³ H)6s6p(³ P°)		7	25598.286	1.155	52	5I2°		
$4f^{11}(^{4}F^{\circ})5d\ 6s^{2}$		5	25681.933	1.175	21	5F°		
$f^{11} 5d 6s^2$	710	4	25753.933	0.955				
f 11(4I°)5d2(3P) (6I°)6s	7I°	9	25863.453		91	FT 0		
f 11(4I°)5d2(3F) (4L°)6s		9	25871.936	4.4-0	23	5 L °		
If 12(3H)6s6p		6	25880.274	1.150				
If 12(3H)6s6p		4	26017.209	0.920				
f 11(4I°)5d2(3P) (6I°)6s		8	26093.279		40	7 I °	32	$(^{4}I^{\circ})(^{3}P) \ (^{6}H^{\circ}) \ ^{7}H^{\circ}$
$4f^{12}(^{3}\text{H})6s6p(^{3}\text{P}^{\circ})$		5	26198.837	1.045	48	$^5\mathrm{H}^\circ$		

Er I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Lead	ling percentages
$4f^{12}(^{3}\text{H})6s6p(^{3}\text{P}^{\circ})$		6	26237.004	1.160	38	5 H °		
		8	26478.964					
$4f^{11}(^{4}S^{\circ})5d\ 6s^{2}$		3	26584.827	1.360	44	$^5\mathrm{D}^\circ$		
$4f^{11}(^{4}I^{\circ})5d^{2}(^{3}F)$ ($^{6}F^{\circ})6s$	5F°	5	26660.001	1.365	62		17	$(^{4}I^{\circ})(^{3}F) (^{6}F^{\circ}) ^{7}F^{\circ}$
		7	27230.646	1.135				
$4f^{11}(^4I^\circ)5d^2(^3P)$ 6s		7	27306.757	1.225				
		6	27582.017	1.120				
		4	27629.917	1.260				
$4f^{11}(^{4}\text{I}^{\circ})5d^{2}$ 6s		9	27674.801					
$4f^{12}(^{3}\text{H})6s6p(^{3}\text{P}^{\circ})$		4	27777.315	1.020	18	5 I °		
		3	27809.090	0.970				(4T0)(1T) (4T10) F1T0
$4f^{11}(^{4}I^{\circ})5d^{2}(^{3}F) (^{6}H^{\circ})6s$		7	27822.866	1.255	30	5H°	21	$(^{4}I^{\circ})(^{1}D) (^{4}H^{\circ}) {}^{5}H^{\circ}$
		5	27856.436	1.095				
		6	27879.416	1.175				
$4f^{11} 5d 6s^2$		7	28017.584	1.080				
		5	28026.045	1.120	00	5G°		
$4f^{11}(^{4}I^{\circ})5d^{2}(^{3}F) (^{6}G^{\circ})6s$		6	28053.943	1.240	28 21	5I°		
$4f^{12}(^{3}\text{H})6s6p(^{3}\text{P}^{\circ})$		4	28082.794	1.075 1.040	21	-1		
		5	28226.856	1.040				
4 C11 (4T30) F 1 C . 2		3	28290.396	1.140				
$4f^{11}(^4F^{\circ})5d\ 6s^2$		4	28357.384	1.250				
		4	28640.277	1.220				
$4f^{12}(^{3}\text{H})6s6p(^{3}\text{P}^{\circ})$		2	28789.099	0.630	27	5G°		
$4f^{-2}(^{\circ}\Pi)080p(^{\circ}\Gamma)$		6	28854.941	1.190		-		
$4f^{11}(^{4}I^{\circ})5d^{2}(^{1}D)$ ($^{4}I^{\circ})6s$		8	28876.246	1.210	19	5 [°	17	$(^{4}I^{\circ})(^{3}F) (^{6}K^{\circ}) {^{7}K^{\circ}}$
$4f^{12}(^{3}F)6s6p$		3	28996.512	1.080				
$4f^{11}(^{4}F^{\circ})5d\ 6s^{2}$		2	29079.597	0.830	32	5G°		
1) (1)		6	29152.796	1.175				
$4f^{11}(^{4}\text{F}^{\circ})5d\ 6s^{2}$		5	29272.207	1.115	38	5 H °		
4f 11(4I°)5d2(1D) (4G°)6s		6	29422.053	1.105	28	${}^5\mathrm{G}^\circ$		
$4f^{11}(^4F^\circ)5d\ 6s^2$		3	29460.864	1.050	26	${}^5{ m G}^\circ$		
$4f^{11}(^4F^\circ)5d\ 6s^2$		1	29469.818	0.535	25	$^5\mathrm{F}^\circ$		
·		4	29514.032	1.235				
$4f^{11}(^{4}\mathrm{F}^{\circ})5d\ 6s^{2}$		5	29550.807	1.150	37	${}^5\mathrm{G}^\circ$		
$4f^{12} 6s6p$		6	29561.425	1.130				
$4f^{12}(^{3}F)6s6p(^{3}P^{\circ})$		4	29594.740	1.170	35			
$4f^{12}(^{3}F)6s6p(^{3}P^{\circ})$		2	29596.155	0.960	37	5 F °		
		3	29600.881	0.965				
		5	29794.862	1.100				
		4	29804.517	1.100				
$4f^{11}(^{4}I^{\circ})5d^{2}(^{3}F)$ ($^{6}M^{\circ})6s$		8	29805.130		18	⁷ M°	15	$({}^{4}\mathrm{I}^{\circ})({}^{3}\mathrm{F})~({}^{4}\mathrm{M}^{\circ})~{}^{5}\mathrm{M}^{\circ}$
		3	29830.664					
		5	29894.203			, -		
$4f^{12}(^{3}F)6s6p(^{3}P^{\circ})$		1	29939.501	0.270	53	$^5\mathrm{F}^\circ$		

Er I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Leading percentages
$4f^{11} 5d 6s^2$		6	30007.369	1.090			
.		4	30010.262	1.255			
4f 11(4I°)5d2(3F) (6K°)6s		6	30088.200	1.120	20	7Κ°	
$4f^{11}(^{4}\text{F}^{\circ})5d\ 6s^{2}$		4	30105.496	1.095	23	5H°	
$4f^{11}(^{4}\text{F}^{\circ})5d\ 6s^{2}$		3	30172.558	1.035	17	5H°	
$4f^{12} 6s6p$		5	30251.891	1.170			
$4f^{11}(^{4}\text{I}^{\circ})5d^{2}(^{3}\text{F}) (^{4}\text{F}^{\circ})6s$		5	30380.282	1.175	28	5F°	
$4f^{11}(^{4}\text{I}^{\circ})5d^{2}(^{3}\text{F}) \ (^{4}\text{F}^{\circ})6s$		5	30600.160	1.195	42	5F°	
		3	30612.209	1.020			
$4f^{12}(^{3}F)6s6p(^{3}P^{\circ})$		2	30618.293	0.725	37	$^5\mathrm{G}^\circ$	
$4f^{11}(^{4}\text{F}^{\circ})5d\ 6s^{2}$		4	30642.798	1.100	27	5 H °	
$4f^{11}(^{4}\text{F}^{\circ})5d\ 6s^{2}$	5H°	6	30765.720	1.205	52		
$4f^{11}(^{4}\text{I}^{\circ})5d^{2}(^{1}\text{G})$ ($^{4}\text{D}^{\circ})6s$	5D°	4	30835.494	1.375	67		19 $(^{4}I^{\circ})(^{1}G) (^{4}F^{\circ}) {}^{5}F^{\circ}$
		3	30913.496	1.025			
	W	4	30962.138	1.150			
$4f^{11}(^{4}\text{I}^{\circ})5d^{2}(^{1}\text{G})$ ($^{4}\text{F}^{\circ})6s$	5F°	5	31105.090	1.200	59		23 $(^{4}I^{\circ})(^{1}G) (^{4}G^{\circ}) {}^{5}G^{\circ}$
$4f^{12}(^{3}F)6s6p(^{3}P^{\circ})$		4	31155.754	1.145	29	$^5\mathrm{F}^\circ$	
4f ¹¹ (4I°)5d ² (3F) (6F°)6s		3	31165.859	1.175	20	$^7\mathrm{F}^\circ$	$16 (^4{\rm I}^\circ)(^1{\rm G}) \ (^4{\rm D}^\circ) \ ^3{\rm D}^\circ$
$4f^{11}(^{4}\text{F}^{\circ})5d\ 6s^{2}$		3	31174.268	1.170	17	$^5\mathrm{D}^\circ$	
9 (=)		5	31194.235	1.135			
		6	31205.223	1.100			
		4	31286.362	1.030			
		4	31353.006	1.125			
$4f^{12}(^{3}F)6s6p(^{3}P^{\circ})$		5	31364.719	1.235	47	${}^5\!\mathrm{G}^\circ$	
$4f^{12}(^{3}F)6s6p$		3	31364.947	1.225			
<i>y</i> (<i>z</i>)		5	31442.927	1.195			
$4f^{11}(^{4}\text{I}^{\circ})5d^{2}(^{1}\text{G}) (^{4}\text{G}^{\circ})6s$		6	31475.265	1.180	33	${}^5{ m G}^\circ$	
4f ¹² (³ H)6s6p		6	31823.748	1.045			
$4f^{11}(^{4}I^{\circ})5d^{2}(^{1}D) (^{4}G^{\circ})6s$		5	31873.185	0.990	16	${}^3\!G^\circ$	
y (- /- · · ·)		6	31926.003	1.215			
		3	31988.938	1.065			
$4f^{11}(^{4}\text{I}^{\circ})5d^{2}(^{3}\text{F}) (^{6}\text{G}^{\circ})6s$		5	32062.166		20	$^{7}\mathrm{G}^{\circ}$	
$4f^{12}(^{3}F)6s6p(^{3}P^{\circ})$		1	32071.776	0.935	37	$^5\mathrm{D}^\circ$	
$4f^{11}(^{4}I^{\circ})5d^{2}(^{1}G) (^{4}D^{\circ})6s$		3	32114.235	0.940	22	$^{3}\mathrm{D}_{\circ}$	$14 (^4I^\circ)(^3F) \ (^6H^\circ) \ ^7H^\circ$
$4f^{12} 6s6p$		4	32214.322	1.170			
$4f^{11}(^{4}\text{F}^{\circ})5d\ 6s^{2}$		2	32237.491	0.940	31	${}^{3}\mathrm{F}^{\circ}$	
$4f^{11}(^{4}I^{\circ})5d^{2}(^{3}F)$ ($^{6}H^{\circ})6s$		6	32414.972	1.135	22	$^7\mathrm{H}^\circ$	
$4f^{11}(^{4}F^{\circ})5d^{2}(^{1}G)$ ($^{4}G^{\circ})6s$		5	32590.441	1.130	31	${}^3\mathrm{G}^\circ$	
$4f^{11}(^{4}F^{\circ})5d 6s^{2}$		3	32695.370	0.955	39	${}^{3}\!G^{\circ}$	
$4f^{11}(^{4}F^{\circ})5d\ 6s^{2}$		4	32702.362	1.110	18	${}^3\!G^\circ$	
$4f^{11}(^{4}\text{I}^{\circ})5d^{2}(^{3}\text{F}) (^{4}\text{G}^{\circ})6s$		6	32820.448	1.225	26	${}^5{ m G}^\circ$	
$4f^{11}(^{4}I^{\circ})5d^{2}6s$		4	32828.997	1.270			
$4f^{11}(^{4}I^{\circ})5d^{2}(^{3}F) (^{2}G^{\circ})6s$		5	32857.856	1.210	22	${}^3\!G^\circ$	
4 (1)500 (1) (3)		5	32997.589	1.115			

Er I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Leading percentages
$4f^{11}(^{4}\mathrm{F}^{\circ})5d\ 6s^{2}$		4	33279.041	1.085	25	3F°	
$4f^{11}(^{4}\mathrm{F}^{\circ})5d\ 6s^{2}$		1	33457.460	0.905	43	$^{3}\mathrm{D}^{\circ}$	
$4f^{11}(4F^{\circ})5d\ 6s^{2}$		5	33485.216	1.040	28	³Н°	
		2	33537.678	1.095			
4f 11(4I°)5d2(3F) (6K°)6s		5	33613.272	0.925	30	$^7\mathrm{K}^\circ$	17 (4I°)(3F) (4I°) 5I°
		3	33845.506	1.090			11 (1)(1)(1)
$4f^{11}(^{4}\text{F}^{\circ})5d\ 6s^{2}$	зН°	4	33861.463	0.945	46		
g (= /+		3	34562.607	1.190	10		
$4f^{11}(^{4}\text{F}^{\circ})5d\ 6s^{2}$		1	34655.475	1.175	51	3P°	
y (1)00 00		5	34684.329	1.080	51	•	
		3	34716.173	1.070			
			35024.554	1.065			
		4		1.040			
4f ¹¹ (⁴ I°)5d ² (³ F) (⁶ L°)6s	7L°	4	35143.812		00		
ij (1)0a (1) (1)0s	L	5	35252.065	0.950	60		
4f ¹¹ (4G°)5d 6s²		3	35265.181	1.045		ETD 0	
y(- u)50 08-		4	35309.683	1.145	33	$^5\mathrm{D}^\circ$	
		8	35352.043	1.145			
		3	35377.563	0.995			
		5	35453.944	1.020			
		3	35585.434	1.115			
(10/10) a a (000)		5	35592.535	1.135			
$f^{12}(^{1}G)6s6p(^{3}P^{\circ})$		4	35601.377	1.000	27	${}^3\mathrm{F}^\circ$	
		8	35612.600	1.170			
		2	35620.002	0.895			
$f^{11}(^{2}\text{K}^{\circ})5d\ 6s^{2}$		6	35632.524	1.110	13	3H°	
		6	35710.472	1.200			
		7	35732.619	1.095			
		4	35783.707	1.120			
$f^{12}(^{1}G)6s6p(^{3}P^{\circ})$		3	35818.334	0.900	27	$^3\mathrm{F}^\circ$	
		7	35858.100	1.035			
		5	35890.151	1.070			
		4	35899.449	1.160			
		4	35955.935	1.000			
		5	35956.217	1.100			
		8	36166.714	1.115			
		4	36280.029	1.145			
		5	36287.081	1.075			
		4	36431.169	1.200			
		5	3 6 465.938	1.135			
		4	36747.783	1.030			
$f^{12}(^{1}G)6s6p(^{3}P^{\circ})$		2	36870.622	0.805	36	3F°	
$f^{11}(^4G^{\circ})5d\ 6s^2$		3	36930.659	1.010	26	₅G°	
		5	37037.484	1.105			
		2	37068.166	0.840			

Er I, Odd Parity—Continued

		E1 1,	Odd Parity-	Continu				
Configuration	Term	J	Level (cm ⁻¹)	g			Lea	ding percentages
4.011/4I0\F.19/3E\ (4E0\Co		3	37075.570	1.150	23	5F°	19	$(^{4}I^{\circ})(^{1}G)~(^{4}D^{\circ})~^{5}D^{\circ}$
$4f^{11}(^{4}I^{\circ})5d^{2}(^{3}F) (^{4}F^{\circ})6s$		4	37083.198	0.970				
$4f^{12}({}^{1}G)6s6p({}^{3}P^{\circ})$		3	37125.206	0.935	26	${}^3\mathrm{F}^\circ$		
4j 12(1G)080p(11)		4	37210.947	1.140				
		5	37249.090					
•		4	37265.129	1.050				
		3	37289.592	1.090				
		4	37319.434	1.035				
		6	37323.593	1.235				
		8	37361.513	1.210				
		5	37398.878					
		6	37435.116	1.265				
		3	37492.247	1.105				
		5	37535.325	1.125				
		7	37567.222	1.195				
		4	37582.298	1.045				
		8	37621.885	1.155				
		7	37637.311	1.130				
		3	37649.344	0.895				
		6	37745.276	1.070				
		5	37778.256	1.065	į			
		4	37853.673	1.015				
		4	37893.246	1.025				
		4	37970.621	1.020				
$4f^{11}(^4G^{\circ})5d\ 6s^2$		2	37989.003	1.120	24	$^5\mathrm{D}^\circ$		
		5	38054.883	1.165				
		2	38168.987	1.086				
		7	38175.040					•
		5	38175.430					
		4	38183.254					
		2	38263.263					
		8	38344.055					
		4	38376.825					
		7	38377.547					
		3	38397.715					
		2	38400.908					
		6	38410.587	i				
		5	38415.612					
		4	38487.70					
		8	38527.562					
		7	38580.582					
		3	38667.38					
		$\begin{array}{c c} 7 \\ 3 \end{array}$	38724.255 38836.47					

Er I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
		8	38974.873	1.085	
		4	38982.003	1.075	
		7	39009.204	1.030	
		7	39221.603	1.070	
		8	39225.503	1.055	
		3	39467.934	1.155	
		6	39535.919	1.150	
		6	39608.064	1.135	
		3	39688.151	1.105	
		7	39702.568	1.130	
		7	39855.032	1.210	
		5	40137.476	1.170	
		7	40149.125	1.115	
		4	40155.872	1.130	
		2	40202.083	1.100	
		7	40751.909	1.050	
		6	40859.924	1.140	
		8	40877.166	1.120	
		6	41101.214	1.255	
		8	41382.319	1.135	
		7	41432.910	1.135	
		6	41445.371	1.050	
		5	41516.515	1.130	
^c 11(4I°)5d6s7s		7	41724.387	1.400	
$^{c_{11}(4I^{\circ})}5d6s7s$		6	42153.614	1.225	
$^{c_{11}(4{ m I}^{\circ})}5d6s7s$		8	42360.312	1.340	
		8	43040.275	1.180	
		7	43056.149	1.150	
		9	43201.126	1.165	
		8	43373.966	1.160	
		7	43575.279	1.140	
		8	43607.066	1.140	
$f^{11}(^{4} ext{I}^{\circ})5d6s7s$		10	43981.088	1.220	
$^{c_{11}(4{ m I}^{\circ})}5d6s7s$		9	44012.041	1.175	
		9	44217.464	1.115	
		7	44247.852	1.125	
$^{c_{11}(4I^{\circ})}5d6s7s$		8	44270.569	1.045	
f ¹¹ (4I°)5d6s7s		10	44379.781	1.195	
r II (³ H ₆)6s _{1/2} (6, ¹ / ₂) _{13/2}	Limit		49262		

Er II

(Ho I sequence; 67 electrons)

Z = 68

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{12}(^3H_6)6s$ $(6,\frac{1}{2})_{13/2}$

Ionization energy 96200± 600 cm⁻¹

 $11.93 \pm 0.08 \text{ eV}$

Identified even configurations $4f^{12}6s$, $4f^{12}5d$, $4f^{11}6s6p$, $4f^{11}5d6p$

Identified odd configurations $4f^{11}6s^2$, $4f^{11}5d6s$, $4f^{11}5d^2$?, $4f^{12}6p$

Energy Levels, Wavelengths, g Values, Ionization Energy

McNally and Vander Sluis [1959] used the Zeeman data of Lindner and Davis [1958] in their first analysis of Er II. They identified the lowest levels as belonging to $4f^{\,12}(^3\mathrm{H})6s$ and $4f^{\,12}(^3\mathrm{F})6s$ terms, and found more than forty upper odd levels. The wavelengths given in Marquet's thesis [see Er I] were adopted in the succeeding investigations of Er II by Marquet and Davis [1965] and Vander Sluis and McNally [1970]. The references to several Er line lists described in the text for Er I need not be repeated here; additional published lists for some of the classified Er II lines are given by Vander Sluis and McNally (3172–4385 Å) and Spector (7367–11238 Å) [1971a]. Vander Sluis and McNally also gave the most complete published tables of energy levels and Zeeman data. Spector [1971b] later found the $4f^{\,12}(^3\mathrm{H}_6)5d$ levels as comprising two J_1j -coupling terms.

The levels here are from an unpublished extension of the analysis by van Kleef and Koot [1975], which is still in progress. Many new levels of both parities have been located; about 120 even levels and 250 odd levels are now known. Most of the g values are also from van Kleef and Koot, who give the values to the nearest 0.005 units. The g values for several of the lower even levels are averages from the measurements of Vander Sluis and McNally, Lindner and Davis, and van Kleef and Koot; the estimated errors in the g-value determinations by Vander Sluis and McNally for some of these levels are significantly less than 0.005 units.

Sugar and Reader derived the ionization energy.

Theoretical Interpretation

The levels of the $4f^{\,12}6s$ ground configuration are paired in J_1j -coupling terms. The LS designations of the $4f^{\,12}$ parent levels are nominal; the "real core" wavefunctions for some of the parent levels have very mixed LS compositions [Judd and Marquet, 1962; Goldschmidt, 1963]. The lowest $4f^{\,12}5d$ levels are also grouped here into three J_1j -coupling terms [Spector, 1971b; van Kleef and Koot, 1975]. Leading percentages in the LS-coupling scheme are given for the $4f^{\,12}6s$ and $4f^{\,12}5d$ levels, the LS percentages for levels of J_1j -coupling terms being preceded by the word "or." The percentages are from a calculation by Wyart and Koot [1975] that included the interaction between the two configurations.

Van Kleef and Koot have established that many of the even levels above 32000 cm⁻¹ belong to the $4f^{11}6s6p$ and $4f^{11}5d6p$ configurations. The assignments for the low J_1J_2 -coupling terms of $4f^{11}6s6p$ and the other assignments to these configurations are from their recent work; no calculation of the even levels in this region is yet available [van Kleef and Koot, 1975].

The discovery and identification of low odd levels belonging to the $4f^{11}6s^2$ ⁴I° term and to the $4f^{11}(^4\text{I}^\circ)5d6s$ subconfiguration is a notable part of the analysis by van Kleef and Koot. They have also identified levels of the $4f^{12}6p$ configuration, which overlaps the $4f^{11}(5d+6s)^2$ group above 25000 cm⁻¹. The assignments of the odd levels are from their analysis. More definite term identifications will be possible after the completion of calculations for the four odd configurations already known; it can be anticipated, however, that the effects of intermediate coupling and configuration interaction will result in low eigenvector purities for many of these levels.

References

Goldschmidt, Z. B., J. Opt. Soc. Am. 53, 594 (1963). PT
Judd, B. R., and Marquet, L. C., J. Opt. Soc. Am. 52, 504 (1962). PT
Lindner, J. W., and Davis, S. P., J. Opt. Soc. Am. 48, 542 (1958). W ZE
Marquet, L. C., and Davis, S. P., J. Opt. Soc. Am. 55, 471 (1965). EL ZE
McNally, Jr., J. R., and Vander Sluis, K. L., J. Opt. Soc. Am. 49, 200 (1959). EL ZE
Spector, N., Astrophys. J. 167, 205 (1971a). EL CL
Spector, N., J. Opt. Soc. Am. 61, 672 (1971b). EL
Spector, N., and Held, S., Astrophys. J. 167, 193 (1971). W
Sugar, J., and Reader, J., J. Opt. Soc. Am. 55, 1286 (1965). IP
van Kleef, T. A. M., and Koot, J. J. A., unpublished material (1975). EL ND CL ZE
Vander Sluis, K. L., and McNally, Jr., J. R., J. Opt. Soc. Am. 60, 94 (1970). EL CL ZE
Wyart, J. F., and Koot, J. J. A., unpublished material (1975). PT

[May 1977]

Er II, Even Parity

Configuration	Term	J	Level (cm ⁻¹)	g		Lead	ing per	centages
$4f^{12}(^{3}\text{H}_{6})6s_{1/2}$	$(6,^{1}/_{2})$	13/2	0.000	1.230		or	99	4H
		11/2	440.434	1.101		or	67	2H
$4f^{12}(^{3}F_{4})6s_{1/2}$	$(4,^1/_2)$	9/2	5132.608	1.245		ow.	05	$^4\mathrm{F}$
• , ,	(-, /2)	$\frac{7}{2}$	5403.688	1.042		or or	65 43	2F
$4f^{12}(^{3}\text{H}_{5})6s_{1/2}$	(5.17)	117	51.40.000					
1) (113)031/2	$(5,^1/2)$	$\frac{^{11}/_{2}}{^{9}/_{2}}$	7149.630 7195.355	1.120 0.948		or or	68 64	⁴H ⁴H
4£19/3TI \C						OI	04	'n
$4f^{12}(^{3}\text{H}_{4})6s_{1/2}$	$(4,^1/2)$	7/2	10893.936	0.833		\mathbf{or}	61	4H
		9/2	11042.640	1.050		\mathbf{or}	41	²H
$4f^{12}(^{3}F_{3})6s_{1/2}$	$(3,^1/2)$	7/2	12587.998	1.204		\mathbf{or}	68	4F
		⁵ /2	12600.093	1.000		\mathbf{or}	79	$^{4}\mathrm{F}$
$4f^{12}(^{3}F_{2})6s_{1/2}$	$(2,^{1}/_{2})$	3/2	13188.467	0.487		or	80	4F
		5/2	13558.333	0.948		or	69	${}^{2}F$
$4f^{12}(^{3}{ m H}_{6})5d_{3/2}$	$(6,^3/2)$	9/2	16552.871	1.015				
, , , , , , , , , , , , , , , , , , , ,	(0, 72)	$^{15}_{15/2}$	18617.495	1.315 1.075		or or	83 58	(³ H) ⁴ F (³ H) ² K
		11/2	18889.101	1.255		or	96 85	(3H) 4G
		13/2	20728.050	1.140		or	35	(³ H) ⁴ H
$4f^{12}(^{3}\text{He})5d_{5/2}$	$(6, \frac{5}{2})$	¹⁷ /2	19302.832	1.175		0.14	00	(311) 417
	(=, 1=)	$\frac{7}{2}$	19903.107	1.185		or or	99 51	(³ H) ⁴ K (³ H) ⁴ F
		15/2	21533.153	1.185		or	86	(³ H) ⁴ I
		11/2	21697.852	1.100		or	54	(³ H) ² H
		9/2	21894.055	1.165		or	41	(3H) 4G
		$^{13}/_{2}$	22141.355	1.145		\mathbf{or}	42	(³ H) ⁴ H
$4f^{12}(^{3}\text{F}_{4})5d_{3/2}$	$(4,^3/_2)$	⁵ / ₂	23883.022	1.105		or	22	(¹G) ²F
		$r_{/2}$	23962.378	1.195		or	20	(³ F) ⁴ F
		9/2	24563.288	1.140		or	24	(3F) 4G
		11/2	24745.034	1.085		\mathbf{or}	26	(3F) 4G
$4f^{12}(^{3}\text{H})5d$		7/2	25041.268	1.130	28	² F		
$4f^{12}(^{3}\text{H})5d$		13/2	25532.352		63	4K		
$4f^{12}(^{3}F)5d$		11/2	25586.376	1.095	38	4 G		
$4f^{12}(^{3}F)5d$		9/2	26131.105	1.155	33	4F		
$4f^{12}(^{3}F)5d$		13/2	26414.450	1.125	41	4H		
$4f^{12}(^{3}\text{H})5d$		7/2	26949.099	1.060	24	4F		
$4f^{12}(^{3}\mathrm{H})5d$		11/2	27540.195	1.030	43	4 I		

Er II, Even Parity—Continued

	E	r II, Eve	n Parity—C	ontinued	
Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
4f ¹² (³ H)5d		9/2	27608.985	1.110	55 ² G
$4f^{12}(^{3}\mathrm{H})5d$		9/2	30872.428		35 ⁴ I
$4f^{11}(^4 ext{I}^\circ_{15/2})6s6p(^3 ext{P}^\circ_0)$	(15/2,0)	15/2	32048.749	1.275	
$4f^{11}(^{4}\text{I}_{15/2}^{\circ})6s6p(^{3}\text{P}_{1}^{\circ})$	$(^{15}/_{2},1)$	17/2	33217.200	1.195	
		$^{15}/_{2}$	33547.268	1.135	
		13/2	33753.920	1.195	
$4f^{11}(^4\text{I}_{15/2}^{\circ})6s6p(^3\text{P}_2^{\circ})$	(15/2,2)	$\frac{19}{2}$ $\frac{17}{2}$	36192.206 36861.561	1.235 1.250	
		$^{15}/_{2}$	37321.029	1.275	
		$\frac{13}{2}$ $\frac{11}{2}$	37634.115 37669.560	1.165 1.160	
$4f^{11}(^{4} ext{I}^{\circ})5d6p$?		11/2	38438.391	1.350	
$4f^{11}({}^4{ m I}^\circ)6s6p?$		$\frac{13}{2}$	38847.378	1.175	
$4f^{11}(^{4}I^{\circ})5d6p?$		13/2	39082.884	1.230	
$4f^{11}(^{4}\text{I}^{\circ})5d6p?$		15/ ₂	39804.224	1.200	
$4f^{11}(^{4}\text{I}^{\circ})6s6p$?		13/2	39952.447	1.055	
$4f^{11}(^{4}\text{I}^{\circ})6s6p?$		15/2	39994.031	1.160	
$4f^{11}(^{4}\text{I}^{\circ})6s6p?$		13/2	40121.685	1.250	
$4f^{11}(^{4}I^{\circ})5d6p?$		19/2	40447.910	1.085	
$4f^{11}(^{4}\text{I}^{\circ})5d6p?$		17/2	40547.199	1.160	
$4f^{11}(^{4}\text{I}^{\circ})6s6p?$		¹⁵ / ₂	41174.705	1.180	
$4f^{11}(^{4}I^{\circ})5d6p?$		17/2	41244.400	1.140	
$4f^{11}(^{4}I^{\circ})5d6p?$		11/2	42987.453	1.285	
$4f^{11}(4I^{\circ})5d6p$?		13/2	43103.357	1.305	
4f 11(4I°)6s6p?		9/2	43212.458	1.020	
4f 11(4I°)5d6p?		15/2	43223.145	1.200	
$f^{11}(^4{ m I}^\circ)6s6p?$ $f^{11}(^4{ m I}^\circ)6s6p?$		11/2	43273.539	1.060	
lf ¹¹ (⁴ I°)5d6p?		13/2	43319.482	1.230	
$f^{11}(^4I^\circ)5d6p?$		¹⁹ / ₂ ⁹ / ₂	43413.717 43460.803	1.195	
, (1)σωορ.		15/2	43522.203	1.485 1.155	
		11/2	43638.448	1.215	
		13/2	43724.968	1.205	
		19/2	43977.651	1.150	
		17/2	44235.276	1.170	
		15/2	44263.177	1.225	
	5	17/2	44820.220	1.115	
		13/2	44920.406	1.160	
		15/2	44955.121	1.155	
		17/2	45285.068	1.180	
		17/2	45471.524	1.200	
		11/2	45559.568	1.170	
		9/2	45900.980	1.245	
		13/2	46106.988	1.150	
		15/2	46260.808	1.165	

Er II, Even Parity—Continued

Er II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		11/2	46525.882	1.195			15/2	49660.227	1.195
		²¹ /2	46560.615	1.265			13/2	50115.664	1.150
		¹⁵ /2	46757.391	1.220			¹⁵ /2	50246.395	1.080
		¹⁹ /2	46757.780	1.200			11/2	50387.772	1.160
		17/2	46915.510	1.050			¹⁵ /2	50451.958	1.135
		13/2	47050.810	1.220			13/2	50457.727	1.030
		15/2	47162.334	1.075			13/2	50850.345	1.015
		17/2	47174.273	1.205			¹⁵ /2	51010.412	1.040
		19/2	47426.638	1.215			11/2	51037.663	1.070
		15/2	47466.969	1.190			¹⁵ /2	51103.871	1.100
		19/2	47786.901	1.155			13/2	51574.835	1.075
		13/2	47840.962	1.125			15/2	51606.662	1.045
		11/2	47847.615	1.050			13/2	52247.929	0.980
		15/2	48151.388	1.075			17/2	52392.832	1.135
		13/2	48525.666	1.165			15/2	52996.133	1.130
		9/2	48607.416	1.195			13/2	53891.761	1.120
		17/2	48676.243	1.205			13/2	54387.255	1.175
		19/2	48788.988	1.230			15/2	55316.342	1.145
		13/2	49005.981	1.185					
		13/2	49091.098	1.035			t		
		15/2	49378.255	1.175	Er III (³ H ₆)	Limit		96200	

Er II, Odd Parity

Er II, Odd Parity

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
$\frac{1}{4f^{11} 6s^2}$	4I°	15/2	6824.774	1.200	4f 11(4I°)5d6s		11/2	17063.735	1.150
v		$\frac{13}{2}$ $\frac{11}{2}$	13338.777 16948.197	1.120 1.055	4f 11(4I°)5d6s		13/2	17378.917	1.135
		9/2	10340.137	1.000	4f 11(4I°)5d6s		17/2	17842.682	1.140
4f 11(4I°)5d6s		13/2	10667.186	1.345	$4f^{11}(^{4} ext{I}^{\circ})5d6s$		15/2	18463.347	1.180
4f ¹¹ (4I°)5d6s		15/2	11309.180	1.285	$4f^{11}(^{4} ext{I}^{\circ})5d6s$		15/2	19375.584	1.020
4f ¹¹ (4I°)5d6s		11/2	12388.090	1.240	$4f^{11}(^{4}{ m I}^{\circ})5d6s$		17/2	19606.715	1.035
4f 11(4I°)5d6s		19/2	12815.068	1.180	$4f^{11}(^{4} ext{I}^{\circ})5d6s$		9/2	19920.613	1.095
4f 11(4I°)5d6s		17/2	13027.927	1.105	$4f^{11}(^{4}\text{I}^{\circ})5d6s$		11/2	19992.895	1.260
4f 11(4I°)5d6s		13/2	13060.715	1.200	4f 11(4I°)5d6s		13/2	20319.934	1.035
4f 11(4I°)5d6s		21/2	13572.118	1.235	$4f^{11}(^{4} ext{I}^{\circ})5d6s$		¹⁵ / ₂	20517.717	1.130
4f 11(4I°)5d6s		17/2	13719.584	1.145	4f 11(4I°)5d6s		13/2	21004.060	1.195
4f ¹¹ (4I°)5d6s		15/2	14280.723	1.180	4f 11(4I°)5d6s		11/2	21040.001	1.130
4f 11(4I°)5d6s		19/2	14649.277	1.265	4f 11(4I°)5d6s?		17/2	21629.159	1.160
4f 11(4I°)5d6s		17/2	15732.917	1.205	$4f^{11}(^{4}\text{I}^{\circ})5d6s?$		11/2	21656 . 831	1.060
4f 11(4I°)5d6s		9/2	16241.348	1.150	$4f^{11}(^{4}\text{I}^{\circ})5d^{2}$?		11/2	21819.914	1.375
4f 11(4I°)5d6s		15/2	16473.871	1.160	4f 11(4I°)5d6s?		13/2	22120.446	1.085
4f 11(4I°)5d6s		11/2	16529.413	1.220	4f 11(4I°)5d6s?		15/2	22200.015	1.220
4f 11(4I°)5d6s		13/2	16643.237	1.160	4f 11(4I°)5d6s?		13/2	22859.510	0.920
4f 11(4I°)5d6s		¹⁹ / ₂	16935.832	1.145			11/2	23240.649	1.085

Er II, Odd Parity—Continued

Er II, Odd Parity—Continued

Configuration	Term	J	Level	g	Configuration	Term	J	Level	
			(cm ⁻¹)					(cm ⁻¹)	<u> </u>
. 444 .470 7 700		17/2	23539,702	1.085			9/2	30917.436	1
$4f^{11}(^{4}\text{I}^{\circ})5d^{2}$?		13/2	23669.096	1.285			7/ ₂ 9/ ₂	31312.019	1
		11/2	23820.327	0.910				31381.779	1
		$^{15}/_{2}$	23973.877	1.220			11/2	31385.667	1
		17/2	24053.517	1.175			13/2	31418.481	1
		11/2	24415.265	1.100			11/2	31801.102	1
	!	$^{15}/_{2}$	24431.042	1.030			9/2	31844.124	1
		11/2	24687.523	0.790			7/2	31902.682	1
		$^{19}/_{2}$	24708.113	1.190			11/2	32073.360	1
		$^{13}/_{2}$	24935.855	1.070			9/2	32267.246	1
		11/2	25382.379	1.160			9/2	32502.680	1
$4f^{12}(^{3}\text{H}_{6})6p_{1/2}?$	$(6, 1/2)^{\circ}$?	11/2	25592.343	1.200			13/2	32528.401	1
-J		$^{13}/_{2}$	26098.972	1.115			11/2	32618.753	1
		$^{13}/_{2}$	25604.266	1.015			9/2	32753.468	1
		$^{11}/_{2}$	25971.476	1.125			7/2	32790.085	1
		9/2	25996.174	1.250			11/2	32811.006	1
		$^{11}/_{2}$	26399.775	1.085	$4f^{12}(^{3}\text{H}_{5})6p_{1/2}?$	$(5,^{1}/_{2})^{\circ}$?	9/2	32896.371	1
		$^{13}/_{2}$	26769.141	1.165			11/2	33105.534	1
		$^{11}/_{2}$	26805.448	1.215			13/2	33012.493	1
		9/2	27454.514	0.980			9/2	33028.394	1
		$^{13}/_{2}$	27513.555	1.105			9/2	33129.912	1
		$^{11}/_{2}$	27642.658	1.050			9/2	33307.365	1
		9/2	27890.690	0.950			7/2	33539.273	C
		$^{13}/_{2}$	28082.701	1.020			9/2	33565.895	1
		11/2	28361.386	1.030			9/2	33649.964	1
$4f^{12}(^{3}\text{H}_{6})6p_{3/2}?$	$(6,^{3}/_{2})^{\circ}$?	9/2	29011.015	1.110			11/2	33659.536	1
ij(-116)0p3/2:	(0, 72) :	$^{12}_{11/2}$	29492.329	1.095			13/2	33674.250	1
		$\frac{15}{2}$ $\frac{13}{2}$	29640.863 30621.102	1.185 1.170			11/2	33721.545	1
							9/2	33804.465	1
		$^{13}/_{2}$	29119.606	1.095			11/2	33988.301	1
		⁷ / ₂	29263.402	1.165			$^{9}/_{2}$	34074.875	1
		$^{15}/_{2}$	29472.789	1.145			$^{7}/_{2}$	34148.162	1
		$^{13}/_{2}$	29628.405	1.165			9/2	34196.388	1
		7/2	29780.571				7/2	34203.251	I
		9/2	29783.733	1.160			11/2	34341.611	ı
		11/2	29858.739	1.125			9/2	34397.143	1
		13/2	29892.370	1.135			$^{13}/_{2}$	34545.248	1
		15/2	29972.408	1.190			11/2	34563.257	1
		$^{13}/_{2}$	30008.331	1.120			9/2	34674.173	1
		9/2	30028.618	1.050			7/2	34902.323	1
		11/2	30122.939	1.125			11/2	34972.437	1
		7/2	30130.762	1.090			9/2	35063.892	1
		$^{11}/_{2}$	30157.742	1.070			11/2	35215.487	1
$4f^{12}(^{3}F_{4})6p_{1/2}?$	$(4, 1/2)^{\circ}$?	$^{9}/_{2}$	30317.974	1.130			$^{13}/_{2}$	35276.531	1

Er II, Odd Parity—Continued

Er II, Odd Parity—Continued

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9 1.140 1.030 1.090 1.060 1.155 0.980 1.180 1.095 1.215
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.030 1.090 1.060 1.155 0.980 1.180 1.095 1.215
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.030 1.090 1.060 1.155 0.980 1.180 1.095 1.215
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.090 1.060 1.155 0.980 1.180 1.095 1.215
7/2 35819.939 1.185 7/2 39021.546 9/2 35877.083 1.155 5/2 39036.642 11/2 35885.232 0.975 7/2 39053.063	1.060 1.155 0.980 1.180 1.095 1.215
11/2 35885,232 0.975 7/2 39053,063	1.155 0.980 1.180 1.095 1.215
11/2 35885,232 0.975 7/2 39053,063	0.980 1.180 1.095 1.215
9/- 25900 222 1 050	1.095 1.215
9/2 35899.232 1.050 $7/2$ 39140.561	1.215
7/2 35927.604 0.915 11/2 39242.082	
9/2 36007.182 1.020 7/2 39277.605	1
11/2 36147.709 1.155 7/ ₂ 39304.952	1.025
9/2 36322.233 1.075 9/2 39392.224	1.095
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.945
7/2 36470.944 0.800 9/2 39509.332	1.245
7/2 36471.984 1.105 $11/2$ 39525.696	1.125
11/2 36643.232 1.095 5/ ₂ 39643.159	1.175
7/2 36738.247 1.080 9/2 39653.816	1.085
9/2 36761.150 1.000 $11/2$ 39766.447	1.105
7/2 36825.194 1.160 3/2 39833.544	0.920
11/2 36863.932 1.055 9/2 39845.276	1.080
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.035
9/2 37038.764 1.145 9/2 40000.774	1.115
7/2 37057.724 1.150 5/2 40123.804	0.790
11/ ₂ 37098.956 1.250 11/ ₂ 40124.080	1.070
9/2 37110.402 1.065 9/2 40303.477	1.105
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.700
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.115
3/ ₂ 37357.383 0.755 9/ ₂ 40497.076	1.055
9/2 37438.656 1.060	1.110
9/2 37483.090 1.175 3/2 40687.445	1.060
7/2 37527.159 1.150 $5/2$ 40723.759	1.060
9/2 37617.073 0.920 7/2 40747.134	1.015
7/2 37698.823 1.115 11/2 40756.773	1.045
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.000
71 2000.007	0.955
9/2 97050 201 1115	1.045
5/2 2990/188 0.000	1.045
11/2 20210 007 1 1075	1.340
71 20210 201 0 005	0.960
9/0 99969 91 / 1 075	1.145
3/2 20/70 551 1 290	1.065
9/ 00/07/000 1110	0.950
51 00500 041 0 005	0.965
5/2 28617.215 0.000	0.975
$\begin{vmatrix} 3/2 & 38617.345 & 0.990 & 11/2 & 41415.615 \end{vmatrix}$	1.070

Er II, Odd Parity—Continued

Er II, Odd Parity—Continued

Configuration	Term	Į.	Level (cm 1)	g	Configuration	Term	J	Level (cm ⁻¹)	
		9/2	41486.824	1.170			3/2	42862.753	(3,1), %
		7/2	41505.714	1.045			5/2	43161.997	1,15
		9/2	41617.792	1.075			9/2	43221.660	1,580
		5/2	41682.421	0.990			7/2	43302.725	1,4%
		7/2	41876.127	1.030			5/2	43553.435	1.17
		5/2	42064.826	1.105			7/2	43925.092	1.1
		7/2	42149.596	0.955			3/2	43929.434	0,010
		5/2	42177.581	1.040			7/2	43939.914	1
		5/2	42264.318	1.125			7/2	44148.073	Litu.
		7/2	42414.845	1.040			3/2	44162.153	() , , (
		7/2	42461.068	1.000			3/2	44848.559	1,000
		7/2	42527.318	1.020			7/2	45011.044	\$5.50° ii
		7/2	42626.606	1.100					
		3/2	42650.795	0.845	D (211)	T,		00000	
		5/2	42747.673	0.935	Er III (³ H ₆)	Limit		96200	
		7/2	42769.495	1.135					

Er III

(Dy I sequence; 66 electrons)

Z = 68

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{12}$ 3 H₆

nization energy 183400± 800 cm⁻¹

 $22.74 \pm 0.10 \text{ eV}$

entified even configurations

 $4f^{12}$ and $4f^{11}6p$

entified odd configurations

 $4f^{11}6s$ and $4f^{11}5d$

Becher [1965] began the analysis of this spectrum by finding nine levels belonging to the $^{11}(^4\mathrm{I}^\circ_{15/2})5d,\ 4f^{\,11}(^4\mathrm{I}^\circ_{15/2})6s,\$ and $4f^{\,11}(^4\mathrm{I}^\circ_{15/2})6p$ groups. He noted the J_1j coupling in these beonfigurations, and assigned levels to all five J_1j terms based on the $4f^{\,11}(^4\mathrm{I}^\circ_{15/2})$ parent rel.

Most of the levels and term assignments given here are from Spector [1973]. He lependently found a more extensive system of excited levels and located them relative to see levels of the $4f^{12}$ ground configuration, including the ground level. Wyart, Blaise, and mus [1974] in their study of $(4f^N5d+4f^N6s)$ configurations calculated this group for Er III =11). They added two levels and suggested the deletion of two other levels from Spector's. The leading percentages in LS coupling are taken from their paper. Three levels of this pup could not be unambiguously assigned to calculated eigenvectors.

Wyart, Koot, and van Kleef [1974] calculated the percentages in J_1j coupling for the $^{11}(^4\mathrm{I}^\circ)6p$ group of levels. These authors also located an additional experimental level of this pup and found two new levels of $4f^{11}(^4\mathrm{I}^\circ)5d$. Van Kleef [1975] has supplied three published levels, including the $4f^{12}$ $^3\mathrm{H}_4$ level to complete the ground term.

Spector's published line list gives about 150 classified lines in the range 2165-5903 Å. He tes that his complete list included 800 Er III lines. Becher's thesis has some 3800 lines lieved to belong to Er III and Er II, with wavelengths from 2036 Å to 8725 Å.

Sugar and Reader obtained the quoted ionization potential.

References

Becher, J., Thesis, Johns Hopkins Univ., 134 pp. (1966). EL CL W PT Spector, N., J. Opt. Soc. Am. 63, 358 (1973). EL CL W PT

Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP

van Kleef, Th. A. M., private communication (1975). EL

Wyart, J. F., Blaise, J., and Camus, P., Phys. Scr. 9, 325 (1974). EL PT

Wyart, J. F., Koot, J. J. A., and van Kleef, Th. A. M., Physica (Utrecht) 77, 159 (1974). EL PT

[October 1976]

Er III

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages			
$1f^{12}$	3H	6	0.00				
		5	6969.78				
		4	10785.48				
f^{12}	3F	4	5081.79				
		3					
		2					
$f^{11}(^4 ext{I}^{\circ}_{15/2})5d_{3/2}$	(15/2,3/2)°	6	16976.09	or 76 (4I°)	5G°		
		7	17647.76	or 79 (4I°)			
		9	18976.74	or 47 (4I°)			
		8	19918.17	or 40 (4I°)			

Er III—Continued

Configuration	Term	J	Level (cm ⁻¹)	Leading p	percentages	
$4f^{11}(^4 ext{I}^\circ_{15/2})6s_{1/2}$	(15/2,1/2)°	8	19315.90	or	97	(4I°) ⁵ I°
-, (-10.2) 00 M2	, , , , , , ,	7	20226.20	or		(4I°) 3I°
$4f^{11}(^4\mathrm{I}_{15/2}^{\circ})5d_{5/2}$	(15/2,5/2)°	10	20470.13	or	96	(4I°) 5L°
1) (115/2)005/2	(/2, /2)	9	21688.17	or		(4I°) 5K°
		5	22016.77	or		(4I°) 5G°
		6	22606.07	or		(4I°) 5H°
		8	22951.42	or		(4I°) 5I°
		7	23302.78	or	34	(4I°) 3I°
$4f^{11}(^4\mathrm{I}^{\circ}_{13/2})5d_{3/2}$	$(^{13}/_2,^3/_2)^\circ$	8	25482.12	or	51	$(^4\mathrm{I}^\circ)~^5\mathrm{L}^\circ$
		5	26192.66	or		(4I°) 3G°
		7	26579.91	or		(4I°) 5K°
		6		or	24	(4I°) 5K°
$4f^{11}(^4\mathrm{I}^{\circ}_{13/2})6s_{1/2}$	$(^{13}/_{2},^{1}/_{2})^{\circ}$	7	26102.80	or	71	(4I°) 5I°
		6	26411.80	or	55	
$4f^{11} 5d$		6	27472.42		35	$(^4\mathrm{I}^\circ)~^3\mathrm{H}^\circ$
$4f^{11}5d$		5	27870.82		31	(4I°) 5G°
$4f^{11} 5d$		8	28555.42		57	(4I°) 5K°
$4f^{11}5d$		6	28777.67		24	$(^4\mathrm{I}^\circ)$ $^3\mathrm{H}^\circ$
$4f^{11} 5d$		7	28818.34		41	$(^4\mathrm{I}^\circ)~^5\mathrm{L}^\circ$
		6	29610.92			
		5	29806.49			
$4f^{11} 5d$		5	30014.26		24	(4I°) 5I°
		4	32198.86			
$4f^{11}5d$		6	33875.16		21	$(^4\mathrm{I}^\circ)$ $^3\mathrm{I}^\circ$
$4f^{11}(^4\mathrm{I}^{\circ}_{15/2})6p_{1/2}$	$(^{15}/_2,^{1}/_2)$	7	55547.26	95		
1) (113/2)001/2	(72, 72)	8	56025.35	97		
$4f^{11}(^4{ m I}^\circ_{15/2})6p_{3/2}$	$(^{15}/_2, ^3/_2)$	9	61032.47	97		
τη (115/2)0μ3/2	(12, 12)	6	61493.77	70		
		8	61539.16	97		
		7	61699.32	82		
$4f^{11}(^4\mathrm{I}^\circ_{13/2})6p_{1/2}$	$(^{13}/_2,^{1}/_2)$	6	62598.12	71		
ι ₎ (113/2)0 <i>μ</i> 1/2	12, 12)	7	62607.86	84		
$4f^{11}(^4 ext{I}^\circ_{11/2})6p_{1/2}$	$(^{11}/_2,^{1}/_2)$	5	65934.66	78		
4 <i>J</i> ^^(~111/2)0 <i>P</i> 1/2	(**/2,*/2)	5 6	66077.65	78 80		
4.C11/4T0 \Q	(13/ 2/)					
$4f^{11}(^{4}\mathrm{I}^{\circ}_{13/2})6p_{3/2}$	$(^{13}/_2, ^3/_2)$	8	67699.17	99		
		5 7	67986.43 68084.75	89		
		6	68186.17	98 94		
$4f^{11}(^4\mathrm{I}^{\circ}_{11/2})6p_{3/2}$	$(^{11}/_2, ^3/_2)$	4	71348.40	71		
4j ^^(*111/2)0/P3/2	(/2,-/2)	7	11030.30	82		
		5	71779.46	76		
		6	71785.85	80		
Er IV (4I _{15/2})	Limit	L	183400			

[Er IV]

(Tb I sequence; 65 electrons)

Z = 68

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{11}$ $^4I^{\circ}_{15/2}$

Ionization energy 344000± 3000 cm⁻¹

 $42.7 \pm 0.4 \text{ eV}$

Carter's thesis [1966] has a list of about 1200 lines assigned to Er IV from 1225 to 5609 Å, but only lines regarded as classified in the analysis were included. Unfortunately, the $4f^{11}-4f^{10}5d$ transition array given by Carter proved inconsistent with the energy separation derived later from the systematic behavior of such configurations in the rare earths [Sugar and Reader, 1973]. Carter's analysis also included a number of $4f^{10}6s-4f^{10}6p$ transitions. We have not given any of the levels, pending further work on the free-ion spectrum.

The levels of the three $4f^{11}$ terms here were derived from the spectrum of Er^{3+} in $LaCl_3$ [Dieke, 1968]. The positions are the mean values of the corresponding sublevels, rounded off to the nearest 10 cm⁻¹. Carnall, Fields, and Rajnak [1974] supplied the eigenvector percentages from their unpublished calculations. Dieke gives the $4f^{11}$ energy structure of this ion in several other crystals, and lists additional levels up to 34000 cm^{-1} .

Sugar and Reader derived the ionization energy. The uncertainty has been approximately doubled, in accordance with the suggestion by Spector and Sugar [1976].

References

Carnall, W. T., Fields, P. R., and Rajnak, K., J. Chem. Phys. 49, 4424 (1968). [EL]

Carnall, W. T., Fields, P. R., and Rajnak, K., unpublished material (1974). PT

Carter, W. J., Thesis, Johns Hopkins Univ., Baltimore, 65 pp. (1966). EL CL W PT

Dieke, G. H., Spectra and Energy Levels of Rare Earth Ions in Crystals, Ed. H. M. Crosswhite and H. Crosswhite, pp. 294-309 (Interscience Publishers, New York, 1968). [EL] ND [CL] [W]

Spector, N., and Sugar, J., J. Opt. Soc. Am. 66, 436 (1976).

Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP

Wybourne, B. G., J. Chem. Phys. 34, 279 (1961). PT

[March 1977]

[Er IV]

Configuration	Term	J	Level (cm ⁻¹)	Le	eading perc	entages
4f 11	4 J °	15/2	0	97	3	² K°
		13/2	[6480]	99	1	${}^{2}\mathrm{K}^{\circ}$
		11/2	[10110]	82	15	$^{2}\mathrm{H}^{\circ}2$
		9/2	[12350]	51	17	² H°2
4f 11	4F°	9/2	[15180]	58	28	4I °
		7/2	[20400]	92	5	${}^{2}\mathrm{G}^{\circ}1$
		$5/_{2}$	[22070]	85	13	$^{2}\mathrm{D}^{\circ}1$
		3/2	[22410]	63	20	$^{2}\mathrm{D}^{\circ}1$
<u>4</u> f ¹¹	⁴ S°	3/2	[18290]	68	18	² P°
 Er v (⁵ I ₈)	Limit	 	344000			

THULIUM

Tm I

69 electrons $Z{=}69$

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{13}6s^2$ ${}^2F_{7/2}^{\circ}$

Ionization energy $49879.8\pm0.5~cm^{-1}$

6.18436± 0.00006 eV

Identified odd configurations $4f^{13}6s^2$, $4f^{13}5d6s$, $4f^{12}6s^26p$, $4f^{12}5d6s6p$, $4f^{13}6s7s$,

 $4f^{13}6s6d, 4f^{13}6s8s, 4f^{13}6p^2$

Identified even configurations $4f^{12}5d6s^2$, $4f^{13}6s6p-8p$, $4f^{13}6s17p-48p$, $4f^{13}5d6p$

Meggers' start on this analysis in 1942 gave the interval between the levels of the $4f^{13}6s^2$ ²F° ground term, along with 16 upper even levels. In 1963 Blaise and his collaborators published extensions of the analysis, and by 1965 Camus, Blaise, and others had obtained Zeeman and infrared wavelength data that allowed a further extension of both the odd and even level systems and gave J and g values for nearly all known levels. The $4f^{12}5d6s^2$ and $4f^{13}6s6p$ even configurations and the $4f^{12}6s^26p$ and $4f^{13}5d6s$ odd configurations were interpreted theoretically, and the $4f^{13}6s7s$ and $4f^{13}6s8s$ series had been identified.

The paper by Sugar, Meggers, and Camus [1973] included additional levels belonging to the above configurations, and many new levels assigned to the $4f^{13}5d6p$, $4f^{12}5d6s6p$, $4f^{13}6s6d$, and $4f^{13}6p^2$ configurations. This collaboration of the Laboratoire Aimé Cotton and the National Bureau of Standards was based in part on new measurements of the spectrum made at NBS. The list of about 4400 emission lines (2500–11750 Å) includes more than 2700 classified lines. Practically all of the energy levels below 46000 cm⁻¹ are taken from this paper, which included a total of almost 500 levels. The level values were obtained by least-squares adjustment to the measured lines; "for levels given to three decimal places the standard deviation varies from 0.004 to 0.010 cm⁻¹ [and] for those given to two it varies from 0.010 to 0.02 cm⁻¹."

g Values

Most of the g values are from Camus' thesis [1971], and are based on Zeeman-effect plates obtained by Tomkins and Fred at the Argonne National Laboratory. A few revisions have been supplied by Camus and Wyart [1976]. The line list of Sugar, Meggers, and Camus includes the Zeeman-effect measurements for the lines. The g value for the ground level is from the atomic-beam magnetic-resonance measurement by Giglberger and Penselin, who gave this quantity as 1.141189 ± 0.000003 . Budick and Simievic obtained the quoted g values for two of the $4f^{13}(^2F^\circ_{7/2})6s6p(^3P^\circ_1)$ levels, J=% and %, with respective uncertainties of 0.00006 and 0.0010. The g value for the even level at 21121 cm $^{-1}$ is given with an uncertainty of ±0.00003 by Steudel, Wallenstein, and Walther. Steudel et al. also measured the quoted four-place g values with uncertainties between 0.0005 and 0.0012.

Theoretical Interpretation, Calculations

All leading percentages are taken from Camus' thesis [1971]. The interpretation of the levels of both parities is complete up to above 30000 cm⁻¹, with most of the configurations being given in a J_1j or J_1J_2 coupling scheme. In order to shorten the notations for second percentages from configurations coupled in those schemes, we have omitted the final (J_1, J_2) or (J_1, J_2) term symbols wherever they would be redundant. Leading percentages for the

 $4f^{13}6s6d$ levels are given in both the preferred J_1L_2 scheme and in a J_1J_2 scheme (following the word "or"), the final (J_1,J_2) term symbols being omitted in this case also.

The complexity of the spectrum is now known to arise mainly from configurations based on the $4f^{12}$ core; for example, the bulk of the 284 known odd levels belong to the $4f^{12}5d6s6p$ configuration. The average purity of 356 levels of $4f^{12}5d6s6p$ calculated in an LS scheme was only 16% [Camus, 1971]. The scheme preferred by Camus for this configuration is an "intermediate" J_1J_2 coupling scheme illustrated by the lowest term, $4f^{12}(^3H_6)5d6s6p(^4F_{3/2}^{\circ})$, beginning at 29309 cm $^{-1}$. (The scheme is intermediate in the sense that the two 5d6s6p parent doublet terms of each type (2F°, 2D°, 2P°) are mixtures of corresponding terms having pure parentages within the 5d6s6p group; for example, $5d(^2D)6s6p(^3P^\circ)$ ($^2F^\circ$, $^2D^\circ$, $^2P^\circ$) and 5d(2D)6s6p(1P°) (2F°, 2D°, 2P°) would be obtained in a pure coupling scheme based on vanishing 5d-6s and 5d-6p interactions.) For technical reasons, Camus transformed the $4f^{12}5d6s6p$ eigenvectors to the intermediate J_1J_2 scheme only for $J \ge 15$. We have thus given the leading percentages in the J_1J_2 scheme for levels having $J \ge 15\%$ if J_2 (in the leading J_1J_2 component) belongs to a 5d6s6p quartet level. The J_1J_2 names for a few levels $(J \ge 15)$ based on 5d6s6pdoublet levels are given, but without percentages; these levels have leading percentages >50% in the intermediate J_1J_2 scheme. In some cases we include tentative guesses as to the most appropriate parentages for the doublets in a corresponding pure coupling scheme; for example, $4f^{12}(^{3}\text{H}_{6}) \ 5d(^{2}\text{D})6s6p(^{3}\text{P}^{\circ}?) \ (^{2}\text{D}_{5/2}^{\circ})$. Camus was able to assign $J_{1}J_{2}$ designations to some levels with J<15/2, and these are listed for several such levels belonging to low J_1J_2 terms. Pending a more complete calculation and transformation to J_1J_2 coupling, only the configuration assignment is given for many of the $4f^{12}5d6s6p$ levels.

None of the even levels have been assigned to a configuration as complex as $4f^{12}5d6s6p$, but Sugar, Meggers, and Camus note that many of the unidentified even levels (which begin above $35000 \, \mathrm{cm}^{-1}$) probably belong to the as yet unlocated configuration $4f^{12}5d^26s$. Camus and Wyart [1976] have kindly supplied a few additional levels and revised assignments for the even group.

Absorption and Photoionization Spectra, Ionization Energy

Camus [1971] observed the absorption spectrum of thulium vapor over the region 2000–2750 Å. He noted that at the low temperature used (1200 °C), only transitions from the ${}^2F_{7/2}^{\circ}$ ground level would be expected. Some even levels based on this work begin at 37557 cm⁻¹, and the long $4f^{13}({}^2F_{7/2}^{\circ})6snp$ series were observed in absorption. The assignments from 17p through 20p are given as tentative because of the density of the spectrum in this region and possible ambiguities in the J values of particular levels within the terms. The absorption spectrum in the range 45500-49500 cm⁻¹ is largely uninterpreted; Camus states that configurations of the type $4f^{12}6s^2nd$ and (through configuration interaction) $4f^{12}5d6sms$ probably account for many of the lines.

The positions of the photoionization resonances observed by Parr are followed by the letter "a" (autoionization). A number of the high $4f^{13}(^2F^{\circ}_{7/2})6s~(^7\!\!/_2,^1\!\!/_2)^{\circ}_3~np$ series members observed by Camus apparently are superimposed on the lowest of the broad photoionization resonances, at 49975 cm⁻¹. Parr's tentative assignments of a few of the autoionizing levels to terms of $4f^{13}5dnp$ configurations are omitted, pending a more detailed theoretical treatment of this complex spectrum above the limit.

Camus [1971] determined the quoted value for the ionization energy by fitting the $4f^{13}(^2F^{\circ}_{7/2})6s$ ($^{1}_{2},^{1}_{2}$) $^{\circ}_{3}$ $np_{3/2}$ series (17 \leq n \leq 48). Parr's value of 6.180 \pm 0.008 eV, determined directly from the threshold for photoionization, agrees well with the more accurate spectroscopic value.

References

```
Allen, L., United Kingdom Atomic Energy Research Establishment AERE-R 4029, 34 pp. (1962). W ZE Blaise, J., and Vetter, R., C. R. Acad. Sci. 256, 630 (1963). EL Hfs IP Blaise, J., and Camus, P., C. R. Acad. Sci. 260, 4693 (1965). EL ZE Bordarier, Y., Vetter, R., and Blaise, J., J. Phys. (Paris) 24, 1107 (1963). EL CL W Hfs Bovey, L. F. H., and Garton, W. R. S., Proc. Phys. Soc. London, Sect. A 67, 476 (1954). W Budick, B., and Simievic, A., Spectroscopic and Group Theoretical Methods in Physics, Ed. F. Bloch et al., pp. 161–165 (John Wiley & Sons, N.Y., 1968). ZE Hfs
```

Camus, P., J. Phys. (Paris) 27, 717 (1966). EL ZE PT

Camus, P., J. Phys. (Paris) 31, 985 (1970). PT

Camus, P., Thesis, Univ. Paris, Orsay, 265 pp. (1971). EL ND CL W ZE IP SF PT Camus, P., J. Phys. (Paris) 33, 203 (1972). EL ND ZE PT

Camus, P., and Blaise, J., C. R. Acad. Sci. 261, 4359 (1965). EL ZE IP

Camus, P., Guelachvili, G., and Verges, J., Spectrochim. Acta, Part B 24, 373 (1969). EL CL W ZE Hfs

Camus, P., and Wyart, J. F., unpublished material (1976). EL ND ZE

Giglberger, D., and Penselin, S., Z. Phys. 199, 244 (1967). ZE Hfs

King, A. S., Astrophys. J. 94, 226 (1941). Temperature Classification

Meggers, W. F., Rev. Mod. Phys. 14, 96 (1942). EL CL

Parr, A. C., J. Chem. Phys. 54, 3161 (1971). EL CL W IP

Ritter, G. J., Phys. Rev. 128, 2238 (1962). ZE Hfs

Steudel, A., Wallenstein, R., and Walther, H., Phys. Lett. A 31, 433 (1970). ZE

Sugar, J., Meggers, W. F., and Camus, P., J. Res. Nat. Bur. Stand. (U.S.) 77A, 1 (1973). EL CL W ZE IP

[October 1976]

Tm I, Odd Parity

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
$4f^{13}(^2F^{\circ})6s^2$	²F°	$\frac{7}{2}$ $\frac{5}{2}$	0.000 8771.243	1.14119 0.855		
$4f^{13}(^{2}F_{7/2})5d6s(^{3}D)$	3[3/2]°	5/2 3/2 1/2	20406.840 21799.380 24160.63	1.58 1.45 1.010	97 72 93	$\begin{array}{ccc} 1 & (^2F_{7/2}^{\circ})(^3D) \ ^3[^5/_2]^{\circ} \\ 22 & (^2F_{7/2}^{\circ})(^1D) \ ^1[^3/_2]^{\circ} \\ 4 & (^2F_{5/2}^{\circ})(^1D) \ ^1[^1/_2]^{\circ} \end{array}$
$4f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d6s(^{3}\mathrm{D})$	3[11/2]°	$\frac{9}{2}$ $\frac{11}{2}$ $\frac{13}{2}$	22419.764 22559.502 22742.777	0.934 1.15 1.198	98 79 90	$\begin{array}{ccc} 2 & (^2\mathrm{F}_{7/2}^{\circ})(^3\mathrm{D}) \ ^3[^9/_2]^{\circ} \\ 19 & 4f^{12}(^3\mathrm{H}_6)6s^2 \ 6p_{1/2} \\ 10 & 4f^{12}(^3\mathrm{H}_6)6s^2 \ 6p_{1/2} \end{array}$
$4f^{12}(^{3}{ m H_{6}})6s^{2}6p_{1/2}$	(6,¹/2)°	$^{11/2}_{13/2}$	22468.046 22902.127	1.21 1.138	74 88	$\begin{array}{cc} 18 & 4f^{13}(^{2}\text{F}_{7/2}^{2})5d6s(^{3}\text{I}) \\ 10 & \end{array}$
$4f^{13}(^{2}\mathrm{F}_{7/2}^{2})5d6s(^{3}\mathrm{D})$	3[5/2]°	$\frac{7}{2}$ $\frac{5}{2}$ $\frac{3}{2}$	23335.111 23431.844 23574.415	1.362 1.22 0.83	79 82 94	20 $({}^{2}F_{7/2}^{\circ})({}^{3}D) {}^{3}[{}^{7}/{}_{2}]^{\circ}$ 16 $({}^{2}F_{7/2}^{\circ})({}^{3}D) {}^{3}[{}^{7}/{}_{2}]^{\circ}$ 5 $({}^{2}F_{7/2}^{\circ})({}^{3}D) {}^{3}[{}^{3}/{}_{2}]^{\circ}$
$4f^{13}(^2F_{7/2}^{\circ})5d6s(^3D)$	3[7/2]°	$\frac{9}{2}$ $\frac{5}{2}$ $\frac{7}{2}$	23941.071 24611.303 24708.041	1.29 0.92 1.08	82 77 49	$\begin{array}{ccc} 16 & (^{2}F_{7/2}^{\circ})(^{3}D) \ ^{3}[^{9}/_{2}]^{\circ} \\ 16 & (^{2}F_{7/2}^{\circ})(^{3}D) \ ^{3}[^{5}/_{2}]^{\circ} \\ 42 & (^{2}F_{7/2}^{\circ})(^{3}D) \ ^{3}[^{9}/_{2}]^{\circ} \end{array}$
$f^{13}(^{2}\mathrm{F}_{7/2}^{2})5d6s(^{3}\mathrm{D})$	3[9/2]°	$\frac{7}{2}$ $\frac{9}{2}$ $\frac{11}{2}$	24246.425 24701.058 24957.469	1.02 1.145 1.235	55 75 75	$\begin{array}{cccc} 31 & (^2F_{7/2}^{\circ})(^3D) & ^3[^7/_2]^{\circ} \\ 17 & (^2F_{7/2}^{\circ})(^3D) & ^3[^7/_2]^{\circ} \\ 19 & (^2F_{7/2}^{\circ})(^1D) & ^1[^{11}/_2]^{\circ} \end{array}$
$4f^{13}(^{2}F_{7/2})5d6s(^{1}D)$	¹ [3/ ₂]°	3/2	25207.732	1.365	72	$16 \ (^2F_{7/2}^{\circ})(^3D) \ ^3[^3/_2]^{\circ}$
$f^{13}(^{2}F_{7/2}^{\circ})5d6s(^{1}D)$	¹[¹¹/2]°	11/2	25520.987	1.10	78	$18 \ (^2F_{7/2}^{\circ})(^3D) \ ^3[^9/_2]^{\circ}$
f ¹² (³ H ₆)6s ² 6p _{3/2}	(6, ³ / ₂)°	15/ ₂ 9/ ₂ 13/ ₂	25536.116 25699.714 26357.736 26368.412	1.20 1.12 1.188 1.125	99 88 98 91	1 (¹ I ₆) (6, ³ / ₂)° 5 4f ¹³ (² F ² / ₇ / ₂)5d6s(³ I)) 1 (¹ I ₆) (6, ³ / ₂)° 3 (³ H ₆) (6, ¹ / ₂)°
$f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d6s(^{1}\mathrm{D})$	¹ [⁵ / ₂]°	5/2	26448.274	1.14	93	6 $({}^2\mathrm{F}^{\circ}_{7/2})({}^3\mathrm{D}) {}^3[{}^7/_2]^{\circ}$
$f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d6s(^{1}\mathrm{D})$	1[7/2]°	7/2	27037.468	1.11	97	$1 \ (^2F_{7/2}^{\circ})(^3D) \ ^{3\lceil 5/_2 \rceil^{\circ}}$
$f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d6s(^{1}\mathrm{D})$	1[9/2]°	9/2	27440.858		95	$2 ({}^{2}F_{7/2}^{\circ})({}^{3}D) {}^{3}[{}^{9}/{}_{2}]^{\circ}$
$f^{12}(^{3}\text{F}_{4})6s^{2}6p_{1/2}$	(4, ¹ / ₂)°	7/ ₂ 9/ ₂	28340.29 28514.423	1.085	62 60	29 (¹G₄) (4,¹/₂)° 28
$f^{12}(^{3}\text{He})5d6s6p(^{4}\text{F}^{\circ}_{3/2})$	(6,3/2)°	$\frac{9}{2}$ $\frac{11}{2}$ $\frac{15}{2}$ $\frac{13}{2}$	29308.69 31080.846 32112.98 32950.10	1.49 1.37 0.98 1.31	80	
$f^{13}(^{2}F_{5/2}^{\circ})5d6s(^{3}D)$	૩[9/₂]°	7/ ₂ 9/ ₂ 11/ ₂	30921.58 31388.303 32107.268	0.69 0.98 1.115	98 88 99	$\begin{array}{ccc} 1 & (^{2}F_{7/2}^{9})(^{3}D) & ^{3}[^{9}/_{2}] \\ 3 & (^{2}F_{8/2}^{9})(^{1}D) & ^{1}[^{9}/_{3}] \end{array}$

Tm I, Odd Parity-Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
$4f^{12}(^{3}\text{Hs})6s^{2}6p_{1/2}$	(5,1/2)°	9/ ₂ 11/ ₂	30947.175 31007.60	1.00	88 96	4 4f ¹³ (² F _{\$/2})5d6s(³ D) ³ [⁹ / ₂] 1 (³ F ₄) (4, ³ / ₂)°
4f ¹² (³ H ₆)5d6s6 p(⁴ F \$ ₁ 2)	(6,5/2)°	7/2 $9/2$ $17/2$ $11/2$ $15/2$ $13/2$	31367.728 32441.714 32761.54 33793.154 34046.54 34449.774	1.33 1.25 1.11 1.24 1.18 1.18	80 46	
$4f^{12}(^{3}F_{4})6s^{2}6p_{3/2}$	(4, ³ / ₂)°	9/ ₂ 11/ ₂ 5/ ₂ 7/ ₂	31454.298 31519.495 31593.70 31694.749	1.17	58 60 58 62	26 (¹ G ₄) (4, ³ / ₂)° 29 31 28
$4f^{13}(^{2}F_{5/2}^{2})5d6s(^{3}D)$		3/2	31499.06	1.33	46 ³ [³ / ₂]°	44 $({}^{2}F_{5/2}^{\circ})({}^{3}D) {}^{3}[{}^{1}/_{2}]^{\circ}$
$4f^{13}(^{2}F_{5/2}^{2})5d6s(^{3}D)$	³ [³ / ₂]°	5/ ₂ 1/ ₂ 3/ ₂	31773.78 32780.04	1.23 1.05	85 92 48	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$4f^{13}(^{2}F_{5/2}^{\circ})5d6s(^{3}D)$	3[5/2]°	3/ ₂ 5/ ₂ 7/ ₂	32181.49 32856.613 33240.362	0.725 1.051 1.17	71 83 73	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$4f^{13}(^{2}F_{7/2}^{2})6s7s(^{3}S_{1})$	(⁷ /2,1)°	9/ ₂ 7/ ₂ 5/ ₂	32217.195 32359.372 32479.326	1.333 1.195 0.89		
$4f^{13}(^{2}\mathrm{F}_{5/2}^{2})5d6s(^{3}\mathrm{D})$	³ [7/ ₂]°	5/ ₂ 7/ ₂ 9/ ₂	33292.78 33395.984 33726.70	0.624 1.14	97 49 86	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$4f^{12} 5d6s6p$		11/2	33638.74	1.42		
$4f^{12}(^{3}\mathrm{H_{6}})5d6s6p(^{4}\mathrm{F}^{2}_{7/2})$	(6, ⁷ / ₂)°	19/2	33644.74	1.18		
4f ¹² (³ H ₅)6s ² 6 p _{3/2}	(5,³/2)°	7/ ₂ 13/ ₂ 9/ ₂ 11/ ₂	33778.36 33943.282 34310.330 34532.898	1.13 0.995 1.126	68 100 50 99	25 4f ¹³ (² F ₅ ' ₂)5d6s(³ D) ³ [⁷ / ₂]° 46 4f ¹³ (² F ₅ ' ₂)5d6s(¹ D) ¹ [⁹ / ₂]° 1 (³ H ₅) (5, ¹ / ₂)°
$4f^{12} 5d6s6p$		13/2	33812.149	1.15		
$4f^{13}(^{2}F_{7/2}^{\circ})687s(^{1}S_{0})$	(⁷ /2,0)°	7/2	33961.044	1.15		
$4f^{13}(^{2}F_{5/2}^{\circ})5d6s(^{1}D)$	¹ [1/2]°	1/2	34069.26	0.666	83	$7 \ (^2F_{5/2}^{\circ})(^3D) \ ^3[^3/_2]^{\circ}$
$4f^{12} 5d6s6p$		5/2	34194.09	1.24		
$4f^{12} 5d6s6 p$		7/2	34365.624	1.205		
$4f^{12} 5d6s6p$		9/2	34457.853	1.185		
$4f^{12}(^{3}\text{H}_{5})6s^{2}6p_{3/2}$		9/2	34587.982	1.00	43 (5,3/2)°	42 $4f^{13}(^{2}F_{5/2}^{\circ})5d6s(^{1}D)^{1}[^{9}/_{2}]^{\circ}$
4f ¹² 5d6s6p		11/2	34 69 1.802	1.16		
$4f^{13}(^{2}\mathrm{F}_{5/2}^{\circ})5d6s(^{1}\mathrm{D})$	¹ [3/ ₂]°	3/2	34999.008	0.897	96	$2 ({}^{2}F_{5/2}^{\circ})({}^{3}D) {}^{3}[{}^{5}/{}_{2}]^{\circ}$
$4f^{12} 5d6s6p$		9/2	35054 .68 1	1.28		
$4f^{12}(^{3}\text{H}_{4})6s^{2}6p_{1/2}$	(4, ¹ / ₂)°	9/ ₂ 7/ ₂	353 6 3.77 35389.94	0.91 0.965	58 56	26 (3F ₄) (4, ¹ / ₂)° 26
$f^{12}(^{3}{ m He})5d6s6p(^{4}{ m D_{3/2}^{\circ}})$		15/2	35557.70	1.255	$35 (6, \frac{3}{2})^{\circ}$	
$f^{12}(^{3}\text{He}) \ 5d(^{2}\text{D})6s6p(^{3}\text{P}^{\circ}?) \ (^{2}\text{D}_{5/2}^{\circ})$	(6,5/2)°	17/2	35 6 33.01	1.18		
$f^{13}(^{2}F_{5/2})5d6s(^{1}D)$	¹ [⁵ / ₂]°	5/2	35673.62		97	$2 ({}^{2}F_{5/2}^{\circ})({}^{3}D) {}^{3}[{}^{5}/_{2}]^{\circ}$
$f^{12} 5d6s6p$		7/2	35682.251	1.222		

Tm I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	L	eading percentages
4f 12 5d6s6p		13/2	35958.880	1.134		
$4f^{12}(^{3}\text{H}_{6})5d6s6p(^{4}\text{D}^{\circ}_{5/2})$	$(6,^{5}/_{2})^{\circ}$	15/2	36179.60	1.155	47	
$4f^{12} 5d6s6p$		13/2	36223.628	1.12		
$4f^{12}(^{3}\text{H}_{6})5d6s6p(^{4}\text{F}_{7/2})$		15/2	36273.94	1.13	29 (6, ⁷ / ₂)°	
$4f^{12} 5d6s6p$		11/2	36329.786	1.035		
$4f^{12} 5d6s6p$		9/2	36377.733	1.21		
$4f^{13}(^{2}F_{5/2}^{\circ})5d6s(^{1}D)$	¹ [7/ ₂]°	7/2	36435.78			
$4f^{12}(^{3}\text{H}_{6}) \ 5d(^{2}\text{D})6s6p(^{3}\text{P}^{\circ}?) \ (^{2}\text{D}_{3/2}^{\circ})$	$(6,^{3}/_{2})^{\circ}$	15/2	36653.924	1.13		
$4f^{12} 5d6s6p$		11/2	36656.724	1.16		
$4f^{12} 5d6s6p$		7/2	36934.216	1.285		
$4f^{12} 5d6s6p$		9/2	37010.534	1.11		
$4f^{12} 5d6s6p$		15/2	37159.51	1.225		
$4f^{12}(^{3}\text{F}_{3})6s^{2}6p_{1/2}$	(3,1/2)°	5/ ₂ 7/ ₂	37221.455		82 96	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$4f^{12}(^{3}{\rm H_6})5d6s6p(^{4}{\rm D}_{7/2}^{\circ})$		17/2	37252.03	1.20	27 (6, ⁷ / ₂)°	
$4f^{12} 5d6s6p$		11/2	37276.778	1.25		
$4f^{12} 5d6s6p$		13/2	37365.13	1.20		
$4f^{12} 5d6s6p$		7/2	37519.484	1.09		
$4f^{12} 5d6s6p$		13/2	37646.186	1.175		
$4f^{12} 5d6s6p$		11/2	37657.928	1.01		
$4f^{12} 5d6s6p$		9/2	37768.662	1.215		
$4f^{12}(^{3}\text{H}_{6})5d6s6p(^{4}\text{D}_{7/2}^{\circ})$	$(6, ^{7}/_{2})^{\circ}$	15/2	37858.62	1.20	53	
$4f^{12} 5d6s6p$		13/2	38012.795	1.09		
$4f^{12} 5d6s6 p$		11/2	38161.255	1.125		
$4f^{12} 5d6s6p$		7/2	38211. 6 25	1.175		
$4f^{12}(^{3}\text{H}_{4})6s^{2}6p_{3/2}$	$(4,^{3}/_{2})^{\circ}$	$\frac{11}{2}$ $\frac{5}{2}$	38347.875	1.07	59	$28 \ (^{3}F_{4}) \ (^{4},^{3}/_{2})^{\circ}$
		7/2 7/2 9/2	38664.184 38685.555	1.042 1.043	41 57 57	25 (3F ₂) (2,1/ ₂)° 26 (3F ₄) (4,3/ ₂)° 25 (3F ₄) (4,3/ ₂)°
$4f^{12} 5d6s6p$		9/2	38384.926	1.134		
$4f^{12} 5d6s6p$		7/2	38482.584	1.25		
$4f^{12}(^{3}\text{H}_{6})5d6s6p(^{4}\text{F}^{\circ}_{9/2})$	$(6, ^{9}/_{2})^{\circ}$	15/2	38485.85	1.145	45	
$4f^{12} 5d6s6p$		9/2	38499.016	1.064		
$4f^{12} 5d6s6p$		11/2	38529.686	1.17		
$4f^{12} 5d6s6p$		13/2	38588.46	1.212		
$4f^{12} 5d6s6p$		5/2	38751.812	1.215		
$4f^{13}(^{2}F_{7/2}^{\circ})6s6d(^{3}D)$	³ [³ / ₂]°	$\frac{5}{2}$ $\frac{3}{2}$ $\frac{1}{2}$	38861.937 39602.902 39737.58	1.565 1.30 0.81	96 or 57 or 100 or	$\begin{array}{ccc} 57 & (^2F_{7/2}^\circ)(^3D_1) \\ 64 & (^2F_{7/2}^\circ)(^3D_3) \\ 100 & (^2F_{7/2}^\circ)(^3D_3) \end{array}$

Tm I, Odd Parity—Continued

Tm I, Odd Parity—Continued										
Configuration	Configuration Term J Level g									
1f 12 5d6s6p		11/2	38877.211	1.065						
$f^{12} 5d6s6 p$		13/2	38915.90	1.22						
$f^{13}(^{2}F_{7/2}^{2})6s6d(^{1}D)$	¹ [3/ ₂]°	3/2	39061.819	1.34	57 or $57 ({}^{2}F_{7/2}^{\circ})({}^{1}D_{2})$					
$4f^{13}(^{2}\mathrm{F}_{7/2})6s6d(^{3}\mathrm{D})$	3[11/2]°	11/ ₂ 13/ ₂ 9/ ₂	39089.533 39157.57 39220.035	1.09 1.24 1.12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$f^{13}(^2F_{7/2}^{\circ})6s6d(^3D)$	³ [5/ ₂]°	7/2 5/2 3/2	39187.473 39277.087 39419.90	1.336 1.184 0.916	76 or 49 $({}^{2}F_{7/2})({}^{3}D_{1})$ 68 or 37 $({}^{2}F_{7/2})({}^{3}D_{3})$ 86 or 67 $({}^{2}F_{7/2})({}^{3}D_{2})$					
$f^{12} 5d6s6p$		9/2	39244.584	1.05						
$f^{13}(^2\mathrm{F}_{7/2}^{\circ})6s6d(^3\mathrm{D})$	³ [7/ ₂]°	9/ ₂ 7/ ₂ 5/ ₂	39322.014 39462.782 39658.852	1.153 1.12 0.96	67 or $84 \ (^2F_{7/2})(^3D_2)$ 40 or $38 \ (^2F_{7/2})(^3D_1)$ 72 or $54 \ (^2F_{7/2})(^3D_3)$					
$f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})6s6d(^{1}\mathrm{D})$	¹ [11/ ₂]°	11/2	39362.651	1.13	66 or $66 (^2F_{7/2}^{\circ})(^1D_2)$					
$f^{12} 5d6s6 p$		5/2	39386.959	0.982						
$f^{12} 5d6s6p$		7/2	39413.672	1.165						
f ¹² 5d6s6p		13/2	39434.151	1.15						
$f^{13}(^{2}\mathrm{F}^{\circ}_{7/2})6s6d(^{1}\mathrm{D})$		9/2	39444.295	1.13	$38^{-1}[^{9}/_{2}]^{\circ}$ or $59^{-}(^{2}F_{7/2}^{\circ})(^{3}D_{3})$					
$f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})6s6d(^{1}\mathrm{D})$	¹ [5/ ₂]°	5/2	39470.489	1.04	70 or $70 (^{2}F_{7/2})(^{1}D_{2})$					
$f^{13}(^{2}F_{7/2}^{\circ})6s6d(^{3}D)$	3[9/2]°	11/2	39479.873	1.21	87 or 95 (2F ² / _{7/2})(3D ₃)					
$f^{12} 5d6s6p$		7/ ₂	39480.272	1.17						
$f^{12} 5d6s6p$		9/2	39488.236	1.095						
^{f 13} (² F ² / ₂)6s6d(¹ D)	1[7/ ₂]°	7/2	39542.165	1.06	81 or 81 $({}^{2}F_{7/2}^{\circ})({}^{1}D_{2})$					
f 12 5d6s6p		11/2	39563.003	1.11	61 61 62 (2 1.0)(2 2)					
⁻ ⁻ 13(² F ² / ₂)6s6d(³ D)		7/2	39627.996	1.04	$45 \ \ ^{3[9/2]^{\circ}} \ \ \text{or} \ \ \ \ 59 \ \ (^{2}F_{7/2}^{\circ})(^{3}D_{3})$					
$f^{12} 5d6s6p$		11/2	39709.038	1.17	10 [72] 01 00 (1 112)(20)					
f 13(2F %,2)6s6d(1D)	1[9/2]°	9/ ₂	39741.913	1.112	58 or $58 ({}^{2}F_{7/2})({}^{1}D_{2})$					
$f^{12}(^{3}F_{3})6s^{2}6p_{3/2}$	(3,3/2)°	7/ ₂	40061.324	1.13	97 $2 (^{3}F_{2}) (2,^{3}/_{2})^{\circ}$					
	(0, 72)	5/2 9/2 3/2	40208.499	1.18	95 3 (3F ₂) (2,3/ ₂)° 98 1 (3H ₄) (4,3/ ₂)° 94 4 (3F ₂) (2,3/ ₂)°					
$f^{12} 5d6s6p$		13/2	40113.75							
^c 12 5d6s6p		9/2	40322.536	1.115						
⁶¹² 5d6s6p		⁵ / ₂	40347.267	1.14						
^{C12} 5d6s6p C12 5d6s6p		13/ ₂ 9/ ₂	40376.20	1.153						
¹² 5d6s6p		7/ ₂	40517.661 40533.825	1.153						
¹² 5d6s6p		7/ ₂	40596.302	1.305						
$^{c12}5d6s6p$		11/2	40663.129							
$f^{12} 5d6s6 p$		7/2	40763.892	1.178						
f 12 5d6s6 p		13/2	40780.904	1.22						
f 12 5d6s6p		9/ ₂	40855.580	1.08						
$f^{12} 5d6s6p$		5/2	40938.61	1.10						

Tm I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
$4f^{13}(^{2}F_{5/2}^{\circ})6s7s(^{3}S_{1})$	(⁵ / ₂ ,1)°	3/2	40989.73	0.40		
		$\frac{5}{2}$ $\frac{7}{2}$	41074.399 41189.1 6 2	0.99 1.19		
4f 12 5d6s6p		7/2	41012.387	1.15		
$4f^{13}(^{2}F_{7/2})6s8s(^{3}S_{1})$	(⁷ / ₂ ,1)°	$\frac{9}{2}$	41078.537	1.32		
		9/ ₂ 7/ ₂ 5/ ₂	41211.943 41325.87	1.18 0.90		
4f 12 5d6s6 p	(0.31.)9	$\frac{11}{2}$ $\frac{7}{2}$	41081.384 41085.039	1.295 1.005	75	19 (${}^{1}\mathrm{D_{2}}$) (2, ${}^{3}/{}_{2}$) ${}^{\circ}$
$4f^{12}(^{3}F_{2})6s^{2}6p_{3/2}$	$(2,^{3}/_{2})^{\circ}$	9/ ₂	41109.364	1.19	19	19 (152) (2, 72)
4f 12 5d6s6p		9/ ₂	41124.334	1.244		
4.6.12		13/2	41274.90	1.12		
$4f^{12} 5d6s6p$		17/ ₂	41299.37	1.08		
$4f^{12} 5d6s6p$		7/2	41425.474	1.10		
4f		7/2	41525.20	1.105		
4f ¹² 5d6s6p		5/ ₂	41533.564	1.025		
4f ¹² 5d6s6p		11/2	41569.114	1.205		
4f ¹² 5d6s6p		9/2	41576.146	1.249		
$4f^{13}(^{2}F_{7/2}^{\circ})6s8s(^{1}S_{0})$	(⁷ / ₂ ,0)°	7/2	41646.129	1.16		
$4f^{12} 5d6s6p$		11/2	41687.404	1.145		
4f ¹² 5d6s6p		3/2	41743.39	0.913		
4f ¹² 5d6s6p		9/2	41786.249	1.25		
$4f^{13}(^{2}F_{7/2}^{\circ})6p^{2}(^{3}P_{0})$	(⁷ / ₂ ,0)°	7/2	41841.602	1.21	85	9 $({}^{2}F_{7/2}^{\circ})({}^{1}S_{0})$
$4f^{12} 5d6s6p$		11/2	41874.369	1.16		
$4f^{12} 5d6s6p$		15/2	41880.13			
$4f^{12} 5d6s6p$		9/2	41881.739	1.18		
4f 12 5d6s6p		13/2	41917.235	1.15		
4f 12 5d6s6p		11/2	42119.080	1.10		
$4f^{12} 5d6s6 p$		7/2	42133.2 6 3	1.17		
4f 12 5d6s6p		$^{5}/_{2}$	42179.886	1.05		
$4f^{12} 5d6s6p$		$^{5}/_{2}$	42367.610	1.20		
$4f^{12} 5d6s6p$		$^{7}/_{2}$	42370.718	1.043		
$4f^{12}5d6s6p$		$^{13}/_{2}$	42406.656	1.125		
$4f^{12} 5d6s6p$		$^{11}/_{2}$	42541.367	1.10		
$4f^{12} 5d6s6 p$		9/2	42561.536	1.06		
$4f^{12} 5d6s6p$		$^{11}/_{2}$	42581.974	1.135		
4f 12 5d6s6p		9/2	42594.049	1.09		
$4f^{12} 5d6s6p$		$^{5}/_{2}$	42705.880	1.095		
$4f^{13}(^{2}F_{5/2}^{\circ})6s7s(^{1}S_{0})$	(5/2,0)°	5/2	42735.208	,		
$4f^{12} 5d6s6p$		⁷ / ₂	42742.008	1.19		
$4f^{12} 5d6s6p$		$^{9}/_{2}$	42770.792	1.215		
$4f^{12} 5d6s6p$		9/2	42839.493	1.086		0
$4f^{12}(^3F_4)5d6s6p(^4F_{9/2})$		15/2	42855.44	1.124	29 (4,9/2)	~
		⁵ / ₂	42902.504	1.04		
$4f^{12} 5d6s6p$		13/2	42910.043	1.20		
$4f^{12} 5d6s6p$		11/2	42961.884	1.205		
$4f^{12} 5d6s6p$ $4f^{12} 5d6s6p$		9/ ₂ 7/ ₂	43030.299 43034.166	1.095 1.15		

Tm I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages		
4f ¹² 5d6s6p		15/2	43051.55	1.19			
$f^{13}(^{2}F_{7/2}^{\circ})6p^{2}(^{3}P_{1})$	(⁷ / ₂ ,1)°	7/2	43052.541	1.055	98	$1 (^2F_{7/2}^{\circ})(^3P_2)$	
		9/ ₂ 5/ ₂	43 429.363 43 430.758	1.20 1.09	91 66	7 27	
$f^{12} 5d6s6 p$		5/2	43113.646	1.114			
$f^{12} 5d6s6p$		11/2	431 86. 335	1.196			
$f^{12} 5d6s6p$		3/2	43230.70	0.99			
$f^{12} 5d6s6p$		13/2	43288.722	1.175			
$f^{12} 5d6s6p$		11/2	43408.960	1.20			
$f^{12} 5d6s6p$		7/2	43428.780	1.155			
$f^{12} 5d6s6p$		13/2	43438.251	1.23			
$f^{12} 5d6s6p$		11/2	43447.878	1.105			
$f^{12} 5d6s6p$		9/2	43544.574				
		7/2	43588.180	1.248			
$f^{12}(^3{ m H_5})5d6s6p(^4{ m F}_{7/2})$		15/2	43614.261	1.12	$38 (5, \frac{7}{2})^{\circ}$		
$f^{12} 5d6s6p$		9/2	43675.258	1.04			
$f^{12} 5d6s6p$		11/2	43974.645	1.14			
$f^{12} 5d6s6p$		13/2	43979.308				
$f^{12}(^{1}G_{4})6s^{2}6p_{1/2}$	(4, ¹ / ₂)°	9/ ₂ 7/ ₂	44001.272 44142.395	1.04 1.02	57 56	32 (³ H ₄) (4, ¹ / ₂)° 33	
f 12 5d6s6 p		13/2	44072.61				
$f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})6p^{2}(^{3}\mathrm{P}_{2})$	(⁷ / ₂ ,2)°	11/2	44180.935	1.17	82	$18 (^{2}F_{7/2}^{\circ})(^{1}D_{2})$	
^c 12 5d6s6p		⁵ / ₂	44182.324	1.17			
f 12 5d6s6p		15/2	44210.42	1.15			
f 12 5d6s6p		7/2	44263.974	0.905			
$f^{12} 5d6s6p$		5/2	44300.233	1.09			
$f^{12} 5d6s6p$		13/2	44307.188	1.13			
$f^{13}(^{2}F_{7/2}^{2})6p^{2}(^{3}P_{2})$		9/2	44316.715	1.15	46 (⁷ /2,2)°	$46 \ (^2F_{7/2}^{\circ})(^1D_2)$	
$f^{12}(^{3}\text{H}_{5})5d6s6p(^{4}\text{F}_{9/2})$	(5,9/2)°	19/2	44334.66	1.18	98		
$f^{12} 5d6s6p$		11/2	44383.637				
$f^{12} 5d6s6p$		7/2	44418.396				
$f^{12} 5d6s6p$		13/2	44418.695	1.145			
$f^{13}(^{2}F_{7/2})6p^{2}(^{1}D_{2})$		7/2	44456.230		49 (⁷ / ₂ ,2)°	$44 (^{2}F_{7/2}^{\circ})(^{3}P_{2})$	
$f^{13}(^{2}F_{7/2}^{2})6p^{2}(^{3}P_{2})$	(⁷ / ₂ ,2)°	3/2	44483.351	1.005	90	$10 ({}^{2}\mathrm{F}^{\circ}_{7/2})({}^{1}\mathrm{D_{2}})$	
f ¹² 5d6s6p		15/2	44565.85	1.135			
f ¹² 5d6s6p		17/2	44571.82	1.18			
f ¹² 5d6s6p		13/2	44591.133	1.04			
$f^{12} 5d6s6p$		11/2	44747.009	1.17			
$f^{12} 5d6s6p$		9/2	44774.242				
$f^{12} 5d6s6p$		13/2	44803.868	1.105			
$f^{13}(^{2}F_{7/2}^{\circ})6p^{2}(^{3}P_{2})$		5/2	44855.240	1.045	43 (⁷ / ₂ ,2)°	$33 (^2F_{7/2}^{\circ})(^3P_1)$	
$f^{12} 5d6s6p$		9/ ₂	44868.173	1.10	, ,		
$f^{12} 5d6s6p$		11/ ₂	45058.379	1.055			
f ¹² 5d6s6p		9/ ₂	45070.577				
$f^{12} 5d6s6p$		9/ ₂	45147.300				
f ¹² 5d6s6p		11/ ₂	45289.01	1.155			
f ¹² 5d6s6p		13/2	45389.06				
f ¹² 5d6s6 p		7/ ₂	45408.656	1.105			
4f 12 5d6s6p		9/ ₂	45467.723				

Tm I, Odd Parity—Continued

Till 1, Out 1 artly—Continued									
Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages				
4f ¹² 5d6s6p		11/2	45485.87						
$4f^{12} 5d6s6 p$		15/2	45557.72	1.164					
$4f^{12}(^{3}\text{H}_{5})5d6s6p(^{4}\text{D}\mathring{s}_{/2})$		15/2	45608.78	1.15	$34 (5, 5/2)^{\circ}$				
$4f^{12} 5d6s6p$		11/2	45635.737	1.14					
$4f^{12} 5d6s6p$		13/2	<i>45660.65</i>	1.19					
4f 12 5d6s6p		11/2	45810.508	1.225					
$4f^{12}(^{3}\text{H}_{5})5d6s6p(^{4}\text{D}_{7/2}^{\circ})$		15/2	45934.52	1.165	$29 (5, \frac{7}{2})^{\circ}$				
$4f^{12} 5d6s6p$		11/2	46163.587						
$4f^{12} 5d6s6p$		11/2	46221.416						
$4f^{12} 5d6s6p$		15/2	46461.06	1.18					
$4f^{12} 5d6s6p$		13/2	46597.694	1.18					
$4f^{12} 5d6s6p$		13/2	46694.096	1.16					
$4f^{12}(^{3}\text{H}_{6}) \ 5d(^{2}\text{D})6s6p(?) \ (^{2}\text{F}_{7/2}^{\circ})$	(6,7/2)°	17/2	46767.71	1.17					
$4f^{12}5d6s6p$		11/2	46850.44	1.145					
4f 12 5d6s6 p		13/2	47027.45	1.17					
$4f^{12}5d6s6p$		13/2	47214.313	1.135					
$4f^{12} 5d6s6p$		11/2	47484.84	1.115					
$4f^{12} 5d6s6p$		15/2	4 76 30.53	1.162					
$4f^{12} 5d6s6p$		13/2	47644.931	1.175					
$4f^{12}5d6s6p$		13/2	47759.379	1.16					
$4f^{12}(^{3}\text{H}_{4})5d6s6p(^{4}\text{F}_{7/2}^{2})$	$(4,7/2)^{\circ}$	15/2	47886.05	1.15	49				
4f 12 5d6s6p		13/2	48115.671	1.17					
Tm II (2F ⁹ /2)681/2 (7/2,1/2) ²	Limit		49879.8						
Tm II $({}^{2}F_{7/2}^{\circ})6s_{1/2}$ $({}^{7/2},{}^{1/2})_{3}^{\circ}$	Limit		50116.8						
		15/2	50563.91	1.18					
		13/2	51298.366						
		13/2	51466.730						
		11/2	51756.675						
Tm II $({}^{2}F_{5/2}^{\circ})6s_{1/2}$ $({}^{5/2},{}^{1/2})_{2}^{\circ}$	Limit	,-	58649.5						

Tm I, Even Parity

		1 1111 1, 1	even I arity		1	
Configuration	Term	J	Level (cm ⁻¹)	g	I	Leading percentages
$4f^{12}(^{3}\text{He})5d_{3/2}6s^{2}$	(6,3/2)	9/2 15/2 11/2 13/2	13119.610 15271.002 15587.811 17454.818	1.305 1.08 1.255 1.15	86 96 76 95	8 (3H ₆) (6,5/2) 2 (3H ₆) (6,5/2) 20 (3H ₆) (6,5/2) 2 (3F ₄) (4,5/2)
$4f^{12}(^{3}\text{He})5d_{5/2}6s^{2}$	(6,5/2)	17/ ₂ 7/ ₂ 15/ ₂ 9/ ₂ 11/ ₂ 13/ ₂	16456.913 16957.006 18693.074 18837.385 18853.823 19466.663	1.175 1.1722 1.18 1.1318 1.15 1.15	99 70 97 76 48 85	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$4f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})6s6p(^{3}\mathrm{P}_{0}^{\circ})$	(7/2,0)	7/2	16742.237	1.325	78	$17 \ (^2F_{7/2}^{\circ})(^3P_1^{\circ})$
$4f^{13}(^2F_{7/2}^{\circ})6s6p(^3P_1^{\circ})$	(7/2,1)	7/ ₂ 9/ ₂ 5/ ₂	17343.374 17613.659 17752.634	1.02153 1.18598 1.186	77 94 88	$\begin{array}{ccc} 16 & (^{2}F_{7/2}^{2})(^{3}P_{0}^{3}) \\ & 3 & (^{2}F_{7/2}^{2})(^{3}P_{2}^{2}) \\ & 9 & (^{2}F_{7/2}^{2})(^{3}P_{2}^{2}) \end{array}$
$4f^{13}(^{2}\mathbf{F}_{7/2}^{\circ})6s6p(^{3}\mathbf{P}_{2}^{\circ})$	(7/2,2)	11/ ₂ 3/ ₂ 5/ ₂ 9/ ₂ 7/ ₂	18990.406 19132.245 19548.834 19748.543 19753.830	1.215 0.88 0.983 1.29 1.1839	68 99 90 97 95	21 $4f^{12}(^{3}\text{He})5d_{5/2}6s^{2}$ 9 $(^{2}\text{F}^{\circ}_{7/2})(^{3}\text{P}^{\circ}_{1})$ 3 $(^{2}\text{F}^{\circ}_{7/2})(^{3}\text{P}^{\circ}_{1})$ 2 $(^{2}\text{F}^{\circ}_{7/2})(^{3}\text{P}^{\circ}_{0})$
$4f^{12}(^{3}F_{4})5d_{3/2}6s^{2}$	(4,3/2)	7/ ₂ 5/ ₂ 9/ ₂ 11/ ₂	21120.836 21161.401 21737.685 21997.473	1.17372 1.14 1.1210 1.06	54 49 61 40	21 (¹G ₄) (4,³/ ₂) 29 25 26
$4f^{12}(^{3}\text{H}_{5})5d_{3/2}6s^{2}$	(5,3/2)	7/2 $13/2$ $9/2$ $11/2$	22791.176 23374.681 24348.692 25488.545	1.1427 0.98 1.12	75 87 44. 91	5 (3F ₄) (4, ⁵ / ₂) 4 (3H ₆) (6, ⁵ / ₂) 28 4f ¹³ (² F ² / ₁₂)6s6p(¹ P ²) 2 (3F ₄) (4, ³ / ₂)
$4f^{12}(^{3}\text{H}_{5})5d_{5/2}6s^{2}$		5/2	22929.717	1.152	27 (5,5/2)	$20 \ (^3F_4) \ (4,^5/_2)$
$4f^{12}(^{3}\text{F}_{4})5d_{5/2}6s^{2}$	$(4,^5/2)$	11/2	23309.979	1.11	56	25 (¹G ₄) (4, ⁵ / ₂)
$4f^{12}(^{3}\text{F}_{4})5d_{5/2}6s^{2}$	$(4,^5/2)$	9/2	23781.698	1.1499	49	21 $({}^{1}G_{4})$ $(4, {}^{5}/_{2})$
$4f^{12}(^{3}\text{F}_{4})5d_{5/2}6s^{2}$		7/2	23873.207	1.135	37 (4,5/2)	22 $4f^{13}(^{2}F_{7/2}^{\circ})6s6p(^{1}P_{1}^{\circ})$
$4f^{12}(^{3}\text{F}_{4})5d_{5/2}6s^{2}$		3/2	23882.41		$37 \ (4,^{5}/_{2})$	$34 \ (^{1}G_{4}) \ (4, ^{5}/_{2})$
$4f^{12}(^{3}\text{F}_{4})5d_{5/2}6s^{2}$		13/2	24137.196	1.128	43 (4,5/2)	28 $({}^{1}G_{4})$ $(4, {}^{5}/_{2})$
$4f^{13}(^{2}\text{F}_{7/2}^{\circ})6s6p(^{1}\text{P}_{1}^{\circ})$	(7/2,1)	5/2	24418.018	1.06	50	$32 \ 4f^{12}(^{3}\text{H}_{5})5d_{5/2}6s^{2}$
$4f^{12}(^{3}\text{H}_{5})5d_{5/2}6s^{2}$	(5,5/2)	15/ ₂ 7/ ₂ 9/ ₂ 13/ ₂ 11/ ₂	25130.453 25717.197 26889.125 27377.13 27491.31	1.10 1.02 1.11 1.12	99 70 52 92 88	12 $4f^{13}(^{2}F_{7/2})6s6p(^{1}P_{1}^{\circ})$ 31 $4f^{13}(^{2}F_{7/2})6s6p(^{1}P_{1}^{\circ})$ 5 $(^{3}H_{5})$ $(5,^{3}/_{2})$ 9 $(^{3}F_{3})$ $(3,^{5}/_{2})$
$4f^{13}(^{2}F_{5/2}^{\circ})6s6p(^{3}P_{0}^{\circ})$	(5/2,0)	5/2	25656.019	0.724	86	$6 (^{2}F_{5/2}^{\circ})(^{3}P_{1}^{\circ})$
$4f^{13}(^{2}\text{F}_{7/2}^{\circ})6s6p(^{1}\text{P}_{1}^{\circ})$		5/2	25745.117	1.09	28 (7/2,1)	$11 \ 4f^{12}(^3F_4)5d_{3/2}6s^2$
$4f^{13}(^{2}\mathbf{F}_{5/2}^{\circ})6s6p(^{3}\mathbf{P}_{1}^{\circ})$	(5/2,1)	5/2 7/2 3/2	26126.907 26439.491 26488.70	1.10 1.000 0.85	87 92 86	$\begin{array}{ccc} 7 & (^2F\mathring{s}_{'2})(^3P\mathring{o}) \\ 4 & (^2F\mathring{s}_{'2})(^3P\mathring{o}) \\ 11 & (^2F\mathring{s}_{'2})(^3P\mathring{o}) \end{array}$
$4f^{12}(^{3}\text{H}_{5})5d_{3/2}6s^{2}$		9/2	26646.214	0.961	34 (5,3/2)	25 ($^{3}\text{H}_{5}$) ($^{5},^{5}/_{2}$)
$4f^{13}(^{2}F_{7/2}^{\circ})6s6p(^{1}P_{1}^{\circ})$		7/2	26701.325	1.076	39 (7/2,1)	$13 4f^{12}(^{3}\text{H}_{4})5d_{3/2}6s^{2}$
$4f^{13}(^{2}\text{F}_{5/2})6s6p(^{3}\text{P}_{2}^{2})$	(5/2,2)	1/2 9/2 3/2 5/2 7/2	27314.56 28024.01 28143.67 28448.585 28555.799	-0.015 1.15 0.66 1.000 1.157	100 99 60 71 96	10 $4f^{12}(^{3}\text{H}_{4})5d_{5/2}6s^{2}$ 7 $4f^{12}(^{3}\text{H}_{4})5d_{3/2}6s^{2}$ 4 $(^{2}\text{F}_{5/2}^{2})(^{3}\text{P}_{1}^{2})$
$4f^{13}(^2\mathbf{F_{5/2}^{\circ}})6s6p(^3\mathbf{P_2^{\circ}})$		5/2	28051.37	0.96	25 (5/2,2)	$18 \ 4f^{12}(^{3}\text{H}_{4})5d_{3/2}6s^{2}$

Tm I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages		
$4f^{12}(^{3}F_{3})5d_{3/2}6s^{2}$		7/2	29260.59	0.928	46 (3,3/2)	11 (³ H ₄) (4, ³ / ₂)	
$4f^{12}(^{3}\text{H}_{4})5d_{3/2} 6s^{2}$	$(4,^3/2)$	9/2	29316.690	0.978	50	21 $(^{3}F_{4})$ $(4,^{3}/_{2})$	
$4f^{12}(^{3}F_{2})5d_{3/2}6s^{2}$	P	5/2	30082.18	0.81	29 $(2,^{3}/_{2})$	$20 \ (^{3}\text{H}_{4}) \ (4,^{5}/_{2})$	
$4f^{12}(^{3}\text{H}_{4})5d_{5/2}6s^{2}$		$\frac{7}{2}$	30124.02	0.955	$24 \ (4,\frac{5}{2})$	15 $({}^{3}F_{4})$ $(4, {}^{5}/_{2})$	
$4f^{12}(^{3}\text{H}_{4})5d_{5/2}6s^{2}$	$(4,^5/2)$	13/2	30125.61		58	$32 \ (^{3}F_{4}) \ (4,^{5}/_{2})$	
$4f^{12}(^{3}\text{H}_{4})5d_{5/2}6s^{2}$	(2, 72)	5/ ₂	30302.42	0.91	$22 \ (4,\frac{5}{2})$	$18 \ (^{3}F_{2}) \ (2,^{3}/_{2})$	
$4f^{12}(^3F_3)5d_{3/2}6s^2$		3/2	30585.65	1.085	$32 \ (3,^{3}/_{2})$	$31 \ (^3F_2) \ (2,^3/2)$	
$4f^{12}(^3F_3)5d_{3/2} 6s^2$		9/2	30915.02	0.99	$28 \ (3,^{3}/_{2})$	$27 (^3H_4) (4,^5/2)$	
$4f^{12}(^{3}\text{H}_{4})5d_{5/2}6s^{2}$	$(4,^5/2)$	11/2	30972.46		46	19 $({}^{3}F_{4}) (4, {}^{5}/_{2})$	
$4f^{12}(^3F_3)5d_{3/2}6s^2$	(1, 72)	5/2	31431.88	1.07	42 $(3,^{3}/_{2})$	$16 \ (^{3}F_{2}) \ (2,^{5}/_{2})$	
$4f^{12}(^3F_3)5d_{3/2} 6s^2$		9/2	31440.54	1.13	$37 (3,^{3}/2)$	$30 \ (^{3}F_{3}) \ (3,^{5}/_{2})$	
$4f^{12}(^3F_3)5d_{5/2}6s^2$		7/2	31510.24	1.11	(3, 72) $(3, 5/2)$	$17 \ (^{3}F_{2}) \ (2,^{5}/_{2})$	
$4f^{12}(^3F_3)5d_{3/2}6s^2$		3/ ₂	31520.98	0.79	$40 \ (3,^{3}/_{2})$	$20 (^{3}\text{H}_{4}) (4, ^{5}/_{2})$	
$4f^{12}(^{3}F_{3})5d_{5/2}6s^{2}$	(3, 5/2)	$\frac{5}{2}$ $\frac{9}{2}$	$32174.49 \\ 32407.78$	1.16	72 58	6 (3F ₃) (3,3/ ₂) 18 (3F ₃) (3,3/ ₂)	
		$^{7}/_{2}$	32811.02	1.04	69	$8 (^{3}\text{H}_{4}) (4,^{3}/_{2})$	
		$^{3}/_{2}$	32928.76	0.935	48	40 $4f^{13}({}^{2}F_{5/2}^{\circ})6s6p({}^{1}P_{1}^{\circ})$	
		$\frac{11}{2}$ $\frac{1}{2}$			79 63	$ \begin{array}{ccc} 7 & (^{3}\text{H}_{5}) & (5,^{5}/_{2}) \\ 17 & (^{3}\text{F}_{2}) & (2,^{3}/_{2}) \end{array} $	
$4f^{12}(^{3}F_{2})5d_{3/2}6s^{2}$		7/2	32446.26	0.89	41 $(2, 3/2)$	10 (³ H ₄) (4, ⁵ / ₂)	
$4f^{12}(^{3}F_{2})5d_{5/2}6s^{2}$	(5/2,2)	3/2	33489.36	1.468	45	$18 \ (^{3}F_{3}) \ (3,^{5}/_{2})$	
$4f^{12}(^{3}F_{2})5d_{5/2}6s^{2}$	(7-,-)	7/ ₂	33623.78	0.92	$39 (2, \frac{5}{2})$	11 (${}^{3}F_{3}$) ($3, {}^{3}/_{2}$)	
$4f^{13}(^{2}F_{5/2}^{2})686p(^{1}P_{1}^{2})$	(5/2,1)	5/ ₂	34085.20	0.95	45	20 $4f^{12}(^{3}F_{2})5d_{5/2}6s^{2}$	
$4f^{13}(^{2}F_{5/2}^{2})6s6p(^{1}P_{1}^{2})$	(5/2,1)	7/ ₂	34297.17	0.915	74	4 $4f^{12}(^{1}G_{4})5d_{3/2}6s^{2}$	
$4f^{12}(^{3}F_{2})5d_{5/2}6s^{2}$	(2,5/2)	9/ ₂	34446.22	0.516	58	$(14)^{-1}$ (102) $(2,5/2)$	
$4f^{13}(^{2}F_{5/2}^{\circ})6s6p(^{1}P_{1}^{\circ})$	(2,-72)	5/2	35026.22	1.022	26 (5/2,1)	23 $4f^{12}({}^{3}F_{2})5d_{5/2}6s^{2}$	
$4f^{13}(^{2}F_{5/2}^{2})6s6p(^{1}P_{1}^{2})$		3/2	35089.67	0.85	$33 \ (^{5}/_{2},1)$	21 $4f^{12}(^{3}F_{3})5d_{5/2}6s^{2}$	
4) 19(-1 5/2)080p(-1 1)		5/ ₂	35261.762	1.346	55 (72,1)	21 4) (13)003/203	
		5/2 5/2	37064.18	1.42			
				1.42			
4.012/9779 \ \ \ 7		$\frac{3}{2}$	37138.57	1			
$4f^{13}(^{2}F_{7/2})6s7p$		7/ ₂	37557.25	1.313			
$4f^{13}(^{2}F_{7/2})6s7p$		9/2	37576.866	1.19			
		9/2	37711.074	1.14			
$4f^{13}(^{2}F_{7/2})6s7p$		5/ ₂	37724.84	1.19			
$4f^{13}(^{2}F_{7/2})6s7p$		7/ ₂	37781.90	0.97			
$4f^{13}(^{2}F_{7/2}^{2})6s7p$		9/2	37946.39				
		5/2,7/2	37980.69			10TT > 11 F1 >	
$4f^{12}(^{1}G_{4})5d_{5/2} 6s^{2}$		5/2	38014.37	1.11	40 $(4, \frac{5}{2})$	21 $(^{3}\text{H}_{4}) (4, ^{5}/_{2})$	
$4f^{12}(^{1}G_{4})5d_{3/2} 6s^{2}$	$(4,^{3}/_{2})$	9/2	38120.71		50	$38 \ (^{3}\text{H}_{4}) \ (4,^{3}/_{2})$	
$4f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})6s7p$		$^{7}/_{2}$	38123.02	1.14			
		5/2	38128.37	1.05			
$4f^{13}(^2\mathbf{F}_{7/2}^{\circ})6s7p$		$^{3}/_{2}$	38237.89	1.04			
$4f^{13}(^{2}F_{7/2}^{2})5d6p(^{3}F_{2}^{2})$	(7/2,2)	3/2	38318.62	1.195	80	$9 (^{2}F_{7/2}^{\circ})(^{3}F_{3}^{\circ})$	
		$^{5}/_{2}$	39547.31	1.285	52	$21 \ (^2F_{7/2}^{\circ})(^1D_2^{\circ})$	
		$\frac{11}{2}$ $\frac{7}{2}$	40128.384 40802.56	$\frac{1.10}{1.185}$	74 65	$\begin{array}{cc} 22 & (^{2}F_{7/2}^{\circ})(^{1}D_{2}^{\circ}) \\ 26 & (^{2}F_{7/2}^{\circ})(^{1}D_{2}^{\circ}) \end{array}$	
		9/2	41074.45	1.07	45	$\begin{array}{ccc} 20 & (17/2)(D2) \\ 41 & (^{2}F_{7/2}^{2})(^{1}D_{2}^{2}) \end{array}$	
$4f^{12}(^{1}G_{4})5d_{5/2}6s^{2}$		7/2	38342.57	1.108	$30 \ (4,\frac{5}{2})$	$27 \ (^{3}\text{H}_{4}) \ (4,^{5}/_{2})$	
$4f^{13}(^{2}\text{F}_{7/2})6s7p$		5/2	38433.92				
$4f^{13}(^2F_{7/2})6s7p$		9/2	38502.00	1.10			
V F		5/ ₂	38696.79				

Tm I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Le	eading percentages
		11/2	38844.072	1.08		
		9/2	39019.09			
		9/2	39123.17			
$f^{13}(^{2}\text{F}_{7/2})6s7p$		⁷ / ₂ ?	39161.45			
•		9/2	39206.84			
		5/2	39259.92	1.20		
$4f^{12}(^{1}G_{4})5d_{5/2}6s^{2}$	(4,5/2)	3/2	39514.74	0.80	53	$17 \ (^{3}\text{H}_{4}) \ (4,^{5}/_{2})$
$f^{12}(^{1}G_{4})5d_{3/2}6s^{2}$	-	7/2	39560.41	0.895	$27 (4,^{3}/_{2})$	$22 \ (^{3}\text{H}_{4}) \ (4,^{3}/_{2})$
		5/2,7/2	39580.72			
		3/2	39635.56	1.34		
		9/2	39698.70			
$f^{12}(^{1}G_{4})5d_{5/2}6s^{2}$	(4,5/2)	9/2	39768.79		49	$37 \ (^{3}\text{H}_{4}) \ (4,^{5}/_{2})$
		⁷ / ₂	39847.04	1.285		
		11/2	39942.571	1.191		
		7/2	39996.221			
		5/2	40066.70	1.36		
		3/2	40091.58	1.13		
		9/2	40101.72			
		7/2	40360.37	1 105		
		11/2	40503.326	1.105		
		9/ ₂	40516.66			
		9/ ₂	40563.90			
		5/ ₂	40584.52 40586.40	1.175		
		$\frac{13}{2}$	40586.40	1.175		
						(0770) (1770)
$4f^{13}(^{2}\mathrm{F}_{7/2}^{2})5d6p(^{3}\mathrm{F}_{3}^{2})$	$(^{7}/_{2},3)$	$\frac{3}{2}$	40693.63 41089.05	1.31 1.50	49 89	$\begin{array}{ccc} 36 & (^2F_{7/2})(^1D_2^2) \\ & 5 & (^2F_{7/2})(^1F_3^2) \end{array}$
		13/2	41469.44	1.15	96	$2 ({}^{2}F_{7/2})({}^{3}D_{3}^{\circ})$
		$\frac{1}{2}$ $\frac{13}{2}$ $\frac{13}{2}$ $\frac{11}{2}$ $\frac{5}{2}$	42429.385 42596.49	1.19	45 39	$\begin{array}{ccc} 31 & (^{2}F_{7/2})(^{3}D_{2}^{2}) \\ 19 & (^{2}F_{7/2})(^{1}D_{2}^{2}) \end{array}$
		9/2	42764.664		86	$6 (^{2}F_{7/2})(^{3}F_{2}^{\circ})$
		7/2	42783.46		41	$22 \left({}^{2}F_{7/2}^{2}\right)\left({}^{3}F_{2}^{2}\right)$
$4f^{12}(^{1}G_{4})5d_{3/2}6s^{2}$		5/2	40787.24	0.91	24 (4,3/2)	$20 \ (^{3}\text{H}_{4}) \ (4,^{3}/_{2})$
.		13/2	40855.53	1.17		
		7/2	41144.66			
		9/2	41151.10			
		13/2	41193.16	1.17		
		11/2	41352.806	1.07		
		9/2	41391.10	1.17		
		11/2	41430.237			
$4f^{13}(^{2}\mathrm{F}_{7/2}^{2})5d6p(^{3}\mathrm{F}_{3}^{3})$		5/2	41493.034	1.29	35 (⁷ / ₂ ,3)	$33 (^{2}F_{7/2})(^{1}D_{2}^{\circ})$
$4f^{13}(^{2}\text{F}_{7/2}^{\circ})5d6p(^{3}\text{D}_{1}^{\circ})$	(7/2,1)	5/2	41544.59	1.25	54	$22 \ (^{2}F_{7/2})(^{3}F_{2}^{\circ})$
		9/ ₂ 7/ ₂	42139.01	1.06 1.12	74 70	$\begin{array}{cc} 9 & (^{2}F_{7/2}^{\circ})(^{1}P_{1}^{\circ}) \\ 11 & (^{2}F_{7/2}^{\circ})(^{3}F_{3}^{\circ}) \end{array}$
			42543.119			
$4f^{13}(^{2}\mathrm{F}_{7/2}^{2})5d6p(^{3}\mathrm{F}_{3}^{2})$		7/2	41617.243	1.29	22 (7/2,3)	$18 \ (^{2}F_{7/2})(^{3}D_{2}^{\circ})$
		11/2	41700.222	1.13		
		9/2	41728.003	1.06		
		5/2	41751.03	1.08		
		5/2	41836.02			(0170 \ (0170)
$4f^{13}(^{2}\mathrm{F}_{7/2})5d6p(^{1}\mathrm{D}_{2}^{2})$	$(^{7}/_{2},2)$	11/2	42080.152	1.12	58	$20 \ (^{2}F_{7/2})(^{3}F_{2}^{\circ})$
		5/2	42198.77	1.25	1	

Tm I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Le	ading percentages
		7/2	42325.81			
$4f^{13}(^{2}\text{F}_{7/2}^{2})5d6p(^{1}\text{D}_{2}^{\circ})$		3/2	42357.42	1.18	37 (7/2,2)	$32 \ (^2F_{7/2}^{\circ})(^3F_3^{\circ})$
2 (- n-)		13/2	42456.47	1.20		
		13/2	42545.150			
		9/2	42576.01			
		11/2	42595.791	1.20		
$4f^{13}(^{2}F_{7/2}^{\circ})5d6p(^{1}D_{2}^{\circ})$		9/2	42667.745	1.10	41 (7/2,2)	41 $({}^{2}F_{7/2}^{\circ})({}^{3}F_{2}^{\circ})$
• • • • • • • • • • • • • • • • • • • •		5/2,7/2	42694.95			
		9/2	42718.44	1.12		
$4f^{13}(^{2}F_{7/2}^{\circ})5d6p(^{3}F_{4}^{\circ})$	(7/2,4)	15/2	42733.10	1.19	100	$5 (^{2}F_{7/2}^{\circ})(^{3}F_{3}^{\circ})$
•		1/ ₂ 3/ ₂ 5/ ₂ 7/ ₂	43800.88	1.21	88 83	$7 (^{2}F_{7/2}^{\circ})(^{3}F_{3}^{\circ})$
		$\frac{5}{2}$	43859.11		51	$\begin{array}{cc} 15 & (^{2}F_{7/2}^{\circ})(^{1}D_{2}^{\circ}) \\ 19 & (^{2}F_{7/2}^{\circ})(^{3}P_{1}^{\circ}) \end{array}$
		$\frac{7}{2}$ $\frac{11}{2}$	44265.285 44417.48	1.10 1.17	66 56	$38 (^{2}F_{7/2}^{\circ})(^{3}D_{3}^{\circ})$
		9/2	44582.64	1.07	75	$9 (^{2}F_{7/2}^{\circ})(^{3}D_{3}^{\circ})$
		13/2			81	$10 \ (^{2}F_{7/2})(^{1}F_{3})$
		5/2,7/2	42745.68			
		11/2	42868.255			
		13/2	42869.748			
		5/2	42876.38			
		⁹ / ₂ _	42902.55			
		7/2	42952.02	1.14		
		11/2	42957.138			
		5/2	42957.52			
		5/2	43056.22		00 (71 0)	$21 \ (^2F_{7/2}^{\circ})(^3D_2^{\circ})$
$4f^{13}(^{2}\mathrm{F}_{7/2}^{2})5d6p(^{1}\mathrm{D}_{2}^{2})$		7/2	43098.19		$30 \ (^{7}/_{2},2)$	21 (°1°4/2)(D2)
		9/2	43115.42			
		3/2	43160.53		49 (7/2,3)	$40 \ (^2F_{7/2}^{\circ})(^3D_2^{\circ})$
$4f^{13}(^{2}F_{7/2})5d6p(^{3}F_{3})$		11/2	43196.848			
$4f^{13}(^{2}\mathrm{F}_{7/2}^{2})5d6p(^{3}\mathrm{D}_{2}^{2})$	(7/2,2)	3/ ₂ 5/ ₂	43221.84 43481.28	1.20	60 71	$\begin{array}{cc} 17 & (^{2}F_{7/2}^{2})(^{3}P_{2}^{2}) \\ 17 & (^{2}F_{7/2}^{2})(^{3}F_{4}^{2}) \end{array}$
		9/2	43755.64	1.08	86	$8 ({}^{2}\mathrm{F}_{7/2}^{\circ})({}^{1}\mathrm{D}_{2}^{\circ})$
		7/2	43981.104		35	19 $({}^{2}F_{7/2}^{\circ})({}^{3}P_{1}^{\circ})$
		5/2	43243.00			
		9/2	43292.24			
		7/2	43303.151			
$4f^{13}(^2\mathrm{F}_{7/2}^{\circ})6s8p(^1\mathrm{P}_1^{\circ})$	$(^{7}/_{2},1)$	5/2	43318.02			
τ) (1 //2/ουυρ(2 1/		9/ ₂ 7/ ₂	43357.70 43590.42			
		9/2	43354.65 43464.15			
		9/2	43493.68			
		5/2	1			
		7/ ₂ 5/ ₂	43514.41 43571.61			
		11/2	43715.572			
	(71.0)			1.17	27	$19 \ (^2F_{7/2}^{\circ})(^3P_2^{\circ})$
$4f^{13}(^{2}\mathrm{F}_{7/2}^{2})5d6p(^{3}\mathrm{D}_{3}^{2})$	$(^{7}/_{2},3)$	$\frac{11}{2}$ $\frac{13}{2}$	43788.44 43836.666	1.17	37 76	$14 \ (^{2}F_{7/2})(^{3}F_{4}^{\circ})$
		5/2	43958.23		44	$ \begin{array}{ccc} 18 & (^{2}F_{7/2})(^{3}F_{4}^{2}) \\ 31 & (^{2}F_{7/2})(^{3}P_{1}^{2}) \end{array} $
		9/ ₂ 1/ ₂	44380.90	1.15	43 54	$37 (^{2}F_{7/2}^{2})(^{1}F_{3}^{2})$
		3/2	44545.90	1.10	62	$\begin{array}{ccc} 26 & (^{2}F_{7/2})(^{1}F_{3}) \\ 29 & (^{2}F_{7/2})(^{3}P_{0}) \end{array}$
		7/2	44750.078	1.16	43	Z9 ("F 7/2)("F 0)

Tm I, Even Parity—Continued

3 1.11 1.04 3 1.16 1.09 1.125 28 0.95	19 (2,3/2)	19 (¹D2) (2,³/2)
1.16 1.09 1.125 28 0.95	19 (2,3/2)	19 (¹Do) (2³/o)
1.16 1.09 1.125 28 0.95	19 (2,3/2)	19 (¹Do) (2 ³/o)
1.16 1.09 1.125 28 0.95	19 (2,3/2)	19 (¹Do) (2³/o)
1.09 1.125 28 0.95	19 (2,3/2)	19 (¹Do) (2 ³/o)
1.125	19 (2,3/2)	19 (1Da) (2.3/a)
28 0.95		10 (104) (4) (2)
0.95		
3		
2 1.19		
2 1.04		
	41	$12 (^{2}F_{7/2}^{\circ})(^{3}P_{1}^{\circ})$
1.15	50	$24 \ (^{2}F_{7/2}^{\circ})(^{3}F_{4}^{\circ})$
		-1 (- 1/2)(- 1/2)
	1	
1	1	
	1	
	l	

Tm I, Even Parity—Continued

	-	, 22 . 011 1	arrey Conte	mucu	
Configuration	Term	J	Level (cm ⁻¹)	g	Leadi
$4f^{13}(^{2}F_{7/2}^{\circ})6s \ (^{7/2},^{1/2})_{4}^{\circ} \ 44p_{3/2}$	(4,3/2)	5/2-9/2	49811.66		·
$f^{13}(^{2}F_{7/2})6s \ (^{7/2},^{1/2})_{3}^{\circ} \ 23p_{3/2}$	$(3,^3/2)$	$\frac{5}{2} - \frac{9}{2}$	49813.72		
$f^{13}(^{2}F_{7/2})6s (^{7/2},^{1/2})_{3}^{3} 24p_{1/2}$	(3,1/2)	⁵ /2, ⁷ /2	49834.98		
$f^{13}(^{2}F_{7/2}^{\circ})6s \ (^{7/2},^{1/2})_{3}^{\circ} \ 24 p_{3/2}$	$(3,^{3}/2)$	$\frac{5}{2} - \frac{9}{2}$	49842.42		
$f^{13}(^{2}\text{F}_{7/2})6s \ (^{7/2},^{1/2})\mathring{3} \ 25p_{1/2}$	(3, 1/2)	5/2,7/2	49862.08		
$f^{13}(^{2}\text{F}_{7/2}^{\circ})6s \ (^{7/2},^{1/2})\mathring{\text{a}} \ 25p_{3/2}$	$(3,^3/2)$	$\frac{5}{2} - \frac{9}{2}$	49868.01		
'm II (2 F 2 / $_2$) 2 6 3 1/ $_2$ (7 / $_2$, 1 / $_2$) 2 4	Limit		- 49879.8		
$^{\circ} ^{13} (^{2} \mathrm{F}_{7/2}^{\circ}) 6s \ (^{7/2}, ^{1/2}) ^{\circ}_{3} \ 26 p_{1/2}$	(3, 1/2)	5/2,7/2	49884.66		
$^{(13)}(^{2}\text{F}_{7/2}^{\circ})_{6s} (^{7/2},^{1/2})_{3}^{\circ} ^{26}p_{3/2}$	(3, 72) $(3, 3/2)$	$\frac{72}{5/2} - \frac{9}{2}$	49889.94		
$^{\text{f }13(2}\text{F}_{7/2}^{\circ})6s \ (^{7/2},^{1/2})^{\circ} 27p_{3/2}$	(3, 72) $(3, 3/2)$	$\frac{72-72}{5/2-9/2}$	49908.90		
$(77/2)6s (7/2, 7/2)3 27 p_{3/2}$ $(7/2, 1/2)3 27 p_{1/2}$	$(3, \frac{72}{12})$	$\frac{5}{2},\frac{7}{2}$			
			49920.61		
$^{13}(^{2}\text{F}_{7/2}^{\circ})68 \ (^{7/2},^{1/2})^{\circ} \ ^{2}8p_{3/2}$	(3,3/2)	$\frac{5}{2} - \frac{9}{2}$	49926.21		
$^{(13)}(^{2}F_{7/2}^{\circ})_{6s}$ $^{(7/2,1/2)_{3}^{\circ}}28p_{1/2}$	(3,1/2)	⁵ / ₂ , ⁷ / ₂	49936.27		
$^{c_{13}(^{2}\text{F}_{7/2})}6s \ (^{7/2},^{1/2})^{\circ}_{3} \ ^{29}p_{3/2}$	(3,3/2)	$\frac{5}{2} - \frac{9}{2}$	49941.28		
$^{13}(^{2}\text{F}_{7/2}^{\circ})6s \ (^{7/2},^{1/2})^{\circ}329p_{1/2}$	(3,1/2)	⁵ / ₂ , ⁷ / ₂	49949.54		
$^{713}(^2F_{7/2})6s \ (^{7/2},^{1/2})_3^3 \ 30p_{3/2}$	$(3,^{3}/_{2})$	$\frac{5}{2} - \frac{9}{2}$	49954.28		
$f^{13}(^{2}F_{7/2})6s (^{7/2},^{1/2})_{3}^{3} 30p_{1/2}$	(3,1/2)	$^{5/2,7/2}$	49961.74		
$^{(7)}(^{2}F_{7/2})6s \ (^{7/2},^{1/2})_{3}^{\circ} 31p_{3/2}$	$(3,^{3}/_{2})$	$^{5}/_{2}-^{9}/_{2}$	49966.04		
$^{13}(^{2}\mathrm{F}_{7/2}^{\circ})6s \ (^{7/2},^{1/2})_{3}^{\circ} \ 31p_{1/2}$	(3, 1/2)	$^{5/2,7/2}$	49971.78		
		$^{5/2,7/2,9/2}$	49975a		
$^{73}(^{2}\mathrm{F}_{7/2}^{\circ})6s \ (^{7/2},^{1/2})_{3}^{\circ} \ 32p_{3/2}$	$(3,^3/2)$	$^{5/2} - ^{9/2}$	49976.41		
$^{713}(^{2}\mathrm{F}_{7/2}^{\circ})6s \ (^{7/2},^{1/2})_{3}^{\circ} \ 32p_{1/2}$	(3, 1/2)	5/2,7/2	49980.40		
$^{73}(^{2}\text{F}_{7/2}^{\circ})6s \ (^{7/2},^{1/2})_{3}^{\circ} \ 33p_{3/2}$	$(3,^3/2)$	$\frac{5}{2} - \frac{9}{2}$	49985.63		
$^{13}(^{2}\mathrm{F}_{7/2}^{\circ})6s \ (^{7/2},^{1/2})_{3}^{\circ} \ 33p_{1/2}$	(3, 1/2)	5/2,7/2	49988.19		
$^{713}(^{2}\text{F}_{7/2}^{\circ})6s \ (^{7/2},^{1/2})_{3}^{\circ} \ 34p_{3/2}$	$(3,^3/2)$	5/2-9/2	49994.04		
$^{73}(^{2}\text{F}_{7/2}^{\circ})6s \ (^{7/2},^{1/2})_{3}^{\circ} \ 35 p_{3/2}$	$(3,^3/2)$	5/2-9/2	50002.77		
$^{73}(^{2}\text{F}_{7/2}^{\circ})6s \ (^{7/2},^{1/2})^{\circ}_{3} \ 36p_{3/2}$	$(3,^{3}/_{2})$	$^{5/2}-^{9/2}$	50009.71		
$^{(7)}(^{2}F_{7/2})_{6s}$ $^{(7/2,1/2)_{3}}$ $^{37}p_{3/2}$	$(3,^{3}/_{2})$	$^{5/2}$ $^{-9/2}$	50016.15		
$^{713}(^{2}\text{F}_{7/2})6s \ (^{7/2},^{1/2})^{3} \ 38p_{3/2}$	$(3,^3/2)$	5/2-9/2	50021.87		
$^{(13)}(^{2}F_{7/2}^{\circ})_{6s} (^{7/2},^{1/2})_{3}^{\circ}_{39}$	$(3,^{3}/_{2})$	$\frac{5}{2} - \frac{9}{2}$	50027.42		
$^{(13)}(^{2}F_{7/2}^{\circ})6s \ (^{7/2},^{1/2})_{3}^{\circ} 40p_{3/2}$	$(3,^{3}/_{2})$	$\frac{5}{2} - \frac{9}{2}$	50032.10	f	
$^{(7/2)}^{(3)}^{(7/2$	$(3,^3/2)$	$\frac{5}{2} - \frac{9}{2}$	50036.54		
$^{(7/2)68}$ $^{(7/2, 1/2)3}$ $^{(7/2, 1/2)3}$ $^{(7/2, 1/2)3}$ $^{(7/2, 1/2)3}$	(3, 3/2)	$\frac{72}{5/2} - \frac{72}{9/2}$	50040.71		
$^{(7/2)68}$ $^{(7/2, 1/2)3}$ $^{(7/2, 1/2)3}$ $^{(7/2, 1/2)3}$ $^{(7/2, 1/2)3}$	$(3, \frac{3}{2})$	$\frac{72}{5/2} - \frac{9}{2}$	50044.77		
c $^{13}(^{2}\text{F}_{7/2}^{\circ})6s$ $^{(7/2, ^{1/2})3}$ 3 44 2	$(3, \frac{72}{2})$	$\frac{12-12}{5/2-9/2}$	50044.77		
$f^{13}(^{2}F_{7/2}^{\circ})6s \ (^{7/2},^{1/2})_{3}^{\circ} 45p_{3/2}$	(3, 72) $(3, 3/2)$	$\frac{5}{2} - \frac{9}{2}$	50052.09		
$f^{13}(^{2}F_{7/2}^{2})6s (^{7/2},^{1/2})^{3} 46p_{3/2}$	$ \begin{vmatrix} (3,^{3/2}) \\ (3,^{3/2}) \end{vmatrix} $	$\frac{5}{2} - \frac{9}{2}$	50052.09		
$f^{13}(^{2}\text{F}_{7/2}^{\circ})6s \ (^{7/2},^{1/2})^{3} \ 47p_{3/2}$	$(3,^{3/2})$ $(3,^{3/2})$	$\frac{5}{2} - \frac{5}{2}$	50057.64		
$^{13}(^{2}\text{F}_{7/2}^{7/2})68 \ (^{7/2},^{1/2})_{3}^{3} \ 48p_{3/2}$	$(3,^{3/2})$ $(3,^{3/2})$	$\frac{5}{2} - \frac{5}{2}$			
m II $(^2F_{7/2}^{7/2})6s_{1/2}$ $(^{7/2},^{1/2})3$	Limit -	9/2-9/2	50060.45		
(1 1/2/001/2 (/2, /2/3	Limu	5/ 7/ 0/	50116.8		
		5/2,7/2,9/2	50241a		
		⁵ / ₂ , ⁷ / ₂ , ⁹ / ₂	50709a		
		5/2,7/2,9/2	50942a		
		⁵ / ₂ , ⁷ / ₂ , ⁹ / ₂	51125a		
		⁵ / ₂ , ⁷ / ₂ , ⁹ / ₂	52083a		
		$^{5/2},^{7/2},^{9/2}$	52274a		

Tm I, Even Parity—Continued

Tm I, Even Parity—Continued											
Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages						
		5/2,7/2,9/2	52411a								
		5/2,7/2,9/2	52938a								
		5/2,7/2,9/2	53022a								
		5/2,7/2,9/2	53706a								
		5/2,7/2,9/2	53996a								
		5/2,7/2,9/2	54142a								
		5/2,7/2,9/2	54526a								
		5/2,7/2,9/2	54675a								
		5/2,7/2,9/2	54914a								
		5/2,7/2,9/2	55648a								
		5/2,7/2,9/2	55835a								
		5/2,7/2,9/2	56338a								
		5/2,7/2,9/2	56948a								
		5/2,7/2,9/2	57241a								
		5/2,7/2,9/2	57504a								
		5/2,7/2,9/2	57736a								
		5/2,7/2,9/2	57971a								
		5/2,7/2,9/2	58377a								
m II $({}^2\mathrm{F}^\circ_{5/2})6s_{1/2}$ $({}^5/2,{}^1/2)^\circ_2$	Limit	· 	58649.5								
		5/2,7/2,9/2	58720a								
m II $({}^{2}F_{5/2}^{\circ})6s_{1/2}$ $({}^{5/2},{}^{1/2})_{3}^{\circ}$	Limit		58837.3								
		5/2,7/2,9/2	58928a								
		5/2,7/2,9/2	59605a?								
		5/2,7/2,9/2	60168a								
		5/2,7/2,9/2	60314a								
		5/2,7/2,9/2	60496a								
		5/2,7/2,9/2	60716a								
		5/2,7/2,9/2	60938a								
		5/2,7/2,9/2	61501a								
		5/2,7/2,9/2	61690a								
		5/2,7/2,9/2	62112a								
		5/2,7/2,9/2	62266a								
'm II (³ He)	Limit		6 2337.1								
111 11 (110)	2	5/2,7/2,9/2	62657a								
		5/2, ⁷ /2, ⁹ /2	62920a								
		5/2, ⁷ /2, ⁹ /2	63395a								
		5/2,7/2,9/2	63613a								
		5/2,7/2,9/2	63857a								
			64185a								
		5/2,7/2,9/2	041850								

Tm II

(Er I sequence; 68 electrons)

Z = 69

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{13}(^2F_{7/2}^{\circ})6s$ $(\frac{7}{2},\frac{1}{2})_4^{\circ}$

Ionization energy 97200± 600 cm⁻¹

 $12.05 \pm 0.08 \text{ eV}$

Identified odd configurations $4f^{13}6s, 4f^{13}5d, 4f^{12}6s6p, 4f^{12}5d6p, 4f^{13}7s$

Identified even configurations $4f^{12}6s^2$, $4f^{12}5d6s$, $4f^{13}6p$, $4f^{12}5d^2$

Meggers first identified the four levels of the $4f^{13}6s$ ground configuration, and he also published their combinations with 66 upper even levels [1942]. Spector [1962, 1967] and Blaise and Camus [1965] extended the analysis, the latter authors having new Zeeman data and a list of infrared lines to $2.4~\mu m$. Theoretical calculations allowed assignment of most of the even levels to $4f^{12}5d6s$, $4f^{12}6s^2$, and $4f^{13}6p$, and the odd levels were extended to include $4f^{13}5d$ and $4f^{12}6s6p$.

The further extension and revision of the analysis as given here results mainly from a collaboration between the Laboratoire Aimé Cotton (Orsay, France) and NBS [Camus and Sugar, 1971a; 1971b]. Much of the detail of Camus' work is given in his thesis [1971]. The level values are mainly from Camus [1971], with some slightly revised values being supplied by Sugar [1973]. The complete line list for the region 2000–10000 Å has not been published; Spector lists about 200 classified lines (2421–6733 Å), and Meggers, Corliss, and Scribner [1975] give 576 of the stronger Tm II lines in the region 2280–8566 Å, most of which are classified. The list of 537 Tm infrared lines (8014–24483 Å) measured by Camus, Guelachvili, and Verges [1969] includes a number of Tm II lines. Zeeman data for some strong infrared lines were also obtained by these authors.

The eigenvector percentages for $(4f^{13}6s+4f^{13}5d)$ are from Camus' thesis. The J_1j coupling scheme is most appropriate for both configurations, although calculated percentages for the $4f^{13}6s$ levels in this scheme were not available. The leading percentages in LS coupling are given following the word "or." Wyart, Blaise, and Camus [1974] have recalculated Tm II $(4f^{13}6s+4f^{13}5d)$ with matrices including effective interactions. They found two new $4f^{13}5d$ levels, at 23934.73 and 28874.14 cm⁻¹.

Except for the $4f^{13}7s$ levels and a few isolated higher odd levels, the known odd levels above the $4f^{13}6s$ and $4f^{13}5d$ groups are accounted for by the $(4f^{12}6s6p+4f^{12}5d6p)$ configurations [Camus and Sugar, 1971b]. Spector showed that the J_1J_2 coupling scheme was best for $4f^{12}6s6p$, and Camus arranged additional levels of $(4f^{12}6s6p+4f^{12}5d6p)$ into J_1J_2 terms. Such term names as appear meaningful on the basis of the percentages given by Camus and Sugar [1971b] are retained here. Most of the term-designated levels of this group are given without percentages, since the appropriate percentages from the calculation including configuration interaction were not available. In the case of many levels having term purities significantly below 50%, only the total eigenvector percentages from each of the two configurations are listed [Camus and Sugar, 1971b].

The calculation of the even levels included all four identified even configurations (with interaction) and allowed the assignment of 155 levels [Camus and Sugar, 1971a]. Most of the level assignments to the four J_1L_2 -coupling terms of $4f^{\,12}(^3{\rm H}_6)5d6s$ were originally made by Spector. In the arrangement here, three of these terms each have a level "missing" because of low eigenvector purities, and a couple of interchanged designations were made by Camus. Approximate percentages in the J_1L_2 scheme are listed for a number of higher $4f^{\,12}5d6s$ levels, but only two additional term groups are retained for this configuration on the basis of the percentages given by Camus and Sugar. Some designated levels of $4f^{\,12}6s^2$ and $4f^{\,12}5d6s$ are given without leading percentages; such levels have significant percentages from more than one configuration, and the published term percentages did not include configuration-interaction effects [Camus and Sugar, 1971a]. Many levels having low term purities are given here without designations, but with the total percentages from one or both of the two main

configurations. Such total percentages are also listed for all levels belonging mainly to $4f^{12}5d^2$ or $4f^{13}6p$, since term percentages from the calculation including configuration interactions were not available.

The ionization energy is from Sugar and Reader. Their estimate of the position of the $4f^{13}7s$ configuration was confirmed very closely by the later experimental value [Camus and Sugar, 1971b].

References

Allen, L., United Kingdom Atomic Energy Research Establishment AERE-R 4029, 34 pp. (1962). W ZE

Blaise, J., and Camus, P., C. R. Acad. Sci. 260, 4693 (1965). EL ND ZE

Bovey, L. F. H., and Garton, W. R. S., Proc. Phys. Soc. London, Sect. A 67, 476 (1954). W

Camus, P., and Blaise, J., C. R. Acad. Sci. 261, 4359 (1965). EL ZE

Camus, P., Guelachvili, G., and Verges, J., Spectrochim. Acta, Part B 24, 373 (1969). EL CL W ZE

Camus, P., Thesis, Univ. Paris Orsay, 265 pp. (1971). EL ND CL W ZE IP PT

Camus, P., and Sugar, J., Phys. Scr. 4, 257 (1971a). EL ND ZE PT

Camus, P., and Sugar, J., Phys. Scr. 4, 263 (1971b). EL ND ZE IP PT

Goldschmidt, Z. B., Thesis, Hebrew Univ. Jerusalem, 487 pp. (1968). PT

King, A. S., Astrophys. J. 94, 226 (1941). Temperature Classification

Meggers, W. F., Rev. Mod. Phys. 14, 96 (1942). EL CL

Meggers, W. F., Corliss, C. H., and Scribner, B. F., Nat. Bur. Stand. (U.S.), Monogr. 145, Part 1, 403 pp. (1975).

Spector, N., Thesis, Hebrew Univ. Jerusalem (1962). EL ND CL PT

Spector, N., J. Opt. Soc. Am. 57, 312 (1967). EL CL PT

Sugar, J., unpublished material (1973). EL

Sugar, J., and Reader, J., J. Opt. Soc. Am. 55, 1286 (1965). IP

Wyart, J. F., Blaise, J., and Camus, P., Phys. Scr. 9, 325 (1974). EL CL PT

[October 1976]

Tm II, Odd Parity

Configuration .	Term	J	Level (cm ⁻¹)	g			Lea	ading percentages
lf ¹³ (² F ² / ₂)681/2	(⁷ / ₂ , ¹ / ₂)°	4	0.00	1.250	100	or	100	3F°
y (1 1/2)001/2	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3	236.95	1.035		or	59	
$4f^{13}(^{2}\mathrm{F}_{5/2}^{\circ})6s_{1/2}$	(5/2,1/2)°	2	8769.68	0.667	100	or	100	3F°
y (10/2)001/2		3	8957.47	1.055		or	59	1F°
$4f^{13}(^2 ext{F}_{7/2}^2)5d_{3/2}$	(7/2,3/2)°	2	17624.65	1.48	75	or	91	(2F°) 3P°
1) (17/2/000/2	(1-, 1-)	2 5	20228.75	1.020	95	\mathbf{or}	55	(2F°) 3H°
		3	21713.74	1.22	84	\mathbf{or}	70	(2F°) 3D°
		4	22457.51		93	or	47	(2F°) 3F°
$4f^{13}(^2 ext{F}_{7/2}^\circ)5d_{5/2}$	(⁷ / ₂ , ⁵ / ₂)°	6	21133.68	1.167	100	or	100	(2F°) 3H°
1) (11/2/000/2	(7-,7-7	2	21978.77	1.02	76	\mathbf{or}	5 8	(2F°) 1D°
		1	22141.96	1.325	72	\mathbf{or}	78	$(^{2}F^{\circ})$ $^{3}P^{\circ}$
		4	23524.09		93	\mathbf{or}	44	(2F°) 3F°
		3	23934.73		79	or	34	(2F°) 1F°
		5	24273.20	1.18	95	or	86	(2F°) 3G°
$4f^{13}(^{2}\mathrm{F}_{5/2}^{\circ})5d_{3/2}$	(5/2,3/2)°	4	28874.14		94	or	85	
1) (10/2)000/2	(1-, 1-)	2			86	or	41	(2F°) 1D°
		3			67	or	87	(2F°) 3G°
		1			76	or	86	(2F°) 1P°
$4f^{12}(^{3}{ m He})6s6p(^{3}{ m P}\%)$	(6,0)°	6	38225.46	1.273				
4f12(3H6)6s6p(3P1)	(6,1)°	6	39477.60	1.12				
		7	39638.41	1.185				
		5	39863.81	1.189				
$4f^{12}(^{3}\text{H}_{6})6s6p(^{3}\text{P}_{2}^{\circ})$	(6,2)°	8	42570.92	1.25				
· · · · · · · · · · · · · · · · · · ·		4	43217.64	1.07				
		7	43717.30	1.25				
	-	5	43840.82	1.10				
		6	43998.81	1.20				

Tm II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		L	eading percentages	
$4f^{12}(^{3}F_{4})6s6p(^{3}P_{0}^{\circ})$	(4,0)°	4	44237.17	1.265				
$4f^{12} 5d6p$		4	44838.25	1.365	84	10	$6 ext{ } 4f^{12} 6s6p$	
$4f^{12}(^{3}\text{F}_{4})6s6p(^{3}\text{P}_{1}^{\circ})$	(4,1)°	5	15101.05			_		
V , , , , , , , , , , , , , , , , , , ,	(4,1)	5 3	45191.25 45338.24	1.21 1.05				
		4	45648.93	1.07				
$4f^{12} 5d6p$		5	45987.89	1.22	68	32	$4f^{12} 6s6p$	
$4f^{12}(^{3}\mathrm{H}_{5})6s6p(^{3}\mathrm{P}_{0}^{\circ})$	(5,0)°	5	46807.32	1.08			•	
$4f^{12} 6s6p$		7	47299.68		50	50	$4f^{12}5d6p$	
$4f^{12}(^{3}\text{H}_{5})6s6p(^{3}\text{P}_{1}^{\circ})$	(5,1)°	5	47614.14	1.04				
	(-,-,	6	47927.14	1.04				
		4	48048.19	1.00				
$4f^{12}(^{3}\text{H}_{6})5d6p(^{3}\text{F}_{2}^{\circ})$	(6,2)°	8	47654.43	1.06	73			
$4f^{12} 5d6p$		5	47808.54	1.25	68	32	$4f^{12} 6s6p$	
$4f^{12} 5d6p$		6	48195.94	1.15	68	32	-	
$4f^{12}(^{3}\mathrm{F_{4}})6s6p(^{3}\mathrm{P_{2}^{\circ}})$	(4,2)°	5	48807.26	1.185				
		6	48898.13	1.27				
		2	49140.88	1.10				
		$\frac{4}{3}$	49147.65 49174.05	1.19 1.14				
$4f^{12}5d6p$		6	49195.03	1.19	69	31	$4f^{12} 6s6p$	
$4f^{12}5d6p$		3	49429.59	1.25	87	13	$4f^{12} 6s6p$	
$4f^{12}5d6p$		7	49765.68	1.105	89	11	$4f^{12} 6s6p$	
$4f^{12}(^{3}{ m H_{6}})5d6p(^{1}{ m D_{2}^{\circ}})$	(6,2)°	4	49792.42	1.265		**	4) 030р	
$4f^{12}(^{3}{ m H_{6}})5d6p(^{3}{ m D_{1}^{\circ}})$	(6,1)°	5	50274.65	1.29				
	(1)=/	7	52331.33	1.23				
		6	52791.11	1.125				
$4f^{12} 5d6p$		6	50617.56	1.25	99	1	$4f^{12} 6s6p$	
$4f^{12}(^{3}\text{H}_{6})5d6p(^{3}\text{F}_{3}^{\circ})$	(6,3)°	4	50766.21	1.18				
$4f^{12}(^{3}{ m H}_{5})6s6p(^{3}{ m P}_{2}^{\circ})$	(5,2)°	3	50926.27	0.87				
		7	51176.90					
		$\frac{4}{5}$	51583.14 52026.52					
		6	52056.86					
$4f^{12} 5d6p$		5	51081.49	1.25	81	19	$4f^{12} 6s6p$	
$1f^{12} 5d6p$		8	51116.29	1.175	97	3	$4f^{12} 6s6p$	
$f^{12}(^{3}\text{H}_{4})6s6p(^{3}\text{P}_{6}^{\circ})$	(4,0)°	4	51227.72				J	
$f^{12} 6s6p$		3	51885.80		54	46	$4f^{12}5d6p$	
$f^{12} 5d6p$		8	52003.50	1.115	100		-y	
$f_1^{12}(^3{ m H_4})6s6p(^3{ m P_1^\circ})$	(4,1)°	4	52255.94	1110	100			
$f^{12} 6s6p$		3	52361.95		C1		4.619 = 10	
$f^{12}(^{3}\text{H}_{4})6s6p(^{3}\text{P}_{1}^{\circ})$	(4,1)°	5	1		61	39	$4f^{12} 5d6p$	
$f^{12} 5d6p$	(1,1)	3 7	52499.37	1.004	0.5			
$f^{12} 5d6p$			52661.66	1.204	99	1	$4f^{12} 6s6p$	
,		5	52907.86	1.135	81	19	$4f^{12} 6s6p$	

Tm II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages			
$4f^{12} 5d6p$		4	53002.40		82	18	$4f^{12} 6s6p$		
$4f^{12} 5d6p$		6	53013.80	1.19	95	5	$4f^{12} 6s6p$		
$4f^{12}(^{3}\mathrm{F}_{3})6s6p(^{3}\mathrm{P}_{0}^{\circ})$	(3,0)°	3	53150.82						
$4f^{12} 5d6p$		7	53304.88		97	3	$4f^{12} 6s6p$		
$4f^{12} 5d6p$		5	53336.89		77	23	$4f^{12} 6s6p$		
$4f^{12} 5d6p$		2	53411.92		82	18	$4f^{12} 6s6p$		
$4f^{12} 5d6p$		3	53494.12		71	29	$4f^{12} 6s6p$		
$4f^{12} 5d6p$		4	53576.56		56	44	$4f^{12} 6s6p$		
lf ¹³ (² F ² / ₂)7s _{1/2}	(⁷ / ₂ , ¹ / ₂)°	4 3	53673.03 53733.50	1.24 1.03					
$4f^{12}(^{3}{ m H_{6}})5d6p(^{3}{ m D_{2}^{\circ}})$	(6,2)°	7	53738.88						
$4f^{12} 6s6p$		2	53888.54		66	34	$4f^{12} 5d6p$		
$4f^{12} 5d6p$		6	53896.44		93	7	$4f^{12} 6s6p$		
$f^{12} 6s6p$		4	53955.64		65	35	$4f^{12} 5d6p$		
$f^{12} 5d6p$		5	54317.06		77	23	$4f^{12} 6s6p$		
$f^{12}(^{3}F_{3})6s6p(^{3}P_{1}^{\circ})$	(3,1)°	3	54354.01						
$f^{12} 5d6p$		4	54419.68		79	21	$4f^{12} 6s6p$		
$f^{12} 5d6p$		5	54523.58		98	2	$4f^{12} 6s6p$		
$f^{12} 6s6p$		3	54536.94		71	29	$4f^{12}5d6p$		
$f^{12} 5d6p$		4	54583.82		83	17	$4f^{12} 6s6p$		
$f^{12}5d6p$		8	54636.26		99	1	$4f^{12} 6s6p$		
$f^{12} 5d6p$		3	54679.43		90	10	$4f^{12} 6s6p$		
$f^{12} 5d6p$		6	54710.56	1	94	6	$4f^{12} 6s6p$		
$f^{12} 5d6p$		7	54988.96		99	1	$4f^{12} 6s6p$		
$f^{12} 5d6p$		3	55138.18		76	24	$4f^{12} 6s6p$		
$f^{12} 5d6p$		6	55157.61		90	10	$4f^{12} 6s6p$		
$f^{12} 5d6p$		5	55167.69		95	5	$4f^{12} 6s6p$		
$f^{12} 5d6p$		6	55476.18		72	28	$4f^{12} 6s6p$		
$f^{12} 5d6p$		6	55753.84		53	47	$4f^{12} 6s6p$		
$f^{12} 5d6p$		7	55758.31	1.03	100				
$f^{12} 5d6p$		4	55833.29		57	43	$4f^{12} 6s6p$		
$f^{12} 6s6p$		6	55972.37		54	46	$4f^{12} 5d6p$		
$f^{12}(^{3}\text{H}_{4})6s6p(^{3}\text{P}_{2}^{\circ})$	(4,2)°	3	56042.07						
$f^{12}(^{3}\text{H}_{4})6s6p(^{3}\text{P}_{2}^{\circ})$	(4,2)°	5	56066.86						
$f^{12} 5d6p$		7	56157.29		99	1	$4f^{12} 6s6p$		
f 12 6s6p		4	56351.99		59	41	$4f^{12} 5d6p$		
^{C12} 5d6p		3	56356.92		92	8	$4f^{12} 6s6p$		
$^{c_{12}}5d6p$		5	56506.46		94	6	$4f^{12} 6s6p$		
$^{c12}5d6p$		6	56642.72		95	5	$4f^{12} 6s6p$		
$^{c_{12}}5d6p$		4	56714.21		92	8	$4f^{12} 6s6p$		
$^{^{\circ}12}5d6p$		5	56853.76		97	3	$4f^{12} 6s6p$		
$^{c12} 6s6p$		5	57050.32	,	52	48	$4f^{12} 5d6p$		
$^{c_{12}}5d6p$		3	57253.02		64	36	$4f^{12} 6s6p$		
$f^{12} 6s6p$		3	57465.55		62	38	$4f^{12} 5d6p$		

Tm II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	\boldsymbol{g}		Le	ading percentages
$4f^{12} 6s6p$		4	57520.46		81	19	$4f^{12} 5d6p$
$4f^{12} 5d6p$		6	57526.40		97	3	$4f^{12} 6s6p$
$4f^{12} 5d6p$		3	57547.98		89	11	$4f^{12} 6s6p$
$4f^{12} 5d6p$		7	57573.34		98	2	$4f^{12} 6s6p$
$4f^{12} 6s6p$		5	57599.35		73	27	$4f^{12}5d6p$
$4f^{12} 5d6p$		4	57741.72		91	9	$4f^{12} 6s6p$
$4f^{12} 5d6p$		6	57829.34		99	1	$4f^{12} 6s6p$
$4f^{12}5d6p$		4	57859.31		84	16	$4f^{12} 6s6p$
$4f^{12}5d6p$		3	57919.15		86	14	$4f^{12} 6s6p$
$4f^{12}5d6p$		6	57961.53		95	5	$4f^{12} 6s6p$
$4f^{12}5d6p$		7	58051.31		98	2	$4f^{12} 6s6p$
$4f^{12}5d6p$		5	58107.79		88	12	$4f^{12} 6s6p$
$4f^{12}5d6p$		6	58236.52		98	2	$4f^{12} 6s6p$
$4f^{12}5d6p$		4	58351.88		51	49	$4f^{12} 6s6p$
$4f^{12} 6s6p$		3	58379.52		80	20	$4f^{12} 5d6p$
$4f^{12}5d6p$		5	58383.36		98	2	$4f^{12} 6s6p$
$4f^{12} 5d6p$		6	58500.70		95	5	$4f^{12} 6s6p$
$4f^{12} 5d6p$		5	58538.86		96	4	$4f^{12} 6s6p$
$4f^{12} 5d6p$		3	58644.27		96	4	$4f^{12} 6s6p$
$4f^{12} 5d6p$		5	58698.22		98	2	$4f^{12} 6s6p$
$4f^{12} 5d6p$		3	58742.98		90	10	$4f^{12} 6s6p$
$4f^{12}(^{3}\text{F}_{4})5d6p(^{3}\text{F}_{3}^{\circ})$	(4,3)°	7	58978.88				
$4f^{12} 5d6p$		4	59067.28		88	12	$4f^{12} 6s6p$
		2	59135.89				
$4f^{12} 5d6p$		2	59156.94		95	5	$4f^{12} 6s6p$
$4f^{12} 5d6p$		4	59297.28		80	20	$4f^{12} 6s6p$
$4f^{12} 5d6p$,	5	59607.45		85	15	$4f^{12} 6s6p$
$4f^{12} 5d6p$		4	59663.34		94	6	$4f^{12} 6s6p$
$4f^{12} 5d6p$		3	59763.33		79	21	$4f^{12} 6s6p$
$1f^{12} 5d6p$		3	59815.73		96	4	$4f^{12} 6s6p$
$1f^{12} 5d6p$		4	59889.74		59	41	$4f^{12} 6s6p$
$1f^{12} 5d6p$		4	60004.92		73	27	$4f^{12} 6s6p$
$1f^{12} 5d6p$		3	60116.36		82	18	$4f^{12} 6s6p$
$1f^{12} 5d6p$		5	60255.39		79	21	$4f^{12} 6s6p$
$4f^{12}(^{3}{ m H_{5}})5d6p(^{3}{ m D_{1}^{\circ}})$	(5,1)°	6	60262.99				
$f^{12} 5d6p$		4	60278.73		86	14	$4f^{12} 6s6p$
$f^{12} 5d6p$		7	60325.70		100		
$f^{12}(^{3}{ m H_{6}})5d6p(^{1}{ m F_{3}^{\circ}})$	(6,3)°	8	60396.70		71		
$f^{12} 5d6p$		6	60418.58		99	1	$4f^{12} 6s6p$
		3	60503.23	,			
$4f^{12} 5d6p$		7	60539.57		99	1	$4f^{12} 6s6p$
$f^{12} 5d6p$		4	60539.76		75	25	$4f^{12} 6s6p$
$1f^{12} 5d6p$		3	60572.87		92	8	$4f^{12} 6s6p$
$4f^{12}5d6p$		6	60658.68		99	1	$4f^{12} 6s6p$

Tm II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Lea	ding percentages
1f ¹² 6s6p		4	60745.41		66	34	$4f^{12} 5d6p$
$f^{12} 5d6p$		6	60832.41		98	2	$4f^{12} 6s6p$
$f^{12} 5d6p$		5	60911.20		91	9	$4f^{12} 6s6p$
$f^{12} 5d6p$		4	61114.46		75 ·	25	$4f^{12} 6s6p$
$f^{12} 5d6p$		7	61133.45		98	2	$4f^{12} 6s6p$
$f^{12} 6s6p$		5	61141.94		79	21	$4f^{12} 5d6p$
$f^{12} 5d6p$		4	61213.08		84	16	$4f^{12} 6s6p$
$^{\circ}$ $^{\circ}$		6	61241.01		100		
$^{c_{12}}5d6p$		2	61295.19		88	12	$4f^{12} 6s6p$
$^{c_{12}}6s6p$		3	61300.92		57	43	$4f^{12} 5d6p$
7 $^{12}(^{3}\text{F}_{4})5d6p(^{3}\text{F}_{4}^{\circ})$	(4,4)°	6	61306.24				
$^{512}5d6p$	(-,-)	5	61356.54		92	8	$4f^{12} 6s6p$
$^{512}5d6p$		4	61449.15		97	3	$4f^{12} 6s6p$
512 5d6p		3	61600.79		86	14	$4f^{12} 6s6p$
5d6p		5	61650.80		88	12	$4f^{12} 6s6p$
5d6p		6	61703.46		97	3	$4f^{12} 6s6p$
$^{c_{12}}5d6p$		5	61745.85		96	4	$4f^{12} 6s6p$
$^{\circ 12}5d6p$		4	61790.65		86	14	$4f^{12} 6s6p$
546p		5	61924.30		97	3	$4f^{12} 6s6p$
5d6p		6	61925.14		98	2	$4f^{12} 6s6p$
$^{\circ}$ $^{\circ}$		4	62108.60				$4f^{12} 6s6p$
$^{12}5d6p$		7	62113.10		85 99	15 1	$4f^{12} 6s6p$
$^{c12}5d6p$		7	62285.76				$4f^{12} 6s6p$
5d6p					99	1	$4f^{12} 6s6p$
$^{-1}$ $5d6p$		5	62319.36		97	3	· ·
9aop		4	62348.84		87	13	$4f^{12} 6s6p$
$^{\circ}$ 13 $(^{2}\mathrm{F}_{5/2}^{\circ})7s_{1/2}$	(5/2,1/2)°	$\frac{2}{3}$	62429.50 62538.25				
$^{\circ}$ $^{\circ}$		3	62439.68		84	16	$4f^{12} 6s6p$
$^{c_{12}}5d6p$		5	62550.58		98	2	$4f^{12} 6s6p$
$^{\circ}$ 12 $5d6p$		3	62739.54		85	15	$4f^{12} 6s6p$
$^{c_{12}}5d6p$		4	62796.72		94	6	$4f^{12} 6s6p$
$^{\circ}$ $^{\circ}$		4	62854.85		85	15	$4f^{12} 6s6p$
$^{c_{12}}5d6p$		3	63206.57		82	18	$4f^{12} 6s6p$
$^{\circ}$ $^{\circ}$		5	63533.13		97	3	$4f^{12} 6s6p$
$^{\circ}$ $^{\circ}$		5	63605.54		94	6	$4f^{12} 6s6p$
$^{\circ}$ $^{\circ}$		6	63708.71		94	6	$4f^{12} 6s6p$
•		5	63787.29				
$^{ m f12}5d6p$		3	64018.59		88	12	$4f^{12} 6s6p$
$f^{12}5d6p$		3	65031.02		97	3	$4f^{12} 6s6p$
$^{c_{12}}5d6p$		6	65436.96		96	4	$4f^{12} 6s6p$
$f^{12} 5d6p$		4	65512.56		97	3	$4f^{12} 6s6p$
$f^{12} 5d6p$		3	65612.85		91	9	$4f^{12} 6s6p$
$f^{12}5d6p$		7	66764.29		98	2	$4f^{12} 6s6p$
			3370420		00	_	
'm III (2F%)	Limit		97200				

Tm II, Even Parity

			Tm II, Eve	en Parity			
Configuration	Term	J	Level (cm ⁻¹)	g		Lea	ading percentages
$4f^{12}(^{3}\mathrm{H})6s^{2}$	3H	6	12457.29	1.165	96		
• , ,		5	20619.05				
		4	24932.00		57		
$4f^{12}(^{3}\text{H}_{6})5d6s(^{3}\text{D}_{1})$	(6,1)	5	16567.47	1.374	64		
		7 6	19619.08 22355.43	1.02 1.085	86 55		
$4f^{12}(^{3}\mathrm{F})6s^{2}$	20						
4) 12(OF)082	³ F	$\frac{4}{3}$	17974.30 26578.77	1.175 1.069	94		
		2			71		
$4f^{12}(^{3}\text{H}_{6})5d6s(^{3}\text{D}_{2})$	(6,2)	4	18291.37	1.25	64		
	(3,2)	6	19526.82	1.313	44		
		8 7	19682.97 22052.39	1.09 1.209	91 79		
			22002.03		19		
$4f^{12}(^{3}\text{H}_{6})5d6s(^{3}\text{D}_{3})$	(6,3)	$\frac{9}{3}$	20465.82 21608.26	1.225	100		
		8	23024.29	1.10 1.21	69 89		
		5	23768.84	1.04	59		
		$\frac{6}{7}$	23904.43	1.125	64		
		,	23961.60	1.20	83		
$4f^{12} 5d6s$		5	21021.98	1.178	88	11	$4f^{12} 6s^2$
$4f^{12} 5d6s$		4	22308.82	1.24	96	2	$4f^{13}6p$
$4f^{12}5d6s$		4					-
-		4	23803.28	1.08	89	10	$4f^{13} 6p$
$4f^{12}(^{3}\text{H}_{6})5d6s(^{1}\text{D}_{2})$	(6,2)	8	24059.08	1.147	90		
		5 7	25014.75 26256.26	1.185 1.127			
		6	26478.28	1.12.	48		
		2	25219.51				
$4f^{12}(^{3}\text{F}_{4})5d6s(^{3}\text{D}_{1})$	(4,1)	3	25257.52	1.225	76		
		4	25696.21	1.25	56		
		5	26188.47	1.20	43		
$4f^{12}(^{3}\mathrm{F}_{4})5d6s(^{3}\mathrm{D}_{2})$	(4,2)	2	25498.77	0.89	74		
		6	26709.43	1.19	55		
		3 5	26837.58 26867.70	1.085 0.91			
If ¹³ 6p		3	25980.02	1.26		45	$4f^{12}5d6s$
$f^{12}5d6s$		4	26574.66	1.057	55 55	45 45	$4f^{13} 6p$
$f^{12}5d6s$		4	27009.39	1.19			
$f^{12}5d6s$			27009.39		80	19	$4f^{13} 6p$
$f^{12}5d6s$		4	27294.79	1.084	83	15	$4f^{13}6p$
lf ¹² (³ H ₅)5d6s(³ D ₁)	(5.1)	2		1.045	98	2	$4f^{13} 6p$
$f^{12} 5d6s$	(5,1)	6	27598.57	0.955	67	-	4.613.6
	(F.O)	3	27702.42	1.10	90	9	$4f^{13} 6p$
$f^{12}(^{3}\text{H}_{5})5d6s(^{3}\text{D}_{2})$	(5,2)	7	28095.31		51		
$f^{12}(^{3}\text{F}_{4})5d6s(^{3}\text{D}_{3})$	(4,3)	6	28096.17		45		4619.0
f 12 5d6s		3	28267.88	1.11	94	5	$4f^{13} 6p$
$f^{12}(^{3}\text{F}_{4})5d6s(^{3}\text{D}_{3})$	(4,3)	5	28276.32	1.21	81		
f 12 5d6s		5	28875.12	1.18	65	34	$4f^{13} 6p$
$f^{12}(^{3}\text{F}_{4})5d6s(^{3}\text{D}_{3})$	(4,3)	7	28974.93		67		
$4f^{12} 5d6s$		4	29183.39	1.15	81	18	•
$4f^{13} 6p$		2	29285.72	0.96	55	45	$4f^{12} 5d6s$

Tm II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Lead	ling percentages
$4f^{12} 5d6s$		3	29424.98	1.05	49	48	$4f^{13} 6p$
$4f^{12}(^{3}\text{H}_{5})5d6s(^{3}\text{D}_{3})$	(5,3)	8	29671.40		98		
$4f^{12} 5d6s$		2	29967.17	1.05	72	26	$4f^{13} 6p$
$4f^{12}(^{3}{ m H}_{5})5d6s(^{3}{ m D}_{1})$	(5,1)	5	30197.45	0.95	49		
$4f^{12}(^{3}{ m H}_{5})5d6s(^{3}{ m D}_{2})$	(5,2)	6	30361.06		67		
$4f^{12} 5d6s$		4	30377.16	1.12	91	8	$4f^{13} 6p$
$4f^{12} 5d6s$		4	30508.76	1.25	40	19	$4f^{13}6p$
$4f^{12} 5d6s$		5	30627.58	1.125	89		
$1f^{12} 5d6s$		3	30684.43	1.05	90	9	$4f^{13} 6p$
$f^{12} 5d^2$		4	30840.77	1.29	60	32	$4f^{12} 5d6s$
$f^{12}(^{3}\text{H}_{4})5d6s(^{3}\text{D}_{1})$	(4,1)	3	31036.61	1.08	46		
$f^{12} 5d6s$		2	31090.09	1.03	89	6	$4f^{13} 6p$
$f^{12} 5d6s$		4	31135.73	0.91	93	2	$4f^{13}6p$
$f^{12} 5d6s$		6	31323.73		85		
$f^{12} 5d6s$		5	31726.40	1.055	85	14	$4f^{13} 6p$
$f^{12}5d6s$		3	31745.49	0.95	75	23	$4f^{13}6p$
$f^{12}(^{3}{ m H}_{5})5d6s(^{3}{ m D}_{3})$	(5,3)	7	31836.90		83		
$f^{12} 5d6s$		4	31900.00	1.17	72	25	$4f^{13}6p$
$f^{12}5d6s$		5	31926.82	1.175	63	32	4f ¹³ 6p
$f^{12}(^{3}{ m H}_{5})5d6s(^{3}{ m D}_{3})$	(5,3)	6	32289.22	1.1.0	80	02	ı, op
$f^{12}5d6s$	(0,0)	2	32500.26	0.98	90	6	$4f^{13} 6p$
$f^{12}(^{3}{ m H}_{5})5d6s(^{1}{ m D}_{2})$	(5,2)	7	32590.14	0.50	85	U	4) Op
$f^{12} 5d^2$	(0,2)	6	32917.50		97	3	$4f^{12} 5d6s$
$f^{12} 5d^2$			33036.56	1.265			$4f^{12} 5d6s$
$f^{12}5d6s$		5			95	4	
$f^{12}5d6s$		2	33096.78	0.73	98	2	$4f^{13} 6p$
$f^{12}5d^2$		6	33150.48		99		4 (12 5 10
		7	33182.00	1.00	97		$4f^{12} 5d6s$
$f^{12} 5d6s$		4	33391.55	1.03	79	8	4f 13 6p
$f^{12} 5d6s$	(0.1)	3	33398.70	1.07	93	4	$4f^{13} 6p$
$f^{12}(^{3}\text{F}_{3})5d6s(^{3}\text{D}_{1})$	(3,1)	3	33565.12	0.88	45		
$f^{12} 5d6s$		4	33665.99	0.908	87	9	$4f^{12} 6s^2$
$f^{12}(^{3}\text{H}_{4})5d6s(^{3}\text{D}_{2})$	(4,2)	5	34157.64	1.06	57		
f 12 5d6s		4	34307.52	0.98	97		$4f^{13}6p$
$f^{12} 5d6s$		3	34398.30	0.98	82	17	$4f^{13} 6p$
$f^{12}(^{3}\mathrm{F}_{2})5d6s(^{3}\mathrm{D}_{1})$	(2,1)	2	34404.26	0.79	50		
$f^{12}(^{3}{ m H}_{5})5d6s(^{1}{ m D}_{2})$	(5,2)	5	34580.75	1.055	65		
$f^{12} 5d^2$?		7?	34685.75		94	6	$4f^{12} 5d6s$
$f^{12} 5d^2$		8	34766.81		100		
$f^{12} 5d6s$		4	34871.37	1.05	96	3	$4f^{13} 6p$
$f^{12} 5d^2$		3	34913.84	1.377	98	2	$4f^{12} 5d6s$
$f^{12}(^{3}\mathrm{F}_{2})5d6s(^{3}\mathrm{D}_{2})$	(2,2)	1	34984.88	0.887	48		
$f^{12} 5d6s$		2	35003.98	0.91	76	22	$4f^{13} 6p$
$f^{12} 5d^2$		4	35122.91		92	6	$4f^{12} 5d6s$
$f^{12}(^{3}\text{H}_{4})5d6s(^{3}\text{D}_{3})$	(4,3)	7	35195.12		93		
$f^{12} 5d^2$		5	35227.68		94	5	$4f^{12} 5d6s$
$1f^{12} 5d6s$		2	35274.43	1.15	64	33	$4f^{13} 6p$

Tm II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Le	ading percentages
$4f^{12} 5d6s$		3	35380.12	0.92	80	18	4f 13 6p
$4f^{12} 5d6s$		3	35753.72	1.152	93	7	$4f^{13}6p$
$4f^{12} 5d6s$		5	35772.82	1.12	97	2	$4f^{13}6p$
$4f^{12} 5d6s$		1	35806.78	0.877	97	3	$4f^{13}6p$
$4f^{12} 5d6s$		2	35833.62	1.05	73	2	$4f^{13}6p$
$4f^{12} 5d6s$		4	35966.41	1.21	97	1	$4f^{13}6p$
$1f^{12} 5d^2$		6	35979.94		86	14	$4f^{12}5d6s$
$f^{12} 5d6s$		3	36041.02	1.145	92	4	$4f^{13}6p$
$f^{12} 5d6s$		3	36132.08	0.915	57	42	$4f^{13}6p$
$f^{12}(^{3}\text{H}_{4})5d6s(^{3}\text{D}_{3})$	(4,3)	6	36145.30		63		
$f^{12} 5d6s$		2	36394.64	1.02	67	30	$4f^{13}6p$
$f^{12} 5d6s$		4	36547.84	0.89	98	1	$4f^{13}6p$
$f^{12} 5d^2$		7	36805.72		97	3	$4f^{12}5d6s$
$f^{12} 5d6s$		3	36868.99	1.11	89	7	$4f^{13}6p$
$f^{12} 5d^2$		2	37151.09	1.273	68	30	$4f^{12}5d6s$
$f^{12} 5d6s$		2	37482.67	1.11	85	10	$4f^{13}6p$
$f^{12} 5d6s$		4	37581.47	1.06	93	4	$4f^{13} 6p$
$f^{12} 5d6s$		4	37775.23		63	32	$4f^{12}5d^2$
$f^{12} 5d6s$		2	37841.25	1.387	94	4	$4f^{13} 6p$
$f^{13} 6p$		1	37916.11	0.58	65	34	$4f^{12} 5d6s$
$f^{12} 5d^2$		3	37957.72	0.915	70	28	$4f^{12}5d6s$
$f^{12} 5d^2$		6	37968.84		97	3	$4f^{12}5d6s$
$f^{12} 5d6s$		4	38093.53	1.06	77	4	$4f^{13} 6p$
$f^{12} 5d6s$		5	38200.36		62		
$f^{12} 5d6s$		3	38261.05		77	3	$4f^{13} 6p$
$f^{12} 5d6s$		4	38361.24	1.035	34	20	$4f^{13} 6p$
$f^{12}(^{3}\mathrm{F}_{2})5d6s(^{3}\mathrm{D}_{3})$	(2,3)	1	38533.56	1.81	74		
$f^{12}(^{3}\text{F}_{3})5d6s(^{3}\text{D}_{3})$	(3,3)	6	38537.96		52		
$f^{12}5d^{2}$		3	38582.95	1.00	62	33	$4f^{12}5d6s$
$f^{12} 5d^2$		7	38981.51		100		
$f^{12} 5d6s$		1	38990.65	1.37	86	13	$4f^{13} 6p$
$f^{12}5d6s$		3	38991.96		66	9	$4f^{13} 6p$
$f^{12} 5d6s$		2	39000.76	1.16	83	3	$4f^{13} 6p$
$f^{12} 5d6s$		4	39025.63		62	2	$4f^{13} 6p$
$f^{12} 5d^2$		5	39092.22		92	8	$4f^{12} 5d6s$
$f^{12} 5d^2$		6	39149.06		96	4	$4f^{12}5d6s$
$f^{12} 5d6s$		4	39162.07	1.05	53	3	$4f^{13}6p$
$f^{12} 5d^2$		2	39196.70	1.03	82	13	$4f^{12} 5d6s$
$f^{12} 6s^2$		2	39514.68	1.247	41	27	$4f^{13} 6p$
$f^{12} 5d6s$		3	39554.05	1.10	55	17	$4f^{13}6p$
$f^{12} 5d6s$		4	39636.53		41	37	$4f^{13}6p$
$f^{12} 5d^2$		6	39713.04		95	5	$4f^{12} 5d6s$
$f^{12} 6s^2$		2	39828.63		40	27	$4f^{12} 5d6s$
$f^{12} 5d6s$		4	39843.24	1.11	46	22	$4f^{13} 6p$
$f^{12} 5d6s$		3	39893.87	1.006	60	31	$4f^{13} 6p$

Tm II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	\boldsymbol{g}		Lea	ding percentages
$4f^{12} 5d6s$		5	39968.72		96		
		2	40056.32	1.23			
$4f^{12}5d^2$		1	40063.47	1.37	78	20	$4f^{12}5d6s$
$4f^{12}5d6s$		2	40232.29	1.16	65	14	$4f^{13} 6p$
$4f^{12} 5d^2$		6	40357.52		97	3	$4f^{12}5d6s$
$4f^{12} 5d6s$		3	40359.75		72	16	$4f^{13} 6p$
$4f^{12} 5d^2$		7	40423.03		100		
		6	40446.40				
		2	40505.88	1.135			
		3	40545.25	1.010			
		4	40959.37				
$4f^{12} 5d6s$		1	40988.49	0.66	75	8	$4f^{13} 6p$
$4f^{12} 5d^2$		4	41166.36		89	11	$4f^{12} 5d6s$
$4f^{12} 5d^2$		5	41511.64		72	2 8	$4f^{12} 5d6s$
$4f^{12}5d^2$		5	41541.81		87	13	$4f^{12} 5d6s$
		5	41634.85				
		2	41682.46				
$4f^{12} 5d^2$		3	41846.63		99	1	$4f^{12}5d6s$
$4f^{12}(^{1}G_{4})5d6s(^{3}D_{2})$	(4,2)	6	41918.58		88		
$4f^{12} 5d^2$		5	42187.96		97	3	$4f^{12}5d6s$
$4f^{12} 5d^2$		6	42921.77		96	4	$4f^{12}5d6s$
$4f^{12}5d^2$		4	43295.21		90	9	$4f^{12} 5d6s$
$4f^{12}5d^2$		5	43896.02		96	4	$4f^{12} 5d6s$
$4f^{12}5d^2$		5	43899.14		98	2	$4f^{12} 5d6s$
$4f^{12}({}^{1}G_{4})5d6s({}^{3}D_{3})$	(4,3)	7	43928.00		98		
$4f^{12} 5d^2$		8	44129.13		100		
 Гт III (² F ⁷ /2)	Limit		97200				

Tm III

(Ho I sequence; 67 electrons)

Z = 69

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{13}$ $^2F^{\circ}_{7/2}$

Ionization energy 191000±800 cm⁻¹

 $23.68 \pm 0.10 \text{ eV}$

Identified odd configurations

 $4f^{13}, 4f^{12}6p$

Identified even configurations

 $4f^{12}5d, 4f^{12}6s$

Sugar has classified more than 450 lines of this spectrum in the region 1977-5868 Å. His analysis was based on a list of 848 sliding-spark lines assigned to Tm III, but only the classified lines are given in the 1970 paper.

The levels are mainly from Sugar's paper, which gave 108 levels, but include several new even levels from his unpublished extension of this work [1973].

The eigenvector percentages for $(4f^{12}5d+4f^{12}6s)$ are from an unpublished calculation by Sugar [1973] that included configuration interaction and appropriate effective operators. The coupling in these configurations is highly intermediate, the purity being somewhat higher in the J_1j scheme used for the designations. The eigenvectors for three of the known levels of this group have a large second component belonging to the configuration alternate to that for the first component. The second percentages are listed for these three levels to show the strong configuration interaction; for all other levels of the group, the leading percentage in the LS-coupling scheme is given instead of the second J_1j component.

Wyart, Blaise, and Camus [1974] give the parameter values obtained from a calculation of $(4f^{12}5d+4f^{12}6s)$ including configuration interaction.

The percentages in J_1j coupling for the $4f^{12}6p$ levels are taken from Sugar's 1970 paper. Sugar has also supplied from this same calculation the leading percentages in LS coupling for inclusion here.

The ionization energy is from Sugar and Reader [1973]. According to Sugar, observation of the spectrum with a higher-excitation sliding spark could be expected to give a considerable extension of the line list and analysis.

References

Sugar, J., J. Opt. Soc. Am. 60, 454 (1970). EL CL W IP PT

Sugar, J., private communication (1973). EL PT

Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP

Wyart, J. F., Blaise, J., and Camus, P., Phys. Scr. 9, 325 (1974). PT

[July 1976]

Tm III

Configuration	Term	J	Level (cm ⁻¹)		Leadi	ng per	centa	ges
4f ¹³	²F°	7/ ₂ 5/ ₂	0.00 8774.02					
$4f^{12}(^{3}{ m H}_{6})5d_{3/2}$	$(6,^3/2)$	9/2	22897.47	84	\mathbf{or}		81	(3H) 4F
		15/2	25878.84	96	or		55 50	(3H) ² K
		11/ ₂	26252.40	72	or		78 33	(³ H) ⁴ G (³ H) ⁴ I
		13/2	28720.87	92	or		33	(-H) -1
$4f^{12}(^{3}{ m H_6})6s_{1/2}$	(6, 1/2)	13/2	25302.65	99	\mathbf{or}		99	(^3H) 4H
		11/2	25920.78	94	\mathbf{or}		64	(^3H) 2H
$4f^{12}(^{3}{ m H_6})5d_{5/2}$	(6, 5/2)	7/2	27547.25	53	or		51	(3H) 4F
1) (116)003/2	(0, 72)	17/2	27557.98	92	or		99	(3H) 4K
		11/2	30532.34	61	\mathbf{or}		41	(3H) 2H
		9/2	30535.69	60	\mathbf{or}		39	(3H) 4G
		15/2	30664.98	96	or		84	(^3H) 4I
		13/2	31323.46	72	or		40	(3H) 4H
$4f^{12}(^{3}F_{4})6s_{1/2}$	$(4,^1/2)$	9/2	31037.52	63	\mathbf{or}		63	(^{3}F) ^{4}F
		⁷ / ₂	31368.59	58	\mathbf{or}		42	(^3F) 2F
$4f^{12}(^{3}\mathrm{F}_{4})5d_{3/2}$	$(4,^3/_2)$	5/2	31570.50	44	or		22	(¹G) ²F
4) (14)003/2	(4, 72)	7/2	32262.88	47	or		22	(3F) 4D
		9/2	32797.68	52	or		22	(3F) 4G
		11/2	33236.12	30	\mathbf{or}		19	(^3F) 4G
$4f^{12}(^{3}{ m H}_{5})5d_{5/2}$	(5,5/2)	5/2	33605.40	40	or		61	(3H) 4F
4)(-115)505/2	(5,-72)	7/ ₂	36405.98	42 41	or or		16	(3H) 4F
		15/2	36466.44	99	or		59	(3H) 4K
		9/2	38610.32	43			22	(3H ₄)68 _{1/2}
		13/2	39496.32	90	\mathbf{or}		57	(3H) 4I
		11/2	39604.23	79	or		45	(3H) 4H
$4f^{12}(^{3}{ m H}_{5})5d_{3/2}$	$(5,^3/2)$	7/2	33630.68	55	or		45	(^{3}H) ^{2}F
-J (110/0 au 0/1	(3, 72)	13/2	34124.20	86	or		56	(3H) 4K
		11/2	36810.12	85	\mathbf{or}		42	(^3H) 4I
		9/2	37028.88	65	\mathbf{or}		48	(^3H) 2G
$4f^{12}(^{3}\text{H}_{5})6s_{1/2}$	(5,1/2)	11/2	33802.80	95	or		64	(3H) 4H
-y (-10,001/1	(3, 72)	9/2	33831.91	99	or		65	` ,
$4f^{12}(^{3}\mathrm{F}_{4})5d_{5/2}$	(4,5/2)	11/2	34826.83	56	or		46	(3F) 4G
$4f^{12}(^{3}\text{F}_{4})5d_{5/2}$	(4,5/2)	9/2	35751.15	57	or		34	(3F) 4F
•								
$4f^{12}(^{3}\mathrm{F}_{4})5d_{5/2}$		13/2	36369.12	33	(4,5/2)	or	33	(3F) 4H
$4f^{12}(^{3}\mathrm{F_{4}})5d_{3/2}$		5/2	36391.74	23	$(4,^3/2)$	or	2 8	(3F) 4P
$4f^{12}(^{3}{ m H}_{5})5d_{5/2}$		7/2	37367.92	30	(5,5/2)	or	31	(3F) 4D
$4f^{12}(^{3}\text{H}_{4})6s_{1/2}$		9/2	38003.36	36	$(4,^1/_2)$		29	$(^3{ m H}_5)5d_{5/2}$
$4f^{12}(^{3}\text{H}_{4})6s_{1/2}$	$(4,^1/2)$	7/2	38055.53	58	or		58	(³ H) ⁴ H
$4f^{12}(^{3}\mathrm{F}_{4})5d_{5/2}$		3/2	38175.36	35	(4,5/2)	or	30	(^3F) 4F
$4f^{12}(^{3}{ m H_{4}})5d_{3/2}$	$(4,^3/_2)$	11/2	39142.50	51	or		42	(^3H) 4K
$4f^{12}(^{3}{ m H}_{5})5d_{5/2}$		5/2	39278.57	25	(5,5/2)	or	33	(^3H) 2F
$4f^{12}(^{3}\mathrm{F}_{3})6s_{1/2}$	$(3,^1/2)$	5/ ₂ 7/ ₂	39882.62 39934.71	79 94	or or		84 64	(^3F) 4F
$4f^{12}(^{3}\mathrm{F}_{3})5d_{3/2}$	(3,3/2)	7/ ₂	40070.58	48	or		34	(3F) 4G
$4f^{12}(^{3}\text{H}_{4})5d_{3/2}$	$(4,^3/2)$	9/2	40400.90	50	or		30	(3H) 4I
$4f^{12}(^3F_2)6s_{1/2}$	(2, 1/2)	$^{3}/_{2}$	40403.59	78	\mathbf{or}		78	(^3F) 4F

Tm III—Continued

Configuration	Term	J	Level (cm ⁻¹)		Leading percentages				
$4f^{12}(^{3}\mathbf{F_{2}})6s_{1/2}$		5/2	40754.18	38	$(2,^{1}/_{2})$		23	$(^3\mathrm{F}_2)5d_{3/2}$	
$4f^{12}(^{3}\mathbf{F_{2}})5d_{3/2}$		7/2	41233.38	22	$(2,^3/2)$	or	21	(^3F) 2F	
$4f^{12}(^{3}\mathrm{F}_{3})5d_{3/2}$		3/2	41595.66	30	$(3,^3/2)$	or	35	(^3F) 2P	
$4f^{12}(^{3}\text{H}_{4})5d_{5/2}$	(4,5/2)	13/2	41864.33	55	or		38	(³ H) ² K	
$4f^{12}(^{3}\mathrm{F}_{3})5d_{3/2}$		9/2	42669.92	36	$(3,^3/2)$	or	36	(3F) 4H	
$4f^{12}(^{3}\mathrm{F}_{3})5d_{3/2}$		5/2	42915.07	39	$(3,^3/_2)$	or	36	(3F) 4F	
$4f^{12}(^{3}\mathrm{H}_{4})5d_{5/2}$		11/2	42952.97	44	(4,5/2)	or	34	(³ H) ² I	
$4f^{12}(^{3}\mathrm{F}_{3})5d_{5/2}$		9/2	43022.30	33	(3,5/2)	or	29	(3F) 4G	
$4f^{12}(^{3}\mathrm{F}_{3})5d_{5/2}$	(3,5/2)	7/2	43139.50	38	or		45	(3F) 4F	
		5/2	43768.40	64	\mathbf{or}		32	(^3F) 4D	
		9/2	44495.79	52	\mathbf{or}		41	(3F) ² H	
	+	3/ ₂ 11/ ₂		56 79	or		81	(3F) 4P	
		1/2		72 59	or or		54 52	(³ F) ⁴ H (³ F) ² P	
$4f^{12}(^{3}\mathrm{F}_{3})5d_{3/2}$		3/2	43160.58	34	$(3,^3/2)$	or	31	(³H) ⁴ F	
$4f^{12}(^{3}\mathrm{F}_{3})5d_{5/2}$		7/2	44496.38	27	$(3, \frac{5}{2})$	or	64	(3F) ² G	
$4f^{12}(^{3}{ m H_{4}})5d_{3/2}$		7/2	45732.62	26	$(4,^3/_2)$	or	38	(³F) ²F	
$4f^{12}({}^{1}\mathrm{G}_{4})5d_{5/2}$		7/2	45794.62						
		/2	45794.02	24	(4,5/2)	or	27	(3F) 4H	
$4f^{12}(^{1}G_{4})6s_{1/2}$	$(4,^1/_2)$	7/ ₂ 9/ ₂	46786.94 46816.79	55 54	or or		55 54	(¹G) ²G	
$4f^{12}(^{3}\mathrm{F}_{2})5d_{5/2}$	(2,5/2)	9/2	47070.54	54	or		32	(3F) ² H	
$4f^{12}(^{1}G_{4})5d_{3/2}$	$(4,^3/_2)$	11/2	47603.51	55	or		55	(¹G) ²I	
$4f^{12}(^{3}\mathrm{F}_{2})5d_{5/2}$		5/2	47624.18	43	(2,5/2)	or	52	(^3F) 2D	
$4f^{12}(^{1}\mathrm{G}_{4})5d_{3/2}$	$(4,^3/_2)$	9/2	49206.69	47	or		42	(¹G) ²H	
$4f^{12}(^{1}G_{4})5d_{5/2}$		7/2	50562.58	35	(4,5/2)	or	43	$({}^{1}G) {}^{2}F$	
$4f^{12}(^{1}\mathrm{G}_{4})5d_{3/2}$		7/2	51071.25	33	$(4,^3/_2)$	or	40	(¹G) ²G	
$4f^{12}(^{1}\mathrm{G}_{4})5d_{5/2}$	(4,5/2)	9/2	51634.22	47	or		37	(^{1}G) ^{2}G	
$4f^{12}(^{1}\mathrm{D_{2}})5d_{3/2}$		5/2	52679.70	20	$(2,^3/2)$	or	27	(^{1}G) ^{2}F	
$4f^{12}(^{3}P_{2})6s_{1/2}$		5/2	53565.42	41	(2,1/2)	or	41	(3P) 4P	
$4f^{12}(^{1}\mathrm{D_{2}})6s_{1/2}$		3/2	53778.35	44	(2,1/2)	or	44	$(^{1}\mathrm{D})$ $^{2}\mathrm{D}$	
$4f^{12}(^{3}\mathrm{P}_{2})5d_{5/2}$		7/2	55586.87	22	(2,5/2)	or	36	(3P) 4D	
$4f^{12}(^{3}\mathrm{P}_{2})5d_{3/2}$	$(2,^3/_2)$	3/2	55735.51	47	or		40	(3P) 4D	
$4f^{12}(^{3}\mathrm{P_{2}})5d_{3/2}$		5/2	56217.70	22	$(2,^3/2)$	or	28	(3F) 2F	
$4f^{12}(^{1}\mathrm{D_{2}})5d_{3/2}$		7/2	57779.95	21	$(2,^3/2)$	or	31	(¹D) ²G	
$4f^{12}(^{1}\mathrm{D}_{2})5d_{5/2}$		5/2	59029.55	37	(2,5/2)	or	24	(¹D) ²F	
$4f^{12}(^{1}{ m I}_{6})5d_{3/2}$	$(6,^3/2)$	9/2	60640.80	79	or		91	(¹I) ²G	
$4f^{12}(^{3}{ m H_6})6p_{1/2}$	(6,1/2)°	$^{11}/_{2}$ $^{13}/_{2}$	62063.57 62572.76	96 99	or or		72 46	(³ H) ⁴ G° (³ H) ² I°	
$4f^{12}(^{3}\mathrm{P}_{0})5d_{5/2}$		5/2	63527.40	32	(0,5/2)	or	44	(3P) 4D	

Tm III—Continued

Configuration	Term	J	Level (cm ⁻¹)		L	eadin	g per	centages
$4f^{12}(^{1}{ m Ie})5d_{5/2}$	$^{1}\text{Ie})5d_{5/2}$ $(6,^{5}/_{2})$ $^{7}/_{2}$ 63659.90		85	or		85	(¹I) ²G	
$4f^{12}(^{3}{ m H_{6}})6p_{3/2}$		9/2	67460.01	45	(6, ³ / ₂)°	or	24	(3H) 2G°
$4f^{12}(^{3}{ m H_{6}})6p_{3/2}$	(6,3/2)°	15/2	67715.59	99	or		99	(3H) 4I°
	, , , -,	11/2	68672.59	92	or		47	(³ H) ² H°
		13/2	68839.17	92 99	or		74	(3H) 4H°
		9/2	68853.73	50	or		28	(3H) 2G°
$4f^{12}(^{3}\mathrm{F}_{4})6p_{1/2}$	(4,1/2)°	7/2	67881.05	62	or		33	(3F) 4D°
$4f^{12}(^{3}{ m H}_{5})6p_{1/2}$	$(5,^{1}/_{2})^{\circ}$	11/2	70724.84	96	or		53	(3H) 4I°
J	(5, 72)	9/2	70732.76	95	or		42	(3H) 2G°
$f^{12}(^{3}\text{F}_{4})6p_{3/2}$	(4, ³ / ₂)°	9/2	73657.35	40			40	(317) 4179
J (= 4/0 po/2	(=, 12)	5/2	73852.67	60	or		49	(3F) 4F°
		11/2	1	51	\mathbf{or}		31	(¹G) ²F°
			73909.63	60	\mathbf{or}		60	(3F) 4G°
		7/2	74058.85	54	\mathbf{or}		24	(3F) 2F°
$f^{12}(^{3}{ m H_{4}})6p_{1/2}$	$(4,^{1}/_{2})^{\circ}$	7/2	74882.03	47	\mathbf{or}		27	(3H) 4G°
		9/2	75088.63	55	\mathbf{or}		40	(3H) 4I°
$f^{12}(^{3}{ m H}_{5})6p_{3/2}$	(5,3/2)°	7/2	75918.48	55	or		48	(3H) 2G°
•	(-,, -,	13/2	76140.58	100	or		67	(3H) 4I°
		9/2	76807.38					(3H) 2H°
		11/2	77057.78	96 99	or or		37 59	(3H) 4H°
$f^{12}(^3\mathrm{F}_3)6p_{1/2}$	(3, ¹ / ₂)°	5/-	Memor To					
J (1 3)0p1/2	(0,-/2)	5/2	76721.50	87	or		44	(3F) 4F°
		7/2	77396.62	73	or		38	(3F) 4G°
$f^{12}(^{3}\mathrm{F}_{2})6p_{1/2}$	$(2,^{1}/_{2})^{\circ}$	3/2	77379.98	76	or		44	(3F) 4F°
-		5/2	77729.94	63	or		41	(3F) 4G°
$f^{12}(^{3}{ m H_{4}})6p_{3/2}$	(4, ³ / ₂)°	5/2	80483.17	57	or		57	(3H) 4G°
, , <u>, , , , , , , , , , , , , , , , , </u>	(-, , -)	11/2	80688.04					(3H) ² I°
		7/2	81011.48	59	or		38	
		9/2	81075.87	55 56	or or		37 22	(³ H) ⁴ H° (³ F) ⁴ F°
£12/317 \C	(0.27.)0			00				
$f^{12}(^3\mathrm{F}_3)6p_{3/2}$	$(3,^3/_2)^{\circ}$	7/2	82440.04	95	or		54	(3F) 4F°
		5/2	82573.05	85	or		48	(^3F) $^4D^\circ$
		3/2		79	or		74	(^3F) $^4D^\circ$
		9/2		95	\mathbf{or}		67	(3F) 4G°
$f^{12}(^3{ m F}_2)6p_{3/2}$	$(2,^3/_2)^{\circ}$	5/2	83216.81	64	or		42	(3F) 2F°
		1/2		80	or		80	(3F) 4D°
		3/2	83441.25	63	or		39	(3F) 2D°
		7/2	83671.59	66	or		49	(3F) 2G°
$f^{12}(^{1}G_{4})6p_{1/2}$	(4, ¹ / ₂)°	9/2	83597.38	55	or		46	(¹G) ²H°
A	(-, /-/	7/2	84082.50	ээ 48	or		29	(¹G) ²F°
f12(1C .)6m	(431)0							
$f^{12}(^{1}G_{4})6p_{3/2}$	$(4,^3/_2)^{\circ}$	5/2	89076.80	55	\mathbf{or}		55	(¹G) ²F°
		11/2		57	\mathbf{or}		57	(1G) 2H°
		⁷ / ₂	89347.11	56	\mathbf{or}		36	(1G) 2G°
		9/2	89706.10	56	or		42	(¹G) ²G°
			<u> </u>					
m IV (3H6)	Limit		191000					

[Tm IV]

(Dy I sequence; 66 electrons)

Z = 69

Ground state (1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6) 4f^{12\ 3}{\rm H}_6

Ionization energy 344000± 3000 cm⁻¹

 $42.7 \pm 0.4 \text{ eV}$

The spectrum of the free ion has not been analyzed. The positions given here are centers of gravity of the Stark components of the corresponding levels of the ion in Y2O3. The values (rounded off to the nearest 10 cm⁻¹) are from the paper by Gruber, Krupke, and Poindexter, who observed absorption and fluorescence spectra. The $4f^{12}$ levels have also been evaluated for the ion in other crystals, e.g., thulium ethyl sulfate [Johnsen; Gruber and Conway; Wong and Richman; Krupke and Gruber], and from solution absorption spectra [Carnall, Fields, and Rajnak, 1968]. Absorption transitions to the ¹D, ¹I, and ³P levels of 4f ¹² have also been observed, but we omit these higher levels.

Krupke and Gruber have published eigenvectors for Tm IV $4f^{\,12}$. The percentages given here are from unpublished results of Carnall et al. [1974]. Several calculations of Tm IV $4f^{12}$ published since about 1959 yield a value of ${\sim}6$ for the intermediate coupling parameter ${\zeta/F_2}$ [see Morrison and Wortman]. All such calculations give roughly the same eigenvectors, and the old reversal of the ${}^3\mathrm{H}_4$ and ${}^3\mathrm{F}_4$ designations from the correct respective levels should be discontinued; the $^3\mathrm{H}$ percentage of the lowest level having $J{=}4~(\sim5640~\mathrm{cm^{-1}})$ is about 8%, as compared with the leading percentage of about 63% 3F for this level.

Sugar and Reader obtained the ionization energy.

References

Carnall, W. T., Fields, P. R., and Rajnak, K., J. Chem. Phys. 49, 4424 (1968). [EL] [CL] [W] PT

Carnall, W. T., Fields, P. R., and Rajnak, K., unpublished material (1974). PT

Dieke, G. H., Spectra and Energy Levels of Rare Earth Ions in Crystals, Ed. H. M. Crosswhite and H. Crosswhite, pp. 309-312 (Interscience Publishers, New York, 1968). [EL] [CL] [W]

Gruber, J. B., and Conway, J. G., J. Chem. Phys. 32, 1178 (1960). [EL] [CL] [W] PT

Gruber, J. B., Krupke, W. F., and Poindexter, J. M., J. Chem. Phys. 41, 3363 (1964). [EL] [CL] [W] PT

Jenssen, H. P., Linz, A., Leavitt, R. P., Morrison, C. A., and Wortman, D. E., Phys. Rev. B 11, 92 (1975). [EL] [CL] [W]

Johnsen, U., Z. Phys. 152, 454 (1958). [EL] [CL] [W] [ZE]

Krupke, W. F., and Gruber, J. B., Phys. Rev. 139, A2008 (1965). [EL] [CL] [W] PT

Morrison, C. A., and Wortman, D. E., U.S. Nat. Tech. Inform. Serv., AD Rep. No. 735319, 29 pp. (1971). PT

Runciman, W. A., and Wybourne, B. G., J. Chem. Phys. 31, 1149 (1959). PT

Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP

Wong, E. Y., and Richman, I., J. Chem. Phys. 34, 1182 (1961). [EL] [CL] [W] [ZE] PT

[July 1976]

[Tm IV]

Configuration	$egin{array}{cccccccccccccccccccccccccccccccccccc$		Leading percentages				
f ¹²	3H	6	0	99	1	¹ I	
		5	[8090]	100			
		4	[12500]	60	27	$^3\mathrm{F}$	
f^{12}	3F	4	[5640]	63	29	¹G	
J		3	[14350]	100			
		2	[14850]	77	21	¹ D	
$1f^{12}$	¹G	4	[21320]	58	32	зН	
Tm V (4I° _{15/2})	Limit		344000				

YTTERBIUM

Ýbт

70 electrons

Z = 70

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{14}6s^2$ 1S_0

Ionization energy 50441.0±0.2 cm⁻¹

 $6.25394 \pm 0.00003 \text{ eV}$

Identified even configurations

 $4f^{14}6s^2$, $4f^{14}5d6s$, $4f^{14}6s7s-13s$, $4f^{14}6s6d-9d$, $4f^{14}6p^2$, $4f^{14}5d^2$?, $4f^{13}6s^26p$, $4f^{13}5d6s6p$

Identified odd configurations

 $4f^{14}6s6p-48p$, $4f^{14}6s5f-7f$, $4f^{14}5d6p$?, $4f^{14}5d7p$?, $4f^{13}5d6s^2$, $4f^{13}5d^26s$?

A short history of the research on this spectrum by Meggers and others is given in a recent report [Meggers and Tech, 1977], the published version of which can be consulted for details. Almost 1800 lines (2155 Å to 3.13 μ m) are listed for Yb I in this paper, with nearly 800 emission lines classified by the known energy levels. In addition to the levels derived mainly from Meggers' analysis, we have tabulated many high odd-parity J=1 levels obtained from absorption spectra (see below).

g Values

Meggers and Corliss [1966] describe observations of the Zeeman effect for the Yb spectra, and Meggers and Tech [1977] give Zeeman data for about 250 lines. Most of the g values were derived by Meggers, with some additions due to C. E. Moore also being included in the new tables [Meggers and Tech, 1977]. The g values for the three lowest odd levels having J=1 are from optical double-resonance determinations. The value given for the $4f^{14}(^1S)6s6p$ $^3P_1^\circ$ level is an average of the results of Budick and Snir [1967] and Baumann and Wandel [1968], which agree to within 5 units in the fifth place. Baumann and Wandel also measured the g value listed for the $4f^{14}(^1S)6s6p$ $^1P_1^\circ$ level (stated error ± 0.005), and the value for the $4f^{13}5d6s^2$ $(^72, ^72)^\circ$ level is from Budick and Snir (stated error ± 0.0009).

Theoretical Interpretation

The levels of the $4f^{14}6s^2$, $4f^{14}5d6s$, and $4f^{14}6s6p$ configurations were given by Meggers and Corliss in their 1960 abstract, by which time some 70 higher levels had also been found and most of the strong lines classified. The interpretation of the system of levels based on the $4f^{13}(^2F^\circ)$ core was aided by calculations by Spector, by Racah, and by Nir and Goldschmidt. Spector collaborated with Meggers on the first searches for levels of this system, and his 1971 paper gives levels and the results of his calculations for the $4f^{13}5d6s^2$ and $4f^{13}6s^26p$ configurations. Miller and Ross [1976] independently assigned 17 even levels to the $4f^{13}5d6s6p$ configuration on the basis of isotope-shift measurements.

Nir and Goldschmidt [1976] have given the detailed interpretation of the even levels belonging mainly to the $4f^{13}5d6s6p$ configuration. The eigenvectors for the even levels are from their calculations of the $(4f^{14}6s^2+4f^{14}5d6s+4f^{14}5d^2+4f^{13}6s^26p+4f^{13}5d6s6p)$ and $4f^{14}6s6d$ configurations. Second percentages less than 5% are omitted. The $4f^{13}6s^26p$ and $4f^{13}5d6s6p$ configurations were calculated in J_1j and J_1J_2 coupling schemes, respectively. In listing second percentages from the latter configuration, we usually give only the $4f^{13}$ ²F° core level and the final parent level from the 5d6s6p electrons; the intermediate 6s6p ³P° or ¹P° parent term is given only if it is different from the corresponding parent in the first percentage.

The interpretation of several even levels from 47341 to 47673 cm⁻¹ having J=1, 2, or 3 appears uncertain; the assignments are given tentatively, and percentages from the eigenvectors belonging mainly to $4f^{14}5d^2$ are omitted, pending the determination of more levels and g factors for this configuration. The $4f^{14}6p^2$ configuration probably interacts significantly with one or more of the other even configurations, but the assignments to the $4f^{14}6p^2$ ³P° and ¹D° terms appear to be the most likely designations for the four levels involved. These designations are also consistent with isotope-shift data [Miller and Ross, 1976].

Nir and Goldschmidt [1974] supplied the eigenvector percentages for the two lowest odd configurations, from their calculation of $(4f^{14}6s6p+4f^{13}5d6s^2)$. The $4f^{13}5d6s^2$ configuration was calculated in J_1j coupling; leading percentages for these levels in the J_1l coupling scheme are given by Spector [1971]. Most of the remaining unidentified odd levels probably belong to the $4f^{13}5d^26s$ configuration, which has not yet been calculated [Camus and Tomkins, 1969; Meggers and Tech, 1977]. This has been indicated by giving the two lowest of the otherwise unidentified odd levels beginning near 37000 cm⁻¹ tentatively assigned to this configuration.

Series, Ionization Energy, Autoionizing Levels

The identifications of some members of $4f^{14}6sns$, $4f^{14}6snd$, and $4f^{14}6snp$ series were made by Nir [1970]. Tech has extended some of these series and assigned the $4f^{14}6snf$ levels [Meggers and Tech, 1977]. Camus and Tomkins [1969] observed the two $4f^{14}6s^2$ $^1S_0-4f^{14}6snp$ (J=1) series in absorption over the region 1980–2300 Å. The structure of the $4f^{14}6snp$ configurations arising from a $4f^{14}6s(^2S_{1/2})np_j$ coupling scheme is apparent for n=10, and we have designated the higher series members according to this scheme. Camus and Tomkins derived the quoted value for the $4f^{14}6s(^2S_{1/2})$ ionization limit from the $(^2S_{1/2})np_{3/2}$ $(^{1}\!/_2, ^{3}\!/_2)^n_1$ series (the $^1P_1^o$ series in LS coupling), which they observed to n=48.

Most of the levels given above the $4f^{14}6s(^2S_{1/2})$ principal limit were obtained from photoionization resonances [Parr and Elder, 1968] or from optical absorption spectra [Kozlov, Kotochigova, and Nikolaev, 1976]. The letter "a" is given after the positions of these J=1 levels, to indicate autoionization broadening. The levels from Parr and Elder are rounded off to the nearest 10 or 100 cm⁻¹, depending on the width. The value of Kozlov et al. for the very wide level near 55400 cm⁻¹ is also rounded off, and the level they derive as a separate component of this resonance (at 54700 cm⁻¹) is given tentatively. Parr and Elder give some additional levels derived from weaker resonances that are not listed here. The tentative assignments to $4f^{14}5d6p$ and $4f^{14}5d7p$ terms are due to Parr and Elder; additional assignments are omitted here, pending calculation of the complex absorption structure in this region.

References

Baumann, M., and Wandel, G., Phys. Lett. 28A, 200 (1968). ZE Budick, B., and Snir, J., Phys. Lett. 24A, 689(1967). Hfs ZE Camus, P., and Tomkins, F. S., J. Phys. (Paris) 30, 545 (1969). EL CL IP Humphreys, C. J., and Paul, E., Jr., Quarterly Report Foundational Res. Projects, NAVORD Report 5970, NOLC Report 473, 57 pp. (1959). W King, A. S., Astrophys. J. 74, 328 (1931). W Kozlov, M. G., Kotochigova, S. A., and Nikolaev, V. N., Opt. Spectrosc. (USSR) 41, 4 (1976). EL CL W Meggers, W. F., and Corliss, C. H., J. Opt. Soc. Am. 50, 1136A (1960). EL ZE Meggers, W. F., and Corliss, C. H., J. Res. Nat. Bur. Stand. (U.S.) 70A, 63 (1966). W Meggers, W. F., Corliss, C. H., and Scribner, B. F., Tables of Spectral-Line Intensities, Nat. Bur. Stand. (U.S.) Monogr. 145, Part 1, 403 pp. (1975). CL Meggers, W. F., and Scribner, B. F., J. Res. Nat. Bur. Stand. (U.S.) 19, 651 (1937). EL CL W Meggers, W. F., and Tech, J. L., preprint entitled "The First Spectrum of Ytterbium (Yb I)" (1977). This paper will be submitted for publication in J. Res. Nat. Bur. Stand. (U.S.), EL CL W ZE Miller, G. E., and Ross, J. S., J. Opt. Soc. Am. 66, 585 (1976). ND IS Nir, S., J. Opt. Soc. Am. 60, 354 (1970). EL ND Nir, S., and Goldschmidt, Z. B., unpublished material (1974, 1976). ND PT Parr. A. C., and Elder, F. A., J. Chem. Phys. 49, 2665 (1968). EL CL Reader, J., and Sugar, J., J. Opt. Soc. Am. 56, 1189 (1966). IP Spector, N., J. Opt. Soc. Am. 61, 1350 (1971). EL ZE PT

[May 1977]

Yb I, Even Parity

Configuration	Term	J	Level (cm ⁻¹)	g	L	eading percentages
4f ¹⁴ (¹ S)6s ²	¹S	0	0.000		99	
4f ¹⁴ (¹ S)5d6s	3D	1 2 3	24489.102 24751.948 25270.902	0.50 1.16 1.34	99 97 99	
4f ¹⁴ (¹ S)5d6s	¹D	2	27677.665	1.01	95	
$4f^{13}(^2\mathrm{F}_{7/2}^{\circ})6s^26p_{1/2}$	(7/2,1/2)	$_{4}^{3}$	32065.282 32273.597	1.23	89 92	
4f ¹⁴ (¹ S)6s7s	3S	1	32694.692	2.01		
4f ¹⁴ (¹ S)6s7s	1S	0	34350.65			
$4f^{13}(^{2}\mathrm{F}^{\circ}_{7/2})6s^{2}6p_{3/2}$	(7/2,3/2)	5 2 3 4	35178.78 35196.98 35807.52 36060.98	1.05 1.08	93 92 88 92	5 $(^{2}F_{7/2}^{2})(^{7}/_{2},^{1}/_{2})$
4f ¹⁴ (¹ S)6s6d	3D	1 2 3	39808.72 39838.04 39966.09	0.50 1.16 1.33	100 86 100	14 ¹D
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}F_{3/2}^{\circ})$	(7/2,3/2)	2 5 4 3	39880.26 42935.78 44984.75 45462.54	1.83 0.89 1.08 1.20	61 80 54 41	25 $(^{2}F_{7/2}^{\circ})(^{4}F_{5/2}^{\circ})$ $(^{7}/_{2},^{5}/_{2})$ 9 $(^{2}F_{7/2}^{\circ})(^{4}F_{5/2}^{\circ})$ $(^{7}/_{2},^{5}/_{2})$ 12 $(^{2}F_{7/2}^{\circ})(^{2}D_{3/2}^{\circ})$ $(^{7}/_{2},^{3}/_{2})$ 17 $(^{2}F_{7/2}^{\circ})(^{2}D_{1/2}^{\circ})$ $(^{7}/_{2},^{1}/_{2})$
4f ¹⁴ (¹ S)6s6d	¹D	2	40061.51	1.03	86	14 ³ D
4f ¹⁴ (¹ S)6s8s	3S	1	41615.04	2.02		
$4f^{13}(^{2}F_{7/2}^{2}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}F_{5/2}^{2})$		3	41827.30	1.52	30 (7/2,5/2)	$28 \ (^{2}F_{7/2}^{\circ})(^{4}F_{3/2}^{\circ}) \ (^{7/2},^{3/2})$
$4f^{14}({}^{1}{ m S})6888$	¹S	0	41939.90			
$4f^{13}(^{2}F_{7/2}^{2}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}F_{5/2}^{2})$	(7/2,5/2)	1	42436.70	1.73	57	11 $({}^{2}F_{7/2}^{\circ})({}^{2}D_{5/2}^{\circ})({}^{7/2},{}^{5/2})$
$4f^{14}(^{1}S)6p^{2}$	3P	$\begin{matrix} 0\\1\\2\end{matrix}$	42436.91 43805.42 44760.37	1.47 1.34		
$4f^{13}(^2\mathbf{F_{5/2}^c})6s^26p_{1/2}$	(5/2,1/2)	$\frac{3}{2}$	42531.87	1.01	92 89	
$4f^{13}(^{2}F_{7/2}^{2}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}F_{5/2}^{\circ})$		2	43224.78	1.34	22 (7/2,5/2)	18 $({}^{2}F_{7/2}^{\circ})({}^{4}F_{7/2}^{\circ})({}^{7/2},{}^{7/2})$
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}F_{5/2}^{\circ})$	$(^{7}/_{2},^{5}/_{2})$	6	43814.11	1.08	78	7 $({}^{2}\mathrm{F}_{7/2}^{\circ})({}^{2}\mathrm{D}_{5/2}^{\circ}) ({}^{7/2}, {}^{5/2})$
$4f^{13}(^{2}F_{7/2}^{2}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}F_{5/2}^{\circ})$		4	44232.66	1.48	20 (7/2,5/2)	16 $({}^{2}\mathrm{F}_{7/2}^{\circ})({}^{4}\mathrm{F}_{7/2}^{\circ})({}^{7/2},{}^{7/2})$
4f ¹⁴ (¹ S)6s7d	3D	1 2 3	44311.38 44313.05 44380.82	1.32		
4f ¹⁴ (¹ S)6s7d	¹D	2	44357.60	1.10		
$4f^{13}(^{2}F_{7/2}^{2}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}F_{7/2}^{2})$		3	44713.12	1.39	24 (7/2,7/2)	13 $({}^{2}F_{7/2})({}^{4}F_{9/2})({}^{7/2},{}^{9/2})$
$4f^{13}(^2F_{5/2}^2)6s^26p_{3/2}$	(5/2,3/2)	1 4 2 3	44834.61 45497.62 45913.86	0.66	87 89 88 88	
$4f^{14}(^{1}S)6s9s$	3S	1	45121.37	1.98		
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{2}D_{5/2}^{\circ})$		2	45338.53	1.30	38 (7/2,5/2)	23 $({}^{2}F_{7/2}^{\circ})({}^{4}F_{7/2}^{\circ})({}^{7/2},{}^{7/2})$
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}F_{5/2}^{\circ})$		5	45410.91	1.17	40 (7/2,5/2)	18 (2F ^o / _{7/2})(4D ^o / _{3/2}) (7/2,3/2)

Yb I, Even Parity—Continued

Configuration	Term	Į	Level (em ⁻¹)	g	Ĺ	eading percentages
$4f^{13}(^{2}F_{7/2}^{\circ}) 5d(^{2}D)6s6p(^{3}P^{\circ}) (^{4}F_{7/2}^{\circ})$	(7/2,7/2)	1	45595.14	1.19	47	$20 \ (^{2}F_{7/2}^{\circ})(^{2}D_{5/2}^{\circ}) \ (^{7}/_{2},^{5}/_{2})$
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}F_{5/2}^{\circ})$		4	45775.68	1.14	$39 \ (^{7}/_{2},^{5}/_{2})$	15 $({}^{2}F_{7/2}^{\circ})({}^{2}D_{5/2}^{\circ})({}^{7/2},{}^{5/2})$
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}F_{7/2}^{\circ})$	(7/2,7/2)	0	46081.54		79	11 $({}^{2}F_{7/2}^{\circ})({}^{2}F_{7/2}^{\circ})({}^{7/2},{}^{7/2})$
$4f^{13}(^2{\rm F}_{7/2}^{\circ})\ 5d(^2{\rm D})6s6p(^3{\rm P}^{\circ})\ (^4{\rm D}_{1/2}^{\circ})$		3	46395.60	1.35	$27 \ (^{7}/_{2},^{1}/_{2})$	26 $({}^{2}F^{\circ}_{7/2})({}^{4}F^{\circ}_{5/2})({}^{7/2},{}^{5/2})$
$4 / ^{23}(^{2}F_{7/2}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}F_{3/2}^{\circ})$		2	46431.49		$25 \ (^{7}/_{2}, ^{3}/_{2})$	23 $({}^{2}F^{\circ}_{7/2})({}^{4}F^{\circ}_{5/2}) ({}^{7/2},{}^{5/2})$
$4f^{14}({}^{1}S)6s8d$	3D	1 2 3	46444.96 46467.70 46480.65	0.49 1.12 1.35		
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}P_{5/2}^{\circ})$		6	46554.81	1.25	$32 \ (^{7}/_{2},^{5}/_{2})$	$30 \ (^2F_{7/2}^{\circ})(^4D_{5/2}^{\circ}) \ (^{7/2},^{5/2})$
$4f^{14}(^{1}S)6s10s$	3S	1	46877.10			
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{2}D_{5/2}^{\circ})$	$(^{7}/_{2},^{5}/_{2})$	6	47036.62	1.18	46	$20 \ (^2F_{7/2}^{\circ})(^4F_{7/2}^{\circ}) \ (^{7/}_{2},^{7/}_{2})$
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}D_{1/2}^{\circ})$	(7/2,1/2)	4	47047.69	0.86	63	$8 (^{2}F_{7/2}^{\circ})(^{4}F_{3/2}^{\circ}) (^{7/2},^{3/2})$
$4f^{13}(^{2}F_{7/2}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}D_{3/2}^{\circ})$	(7/2,3/2)	5	47088.16	1.16	54	13 $({}^{2}F_{7/2}^{\circ})({}^{4}F_{7/2}^{\circ})({}^{7/2},{}^{7/2})$
$4f^{14}(^{1}S)5d^{2}?$		2	47341.82			
4f14(1S)6s9d?	¹D?	2	47420.96	1.04		
		1	47584.34	0.73		
$4f^{14}({}^{1}S)5d^{2}?$	3F?	2	47634.41			
$4f^{13}(^{2}F_{7/2}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}F_{5/2})$		5	47636.11	1.09	$25 \ (^{7}/_{2}, ^{5}/_{2})$	$21 \ (^2F_{7/2}^{\circ})(^2D_{3/2}^{\circ}) \ (^{7/2},^{3/2})$
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}F_{5/2}^{\circ})?$		1	47645.40		$35 \ (^{7}/_{2}, ^{5}/_{2})$	24 $({}^{2}F_{7/2}^{\circ})({}^{2}D_{5/2}^{\circ})({}^{7/2},{}^{5/2})$
		3	47646.62	1.32		
$4f^{13}(^{2}F_{7/2}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}D_{3/2})$?		3	47673.45		$42 \ (^{7}/_{2}, ^{3}/_{2})$	27 $({}^{2}F_{7/2}^{\circ})({}^{4}D_{1/2}^{\circ})({}^{7/2},{}^{1/2})$
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}D_{3/2}^{\circ})$	$(^{7}/_{2},^{3}/_{2})$	4	47673.71		54	11 $({}^{2}F_{7/2}^{\circ})({}^{2}D_{5/2}^{\circ})({}^{7/2},{}^{5/2})$
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}F_{7/2}^{\circ})$	(7/2,7/2)	4	47772.94	1.22	47	13 $({}^{2}F_{7/2}^{\circ})({}^{4}F_{5/2}^{\circ})({}^{7/2},{}^{5/2})$
$4f^{14}({}^{1}S)6p^{2}$?	¹ D?	2	47821.78	1.04		
$4f^{14}({}^{1}S)5d^{2}$?	3F?	3	47860.28	1.02		
$4f^{14}({}^{1}S)6s11s$	3S	1	47885.81			
$4f^{13}(^{2}F_{7/2}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{2}D_{3/2})$	(7/2,3/2)	5	47911.48	1.21	46	$12 \ (^{2}F_{7/2}^{\circ})(^{4}D_{5/2}^{\circ}) \ (^{7/2},^{5/2})$
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}F_{7/2}^{\circ})$	(7/2,7/2)	5	48057.77	1.13	70	$7 (^{2}F_{7/2}^{\circ})(^{2}D_{5/2}^{\circ}) (^{7/2},^{5/2})$
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{2}D_{3/2}^{\circ})$	(7/2,3/2)	2	48135.60	1.37	50	6 $(^{2}F_{7/2}^{\circ})(^{1}P^{\circ})(^{2}D_{3/2}^{\circ})(^{7/2})$
		1	48309.41			
		1	48357.54			
		1	48360.43			
$4f^{14}(^{1}S)6s12s$	3S	1	48519.71			
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}D_{5/2}^{\circ})$		3	48647.78		36 (⁷ / ₂ , ⁵ / ₂)	19 $({}^{2}F_{7/2})({}^{4}F_{9/2})({}^{7/2},{}^{9/2})$
$f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}F_{7/2}^{\circ})$	(7/2,7/2)	6	48688.18		55	29 $({}^{2}F_{7/2})({}^{4}D_{5/2})({}^{7/2},{}^{5/2})$
$f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{2}D_{5/2}^{\circ})$	(7/2,5/2)	4	48787.71	1.21	45	13 $(^{2}F_{7/2})(^{4}D_{5/2})(^{7/2},^{5/2})$
(13(2F%)2) 5d(2D)6s6p(3P°) (4D%)	(1,2,1,2)	6	48806.57	1.22	47 47	14 (² F ² / ₂)(⁴ P ² / ₂) (⁷ / ₂ , ⁵ / ₂)

Yb I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Lea	ding percentages
$4f^{13}(^{2}F_{7/2}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}F_{9/2})$	(7/2,9/2)	1	48838.33		72	11 $({}^{2}F_{7/2})({}^{4}F_{7/2})({}^{7/2},{}^{7/2})$
$4f^{13}(^{2}F_{7/2}^{2}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}F_{9/2}^{\circ})$		2	48883.11		44 $(7/2,9/2)$	$33 \ (^2F_{7/2}^{\circ})(^4D_{5/2}^{\circ}) \ (^7/2,^5/2)$
4f ¹⁴ (¹ S)6s13s	3S	1	48943.42			
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}D_{5/2}^{\circ})$		5	49079.34		41 $(^{7}/_{2},^{5}/_{2})$	23 $({}^{2}F_{7/2})({}^{2}D_{5/2})({}^{7/2},{}^{5/2})$
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{2}D_{3/2}^{\circ})$		4	49103.64	1.04	$40 \ (^{7}/_{2}, ^{3}/_{2})$	$15 \ (^2F_{7/2}^{\circ})(^4D_{5/2}^{\circ}) \ (^7/2,^5/2)$
$4f^{13}(^{2}F_{7/2}^{2}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}F_{9/2}^{\circ})$		3	49223.35	1.32	19 $(^{7}/_{2}, ^{9}/_{2})$	$14\ (^2F_{7/2}^{\circ})(^2D_{5/2}^{\circ})\ (^{7}/_{2},^{5}/_{2})$
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}F_{9/2}^{\circ})$		2	49246.79		$20 \ (^{7}/_{2}, ^{9}/_{2})$	$18 \ (^2F_{7/2}^{\circ})(^2D_{5/2}^{\circ}) \ (^{7/2},^{5/2})$
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}D_{7/2}^{\circ})$		4	49260.75	1.20	$24 \ (^{7}/_{2},^{7}/_{2})$	$20 \ (^2F_{7/2}^{\circ})(^4P_{3/2}^{\circ}) \ (^7/_2,^3/_2)$
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{2}D_{3/2}^{\circ})$		3	49444.52		$23 \ (^{7}/_{2}, ^{3}/_{2})$	$17 \ (^2F_{7/2}^{\circ})(^4D_{5/2}^{\circ}) \ (^7/_2,^5/_2)$
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}D_{7/2}^{\circ})$		5	49638.73		36 (7/2,7/2)	22 $(^{2}F_{7/2}^{\circ})(^{4}D_{5/2}^{\circ})(^{7/2},^{5/2})$
Yb II (² S _{1/2})	Limit		- 50441.0			
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{4}P_{5/2}^{\circ})$	(7/2,5/2)	6	52874.79	1.13	45	21 $({}^{2}F_{7/2}^{\circ})({}^{4}F_{9/2}^{\circ})({}^{7/2},{}^{9/2})$
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{2}P_{3/2}^{\circ})$		5	54718.25		37 (⁷ /2, ³ /2)	15 $({}^{2}F^{\circ}_{7/2})({}^{2}F^{\circ}_{7/2})({}^{7/2},{}^{7/2})$
$4f^{13}(^{2}F_{5/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{2}D_{5/2}^{\circ})$		5	57429.68	1.11	16 (5/2,5/2)	$15~(^{2}F_{7/2}^{\circ})~(^{1}P^{\circ})~(^{2}D_{5/2}^{\circ})~(^{7}/_{2},^{5}/_{2})$
•		6	57432.05	1.16		
		5	57480.54	1.13		
$4f^{13}(^{2}F_{7/2}^{\circ}) \ 5d(^{2}D)6s6p(^{1}P^{\circ}) \ (^{2}F_{7/2}^{\circ})$		4	58732.06	1.14	$31 \ (^{7}/_{2},^{7}/_{2})$	$9 \ (^2F_{7/2}^{\circ}) \ (^3P^{\circ}) \ (^2F_{5/2}^{\circ}) \ (^{7/2}, ^{5/2})$
		5	58911.39	1.09		
$4f^{13}(^{2}F_{5/2}^{\circ}) \ 5d(^{2}D)6s6p(^{3}P^{\circ}) \ (^{2}D_{5/2}^{\circ})$		4	59081.36		$24 \ (^{5}/_{2}, ^{5}/_{2})$	22 $({}^{2}F_{5/2}^{\circ})({}^{4}D_{5/2}^{\circ})({}^{5/2},{}^{5/2})$
•		2	59377.13			
		5	61384.00			
		2	64178.70	1.02		
Yb II (2F°/2)	Limit		71859.7			
· ·		2	72190.20			

Yb I, Odd Parity

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
4f ¹⁴ (¹ S)6s6p	зр°	0 1 2	17288.439 17992.007 19710.388	1.49282 1.50	100 98 100	
$4f^{13}(^{2}\mathrm{F}_{7/2}^{9})5d_{3/2}6s^{2}$	(⁷ / ₂ , ³ / ₂)°	2 5 3 4	23188.518 25859.682 27445.638 28184.512	1.45 1.04 1.22 1.14	79 96 92 90	
$4f^{14}(^{1}S)6s6p$	ıp°	1	25068,222	1.035	73	
4f ¹³ (2F ² / ₂)5d 5/2 68 ²	(⁷ / ₂ , ⁵ / ₂)°	6 2 1 4 3 5	27314.919 28195.960 28857.014 29774.958 30207.380 30524.714	1.16 1.02 1.2635 1.09 1.08 1.18	100 80 48 90 91 96	22 (² F _{5/2}) (⁵ / ₂ , ³
$4f^{13}(^{2}\text{F}^{\circ})5d^{2}$ 6s?		1	37414.59	1.02		
$4f^{14}(^{1}S)6s7p$	3 p °	$\begin{matrix} 0 \\ 1 \\ 2 \end{matrix}$	38090.71 38174.17 38551.93	1.14 1.50		
$4f^{13}(^{2}\text{F}^{\circ})5d^{2}$ 6s?		1	38422.3 6	1.07		
$4f^{14}(^{1}S)6s7p$	1 p °	1	40563.97	1.01		
		2	42647.72	1.25		
		2	42725.76	1.02		
		3	43254.78	1.06		
		3	43297.51	1.03		
$4f^{14}(^{1}\mathrm{S})6s5f$	³F°	2 3 4	43433.85	0.68		
		1	43532.77	1.54		
$4f^{14}(^{1}S)688p$	3 p °	0 1 2	43614.27 43659.38 43805.69	1.48 1.49		
		3	43815.67	1.21		
$4f^{14}({}^{1}S)6s8p$	1P°	1	44017.60	1.00		
		2	44251.88	1.38		
		4?	44392.70	20.71		
		3	44453.47	1.10		
		2	45155.33	0.98		
		1	45181.69	1.28		
4f ¹⁴ (¹ S)6s6f	³F°	2 .	45956.27	0.72		
4f ¹⁴ (¹ S)6s9p	3p°	1 0 2	46078.91 46082.17 46184.15	1.34 1.50		
		1	46174.21	1.22		
		3	46251.06	1.15		
4f ¹⁴ (¹ S)6s9p	¹P°	1	46370.30	1.07		
		2	47055.05	1.08		

Yb I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
		3?	47325.19		
4f ¹⁴ (¹ S)6s7f	3F°	2	47326.65		
<i>y</i> (2)00 <i>y</i>		1	47332.26	0.95	
$4f^{14}(^{1}S)6s(^{2}S_{1/2})10p_{1/2}$	(1/2,1/2)°	0 1	47409.82 47420.93	1.36	
$4f^{14}(^{1}S)6s(^{2}S_{1/2})10p_{3/2}$	(1/2,3/2)°	2 1	47471.10 47498.83	1.03	
		3?	47843.13		
		1	47859.31	1.30	
		4	47939.10		
		3	48154.71		
$4f^{14}(^{1}S)68(^{2}S_{1/2})11p_{1/2}$	$(1/2,1/2)^{\circ}$	0	48212.10		
$4f^{14}(^{1}\mathrm{S})6s(^{2}\mathrm{S}_{1/2})11p_{3/2}$	(1/2,3/2)°	2 1	48258.47		
		2	48234.12		
		3	48237.39	1.24	
		2	48324.89	1 15	
		2	48449.27	1.15	
		$egin{array}{c} 3 \\ 2 \end{array}$	48487.98 48701.60	1.23	
A C14/10\C=/20 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	$(^{1}/_{2},^{1}/_{2})^{\circ}$	1	48719.03		
$4f^{14}(^{1}S)6s(^{2}S_{1/2})12p_{1/2} \ 4f^{14}(^{1}S)6s(^{2}S_{1/2})12p_{3/2}$	(1/2,3/2)°	1	48761.84		
		2	48965.16		
		1	49005.74		
$4f^{14}(^{1}S)6s(^{2}S_{1/2})13p_{1/2}$	(1/2,1/2)°	1	49110.07		
$1f^{14}(^{1}S)6s(^{2}S_{1/2})13p_{3/2}$	(1/2,3/2)°	1	49127.38		
		4	49282.36		
$4f^{14}(^{1}S)6s(^{2}S_{1/2})14p_{1/2}$	$(^{1}/_{2},^{1}/_{2})^{\circ}$	1	49352.47		
$4f^{14}(^{1}S)6s(^{2}S_{1/2})14p_{3/2}$	$(^{1}/_{2}, ^{3}/_{2})^{\circ}$	1	49360.60		
$4f^{14}({}^{1}S)6s({}^{2}S_{1/2})15p_{1/2}$	$(^1/_2, ^1/_2)^{\circ}$	1	49536.43		
$4f^{14}(^{1}S)6s(^{2}S_{1/2})15p_{3/2}$	$(^1/_2, ^3/_2)^{\circ}$	1	49546.55		
$4f^{14}(^{1}S)6s(^{2}S_{1/2})16p_{1/2}$	$(^{1}/_{2},^{1}/_{2})^{\circ}$	1	49677.59		
$4f^{14}(^{1}S)6s(^{2}S_{1/2})16p_{3/2}$	(1/2,3/2)°	1	49688.55		
$4f^{14}(^{1}S)6s(^{2}S_{1/2})17p_{1/2}$	$(^{1}/_{2},^{1}/_{2})^{\circ}$	1	49786.39		
$4f^{14}(^{1}S)6s(^{2}S_{1/2})17p_{3/2}$	(1/2,3/2)°	1	49799.20		
$4f^{14}(^{1}S)6s(^{2}S_{1/2})18p_{3/2}$	$(^{1}/_{2},^{3}/_{2})^{\circ}$	1	49867.13?		
•		1	49920.15		
$4f^{14}(^{1}S)6s(^{2}S_{1/2})19p_{3/2}$	(1/2,3/2)°	1	49969.10		
	$(1/2,1/2)^{\circ}$	1	50016.08		
$4f^{14}(^{1}S)6s(^{2}S_{1/2})20p_{1/2}$	$(1/2,3/2)^{\circ}$	1	50021.23		

Yb I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percents
	(1/2,1/2)°	1	50064.05		
$4f^{14}({}^{1}S)6s({}^{2}S_{1/2})21p_{1/2}$	$(1/2,3/2)^{\circ}$	1	50067.64	And the second s	
$4f^{14}(^{1}S)6s(^{2}S_{1/2})21p_{3/2}$			50104.49		
$4f^{14}(^{1}S)6s(^{2}S_{1/2})22p_{1/2}$	(1/2,1/2)°	1	50107.50		
$f^{14}(^{1}S)6s(^{2}S_{1/2})22p_{3/2}$	$(1/2,3/2)^{\circ}$	1	50107.50		
$4f^{14}({}^{1}S)6s({}^{2}S_{1/2})23p_{1/2}$	$(^{1}/_{2},^{1}/_{2})^{\circ}$	1	50138.83		
4f ¹⁴ (¹ S)6s(² S _{1/2})23p _{3/2}	(1/2,3/2)°	1	50141.52		
	(1/2,1/2)°	1	50168.24		
4f 14(1S)6s(2S _{1/2})24p _{1/2}	$\begin{pmatrix} (^{1}/2,^{7}/2) \\ (^{1}/2,^{3}/2)^{\circ} \end{pmatrix}$	1	50170.60		
$f^{14}(^{1}S)6s(^{2}S_{1/2})24p_{3/2}$					
$f^{14}(^{1}S)6s(^{2}S_{1/2})25p_{1/2}$	$(^{1}/_{2},^{1}/_{2})^{\circ}$	1	50193.50		
$f^{14}(^{1}S)6s(^{2}S_{1/2})25p_{3/2}$	(1/2,3/2)°	1	50195.76		
$4f^{14}({}^{1}S)6s({}^{2}S_{1/2})26p_{3/2}$	(1/2,3/2)°	1	50217.49		
$4f^{14}(^{1}S)6s(^{2}S_{1/2})27p_{3/2}$	(1/2,3/2)°	1	50236.51		
$4f^{14}(^{1}S)6s(^{2}S_{1/2})28p_{3/2}$	(1/2,3/2)°	1	50253.22		
$4f^{14}(^{1}S)6s(^{2}S_{1/2})29p_{3/2}$	(1/2,3/2)°	1	50268.05		
$4f^{14}(^{1}S)6s(^{2}S_{1/2})30p_{3/2}$	(1/2,3/2)°	1	50280.84		
4f ¹⁴ (¹ S)6s(² S _{1/2})31p _{3/2}	$(1/2,3/2)^{\circ}$	1	50292.45		
4f ¹⁴ (¹ S)6s(² S _{1/2})32p _{3/2}	$(1/2,3/2)^{\circ}$	1	50303.00		
•	$(1/2,3/2)^{\circ}$	1	50312.19		
lf ¹⁴ (¹ S)6s(² S _{1/2})33p _{3/2}	$\binom{72,72}{(1/2,3/2)^{\circ}}$	1	50320.44		
4f 14(1S)6s(2S _{1/2})34 p _{3/2}	$(1/2, 7/2)^{\circ}$	1	50328.27		
4f 14(1S)6s(2S1/2)35p3/2	$\binom{72,72}{(1/2,3/2)^{\circ}}$	1	50335.15		
$4f^{14}({}^{1}S)6s({}^{2}S_{1/2})36p_{3/2}$	(1/2, 12) $(1/2, 3/2)^{\circ}$	1	50341.36		
4f ¹⁴ (¹ S)6s(² S _{1/2})37 p _{3/2}	$(1/2, 72)^{\circ}$	1	50347.15		
4f 14(1S)6s(2S1/2)38p3/2	$(1/2, 3/2)^{\circ}$	1	50352.42		
4f 14(1S)6s(2S1/2)39p3/2	$\binom{(1/2, 72)}{(1/2, 3/2)^{\circ}}$	1	50357.21		
4f ¹⁴ (¹ S)6s(² S _{1/2})40p _{3/2}	$\binom{72,72}{(1/2,3/2)^{\circ}}$	1	50361.74		
$4f^{14}(^{1}S)6s(^{2}S_{1/2})41p_{3/2}$	$(1/2, 3/2)^{\circ}$	1	50365.83	****	
4f 14(1S)6s(2S _{1/2})42p _{3/2}	$(1/2, 3/2)^{\circ}$	1	50369.62		
4f ¹⁴ (¹ S)6s(² S _{1/2})43p _{3/2}	$(1/2, 3/2)^{\circ}$	1	50373.20		
4f 14(1S)6s(2S _{1/2})44p _{3/2}	(1/2, 7/2) $(1/2, 3/2)^{\circ}$	1	50376.41		
$4f^{14}(^{1}S)6s(^{2}S_{1/2})45p_{3/2}$	$(1/2, 3/2)^{\circ}$	1	50379.40		
4f 14(1S)6s(2S1/2)46p3/2	$(1/2, 3/2)^{\circ}$	1	50382.20		
$4f^{14}({}^{1}S)6s({}^{2}S_{1/2})47p_{3/2}$ $4f^{14}({}^{1}S)6s({}^{2}S_{1/2})48p_{3/2}$	(1/2, 1/2) $(1/2, 3/2)^{\circ}$	1	50384.86		
7					
Yb II (² S _{1/2})	Limit		50441.0	Library and the state of the st	
	³D°?	1	51797a		
$4f^{14}({}^{1}S)5d6p?$		4	52540.35		
4.014/10\5 10 9	³P°?	1	5327 6 a	La constante de la constante d	
$4f^{14}(^{1}S)5d6p?$	* •	1	54042a		
		1	54407a		
		1	54700a?		
. G14/1G) # 30 . 9	¹P°?	1	55400a		
$4f^{14}({}^{1}S)5d6p?$	-1	1	59451a		
		1	59730a		
		5	60053.78		
		5 1	60100a		

Yb I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages
		ĺ	6 1420a		
		1	6 2200a		
		5	62308.46		
		5	62395.51	1.10	
		6	62687.40		
4f ¹⁴ (¹ S)5d7p?	³D°?	1	6 3050a		
$f^{14}({}^{1}S)5d7p?$	³P°?	1	6 3 6 50a		
		5	63672.48		
4f ¹⁴ (¹ S)5d7p?	¹P°?	1	64500a		
		1	67310a		
		6	67844.34		
		1	68790a		
		1	69900α		

Yb II

(Tm I sequence; 69 electrons)

Z = 70

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{14}6s$ $^2S_{1/2}$

Ionization energy 98269± 50 cm⁻¹

 12.184 ± 0.006 eV

Identified even configurations

 $4f^{14}6s-8s,10s, 4f^{14}5d-11d, 4f^{13}6s6p, 4f^{13}5d6p, 4f^{14}5q,6q$

Identified odd configurations

 $4f^{13}6s^2$, $4f^{13}5d6s$, $4f^{14}6p$, 7p, $4f^{13}5d^2$, $4f^{14}5f$ –14f

The papers by Meggers and Corliss [1966] and by Meggers [1967, edited by C. E. Moore] give detailed histories of work on this spectrum. The levels are mainly from Meggers' tables [1967], supplemented by the $4f^{14}nl$ series members analyzed by Kaufman and Sugar [1973]. The latter authors also derived the quoted ionization energy.

The relative completeness of the analysis and theoretical interpretation is due to a full collaboration between Meggers and coworkers at NBS and Racah and his group at the Hebrew University, Jerusalem. The first calculations of Yb II by Racah and his students [Racah, 1954; 1960] were important not only for extension of the analysis but as early examples of J_1J_2 and J_1L_2 coupling schemes also appropriate for some other rare-earth spectra. The eigenvector percentages given here are from later calculations by Racah and Goldschmidt including configuration interactions: $(4f^{13}5d6p+4f^{13}6s6p)$ and $(4f^{13}6s^2+4f^{13}5d6s+4f^{13}5d^2)$.

Spector [1968] discusses the $4f^{13}5d^2$ configuration, including theoretical results in the single-configuration approximation. One of the levels previously assigned to this configuration is now designated $4f^{14}7p^{-2}P_{3/2}^{\circ}$ (65594 cm⁻¹), following Kaufman and Sugar.

Kaufman and Sugar's reassignments of two even levels near 76500 cm⁻¹ to $4f^{14}7d^{2}D$ are given tentatively, as are our correlations of the two levels formerly designated $7d^{2}D$ with calculated levels of $4f^{13}5d6p$. No calculations that include the one-electron series have been carried out for either parity.

The Yb line list of Meggers and Corliss [1966] has more than 5000 lines assigned to Yb II (2018–11559 Å), and Meggers [1967] was able to classify about 4000 of these, including practically all of the strong lines. Kaufman and Sugar classified about 30 additional lines from the list as belonging to one of the $4f^{14}nl$ series. The extension of the observations down to 1377 Å gave about 280 additional Yb II lines, a number of which also belong to the nl series [Kaufman and Sugar, 1973].

Meggers and Corliss describe the main observations of the Zeeman effect for Yb. The g values of more than 250 levels have been derived from the measurements of more than 1000 Zeeman patterns [Meggers, 1967].

References

Allen, L., United Kingdom Atomic Energy Authority, Res. Group Report, AERE-R 4029, 34 pp. (1962). W ZE

Goldschmidt, Z. B., Thesis, Hebrew Univ., Jerusalem, Israel, 487 pp. (1968). ND PT

Humphreys, C. J., and Paul, E., Jr., Quarterly Report Foundational Res. Projects, NAVORD Report 5970, NOLC Report 473, 57 (1959). W

Kaufman, V., and Sugar, J., J. Opt. Soc. Am. 63, 1168 (1973). EL ND CL W ZE IP

King, A. S., Astrophys. J. 74, 328 (1931). W

Meggers, W. F., J. Opt. Soc. Am. 37, 988A (1947). EL IP

Meggers, W. F., (Edited by C. E. Moore), J. Res. Nat. Bur. Stand. (U.S.) 71A, 396 (1967). EL CL W ZE IP

Meggers, W. F., and Corliss, C. H., J. Res. Nat. Bur. Stand. (U.S.) 70A, 63 (1966). W ZE

Meggers, W. F., and Scribner, B. F., J. Res. Nat. Bur. Stand. (U.S.) 19, 651 (1937). EL CL W

Parr, A. C., and Inghram, M. G., J. Chem. Phys. 52, 4916 (1970). IP

Racah, G., Lunds Univ. Arssk., Avd. 2, 50, 31 (1954).

Racah, G., J. Opt. Soc. Am. 50, 408 (1960). EL ND ZE

Racah, G., Goldschmidt, Z. B., and Bordarier, Y., unpublished calculations (1965). (Obtained from Goldschmidt, private communication, 1974.) ND PT

Spector, N., J. Opt. Soc. Am. 58, 837 (1968). EL ND ZE PT

[October 1976]

Yb II, Even Parity

4f **(*\sigma \begin{array}{c} 2\text{S} & 1/2 & 0.00 & 1.988 \\ 4f **\text{J} (*\sigma \text{S} \text{S} \text{S} \text{J} \text{2} \text{2} \text{S} \text{S} \text{S} \text{2} \text{2} \text{S} \text{S} \text{S} \text{3} \text{2} \text{3} \text{S} \text{S} \text{5} \text{3} \text{2} \text{3} \text{S} \text{5} \text	Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages				
1/2	$4f^{14}(^{1}S)6s$	2S	1/2	0.00	1.998					
	$4f^{14}({}^{1}S)5d$	² D	3/2	22960 80	1 202					
	• . ,									
	$4f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})6s6p(^{3}\mathrm{P}_{0}^{\circ})$	(7/2,0)	7/2	47912.31	1.280	85	10	$({}^{2}F_{7/2}^{\circ})({}^{3}P_{1}^{\circ})$		
1/2 498.0.14 1.187 85 5 (PF ₃₋₁)(PP) 1/2 4948.04 1.145 85 6 (PF ₃₋₁)(PP) 1/2 1/2 4948.04 1.145 85 6 (PF ₃₋₁)(PP) 1/2 1/2 1/2 52517.35 1.27 95 4 (PF ₃₋₁)5d6p(PP) 1/2 5238.01 0.877 95 4 (PF ₃₋₁)5d6p(PP) 1/2 53715.26 1.181 93 4 (PF ₃₋₁)5d6p(PP) 1/2 53715.26 1.181 93 4 (PF ₃₋₁)5d6p(PP) 1/2 5372.071 1.26 95 4 (PF ₃₋₁)5d6p(PP) 1/2 5372.071 1.26 95 4 (PF ₃₋₁)5d6p(PP) 1/2 5372.071 1.26 95 4 (PF ₃₋₁)5d6p(PP) 1/2 1/2 5851.37 0.974 74 21 (PF ₃₋₁)5d6p(PP) 1/2 1/2 5851.37 0.974 74 21 (PF ₃₋₁)ChD) 1/2 1/2 5851.37 0.974 74 21 (PF ₃₋₁)ChD) 1/2 1/2 5851.37 0.974 74 21 (PF ₃₋₁)ChD) 1/2	$4f^{13}(^{2}\text{F}_{7/2}^{\circ})686p(^{3}\text{P}_{1}^{\circ})$	(7/2 1)	7/2	48000.41	1.0	00				
4/2 49498.04	5 (= 115) = 5 P (= 1)	(72,1)								
3 52938.01 0877 95										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$f^{13}(^2\mathrm{F}_{^{7/2}})686p(^3\mathrm{P}_2^\circ)$	(7/2,2)	11/2	52517.35	1.27	95	1	(2F2/2)5d6n(3P3)		
$ \begin{vmatrix} s_{12} \\ 7_{12} \\ 53715.26 \\ 9_{12} \\ 53715.26 \\ 1.181 \\ 9_{12} \\ 5372.71 \\ 1.26 \\ 9_{12} \\ 5372.71 \\ 1.26 \\ 9_{12} \\ 5372.71 \\ 1.26 \\ 9_{12} \\ 5372.71 \\ 1.26 \\ 9_{12} \\ 5372.71 \\ 1.26 \\ 9_{12} \\ 5372.71 \\ 1.26 \\ 9_{12} \\ 5372.71 \\ 1.26 \\ 9_{12} \\ 5372.71 \\ 1.26 \\ 9_{12} \\ 5372.71 \\ 1.26 \\ 9_{12} \\ 5372.71 \\ 1.26 \\ 9_{12} \\ 5382.58 \\ 1.266 \\ 36 \\ 20 \\ (2F_{24})^{(2F_{24})} (2F_{21})^{(2F_{21})} (2F_{21})^{(2F_$				52938.01	0.877					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						89	5			
14(1S)78 2S 1/2 54304.30 2.001						1	4			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3/2	53720.71	1.26	95	4	$(^{2}\mathrm{F}_{7/2}^{\circ})5d6p(^{3}\mathrm{P}_{2}^{\circ})$		
S S S S S S S S S S	$f^{14}(^{1}S)7s$	² S	1/2	54304.30	2.001					
$ \begin{vmatrix} \frac{s}{s}/z \\ \frac{11}{z} \\ \frac{58961.3}{58961.3} & 1.266 \\ 1.07 & 4 & 21 & (97\pi_2)(126) \\ 1.18 & 64 & 18 & (97\pi_2)(126) \\ 61214.66 & 1.07 & 54 & 30 & (97\pi_2)(126) \\ 1.07 & 54 & 30 & (97\pi_2)(126) \\ 1.07 & 54 & 30 & (97\pi_2)(126) \\ (9/z) & 61214.66 & 1.07 & 54 & 30 & (97\pi_2)(126) \\ 1.18 & 64 & 18 & (97\pi_2)(126) \\ 1.18 & 64 & 18 & (97\pi_2)(126) \\ 1.18 & 64 & 18 & (97\pi_2)(126) \\ 1.18 & 64 & 18 & (97\pi_2)(126) \\ 1.18 & 64 & 18 & (97\pi_2)(126) \\ 1.18 & 64 & 18 & (97\pi_2)(126) \\ 1.18 & 64 & 18 & (97\pi_2)(126) \\ 1.19 & 56375.91 & 1.226 & 24 & (7/z,1) & 22 & (37\pi_2)66p(1P1) \\ 1.19 & 57/2 & 55765.32 & 1.12 & 45 & 36 & (27\pi_2)56p(1P1) \\ 1.19 & 59090.13 & 1.122 & 36 & (7/z,1) & 25 & (27\pi_2)56p(1P1) \\ 1.19 & 59090.13 & 1.122 & 36 & (7/z,1) & 25 & (27\pi_2)56p(1P1) \\ 1.19 & 59090.13 & 1.122 & 36 & (7/z,1) & 25 & (27\pi_2)56p(1P1) \\ 1.19 & 59090.13 & 1.122 & 36 & (7/z,1) & 25 & (27\pi_2)56p(1P1) \\ 1.19 & 59090.13 & 1.122 & 36 & (7/z,1) & 25 & (27\pi_2)56p(1P1) \\ 1.19 & 59090.13 & 1.122 & 36 & (7/z,1) & 25 & (27\pi_2)56p(1P1) \\ 1.19 & 59090.13 & 1.122 & 36 & (7/z,1) & 25 & (27\pi_2)6p(1P1) \\ 1.19 & 59090.13 & 1.105 & 78 & 6 & (27\pi_2)(1P1) \\ 1.19 & 59090.13 & 1.105 & 78 & 6 & (27\pi_2)(1P1) \\ 1.19 & 51/2 & 59018.90 & 1.00 & 65 & 15 & (47\pi_2)(1P1) \\ 1.19 & 61120.49 & 1.661 & 75 & 6 & (27\pi_2)(1P1) \\ 1.19 & 61120.49 & 1.661 & 75 & 6 & (27\pi_2)(1P1) \\ 1.19 & 61120.49 & 1.661 & 75 & 6 & (27\pi_2)(1P1) \\ 1.19 & 61120.49 & 1.661 & 75 & 6 & (27\pi_2)(1P1) \\ 1.19 & 61120.49 & 1.661 & 75 & 6 & (27\pi_2)(1P1) \\ 1.19 & 61120.49 & 1.661 & 75 & 6 & (27\pi_2)(1P1) \\ 1.19 & 6082.25 & 1.141 & 1.08 & 35 & 25 & (27\pi_2)(1P1) \\ 1.19 & 6082.25 & 1.141 & 55 & 36 & (27\pi_2)(1P1) \\ 1.19 & 6082.25 & 1.141 & 55 & 36 & (27\pi_2)(1P1) \\ 1.19 & 61120.49 & 1.661 & 75 & 6 & (27\pi_2)(1P1) \\ 1.19 & 61120.49 & 1.661 & 75 & 6 & (27\pi_2)(1P1) \\ 1.19 & 61120.49 & 1.661 & 75 & 6 & (27\pi_2)(1P1) \\ 1.19 & 6082.25 & 1.141 & 55 & 36 & (27\pi_2)(1P1) \\ 1.19 & 6082.25 & 1.141 & 55 & 36 & (27\pi_2)(1P1) \\ 1.19 & 61120.49 & 1.226 & 1.327 & 23 & (7/z,2) & 13 & (27\pi_2)(1P1) \\ 1.19 & 61120.49 & 1.661 & 75 & 6 & (27\pi$	$f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d6p(^{3}\mathrm{F}_{2}^{\circ})$	$(^{7}/_{2},2)$			1.693	76	8	$(^{2}\mathrm{F}_{7/2}^{\circ})(^{3}\mathrm{F}_{3}^{\circ})$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						36		$(^{2}\mathrm{F}_{7/2}^{\circ})6s6p(^{1}\mathrm{P}_{1}^{\circ})$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						1				
$\begin{array}{c} ^{13}(^{2}F_{72})5d6p(^{1}F_{1}) \\ ^{13}(^{3}F_{72})6s6p(^{1}F_{1}) \\ ^{13}(^{3$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	610/0 7 70			61214.66	1.07	54	30	$(^{2}\mathrm{h'7/2})(^{1}\mathrm{D2})$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• 1		5/2	56375.91	1.226	24 (7/2,1	.) 22	$(^{2}\mathrm{F}_{7/2}^{\circ})6s6p(^{1}\mathrm{P}_{1}^{\circ})$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})6s6p(^{1}\mathrm{P}_{1}^{\circ})$	(7/2,1)	9/2	57765.32	1.12	45	36	$(^2\mathrm{F}^{\circ}_{7/2})5d6p(^1\mathrm{P}^{\circ}_{1})$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$f^{13}(^2 ext{F}_{5/2}^\circ)6s6p(^3 ext{P}_0^\circ)$	(5/2,0)	5/2	58283.91	0.77	87	5	$(^{2}F_{5/2}^{\circ})(^{3}P_{1}^{\circ})$		
$ \begin{array}{c} 7/_2 \\ 3/_2 \\ 59618.90 \\ 3/_2 \\ 59710.65 \\ 0.82 \\ 82 \\ 5 \\ (2F_{3/2})(1P_1^2) \\ 5 \\ (2F_{3/2})(1P_1^2) \\ 5 \\ (2F_{3/2})(1P_1^2) \\ 5 \\ (2F_{3/2})(1P_1^2) \\ 5 \\ (2F_{3/2})(1P_1^2) \\ 5 \\ (2F_{3/2})(1P_1^2) \\ 5 \\ (2F_{3/2})(1P_1^2) \\ 5 \\ (2F_{3/2})(1P_1^2) \\ 5 \\ (2F_{3/2})(1P_1^2) \\ 5 \\ (2F_{3/2})(1P_1^2) \\ 5 \\ (2F_{3/2})(1P_1^2) \\ 5 \\ (2F_{3/2})(1P_1^2) \\ 5 \\ (2F_{3/2})(1P_2^2) \\ 5 \\ (2F_{3/2})(2F_2^2) \\ 5 \\ (2F_$	$f^{13}(^2 ext{F}_{7/2}^{\circ})6s6p(^1 ext{P}_1^{\circ})$		7/2	59090.13	1.122	36 (7/2,1	25	$({}^{2}\mathrm{F}_{7/2}^{\circ})5d6p({}^{1}\mathrm{P}_{1}^{\circ})$		
$ \begin{array}{c} 7/2 \\ 3/2 \\ 59710.65 \\ 0.82 \\ 0.92 \\$	$f^{13}(^{2}\mathrm{F}_{5/2}^{\circ})6s6p(^{3}\mathrm{P}_{1}^{\circ})$	(5/2,1)		59259.24	1.105	78	6	$(^{2}F_{5/2})(^{3}P_{0}^{\circ})$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3/2	59710.65	0.82	82	5	$(^{2}F^{\circ}_{5/2})(^{1}P^{\circ}_{1})$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$f^{13}(^{2}\mathrm{F}_{^{9}/2})5d6p(^{3}\mathrm{F}_{3}^{\circ})$	(7/2,3)	3/2	60586.46	1.323	45	33	(2F _{7/2})(1D ₂)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				61120.49	1.661					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						91	6			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						i				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C13/9T-9 \F.10 (1D.9)									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- -			61374.49	1.299	32 (7/2,2) 21	$(^{2}F_{7/2}^{\circ})(^{3}F_{3}^{\circ})$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•		7/2	61822.58	1.327	23 (7/2,2) 13	$(^{2}F_{7/2}^{\circ})(^{1}D_{2}^{\circ})$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{613}(^{2}\mathrm{F}^{\circ}_{5/2})6s6p(^{3}\mathrm{P}^{\circ}_{2})$	(5/2,2)				90	4			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	214/19/01						•	(= 3,2,000p(± 2)		
	¹⁴ (¹ S)6 <i>d</i>	² D								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 $^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d6p(^{1}\mathrm{D}_{2}^{\circ})$		11/2	62861.27	1.140	44 (7/2,2)) 18	$(^{2}\mathrm{F}^{\circ}_{7/2})(^{3}\mathrm{P}^{\circ}_{2})$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{c_{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d6p(^{3}\mathrm{D}_{1}^{\circ})}$	(7/2.1)	5/2	63234 11	1.208	31	94	(2F% ₀)(3F%)		
$^{7/2}$ 64598.28 1.223 44 19 $^{(2}F_{7/2}^{\circ})(^{3}F_{3}^{\circ})$	/	(-,-,-)								
			7/2							
	613/2E2\= dc(1D.0\									
$^{13}(^{2}F_{7/2})5d6p(^{1}D_{2}) \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $	$^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d6p(^{1}\mathrm{D}_{2}^{\circ})$	1	3/2	63647.73	1.149	29 $(^{7}/_{2},2)$	15	$(^{2}\mathrm{F}_{7/2}^{\circ})(^{3}\mathrm{F}_{3}^{\circ})$		

Yb II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Lea	ding percentages
$4f^{13}(^{2}\text{F}_{7/2}^{\circ})5d6p(^{3}\text{D}_{2}^{\circ})$	(7/2,2)	11/2	63944.18	1.115	33	33	$(^{2}F_{7/2}^{\circ})(^{3}F_{3}^{\circ})$
,	(, -,-,	3/2	64461.08	1.176	51	10	$({}^{2}F_{7/2}^{2})({}^{3}F_{3}^{2})$
		9/2	65950.95	1.09	65	14	$({}^{2}\mathrm{F}_{7/2}^{\circ})({}^{1}\mathrm{D}_{2}^{\circ})$
		5/2	66351.21	1.125	72	7	$({}^{2}F_{7/2}^{\circ})({}^{3}F_{3}^{\circ})$
		7/2	66558.00	1.100	30	24	$({}^{2}F_{7/2}^{\circ})({}^{3}D_{3}^{\circ})$
$f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d6p(^{3}\mathrm{F}_{4}^{\circ})$	$(^{7}/_{2},4)$	15/2	64891.30	1.19	100		
(1 4/2)340p(-1 4)	(1/2,4)	$\frac{3}{2}$	65888.46	1.19	100 45	9	$(^{2}\mathrm{F}^{\circ}_{7/2})(^{1}\mathrm{D}^{\circ}_{2})$
		5/2	66395.72	1.235	39	20	$({}^{2}F_{7/2}^{\circ})({}^{1}D_{2}^{\circ})$
		1/2	66462.86	1.11	68	12	$({}^{2}F_{5/2}^{2})({}^{3}F_{3}^{2})$
		11/2	68148.88	1.11	59	25	$({}^{2}F_{7/2}^{\circ})({}^{3}D_{3}^{\circ})$
		$\frac{72}{7/2}$	68450.11	1.08	48	23 24	$({}^{2}F_{7/2}^{3})({}^{3}P_{1}^{2})$
		9/2	68549.23	1.157	56	13	$({}^{2}F_{5/2}^{\circ})({}^{3}F_{2}^{\circ})$
		13/2	68720.44	1.157	55	40	$({}^{2}F_{7/2})({}^{1}F_{3}^{\circ})$
$f^{13}(^{2}\mathrm{F}_{7/2})5d6p(^{3}\mathrm{F}_{2}^{\circ})$		9/2	65199.54	1.08	34 (7/2,2)	26	$(^2\mathrm{F}^{\circ}_{7/2})(^1\mathrm{D}^{\circ}_2)$
£13/9E9 \F 16 (1E9\	(71.0)	.,	22222				(070) (070)
$f^{13}(^{2}\mathrm{F}_{7/2}^{2})5d6p(^{1}\mathrm{F}_{3}^{\circ})$	$(^{7}/_{2},3)$	1/2	65566.72	1.43	54	19	$({}^{2}F_{5/2}^{\circ})({}^{3}F_{2}^{\circ})$
		3/2	69443.52	1.15	27	18	$({}^{2}\mathrm{F}^{\circ}_{7/2})({}^{3}\mathrm{D}^{\circ}_{3})$
		13/2	70136.24	1.12	46	27	$({}^{2}F_{7/2}^{\circ})({}^{3}F_{4}^{\circ})$
		5/ ₂	71468.70	1.02	33	19	$({}^{2}F_{5/2}^{\circ})({}^{3}F_{2}^{\circ})$
		7/2	72779.99	1.10	67	11	$({}^{2}F_{7/2}^{\circ})({}^{3}F_{3}^{\circ})$
		9/2	73283.35	1.04	49	24	$({}^{2}F^{\circ}_{5/2})({}^{1}D^{\circ}_{2})$
		11/2	73291.95	1.09	75	9	$(^{2}F_{7/2}^{\circ})(^{3}D_{3}^{\circ})$
$f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d6p(^{1}\mathrm{D}_{2}^{\circ})$		7/2	65577.11	1.055	38 (7/2,2)	18	$(^2F_{7/2}^{\circ})(^3F_2^{\circ})$
$f^{13}(^2\mathrm{F}_{^{7/2}})5d6p(^3\mathrm{D}_3^\circ)$	(7/2,3)	13/2	65875.77	1.205	68	15	$(^{2}\mathrm{F}_{7/2}^{\circ})(^{3}\mathrm{F}_{4}^{\circ})$
		11/2	66571.58	1.189	55	19	$(^{2}\mathrm{F}^{\circ}_{7/2})(^{3}\mathrm{P}^{\circ}_{2})$
		3/2	67204.97	1.04	29	25	$(^{2}\mathrm{F}_{7/2}^{\circ})(^{1}\mathrm{F}_{3}^{\circ})$
		9/2	67416.03	1.26	52	21	$(^{2}\mathrm{F}^{\circ}_{7/2})(^{3}\mathrm{P}^{\circ}_{1})$
		1/2	67955.23	0.895	68	14	$(^{2}\mathrm{F}_{7/2}^{\circ})(^{1}\mathrm{F}_{3}^{\circ})$
$f^{13}(^{2} ext{F}^{\circ}_{5/2})6s6p(^{1} ext{P}^{\circ}_{1})$		7/2	67938.68	0.960	30 (5/2,1)	24	$(^2\mathrm{F}^{\circ}_{5/2})5d6p(^1\mathrm{P}^{\circ}_{1})$
$f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d6p(^{3}\mathrm{F}_{4}^{\circ})$		5/2	68135.00	1.087	38 (7/2,4)	24	$(^{2}F_{7/2}^{\circ})(^{3}D_{3}^{\circ})$
$f^{13}(^2 ext{F}^{\circ}_{5/2})6s6p(^1 ext{P}^{\circ}_{1})$		3/2	68150.57	0.928	32 (5/2,1)	20	$({}^{2}\mathrm{F}^{\circ}_{5/2})5d6p({}^{1}\mathrm{P}^{\circ}_{1})$
$f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d6p(^{3}\mathrm{P}_{0}^{\circ})$		7/2	68756.04	1.32	35 (7/2,0)	29	$(^2F_{7/2}^{\circ})(^3D_3^{\circ})$
$f^{13}(^{2}\mathrm{F}_{5/2}^{\circ})5d6p(^{3}\mathrm{F}_{2}^{\circ})$	(5/2,2)	9/2	68943.65	0.89	53	18	$(^{2}\mathrm{F}^{\circ}_{7/2})(^{3}\mathrm{F}^{\circ}_{4})$
		5/2	71270.01	0.91	33	18	$({}^{2}F_{7/2}^{\circ})({}^{3}P_{2}^{\circ})$
		7/2	72202.03	0.86	43	29	$({}^{2}F_{5/2}^{\circ})({}^{1}D_{2}^{\circ})$
		3/2	73116.71	0.863	34	23	$({}^{2}F_{5/2}^{\circ})({}^{3}F_{3}^{\circ})$
		1/2	75905.77	1.28	40	20	$({}^{2}F_{7/2}^{\circ})({}^{1}F_{3}^{\circ})$
$f^{13}(^2 ext{F}^{\circ}_{5/2})6s6p(^1 ext{P}^{\circ}_1)$		5/2	69079.88	0.89	30 (5/2,1)	21	$(^2{ m F}^{\circ}_{5/2})5d6p(^1{ m P}^{\circ}_1)$
$f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d6p(^{3}\mathrm{P}_{0}^{\circ})$		7/2	69395.20	0.94	25 (7/2,0)	21	$(^2F^{\circ}_{7/2})(^3P^{\circ}_1)$
$f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d6p(^{3}\mathrm{P}_{1}^{\circ})$		5/2	69607.54	1.210	24 (7/2,1)	18	$(^2F^{\circ}_{7/2})(^3P^{\circ}_2)$
$f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d6p(^{3}\mathrm{P}_{1}^{\circ})$		9/2	69957.49	1.112	34 (7/2,1)	18	$(^3F_{7/2}^{\circ})(^3D_3^{\circ})$
$f^{13}(^{2}\mathrm{F}^{\circ}_{5/2})5d6p(^{3}\mathrm{F}^{\circ}_{3})$	(5/2,3)	1/2	70029.04	0.68	28	19	$({}^{2}F_{5/2}^{\circ})({}^{1}D_{2}^{\circ})^{-}$
		11/2	72615.74	0.99	85	4	$({}^{2}\mathrm{F}_{7/2}^{\circ})({}^{1}\mathrm{F}_{3}^{\circ})$
		3/2	73657.29	1.04	32	25	$(^{2}\mathrm{F}^{\circ}_{5/2})(^{3}\mathrm{F}^{\circ}_{4})$
		5/2	74270.48	0.92	72	7	$(^{2}\mathrm{F}^{\circ}_{5/2})(^{3}\mathrm{D}^{\circ}_{3})$
		7/2	75640.06	0.81	51	19	$(^{2}F_{5/2}^{\circ})(^{3}F_{2}^{\circ})$
		9/2	76516.11	1.01	46	27	$({}^{2}\mathrm{F}^{\circ}_{5/2})({}^{3}\mathrm{D}^{\circ}_{2})$
$f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d6p(^{3}\mathrm{P}_{2}^{\circ})$	(7/2,2)	11/2	70793.96	1.20	41	28	$(^{2}F_{7/2}^{\circ})(^{3}F_{4}^{\circ})$
		9/2	70858.18	1.28	70	13	$(^{2}F_{7/2}^{\circ})(^{3}P_{1}^{\circ})$
		3/2	71113.84	0.967	22	21	$({}^{2}F_{5/2}^{\circ})({}^{3}F_{2}^{\circ})$
		7/2	71222.36	1.15	52	16	$(^{2}\mathrm{F}^{\circ}_{7/2})(^{1}\mathrm{F}^{\circ}_{3})$

Yb II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages				
$4f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d6p(^{3}\mathrm{P}_{1}^{\circ})$		5/2	70954.27	1.014	27	$(^{7}/_{2},1)$	20	$({}^3{ m F}^{\circ}_{7/2})({}^3{ m P}^{\circ}_2)$	
$f^{13}(^{2}\mathrm{F}_{5/2}^{\circ})5d6p(^{1}\mathrm{D}_{2}^{\circ})$		3/2	71763.67	1.11	20	(5/2,2)	18	$(^{2}\mathrm{F}^{\circ}_{5/2})(^{3}\mathrm{F}^{\circ}_{4})$	
$f^{14}(^{1}\mathrm{S})8s$	² S	1/2	73039.61			,		, ,	
$f^{13}(^2\mathrm{F}^\circ_{5/2})5d6p(^1\mathrm{D}^\circ_2)$		1/2	73636.83	0.70	24	(5/2,1)	21	$(^2\mathrm{F}^{\circ}_{5/2})(^3\mathrm{D}^{\circ}_{2})$	
$f^{13}(^2\mathrm{F}_{5/2}^\circ)5d6p(^1\mathrm{D}_2^\circ)$		9/2	73750.90	1.07	39	(5/2,2)	31	$({}^{2}F_{5/2}^{\circ})({}^{1}F_{3}^{\circ})$	
$f^{13}(^2 ext{F}_{5/2}^\circ)5d6p(^3 ext{D}_1^\circ)$	(5/2,1)	7/2	73966.81	0.763		(12,2)			
, , , , , , , , , , , , , , , , , , , ,	(72,1)	5/2	75058.11	0.76	63 53		16 8	${({}^{2}\mathrm{F}_{5/2}^{\circ})({}^{1}\mathrm{D}_{2}^{\circ})} \ {({}^{2}\mathrm{F}_{5/2}^{\circ})({}^{3}\mathrm{F}_{2}^{\circ})}$	
C12/9T30 \F IA (0T>0\		3/2	77284.02	0.90	41		12	$(^{2}\mathrm{F_{5/2}^{\circ}})(^{3}\mathrm{D_{3}^{\circ}})$	
$f^{13}(^{2}\mathrm{F}_{5/2}^{\circ})5d6p(^{3}\mathrm{D}_{2}^{\circ})$	(5/2,2)	9/2	74568.58	1.04	55		25	$(^{2}F_{5/2}^{\circ})(^{3}F_{3}^{\circ})$	
$f^{13}(^{2}\mathrm{F}_{5/2}^{\circ})5d6p(^{3}\mathrm{F}_{3}^{\circ})$		7/2	74973.41	1.07	35	(5/2,3)	26	$(^2F^{\circ}_{5/2})(^3F^{\circ}_2)$	
$f^{13}(^{2}\mathrm{F}^{\circ}_{5/2})5d6p(^{1}\mathrm{D}^{\circ}_{2})$		1/2	74989.49	0.52	35	(5/2,2)	27	$(^{2}\mathrm{F}^{\circ}_{5/2})(^{3}\mathrm{D}^{\circ}_{2})$	
$f^{13}(^{2}\mathrm{F}_{5/2}^{\circ})5d6p(^{3}\mathrm{D}_{2}^{\circ})$		3/2	74991.36	1.05	35	(5/2,2)	19	$(^2F_{5/2}^{\circ})(^1D_2^{\circ})$	
$f^{13}(^2\mathrm{F}^\circ_{5/2})5d6p(^1\mathrm{D}^\circ_2)$	(5/2,2)	5/2	75550.94	0.91	45		18	$(^{2}F_{5/2}^{\circ})(^{3}D_{2}^{\circ})$	
$f^{13}(^{2}\mathrm{F}^{\circ}_{5/2})5d6p(^{3}\mathrm{F}^{\circ}_{4})$	(5/2,4)	5/2	76170.25	1.12	35		24	$(^2\mathrm{F}^{\circ}_{5/2})(^3\mathrm{D}^{\circ}_{2})$	
		13/2	76233.60	1.07	98		1	$({}^{2}\mathrm{F}^{\circ}_{7/2})({}^{3}\mathrm{F}^{\circ}_{4})$	
		7/ ₂ 9/ ₂	77882.04 79126.83	1.13 1.15?	71		7	$({}^{2}F_{5/2}^{\circ})({}^{3}P_{1}^{\circ})$	
		11/2	1.7120.00	1.15:	71 74		15 21	$({}^{2}F_{5/2}^{\circ})({}^{3}D_{3}^{\circ})$ $({}^{2}F_{5/2}^{\circ})({}^{1}F_{3}^{\circ})$	
$f^{13}(^2 ext{F}^\circ_{5/2})5d6p(^3 ext{D}^\circ_2)$	(5/2,2)	7/2	76323.49	1.00	56		18	$(^2F_{5/2}^{\circ})(^1D_2^{\circ})$	
$f^{14}(^{1}S)7d$?	² D?	3/ ₂ 5/ ₂	76517.21 76676.31	0.85 1.10					
618/0 7 70			10010.51	1.10					
$f^{13}(^{2}\text{F}_{5/2}^{\circ})5d6p(^{3}\text{D}_{3}^{\circ})$	(5/2,3)	11/2	76649.80	1.08	65		20	$({}^{2}\mathrm{F}_{5/2}^{\circ})({}^{1}\mathrm{F}_{3}^{\circ})$	
		7/ ₂ 9/ ₂	77449.32 77747.40	1.16	55		12	$({}^{2}\mathbf{F}_{5/2}^{\circ})({}^{3}\mathbf{D}_{2}^{\circ})$	
		1/2	77887.30	1.07 2.20	41 69		19 12	$({}^{2}F_{5/2}^{\circ})({}^{3}P_{2}^{\circ})$ $({}^{2}F_{5/2}^{\circ})({}^{3}F_{3}^{\circ})$	
		5/2	78814.86	1.22	32		24	$({}^{2}F_{5/2}^{\circ})({}^{3}P_{1}^{\circ})$	
6 $^{13}(^{2}\mathrm{F}_{5/2}^{\circ})5d6p(^{3}\mathrm{D}_{3}^{\circ})?$		3/2	76799.07	0.84	23	(⁵ / ₂ ,3)	23	$({}^2F^{\circ}_{5/2})({}^3D^{\circ}_{2})$	
$^{\circ} 713(^{2}\mathrm{F}^{\circ}_{5/2})5d6p(^{3}\mathrm{D}^{\circ}_{1})?$		5/2	76839.00	1.11	18	(5/2,1)	18	$(^2F_{5/2}^{\circ})(^3F_4^{\circ})$	
$^{\circ}$ $^{\circ}$		5/2	77606.58	1.14	30	(5/2,4)	22	$({}^{2}F_{7/2}^{\circ})({}^{1}P_{1}^{\circ})$	
$f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d6p(^{1}\mathrm{P}_{1}^{\circ})$	(7/2,1)	9/2	78070.19	1.10	52		26	$({}^{2}\mathrm{F}_{7/2}^{\circ})6s6p({}^{1}\mathrm{P}_{1}^{\circ})$	
		7/2	79628.71	1.11	55		26	•	
$^{^{13}(^{2} ext{F}_{5/2}^{\circ})5d6p(^{1} ext{F}_{3}^{\circ})}$		3/2	78464.76	1.18	23	(5/2,2)	18	$(^{2}F_{5/2}^{\circ})(^{3}P_{2}^{\circ})$	
6 $^{13}(^{2}\text{F}_{5/2}^{\circ})5d6p(^{3}\text{P}_{6}^{\circ})$		$^{5}/_{2}$	79583.11	0.68	27	(5/2,0)	20	$({}^2F^{\circ}_{5/2})({}^3P^{\circ}_1)$	
6 $^{13}(^{2}\mathrm{F}^{\circ}_{5/2})5d6p(^{3}\mathrm{P}^{\circ}_{1})$		3/2	79605.95	1.16	29	(5/2,1)	24	$({}^{2}F_{5/2}^{\circ})({}^{3}I_{3}^{\circ})$	
$^{(13)}(^{2}\mathrm{F}_{5/2}^{\circ})5d6p(^{3}\mathrm{P}_{1}^{\circ})$		7/2	80457.71	0.99	33	(5/2,1)	19	$({}^2F^{\circ}_{5/2})({}^3D^{\circ}_3)$	
$^{14}(^{1}{ m S})5g$	² G	7/2,9/2	80607.45						
$^{^{\circ}13}(^{2}\mathrm{F}_{5/2}^{\circ})5d6p(^{1}\mathrm{F}_{3}^{\circ})$	(5/2,3)	11/2	80679.18	1.00?	55		30	(2F ^o _{5/2})(3I) ^o ₃)	
		1/2	82091.32	10.13	65		11	$(^{2}F_{7/2}^{\circ})(^{3}F_{4}^{\circ})$	
		$\frac{3}{2}$ $\frac{5}{2}$	82398.98 82891.80	1.042 1.03?	60 54			$({}^{2}\mathbf{F}_{5/2}^{\circ})({}^{3}\mathbf{I})_{2}^{\circ})$	
		7/2	83363.88	0.97	54 86			$({}^{2}F^{\circ}_{5/2})({}^{3}P^{\circ}_{2})$ $({}^{2}F^{\circ}_{5/2})({}^{3}D^{\circ}_{3})$	
		9/2			85			$({}^{2}F_{5/2}^{\circ})({}^{3}I)_{3}^{\circ})$	

Yb II, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages
$4f^{13}(^{2}\mathrm{F}_{5/2}^{2})5d6p(^{3}\mathrm{P}_{2}^{2})$	(5/2,2)	1/2 9/2 5/2 7/2	81205.27 81312.65 81692.92	1.09 1.11? 1.16	61 54 38 55	$\begin{array}{ccc} 12 & (^2F_{5/2}^{\circ})(^3D_2^{\circ}) \\ 15 & (^2F_{5/2}^{\circ})(^3F_4^{\circ}) \\ 28 & (^2F_{5/2}^{\circ})(^1P_3^{\circ}) \\ 22 & (^2F_{5/2}^{\circ})(^3P_1^{\circ}) \end{array}$
$4f^{13}(^2 ext{F}_{5/2}^\circ)5d6p(^3 ext{P}_1^\circ)$	(5/2,1)	3/2	81512.62	0.48	46	$31 (^{2}F_{5/2}^{\circ})(^{3}P_{2}^{\circ})$
$4f^{13}(^{2}\mathrm{F}_{5/2}^{\circ})5d6p(^{3}\mathrm{P}_{0}^{\circ})$	A. A. A. A. A. A. A. A. A. A. A. A. A. A	5/2	81657.13		31 (5/2,0)	$17 (^{2}F_{5/2}^{\circ})(^{3}P_{2}^{\circ})$
4f ¹⁴ (¹S)8d	² D	3/ ₂ 5/ ₂	83839.86 84015.98	1.20		
$4f^{14}(^{1}S)6g$	² G	7/2,9/2	85994.92			
$4f^{14}(^{1}S)10s$	2S	1/2	86768.26			
$4f^{14}({}^{1}S)9d$	² D	3/ ₂ 5/ ₂	87804.88 87980.96			
$4f^{13}(^2\mathbf{F}_{5/2}^{\circ})5d\hat{o}p(^1\mathbf{P}_{1}^{\circ})$	(5/2,1)	3/2 7/2 5/2	89713.17		62 58 63	31 $({}^{2}F_{5/2}^{\circ})6s6p({}^{1}P_{1}^{\circ})$ 30 31
$4f^{14}(^{1}S)10d$	² D	3/ ₂ 5/ ₂	90414.35 90519.48			
$4f^{14}({}^{1}\mathrm{S})11d$	² D	5/2	92219.53	*** Andrews of the Control of the Co		
Yb III (¹S₀)	Limit		98269			

Yb II, Odd Parity

Configuration	Term	J	Level (cm ⁻¹)	g		Lead	ling percentages
4f ¹³ (2F°)6s ²	²F°	7/ ₂ 5/ ₂	21418.75 31568.08	1.145 0.862	98 90	1 7	$({}^{2}F_{7/2}^{\circ})5d^{2}({}^{1}S) {}^{1}[{}^{7}/{}_{2}]^{\circ} ({}^{2}F_{7/2}^{\circ})5d6s({}^{3}D) {}^{3}[{}^{7}/{}_{2}]^{\circ}$
$4f^{13}(^2\mathrm{F}_{7/2}^{\circ})5d6s(^3\mathrm{D})$	3[3/2]°	5/2 3/2 1/2	26759.02 28757.98 33653.86	1.570 1.440 1.320	95 62 77	2 27 13	$(^{2}F_{7/2}^{9})(^{3}D) \ ^{3}[^{5}/_{2}]^{\circ}$ $(^{2}F_{7/2}^{9})(^{1}D) \ ^{1}[^{3}/_{2}]^{\circ}$ $(^{2}F_{5/2}^{9})(^{3}D) \ ^{3}[^{1}/_{2}]^{\circ}$
$4f^{14}(^{1}S)6p$	2P°	1/ ₂ 3/ ₂	27061.82 30392.23	0.667 1.333			
$4f^{13}(^{2}\mathrm{F}_{7/2}^{2})5d6s(^{3}\mathrm{D})$	3[11/2]°	9/ ₂ 11/ ₂ 13/ ₂	30224.33 30562.79 31631.59	0.935 1.112 1.230	96 92 100	2 4	$({}^{2}F_{7/2}^{\circ})({}^{3}D) {}^{3}[{}^{9}/{}_{2}]^{\circ} \ ({}^{2}F_{7/2}^{\circ})({}^{1}D) {}^{1}[{}^{11}/{}_{2}]^{\circ}$
"	3[5/2]°	7/ ₂ 5/ ₂ 3/ ₂	31979.90 32371.10 32981.59	1.331 1.170 0.866	69 66 85	28 24 10	$\begin{array}{c} (^{2}F_{7/2}^{\circ})(^{3}D) \ ^{3}[^{7}/_{2}]^{\circ} \\ (^{2}F_{7/2}^{\circ})(^{3}D) \ ^{3}[^{7}/_{2}]^{\circ} \\ (^{2}F_{7/2}^{\circ})(^{3}D) \ ^{3}[^{3}/_{2}]^{\circ} \end{array}$
"	3[7/2]°	9/ ₂ 5/ ₂ 7/ ₂	33052.29 34389.76 35059.00	1.264 1.007 1.124	71 51 56	23 29 26	$({}^{2}F_{7/2}^{\circ})({}^{3}D) {}^{3}[{}^{9}/{}_{2}]^{\circ} \ ({}^{2}F_{7/2}^{\circ})({}^{3}D) {}^{3}[{}^{5}/{}_{2}]^{\circ} \ ({}^{2}F_{7/2}^{\circ})({}^{3}D) {}^{3}[{}^{9}/{}_{2}]^{\circ}$
"	3[9/2]°	7/ ₂ 9/ ₂ 11/ ₂	33494.68 35019.13 35831.68	0.991 1.158 1.214	65 67 77	15 27 20	$({}^{2}F_{7/2}^{\circ})({}^{3}D) {}^{3}[^{7}/2]^{\circ} \ ({}^{2}F_{7/2}^{\circ})({}^{3}D) {}^{3}[^{7}/2]^{\circ} \ ({}^{2}F_{7/2}^{\circ})({}^{1}D) {}^{1}[{}^{11}/2]^{\circ}$

Yb II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages			
$4f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d6s(^{1}\mathrm{D})$	¹ [3/ ₂]°	3/2	34575.37	1.434	53	27	$(^{2}F_{5/2}^{\circ})(^{3}D)^{3}[^{1}/_{2}]^{\circ}$		
"	¹ [11/ ₂]°	11/2	34784.95	1.119	70	18	$(^2\mathrm{F}^{\circ}_{7/2})(^3\mathrm{D})\ ^3[^9/_2]^{\circ}$		
"	¹ [5/ ₂]°	5/2	37077.59	1.113	74	17	$(^2\mathrm{F}^{\circ}_{7/2})(^3\mathrm{D})\ ^3[^7/_2]^{\circ}$		
"	¹ [7/ ₂]°	7/2	37516.59	1.119	80	9	$(^2\mathrm{F}^\circ_{7/2})5d^2(^1\mathrm{D})\ ^1[^7/_2]^\circ$		
"	¹ [9/ ₂]°	9/2	38342.02	1.093	81	11	$({}^2\mathrm{F}^2_{7/2})5d^2({}^1\mathrm{D})\ {}^1[{}^9/{}_2]^\circ$		
$4f^{13}(^2{ m F}_{5/2}^{\circ})5d6s(^3{ m D})$	³ [1/2]°	1/2	39378.89	1.850	80	13	$({}^{2}\mathrm{F}^{\circ}_{5/2})({}^{1}\mathrm{D})\ {}^{1}[{}^{1}/{}_{2}]^{\circ}$		
"	³ [9/ ₂]°	7/2	40035.82	0.720	94	4			
		$\frac{9}{2}$ $\frac{11}{2}$	40917.91 42915.13	0.967 1.115	87 98	8	$({}^{2}F_{5/2}^{\circ})({}^{1}D) {}^{1}[{}^{9}/{}_{2}]^{\circ} \ ({}^{2}F_{7/2}^{\circ})({}^{3}D) {}^{3}[{}^{9}/{}_{2}]^{\circ}$		
"	³ [3/ ₂]°	5/2	41678.73	1.193	68	26	(2F _{5/2})(3D) 3[5/ ₂]°		
		3/2	41688.45	0.784	46	47	$({}^{2}F_{5/2})({}^{3}D) {}^{3}[5/2]^{\circ}$		
		1/2	43007.79	0.15	91	9	$(^{2}F_{5/2}^{\circ})(^{1}D)^{-1}[^{1}/_{2}]^{\circ}$		
,,					- -	3	(* 0/*/(**/ [/2]		
••	³ [⁵ / ₂]°	3/2	43075.09	0.96	43	34	$(^2F_{5/2}^{\circ})(^3D) \ ^3[^3/_2]^{\circ}$		
		5/ ₂	43956.41	0.99	46	33	$({}^{2}F_{5/2}^{\circ})({}^{3}D) {}^{3}[{}^{7}/{}_{2}]^{\circ}$		
		7/2	44438.03	1.10	53	40	$({}^{2}\mathrm{F}^{\circ}_{5/2})({}^{3}\mathrm{D}) {}^{3}[{}^{7}/{}_{2}]^{\circ}$		
"	3[7/2]°	5/2	44497.51	0.734	63	22	$(^2\mathrm{F}^{\circ}_{5/2})(^3\mathrm{D})\ ^3[^5/_2]^{\circ}$		
		$^{7}/_{2}$	45429.82	1.150	48	41	$(^{2}F_{5/2}^{3/2})(^{3}D)^{3}[^{5/2}]^{\circ}$		
		9/2	46169.78	1.10	77	20	$({}^{2}F_{5/2}^{\circ})({}^{1}D) {}^{1}[{}^{9}/{}_{2}]^{\circ}$		
$4f^{13}(^{2}\mathrm{F_{5/2}^{\circ}})5d6s(^{3}\mathrm{D})$		3/2	44940.61	1.244	29 ³ [1/2]°	17	$(^2\mathrm{F}^{\circ}_{7/2})5d^2(^3\mathrm{F})\ ^3[^3/_2]^{\circ}$		
$4f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d^{2}(^{3}\mathrm{F})$	³ [5/ ₂]°	5/2	45012.79	1.281	48	34	$(^{2}F_{7/2}^{\circ})(^{3}F)\ ^{3}[^{3}/_{2}]^{\circ}$		
$4f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d^{2}(^{3}\mathrm{F})$		7/2	45273.02	1.18	34 ^{3[7/2]°}	34	$(^2\mathrm{F}^{\circ}_{7/2})(^3\mathrm{F})~^3[^5/_2]^{\circ}$		
$4f^{13}(^{2}\mathrm{F}_{5/2}^{\circ})5d6s(^{1}\mathrm{D})$	¹ [9/ ₂]°	9/2	45335.03	1.01	65	20	$(^{2}F_{5/2}^{\circ})(^{3}D)^{3}[^{7}/_{2}]^{\circ}$		
$4f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d^{2}(^{3}\mathrm{F})$		3/2	45737.29	1.333	34 ³ [³ / ₂]°	22	$({}^2F^{\circ}_{7/2})({}^3F)\ {}^3[{}^1/{}_2]^{\circ}$		
$4f^{13}(^{2}\mathrm{F}_{7/2}^{2})5d^{2}(^{3}\mathrm{F})$	3[7/2]°	9/2	46354.55	1.29	54	28	$(^{2}\mathrm{F}^{\circ}_{7/2})(^{3}\mathrm{P})\ ^{3}[^{7}/_{2}]^{\circ}$		
"	3[13/2]°	11/2	46547.72	0.97	82	14	(2E2)(3E) 3[11/]0		
	, , , ,	13/2	47680.40	1.12	85	14 15	$({}^{2}F^{\circ}_{7/2})({}^{3}F) \ {}^{3}[{}^{11}/{}_{2}]^{\circ} \ ({}^{2}F^{\circ}_{7/2})({}^{3}F) \ {}^{3}[{}^{11}/{}_{2}]^{\circ}$		
		15/2	48923.30	1.20	96	4	$({}^{2}F_{7/2}^{\circ})({}^{1}G) {}^{1}[{}^{15}/_{2}]^{\circ}$		
$f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d^{2}(^{3}\mathrm{F})$	3[3/2]°	1/2	46902.71	1.30	48	24	$(^2F_{7/2}^{\circ})(^3F)$ $^3[^1/_2]^{\circ}$		
$4f^{13}(^{2}\mathrm{F}^{\circ}_{5/2})5d6s(^{1}\mathrm{D})$	¹ [3/ ₂]°	3/2	47005.46	0.990	77	8	$(^2F^{\circ}_{5/2})(^3D)\ ^3[^1/_2]^{\circ}$		
"	¹ [1/2]°	1/2	47228.96	0.74	50	14	$({}^2F^{\circ}_{7/2})({}^3D)\ {}^3[{}^3/{}_2]^{\circ}$		
"	¹ [5/ ₂]°	5/2	47329.44	0.990	58	12	$({}^2\mathrm{F}^\circ_{7/2})5d^2({}^3\mathrm{F})\ {}^3[{}^3/_2]^\circ$		
$f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d^{2}(^{3}\mathrm{F})$	3[11/2]°	9/2	47663.52	0.98	62	19	$(^{2}F_{7/2}^{\circ})(^{3}F) \ ^{3}[^{9}/_{2}]^{\circ}$		
		11/2	48503.82	1.10	54	28	$({}^{2}F_{7/2}^{\circ})({}^{3}F) {}^{3}[{}^{9/2}]^{\circ}$		
		13/2	49727.19	1.20	84	15	$({}^{2}F_{7/2}^{\circ})({}^{3}F) {}^{3}[{}^{13}/_{2}]^{\circ}$		
$f^{13}(^2 ext{F}^{\circ}_{7/2})5d^2(^3 ext{F})$		7/2	47758.54	1.08	41 $^{3[9/_{2}]^{\circ}}$	38	$(^2F^{\circ}_{7/2})(^3F)\ ^3[^5/_2]^{\circ}$		
$f^{13}(^2\mathrm{F}^{\circ}_{7/2})5d^2(^3\mathrm{F})$	3[1/2]°	3/2	48024.70	1.38	53	30	$(^2F_{7/2}^{\circ})(^3F) \ ^3[^5/_2]^{\circ}$		
		1/2	49419.13	1.41	67	30 22	$({}^{2}F_{7/2})({}^{3}F) {}^{3}[{}^{3}/_{2}]^{\circ}$		
$f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d^{2}(^{3}\mathrm{F})$		5/2	48272.77	1.14	36 ³ [³ / ₂]°	22	$({}^{2}\mathrm{F}^{\circ}_{5/2})5d6s({}^{1}\mathrm{D})\ {}^{1}[{}^{5}/{}_{2}]^{\circ}$		
$f^{13}(^{2}\mathrm{F}^{\circ}_{5/2})5d6s(^{1}\mathrm{D})$			İ				-		

Yb II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g			Leadi	ng percentages
$4f^{13}(^{2}\mathrm{F}_{7/2}^{2})5d^{2}(^{3}\mathrm{F})$	3[9/2]°	7/ ₂ 9/ ₂ 11/ ₂	49008.93 49916.50 50468.05	1.03 1.090 1.213	43 52 49		15 31 28	$({}^{2}F_{7/2}^{\circ})({}^{3}F) {}^{3}[{}^{5}/_{2}]^{\circ} \ ({}^{2}F_{7/2}^{\circ})({}^{3}F) {}^{3}[{}^{11}/_{2}]^{\circ} \ ({}^{2}F_{7/2}^{\circ})({}^{3}F) {}^{3}[{}^{11}/_{2}]^{\circ}$
$4f^{13}(^2\mathrm{F}_{7/2}^\circ)5d^2(^3\mathrm{F})$		3/2	50832.65	0.956		^{3[5/} 2]°	30	$(^{2}F_{7/2}^{\circ})(^{3}F)\ ^{3}[^{3}/_{2}]^{\circ}$
$4f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d^{2}(^{3}\mathrm{F})$		5/2	51248.86	1.034	40	³ [⁷ / ₂]°	25	$(^2F^{\circ}_{7/2})(^3F)\ ^3[^5/_2]^{\circ}$
$4f^{13}(^2 ext{F}_{7/2}^{\circ})5d^2(^1 ext{G})$	¹ [1/ ₂]°	1/2	52067.87	0.54	67		20	$(^2F^{\circ}_{7/2})(^3F)\ ^3[^3/_2]^{\circ}$
$4f^{13}(^{2}\mathrm{F}_{7/2}^{2})5d^{2}(^{3}\mathrm{P})$	3[7/2]°	9/ ₂ 7/ ₂ 5/ ₂	52880.75 52921.62 53120.58	1.26 1.15 0.944	45 51 67		35 36 10	(2F _{7/2})(3F) 3[7/ ₂]°
$4f^{13}(^2\mathrm{F}_{7/2}^{\circ})5d^2(^1\mathrm{G})$	¹ [3/ ₂]°	3/2	52987.76	1.131	61		12	$({}^2F_{5/2}^{\circ})({}^3F)\ {}^3[{}^3/{}_2]^{\circ}$
"	¹[¹5/2]°	15/2	53322.89	1.04	96		4	$(^2F^{\circ}_{7/2})(^3F)\ ^3[^{13}/_2]^{\circ}$
$4f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d^{2}(^{1}\mathrm{D})$	¹ [7/ ₂]°	7/2	53644.89	1.18	45		13	$(^2F_{5/2}^{\circ})(^3F)$ $^3[^5/_2]^{\circ}$
$4f^{13}(^{2}\mathrm{F}_{5/2}^{\circ})5d^{2}(^{3}\mathrm{F})$		5/2	53716.38	1.183	32	³ [⁵ / ₂]°	19	$(^2F^{\circ}_{7/2})(^1D)^{-1}[^5/_2]^{\circ}$
$4f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d^{2}(^{1}\mathrm{D})$	¹[¹¹/2]°	11/2	54192.51	1.11	70		8	$(^2F^{\circ}_{7/2})(^3F)\ ^3[^9/_2]^{\circ}$
$4f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d^{2}(^{1}\mathrm{D})$	¹ [9/ ₂]°	9/2	54640.82	1.13	60		10	$(^2F^{\circ}_{7/2})(^3P)$ $^3[^7/_2]^{\circ}$
	¹ [3/ ₂]°	3/2	55221.46	1.11	56		22	$(^2F^{\circ}_{7/2})(^3P)\ ^3[^5/_2]^{\circ}$
$4f^{13}(^{2}\mathrm{F}_{7/2}^{\circ})5d^{2}(^{3}\mathrm{P})$	3[9/ ₂]°	$\frac{7}{2}$ $\frac{9}{2}$ $\frac{11}{2}$	55462.68 56088.39 56621.15	0.878 1.11 1.16	62 63 64		22 10 14	$\begin{array}{c} (2F_{5/2}^{\circ})(^{3}F) \ ^{3}[^{9}/_{2}]^{\circ} \\ (2F_{7/2}^{\circ})(^{1}G) \ ^{1}[^{9}/_{2}]^{\circ} \\ (2F_{7/2}^{\circ})(^{1}G) \ ^{1}[^{11}/_{2}]^{\circ} \end{array}$
$4f^{13}(^2\mathrm{F}_{^{7/2}})5d^2(^3\mathrm{P})$		5/2	56056.91	1.12	32	^{3[5/2]°}	32	$(^2\mathrm{F}^{\circ}_{7/2})(^3\mathrm{F})~^3[^5/_2]^{\circ}$
$4f^{13}(^2 ext{F}^{\circ}_{5/2})5d^2(^3 ext{F})$	3[11/2]°	$\frac{9}{2}$ $\frac{11}{2}$ $\frac{13}{2}$	56480.77 58051.51 59632.21?	0.76 0.95	94 99 93		3 7	(2F _{7/2})(3P) 3[9/2]° (2F _{5/2})(1G) 1[13/2]°
$4f^{13}(^2 ext{F}^\circ_{7/2})5d^2(^3 ext{P})$	3[5/2]°	7/ ₂ 5/ ₂ 3/ ₂	56500.64 57798.51 58162.75	1.352 1.151 0.94	77 50 60		8 22 18	$({}^{2}F_{7/2}^{\circ})({}^{3}P) {}^{3}[{}^{7}/{}_{2}]^{\circ} \\ ({}^{2}F_{7/2}^{\circ})({}^{1}D) {}^{1}[{}^{5}/{}_{2}]^{\circ} \\ ({}^{2}F_{7/2}^{\circ})({}^{1}D) {}^{1}[{}^{3}/{}_{2}]^{\circ}$
$4f^{13}(^2F_{5/2}^{\circ})5d^2(^3F)$		3/2	56840.04	0.90	40	³ [⁵ / ₂]°	19	$(^2F_{5/2}^{\circ})(^3F)\ ^3[^3/_2]^{\circ}$
$4f^{13}(^2{\rm F}_{5/2}^{\circ})5d^2(^3{\rm F})$	3[1/2]°	$\frac{1}{2}$ $\frac{3}{2}$	56977.71 59777.07	2.19 1.63	90 71		8 21	$(^2F_{5/2}^{\circ})(^3F)\ ^3[^3/_2]^{\circ}$
$4f^{13}(^2F_{7/2}^{\circ})5d^2(^1G)$	¹ [7/ ₂]°	7/2	57103.02	1.10	82		11	$(^2F^{\circ}_{7/2})(^1D)$ $^1[^7/_2]^{\circ}$
$4f^{13}(^{2}\mathrm{F}_{5/2}^{\circ})5d^{2}(^{3}\mathrm{F})$	3[9/2]°	$\frac{7}{2}$ $\frac{9}{2}$ $\frac{11}{2}$	57534.45 59046.89 61442.82	0.87 1.08 1.11	54 57 91		16 24 4	$\begin{array}{c} (^2F_{5/2}^\circ)(^3F)\ ^3[^7/_2]^\circ \\ (^2F_{5/2}^\circ)(^3F)\ ^3[^7/_2]^\circ \\ (^2F_{7/2}^\circ)(^1G)\ ^1[^{11}/_2]^\circ \end{array}$
$4f^{13}(^{2}\text{F}^{\circ}_{7/2})5d^{2}(^{1}\text{G})$	¹[¹3/2]°	13/2	57561.62	1.04	94		5	$(^2F_{5/2}^{\circ})(^1G)\ ^1[^{13}/_2]^{\circ}$
$4f^{13}(^{2}F_{7/2}^{\circ})5d^{2}(^{1}G)$	¹ [9/ ₂]°	9/2	58484.54	1.02	75		11	$(^2F^{\circ}_{5/2})(^3F)\ ^3[^9/_2]^{\circ}$
$4f^{13}(^2\mathbf{F}^{\circ}_{5/2})5d^2(^3\mathbf{F})$	3[7/2]	5/2 7/2 9/2	58661.13 59624.66 60649.86	0.86 1.10	59 60 57		14 19 20	$(^{2}F_{5/2}^{\circ})(^{3}F) \ ^{3}[^{5}/_{2}]^{\circ} \ (^{2}F_{5/2}^{\circ})(^{3}F) \ ^{3}[^{9}/_{2}]^{\circ} \ (^{2}F_{5/2}^{\circ})(^{3}F) \ ^{3}[^{9}/_{2}]^{\circ}$
"	³ [3/ ₂]°	1/2	58672.53	0.538	69		15	$(^2F^{\circ}_{7/2})(^1G)^{-1}[^1/_2]^{\circ}$
$4f^{13}(^{2}\mathrm{F_{5/2}^{\circ}})5d^{2}(^{3}\mathrm{F})$		5/2	59439.08	0.994	33	³ [³ / ₂]°	29	$(^2F^{\circ}_{5/2})(^3F)\ ^3[^5/_2]^{\circ}$
$4f^{13}(^{2}\text{F}_{7/2}^{\circ})5d^{2}(^{1}\text{G})$	1[11/ ₂]°	11/2	59753.84	1.11	73		14	$(^2\mathrm{F}^{\circ}_{7/2})(^1\mathrm{D})\ ^1[^{11}/_2]^{\circ}$

Yb II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Leading percentages				
$4f^{13}(^{2}\text{F}_{5/2}^{\circ})5d^{2}(^{3}\text{F})$		3/2	60910.14	1.00	36	³ [³ / ₂]°	20	$(^{2}F_{5/2}^{\circ})(^{3}F)\ ^{3}[^{1}/_{2}]^{\circ}$	
$4f^{13}(^{2}F_{5/2}^{\circ})5d^{2}(^{3}F)$	3[5/ ₂]°	7/2	62046.07	1.14	67		11	$(^2F_{5/2}^{\circ})(^1D) \ ^1[^7/_2]^{\circ}$	
$4f^{13}(^{2}\text{F}^{\circ}_{5/2})5d^{2}(^{3}\text{F})$		5/2	62163.92		33	³ [³ / ₂]°	32	$({}^{2}F_{5/2}^{\circ})({}^{3}F) {}^{3}[{}^{5}/{}_{2}]^{\circ}$	
$4f^{13}(^{2}\text{F}_{5/2}^{\circ})5d^{2}(^{3}\text{P})$	3[5/ ₂]°	3/2	63028.26	0.51	66		22	(2F _{5/2})(3F) 3[5/ ₂]°	
J (= (=)	[,-]	$^{5}/_{2}$	63417.03	1.01	75		4	$(^{2}\mathrm{F}^{\circ}_{5/2})(^{1}\mathrm{G})^{-1}[^{5}/_{2}]^{\circ}$	
		7/2	64169.39		51		17	$({}^{2}\mathrm{F}^{\circ}_{5/2})({}^{1}\mathrm{D}) {}^{1}[{}^{7}\!/_{2}]^{\circ}$	
$4f^{14}(^{1}S)7p$	² P°	$-\frac{1}{2}$	63706.25 65594.10	0.661					
$4f^{13}(^{2}\text{F}_{5/2}^{\circ})5d^{2}(^{1}\text{G})$	¹[³/2]°	3/2	64191.97	1.193	80		5	(2F _{5/2})(3F) 3[5/ ₂]°	
$4f^{13}(^{2}\text{F}_{5/2}^{\circ})5d^{2}(^{1}\text{D})$	¹ [9/ ₂]°	9/2	64365.00		68		10	(2F _{5/2})(1G) 1[9/ ₂]°	
$4f^{13}(^{2}\text{F}_{5/2}^{\circ})5d^{2}(^{1}\text{D})$		7/2	64970.74		40	¹[7/2]°	28	(2F _{5/2})(3P) 3[5/ ₂]°	
$4f^{13}(^{2}\text{F}_{5/2}^{\circ})5d^{2}(^{1}\text{D})$	¹ [1/2]°	1/2	65149.31			[/~]			
			,		64		30	$(^{2}F_{5/2}^{\circ})(^{3}P) \ ^{3}[^{3}/_{2}]^{\circ}$	
$4f^{13}(^{2}F_{5/2}^{\circ})5d^{2}(^{1}G)$	¹ [5/ ₂]°	5/2	65739.47	0.879	31		23	$({}^{2}F_{5/2}^{\circ})({}^{3}P) {}^{3}[{}^{7}/{}_{2}]^{\circ}$	
$4f^{13}(^{2}\mathrm{F}^{\circ}_{5/2})5d^{2}(^{1}\mathrm{D})$	¹ [3/ ₂]°	3/2	66189.00	0.91	67		22	$(^2F_{5/2}^{\circ})(^3P)$ $^3[^3/_2]^{\circ}$	
$4f^{13}(^{2}\mathrm{F}^{\circ}_{5/2})5d^{2}(^{1}\mathrm{G})$		5/2	66205.87		32	$^{1}[^{5}/_{2}]^{\circ}$	19	$({}^{2}F_{5/2}^{\circ})({}^{1}D) {}^{1}[{}^{5}/{}_{2}]^{\circ}$	
$4f^{13}(^{2}\mathrm{F}^{\circ}_{5/2})5d^{2}(^{3}\mathrm{P})$	3[7/ ₂]°	7/2	66796.03		81		10	$({}^{2}F_{5/2}^{\circ})({}^{3}F) {}^{3}[{}^{7}\dot{/}_{2}]^{\circ}$	
$4f^{13}(^{2}\text{F}_{5/2}^{\circ})5d^{2}(^{3}\text{P})$	3[3/ ₂]°	3/2	67789.60?		73		20	$({}^{2}F_{5/2}^{\circ})({}^{1}D) {}^{1}[{}^{3}/{}_{2}]^{\circ}$	
		$\frac{5}{2}$ $\frac{1}{2}$	67933.51	1.17	72 70		22 28	$({}^{2}\mathrm{F}^{\circ}_{5/2})({}^{1}\mathrm{G}) {}^{1}[{}^{5}/{}_{2}]^{\circ} \ ({}^{2}\mathrm{F}^{\circ}_{5/2})({}^{1}\mathrm{D}) {}^{1}[{}^{1}/{}_{2}]^{\circ}$	
4f ¹⁴ (¹ S)5f	2F°	5/2	70502.90					(102)(2) [72]	
<i>y</i> (∼) <i>y</i>		$\frac{7}{2}$	70580.19						
$4f^{14}(^{1}S)6f$	2F°	5/2	80458.95						
		7/2	80471.80						
		9/2	84217.85	1.19					
		7/ ₂	84444.07						
If ¹⁴ (¹ S)7f	²F°	5/ ₂ 5/ ₂	84632.71 85898.13						
g - (-a) ij	- F	7/2	85898.13 85906.20						
		5/2	86148.67	1.575					
	Ì	3/2	86226.31	1.35					
		7/2	87385.74	1.14					
		11/2	88702.97	1.08?					
		7/2	88721.12	1.17					
f ¹⁴ (¹ S)8f	²F°	⁵ / ₂ ⁷ / ₂	89175.85 89185.44						
		9/2	89605.80	0.94?					
		5/2	89615.59						
		3/2	89897.55	1.01					
		7/2	90142.74						
		9/2	90209.67						

Yb II, Odd Parity—Continued

Yb II, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
		11/2	90279.08	1.12			3/2	93998.52	
		9/2	90717.54				7/2	94008.96	
		$^{5}/_{2}$	90859.07				7/2	94303.58	1.12
		7/2	91237.94				11/2	94335.70	
		13/2	91301.57	1.22			9/2	94360.00	
$4f^{14}(^{1}S)9f$	₂ F°	7/2	91311.40				3/2	94428.80	
¥) (15)3)	1	5/2	91314.85		$4f^{14}(^{1}S)12f$	2F°	7/2	94579.04	
		7/2	91536.40	1.13?			3/2	94823.18	
		5/2	91602.54	1.17	$4f^{14}(^{1}S)13f$	2F°	7/2	95163.35	
		9/2	92015.76	1.11			9/2	95550.55	
		$\frac{3}{2}$	92278.27	1.49?	$4f^{14}(^{1}S)14f$	2F°	7/2	95619.7	
		7/2	92303.24	1.49:			7/2	95691.32	
		11/2					11/2	95754.30	0.89
		11/2	92647.34				11/2	96382.06	1.23
$4f^{14}(^{1}S)10f$	² F°	5/ ₂ 7/ ₂	92764.62 92766.91				9/2	96482.44	
	•	./2	92700.91				11/2	96898.03	
		9/2	92914.15				13/2	97043.28	
		7/2	92919.10				9/2	97086.51	
		7/2	92976.50						
		11/2	93096.30	1.23		Ŧ			
		7/2	93195.03		Yb III (¹So)	Limit		98269	
		11/2	93242.39				9/2	98521.73	
		13/2	93246.19	1.21?			13/2	98620.02	
		7/2	93463.01				11/2	98802.66	
		9/2	93503.89				13/2	98829.49	
		5/2	93546.00				11/2	99246.37	
$4f^{14}(^{1}S)11f$	2F°	7/2	93808.12				9/2	99414.42	
		5/2	93864.57				11/2	100025.57	
		9/2	93867.22						

Yb III

(Er I sequence; 68 electrons)

Z = 70

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{14}$ $^{1}S_0$

Ionization energy 202070± 200 cm⁻¹

 $25.05 \pm 0.03 \text{ eV}$

Identified even configurations

 $4f^{14}, 4f^{13}6p$

Identified odd configurations

 $4f^{13}5d$, $4f^{13}6s$, $4f^{13}7s$, $4f^{13}6d$

All but one of the levels are from Bryant's analysis of this spectrum [1961, 1965]. Except for $4f^{13}6d$, each of the configurations listed above is complete. The position for the $4f^{13}(^2F_{5/2}^{\circ})_0^2$ level was suggested by Sugar [1970].

The basic theoretical interpretation is also due to Bryant, who noted the strong tendency toward J_1j coupling. The leading eigenvector percentages in LS coupling are also listed. All percentages are from Bryant's calculations except for $4f^{13}5d$, which has more recently been calculated with the inclusion of appropriate effective interactions. The leading percentages for $4f^{13}5d$ in J_1j coupling are from Goldschmidt and Salomon [1972], and the percentages in LS coupling are from a similar calculation by Sugar [1973]. A complete set of energy-parameter values derived by fitting $(4f^{13}5d+4f^{13}6s)$ has been published by Wyart, Blaise, and Camus [1974].

Bryant gave positions for 10 of the 20 levels expected for $4f^{13}6d$, which he located by classifying a number of $4f^{13}6p-4f^{13}6d$ transitions in the vicinity of 2100 Å. His J_1j designations for the $4f^{13}6d$ levels are tentative.

Bryant's full line list [1961] gives an experimental separation of the Yb spectra from the different ions, and has lines assigned to Yb III extending from 968 Å to 10830 Å. Meggers and Corliss [1966] attributed 430 lines to Yb III in the region above 2000 Å, also based on an experimental separation. The assignments of lines occurring in both lists do not always agree. Bryant's analysis gives classifications for almost 200 Yb III lines, including practically all of the strong lines (1798–5432 Å).

The ionization potential is from Kaufman and Sugar.

References

Bryant, B. W., Johns Hopkins Spectr. Report No. 21, 82 pp. (1961). EL CL W IP PT

Bryant, B. W., J. Opt. Soc. Am. 55, 771 (1965). EL CL W IP PT

Goldschmidt, Z. B., Thesis, Hebrew Univ. Jerusalem, Israel, 487 pp. (1968). PT

Goldschmidt, Z. B., and Salomon, D., unpublished calculations (1972); see Goldschmidt, Z. B., in Atomic Physics 3, S. J.

Smith and G. K. Walters, Eds., pp. 221-246 (Plenum Press, New York, 1973). ND PT

Kaufman, V., and Sugar, J., J. Opt. Soc. Am. 66, 1019 (1976). IP

Meggers, W. F., and Corliss, C. H., J. Res. Nat. Bur. Stand. (U.S.) 70A, 63 (1966). W

Sugar, J., J. Opt. Soc. Am. 60, 571 (1970). EL CL PT

Sugar, J., unpublished calculations (1973). PT

Wyart, J. F., Blaise, J., and Camus, P., Phys. Scr. 9, 325 (1974). PT

[October 1976]

Yb III

Configuration	Term	J	Level (cm ⁻¹)		Leading p	ercentages	s
1f ¹⁴	¹ S	0	0.00				
$f^{13}(^2\mathrm{F}^{\circ}_{7/2})5d_{3/2}$	(7/2,3/2)°	2	33385.80	79	or	01	зΡ°
, , , , , , , , , , , ,	(12, 12)	$\frac{2}{5}$	37020.25	96	or	91	3H°
		$\ddot{3}$	39141.18	94		54	зD.
		4	40160.03	93	or or	56 47	³F°
$f^{13}(^2\mathrm{F}^{\circ}_{7/2})6s_{1/2}$	$(7/2,1/2)^{\circ}$	4	21070 12	4.00			
(1/1/2)031/2	(12,-12)	3	34656.13 34990.66	100 100	or or	100 54	3F° 1F°
$f^{13}(^2 ext{F}_{7/2}^{\circ})5d_{5/2}$	(71 51 \0				OI.	94	_
(-F 7/2)305/2	$(7/2,5/2)^{\circ}$	$rac{6}{1}$	39085.39 39720.79	100	or	100	3H°
		$\overset{1}{2}$	40288.07	67	or	81	3P°
		4		81	\mathbf{or}	57	¹ D°
		3	42425.08	92	\mathbf{or}	46	3F°
		ა 5	43019.16 43622.75	93 95	or or	40 83	¹F°
12/0170 \ \ 2			45022.75	90	OI	83	G
$^{13}(^{2}\mathrm{F}^{\circ}_{5/2})6s_{1/2}$	$(5/2,1/2)^{\circ}$	2	44853.59	100	or	100	${}^3\mathrm{F}^\circ$
		3	45207.64	100	or	54	
$^{13}(^2\mathrm{F}^{\circ}_{5/2})5d_{5/2}$	(5/2,5/2)°	0	45276.85?	100	or	100	зРο
	, . ,	1	50029.42	84			3D°
		5	50357.46		or		
		2	51463.38	98 05	or		3H°
		$\frac{2}{3}$	53122.79	95 oc	or		3E°
		3 4	53735.86	96 96	or or		³F°
12/2000			00700.00	90	OI	57	G
$^{13}(^{2}\mathrm{F}^{\circ}_{5/2})5d_{3/2}$	$(5/2,3/2)^{\circ}$	4	47056.92	93	\mathbf{or}	80	³H°
		2	48414.67	95	or		³F°
		3	51581.78	97	or		3G°
		1	53365.19	72	or		¹P°
$^3(^2\mathrm{F}^{\circ}_{7/2})6p_{1/2}$	(7/2,1/2)	3	79140.95	00			3D
,/op1/2	(12, 12)	3 4	72140.35	98	or		^{3}D
		4	72486.97	99	\mathbf{or}	46	3 G
$^3(^2\mathrm{F}\mathring{7}_{/2})6p_{3/2}$	$(^{7}/_{2},^{3}/_{2})$	5	78020.45	100	or	100	³G
		2	78183.44	99	or	49	$^{1}\mathrm{D}$
		3	78779.29	97	or		$^{1}\mathrm{F}$
		4	79282.90	99	\mathbf{or}		зF
$^{3}(^{2}\mathrm{F}^{\circ}_{5/2})6p_{1/2}$	(5/2, 1/2)	3	82546.33	98	or	77	³G
· · · · · · · · · · · · · · · · · · ·	(12, 12)	2	82907.42	98 98	or or		¹D
13/2TP \ \C.	/E 01 \				0.		
$^{3}(^{2}\mathrm{F}_{5/2}^{\circ})6p_{3/2}$	(5/2,3/2)	1	87612.61	100	or		^{3}D
		4	88497.90	100	or		^{3}G
		2	88977.09	98	\mathbf{or}		³F
		3	89397.41	99	or	53	³F
$^{13}(^{2}\mathrm{F}^{\circ}_{7/2})7s_{1/2}$	$(7/2,1/2)^{\circ}$	4	120247.02	100	or	100	³F°
		3	120364.81	100	or		${}^{1}\mathrm{F}^{\circ}$
13(2F ^o /2)6d _{3/2} ?	(⁷ / ₂ , ³ / ₂)°?	4	125810.04				
			120010.04				
$^{3}(^{2}\mathrm{F}^{\circ}_{7/2})6d_{5/2}?$	$(7/2,5/2)^{\circ}$?	6					
		1					
		2	125986.98				
		4	126456.07				
		3	126559.11				
		5					
$^{3}(^{2}\mathrm{F}^{\circ}_{5/2})7s_{1/2}$	(5/2,1/2)°	9	120157 15	100		400	3170
(1 3/4/131/2	(12,-12)	$\frac{2}{3}$	130457.45 130551.08	100 100	or or		$^3\mathrm{F}^\circ$
10/07/0			100001.00	100	OI.	56	
$^{13}(^{2}\mathrm{F}_{5/2}^{\circ})6d_{3/2}?$	$(5/2,3/2)^{\circ}$?	4,3	132864.02				
18/070 \ 1 - 1 - 0	(5/2,3/2)°?	1,2	133997.33				
3(2F)5/2)6d3/2?	1 (-/9/91						
$3(^{2}F_{5/2})6d_{3/2}?$ $3(^{2}F_{5/2})6d_{3/2}?$	$(5/2,3/2)^{\circ}$?	3,2	100007.00				

Yb III—Continued

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages
$4f^{13}(^2 ext{F}^{\circ}_{5/2})6d_{5/2}?$	(5/2,5/2)°?	2	136350.98	
$4f^{13}(^2\mathrm{F}^{\circ}_{5/2})6d_{5/2}?$	(5/2,5/2)°?	3	136699.69	
$4f^{13}(^{2}\mathrm{F}_{5/2}^{\circ})6d_{5/2}?$	(5/2,5/2)°?	4,3	136849.44	
			 	
Yb IV $(^2F_{7/2}^\circ)$	Limit		202070	

Yb IV

(Ho I sequence; 67 electrons)

Z = 70

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{13}$ $^2F_{7/2}^{\circ}$

Ionization energy 351300±800 cm⁻¹

 $43.56 \pm 0.10 \text{ eV}$

Identified odd configurations $4f^{13}$, $4f^{12}6p$

Identified even configurations $4f^{12}5d$, $4f^{12}6s$

Bryant [1961] observed the spectra of arc and spark discharges between Yb electrodes and gave an experimental separation of the lines from the different ions (see Yb III). His line list includes assignments to Yb IV from 677 to above 3700 Å, but the wavelengths below 2000 Å are probably not sufficiently accurate for analysis. An array of transitions to the $4f^{13}$ ²F° levels was set up, but the derived ²F° interval was later found to be erroneous.

Kaufman and Sugar [1976] observed the spectrum of a sliding-spark source over the region 800-1500 Å and assigned about 200 lines to Yb IV. Their paper gives the wavelengths for 38 of these lines, which were classified as transitions from 19 upper $4f^{\,12}5d$ levels to the $4f^{\,13}\,^2\mathrm{F}^\circ$ ground doublet. The observations have recently been extended up to 2190 Å, and about 320 of the more than 600 lines now assigned to Yb IV are classified [Sugar, Kaufman, and Spector, 1977]. The levels here are from this new analysis, which includes transitions from the $4f^{\,12}5d-4f^{\,12}6p$ and $4f^{\,12}6s-4f^{\,12}6p$ arrays. The $^2\mathrm{F}^\circ_{5/2}-^2\mathrm{F}^\circ_{7/2}$ ground-term interval is accurate to about ± 0.1 cm $^{-1}$, and most of the higher levels are accurate to within ± 0.5 cm $^{-1}$.

The leading percentages for the levels of the excited configurations are from calculations by Sugar et al. [1977]. We have listed the percentages in the same coupling schemes as for the isoelectronc spectrum Tm III, with the first percentages being given in J_1j schemes based on levels of the $4f^{12}$ core. Leading percentages in LS coupling are listed in the last column (following the word "or") for the $4f^{12}6p$ levels and for all except three of the even levels. The calculation for $(4f^{12}5d+4f^{12}6s)$ included the interaction of these configurations; for three levels with eigenvectors having >20% configuration mixing, we give as the second percentage the total percentage contribution of the second configuration.

Sugar et al. [1977] obtained the quoted ionization energy by the method outlined by Sugar and Reader [1973]; the new value is more accurate because of the elimination of the uncertainty in the position of the $4f^{12}5d$ configuration.

References

Bryant, B. W., Johns Hopkins Spectr. Rep. No. 21, 82 pp. (1961). W Bryant, B. W., J. Opt. Soc. Am. 55, 771 (1965). Kaufman, V., and Sugar, J., J. Opt. Soc. Am. 66, 439 (1976). EL CL Sugar, J., Kaufman, V., and Spector, N., unpublished material (1977). EL ND CL W IP PT Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP

[May 1977]

Yb IV

Configuration	Term	J	Level (cm ⁻¹)			Leadir	ng per	centages	
4f 13	²F°	7/ ₂ 5/ ₂	0.0 10214.0						
$4f^{12}(^{3}\text{H}_{6})5d_{3/2}$	$(6,^{3}/_{2})$	9/2	78529.2	85	or		78	(³ H) ⁴ F	
•		15/2	82185.6	97	\mathbf{or}		53	(^3H) 2K	
		$\frac{11}{2}$ $\frac{13}{2}$	82673.1	80	or		77	(3H) 4G	
		10/2	85545.6	93	or		34	(^3H) 4I	
$4f^{12}(^{3}\text{H}_{6})5d_{5/2}$	(6, 5/2)	$\frac{7}{2}$	84347.1	42	\mathbf{or}		46	(3H) 4F	
		$\frac{17}{2}$ $\frac{9}{2}$	85124.9 88118.1	99 52	or or		99 31	(³ H) ⁴ K (³ H) ⁴ G	
		11/2	88175.3	51	or		28	(³ H) ² H	
		$\frac{15}{2}$	88877.3	97	or		83	(3H) 4I	
		$^{13}/_{2}$	89422.5	63	or		38	(³ H) ⁴ H	
$4f^{12}(^{3}F_{4})5d_{3/2}$	$(4,^3/2)$	⁵ / ₂	88321.9	45	or		22	(^3F) 4D	
$4f^{12}(^{3}\mathbf{F_{4}})5d_{3/2}$		7/2	89520.6	37	$(4,^3/2)$	or	21	(^3F) 4D	
$4f^{12}(^{3}F_{4})5d_{3/2}$		9/2	90045.7	44	$(4,^3/2)$	or	23	(3H) 4G	
$4f^{12}(^{3}\text{H}_{6})5d_{5/2}$		11/2	90834.2	23	(6,5/2)	or	20	(^3H) 2H	
$4f^{12}(^{3}\text{H}_{5})5d_{5/2}$	(5, 5/2)	$^{5}/_{2}$	91482.3	40	\mathbf{or}		59	(^3H) 4F	
•		$\frac{15}{2}$	95977.0	99	or		59	(³ H) ⁴ K (³ H) ⁴ G	
		9/2	97592.9	47 64	or or		30 24	(3H) 4G	
		11/2	99180.4	76	\mathbf{or}		43	(^3H) 4H	
		$^{13}/_{2}$		91	or		5 8	(3H) 4I	
$4f^{12}(^{3}\text{H}_{5})5d_{3/2}$	$(5,^{3}/_{2})$	7/2	91532.5	47	or		55	(^{3}H) ^{2}F	
		13/2	91931.8	81	\mathbf{or}		49	(3H) 4K	
		$\frac{^{11}/_{2}}{^{9}/_{2}}$	95078.1 95215.7	81 61	or or		42 45	(³ H) ⁴ I (³ H) ² G	
$4f^{12}(^{3}F_{4})5d_{5/2}$	(4,5/2)	11/2	93080.9	55	or		47	(3F) 4G	
$4f^{12}(^{3}F_{4})5d_{5/2}$	$(4, \frac{5}{2})$	9/ ₂	94387.1	54	or		33	(3F) 4F	
$4f^{12}(^{3}F_{4})5d_{3/2}$. , , , ,	5/2	94498.5	27	$(4,^3/2)$	or	27	(3F) 4P	
$4f^{12}(^{3}F_{4})5d_{5/2}$		7/2	94834.2	24	(4,5/2)	or	21	(^3F) 4D	
$4f^{12}(^{3}F_{4})5d_{5/2}$		13/2	95317.0	31	(4,5/2)	\mathbf{or}	31	(3F) 4H	
$4f^{12}(^{3}\text{H}_{4})5d_{3/2}$	$(4,^3/2)$	11/2	97587.8	49	\mathbf{or}		40	(^3H) 4K	
$4f^{12}(^{3}{ m H}_{5})5d_{5/2}$		⁵ / ₂	98222.8	30	(5,5/2)	\mathbf{or}	26	(^3H) 2F	
$4f^{12}(^{3}\mathrm{F}_{3})5d_{3/2}$	$(3,^3/2)$	7/2	98502.5	52	\mathbf{or}		37	(^3F) 4G	
$4f^{12}(^{3}\text{H}_{4})5d_{3/2}$		9/2	98971.6	44	$(4,^3/2)$	or	25	(^3H) 4I	
$4f^{12}(^{3}F_{2})5d_{3/2}$		$^{5}/_{2}$	99344.8	43	(2,3/2)	\mathbf{or}	43	(^3F) 4G	
$4f^{12}(^{3}F_{2})5d_{3/2}$		$^{7}/_{2}$	100350.4	31	$(2,^3/2)$	or	25	(^3F) 4H	
$4f^{12}(^{3}\text{H}_{4})5d_{5/2}$		5/2	101318.4	18	(4,5/2)	or	26	(^3H) 4G	
$4f^{12}(^{3}F_{3})5d_{3/2}$	$(3,^{3}/_{2})$	9/2	101966.6	53	or		36	(^3F) 4H	
$4f^{12}(^{3}\text{F}_{3})5d_{3/2}$		$^{5}/_{2}$	102158.1	34	(3, 3/2)	\mathbf{or}	23	(3F) 4P	
$4f^{12}(^{3}F_{2})5d_{5/2}$		7/2	102542.5	21	(2,5/2)	or	35	(^3F) 4F	
$4f^{12}(^{3}\text{H}_{4})5d_{5/2}$		9/2	102790.1	23	(4,5/2)	or	27	(^3F) 4F	
$4f^{12}(^{3}\text{H}_{4})5d_{5/2}$		11/2	102850.6	40	(4,5/2)	or	29	(^3H) 2I	
$4f^{12}(^{3}\mathrm{F}_{3})5d_{5/2}$	(3,5/2)	5/2	103484.2	63	\mathbf{or}		31	(^3F) 4D	
$4f^{12}(^{3}\mathrm{F}_{3})5d_{5/2}$		7/2	104226.0	39	(3,5/2)	or	59	(^3F) 2G	
$4f^{12}(^{3}\mathrm{F}_{3})5d_{5/2}$	(3,5/2)	9/2	104613.3	59	or		38	(^3F) 2H	
$4f^{12}(^{3}\mathrm{F}_{2})5d_{5/2}$		$^{7}/_{2}$	105685.0	29	(2,5/2)	\mathbf{or}	32	(^3F) 2F	

Yb IV—Continued

Configuration	Term	J	Level (cm ⁻¹)		I	eadin	g perc	eentages
4f ¹² (³ H ₆)6s _{1/2}	(6,1/2)	$\frac{13}{2}$ $\frac{11}{2}$	105978.8 106801.7	99 77	or		99 22	(³ H) ⁴ H 4f ¹² 5d
$4f^{12}(^3\mathrm{F}_3)5d_{5/2}$		7/2	106040.0	23	(3,5/2)	or	20	(^3H) 2G
$4f^{12}(^3\mathrm{F}_3)5d_{5/2}$	(3,5/2)	$^{11}/_{2}$	106557.7	58	\mathbf{or}		52	(^3F) 4H
$4f^{12}(^{3}\mathrm{F}_{2})5d_{5/2}$	(2,5/2)	$^{9}/_{2}$	107566.2	46	or		28	(^3F) 2H
$4f^{12}(^{3}\mathrm{F}_{2})5d_{5/2}$		$^{5}/_{2}$	107873.4	40	(2,5/2)	or	46	(^3F) 2D
$4f^{12}(^{3}\text{H}_{4})5d_{3/2}$		9/2	109025.2	41	$(4,^3/2)$	\mathbf{or}	38	(^{1}G) ^{2}H
$4f^{12}(^{1}G_{4})5d_{3/2}$		⁷ / ₂	110808.7	35	$(4,^3/_2)$	\mathbf{or}	31	(^{1}G) ^{2}F
$4f^{12}(^{1}G_{4})5d_{5/2}$		7/2	111550.7	34	(4,5/2)	or	2 8	(^3H) 4H
$4f^{12}(^{3}F_{4})6s_{1/2}$	(4,1/2)	9/ ₂ 7/ ₂	112189.4 112772.6	64 55	or or		64 39	(3F) 4F (3F) 2F
$4f^{12}(^{1}\mathrm{D_{2}})5d_{3/2}$		5/2	112679.1	21	(2,3/2)	\mathbf{or}	22	(^{1}G) ^{2}F
$4f^{12}(^{1}G_{4})5d_{5/2}$		9/2	112812.4	42	(4,5/2)	or	31	(¹G) ²G
$4f^{12}(^3\text{H}_5)6s_{1/2}$	(5,1/2)	$\frac{11}{2}$ $\frac{9}{2}$	115910.8 115974.6	98 98	or or		66 66	(3H) 4H
$4f^{12}(^{3}F_{2})5d_{3/2}$		5/2	117026.4	18	(2, 3/2)	or	29	(^3F) 2F
$4f^{12}(^{1}D_{2})5d_{5/2}$		$^{5}/_{2}$	120328.9	32	(2,5/2)	\mathbf{or}	22	(^{1}D) ^{2}F
$4f^{12}(^{1}I_{6})5d_{3/2}$	$(6,^{3}/_{2})$	9/2	120633.5	53			32	4f 12 6s
$4f^{12}(^{3}\text{H}_{4})6s_{1/2}$	(4,1/2)	7/2	120667.2	54	or		54	(^3H) 4H
$4f^{12}(^{3}P_{2})5d_{5/2}$		9/2	120773.8	34	(2,5/2)	or	33	(^3P) 4F
$4f^{12}(^{3}\text{H}_{4})6s_{1/2}$		9/2	121008.2	27	$(4,^{1}/_{2})$		49	$4f^{12} 5d$
$4f^{12}(^3F_3)6s_{1/2}$	(3,1/2)	⁵ / ₂ ⁷ / ₂	122476.4 122650.4	70 95	or or		88 63	(3F) 4F
$4f^{12}(^3F_2)6s_{1/2}$	(2, 1/2)	$\frac{3}{2}$ $\frac{5}{2}$	122787.4 123710.5	74 47	or or		74 73	(3F) 4F (3F) 2F
$4f^{12}(^{3}\text{Po})5d_{5/2}$		5/2	124939.3	24	(0, 5/2)	or	42	(3P) 4D
$4f^{12}(^{3}\mathrm{P}_{1})5d_{3/2}$	$(1,^3/2)$	5/2	126399.3	78	\mathbf{or}		64	(^3P) 4F
$4f^{12}(^{1}\mathrm{D_{2}})5d_{5/2}$		7/2	126867.0	29	(2,5/2)	\mathbf{or}	39	(^3P) 4D
$4f^{12}(^{3}P_{1})5d_{5/2}$		7/2	128900.2	39	(1, 5/2)	or	61	(^{3}P) ^{4}F
$4f^{12}(^{1}G_{4})6s_{1/2}$	(4,1/2)	7/ ₂ 9/ ₂	130524.0 130676.9	49 51	or or		49 51	(¹G) ²G
$4f^{12}(^{3}\text{H}_{6})6p_{1/2}$	(6,¹/2)°	$^{11}/_{2}$ $^{13}/_{2}$	152589.1 153208.4	97 99	or or		71 46	(3H) 4G° (3H) 2I°
$4f^{12}(^{3}F_{4})6p_{1/2}$	(4, ¹ / ₂)°	7/ ₂ 9/ ₂	158935.7 158939.6	62 57	or or		32 23	(3F) 4D° (3F) 2G°
$4f^{12}(^{3}\text{H}_{6})6p_{3/2}$	(6, ³ / ₂)°	15/ ₂ 9/ ₂	161110.4	99 60	or or		99 58	(3H) 4I° (3H) 4G°
		$\frac{11}{2}$ $\frac{13}{2}$	162061.8 162635.1	55 99	or or		32 73	(³ H) ⁴ I° (³ H) ⁴ H°
$4f^{12}(^{3}\text{H}_{5})6p_{1/2}$	(5, ¹ / ₂)°	$\frac{11}{2}$ $\frac{9}{2}$	162991.9 163002.5	58 69	or or		58 76	(³ H) ² H° (³ H) ² G°
$4f^{12}(^{3}\text{H}_{4})6p_{1/2}$	(4,¹/2)°	9/ ₂ 7/ ₂	167196.3 167413.4	38 48	or or		38 24	(³ H) ⁴ I° (³ H) ⁴ G°

Yb IV—Continued

Configuration	Term	J	Level (cm ⁻¹)		L	eading	g perc	entages	
$4f^{12}(^{3}F_{4})6p_{3/2}$	(4,3/2)°	5/2	167591.0	40	or		28	(¹G) ²F°	
•		11/2	168021.4	59	\mathbf{or}		59	(3F) 4G°	
		9/2	168092.9	44	or		34	(3F) 2G°	
		7/2	168124.6	46	or		33	(^3F) $^4D^\circ$	
$4f^{12}(^{3}F_{3})6p_{1/2}$	(3,1/2)°	5/2	169279.8	84	or		43	(^3F) $^4F^\circ$	
		7/2	169417.6	61	or		44	(^3F) $^2F^{\circ}$	
$4f^{12}(^{3}F_{2})6p_{1/2}$	$(2, 1/2)^{\circ}$	3/2	169733.3	73	\mathbf{or}		40	(3F) 4F°	
		5/2	170669.6	51	or		35	(3F) 2D°	
$4f^{12}(^{3}\text{H}_{5})6p_{3/2}$	(5,3/2)°	13/2	170974.7	100	or		67	(3H) 4I°	
		7/2	171510.4	76	or		45	(3H) 4G°	
	ADD-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	9/2	171867.0	96	or		34	(3H) 4H°	
		11/2	172211.3	99	\mathbf{or}		59	(3H) 4H°	
$4f^{12}(^{3}\text{H}_{4})6p_{3/2}$	$(4,^3/_2)^{\circ}$	5/2	175765.1	56	or		56	(3H) 4G°	
		11/2	176127.7	57	or		36	(3H) 2I°	
		9/2	176478.9	44	or		28	(3H) 4I°	
		7/2	176542.8	51	or		37	(3H) 4H°	
$4f^{12}(^{1}G_{4})6p_{1/2}$		7/2	177796.3	45	$(4,^{1}/_{2})^{\circ}$	or	29	(^{1}G) $^{2}F^{\circ}$	
$4f^{12}(^{3}\text{F}_{3})6p_{3/2}$	(3,3/2)°	7/2	178036.7	81	\mathbf{or}		37	(3F) 4F°	
		5/2	178049.9	68	or		42	(^3F) $^4D^\circ$	
	÷	3/2		60	\mathbf{or}		79	(^3F) $^4D^\circ$	
		9/2	178524.6	93	\mathbf{or}		60	(3F) 4G°	
$4f^{12}(^{3}\mathbf{F_{2}})6p_{3/2}$	$(2,^3/2)^{\circ}$	5/2	178684.9	49	\mathbf{or}		48	(^3F) $^2F^{\circ}$	
		1/2		. 77	\mathbf{or}		76	(^3F) $^4D^\circ$	
		3/2		49	\mathbf{or}		45	(3F) 2D°	
		7/2	179305.5	68	\mathbf{or}		49	(3F) 2G°	
$4f^{12}(^{1}D_{2})6p_{1/2}$		5/2	184497.6	34	$(2,1/2)^{\circ}$	or	30	(1D) ${}^2\mathrm{F}^{\circ}$	
$4f^{12}(^{1}G_{4})6p_{3/2}$	$(4,^3/_2)^{\circ}$	5/2	185869.2	48	or		47	(¹G) ²F°	
		11/2	185941.1	54	or		54	(^{1}G) $^{2}H^{\circ}$	
		7/2	185972.2	54	or		34	(^{1}G) $^{2}G^{\circ}$	
		9/2	186461.7	53	or		40	(1G) 2G°	
Yb v (³ H ₆)	Limit		351300						

LUTETIUM

Lu I

71 electrons Z=71

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}4f^{14}5s^25p^6)$ 5 $d6s^2$ $^2D_{3/2}$

Ionization energy 43762.39 ± 0.10 cm⁻¹

 5.42589 ± 0.00002 eV

Identified even configurations

 $5d6s^2$, $5d^26s$, $6s^27s-14s$, $6s^26d-34d$, $6s6p^2$, 5d6s7s

Identified odd configurations

 $6s^26p-27p$, 5d6s6p, $5d^26p$?, $6s^25f-35f$

Main References for Levels, Wavelengths, g Values

In their 1930 paper on the first three spectra of lutetium, Meggers and Scribner noted that "there is no evidence of f electrons playing any part in the production of the spectra; it is concluded that the fourteen f electrons in Lu form a closed shell of considerable stability." We have recognized this stability by writing the ground configurations with the $4f^{14}$ electrons included with the other electrons of the N shell, instead of with the external electrons. With regard to interactions of the 5d, 6s, and 6p electrons, the Lu spectra give a smooth connection between the rare earths and the Pt (5d) group. In fact Lu I and Lu II are structurally two of the simplest spectra of the 5d group, rather than rare-earth spectra.

In addition to their discovery of the ground term of Lu I, Meggers and Scribner found 15 odd levels. In 1937 these authors published a more complete description of the arc and spark spectra of lutetium that includes about 250 Lu I lines in the range 2500-10770 Å. Except for the long series of absorption lines measured by Camus and Tomkins (2280-3700 Å), this has remained the main source of Lu I wavelengths in the range covered. Klinkenberg's extension of the analysis in 1954 allowed the classification of 124 lines by 51 levels.

Most of the energy levels are taken from Klinkenberg and from Camus and Tomkins [1972], but a number of confirmations, revisions, and extensions of the analysis are based on additional observations. Zeeman-effect measurements by Anderson [1956] and by Pinnington [1963], for example, allowed the confirmation, identification, or revision of several levels, and also some additions. Bovey, Steers, and Wise [1956] observed three infrared transitions that confirmed the positions of the $6s^26p$ $^2P^\circ$ levels with respect to the ground term. The 1960 report by these same authors gives about 140 lines between 8578 Å and 24612 Å, practically all of which apparently belong to Lu I. The authors were able to classify some 50 of these lines and suggest several confirmations and revisions of the analysis.

The accurate g values for the two levels of the ground term were obtained by Ritter [1962] using the atomic-beam magnetic-resonance technique. The stated error limits are ± 0.00008 for the $^2D_{3/2}$ level and ± 0.00016 for $^2D_{5/2}$.

Even Configurations

Unfortunately, a number of ambiguities and uncertainties remain in the level systems of both parities. The levels tentatively assigned to the $^2\mathrm{D}$ and $^2\mathrm{P}$ terms of $5d^26s$ very likely belong to this configuration, but calculations of the even levels, and perhaps additional experimental g values, are needed for more definite term assignments. The J values of several of the $5d^26s$ levels were confirmed or settled by the hfs observations of Horstmann, Nöldeke, and Steudel [1963]. These authors also independently discovered the two levels having $J=\frac{5}{2}$ at 24711.19 cm⁻¹ and 25860.76 cm⁻¹, but apparently due to a numerical error gave each value about 3 cm⁻¹ too high. Their value of 30747.18 cm⁻¹ for the $^2\mathrm{S}_{1/2}$ level is given here, the wide

hyperfine splitting of this level having led earlier to the listing of the two components as different levels. The 2S1/2 interpretation was confirmed by Pinnington, whose suggested designations for several of the $5d^26s$ and $6s6p^2$ levels have been followed. Four of the $5d^26s$ levels and the $6s^2(^1S)7d^2D_{5/2}$ level are from Wyart and Verges [1977], who recently began new work on this spectrum.

Klinkenberg's 5d6s(3D)7s 2D designation for two levels above 42000 cm⁻¹ is given tentatively. The 2D character of these levels is evidenced by their combinations, as noted by Klinkenberg, and also by the observed perturbation of the $6s^2(^1S)nd$ $^2D_{3/2}$ series [Camus and Tomkins, 1972], apparently due to the level designated $5d6s(^3D)7s$ $^2D_{3/2}$ (42576.69 cm $^{-1}$). The finding of the other 5d6s7s 2D term would help in the confirmation of both the 5d6s7sconfiguration assignment and the $5d6s(^3D)$ parental designation of these two known levels.

Odd Configurations

The eigenvector percentages and assignments for the $(5d6s6p+6s^27p)$ group of levels are taken from Camus and Masmoudi. A few of these levels have total percentages of up to 10% from the $5d^26p$ configuration, which was also included in the calculation. The inclusion of two levels for the 5f 2F $^{\circ}$ term appears to have significantly affected only the eigenvector of the level designated $5d6s(^3D)6p^2F_{7/2}^{\circ}$ (31751.17 cm⁻¹); the calculated nominal $5f^2F_{7/2}^{\circ}$ eigenvector has a 39% contribution from 5d6s6p, and the other eigenvectors indicate that practically all of this contribution comes from $5d6s(^3D)6p$ $^2F_{7/2}^{\circ}$. As an estimate of the effect of eliminating the $5f^{\,2}\mathrm{F^{\circ}}$ term from the calculation (see below), we have increased the calculated 53% $5d6s(^{3}D)6p$ $^{2}F_{7/2}^{\circ}$ leading component of the affected level by 39%. (The resulting estimate of 92% purity for this level is followed by a question mark.)

The new $6s^2(^1S)7p$ $^2P_{1/2}^o$ and $5d6s(^1D)6p$ $^2F_{7/2}^o$ levels are from Wyart and Verges [1977]. The eigenvectors for the nominal $6s^2(^1\mathrm{S})7p$ $^2\mathrm{P}^\circ$ levels have strong admixtures from 5d6s6p (not shown here). Two eigenvector assignments may not be conclusive, and the J value of the level at 29607.98 cm $^{-1}$ is given as questionable; Göbel's [1971] level-crossing observations gave a Jvalue of $^{3}\!/_{2}$ for this level whereas Pinnington interpreted the Zeeman pattern of the 3376.50 Å resonance line as giving a J value of $\frac{5}{2}$.

Series, Ionization Energy

All the higher $6s^2(^1\mathrm{S})nl$ series members of both parities are from the paper by Camus and Tomkins, who photographed the absorption spectrum in the region 2280-3700 Å with the Argonne 30-foot spectrograph. The n values originally assigned to the $6s^2nf$ series members have been decreased by unity, and the original $5f^{2}F^{\circ}$ levels are omitted as probably not belonging to these series [Kaufman and Sugar, 1973; Camus, 1976]. Camus and Tomkins found significant perturbations of all but the $6s^2nf$ $^2F_{7/2}^{\circ}$ series; the quoted limit was derived by them from this series.

References

Anderson, J., Thesis, Imperial College, London, 89 pp. (1956). EL ND ZE

Bovey, L. F. H., and Garton, W. R. S., Proc. Phys. Soc. London, Sect. A 67, 291 (1954). W

Bovey, L. F. H., Steers, E. B. M., and Wise, H. S., Proc. Phys. Soc. London, Sect. A 69, 783 (1956). EL CL W

Bovey, L., Steers, E. B. M., and Wise, H. S., U. K. Atomic Energy Research Establishment Rep. AERE-R 3225, Harwell, 8 pp. (1960). EL CL W

Camus, P., Thesis, Univ. Paris-Sud, Orsay, 265 pp. (1971). EL CL W IP SF

Camus, P., private communication (1976).

Camus, P., and Masmoudi, K., Physica (Utrecht) 60, 513 (1972). EL ND ZE PT

Camus, P., and Tomkins, F. S., J. Phys. (Paris) 33, 197 (1972). EL ND CL W IP

Göbel, L. H., Z. Naturforsch., Teil A 25, 1401 (1970). ZE Hfs

Göbel, L. H., Z. Naturforsch., Teil A 26, 1559 (1971). ND Hfs

Horstmann, U., Nöldeke, G., and Steudel, A., Ann. Phys. (Leipzig) [7] 12, 14 (1963). EL ND CL Hfs

Kaufman, V., and Sugar, J., J. Opt. Soc. Am. 63, 1168 (1973). EL ND

King, A. S., Astrophys. J. 74, 328 (1931). W Hfs

Klinkenberg, P. F. A., Physica (Utrecht) 21, 53 (1954). EL ND CL IP

Masmoudi, K., Thesis, Univ. Paris-Sud, Orsay, 130 pp. (1972). ND PT Meggers, W. F., and Scribner, B. F., J. Res. Nat. Bur. Stand. (U.S.) 5, 73 (1930). EL CL W Meggers, W. F., and Scribner, B. F., J. Res. Nat. Bur. Stand. (U.S.) 19, 31 (1937). W Pinnington, E. H., Can. J. Phys. 41, 1294 (1963). EL ND CL ZE Hfs Ritter, G. J., Phys. Rev. 126, 240 (1962). ZE Hfs Wyart, J. F., and Verges, J., unpublished material (1977). EL

[October 1976]

Lu I, Even Parity

Lu I, Even Parity

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	
$6d(^2\mathrm{D})6s^2$	² D	3/ ₂ 5/ ₂	0.00 1993.92	0.79921 1.20040	$6s6p^{2}$?		1/2,3/2	41367.82	
$(d^2(^3{ m F})6s$	4F	3/2	18851.31		$6s^{2}(^{1}S)10d$	² D	3/ ₂ 5/ ₂	41605.46	
		5/ ₂ 7/ ₂ 9/ ₂	19403.31	1.04	6s ² (¹ S)12s	2S	1/2	41798.10	
$d^2(^3\mathrm{P})6s$	4P	1/ ₂ 3/ ₂	21472.33 22467.53	1.79	$6s^2({}^1S)11d$	² D	3/ ₂ 5/ ₂	42092.30	
		5/2	25860.76	1.73 1.60	$6s^2(^1\mathrm{S})13s$	2S	1/2	42359.48	
$s^2(^1S)7s$	2S	1/2	24125.86	2.05	$6s^2(^1\mathrm{S})12d$	² D	3/ ₂ 5/ ₂	42430.16	
$d^2(^{1}{ m D?})6s$	² D?	3/ ₂ 5/ ₂	24518.16 24711.19		$5d6s(^3\mathrm{D})7s?$	² D	3/2	42576.69	
$d^2({}^1\mathrm{G})6s$	² G	7/ ₂ 9/ ₂	26570.40 26671.32		$6s^2(^1{ m S})14s$	2S	5/ ₂	44075.53 42649.05	
$d^{2}(^{3}\mathrm{F})6s$	$^{2}\mathrm{F}$	5/ ₂ 7/ ₂	27991.75		$6s^2(^1\mathrm{S})13d$	² D	3/2	42722.50	
$d^2(^3\mathrm{P?})6s$	² P?	1/ ₂ 3/ ₂	28793.34 29937.81	0.98	$6s^2(^1{ m S})14d$	² D	5/ ₂ 3/ ₂	42873.15	
$d^2(^1\mathrm{S})6s$	2S	1/2	30747.18	2.2			5/2		
$5s^2(^1\mathrm{S})6d$	² D	3/ ₂ 5/ ₂	31542.24 31713.60	0.80 1.23	$6s^2(^1S)15d$	² D	3/ ₂ 5/ ₂	43008.42	
$s6p^2$	4P	1/2	32986.75	2.62	$6s^2(^1S)16d$	² D	3/ ₂ 5/ ₂	43112.80	
		$\frac{3}{2}$ $\frac{5}{2}$	33831.54 35274.55	1.75 1.51	$6s^{2}(^{1}S)17d$	² D	3/2 5/	43236.65	
$s^{2}({}^{1}S)8s$	² S	1/2	34610.38		$6s^2(^1\mathrm{S})18d$	² D	5/ ₂ 3/ ₂	43291.10	
$s^2(^1\mathrm{S})7d$	² D	$\frac{3}{2}$ $\frac{5}{2}$	36768.81 36952.93		Go (B)Tou		5/2	40291.10	
$d6s(^3\mathrm{D})7s$	4D	1/ ₂	36899.72	0.00	$6s^2(^1S)19d$	² D	3/ ₂ 5/ ₂	43344.18	
		3/ ₂ 5/ ₂ 7/ ₂	37193.98 37742.56 39279.48	1.27 1.29 1.39	6s ² (¹ S)20d	² D	3/ ₂ 5/ ₂	43390.24	
$s^{2}(^{1}S)9s$	² S	1/2	38458.36		$6s^2(^1S)21d$	$^{2}\mathrm{D}$	3/2	43429.54	
$s^2(^1\mathrm{S})8d$	² D	$\frac{3}{2}$ $\frac{5}{2}$	38828.77		$6s^2(^1\mathrm{S})22d$	² D	⁵ / ₂ ³ / ₂	43463.10	
$s^2(^1{ m S})10s$	2S	1/2	40282.01				5/2		
$s^2(^1\mathrm{S})9d$	² D	$\frac{3}{2}$ $\frac{5}{2}$	40901.01		$6s^{2}(^{1}S)23d$	² D	3/ ₂ 5/ ₂	43491.88	
$s^2(^1\mathrm{S})11s$	2S	1/2	41120.27		$6s^2(^1\mathrm{S})24d$	² D	3/ ₂ 5/ ₂	43516.76	

Lu I, Even Parity—Continued

Lu I, Even Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	\boldsymbol{g}
$6s^{2}(^{1}S)25d$	² D	3/ ₂ 5/ ₂	43538.42		$6s^2(^1S)31d$	² D	3/ ₂ 5/ ₂	43623.82	
$6s^2(^1S)26d$	² D	3/ ₂ 5/ ₂	43557.30		$6s^2(^1\mathrm{S})32d$	² D	3/ ₂ 5/ ₂	43633.23	
$6s^2(^1\mathrm{S})27d$	² D	3/ ₂ 5/ ₂	43573.94		$6s^2(^1\mathrm{S})33d$	² D	3/ ₂ 5/ ₂	43641.79	
$6s^2(^1S)28d$	² D	3/ ₂ 5/ ₂	43588.68		$6s^2(^1\mathrm{S})34d$	² D	3/ ₂ 5/ ₂	43649.10	
$6s^2(^1{ m S})29d$	²D	3/ ₂ 5/ ₂	43601.73						
$6s^2(^{1}S)30d$	² D	3/ ₂ 5/ ₂	43613.30		Lu II (¹S₀)	Limit		43762.39	

Lu I, Odd Parity

Configuration	Term	J	Level (cm ⁻¹)	g		L	eading per	centages
$6s^2(^1\mathrm{S})6p$	²P°	1/2	4136.00	0.66				
-		3/2	7476.35	1.33				
$5d6s(^3D)6p$	4F°	3/2	17427.28	0.50	90	or	62	$5d(^{2}\mathrm{D}_{3/2})6s6p(^{3}\mathrm{P}_{0}^{3}$
		5/2	18504.56	1.07	87	\mathbf{or}	74	$5d(^{2}\mathrm{D}_{3/2})6s6p(^{3}\mathrm{Pi})$
		7/2	20432.53	1.22	97	\mathbf{or}	55	$5d(^{2}\mathrm{D}_{5/2})6s6p(^{3}\mathrm{Pi})$
		9/2	22609.46	1.30	100	\mathbf{or}	100	$5d(^{2}\mathrm{D}_{5/2})6s6p(^{3}\mathrm{P}_{2}^{2})$
$5d6s(^{3}{\rm D})6p$	⁴ D°	1/2	20762.42	0.00	92	or	86	$5d(^{2}\mathrm{D}_{3/2})6s6p(^{3}\mathrm{P}_{1}^{\circ}$
5455(2 75 p		3/2	21195.37	1.19	89	or	34	$5d(^{2}\mathrm{D}_{3/2})6s6p(^{3}\mathrm{P}_{1}^{\circ})$
		5/2	22221.64	1.39	78	or	49	$5d(^{2}\mathrm{D}_{3/2})6s6p(^{3}\mathrm{P})$
		7/2	23524.24	1.41	96	or	53	$5d(^{2}\mathrm{D}_{5/2})6s6p(^{3}\mathrm{P}_{2}^{\circ})$
$5d6s(^{3}D)6p$	² D°	5/2	21462.35	1.23	40	or	68	$5d(^{2}\mathrm{D}_{3/2})6s6p(^{3}\mathrm{P}_{2}^{2})$
		3/2	22124.70	0.874	58	\mathbf{or}	52	$5d(^{2}\mathrm{D}_{5/2})6s6p(^{3}\mathrm{P}_{1}^{\circ}$
$5d6s(^{3}{\rm D})6p$	4P°	1/2	24108.72		96	or	91	$5d(^2\mathrm{D}_{3/2})6s6p(^3\mathrm{P}^2_2)$
Succe (D)op	_	3/2	24308.20	1.67	83	or	50	$5d(^{2}\mathrm{D}_{3/2})6s6p(^{3}\mathrm{P}_{2}^{\circ})$
		5/2	25191.57	1.53	81	or	55	$5d(^{2}\mathrm{D}_{5/2})6s6p(^{3}\mathrm{P}_{2}^{\circ})$
$6s^2(^1S)7p$	2 p °	1/2	29430.90		62			
00 (D) I p		3/2	30488.62	1.23	53			
$5d6s(^{1}\mathrm{D})6p$	2F°	5/2	28020.18	0.88	75	or	39.	$5d(^2\mathrm{D}_{3/2})6s6p(^1\mathrm{P}_1^\circ$
5403(D)0p	1	7/2	29486.94	0.00	90	or	32	$5d(^{2}\mathrm{D}_{3/2})6s6p(^{3}\mathrm{P}_{2}^{2})$
$5d6s(^{1}{\rm D})6p?$		3/2?	29607.98		32	²D°	or 42	$5d(^2\mathrm{D}_{3/2})6s6p(^1\mathrm{P}_1^\circ$
$5d6s(^3\mathrm{D})6p$	2F°	5/2	30183.55		69	or	45	$5d(^2\mathrm{D}_{3/2})6s6p(^1\mathrm{Pi}$
5.000 D / Op	•	7/2	31751.17		92?	or	?	$5d(^{2}\mathrm{D}_{5/2})6s6p(^{1}\mathrm{P}_{1}^{\circ}$
$5d6s(^{1}\mathrm{D})6p$	2P°	3/2	31523.14		56	or	51	$5d(^{2}\mathrm{D}_{5/2})6s6p(^{3}\mathrm{P}_{2}^{2})$
5408(D)0p	1	1/2	33443.20		81	or	40	$5d(^{2}D_{5/2})6s6p(^{3}P_{2}^{2})$
			0044020		01	01		•
$5d6s(^3D)6p$	² P°	1/2	32058.1		59	\mathbf{or}	44	$5d(^{2}\mathrm{D}_{5/2})6s6p(^{3}\mathrm{P}_{2}^{\circ})$
-		3/2	34436.49		44	or	58	$5d(^{2}\mathrm{D}_{5/2})6s6p(^{1}\mathrm{P}_{1}^{\circ}$
$5d6s(^{1}{\rm D})6p?$		5/2	32456.87		46	$^{2}\mathrm{D}^{\circ}$	or 61	$5d(^{2}\mathrm{D}_{3/2})6s6p(^{1}\mathrm{Pi}_{1})$
$6s^2(^1S)5f$	2F°	5/2	36633.31					
· - / - J		7/2	36644.12					

Lu I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)
$6s^2(^1\mathrm{S})8p$	²p°	1/ ₂ 3/ ₂	36808.76 37131.38		$6s^2(^1\mathrm{S})19p$	²P°	1/ ₂ 3/ ₂	43258.71
$6s^2(^1S)6f$	²F°	5/ ₂ 7/ ₂	39212.61 39220.17		$6s^2(^1{ m S})16f$	²F°	5/ ₂ 7/ ₂	43267.57
$6s^2(^1\mathrm{S})9p$	²P°	1/ ₂ 3/ ₂	39321.96 39424.68		$6s^2(^1S)17f$	²F°	7/ ₂ 5/ ₂	43327.84 43332.57
$5d^26p?$		5/2	40558.63		$6s^2(^1{ m S})20p$	²P°	1/ ₂ 3/ ₂	43328.46 43336.86
6s ² (¹ S)7f	²F°	7/ ₂ 5/ ₂	40619.01 40626.82		$6s^2(^1\mathrm{S})18f$	²F°	7/2	43377.74
$6s^2(^1\mathrm{S})10p$	2P°	1/ ₂ 3/ ₂	40661.02 40735.33		$6s^2(^1{ m S})21p$	²P°	1/2	43379.31
$6s^2(^1\mathrm{S})8f$	2F°	5/ ₂ 7/ ₂	41456.26 41460.08		$6s^2(^1{ m S})19f$	2F°	3/ ₂	43384.56 43419.54
$3s^2(^1\mathrm{S})11p$	²P°	1/ ₂ 3/ ₂	41 487.02 41533.30		$6s^2(^1S)22p$	2p°	5/ ₂	43420.16 43423.85
$6s^2(^1\mathrm{S})9f$	²F°	5/ ₂ 7/ ₂	42000.72 42006.00		6s ² (¹ S)20f	2F°	3/ ₂ 7/ ₂	43425.08
$68^2(^1\mathrm{S})12p$	²P°	1/2	42021.84		_		5/2	43455.08
$6s^2(^1\mathrm{S})10f$	2F°	3/ ₂ 5/ ₂	42052.89 42372.94		$6s^2(^1\mathrm{S})23p$	2p°	1/ ₂ 3/ ₂	43457.65 43459.47
$5s^2(^1\mathrm{S})13p$	2P°	7/ ₂	42376.66 42386.76		$6s^2(^1S)21f$	2F°	5/ ₂ 7/ ₂	43485.01 43485.01
-	,	3/2	42414.79		$6s^2(^1S)24p$	² P°	1/ ₂ 3/ ₂	43487.15 43488.91
$5s^2(^1\mathrm{S})11f$	2F°	5/ ₂ 7/ ₂	42638.48 42642.05		$6s^2(^1S)22f$	2F°	5/ ₂ 7/ ₂	43510.81 43510.93
Ss ² (¹ S)14p	² P°	1/ ₂ 3/ ₂	42657.69 42667.06		$6s^2(^1{ m S})25p$	²P°	1/ ₂ 3/ ₂	43512.65 43514.29
$68^2(^1\mathrm{S})12f$	2F°	⁵ / ₂ ⁷ / ₂	42834.43 42837.99		$6s^2(^1S)23f$	²F°	5/ ₂ 7/ ₂	43533.18 43533.38
$3s^2(^1\mathrm{S})15p$	²P°	1/ ₂ 3/ ₂	42848.31 42855.91		$6s^2(^1{ m S})26p$	²P°	1/2	43534.90
$6s^2(^1{ m S})13f$	²F°	5/ ₂ 7/ ₂	42982.79 42986.69		$6s^2(^1\mathrm{S})24f$	²F°	3/ ₂ 5/ ₂	43536.23
$3s^2(^1\mathrm{S})16p$	²P°	1/ ₂ 3/ ₂	43002.55		$6s^2(^1\mathrm{S})27p$	²P°	7/ ₂	43552.95
$6s^{2}(^{1}S)14f$	2F°	5/ ₂ 7/ ₂	43098.15 43102.31		$6s^2(^1S)25f$	²F°	3/ ₂ 5/ ₂	43555.28 43569.85
$6s^2(^1\mathrm{S})17p$	2P°	1/2	·		$6s^{2}(^{1}S)26f$	2F°	7/ ₂ 5/ ₂	43570.13
$6s^2(^1\mathrm{S})15f$	2F°	3/ ₂ 5/ ₂	43111.69 43188.28			-	7/2	43585.27
$6s^2(^1\mathrm{S})18p$	2P°	7/ ₂	43193.85		$6s^2(^1S)27f$	2F°	5/ ₂ 7/ ₂	43598.40 43598.68
ου (πο)τοί	-r	3/2	43197.07		$6s^2(^1S)28f$	2F°	5/ ₂ 7/ ₂	43610.34 43610.66

Lu I, Odd Parity—Continued

Lu I, Odd Parity—Continued

Configuration	Term	J	Level (cm ⁻¹)	g	Configuration	Term	J	Level (cm ⁻¹)	g
6s ² (¹ S)29f	²F°	5/ ₂ 7/ ₂	43621.02 43621.28		6s ² (¹ S)34f	²F°	5/ ₂ 7/ ₂	43660.81 43660.95	
$6s^2(^1S)30f$	²F°	5/ ₂ 7/ ₂	43630.64 43630.88		$6s^2(^1{ m S})35f$	²F°	5/ ₂ 7/ ₂	43666.72 43666.85	
$6s^2(^1S)31f$	²F°	5/ ₂ 7/ ₂	43639.31 43639.58						
$6s^2(^1\mathrm{S})32f$	²F°	⁵ / ₂ ⁷ / ₂	43647.13 43647.34		Lu II (¹So)	Limit		43762.39	
$6s^2(^1S)33f$	²F°	5/ ₂ 7/ ₂	43654.23 43654.47						

(Yb I sequence; 70 electrons)

Z = 71

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}4f^{14}5s^25p^6)$ $6s^2$ 1S_0

Ionization energy 112000± 3000 cm⁻¹

 $13.9 \pm 0.4 \text{ eV}$

Sometime before 1935 W. F. Meggers supplied H. N. Russell at Princeton with an extension of Meggers' and Scribner's original analysis of Lu II [1930]. Most of the levels here are taken from an unpublished term list prepared in 1935 from Meggers' analysis [Meggers, 1935]. The values were given to two decimal places, except for four of the higher even levels. (The probable error for all of the levels appears to be about $\pm 0.10~\rm cm^{-1}$.)

The remaining levels are taken from the 1956 report by Bovey and Pearse. They correctly designated the $5d^2$ 1D_2 level, added the $5d^2$ 3P_0 , 5d6p $^1P_1^\circ$, and 6s7s 3S_1 levels, and also found a number of other levels beginning above 47000 cm $^{-1}$. A number of tentative levels listed by Bovey and Pearse have been omitted, pending confirmation by more complete observations of the spectrum. (The omitted levels lie in the range from 47447 cm $^{-1}$ to 83994 cm $^{-1}$.) Bovey and Pearse noted that these levels needed confirmation, since they were mainly based on very weak lines. The possible even level at 79546.8 cm $^{-1}$ was listed tentatively by Meggers and by Bovey and Pearse. The provisional 6s6d 3D and 5d7s 3D terms follow the arrangement of Bovey and Pearse.

Theoretical Interpretation

The eigenvector percentages are taken from Goldschmidt's calculations of the $(5d+6s)^2$ and (6s6p+5d6p) configurations [1968]. The percentages for the $(5d+6s)^2$ group show that $5d^2$ 3P_2 and $5d^2$ 1D_2 have little meaning as designations because of the strong mixture of these terms in two of the eigenvectors (levels at 36098.18 and 38574.94 cm⁻¹); we have retained the usual 3P_2 designation for one of the levels, mainly to fill out the $5d^2$ 3P term. The experimental g factors for the two levels are not sufficiently reliable to afford a test of the eigenvectors (see below).

A tentative value of 37826.8 cm⁻¹ suggested by Anderson [1956] for the $5d^2$ 1 G₄ level has been omitted. The experimental evidence for the level is not convincing, and a large perturbation would be required for the level to be so far below the position near 39000 cm⁻¹ predicted by Goldschmidt.

Goldschmidt [1967] discusses the interaction between the 6s6p and 5d6p configurations. A calculated repulsion of $8500~\rm cm^{-1}$ between the two $^{1}P^{\circ}$ levels is reflected in the strong mixture of configurations in the two corresponding eigenvectors (levels at 38223 and $59122~\rm cm^{-1}$). Calculations for several two-electron spectra, including Lu II, were important in obtaining reliable values of theoretical parameters needed for comparison, or for use as initial values in calculations of more complex rare-earth spectra.

g Values

The g values are from Zeeman-effect measurements by Anderson [1956] and by Pinnington [1963], Anderson's observations having included patterns confirming all the known levels with J=0. Pinnington's g values are listed for the seven levels involved in his measurements, the stated uncertainties being ± 0.02 or ± 0.03 . Three of the g values are followed by colons to indicate that each is well outside the range of allowed values (for the pertinent J value) unless interactions with quintet or higher multiplicity terms are significant. (Such terms would arise from excited-core configurations.) Pinnington's g value of 1.41 for the 5d6s 3D_3 level appears to be confirmed to about ± 0.02 by the patterns for three different lines, and his g value of 1.66 ± 0.02 for the 6s6p $^3P_2^\circ$ level was obtained from one of these same patterns; the theoretical upper limits for the g values of these two levels (higher multiplicities excluded) are 1.33 and 1.50, respectively. The possible effects of hfs on these patterns should

perhaps be investigated. Anderson's g value of 0.43 for the 5d6p $^3D_1^{\circ}$ level (theoretical lower limit, 0.50) may be less accurate than Goldschmidt's calculated value of 0.58.

The three g values followed by question marks are dubious. Anderson's value of 1.37 for the g values of both the $5d^2$ level at 36098 cm⁻¹ (J=2) and the 5d6p $^1\mathrm{P}_1^\circ$ level was based entirely on a simple triplet Zeeman pattern observed for the transition between these levels. The g value of 1.49 for the (nominal) $5d^2$ $^3\mathrm{P}_2$ level was then obtained from another triplet pattern by assuming the g value of 1.37 for the 5d6p $^1\mathrm{P}_1^\circ$ level. Goldschmidt's calculations predict g values of about 1.25 for each of the two $5d^2$ levels in question, and a value of 1.01 for the 5d6p $^1\mathrm{P}_1^\circ$ level. Anderson's g values for the two $5d^2$ levels cause a large deviation from the g-sum rule for the $(5d+6s)^2$ levels having J=2, and his g value for the 5d6p $^1\mathrm{P}_1^\circ$ level cannot be accurate if the level is correctly assigned.

Line Lists, Ionization Energy

New and more complete observations of Lu I and Lu II are needed. The basic line list for Lu II at present is the one published by Meggers and Scribner in 1937, which gives 370 lines in the range 2065–10758 Å. Bovey and Pearse give a complete list of the classified lines, and also include tables showing the intensities of the combinations of each level.

The ionization energy is from Sugar and Reader [1965].

References

Anderson, J., Thesis, Imperial College, London, 89 pp. (1956). EL ND ZE

Bovey, L. F. H., and Pearse, R. W. B., U. K. Atomic Energy Research Establishment Rep. AERE C/R 1976, Harwell, 19 pp. (1956). EL CL IP

Goldschmidt, Z. B., Colloq. Int. C.N.R.S. No. 164, 365 (1967). PT

Goldschmidt, Z. B., Thesis, Hebrew Univ. Jerusalem, Israel, 487 pp. (1968). PT

King, A. S., Astrophys. J. 74, 328 (1931). W Hfs

Meggers, W. F., unpublished material (1935). These data were assembled by C. E. Moore at Princeton. EL CL

Meggers, W. F., and Scribner, B. F., J. Res. Nat. Bur. Stand. (U.S.) 5, 73 (1930). EL CL W

Meggers, W. F., and Scribner, B. F., J. Res. Nat. Bur. Stand. (U.S.) 19, 31 (1937). W

Pinnington, E. H., Can. J. Phys. 41, 1305 (1963). ZE

Sugar, J., and Reader, J., J. Opt. Soc. Am. 55, 1286 (1965). IP

[July 1976]

Lu II

Configuration	Term	J	Level (cm ⁻¹)	g		Leading percentages	
$6s^2$	1S	0	0.00		98		
5d6s	3D	1 2 3	11796.24 12435.32 14199.08	0.52 1.14 1.41:	100 94 100		
5d6s	¹D	2	17332.58	1.09	85	9 $5d^{2}$ ¹ D	
6s6p	3P°	0 1 2	27264.40 28503.16 32453.26	1.51 1.66:	99 94 98		
$5d^2$	3F	2 3 4	29406.70 30889.09 32503.62	0.66 1.05 1.27	97 100 98		
$5d^2$	3 P	$\begin{matrix} 0 \\ 1 \\ 2 \end{matrix}$	35652.1 36557.05 38574.94	1.41 1.49?	98 100 51	44 ¹ D	
$5d^2$		2	36098.18	1.37?	49 ³ P	45 ¹ D	
6s6p	¹P°	1	38223.49	0.99	56	34 5d6p ¹P°	

Lu II—Continued

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
5d6p	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$oxed{3} oxed{48733.19} oxed{1.30} oxed{79} oxed{14}^{-1} oxed{F}^{\circ}$	
$5d6p$ $^3\mathrm{P}^\circ$ 0 49963.58 99	
1 50049.20 1.43 90	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
7.4C., 15° 3 53079.33 1.02 85 15 ³ D°	
5400	
$5d6p$ 1 1 59122.4 1.37? 64 30 $6s6p$ $^{1}P^{\circ}$	
6878 3 S 1 63774.3 2.05	
6s7s	
6s6d? 1 71169.1	
2 71705.1	
$oxed{3}$ $oxed{72735.6}$	
2,3 72016.6	
5d7s? 1 73453.0	
2 74122.2	
3 75717.6	
1,2 73588.3	
5d6d? 2? 79546.8?	
Lu III (² S _{1/2}) Limit 112000	

Lu III

(Tm I sequence; 69 electrons)

Z = 71

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}4f^{14}5s^25p^6)$ 6s $^2S_{1/2}$

Ionization energy 169049± 10 cm⁻¹

 20.9596 ± 0.0012 eV

Kaufman and Sugar [1971] photographed this spectrum over the region 400 to 9000 Å. They note that the "simple one-electron spectrum is superimposed on the complex three-electron spectrum arising from the excitation of an electron out of the 4f shell." Although they found levels of the $(4f^{13}5d^2+4f^{13}5d6s+4f^{13}6s^2)$ group, the published results were limited to the simple one-electron configurations given here, which classify about 70 lines from 677 to 8009 Å. The strongest of these lines belong to the 6s-6p and 5d-6p multiplets (2236-3058 Å) first classified by Meggers and Scribner [1930]; their classifications of two of the lines were later correctly interchanged by Steudel [1958].

One of the levels from the more complex configurations, the odd level at 128057.3 cm⁻¹ with J=5/2, is included here; "the inversion of the $6f^2F^\circ$ term appears to have been caused mainly by interaction" between this level and the $6f^2F^\circ_{5/2}$ level.

Kaufman and Sugar gave all levels or hyperfine-structure levels of 176 Lu III with respect to the ground hyperfine level, $6s~^2$ S $_{1/2}$ (F=3) at $0.000~\rm cm^{-1}$, the F=4 hfs level being $1.746\pm0.010~\rm cm^{-1}$ higher. Their table includes hfs intervals for the 6s-8s, 6p, and 7p levels. The values given here for these levels are the baricenters of the corresponding hfs levels, with the hfs baricenter of the ground level being taken at $0.00~\rm cm^{-1}$. The uncertainties are $0.1~\rm cm^{-1}$ for all levels except those of 8f and 9f, which are uncertain by $\pm1.0~\rm cm^{-1}$.

Kaufman and Sugar derived the quoted ionization potential from the ns series.

References

Heilig, K., and Kasten, P., Naturwissenschaften 54, 338 (1967). Hfs Kaufman, V., and Sugar, J., J. Opt. Soc. Am. 61, 1693 (1971). EL CL W Hfs IP Meggers, W. F., and Scribner, B. F., J. Res. Nat. Bur. Stand. (U.S.) 5, 73 (1930). EL CL W Meggers, W. F., and Scribner, B. F., J. Res. Nat. Bur. Stand. (U.S.) 19, 31 (1937). W Steudel, A., Z. Phys. 152, 599 (1958). EL CL Hfs

Lu III

[July 1976]

Lu III

Configuration	Term	J	Level (cm ⁻¹)	Configuration	Term	J	Level (cm ⁻¹)
4f ¹⁴ (¹ S)6s	² S	1/2	0.00	4f ¹⁴ (¹ S)6f	a l'	7/2	128799.8
	,					5/2	129053.2
$4f^{14}(^{1}S)5d$	² D	3/2	5707.6	_			
		5/2	8647.8	$4f^{14}({}^{1}S)5g$	2(;	7/2	129105.4
	9700	1,1	20100.61			9/2	129106.3
$4f^{14}({}^{1}S)6p$	² P°	1/2	38400.61				100000 00
		3/2	44705.21	$4f^{14}(^{1}S)9s$	38	1/2	136209.86
4f ¹⁴ (¹ S)7s	² S	1/2	86681.21	$4f^{14}(^{1}S)7f$	21/2	⁵ /2	141069.6
1) (2).0		,-		4) (5)1)	•	7/2	141092.2
$4f^{14}(^{1}S)6d$	² D	3/2	92321.6			/2	141032.2
-		5/2	93107.6	4f 14(1S)10s	255	1/2	145587.3
$4f^{14}(^{1}S)7p$	2P°	1/2	100357.09	$4f^{14}({}^{1}S)8f$	2 F.	5/2	148513.8
4) (S)(p		$\frac{7}{3}$	102810.82	4)(-5)6)	1	7/2	148530.0
		,-				1/2	140550.0
$4f^{14}(^{1}S)5f$	2F°	5/2	105590.6	4f ¹⁴ (¹ S)9f	2 p	0/2	153343.6
		$^{7}/_{2}$	105704.1	1 (2)0)		7/2	153354.5
						/-	100004.0
$4f^{14}(^{1}S)8s$	² S	$^{1}/_{2}$	119784.75		1		ļ
$4f^{14}(^{1}S)7d$	² D	3/2	122622.5				100010
4) (50)10		5/ ₂	122981.0	Lu IV (1S0)	Limit		169049
		/2	122301.0				
		5/2	128057.3				

Lu IV

(Er I sequence; 68 electrons)

Z = 71

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{14}$ ¹S₀

Ionization energy 364960 ± 200 cm⁻¹

 $45.25 \pm 0.03 \text{ eV}$

One immediate advantage of the analysis of this spectrum was that the results could be combined with certain known regularities to give predicted values for fundamental energy differences of the type $4f^N-4f^{N-1}5d$ in the fourth and fifth spectra of the lanthanides [Sugar and Kaufman, 1972]. The 57 known energy levels of Lu IV include nearly all levels of the listed configurations. The line list obtained from a sliding-spark source includes 246 lines over the range 876-2130 Å, with about 70% of the lines being classified. "The uncertainty of the levels relative to the lowest level of $4f^{13}5d$ is about ± 0.1 cm⁻¹, but relative to the ground state it is ± 0.5 cm⁻¹," the latter connection being based on the wavelengths of the three resonance lines from the $4f^{13}5d$ levels having J=1.

Leading percentages in the J_1j coupling scheme are given for all excited levels. Sugar and Kaufman found that the lowest average purity in this scheme was 91% for $4f^{13}5d$, whereas the LS purity of this configuration is 65%. The $4f^{13}6s$ and $4f^{13}7s$ configurations have 100% purity in J_1j coupling; in LS coupling the two levels having J=3 share the $^1F^\circ$ and $^3F^\circ$ percentages almost equally.

Wyart, Blaise, and Camus [1974] give the parameter values obtained from a calculation of $(4f^{13}5d+4f^{13}6s)$ including configuration interaction.

Kaufman and Sugar [1976] obtained the $4f^{13}$ $^2F^{\circ}_{7/2}$ limit position from the $4f^{13}6s$, 7s series and an adopted value for the difference in the quantum defects of the two members. The uncertainty arises from their estimated uncertainty in the latter quantity.

References

Kaufman, V., and Sugar, J., J. Opt. Soc. Am. 66, 1019 (1976). IP

Sugar, J., and Kaufman, V., J. Opt. Soc. Am. 62, 562 (1972). EL CL W IP PT

Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973). IP

Wyart, J. F., Blaise, J., and Camus, P., Phys. Scr. 9, 325 (1974). PT

[July 1976]

Lu IV

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages				
4f 14	¹ S	0	0.0					
$4f^{13}(^2\mathrm{F}^{\circ}_{7/2})5d_{3/2}$	(⁷ / ₂ , ³ / ₂)°	2	90432.9	83	15	$(^{7}/_{2},^{5}/_{2})^{\circ}$		
		5	94768.1	97		() -,		
		3	97333.6	96				
		4	98558.5	95				
$4f^{13}(^2\mathrm{F}^{\circ}_{7/2})5d_{5/2}$	(⁷ / ₂ , ⁵ / ₂)°	6	98239.3	100				
		1	98505.0	64	21	$(5/2,3/2)^{\circ}$		
		2	99660.0	84	16	$(7/2, 3/2)^{\circ}$		
		4	102216.6	92		,		
		3	103070.4	94				
		5	103798.7	96				
$4f^{13}(^2\mathrm{F}^{\circ}_{5/2})5d_{5/2}$	(5/2,5/2)°	0	105148.7	100				
		1	110858.0	81	14	$(5/2,3/2)^{\circ}$		
		5	111377.8	97		. , . ,		
		2	112632.5	97				
		3	114632.8	97				
		4	115468.5	97				

Lu IV—Continued

Configuration	Term	J	Level (cm ⁻¹)	I	.eading percentages
$4f^{13}(^{2}\mathrm{F}^{\circ}_{5/2})5d_{3/2}$	(5/2,3/2)°	1	106220 6		
1) (13/2)003/2	(72, 72)	$\begin{array}{ c c c }\hline 4\\ 2 \end{array}$	106380.6	90	
		3	107986.6	97	
		1	111812.3	98	
		1	114049.4	65	$31 (^{7}/_{2}, ^{5}/_{2})^{\circ}$
$4f^{13}(^{2}\mathrm{F}^{\circ}_{7/2})6s_{1/2}$	$(7/2, 1/2)^{\circ}$	4	116798.2	100	
, , , .	(72, 72)	3	117312.0	100 100	
			11.012.0	100	
$4f^{13}(^{2}\mathrm{F}^{\circ}_{5/2})6s_{1/2}$	$(5/2, 1/2)^{\circ}$	2	128573.3	100	
		3	128929.0	100	
		İ		100	
$4f^{13}(^2\mathrm{F}_{7/2}^{\circ})6p_{1/2}$	$(^{7}/_{2},^{1}/_{2})$	3	164302.3	98	
		4	164728.5	100	
4 C12 (9 T30) A					
$4f^{13}(^2\mathrm{F}_{7/2}^{\circ})6p_{3/2}$	(7/2, 3/2)	5	173213.6	100	
		2	173414.4	98	
		3	174143.2	94	
		4	174889.9	100	
$4f^{13}(^2\mathrm{F}^{\circ}_{5/2})6p_{1/2}$	(5/ 1/)		150055.0		
± _j (1.5/2)0/μ1/2	(5/2,1/2)	3	176355.6	95	
		2	176841.6	97	
$4f^{13}(^2\mathrm{F}^{\circ}_{5/2})6p_{3/2}$	(5/2,3/2)	1	184205.5	100	
-) (1 5/2/0p3/2	(12, 12)	4	185359.8	100	
		2	185987.0	100	
		3	186539.6	98	
			100559.0	99	
$4f^{13}(^2\mathrm{F}^{\circ}_{7/2})6d_{3/2}$	$(7/2,3/2)^{\circ}$	2	235663.7	87	13 (⁷ / ₂ , ⁵ / ₂)°
	, , ,	5	236667.1	98	1.3 (/2, /2)
		3	237215.3	96	
		4	237436.9	95	
			·	00	
$4f^{13}(^2\mathrm{F}_{7/2}^{\circ})7s_{1/2}$	$(7/2,1/2)^{\circ}$	4	237025.4	100	
		3	237106.7	100	
4.£13/2179 \C.1	(7/ 5/)0				
$4f^{13}(^2\mathrm{F}_{7/2}^{\circ})6d_{5/2}$	$(7/2,5/2)^{\circ}$	6	237663.7	100	
		2	237946.8	87	$13 (^{7}/_{2}, ^{3}/_{2})^{\circ}$
		4	238501.1	95	
		3	238740.5	96	
		1 5	238907.7	97	
		J	230907.7	98	
$4f^{13}(^2\mathrm{F}^{\circ}_{5/2})6d_{3/2}$	$(5/2,3/2)^{\circ}$	4	248305.8	97	
, , , , , , , , , , , , , , , , , , , ,	(1-, 1-)	$\overset{\circ}{2}$	248620.5	98	
		1	249510.0	69	31 (⁵ / ₂ , ⁵ / ₂)°
		3	249682.5	99	31 (72, 72)
		•	240002.0	99	
$4f^{13}(^{2}\mathrm{F}^{\circ}_{5/2})7s_{1/2}$	$(5/2,1/2)^{\circ}$	2	248900.6	100	
-y (= 0/2) 101/2	12, 12)	3	248965.9	100	
		9	~,000.0	100	
$1f^{13}(^2\mathrm{F}^{\circ}_{5/2})6d_{5/2}$	$(5/2,5/2)^{\circ}$	0		100	
		1		68	29 (⁵ / ₂ , ³ / ₂)°
		5	249719.0	100	
		2	249954.0	98	
		3		99	
		4	250789.5	97	
	†				
Lu V (2F%/2)	Limit		364960		
/ (/	20,,000		DOLLOG		

Lu v

(Ho I sequence; 67 electrons)

Z = 71

Ground state $(1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^6)$ $4f^{13}$ ${}^2F_{7/2}^{\circ}$

Ionization energy 538700± 2700 cm⁻¹

 $66.8 \pm 0.3 \text{ eV}$

Sugar and Kaufman [1972] gave the $4f^{\,13}\,{}^2\mathrm{F}^{\,\circ}$ interval for this spectrum in their paper on Lu IV. They have classified more than 50 Lu V lines in the region 500–700 Å as transitions from $4f^{\,12}5d$ levels to the ground-term levels [Sugar and Kaufman, 1973]. The eigenvector percentages for the upper levels are also from their unpublished material. Leading percentages in both J_1j and LS coupling are given; neither scheme is a good approximation. An extension of this analysis is planned.

Sugar [1975] obtained the ionization energy by a method similar to that of Sugar and Reader [1973].

References

Sugar, J., J. Opt. Soc. Am. 65, 1366 (1975). IP

Sugar, J., and Kaufman, V., J. Opt. Soc. Am. 62, 562 (1972). EL

Sugar, J., and Kaufman, V., unpublished material (1973). EL PT

Sugar, J., and Reader, J., J. Chem. Phys. 59, 2083 (1973).

[July 1976]

Lu v

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages					
$4f^{13}$	2F°	7/ ₂ 5/ ₂	0.0 11792.8						
$4f^{12}(^{3}{ m H_{6}})5d_{5/2}$		7/2	150765.0	34	(6, 5/2)	or	38	(3H) 4F	
$4f^{12}(^{3}\mathrm{F_{4}})5d_{3/2}$		9/2	154986.5	39	$(4,^3/_2)$	or	20	(^3F) 4G	
$4f^{12}(^{3}{ m H_{6}})5d_{5/2}$		9/2	156855.6	34	(6,5/2)	or	34	(^3H) 4G	
$4f^{12}(^{3}{ m H_{6}})5d_{5/2}$		7/2	158983.3	40	(6,5/2)	or	72	(3H) 2F	
$4f^{12}(^{3}{ m H}_{5})5d_{5/2}$		5/2	159035.8	35	(5,5/2)	or	55	(^3H) 4F	
$4f^{12}(^{3}\mathrm{F}_{4})5d_{3/2}$		5/2	161973.0	29	$(4,^3/_2)$	or	27	(^3F) 4P	
$4f^{12}(^{3}\mathrm{F}_{4})5d_{5/2}$		7/2	162558.9	34	(4,5/2)	or	27	(^3F) 4D	
$4f^{12}(^{3}F_{4})5d_{5/2}$	(4,5/2)	9/2	162806.4	56	\mathbf{or}		35	(^3F) 4F	
$4f^{12}(^{3}{ m H}_{5})5d_{5/2}$		7/2	164200.2	37	(5,5/2)	\mathbf{or}	18	(3F) 4H	
$4f^{12}(^{3}\mathrm{F}_{3})5d_{3/2}$	$(3,^3/_2)$	3/2	164665.8	47	or		42	(3F) 4D	
$4f^{12}(^{3}\mathrm{F}_{3})5d_{3/2}$		7/2	166576.0	33	$(3,^3/2)$	or	27	(³ H) ⁴ G	
$4f^{12}(^{3}{ m H}_{5})5d_{5/2}$		5/2	167222.3	42	(5,5/2)	or	40	(^3H) 2F	
$4f^{12}(^{3}\mathrm{F}_{2})5d_{3/2}$		3/2	168013.2	27	$(2,^3/2)$	or	38	(3F) 2P	
$4f^{12}(^{3}\mathrm{F}_{2})5d_{3/2}$		7/2	168669.8	41	$(2,^3/2)$	or	30	(3F) 4H	
$4f^{12}(^{3}\mathrm{F}_{3})5d_{3/2}$		7/2	170023.8	26	$(3,^3/2)$	or	33	(3F) 2F	
$4f^{12}(^{3}\mathrm{F}_{3})5d_{3/2}$		9/2	170638.6	42	$(3,^3/2)$	or	24	(3F) 4H	
$4f^{12}(^{3}{ m H}_{4})5d_{5/2}$		5/2	171005.9	42	(4,5/2)	or	32	(3H) 4G	
$4f^{12}(^{3}{ m H_{4}})5d_{5/2}$		3/2	171573.5	40	(4,5/2)	or	40	(³ H) ⁴ F	
$4f^{12}(^{3}{ m F}_{2})5d_{5/2}$		7/2	172807.3	38	(2,5/2)	or	23	(3F) 2G	

Lu v—Continued

Configuration	Term	J	Level (cm ⁻¹)	Leading percentages					
$4f^{12}(^3\mathrm{F}_3)5d_{5/2}$	(3,5/2)	5/2	173521.8	51	or		29	(3F) 4D	
		7/2 9/2	174276.4? 174907.1	75	or		34	(3F) ² G	
		3/2	174907.1	61 38	or or		30 76	(3F) ² H (3F) ⁴ P	
		1/2		49	or		62	(3F) 4P	
		11/2		64	or		37	(3F) 4H	
$4f^{12}(^{1}G_{4})5d_{5/2}$		7/2	175655.4	25	(4,5/2)	or	21	(^{3}H) ^{4}H	
$4f^{12}(^{1}G_{4})5d_{3/2}$		9/2	177392.4	37	$(4,^3/2)$	or	25	(3H) 4I	
$4f^{12}(^{3}\mathrm{H_{4}})5d_{5/2}$		7/2	181893.5	34	(4,5/2)	or	23	(3H) 4H	
$4f^{12}(^{1}G_{4})5d_{5/2}$		5/2	182025.1	26	(4,5/2)	or	33	(¹G) ²F	
$4f^{12}(^{3}\mathrm{F}_{2})5d_{3/2}$		5/2	183573.4	24	$(2,^3/2)$	\mathbf{or}	28	(^{3}F) ^{2}F	
$4f^{12}(^{3}\text{H}_{4})5d_{5/2}$		9/2	183867.6	42	(4,5/2)	or	21	(¹G) ²G	
$4f^{12}(^{1}{ m I}_{6})5d_{3/2}$	$(6,^3/2)$	9/2	189796.1	74	or		78	(¹I) 2G	
$4f^{12}(^{1}\mathrm{D}_{2})5d_{5/2}$		5/2	190996.0	32	(2,5/2)	or	19	$(^{1}\mathrm{D})$ $^{2}\mathrm{D}$	
$4f^{12}(^{3}\text{Po})5d_{3/2}$	$(0,^3/2)$	3/2	194442.0	64	or		21	(3P) 4F	
$4f^{12}(^{1}{ m I}_{6})5d_{5/2}$	(6, 5/2)	7/2	195440.3	91	or		91	(¹I) ²G	
$4f^{12}(^{3}\mathrm{P}_{1})5d_{3/2}$	$(1,^3/2)$	5/2	196705.6	77	or		58	(³ P) ⁴ F	
$4f^{12}(^{3}\text{P}_{0})5d_{5/2}$		5/2	200028.2	42	(0,5/2)	or	47	(3P) 2D	
Lu VI (3H ₆)	Limit		538700						