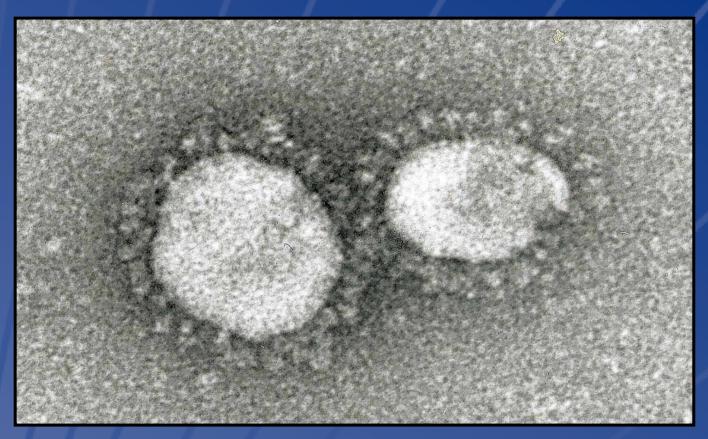

Preparedness

- Performance of current diagnostic tests
 - Real-time RT-PCR
 - Serology
- New diagnostic tools
- Optimal specimen types and timing
- Quality assessment
- Other respiratory pathogens "rule-out testing"

SARS DiagnosticsCell culture

P Rollin, Special Pathogens Branch

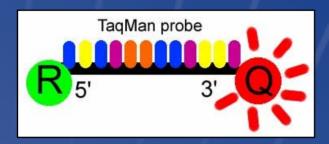

BSL-3 Activity

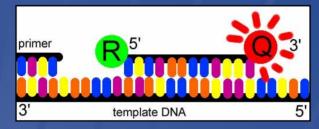
Restricted culture range Vero E6 cells CPE:

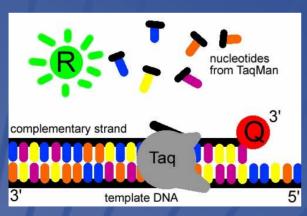
- focal
- cell rounding
- retractile appearance

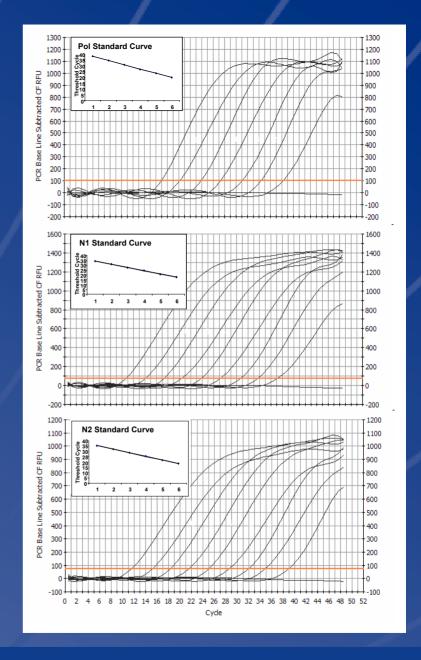
Electron Microscopy

C Humphrey, Pathology Activity Program




Real-time RT-PCR


- Conventional vs Real-time RT-PCR (TaqMan[™])
 - increased sensitivity (1-10 transcript copies)
 - increased speed/throughput
 - quantitative
 - reduced risk of amplicon contamination
- Multiple genetic targets
 - nucleocapsid and polymerase genes
 - amplification of 2 of the 3 targets required for a positive test



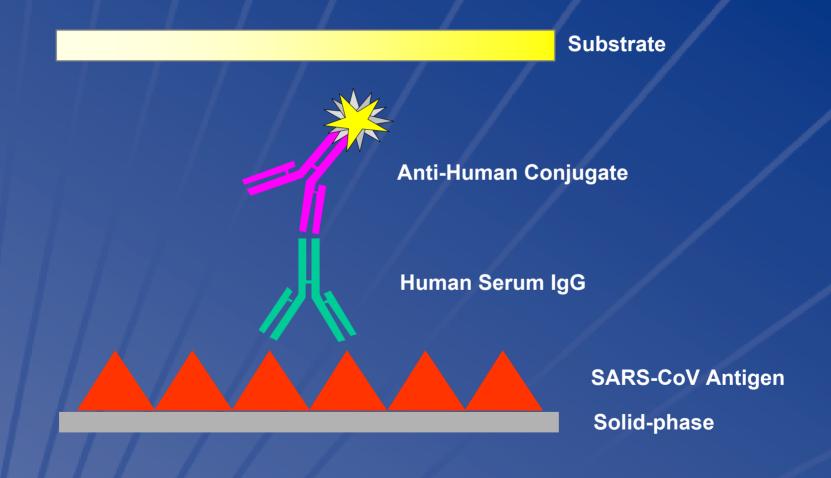
SARS DiagnosticsReal-time RT-PCR

RT-PCR – Interpretation of Test Results

- Potential for false negative results
 - low titer virus in respiratory secretions in first few days after onset of illness
- Potential for false positive results
 - contamination from previously amplified DNA
 - cross-contamination between specimens
- A positive test result should be considered provisional until confirmed by independent testing
- A negative test result does not rule out SARS and should not affect patient management decisions

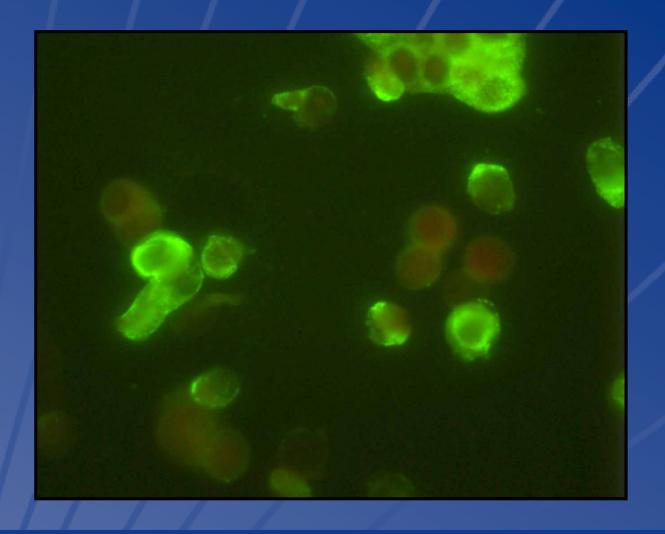
RT-PCR – Interpretation of Test Results

- Confirmation of a positive SARS RT-PCR test (specimen)
 - repeat the RT-PCR from new aliquot of the original sample
 - if positive, have the sample tested in a second laboratory
- Positive SARS diagnostic test finding (patient)
 - at least 2 different clinical specimens
 - the same specimen type collected on 2 or more days



Serology - Current EIA

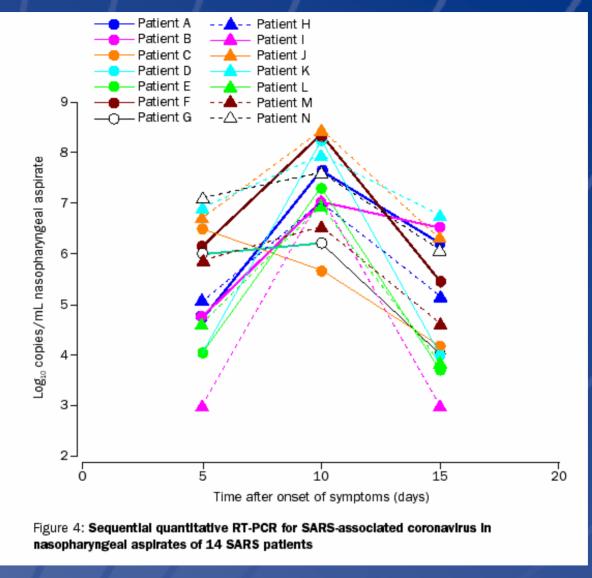
- Serology appears to be highly specific
 - no reactions with other documented CoV infections (OC43 and 229E)
 - no reactions with "normal" blood donors (U.S. and Hong Kong populations)
- Serology can be positive in as few as 8 to 10 days after onset of symptoms
- Serology cannot be considered negative until >28 days after onset of symptoms



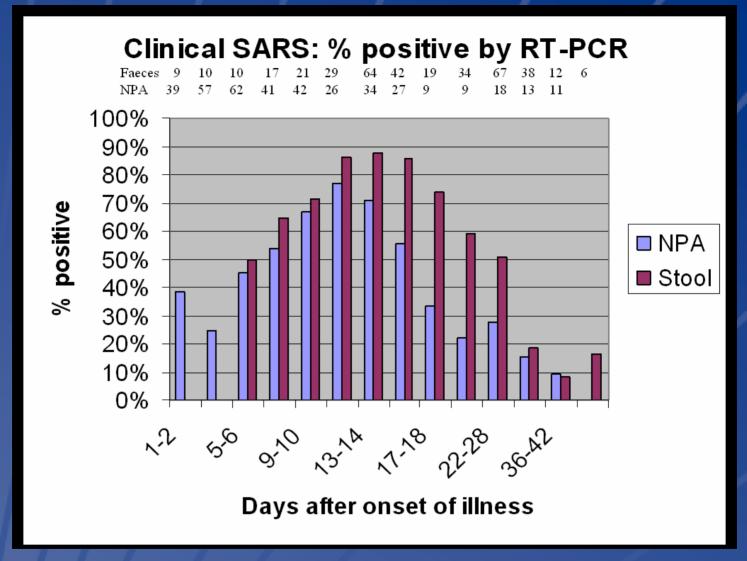
Antibody tests: Enzyme immunoassay

Antibody tests: Immunofluorescence Assay

Serology - New assays


- Native virus vs recombinant antigens
 - nucleocapsid, spike, and membrane proteins
 - safety, standardization, and sensitivity
 - need to rule out cross-reactions with other human coronaviruses
- IgM assays
 - IgM antibodies may be detectable earlier in the course of infection
 - Transient response
- Neutralization and other immunological markers

Specimen Selection and Timing


- Respiratory tract specimens
 - LRT > URT
 - Sputum > NP aspirates > NP/OP swabs
 - More sample
 - Multiple samples
- Others specimens
 - Blood plasma
 - Stool
- Timing of specimen collection

Peiris et al: Lancet, May 24, 2003

Peiris: personal communication

Specimen Selection and Timing

Specimen	<1 week post symptom onset	1 - 3 weeks post symptom onset	>3 weeks post symptom onset	
Serum (separator tube)	++	++	++	
Blood plasma (EDTA)	++	+	-	
Respiratory (BAL, sputum, nasal aspirate & wash, np/op swabs)	+	++	+	
Stool	+	++	++	

Quality Assessment

- QA CDC
 - Standardized test controls
 - Internal CDC confirmatory testing
 - External WHO quality assurance study
- QA LRN & APHL
 - Confirmatory testing
 - Proficiency testing

Other Respiratory Pathogens – "rule-out testing"

Other respiratory pathogens, U.S. SARS surveillance, Mach-July, 2003.

M. pneumoniae	C. pneumoniae	L. pneumophila	Influenza A or B	hMPV	hPIV 1,2, 3	RSV	Adeno	Picornavirus (rhinovirus)
22/200	2/197	0/196	15/140	9/150	10/150	1/150	7/150	18/61
(11%)	(1%)	(0%)	(11%)	(6%)	(7%)	(0.7%)	(5%)	(30%)

Schrag SJ et al. SARS surveillance in the United States during the Emergency Public Heath Response, March-July, 2003. EID (In press).

Other Respiratory Pathogens – "rule-out testing"

- CDC can provide guidance on test selection
 - What other tests are available?
 - What are their performance characteristics?
- CDC can provide guidance on testing
 - Clinical presentation
 - Demographics (e.g., age)
 - Seasonality (NREVSS)
- CDC can provide RT-PCR protocols for other respiratory pathogens

Key Messages

- SARS diagnostic assays are sensitive and specific, but may not provide definitive diagnosis early in the illness
- Changes in the quantity, type, and timing of specimens collected may improve detection of SARS-CoV infection
- Rapid and accurate diagnosis of other respiratory pathogens associated with SARS-like illness may help rule out SARS-CoV infection and calm public fears
- Interpretation of test results must take into consideration possibility of false positives and negatives; a clear strategy to minimize such possibilities and to confirm test results are essential

