

Spatial Configuration of Sexual Homicide

A 25-year study of sexual homicides in Los Angeles County (1980 through 2004)

Isaac T. Van Patten, Radford University \&

Paul Q. Delhauer, LASD Homicide Bureau

Los Angeles County Sexual Homicides

Four-Mile Grids for Aggregation

I ncidents: Spatial Autocorrelation

Moran's I based on TAZs

Offender Residence \& Incident Site

Offender Residence: Spatial Autocorrelation

Victim Residence \& Incident Site

Victim Resident: Spatial Autocorrelation

The Data

TABLE 1 - Sample size by location

		Percent of total
Location	Count	$(\mathrm{N}=197)$

TABLE 2 - Victim and offender demographics

	Offender		Victim	
	N	Percent	N	Percent
Male	139	98.6	38	19.1
Female	2	1.4	161	80.9
Total	141^{*}	100	199	100
Known, primary offenders only				

Coarse Racial Mix

Offender

Victim

N	$\%$	N	$\%$

Non-white 84 60\% 105 52.8\%

$$
\text { White } 56 \quad 40 \% \quad 94 \quad 47.2 \%
$$

Breakdown of Racial Mix

	Offender		Victim	
	\mathbf{N}	$\%$	\mathbf{N}	$\%$
Asian	0	0	7	3.6
Hispanic	44	31.4	43	21.6
American Indian	0	0	1	0.5
Black	40	28.6	54	27.1
White	56	40	94	47.2
Total	$140 *$	100	199	100

Journey to Crime:
Offender Residence to Body Disposal Site

JTC: Offender Residence to Body Dump

Miles

Mean Distance

Median
Standard Deviation
Minimum (non-zero)
Maximum

54.21	
	2.43
364.24	
	.004
	3410.87
	$89 *$

2.43
364.24
. 004
3410.87

89*

* Includes only non-zero trips, there were 21 zero-distance "trips"

Offender Residence to
Body Dump Site

Journey to Crime:
Victim Residence to Body Disposal Site

JTC: Victim Residence to Body Dump

Miles

Mean Distance
Median
Standard Deviation
Minimum (non-zero)
Maximum
56.92
4.62
275.53
. 032
2276.29

112*

* Includes only non-zero trips

Victim Residence to Body Dump Site

Offender to Victim Residence Links

Offender Residence to Victim Residence

Miles

Mean Distance

Median
Standard Deviation
Minimum (non-zero)
Maximum

69.25
2.88
382.48
.004
N \quad * Includes only non-zero trips

2.88
382.48
.004
3410.87

90*

* Includes only non-zero trips

Offender Residence to
Victim Residence

Journey After Crime

J ourney After Crime

Distance Category (Miles)	Count	Percent	Cumulative
Less than .25	17	19.5	19.5
.25 to .50	9	10.3	29.8
.50 to 1.0	8	9.2	39.0
1 to 5	21	24.1	63.1
5 to 10	11	12.6	75.7
10 to 25	12	13.8	89.5
More than 25	9	10.3	100
Total	87	100	

Journey After Crime

Mobility Triangles

A Comparison of Traditional and
Distance Triangles in Total Homicide and Single Motive Homicide

A Homicide Geometry ${ }^{1}$

- The geometric relationship between offender residence, victim residence and event location
- Dots
- All three are co-located
- Lines
- At least two are co-located, with the third being separate
- Triangles
- All three are separated

A Homicide Geometry ${ }^{1}$

Victim Residence
Event Location
Offender Residence
$\sqrt{5}$ Dot Geometry

Triangle Geometry
${ }^{1}$ Groff \& McEwen, 2006

Sexual Homicides: Geometry

Case Status by Geometry

Dots		Lines	Triangles	
N	$\%$	N	$\%$	N

$\begin{array}{lllllll}\text { Open } & 19 & 48.7 & 55 & 51.9 & 7 & 14.9\end{array}$
$\begin{array}{lllllll}\text { Closed } & 20 & 51.3 & 51 & 48.1 & 40 & 85.1\end{array}$
$\begin{array}{lllllll}\text { Total } & 39 & 100 & 106 & 100 & 47 & 100\end{array}$

$$
\text { Total } \mathrm{N}=192
$$

$X^{2}=19.126, p<.001$, Cramer's V=. 32

Tita \& Griffiths, 2005

- Mobility-based triangles
- Neighborhood based on areal analog
- Five classes
- Internal - all share census tract
- Predatory - offender from outside
- Intrusion - victim from outside
- Offense mobility - incident outside
- Total mobility - all three have different census tract

Groff \& McEwen, 2006

- Distance triangles
- Neighborhood based on distance analog
- Five classes
- Neighborhood - all events within . 25 miles
- Offender Mobility - offender from outside
- Victim Mobility - victim from outside
- Offense Mobility - offense is outside
- Total Mobility - all locations more than . 25 miles

The MAUP Problem

- The modifiable areal unit problem "is a geographic manifestation of the ecological fallacy in which conclusions based on data aggregated to a particular set of [areal units] may change if one aggregates the same underlying data to a different set of [areal units]."

Modifiable Areal Unit Problem: Four Mile Grid

MAUP - Traffic Analysis Zones

LA Distance Mobility Triangles

The Complex Geometry of Mobility Triangles

The Complex Geometry of Mobility Triangles In South Central Los Angeles

 \title{
Case Example
}
 \title{
Case Example
}

LASD Case No: 1983-01063-0183

$76{ }^{\text {th }}$ Street East Coast Crips
"Party On"

Offender Activity Space and Journey to Encounter

Will Rogers Memorial Park

Offender Activity Space
${ }^{4}$

With appreciation to the men and women of the LASD Homicide Bureau

"The Bulldogs"

Isaac T. Van Patten, Ph.D., Chair Department of Criminal Justice Box 6934, Radford University Radford, VA 24142 540.831. 6737
ivanpatt@radford.edu

