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ABSTRACT

This paper proposes new tests to compare the vaccine and placebo groups in randomized
vaccine trials when a fraction of volunteers become infected. A simple approach that is
consistent with the intent-to-treat principle is to assign a score, say W , equal to 0 for the
uninfecteds and some disease severity X > 0 for the infecteds. One can then test the
equality of this lumpy distribution of W between the two groups. This Burden of Illness
(BOI) test was introduced by Chang, Guess, & Heyse (1994). If infections are rare, the
massive number of 0s in each group tends to dilute the vaccine effect and this test can have
poor power, particularly if the Xs are not close to zero. Comparing X in just the infecteds
is no longer a comparison of randomized groups and can produce misleading conclusions.
Hudgens, Hoering, & Self (2003) introduced tests of the equality of X in a subgroup—the
principle stratum of those who are doomed to be infected no matter what. This can be
more powerful than the BOI approach, but requires the assumption that the vaccine cannot
directly or indirectly cause infections in anyone. We suggest new “chop-lump” tests that can
be more powerful than the BOI tests in certain situations, and do not require the assumption
that the vaccine harms no one. The basic idea is to toss out an equal proportion of zeros
from both groups and then perform a test on the remaining W s which are mostly > 0. A
permutation approach provides a null distribution. This type of test can be viewed as a BOI
test in the principal stratum of the non-immune under certain assumptions and is always a
good test when the difference between two distributions is concentrated in one tail. We show
that under local alternatives, the chop-lump Wilcoxon test is always more powerful than the
usual Wilcoxon test asymptotically, provided the underlying infection rates are the same.
We also identify the crucial role of the “gap” between 0 and the average X on power for the
t-tests. The chop-lump tests are compared to established tests via simulation for planned
HIV and malaria vaccine trials. A re-analysis of the first phase III HIV vaccine trial is used
to illustrate the method.
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1 Introduction

Definitive evaluation of candidate vaccines requires a properly designed randomized clinical

trial. For vaccines intended only to reduce the disease burden of the infected, but not prevent

infection, analysis can be complicated, especially for trials where infection is relatively rare.

The simplest approach is to assign a score of zero to the uninfecteds and use some positive

measure of disease severity, say X in the infecteds. The distributions of the resulting lumpy

composite random variable, say W can be compared between all randomized participants.

Chang, Guess, & Heyse (1994) suggested comparing the two groups using the differences in

means of W , calling W the Burden of Illness. This is appealing as all randomized participants

are explicitly included in the analysis and the intent to treat principle is followed. However,

it can have poor power in some settings.

A more powerful approach can be to compare the distribution of X in the infecteds.

However, the vaccine and placebo infecteds are not ensured to be comparable by random-

ization, except under the null hypothesis that the vaccine has no effect on acquisition of

infection. If the vaccine does nothing but cause some infections with low disease severity, a

test in the infecteds might conclude the vaccine is beneficial when in fact it is harmful. In

general a vaccine might “cause” infections by a variety of mechanisms. For example some

vaccines are actually live but weakened pathogens. If the weakened pathogen is used in

a weakened host, disease producing infection might result. This type of problem was the

reason the US switched from an attenuated polio vaccine to a killed vaccine (Alexander et

al 2004). Another cause is enhancing antibodies, vaccine induced proteins of the immune

system that “enhance” rather than reduce the chance a disease producing infection occurs

(Burke 1992). Additionally, vaccines might induce an auto-immune reaction which could

hamper the ability of the immune system to fight infection or disease. Finally, a vaccine

might encourage risky behavior that results in more exposure to pathogens, thus leading to

1



an increased probability of infection. Thus it is appealing to have methods of analysis that

avoid the assumption that the vaccine does not cause infections.

Gilbert, Bosch, & Hudgens (2003) introduced a class of tests for the distribution of X

(i.e. post-infection viral load) that addressed selection bias. They applied the thinking

of Frangakis and Rubin (2000) and postulated a principal stratum of volunteers doomed

to become infected whether randomized to placebo or vaccine. If a trial could be done

in the doomed, all would be infected and there would be no concern about selection bias.

In practice, the doomed cannot be identified, and any trial will include the doomed and

others. GBH construct tests by essentially culling out placebo infecteds who are unlikely to

be from the doomed stratum according to a model indexed by a single parameter reflecting

the amount of selection bias. The remaining placebo infecteds are then compared to the

vaccine infecteds. Shepherd et al (2006) generalize this thinking to the regression setting

and extend to studies other than vaccine trials. Hudgens, Hoering, & Self (2003) focused

on extreme versions of the test, in particular, where the worst (i.e. largest) viral loads are

eliminated from the placebo group, thus maximally penalizing the vaccine within this class

of tests. But these approaches must assume that the vaccine cannot cause infections.

Lachenbruch proposed an omnibus procedure by combining a test of the proportion

infected using all participants with a t-test among the infecteds. Each test statistic is squared

and the two are added. This has a chi-squared distribution with 2 degrees of freedom

asymptotically. However, if the vaccine is expected to have little effect on acquisition, this

approach may be less powerful than a procedure that focuses on the Xs. Tu & Zhou (1999)

proposed a parametric approach modelling the W s with a mixture of point mass at zero and

a log-normal distribution. A likelihood ratio test was derived that tested equality of the 3

parameters between two groups. Methrotra & Gilbert (2006) evaluate a variety of tests for

an HIV vaccine trial, including separate tests of the proportion infected and of the post-
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infection viremia as well as various weighted versions. For their setting, they conclude that

separate tests have appeal. To deal with potential selection bias of the test in the infecteds,

they suggest performing the sensitivity analyses using the approach of GBH and HHS.

In this paper, we introduce tests that have good power when two distributions differ in

terms of the right tail of the distribution. With this procedure, the W s are first sorted in

each group and the group with the smallest number of zeros is determined. All zeros from

this group are tossed out and the same proportion of zeros are chopped off the second group.

A test statistic is created using the lump of data that remains. A permutation approach,

where the entire data set is scrambled, provides a valid null distribution for the test statistic.

These “chop-lump” tests are valid under the null hypothesis that the distribution of W is

the same for the two groups, and have good power when the two distributions differ in the

right tail. They can be viewed as a way to compare two truncated distributions, or an

improved BOI test for lumpy skewed data. They can also be interpreted as a test in the

principal stratum of the non-immune under certain assumptions. Interestingly, we prove

that the chop-lump Wilcoxon test is asymptotically more powerful than the usual Wilcoxon

when the infection rates are the same. This result is of interest beyond vaccine trials. The

tests are evaluated by simulation for scenarios reflecting an HIV vaccine trial and a malaria

vaccine trial. Finally, the methods are used to provide a re-analysis of the first phase III

HIV vaccine trial (rgp120 Study Group 2004).

2 Tests in Vaccine Trials

To develop some notation, suppose that n patients are each randomized to vaccine (placebo)

and that infections are recorded along with a measure of disease burden in the infecteds. Let

Y denote the indicator of infection, Z = C, V identify the group, and let X be a measure

of disease burden e.g. viral load. We define W as 0 for an uninfected patient and X for an
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infected patient, and have WZi (WZ(i)) as the ith measurement (ordered measurement) in

group Z. For notational ease, the treatment of unequal group sizes is deferred to Appendix

A.

Exploiting the idea of Principle Stratification (Frangakis and Rubin 2002), Gilbert, Bosch,

and Hudgens (2003) noted that for a vaccine trial, each subject enrolled in the trial must be

one of four unknowable types, given in Table 1. For example, the subgroup of the “harmed”

consists of those who would become infected if given the vaccine, but who would remain

uninfected if given the placebo.

Using the observed data, we can straightforwardly test the null hypothesis that the

distribution of W is the same in the two groups.

HW
0 : FV (w) = FC(w)

where FZ(w) is the cdf of W in group Z = C, V . Though unnecessary, note that the

distribution of W can be decomposed in terms of the principle strata:

FV (w) = δ0(w)(θ00 + θ01) + FV (w|10)θ10 + FV (w|11)θ11

FC(w) = δ0(w)(θ00 + θ10) + FC(w|01)θ01 + FC(w|11)θ11

where FZ(w|ij) is the distribution of W in the principle stratum Y (v), Y (p) = i, j for Z =

V, C and δ0(w) is the indicator that w = 0. Thus in the vaccine group, the 0s are a mixture

of the immune and protected, while the vaccine W s > 0 are a mixture of the harmed and

doomed. A similar decomposition holds for the placebo group.

To test HW
0 , Chang, Guess, & Heyse (1994) suggested using the standardized difference

in sample means of W :

ZBOI =

∑n
i=1 WCi/n−∑n

i=1 WV i/n√
2X

2
p̄(1− p̄)/n + p̄(S2

C/n + S2
V /n)

, (1)
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where p̄ is the proportion of infections in the combined sample, X the overall mean of the

Xs, and S2
Z the sample variance of X in group Z. On the null hypothesis, this has an

asymptotic standard normal distribution. ZBOI has the same numerator as the usual t-test,

but a different variance estimate that exploits the semi-continuous nature of W . One can

show that ZBOI is asymptotically equivalent to the t-test under local alternatives.

While appealingly consistent with the intent to treat principle, the burden of illness test

can have poor power if there are a substantial number of zeros. Intuitively this makes sense.

One way to obtain a substantial number of zeros is to enroll many from the “immune”

stratum. Such patients cannot receive a benefit from the vaccine and thus a trial with lots

of zeros may have poorer power than a trial with few zeros.

If the vaccine does not prevent infections but improves X, a more powerful test can be

fashioned by just using X from the infecteds. Under the strong null that the vaccine is inert,

we have

HS
0 : θ10 = θ01 = 0, FV (x|11) = FC(x|11),

where FZ(x|11) is the distribution of X in the doomed following randomization to Z. Note

that this is stronger and different than HW
0 which permits θ10 = θ01 > 0. Under HS

0 , those

who are infected must be from the doomed stratum and thus a valid test of HS
0 is obtained

by comparing the distribution of X in the placebo infecteds to the distribution of X in the

vaccine infecteds. For example, a t-test in the infecteds can be performed:

Zinf =

∑mC
i=1 XPi/mC −∑mV

i=1 XV i/mV√
S2(1/mC + 1/mV )

,

where S2 is the pooled sample variance of the Xs and mZ is the number infected in group Z.

While the n placebo (vaccine) recipients are ensured to be comparable in terms of seen and

unseen baseline characteristics by randomization, the mC (mV ) placebo (vaccine) infecteds

are comparable only under the strong null. By comparable we mean that the infecteds come
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from the same principal stratum; under HS
0 , necessarily the doomed. If HS

0 is not true,

placebo infecteds are a mixture of the doomed and protected while the vaccine infecteds

are a mixture of the doomed and harmed. Suppose the vaccine protected no one, caused

infections with low viral loads, and had no impact on viral loads for the doomed. Then HS
0

is not true θ01 = 0, θ10 > 0, the observed vaccine viral loads would tend to be smaller than

the observed placebo viral loads, and using Zinf would tend lead to the catastrophically

wrong conclusion that a pernicious vaccine is good. An illustration of this scenario is given

in Figure 1.

Gilbert, Bosch & Hudgens (2003) addressed the problem of selection bias by testing

vaccine efficacy in the principal stratum of the doomed. Within any principle stratum,

the vaccine and control groups are comparable by virtue of randomization, so there is no

issue about selection bias. They assume that θ10 = 0, i.e. that the vaccine cannot harm

anyone. Thus the control infecteds must be a mixture of the protected and doomed while the

vaccine infecteds are purely the doomed. They propose culling out a proportion (based on a

specified θ01/(θ11 + θ01)) of placebo infecteds who belong to the protected principle stratum.

The remaining placebo people must be the doomed and their viral loads are compared to the

viral loads in the vaccine infecteds (by assumption the doomed). There are different ways to

do this culling and GBH propose a model for culling indexed by a single parameter, β, that

reflects the degree of selection bias. If the test remains significant under different culling

mechanisms, one might feel more comfortable concluding vaccine works in the doomed. Of

course the most extreme culling has appeal, as this obviates the need to specify β.

Hudgens, Hoering & Self (2003) explicitly discuss the most extreme culling. Of particular

interest is the scenario that penalizes the vaccine arm the most. It could be that the largest

viral loads in the placebo group are all from the protected principal stratum. That is, the

vaccine protects those who would have had the largest viral loads, if given placebo. If so,
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then if we want to estimate the effect of vaccine in the estimated principal stratum of the

doomed, we should toss out the largest viral loads among the placebo infecteds until we have

mV viral loads remaining. Provided p̂V < p̂C , their test statistic becomes

TM =

∑mV
i=1 XC(i) −∑mV

i=1 XV i

mV

,

for the difference in means approach, where the XC(i)s are ordered from smallest to largest.

If p̂V ≥ p̂C , then (with the assumption that θ10 = 0) the infecteds from each group are

presumably from the doomed principal stratum. The fact that more infections occurred

in the vaccine group is because by chance more doomed were randomized to vaccine than

placebo. Thus the mean difference in viral load among the doomed is estimated as the mean

difference in the infecteds:

T =
mC∑

i=1

XCi/mC −
mV∑

i=1

XV i/mV = XC −XV .

Note that if pC = pV , then about half the time T will be the mean viral load difference in the

infecteds, reinforcing the importance of the stated assumption that θ10 = 0 for this method

to work. To obtain a null distribution they simulate data using a bootstrap procedure that

simulates data from the NPMLEs of FV (w) and FC(w) assuming θ10 = 0, the null hypothesis,

and the most extreme selection model.

Another approach is to compare the infection rates between the two groups:

Zprop =
p̂C − p̂V√

2p(1− p)/n

where p = (p̂C + p̂V )/2. For a vaccine with little effect on acquisition, this would have poor

power.

Lachenbruch (2001) proposed combining Zprop with Zinf by adding their squared values

together. Under HS
0 , this has a chi-square distribution with 2 degrees of freedom. While

this procedure is useful in certain settings, power will be compromised relative to a test
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that focuses on the Xs if there is little effect on acquisition. Additionally, Lachenbruch

points out that the power advantages of this procedure are greatest if the vaccine effects are

contradictory e.g. reduces acquisition but increases viral load. Mehrotra & Gilbert (2006)

introduce a variety of ways to combine Zprop and Zinf, including weighted tests. However,

if there is expected to be little to no effect on acquisition, the optimal weighted test will

assign 0 weight to Zprop and we end up with a comparison of the infecteds. They suggest

conducting separate tests Zprop and Zinf with an investigation of selection bias for Zinf

using the methods of GBH.

3 Chop-Lump Tests

Our goal is to develop a more powerful BOI-like test that will not result in the wrong

conclusion with a harmful vaccine, and to have good power for trials where the vaccine

should have little effect on acquisition. For a vaccine with no acquisition, the proportion of

zeros should not be informative about the vaccine and it makes sense to focus on the tail

of the distribution where the numbers reside. Towards this end, we propose a “chop-lump”

procedure. Under this approach, the data are sorted separately and we throw out an equal

proportion of zeros in each group so that one group has no zeros. This even-handed approach

is illustrated in Table 2. Different test statistics can be constructed using the data to the

right of the chopping point. A null distribution can be obtained by permutation where

the entire data set is scrambled, a new chopping point determined, and the test statistic

re-constructed.

Similar to the BOI, test, we can calculate a standardized mean difference in the remaining

Burden-of-Illness scores by using the W s to the right of the chopping point.

∑n
i=(n−m)+1 WV (i)/m−∑n

i=(n−m)+1 WC(i)/m√
2S2

m/m

where S2
m is the pooled sample variance based on the m largest W s in each group, and m =
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max(mC ,mV ). Note that though a permutation null distribution is used, the denominator

is not superfluous as m and thus S2
m will change in the permuted datasets. We call this the

chop-lump t-test (CLT).

We also propose a standardized rank test which we call the chop-lump Wilcoxon (CLW)

∑n
i=n−m rank(WV (i))−m(2m + 1)/2

m2(2m + 1)/12−m(L3 − L)/{24(m− 1)}

where L is the number of leftover zeros and rank(WV (i)) is the (mid)-rank of WV (i) in the

lump of data to the right of the chopping point

WV (n−m+1), WV (n−m+2), . . . , WV (n),WC(n−m+1),WC(n−m+2), . . . , WC(n).

Appendix A gives details on how to efficiently obtain the exact permutation distribution

of both CLT and CLW when the number of Wi > 0 is small and gives an approximation

otherwise. The approximation relies on a (hypergeometric) weighted sum of Gaussian cumu-

lative distribution functions. A small simulation is performed to demonstrate the accuracy of

the approximation. The R package choplump is available at http://cran.r-project.org/

to perform both chop-lump tests.

Getting back to Figure 1, note that for this pernicious vaccine, the W s to the right of the

chopping point are given by the light and dark shaded areas. Note that the median (mean)

burden of illness to the right of the chopping point is equal (smaller) in the placebo group

compared to the vaccine group. Thus the chop-lump tests should not tend to conclude a

harmful vaccine is good. The chop-lump tests are also more appealing when selection bias

goes the other way. If we switch the placebo and vaccine labels in Figure 1, then the light

shaded group corresponds to the protected principle stratum and the vaccine is protecting

those who would have had infections with low viremia, if given placebo. A test in the infecteds

tends to conclude that a good vaccine is bad while the chop-lump tests appropriately favor

the vaccine group.

9



Now imagine placing the lightly shaded small hump in Figure 1 to the far right so the

vaccine is causing infections with high viremia. Here both the chop-lump and test in the

infecteds appropriately have higher means for the vaccine group. If we then imagine switching

the vaccine and placebo labels, so the vaccine is preventing infections with high viremia, the

test in the infecteds would tend to draw the correct conclusion as would the chop-lump

test. Thus for all these extreme scenarios, the chop-lump tests tend to draw the correct

conclusions. This is not true for the test in the infecteds, which can tend to conclude a

harmful vaccine is good or a good vaccine is harmful.

Under certain assumptions, the chop-lump tests can be viewed as a test of vaccine ef-

fectiveness, as measured by W , in the principle stratum of the non-immune i.e. the union

of the doomed, harmed, and protected principle strata. Note that without making any

assumptions, we can write the distribution of W in the nonimmune groups as

FNI
V (w) = FV (w|1)

θ10 + θ11

θ10 + θ01 + θ11

+ δ0(w)
θ01

θ10 + θ01 + θ11

(2)

FNI
C (w) = FC(w|1)

θ01 + θ11

θ10 + θ01 + θ11

+ δ0(w)
θ10

θ10 + θ01 + θ11

. (3)

where FZ(w|1) is the distribution of W for the infecteds in group z, and is readily estimable.

Note that if θ01, θ10 and θ11 were estimable, we could estimate the mixing proportions and

thus estimate FNI
Z (w), Z = C, V .

While these mixing proportions are not estimable, note that without making any as-

sumptions we have

pC = θ01 + θ11

pV = θ10 + θ11

thus we can deduce that θ11 must lie within the interval [0, min(pC , pV )]. If θ11 were known,

we could estimate θ01, θ10, using the above equations and thus estimate FNI
Z (w) and construct
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a test. With θ11 unknown, we could construct a family of tests for all θ11 ∈ [0, min(p̂V , p̂C)].

Note that if θ11 = 0 then a test in the estimated nonimmune stratum would be based on

the W s remaining after we throw out the smallest n[1 − (p̂C + p̂V )] W s from each group.

On the other hand if θ11 = min(p̂C , p̂V ), then a test in the estimated nonimmune stratum

corresponds to throwing out the smallest n[1−max(p̂C , p̂V )] W s from each group—exactly

the chop-lump procedure of Table 2.

The chop-lump tests can be viewed as tests in the estimated principal stratum of the

nonimmune under an awkward assumption–loosely that we assume that either the protected

or the harmed group don’t exist, but we don’t know which. Note that the selection bias

approaches of HHS and GBH made the assumption that the harmed group didn’t exist. So

in some sense, the chop-lump approach is an even-handed generalization of HHS and GBH.

More formally, we can obtain the mles of θ01, θ10, θ11 under a restricted parameter space

R = {(θ01, θ10, θ11) : [(θ01, θ10) ∝ e1
⋂

θ11 ∈ [0, 1], θ01 + θ10 + θ11 ≤ 1] OR [(θ01, θ10) ∝

e2
⋂

θ11 ∈ [0, 1], θ01 + θ10 + θ11 ≤ 1]}, where e1 = (1, 0) and e2 = (0, 1). Note that R is a

subset of two planes in R3. We can then replace FZ(w|1) with its NPMLE and form F̂NI
Z (w)

by weighting the F̂Z(w|1)s and δ0(w)s by the restricted mles of θ according to the formulas

(2) and (3). Importantly, the validity of the chop-lump procedure does not depend on a

principal stratum interpretation.

4 Asymptotic Representation of Power

In Appendix B , we derive asymptotic expressions for the power of the different tests un-

der local alternatives. We assume that the Xs follow a distribution with ∆ = E[XC ] −

E[XV ],var[XC ] = var[XV ] = σ2, P (Y = 1|Z = C) = pC and P (Y = 1|Z = V ) = pV , and

that n patients are randomized per group. Denote p = (pC +pV )/2. The use of local alterna-

tives means that ∆, and pC − pV vary with n so that the expected value of the standardized
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test statistic converges to a constant.

It is straightforward to show that the asymptotic power function for the BOI t-test, under

local alternatives, is

Φ(E(Z)− zα/2), (4)

where

E[Z] =
√

n
pV ∆ + E[XC ](pC − pV )√

2{pV /(pC + pV )∆ + E[XC ]}2p(1− p) + 2pσ2

is the expected value of the BOI t-test. Note that if pC = pV , increasing E[XC ] decreases

power. Thus the “gap” between 0 and the mean Burden of Illness has an important effect

on power.

While, as we will see, the power for the chop-lump t-test can be substantially greater

than the usual t for realistic situations, one can show that the two tests are asymptotically

equivalent (Appendix B). The speed of convergence of this approximation for the chop-lump

t-test can be quite slow if E[XC ] is large, or if p is small with the chop-lump t having better

power than the usual t-test.

While the powers of the Chop-Lump and BOI t-tests unappealingly depend on E[XC ],

the powers of the rank tests do not. The asymptotic power, under local alternatives, for the

Wilcoxon test corrected for ties is

Φ



√

θ pE(Zinf) +
√

3(1− p) E(Zprop)
√

(1− p)2 + (1− p) + 1
− zα/2


 , (5)

where

E[Zinf] =
∆√

2σ2/(np)
,

E[Zprop] =
pV − pC√

2p(1− p)/n
,

are the expected values of the t-test on the infecteds, and the tests of proportion infecteds,

respectively and θ = 3/π is the asymptotic relative efficiency (ARE) of the Wilcoxon test
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compared to a t-test for underlying Gaussian data. If X followed a different distribution, θ

would correspond to the associated ARE.

The asymptotic power expression, under local alternatives, for the Chop-Lump Wilcoxon

test is

Φ



√

θ E(Zinf) +
√

3(1− p) E(Zprop)
√

1 + 3(1− p)
− zα/2


 (6)

We first compare the terms inside the power expressions for chop-lump rank and the

Wilcoxon test. If the vaccine has no effect on acquisition, we have pC = pV = p and

E[Zprop] = 0. It is easy to show in this case that the chop-lump rank test always has equal

or greater power than the Wilcoxon rank test. On the other hand, if the vaccine has no

effect on viremia in the infecteds, then the Wilcoxon rank test is never worse. But in this

setting, we should really be doing just a test of proportions.

More generally, we can equate the two terms and calculate the point where power for the

two Wilcoxon tests is the same:

E[Zinf]/E[Zprop] =

√
3q

θ

(
√

1 + 3q −√q2 + q + 1)

(
√

q2 + q + 1− (1− q)
√

1 + 3q)

where q = 1− p.

Figure 2 plots the curve of indifference between the chop-lump Wilcoxon and the usual

Wilcoxon tests. As the proportion infected gets smaller, the chop-lump Wilcoxon test has

better power for smaller ratios E[Zinf]/E[Zprop]. As q → 1 the ratio approaches (2 −
√

3)/
√

θ.

We can also compare the chop-lump Wilcoxon to the BOI-t test when pC = pV = p.

In this setting one can deduce that the chop-lump rank test is preferred to the BOI-t test

provided

√
θ
√

2σ2p + 2(∆/2 + E[XC ])2p(1− p) >
√

2σ2p + 6σ2p(1− p)

For fixed E[XC ], we have ∆ → 0, as n → ∞ for local alternatives. Thus for a distribution
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with θ = 1 the chop-lump rank test is asymptotically preferred to the BOI t-test provided

E[XC ]

σ
>
√

3.

So if the gap is about 1.7 or more standard deviations, the chop-lump rank test is asymp-

totically preferred. Interestingly, this does not depend on p—the proportion infected.

In small samples, of course, the asymptotic power expressions may not be accurate and

simulation may be required to obtain accurate probabilities.

5 HIV and Malaria Vaccine Trials

5.1 HIV Vaccine Trial

To evaluate the performance of these tests in realistic conditions, we consider vaccine trials

of HIV and malaria. Current HIV vaccine candidates are expected to work by inducing cell

mediated immunity, resulting in T-cells that are primed to kill HIV-infected cells. But the

vaccine may have little to no effect on acquisition of infection. HIV vaccine trials need to

enroll large numbers of patients, as the infection rate is relatively rare. We first consider

a scenario intended to mimic PAVE 100, an HIV vaccine trial that will evaluate a NIAID

vaccine. PAVE 100 will be a randomized, placebo controlled trial of an HIV vaccine in 8500

individuals, designed to accrue 180 infections in roughly equally from three regions of the

world.

In the placebo group, the number of infections were generated according to a bino-

mial distribution with N = 4250 and pC = 90/4250. The vaccine group used pV =

(90/4250)(1 − VES), where the vaccine efficacy on susceptibility or VES ranged from 0

to .2. For infected participants, log10 viral loads were generated according to a normal dis-

tribution with variance .752 and mean 4.5 or 4.5−∆ for patients in the placebo or vaccine

group based on data from the Multi-Center AIDS Cohort Study (Lyles et al 2000). We also

evaluated a pernicious vaccine which does nothing other than cause some infections with low
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levels of viremia. Here we have θ10 > 0 with pC = θ11 = 90/4250. Thus pV = 90/4250 + θ10.

Within the doomed (harmed) stratum X was normal with mean 4.5 (2.5) and variance .752.

We evaluated the BOI test (1) and the rank version of the BOI (the usual Wilcoxon

test) on all the data. We also evaluated the chop-lump t and Wilcoxon tests as well as a

t-test in the infecteds and a rank version of the HHS test in the doomed under selection bias

that maximally penalizes the vaccine. For each scenario, 1,000 clinical trials were simulated.

Permutation null distributions were simulated for the rank test in the doomed and the chop-

lump tests using 299 permutations. For the remaining tests, a standard normal null reference

distribution was used. The Wilcoxon test was standardized using a variance that took into

account the number of tied observations (see Lehmann 1975). All tests are one-sided with

α = .025. Table 3 presents the results.

The first row indicates that all tests control the type I error rate. Rows 2-4 are for a

vaccine with a modest effect on viremia but with VESs of, respectively, 0%, 10%, and 20%.

We see that with a VES of 0%, the test in the infecteds has the best power with the rank

test in the doomed somewhat worse. The chop-lump Wilcoxon test does the best of the

remaining tests but is substantially worse than the test in the infecteds and the test in the

doomed. The power of the test in the infecteds remains similar for increasing VESs, but

decreases for the rank test in the doomed. This is because the benefit of the vaccine on

acquisition is not reflected in the doomed. Further, as VES increases, more of the largest

viral loads in the placebo group are thrown out. The chop-lump and BOI tests both increase

in power with increasing VESs. The effect of VES is pronounced for all tests, except the

t-test in the infecteds. Rows 5-7 are similar but with a more pronounced vaccine effect of

1.0 logs, and the relative conclusions are the same as for rows 2-4. However, we do see that

for this alternative, the CLW test has power > 90% for all 3 VESs. The 8th row is for the

hypothetical case when E[XC ] is 1.5 instead of 4.5 so the gap is about 2 standard deviations
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instead of about 6. Here the powers for the chop-lump t-tests and the BOI t-test are similar,

reinforcing the importance of the “gap” (E[XC ]) on power. Finally, the last two rows show

a scenario with a pernicious vaccine that does nothing but cause either 10% or 20% more

infections in the vaccine group with a low mean viremia of 2.5 logs. Tests in the infecteds

have 30% to 73% power to draw a catastrophically wrong conclusion, that the vaccine is

beneficial on mean viral load when it is actually causing infections. The test in the doomed

is not designed for this scenario with θ10 > 0 and also tends to conclude a harmful vaccine

is beneficial. For PAVE 100, the chop-lump Wilcoxon will be an important test to evaluate.

5.2 Malaria Vaccine Trial

Malaria is quite different from HIV. In endemic areas, individuals may be repeatedly infected

by mosquitoes who transfer the malaria parasites to the human during a blood meal. These

parasites then travel to the liver where they mature, and later infect red blood cells. Following

further development in the red blood cells, they ultimately are taken in by some mosquito

during a blood meal weeks to months after the initial blood meal. Current vaccine candidates

at NIAID are designed to induce antibodies to antigens that are exposed on the parasite just

prior to docking and infection of red blood cells. Thus these vaccines are not expect to have

an impact on the acquisition of infection or on the liver stage of the parasite’s life cycle

(Girard et al 2007). Since parasites proliferate and then burst out of infected red blood cells

in huge numbers, if red blood cell infection is prevented, there should be less parasitemia or

parasites in the bloodstream.

It is likely that volunteers from endemic areas will have been infected multiple times prior

to trial enrollment and the proportion with detectable parasitemia (parasites in the blood)

can be 90% or greater. Hopefully the vaccine will reduce the parasitemia. A typical phase II

malaria trial with a parasitemia endpoint might enroll about 150 volunteers per group. Data
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from Smith, Schellenberg, & Hayes (1994) of a study of 426 children from Tanzania suggest

that the distribution of log10 parasitemia has a mean of about 3.5 logs and a variance of

approximately (1/3)2 which we assume follows a normal distribution for these simulations.

Approximately 90% of the children were infected. Results from simulating such trials under

different scenarios are provided in Table 4.

As in Table 4, we see that all tests control the type I error rate. The test in the infecteds

has about 96% power for the scenarios in rows 2-4, while the power of the test in the

doomed decreases here as the VES increases. Among the other tests, the Wilcoxon tests have

similar power and perform better than the t-tests. While the asymptotic power expressions

suggest the chop-lump Wilcoxon should have larger power than the ordinary Wilcoxon, the

magnitude of the power differential is quite modest for this scenario. With E[XC ] = 1.5,

the power of the BOI and chop lump t-tests increase and are more similar compared to

E[XC ] = 3.5, As before, the test in the infecteds can lead to the conclusion that a harmful

vaccine is beneficial, as can the test in the doomed. Thus for this scenario, either the usual

or chop-lump Wilcoxon are appealing: good to best power coupled with desirable behavior

for a vaccine that causes low parasitemia infections. The t-tests have relative poor power

here—note that the gap between the zeros and numbers is roughly 10 standard deviations.

Nonetheless, the chop-lump t-test is more powerful than the usual t-test here.

6 Example: VAX004

VAX004 was the first phase III trial of an HIV vaccine. A total of 5403 volunteers at high

risk of acquiring HIV via sexual transmission were randomized in a 2:1 ratio to vaccine and

placebo (rgp 120 HIV Vaccine Study Group 2004). Volunteers received 7 injections spaced

6 months apart. It was hoped that the vaccine would induce antibodies that would prevent

infection, and acquisition of HIV infection was the primary endpoint. The trial demonstrated
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that the vaccine was ineffective. The overall placebo and vaccine infections rates were 6.8%

and 6.2% respectively, with an estimated percent reduction of the infection rate of 6% with

a 95% CI of -17% to 24%.

Following detection of infection, volunteers were followed to evaluate the progression of

HIV disease. While this vaccine was not designed to invoke cell mediated immunity—where

the immune system kills infected cells—serial measurements of HIV viral load, CD4 counts,

and ART initiation were obtained to evaluate post-infection outcomes. Here we use the

results of VAX004 to highlight application of the chop-lump procedures on viral load.

The first two panels of Figure 3 provide the distribution of W , which is the average of

the first two (log10) viral loads following detection of infection for the infecteds, and 0 for

the uninfecteds. We see that there is a substantial proportion of zeros in each group and

that there is a large gap between the 0s and E[XC ] = 4.2, as std[XC ] = .84. Approximately

5 standard deviations separate the mean placebo viral load from 0. Thus the chop-lump

Wilcoxon test proposed in this paper would seem especially suitable for analyzing these

data.

The bottom two panels of Figure 2 show the right tails of the distribution of W after

chopping, along with the median viral load. The two medians are virtually the same, 4.15

for the placebo and 4.19 for the vaccine group. The chop-lump permutation p-value for the

Wilcoxon (t) test is .69 (.56), indicating no effect of vaccine on the ‘burden of illness” in the

right tail of the distribution of W .

7 Discussion

For a vaccine that is intended to reduce disease burden but have little to no effect on acqui-

sition, deciding on an analysis strategy is complicated. While the BOI tests are conceptually

appealing for this purpose as they use all the data, they can have poor power, particularly
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if the gap between 0 and E[XC ] is large. Testing equality of the distribution of X in the

infecteds can make sense for non-licensure trials provided the vaccine has a remote likeli-

hood of affecting acquisition as they can have substantially more power than the chop-lump

tests and BOI tests. However, the test in the infecteds can lead to a catastrophically wrong

conclusion under a pernicious vaccine, as can tests in the principal stratum of the doomed.

Especially for licensure trials, use of a test that avoids these problems is appealing.

While our focus has been on vaccine trials, the results of this paper apply more generally

to comparing two groups with semi-continuous or mixed discrete and continuous outcomes,

where the discrete mass of data is all at one tail. Of particular interest are the conditions,

graphed in Figure 1, where the chop-lump Wilcoxon has better asymptotic power than the

usual Wilcoxon.
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Table 1

Principal Strata for a vaccine trial. We can imagine that each volunteer must be one of four

types, listed under the Stratum column. Here Y (V ), Y (C) denote the infection indicators that

would be observed if a person is randomized to vaccine, control, respectively. The random

variables W (Z) and X(Z) are defined analogously, with X(Z) a burden of illness measure,

e.g. viral load, that is only observable in the infecteds.

Y(V) Y(C) Stratum W(V) W(C) Probability
0 0 immune 0 0 θ00

1 0 harmed X(V) 0 θ10

0 1 protected 0 X(C) θ01

1 1 doomed X(V) X(C) θ11
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Table 2

Data layout for chop-lump tests. Based on the sorted W s, the two data vectors are chopped

as soon as the zeroes stop. The lump of data to the right of the chopping point is used to

compare the two groups. A valid permutation distribution obtains by repeatedly scrambling

the vaccine/placebo labels on all the data, recalculating the chopping point, tossing out data

to the left and recalculating the test using the data to the right.

C
Vaccine W s : 0 0 0 0 0 0 0 0 0 0 0 0 0 H 0 0 1 2 4 8 9
Placebo W s : 0 0 0 0 0 0 0 0 0 0 0 0 0 O 1 3 5 6 8 9 9

P
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Table 3

Power for different tests of viremia and infection for a phase IIB HIV vaccine trial. A total

of 8500 volunteers are randomized and a control infection rate of about 2.1% is anticipated.

All Data Chop-lump t-test in Rank test in
VES E[XC ] ∆ t-test Wilcoxon t-test Wilcoxon Infecteds Doomed

0 4.5 0.0 0.026 0.028 0.024 0.023 0.025 0.027

0 4.5 0.4 0.087 0.026 0.175 0.390 0.890 0.814
10 4.5 0.4 0.259 0.077 0.371 0.629 0.868 0.634
20 4.5 0.4 0.515 0.221 0.619 0.809 0.869 0.409

0 4.5 1.0 0.373 0.025 0.601 0.938 1.000 1.000
10 4.5 1.0 0.644 0.082 0.850 0.990 1.000 0.999
20 4.5 1.0 0.852 0.233 0.954 0.998 1.000 0.997

0 1.5 0.4 0.415 0.060 0.403 0.388 0.890 0.812

-10 4.5 * 0.005 0.002 0.007 0.018 0.304 0.187
-20 4.5 ** 0.002 0.000 0.007 0.012 0.728 0.512
* (**) - Vaccine causes a 10% (20%) increase in infections w/ mean viremia 2.5
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Table 4

Power for different tests of parasitemia and infection for a phase II Malaria vaccine trial.

A total of 300 volunteers are planned with an anticipated control infection rate of about

90%.

All Data Chop-lump t-test in Rank test in
VES E[XC ] ∆ t-test Wilcoxon t-test Wilcoxon Infecteds Doomed

0 3.5 .00 0.025 0.027 0.021 0.025 0.023 0.018

0 3.5 .15 0.189 0.864 0.356 0.871 0.959 0.923
6 3.5 .15 0.619 0.953 0.764 0.953 0.953 0.786
11 3.5 .15 0.900 0.993 0.946 0.990 0.959 0.624

0 1.5 .15 0.575 0.864 0.626 0.871 0.959 0.923

* 3.5 ** 0.000 0.019 0.000 0.015 0.589 0.294
** - Vaccine causes additional infections w/ mean parasitemia 2.5. All vaccinees are infected.
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Figure 1: Distribution of W from a trial with a harmful vaccine whose only effect is to
cause some infections with low viremia. Thus there are three principal strata: immune-
clear, harmed-light shading, doomed-heavy shading. The mean viral load in the infecteds is
lower in the vaccine group, which is comprised of the doomed & harmed, than in the placebo
group who are only the doomed. An analysis using just the infecteds would tend to conclude
that this pernicious vaccine is beneficial.
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Figure 2: Boundary of indifference between the chop-lump and usual Wilcoxon tests as a
function of the proportion uninfected and the ratio E[Zinf]/E[Zprop]. Note that if pV → pC ,
and E[Zinf ] is fixed, this ratio →∞ and the chop-lump Wilcoxon is always preferred.
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Figure 3: Histograms of W (W = 0 for uninfecteds and W = viral load for infecteds). The
upper panels provide the distribution based on all randomized participants, while the lower
panels provide the distribution of W to the right of the chopping point.
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Appendix A: Calculating p-values for chop-lump tests

General Chop-Lump Test

Suppose there are nC and nV subjects and mC and mV infections in the control and vaccine

groups, respectively. Here we allow nC 6= nV , which causes some notational complexity,

although the chopping function simply removes zeros in approximately the same proportion

within each group such that one group has no zeros.

Here are the details. Let ki = ni−mi, N = nC + nV , M = mC + mV , and K = kC + kV .

Let the data be represented by two vectors, W = [W1,W2, . . . ,WN ] and Z = {Z1, . . . , ZN},

where Z is the indicator of vaccine. We order the indices i = 1, . . . , N by first ordering Wi and

then by ordering Zi within tied Wi values, so that Z1, . . . , ZkC
are zeroes and ZkC+1, . . . , ZK

are ones. Thus raw data (0, 1, 0, 3, 0, 8) for group 0 and (0, 5, 6, 4) for group 1 become

W = (0, 0, 0, 0, 1, 3, 4, 5, 6, 8), Z = (0, 0, 0, 1, 0, 0, 1, 1, 1, 0). Here (nC , kC ,mC) = (6, 3, 3) and

(nV , kV ,mV ) = (4, 1, 3)

Let Wa and Za be the last a values of W and Z, respectively. Let 0a and 1a be vectors of

zero or one of length a, where a = 0 denotes no vector (e.g., [03,10] is a 3× 1 vector of 0’s).

Let C(W,Z) be the chopping function which creates the “chopped” data set; specifically,

C(W,Z) = (WM+a+b, [0a,1b,ZM ]) ,

where

if mC

nC
≥ mV

nV
then a = 0 and b = kV − bnV kC

nC
c

and

if mC

nC
< mV

nV
then a = kC − bnCkV

nV
c and b = 0

and bxc is the largest integer less than or equal to x. a and b are the numbers of remaining
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zeroes in the control and vaccine groups, respectively, after chopping. Thus for our example

dataset, mC/nC = 3/6 < 3/4 = mV /nV . Thus a = 3 − b6×1
4
c = 2, b = 0; 2 of the 3 zeroes

remain in the control arm and 0 of the 1 zero in the vaccine arm remain after chopping. We

thus obtain C(W,Z) = ([0, 0, 1, 3, 4, 5, 6, 8], [0, 0, 0, 0, 1, 1, 1, 0]).

In the usual permutation test, we define a test statistic T which is a function of W and

Z. Let T0 be the test statistic evaluated at the original data, and Tj be the test statistic

evaluated at the jth permutation of the values of Z. If lower values of the test statistic are

more extreme, then a one-sided p-value is

p =

∑N !
j=1 I {Tj ≤ T0}

N !
(7)

where I(a) = 1 if a is true and 0 otherwise. A chop-lump test is simply a permutation test

where the test statistic is of the form, TCL(W,Z) = T {C (W,Z)}.

Exact p-values

In this section, we describe exact computation for any two-sample permutation test. There

are computationally better ways to calculate the p-value than equation 7. First, we need not

enumerate all N ! permutations of Z, since there are only

(
N
nV

)
unique permutations of Z,

and each has exactly nC !nV ! permutations which correspond to the same permuted Z. We

can obtain similar computational savings by partitioning the

(
N
nV

)
unique permutations

into sets with equal numbers of zero responses in the vaccine group. One can think of this

partition as being derived from the hypergeometric distribution where we are sampling zeros

in the vaccine group. The partition can be written as

(
N
nV

)
=

min(nV ,K)∑

h=max(0,nV −M)

(
K
h

) (
M

nV − h

)
(8)

On the right-hand-side of equation 8 the first term in the sum represents the number of

ways to select the indices of the zero responses, while the second term represents the number
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of ways to select the nonzero responses. Let Qh be the proportion of the permutation test

statistics less than or equal to the observed test statistic among permutations with h zeros

in the vaccine group. Specifically,

Qh =

∑
j∈Ωh

I [Tj ≤ T0](
M

nV − h

) (9)

where Ωh is the set of unique permutations of ZM that induce h zeros in the vaccine group.

In other words, Ωh does not include two different permutations of Z if they only differ within

the first K = N −M elements, since those elements are all equal to zero.

The standard calculation groups the N ! permutations into

(
N
nV

)
sets of unique per-

mutations of Z, and each set has the same number of members. In the case of equation 8,

each group with h zeros in the vaccine group does not have the same number of members.

The one-sided p-value is a weighted average of the Qh values:

p-value =
min(nV ,K)∑

h=max(0,nV −M)

Pr[ a permutation has h zeros in the vaccine group]Qh

=
min(nV ,K)∑

h=max(0,nV −M)





(
K
h

) (
M

nV − h

)

(
N
nV

)





Qh

=
min(nV ,K)∑

h=max(0,nV −M)

f(h; K, M, nV )Qh (10)

where f(h; K, M, nV ) is the implicitly defined probability mass function of the hypergeomet-

ric distribution. Thus to efficiently calculate an exact p-value, we evaluate (10).

Approximate p-value

If mC and mV are sufficiently large, then (10) will need to be approximated. Our approach

to this approximation is to approximate each Qh and then calculate the proper weighted

combination of Q̂hs.
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The key to the approximation is to represent Qh in a form so that we can use the

permutational central limit theorem (PCLT), which we give informally (see Sen [1985] for

formal statement).

PCLT: Consider a permutation where the test statistic is of the form T (S,R) =
∑

SiRi, and

where both of the N×1 vectors of constants, S and R, meet some regularity conditions

as N gets large. Under the assumption that each permutation of R is equally likely,

(N − 1)−1/2

(T (S,R)−NS̄R̄

σ̂Sσ̂R

)
∼̇N(0, 1) (11)

where R̄, S̄, σ̂R and σ̂S are sample means and standard deviations and ∼̇ denotes ap-

proximately distributed for large N .

Let a superscript asterisk denote the sample sizes in the chopped data set (e.g., K∗ is the

total number of zeroes in the chopped data). When there are h zeroes in the vaccine group

in a permutation, this induces h∗ zeros in the vaccine group of the chopped data set, where

h∗ =

{
h− bnV (K−h)

nC
c if M−nV +h

nC
≥ nV −h

nV

0 if M−nV +h
nC

< nV −h
nV

For both the usual permutation and the rank-based chop lump test, we can represent

TCL as a standardized difference in means on the chopped data set, where the responses are

scores Si. For the usual permutation test Si = Wi. There is a slight complication with the

rank-based chop-lump test; the rankings are calculated after the chop, so that the scores will

change for different permutations. To minimize this problem, we use shifted ranks, i.e., the

usual ranks among all W minus K∗. The shifted ranks give equivalent test results, but the

shifted ranks of the non-zero values of W remain fixed for all values of h. Specifically, for

Wi > 0 we let Si = Ri the rank among the X, and when Wi = 0 we define the associated Si

values as S0 = S
(K∗)
0 = −(K∗ − 1)/2. Thus, in the following, the scores Si could be either

the shifted ranks for the rank based test or the Wi (in which case S
(K∗)
0 = 0 for all K∗) for

the usual test.
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Letting
∑∗ =

∑N
i=N−N∗+1, we rewrite TCL(S,Z) for the standardized difference in means

tests as

TCL(S,Z) =
(
∑∗ SiZi/n

∗
V −

∑∗ Si(1− Zi)/n
∗
C)

(
1

n∗C
+ 1

n∗V

)−1/2

σ̂SN∗

=
(N∗ − 1)−1/2

(∑∗ SiZi − n∗V S̄N∗
)

σ̂SN∗ σ̂ZN∗

= fh∗ + gh∗T (SM ,ZM)

where fh∗ and gh∗ are constant through all permutations within Ωh and are given by

fh∗ =
h∗S(K∗)

0 − n∗V S̄N∗√
N − 1σ̂SN∗ σ̂ZN∗

and

gh∗ =
1√

N∗ − 1σ̂SN∗ σ̂ZN∗
.

Thus, within permutations in Ωh

TCL(S,Z) ≤ t

⇔ T (SM ,ZM) ≤ t− fh∗

gh∗

⇔ T (SM ,ZM)−MS̄M Z̄M

(M − 1)1/2σ̂SM
σ̂ZM

≤
t−fh∗
gh∗

−MS̄M Z̄M

(M − 1)1/2σ̂SM
σ̂ZM

Substituting Z̄M =
n∗V −h∗

M
and σ̂ZM

=

√
(n∗V −h∗)(M−n∗V +h∗)

M(M−1)
and using the PCLT, we approxi-

mate Qh with

Q̂h = Φ




T0−fh∗
gh∗

− (n∗V − h∗)S̄M

σ̂SM

(
(n∗V −h∗)(M−n∗V +h∗)

M

)1/2


 ,

where Φ() is the standard normal cumulative distribution. We then approximate the p-value

by

p̂ =
min(nV ,K)∑

h=max(0,nV −M)

f(h; K,M, nV )Q̂h. (12)

To see how well the approximation performs, we simulate 200 data sets with N = 100

and M = 10. For this small sample size we can calculate the exact p-values. We randomly
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assign N/2 of the Zi values to 1 and the others are 0. We take pseudo-random numbers for

the Xi, where Xi = |X†
i | and X†

i ∼ N(0, 1). We plot the bias (approximate p-value minus

exact p-value) by the exact p-values in Figure 4, together with the 95% interquantile ranges

of the bias. We see that even when M is as small as 10, the approximation does fairly well,

with the 95% interquantile range of the bias for the rank tests equal to (-0.0175,0.0022), and

the similar statistic for the difference in means tests equal to (-0.0202,0.0156).
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Figure 4: Comparison of Asymptotic Approximation and Exact P-values. Data sets have
nC = nV = 50 with 10 total infections. Open circles are Rank Tests and open triangles are
Difference in Means Tests
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Appendix B: Asymptotics of Rank Tests

In this section we derive asymptotic power expressions for the chop-lump and usual Wilcoxon

tests. We also show the asymptotic equivalence of the chop-lump t test and the usual t-test.

All results are under local alternatives.

Ordinary Wilcoxon Rank-Sum Test

Assume there are n observations in the vaccine and control arms, respectively. Take the

negatives of viral loads, so that the Wi that are 0 are the maximum values. The

data in the two arms consists of 0s and data:

0 0 . . . 0 XC1 . . . XCmC

0 0 0 . . . 0 XV 1 . . . XV mV

When we combine the control and vaccine observations, the zeroes (remember that the

zeroes are the largest ranks) will be ranks mC + mV + 1 through 2n. It is intuitively clear

that the average rank for the zeroes will be the average of the two numbers mC + mV + 1

and 2n. This intuition is made rigorous below.

average rank for zeroes =
(mC + mV + 1) + (mC + mV + 2) + . . . + 2n

2n−mC −mV

=

∑2n
i=1 i−∑mC+mV

i=1 i

2n−mC −mV

=
(2n)(2n + 1)/2− (mC + mV )(mC + mV + 1)/2

2n−mC −mV

= (1/2)

{
(2n)2 + 2n− (mC + mV )2 − (mC + mV )

2n−mC −mV

}

= (1/2)

{
(2n)2 − (mC + mV )2

2n−mC −mV

+ 1

}

= (1/2)

{
(2n−mC −mV )(2n + mC + mV )

2n−mC −mV

+ 1

}

= (1/2){2n + mC + mV + 1}. (13)

Therefore, the sum of the vaccine ranks will be

S =
(

2n + mC + mV + 1

2

)
(n−mV ) +

mV∑

i=1

RV i,
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where RV i are the ranks of the mV nonzero vaccine observations among the mC +mV nonzero

observations combined across arms (recall that the nonzero observations are negative, so the

ranks of the nonzero observations will be 1, 2 . . . , mV + mC). The standardized Wilcoxon

test statistic accounting for ties is

ZWil =
S − n(2n + 1)/2√

n2(2n+1)
12

− n2(K3−K)
12(2n)(2n−1)

=
S − n(2n + 1)/2√
n2(2n+1)

12
− n(K3−K)

24(2n−1)

,

where K is the total number of zeroes. We compute the conditional probability of rejection

given K. To do this, we first condition additionally on mV . Conditioning on K and mV is

equivalent to conditioning on mV and mC . Substituting our expression for the average rank

of the zeroes, we calculate

Pr(ZWil > zα/2 |mV ,mC)

= Pr




(
2n+mC+mV +1

2

)
(n−mV ) +

∑mV
i=1 RV i − n(2n + 1)/2

√
n2(2n+1)

12
− n(K3−K)

24(2n−1)

> zα/2

∣∣∣∣∣ mV ,mC




= Pr

(
mV∑

i=1

RV i > zα/2

√√√√n2(2n + 1)

12
− n(K3 −K)

24(2n− 1)
+ n(2n + 1)/2

−
(

2n + mC + mV + 1

2

)
(n−mV )

∣∣∣∣∣ mV ,mC

)

= Pr




∑mV
i=1 RV i −mV (mC + mV + 1)/2√

mV mC(mC+mV +1)
12

> An |mV ,mC


 , where (14)

An =
zα/2

√
n2(2n+1)

12
− n(K3−K)

24(2n−1)
+ n(2n+1)

2
−

(
2n+mC+mV +1

2

)
(n−mV )− mV (mC+mV +1)

2√
mV mC(mC+mV +1)

12

=
zα/2

√
n2(2n+1)

12
− n(K3−K)

24(2n−1)
+ n(mV −mC)/2

√
mV mC(mC+mV +1)

12

(15)

We can rewrite An as

zα/2

√
n2(2n+1)

12
− n(K3−K)

24(2n−1)√
mV mC(mC+mV +1)

12

− nzprop{2np(1− p)}1/2/2√
mV mC(mC+mV +1)

12

,
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where zprop = (mC − mV )/{2np(1 − p)}1/2 is the Z-score for the test of the proportions

infected. Note that large values of zprop indicate that the vaccine works.

Using the fact that the denominator of An is asymptotic to (n3p3/6)1/2, we can show that

An is asymptotic to

zα/2

√
1

p3
− (1− p)3

p3
−

√
3(1− p)zprop

p
. (16)

Conditioned on mC and mV , zprop is a fixed constant. Therefore, conditioned on mC

and mV , it is as if we are applying a Wilcoxon test to the viral loads in the mV vaccine

infections and mC control infections, but instead of using critical value zα/2, we are using

critical value (16).

If we were using a t-test with the same critical value, power would be approximately

Φ





∆√
σ2 (1/mV + 1/mC)

−

zα/2

√
1

p3
− (1− p)3

p3
−

√
3(1− p)zprop

p








≈ Φ





∆√
2σ2/(np)

−

zα/2

√
1

p3
− (1− p)3

p3
−

√
3(1− p)zprop

p






 , (17)

where ∆ = E[XV ]− E[XC ] is positive because we took the negatives of viral loads.

Because we are using the Wilcoxon test instead of the t-test, power is approximately

Φ





√
θ∆√

2σ2/(np)
−


zα/2

√
1

p3
− (1− p)3

p3
−

√
3(1− p)zprop

p






 , (18)

where θ is the asymptotic relative efficiency of the Wilcoxon test compared to the t-test. For

normally distributed outcomes, θ ≈ .955.

But remember that (18) is the power conditioned on mC and mV . We see that it is a

function of mC and mV only through zprop. Therefore, (18) is also the power conditioned on

zprop. To get the power conditioned on only mC +mV , we must average over the conditional

distribution of zprop given mV +mC . But zprop is asymptotically independent of mV +mC ,

and under a local alternative, Zprop is N(d, 1). Therefore, power given mV + mC is
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∫ ∞

−∞
Φ





√
θ∆√

2σ2/(np)
−


zα/2

√
1

p3
− (1− p)3

p3
−

√
3(1− p)z

p






 fd,1(z)dz.

= Pr



Z2 ≤

√
θ∆√

2σ2/(np)
−


zα/2

√
1

p3
− (1− p)3

p3
−

√
3(1− p)Z1

p






 , (19)

where Z1 ∼ N(d, 1) and Z2 ∼ N(0, 1) are independent. We can rewrite (19) as

Pr


Z2 −

√
3(1− p)Z1

p
≤

√
θ∆√

2σ2/(np)
− zα/2

√
1

p3
− (1− p)3

p3


 .

Using the fact that Z2 − {3(1 − p)}1/2Z1/p is normal with mean −{3(1 − p)}1/2d/p and

variance 1 + 3(1− p)/p2, we can rewrite power as

Φ





√
θ∆√

2σ2/(np)
− zα/2

√
1
p3 − (1−p)3

p3 + {3(1− p)}1/2d/p
√

1 + 3(1− p)/p2





= Φ





√
θ p E(Zinf) +

√
3(1− p) E(Zprop)

√
(1− p)2 + (1− p) + 1

− zα/2



 . (20)

Chop-Lump Wilcoxon

For the chop-lump Wilcoxon test, there are two cases: 1) the leftover zeroes are all in the

vaccine arm and 2) the leftover zeroes are all in the control arm.

Case 1: Leftover Zeroes are in the Vaccine Arm (mV < mC)

Again take the negatives of viral loads, so that the Wi that are 0 are the maximum

values.

First condition on mC and mV . In Case 1, m = mC , and the number of leftover zeroes

after chopping is mC −mV . Among the 2m observations left after chopping, the mC −mV

zeroes will have ranks (mC + mV + 1), (mC + mV + 2), . . . , 2m. As in the derivation of

(13) the average of these ranks is the average of the smallest and largest rank, namely
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{(mC +mV +1)+(2m)}/2. Because m = mC in Case 1, the average rank is (3mC +mV +1)/2,

and the sum of the vaccine ranks is

S =
(3mC + mV + 1)(mC −mV )

2
+

mV∑

i=1

RV i, (21)

where the RV i are ranks of the mV nonzero observations in the vaccine arm among the

mC + mV nonzero observations in both arms combined.

The Wilcoxon statistic adjusted for ties rejects if

S −m(2m + 1)/2√
m2(2m+1)

12
− m(L3−L)

24(2m−1)

> c,

where L is the number of leftover zeroes, mC −mV , and c is the critical value, which will be

determined later. Substituting (21) for S and standardizing yields

∑mV
i=1 RV i −mV (mC + mV + 1)/2√

mCmV (mC + mV + 1)
> Bn, where (22)

Bn =

c
√

m
12

{
m(2m + 1)− (L3−L)

2(2m−1)

}
+ m(2m+1)

2
− (3mC+mV +1)(mC−mV )

2
− mV (mC+mV +1)

2√
mV mC(mC+mV +1)

12

.

It can be shown that Bn → c −
√

3(1− p)zprop as n → ∞. Therefore, asymptotically,

(22) is equivalent to using a Wilcoxon test on the mC and mV nonzero observations in the

control and vaccine arms, but using critical value c −
√

3(1− p)zprop. Power conditioned

on mC and mV is therefore approximately

(Power |mV ,mC) = Φ





√
θ∆√

2σ2/(np)
− c +

√
3(1− p) zprop



 . (23)

We now average over the distribution of zprop given mV + mC , as in the calculation of

power for the ordinary Wilcoxon test. This leads to:

(Power |mC + mV ) = Φ





√
θ E(Zinf)− c +

√
3(1− p) E(Zprop)

√
1 + 3(1− p)



 . (24)
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Now we must determine c such that the test has level α. When E(Zinf) = E(Zprop) = 0,

the type 1 error rate is Φ{−c/(1 + 3(1 − p))1/2}. To make it a level-α test, we must take

c = (1 + 3(1− p))1/2zα/2. With this value of c, power becomes

(Power |mC + mV ) = Φ





√
θ E(Zinf) +

√
3(1− p) E(Zprop)

√
1 + 3(1− p)

− zα/2



 . (25)

Case 2: Leftover Zeroes Are in Control Arm (mV > mC)

Exactly the same expression for power holds in Case 2 as in Case 1. One way to see this is

to write the unstandardized Wilcoxon statistic as the sum of the control ranks and then use

the result of the preceding subsection.

Asymptotic Equivalence between chop-lump t-test and ordinary t-
test

The chop-lump t-statistic may be written as

∑n
i=1 WCi −∑n

i=1 WV i√
2mS2

m

,

where S2
m is the pooled sample variance of the n−m largest values in each arm (the values

to the right of the chopping point). Assume the null hypothesis is true. We can write the

chop-lump t-statistic as

T =




∑n
i=1 WCi −∑n

i=1 WV i√
2nS2

W




√√√√ 2nS2
W

2mS2
m

=




∑n
i=1 WCi −∑n

i=1 WV i√
2nS2

W




√√√√ S2
W

{m/n}S2
m

, (26)

where S2
W is the pooled variance of the W s (zeroes and nonzeroes). Note that m/n con-

verges in probability to the probability of being infected, while S2
W and S2

m converge to the

population variances of the W s and Xs, respectively. It follows that the square root term

on the right converges in probability to a constant, call it ρ. Also, the term on the left in
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large parentheses is the ordinary t-statistic applied to the W s. By Slutsky’s theorem, T is

asymptotically the same as ρ times the ordinary t-statistic applied to the W s. Therefore,

its asymptotic critical value is 1.96ρ. But rejecting when T > 1.96ρ is the same as reject-

ing when the ordinary t-statistic on the W s exceeds 1.96. Therefore, the chop-lump t and

ordinary t are asymptotically equivalent; they both reject iff the ordinary t-statistic exceeds

1.96. Note that asymptotically, the proportion of zeroes in the chopped data to the right

of the chopping point goes to zero, and thus S2
m converges to var[X]. If the proportion of

zeroes is not negligible, S2
m can be substantially larger than var[X]. This is especially true

if E[XC ] is large, as the zeros are substantial “outliers” relative to the distribution of X.

Convergence is slower for larger E[XC ] and slower for small pV , pC .
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