Problems With Bounding Space for the Analysis of Crime

- George F. Rengert
- Department of Criminal Justice
- Temple University
- Philadelphia, PA 12122
- grengert@temple.edu
- (215) 204-7994
- Purpose of Regionalization in science.
- Maximize between region variance and minimize within region variance.
- Political administrative boundaries seldom do this.
- Problems of Political Boundaries.
- Static East Coast Boundaries.
- In some of these cities, political boundaries have not changed for over a hundred years.
- 1854 for Philadelphia.
- Data collected is not always shared with neighbors.
- Just as important, may resemble their neighbors.
. More variance within city than between city and neighboring suburbs.

This is counter to what we desire in statistics.

- Census bureau decided to do something about this problem.
- Metropolitan Areas
- Urban population of over 50,000.
. Commuting patterns indicate strong economic interaction.
- Micropolitan Areas
- Central county with min. 1,000 people/sq. mile.
. Urban cluster population of between 10,000 and 50,000.
- Commuting patterns indicate strong economic interaction.
- This made metropolitan areas more alike internally and different from the surrounding area.
- What we want when we regionalize.
- But criminals may not recognize (or pay attention to) these boundaries in choosing crime sites.

- 'B' is the predicted anchor point of the serial offender - if information is available only for the bounded - area.

' A ' is the predicted anchor point of the serial offender if information is available for the entire area.
' B ' is the predicted anchor point of the serial offender if information is available only for the bounded area.

- Problems Effects 'Geographic Profiling.'

- Truncates data.
- Shifts predicted high risk area toward center of city.
. Actual high risk area from existing data should be shifted toward suburb.

- Boundary Problems Often Referred to as 'Edge Effects.'

- Effects measures of spatial arrangement.
- Clustered, uniform, or random pattern.
- Different processes assumed:
. Clustered = something attracting phenomena to a point.
. Uniform = phenomena tend to be as far away from each other as possible.
. Random = there is nothing effecting the spatial arrangement of the phenomena.
- Nearest Neighbor analysis.
- The nearest neighbor of a point near boundary may be outside area.
.How can we correct this?

Creation of a 'Torus'

 that has no edges.

- Torus assumes the same process effecting the arrangement of points is operating outside boundary as inside it.
- Then, Torus works.
- In practice, create 8 maps identical to study area and surround the study area keeping orientation the same.

- A torus only works when we have a square or a rectangular shaped map.
- When we have an irregularly shaped map as in the case of Philadelphia, we must use other methods of correcting for edge effects.
- One method is to ignore all points that are closer to the boundary than to another point in the distribution.
- This has the disadvantage of losing information that may be critical when there are few points in the pattern.
- A similar method is to use Geographic Information Systems to buffer in from the boundary the distance of those points that are closer to the boundary than to another point.
- In this case, the points in the buffer can be used to measure nearest neighbors of points outside the buffer.

Information is lost in this case also.

- Finally, Donnelly has shown that when N is larger than 7, a correction factor can be added to the nearest neighbor formula of Complete Spatial Randomness.
- This formula works if the study area is not highly irregular.
- $E\left(d_{i}\right)=0.5 \vee(A / N)+(0.0514+0.041 / \vee N) B / N$.
- Where:
$A=$ the size of the area.
$\mathrm{N}=$ the number of points in the area.
$B=$ the length of the boundary.
- Boundaries can change the predicted spatial arrangement of points.
- Referred to as the Modifiable Area Unit Problem
- Following example:
- From a clustered to a random or uniform pattern.

- Finally, boundaries tend to mask variation in spatial data.
- Spatial variation is obscured.
- When boundaries are drawn around spatial data, values are averaged for the new area.
. Also, variance measures are reduced in most cases.
- Example of how this happens:

- Problems of Aggregation.

-

A

B

1	7		6	7	5
4.5		3.75		5.75	
3	7	3	2	3	8
	9		8	4	
6.25		5.0		3.5	
	6		0	0	8
9	3	4	5	2	7
4.5		5.0		4.75	
5	1	3	8	6	4

Adopted from Yeates (1974).

- The numbers in A indicate the number of drug sales arrests per street face. The center number in B is the average number of drug sales arrests per block when four streets are aggregated together. Note that the average masks a considerable amount of variation.
- Notice that the 'range' in variables in A are between zero and nine.
- The 'range' in B is between 3.75 and 6.25.
- The range is considerably reduced when we further aggregate the data.
. We lose information.
- From this discussion, it should be clear that researchers must be careful in drawing boundaries.
- Not to obscure patterns.
- Not to lose too much information.
- Not to cause misleading interpretations.
- Geographic profiling example.
- Again, the purpose of boundaries (regionalization) is to bound like areas so they can be contrasted with unalike neighboring areas.
- Minimize within area variance, maximize between area variance.

