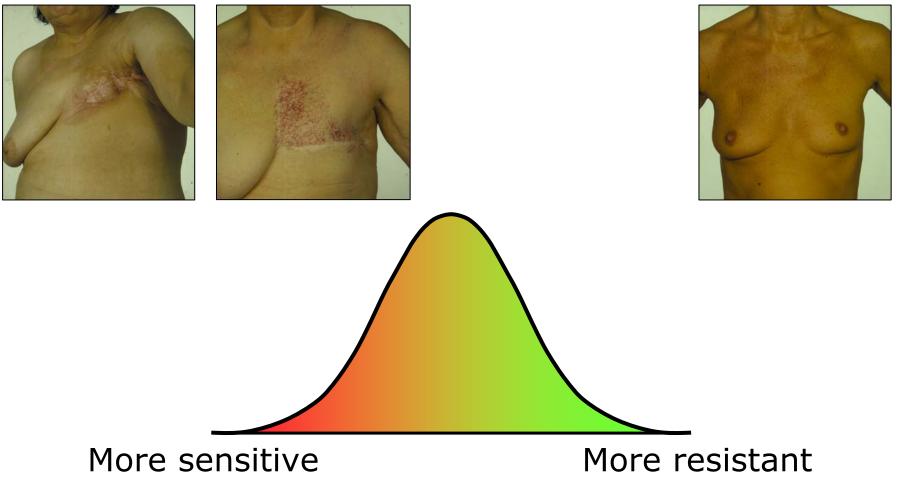
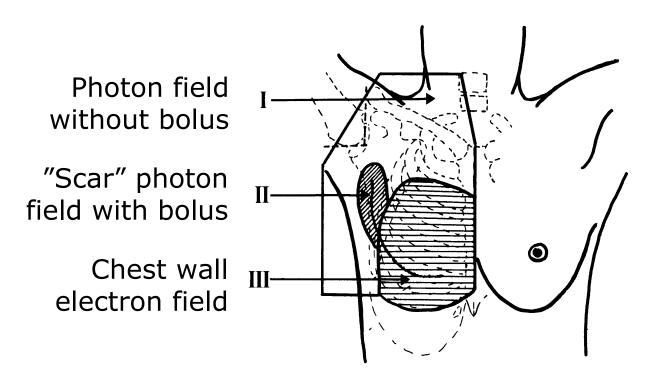

Predicting Individual Radiation Sensitivity: Current and Evolving Technologies Columbia University Kellogg Center, 2008

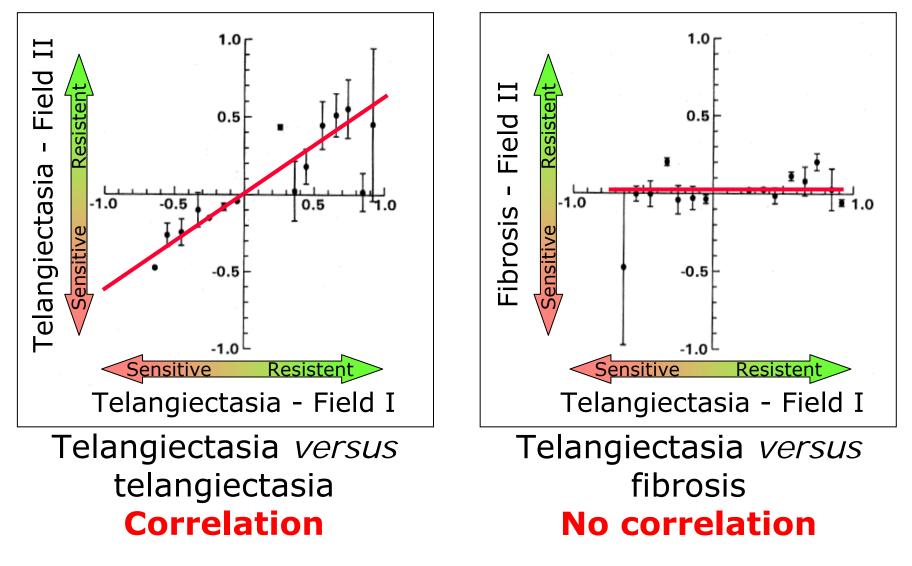
SNPs and late fibrosis


Jan Alsner (Molecular biologist)

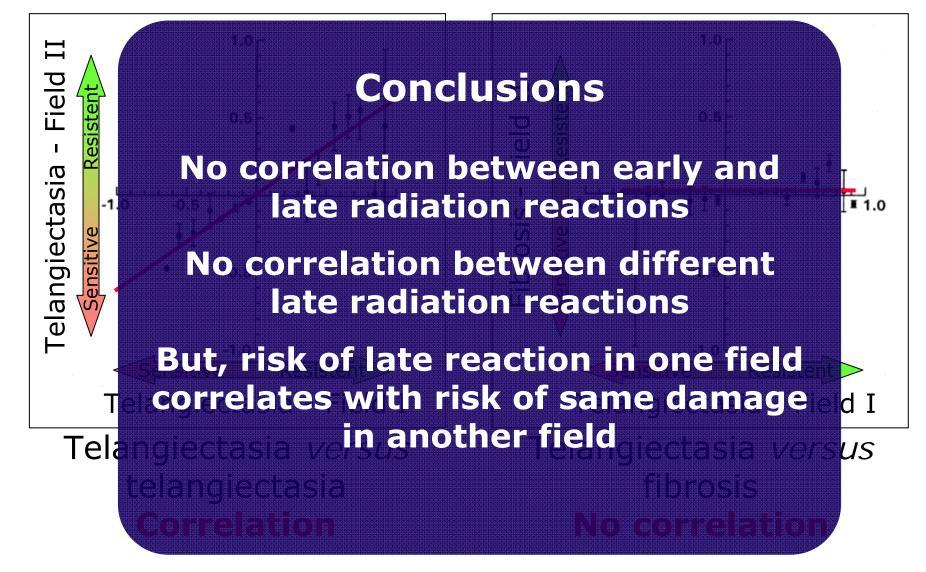
Department of Experimental Clinical Oncology Aarhus University Hospital Denmark

Supported by the Danish Cancer Society

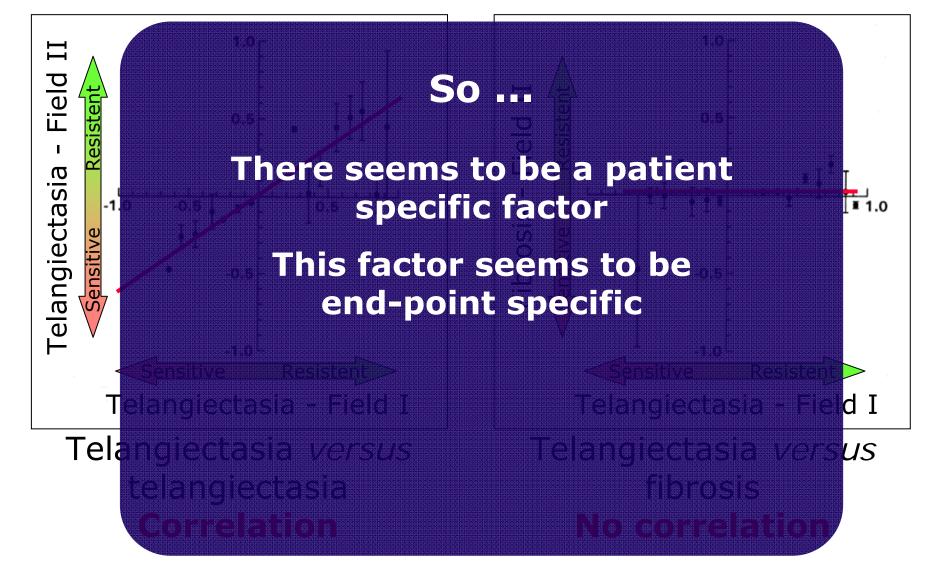

Variations in risk normal tissue toxicity Within normal range (not over-reactors)


Background

- Aarhus post-mastectomy cohort
 - 319 patients treated '78-'82
 - Fibroblasts from 41 patients


Intra- and inter-patient variation

Bentzen and Overgaard (1991) Radiother Oncol 20:159-165 Bentzen and Overgaard's (1993) Eur J Cancer 29A:1373-1376


Intra- and inter-patient variation

Bentzen and Overgaard (1991) Radiother Oncol 20:159-165 Bentzen and Overgaard's (1993) Eur J Cancer 29A:1373-1376

Intra- and inter-patient variation

Bentzen and Overgaard (1991) Radiother Oncol 20:159-165 Bentzen and Overgaard's (1993) Eur J Cancer 29A:1373-1376

Predicting normal tissue toxicity

Seminars in
RADIATION
ONCOLOGY

Genetic Markers for Prediction of Normal Tissue Toxicity After Radiotherapy

Jan Alsner, PhD, Christian Nicolaj Andreassen, MD, PhD, and Jens Overgaard, MD, DMSc, FRCR, FACR

Alsner et al. (2008) Seminars in Radiation Oncology 18:126-135 April 2008 Issue: Prognostic and Predictive Markers in Oncology

Predicting normal tissue toxicity

- Candidate gene versus whole-genome association studies
- Methodological problems
 - Quantitative complex traits and endpoints
 - Clinical versus biological phenotypes
 - Tagging SNPs *versus* functional variants
 - Genetic haplotypes
 - Confounding factors
- Intermediate *versus* clinical phenotypes
 - Differential gene expression between patients with either low or high risk of radiationinduced fibrosis in patient-derived fibroblasts after irradiation

Genetic association studies

First author, year	Gene(s) investigated	N=	Conclusion		
Ahn, 2006	CAT, SOD2, MPO, eNOS	446	No significant associations with acute skin toxicity. Association be skin toxicity possibly modified by MPO and sNOS SNPs	etween obesity and	
Ambrosone, 2006	GSTAL GSTPL GSTML GSTTL	446	GSTP1 codon 105 Val allele significantly associated with increase toxicity	sk of acute skin	
Andreassen, 2003	TGFBI, SODZ, XRCCI, XRCC3, AI	YEX 41	Risk of subcutaneous fibrosis significantly associated with the TG and codon 10 Provables, SOD2 codon 16 Ala and XRCC7 codon 3 XRCC3 codon 241 The allele associated with risk of subcutaneous felonoicctosia	osition -509 T g alleles. is and	
Andreassen, 2005	TGFRI, SOD2, XRCCI, XRCC3, AI ATM	EX. 52	Risk of altered breast appearance significantly associated with th codon 10 Pro allete in 26 matched case- cotrol pairs	e position –509 T and	
Andreassen, 2006		or 40 a	ssociation studies	on 1883 Asp/Asn and	
Andreassen, 2006	TGFBL SOD2, XRCC1, XRCC3, AI ATM		No significant associations between the investigated SNPs and risk subcutaneous fibrasis 2007	cofradiation-induced	
Angele, 2003	atm (C	belore	summer 2007)	and risk of various CC genotype	
Appleby, 1997	ATM	23	No ATM mutations detected in 23 patients with severe acute or la	le toxicity	
Borgmann, 2002	ATM. NBS. MREII. RADSO. DNA I	igase IV – S	No mutations detected in five patients with severe late toxicity, po polymorphism detected in one patient	ssible DNA ligase IV	
Brem, 2006	XRCCI	247	Haplotype consisting of indjority alleles in 4 polymorphic sites as increased radiosensitivity (mixed endpoint)	ciated with	
Bremer, 2003	ATM	10	10 No indications of increased acute or late radio-sensitivity in 10 patients being heterozygous for pathogenic <i>ATM</i> mutations		
Cesaretti, 2005	ATM 37 Possession of missense mutations significantly associated with radiation-induced rectal bleeding and erectile dysfunction				

Alsner et al. (2008) Seminars in Radiation Oncology 18:126-135

Whole genome association studies

Stage design

Vol 447 28 June 2007 doi:10.1038/nature05887

ARTICLES

nature

Genome-wide association study identifies novel breast cancer susceptibility loci

Douglas F. Easton¹, Karen A. Pooley², Alison M. Dunning², Paul D. P. Pharoah², Deborah Thompson¹, Dennis G. Ballinger³, Jeffery P. Struewing⁴, Jonathan Morrison², Helen Field², Robert Luben⁵, Nicholas Wareham⁵, Shahana Ahmed², Catherine S. Healey², Richard Bowman⁶, the SEARCH collaborators²⁺, Kerstin B. Meyer⁷, Christopher A. Haiman⁸, Laurence K. Kolonel⁹, Brian E. Henderson⁸, Loic Le Marchand⁹, Paul Brennan¹⁰ Suleeporn Sangrajrang¹¹, Valerie Gaborieau¹⁰, Fabrice Odefrey¹⁰, Chen-Yang Shen¹², Pei-Ei Wu¹², Hui-Chun Wang¹², Diana Eccles¹³, D. Gareth Evans¹⁴, Julian Peto¹⁵, Olivia Fletcher¹⁶, Nichola Johnson¹⁶, Sheila Seal¹⁷, Michael R. Stratton^{17,18}, Nazneen Rahman¹⁷, Georgia Chenevix-Trench¹⁹, Stig E. Bojesen²⁰, Børge G. Nordestgaard²⁰, Christen K. Axelsson²¹, Montserrat Garcia-Closas²², Louise Brinton²², Stephen Chanock²³, Jolanta Lissowska²⁴, Beata Peplonska²⁵, Heli Nevanlinna²⁶, Rainer Fagerholm²⁶, Hannaleena Eerola^{26,27}, Daehee Kang²⁸, Keun-Young Yoo^{28,29}, Dong-Young Noh²⁸, Sei-Hyun Ahn³⁰, David J. Hunter^{31,32}, Susan E. Hankinson³², David G. Cox³¹, Per Hall³³, Sara Wedren³³, Jianjun Liu³⁴, Yen-Ling Low³⁴, Natalia Bogdanova^{35,36}, Peter Schürmann³⁶, Thilo Dörk³⁶, Rob A. E. M. Tollenaar³⁷, Catharina E. Jacobi³⁸, Peter Devilee³⁹, Jan G. M. Klijn⁴⁰, Alice J. Sigurdson⁴¹, Michele M. Doody⁴¹, Bruce H. Alexander⁴², Jinghui Zhang⁴, Angela Cox⁴³, Ian W. Brock⁴³, Gordon MacPherson⁴³, Malcolm W. R. Reed⁴⁴, Fergus J. Couch⁴⁵, Ellen L. Goode⁴⁵, Janet E. Olson⁴⁵, Hanne Meijers-Heijboer^{46,47}, Ans van den Ouweland⁴⁷, André Uitterlinden⁴⁸, Fernando Rivadeneira⁴⁸, Roger L. Milne⁴⁹, Gloria Ribas⁴⁹, Anna Gonzalez-Neira⁴⁹, Javier Benitez⁴⁹, John L. Hopper⁵⁰, Margaret McCredie⁵¹, Melissa Southey⁵⁰, Graham G. Giles⁵², Chris Schroen⁵³, Christina Justenhoven⁵⁴, Hiltrud Brauch⁵⁴, Ute Hamann⁵⁵, Yon-Dschun Ko⁵⁶, Amanda B. Spurdle¹⁹, Jonathan Beesley¹⁹, Xiaoqing Chen¹⁹, kConFab⁵⁷*, AOCS Management Group^{19,57}*, Arto Mannermaa^{58,59}, Veli-Matti Kosma^{58,59}, Vesa Kataja^{58,60}, Jaana Hartikainen^{58,59}, Nicholas E. Day⁵, David R. Cox³ & Bruce A. J. Ponder^{2,7}

Stage 1 >225,000 SNPs ~400 cases ~400 controls

Stage 2 >10,000 SNPs ~4,000 cases ~4,000 controls

Stage 3 30 SNPs ~22,000 cases ~22,000 controls

Whole genome association studies

Direct design

Vol 447 7 June 2007 doi:10.1038/nature05911

ARTICLES

ARTICLES

>500,000 SNPs

Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls

The Wellcome Trust Case Control Consortium*

Quantitative complex traits

- A biological trait that has measurable phenotypic variation
- Genetic basis often involves the effect of several genes
 - Some affect the phenotype in an almost qualitative "all-or-none" way
 - Usually each causal gene only makes a small contribution to overall susceptibility
- Quantitative complex traits are often under environmental influences

Endpoints

- Most common diseases + risk of radiation-induced morbidity: quantitative complex traits
- Binary phenotypes (like disease occurrence "yes or no")
- Complex phenotypes (radiation-induced morbidity)
 - Severity and the time factor (late effects)
 - Clinical *versus* biological phenotypes
 - Confounding factors
 - Genotype-phenotype associations

Clinical versus biological phenotypes

- Presumably, differences exist between the genetic component of various types of radiation-induced morbidity in unselected patients
 - Example: Data from the Aarhus postmastectomy cohort
- Even if the same overall endpoint is evaluated, clinically defined phenotypes might represent a different underlying molecular pathology
 - Example: alterations in breast appearance after irradiation and late radiation morbidity assessed by palpation of subcutaneous induration might not reflect exactly the same biological mechanisms

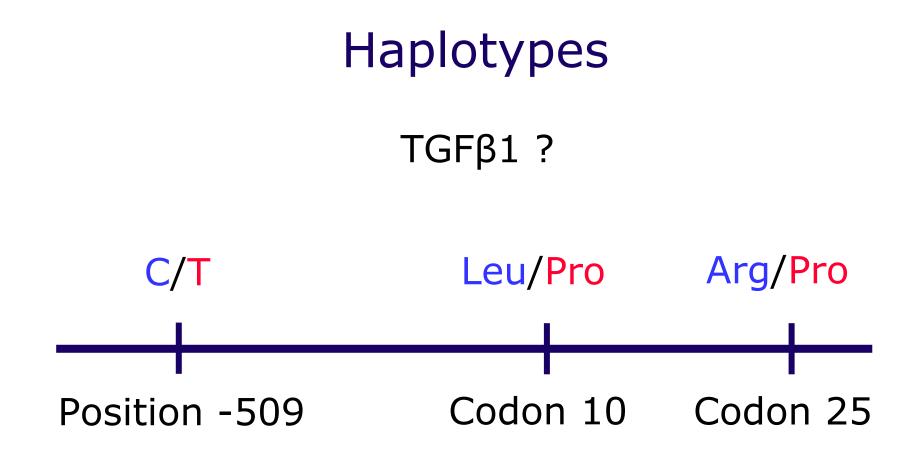
Confounding factors

- Potential confounding factors are differences in
 - radiation dose and type
 - target volume
 - target dose specification (especially when at a variable depth like tumor location)
 - overall treatment time
 - fractionation
 - concomitant chemotherapy
 - juxtaposed skin surfaces
 - immobilizing and dose-modifying device
 - comorbidity (e.g. connective tissue diseases)

Genotype-phenotype associations

- Understanding the biological function of genotype-phenotype associations
 - Tagging SNPs *versus* functional variants
 - Genetic haplotypes

Haplotypes


Carcinogenesis vol.27 no.12 pp.2469–2474, 2006 doi:10.1093/carcin/bgl114 Advance Access publication July 8, 2006

The *XRCC1* $-77T \rightarrow C$ variant: haplotypes, breast cancer risk, response to radiotherapy and the cellular response to DNA damage

Reto Brem¹, David G.Cox², Brigitte Chapot¹, Norman Moullan¹, Pascale Romestaing³, Jean-Pierre Gérard⁴, Paola Pisani¹ and Janet Hall^{1,5,*}

¹International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon, France, ²Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA, ³Centre Hospitalier Lyon-Sud, Radiothérapie, Curiethérapie, Oncologie, Chemin du Grand-Revoyet, 69496, Pierre Bénite, France and ⁴Centre Antoine-Lacassagne, 33 Avenue de Valombrose, 06189 Nice, Cedex 2, France

SNP association studies

NATURE Vol 447 7 June 2007

nature

FEATURE

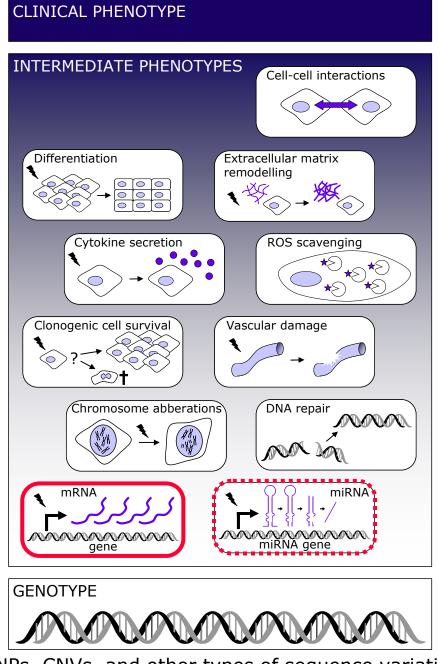
Replicating genotype-phenotype associations

What constitutes replication of a genotype-phenotype association, and how best can it be achieved?

NCI-NHGRI Working Group on Replication in Association Studies

The study of human genetics has recently undergone a dramatic transition with the completion of both the sequencing of the human genome and the mapping of human haplotypes of the most common form of genetic variation, the single nucleotide polymorphism (SNP)¹⁻³. In concert with this rapid expansion of detailed genomic information, cost-effective genotyping technologies have been developed that can assay hundreds of thousands of SNPs simultaneously. Together, these advances have allowed a systematic, even 'agnostic', approach to genome-wide interrogation, thereby relaxing the requirement for strong prior hypotheses.

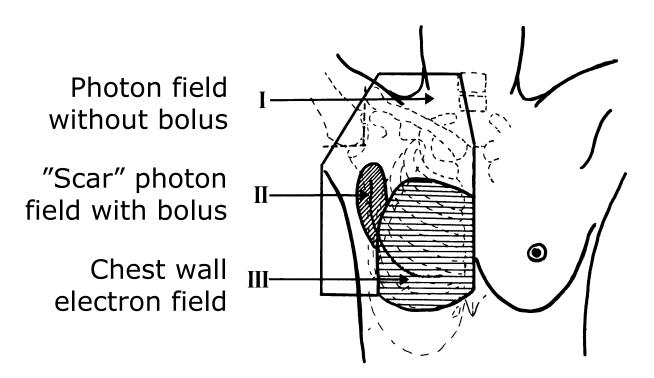
So far, comprehensive reviews of the published literature, most of which reports work based on the candidate-gene approach, have demonstrated a plethora of questionable genotype-phenotype associations, replication of which has often failed in independent studies⁴⁻⁷. As the transition to genome-wide asso-



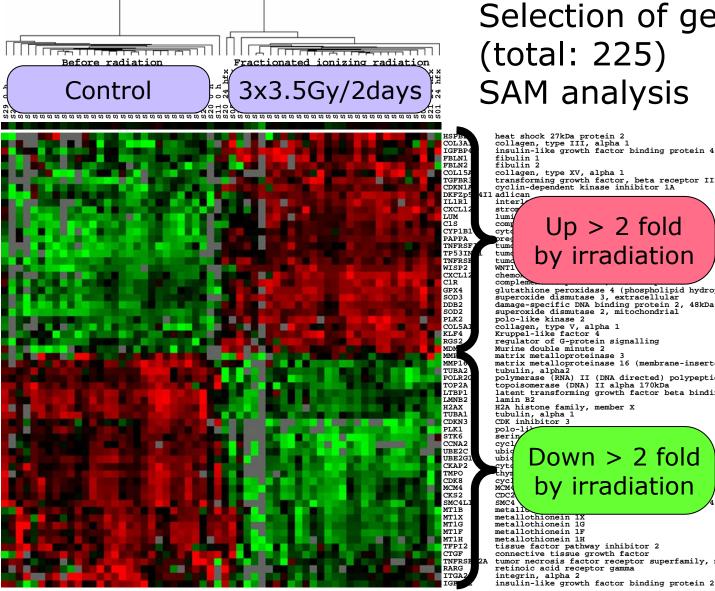
Endophenotypes (Intermediate)

- The concept of dividing a clinical phenotype (*quantitative complex trait*) into more stable phenotypes which
 - correlate with the clinical phenotype
 - associate more closely with genetic variants
 - may be portrayed by gene/protein expression patterns
 - may be applicable to pathway analysis

Various normal tissue damage endpoints

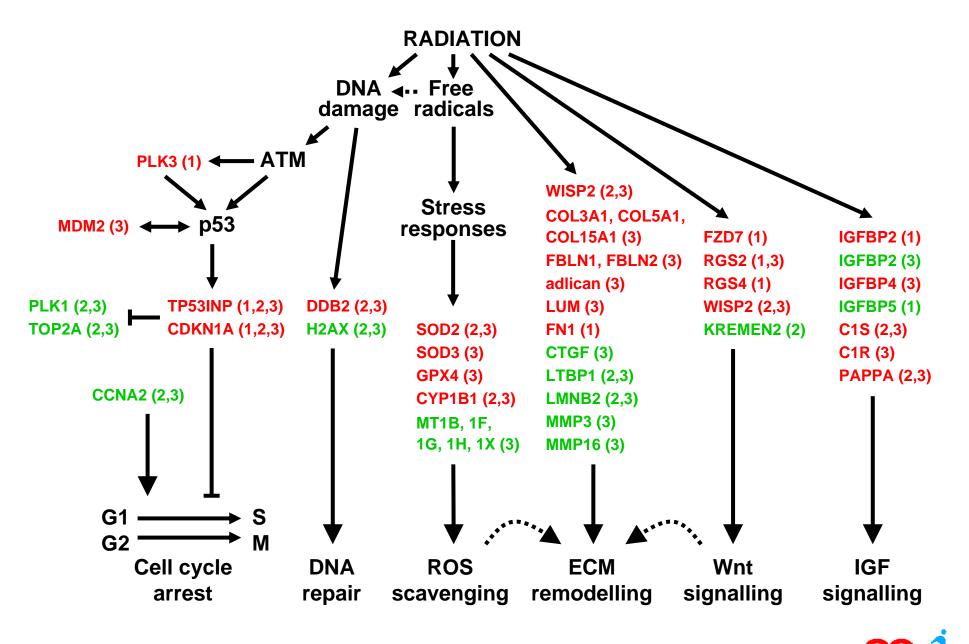


SNPs, CNVs, and other types of sequence variation

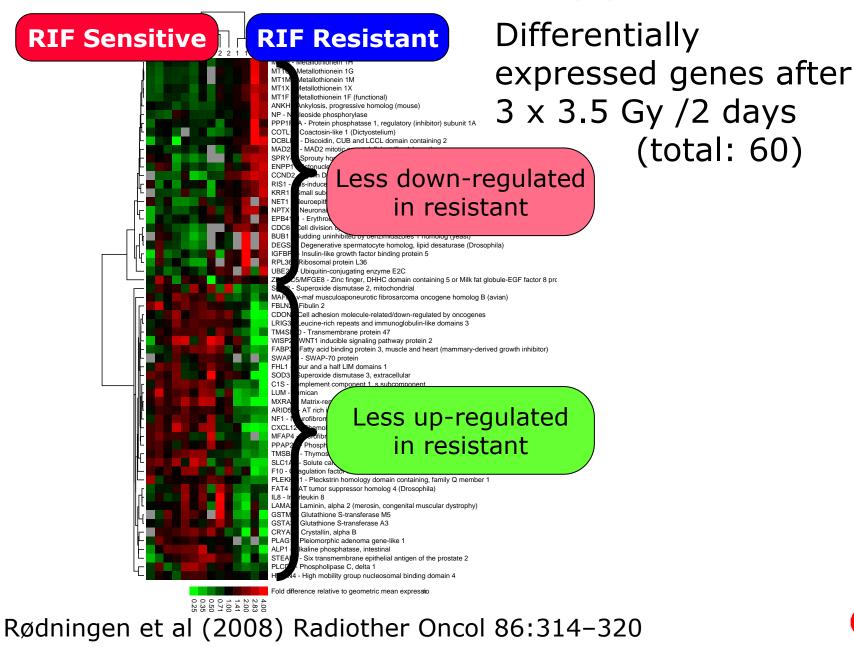

Irradiated fibroblasts

- Aarhus post-mastectomy cohort
 - 319 patients treated '78-'82
 - Fibroblasts from 41 patients

Genome-wide approach


Selection of genes (total: 225) SAM analysis

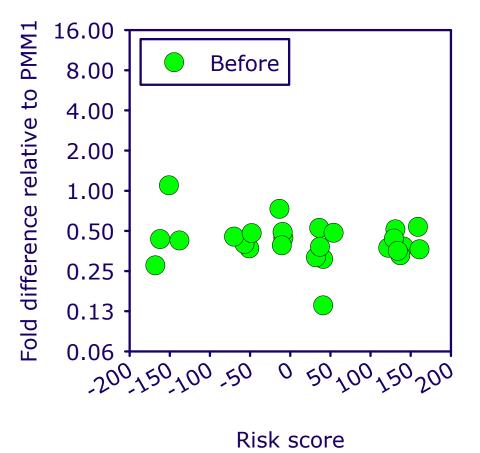
heat shock 27kDa protein 2 collagen, type III, alpha 1 insulin-like growth factor binding protein 4 collagen, type XV, alpha 1 transforming growth factor, beta receptor III cyclin-dependent kinase inhibitor 1A Up > 2 fold peptide 1 ember 18 by irradiation ember 9 glutathione peroxidase 4 (phospholipid hydroperoxidase) superoxide dismutase 3, extracellular damage-specific DNA binding protein 2, 48kDa superoxide dismutase 2, mitochondrial polo-like kinase 2 collagen, type V, alpha 1 Kruppel-like factor 4 regulator of G-protein signalling Murine double minute 2 matrix metalloproteinase 3 matrix metalloproteinase 16 (membrane-inserted) polymerase (RNA) II (DNA directed) polypeptide G topoisomerase (DNA) II alpha 170kDa latent transforming growth factor beta binding protein 1 H2A histone family, member X Down > 2 fold by irradiation (S. cerevisiae) -like 1 (yeast) metallothionein 1X metallothionein 1G metallothionein 1F metallothionein 1H tissue factor pathway inhibitor 2 connective tissue growth factor tumor necrosis factor receptor superfamily, member 12A


Rødningen et al (2005) Radiother Oncol 77:231-240

1) 1 x 3.5 Gy; 2 h 2) 1 x 3.5 Gy; 24 h 3) 3 x 3.5 Gy / 2 days; 2 h

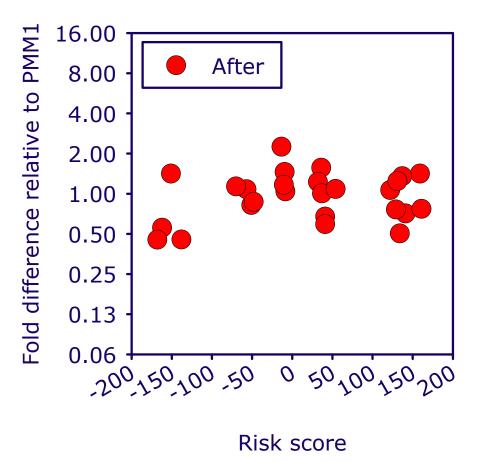
Rødningen et al (2005) Radiother Oncol 77:231-240

Genome-wide approach

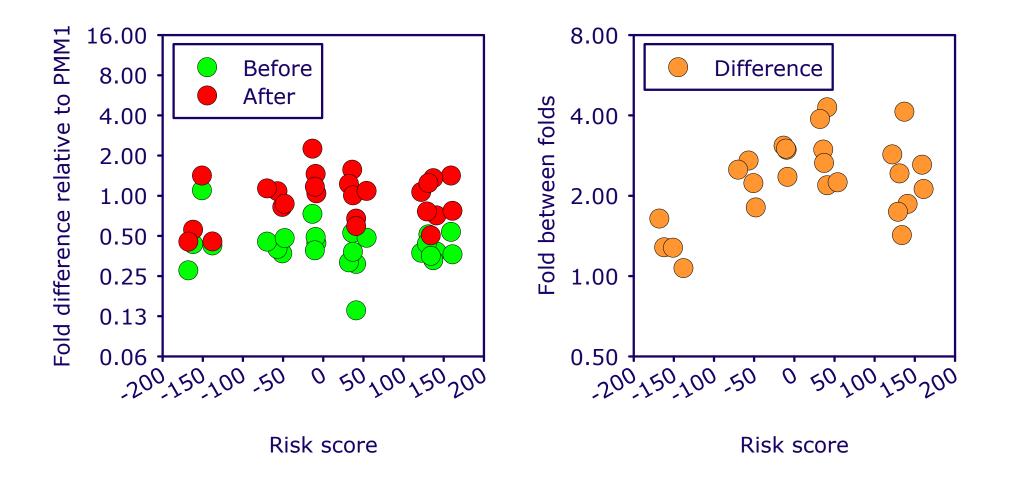


'Independent' validation - real-time PCR

- Same and more cell lines (but different batches)
- New irradiation reference gene: *PMM1*
- Before and after 3 x 3.5 Gy / 2 days

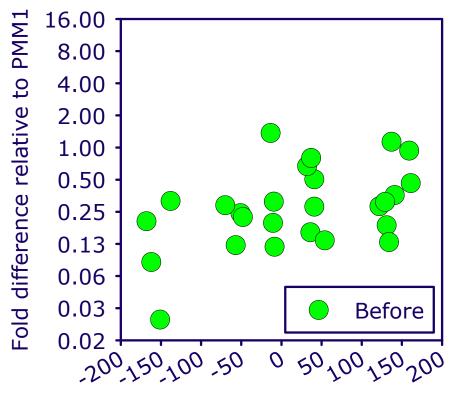


FAP, Fibroblast activation protein α Before and after 3 x 3.5 Gy / 2 days

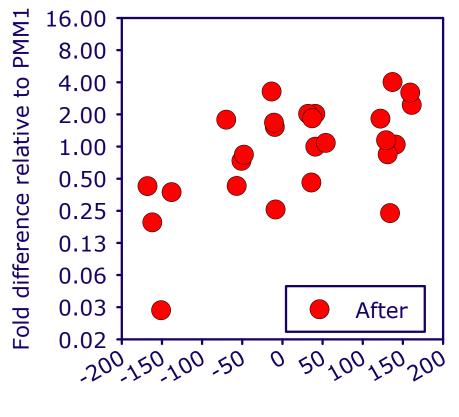

- Member of the cell surface dipeptidyl peptidase (DPP) family of serine proteases
- Important during embryonic development
- Induction of FAPα expression in fibroblast during wound healing, in fibrotic processes, and in tumour stroma

FAP, Fibroblast activation protein α Before and after 3 x 3.5 Gy / 2 days

- Member of the cell surface dipeptidyl peptidase (DPP) family of serine proteases
- Important during embryonic development
- Induction of FAPα expression in fibroblast during wound healing, in fibrotic processes, and in tumour stroma


FAP, Fibroblast activation protein α Before and after 3 x 3.5 Gy / 2 days

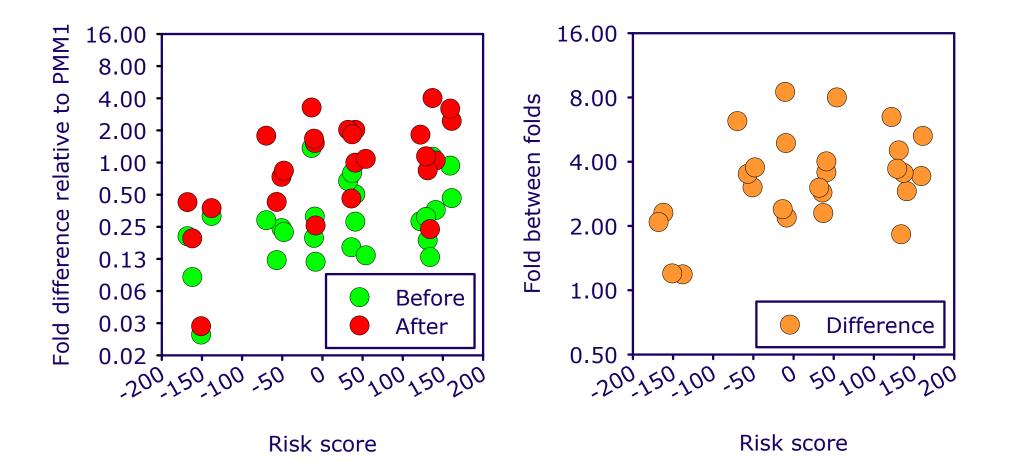
MXRA5, Matrix-remodelling associated 5 (Adlican) Before and after 3 x 3.5 Gy / 2 days



Risk score

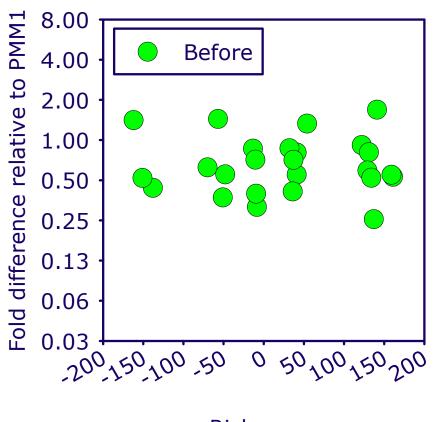
- Adhesion protein with leucine-rich repeats and immunoglobulin domains related to perlecan (large extracellular matrix proteoglycan)
- Upregulated during senescence, in skin fibroblasts from centenarians, and in cancer

MXRA5, Matrix-remodelling associated 5 (Adlican) Before and after 3 x 3.5 Gy / 2 days

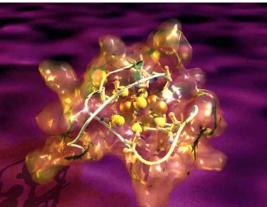


Risk score

- Adhesion protein with leucine-rich repeats and immunoglobulin domains related to perlecan (large extracellular matrix proteoglycan)
- Upregulated during senescence, in skin fibroblasts from centenarians, and in cancer

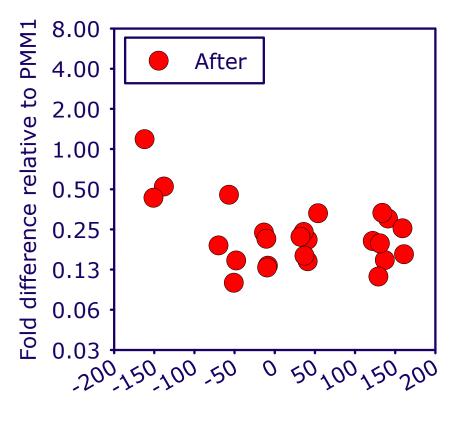

MXRA5, Matrix-remodelling associated 5 (Adlican) Before and after 3 x 3.5 Gy / 2 days

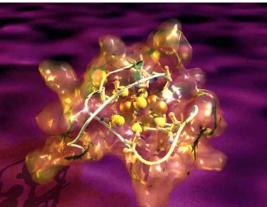
Alsner et al (2007) Radiother Oncol 83:261–266



MT1X, Metallothionein 1X Before and after 3 x 3.5 Gy / 2 days

Risk score

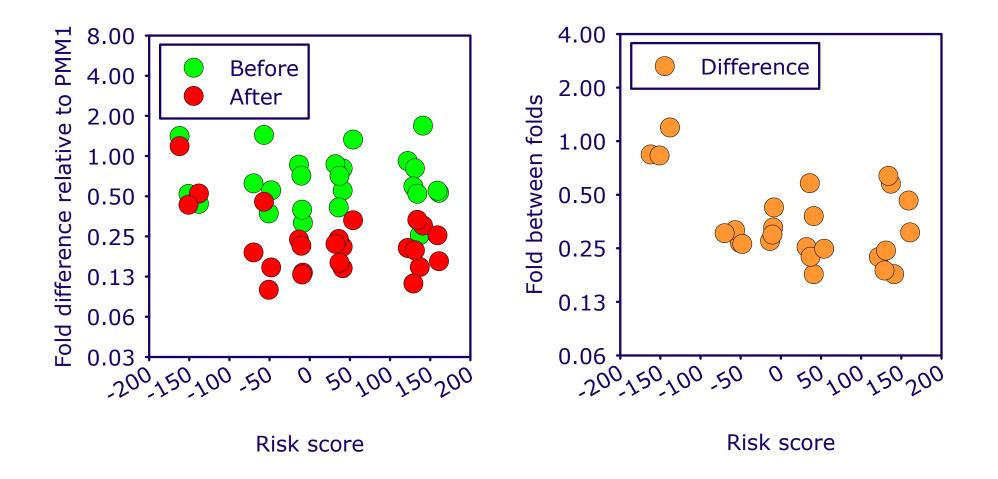

- Family of small proteins, 61-62 amino acids with 20 cysteines
- Involved in
 - zinc homeostasis
 - protection against heavy metal toxicity and oxidative damage


Alsner et al (2007) Radiother Oncol 83:261-266

MT1X, Metallothionein 1X Before and after 3 x 3.5 Gy / 2 days

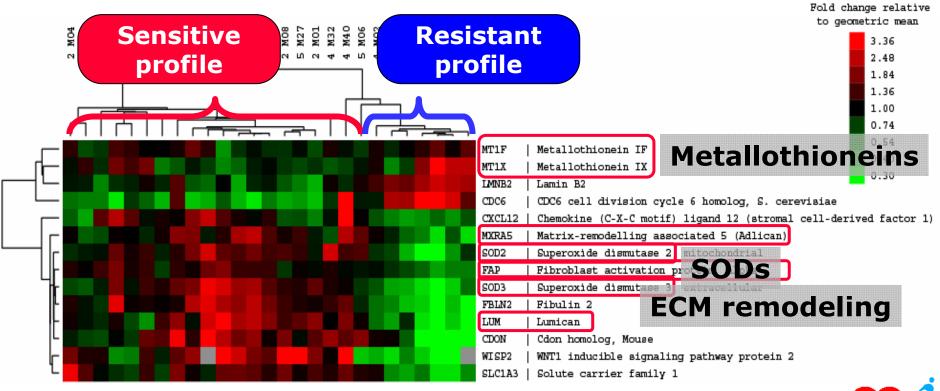
Risk score

- Family of small proteins, 61-62 amino acids with 20 cysteines
- Involved in
 - zinc homeostasis
 - protection against heavy metal toxicity and oxidative damage

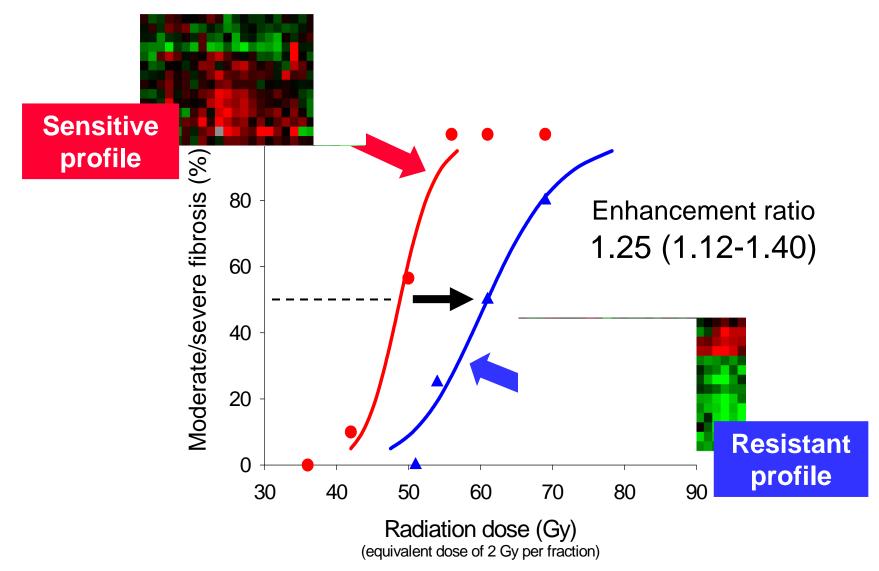


Alsner et al (2007) Radiother Oncol 83:261-266

MT1X, Metallothionein 1X Before and after 3 x 3.5 Gy / 2 days

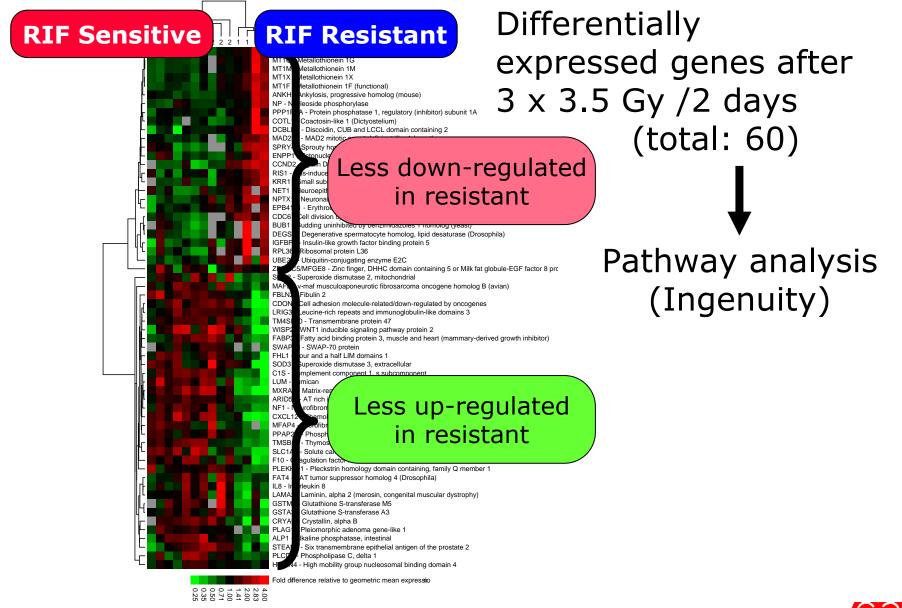


Alsner et al (2007) Radiother Oncol 83:261–266

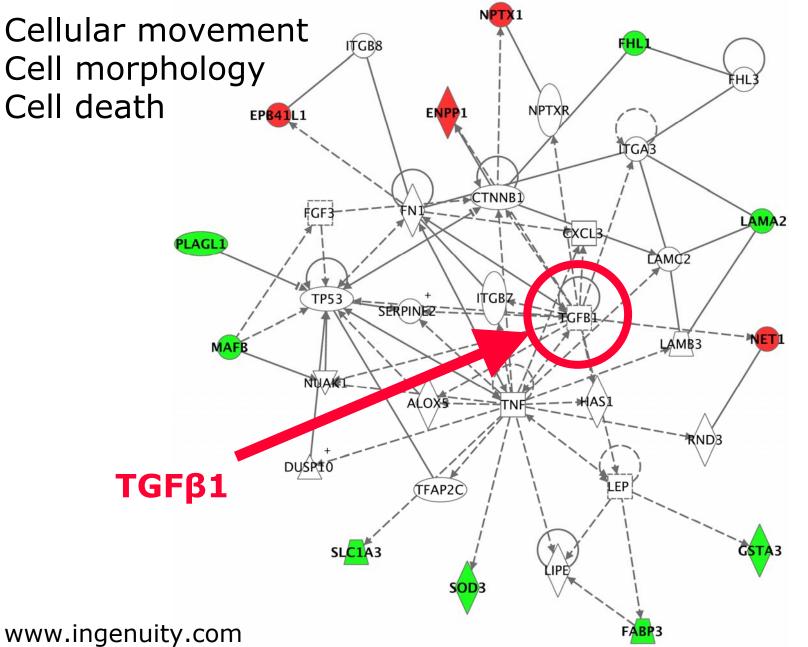

'Independent' validation - real-time PCR

- Same and more cell lines (but different batches)
- New irradiation reference gene: *PMM1*
- Data based on delta values (before and after IR)

Alsner et al (2007) Radiother Oncol 83:261–266


Genetic profile and risk of subcutaneous fibrosis

Alsner et al (2007) Radiother Oncol 83:261-266



Genome-wide approach

Ingenuity pathway analysis

Future studies

- Functional studies on fibroblasts
 - Validate differential mRNA expression after irradiation
 - Differential miRNA expression after irradiation ?
 - Pathway analysis (siRNA)
 - SNP arrays ?
- Animal studies
 - Subcutaneous fibrosis (leg extension)
 - Lung fibrosis

Acknowledgements

- Department of Experimental Clinical Oncology
 - Jens Overgaard
 - Nicolaj Andreassen
- Radiumhospital, Oslo, Norway
 - Anne-Lise Børresen-Dale
 - Olaug Rødningen
 - Trevor Hastie (Stanford University, USA)
- iNANO Center, University of Aarhus
 - Jørgen Kjems
 - Isabel Nawroth

- Molecular Diagnostic Laboratory, Aarhus University Hospital
 - Lars Dyrskjøt Andersen
- AROS Applied Biotechnology, Aarhus
 - Thomas Thykjaer

- Bioinformatics Research Center, University of Aarhus
 - Carsten Wiuf

