Bayesian Journey to Crime Modeling: Improvements to Geographic Profiling Methodology

Ned Levine, PhD Ned Levine & Associates Houston, TX Richard Block, PhD Loyola University Chicago, IL

Ninth Crime Mapping Research Conference Pittsburgh, PA March 31, 2007

Purpose:

- Describe the Bayesian Approach to Journey to Crime (JTC) Modeling
- Compare its Accuracy to Existing Methods
- Illustrate its use in CrimeStat III (ver 3.1)

Current Jtc Methodology

- Utilizes travel demand (distance) function
- Applies function to incidents committed by serial offender to produce density estimate
- Sums densities across all incidents
- Interpolates results to grid framework

Existing Software Use Different Travel Demand Functions

Type of mathematical function

Inverse distance Negative exponential Lognormal Single v. mixed mathematical distributions

- Fixed v. variable parameters in mathematical functions
- Mathematical v. empirically-derived function

Journey to Crime Interpolation Routine

Reference grid

Predicted and Actual Location of Serial Thief

Man Charged with 24 Offenses in Baltimore County Predicted with Mathematical and Kernel Density Models for Larceny

Mathematical Model: Truncated Negative Exponential

Kernel Density Model

Limitations of JTC Methodology

- Will always locate highest probability within convex hull of incidents.
- Cell with highest probability is approximated by Center of Minimum Distance (CMD)
- Travel demand function used is invariant. Does not distinguish between:

Types of crime Types of offender Sub-regions of the study area Directionality in travel Time periods (e.g., 5 pm v. 3 am)

Distance is Not an Independent Variable

- Travel distance (or travel time) is the result of predispositions by offenders, opportunities, and the travel network
- People only set loose limits on travel distance/time
- Increasing mobility of American society has made automobiles almost universally available and travel very cheap

Bayesian Approach to JTC Modeling

- Incremental improvement to Journey to crime modeling
- Adds new information to update travel distance estimates
- Implicitly weights the travel distance by predispositions, opportunities, and the travel network

Bayes Theorem

- Relates marginal and conditional probabilities of two events together
- Marginal probability is the probability of an event independent of any other event

P(A) and P(B) are two marginal probabilities

• Conditional probability is the probability of an event given that some other event has occurred

P(A|B) is the probability of A given that B has occurred while P(B|A) is the probability of B given that A has occurred

Bayes Theorem (continued)

Relates two 'AND' conditions together:

P(A and B) = P(A) * P(B|A) = P(B) * P(A|B)Thus: $P(B|A) = \frac{P(B) * P(A|B)}{P(A)}$ $P(A|B) = \frac{P(A) * P(B|A)}{P(B)}$

Bayesian Inference

- In statistical interpretation of Bayes Theorem, probabilities are estimates of random variables
- Let θ be a parameter and let X be some data

where:

 $P(\theta)$ is probability that θ has certain distribution $P(X|\theta)$ is probability that data would have been obtained if θ is true P(X) is the probability of obtaining the data

Bayesian Inference (continued)

Logically:

	Likelihood of	
Probability that θ is true given the data. X =	obtaining the data, X, given θ is true *	Prior probability of θ

Prior probability of the data, X

Since it's difficult to estimate the probability of obtaining the data under all circumstances:

Probability that θ is true given the data, X ≈ Likelihood of obtaining the data, X, given θ is true

 \approx X, given θ is true * Prior probability of θ

Application to Journey to Crime Estimation

- Update JTC estimate with information on where other offenders lived who committed crimes in same locations
- Sees behavior of offenders as being a mixture of:
 - 1. Unique tendencies
 - 2. The crime attractions associated with other offenders

Crime Origin-Destination Matrix

Crime destination zone

	1	2	3	4	5	N	Σ
1	37	15	21	4	3	 12	346
2	7	53	14	0	4	 15	1050
3	12	9	81	7	6	 33	711
4	4	10	6	12	1	 0	84
5	8	7	28	2	24	 14	178
	:	:	:		•	:	
		•				•	
М	12	5	43	3	10	 92	1466
Σ	153	276	1245	99	110	812	43,240

Crime origin zone

Bayesian Journey to Crime Routine Selecting Zones Where Offender Committed Crimes

0 0.5 1 2 3 Miles

Conditional Origin-Destination Matrix

Destination zones where serial offender committed crimes

Crime destination zone

Marginal totals for selected zones only

Application to Journey to Crime Estimation (cont)

Change definitions:

- P(JTC) is a probability estimate from Jtc method
- P(O|JTC) is a probability estimate based on the distribution of all offenders who committed crimes in same locations as JTC
- P(O) is a probability estimate based on the distribution of all offenders

Application to Journey to Crime Estimation (cont)

From:

We have an approximation:

P(JTC) * P(O|JTC) P(JTC|O) ≈ -----P(O)

Application to Journey to Crime Estimation (cont)

Prior probability of JTC * Likelihood of origins given crime locations

P(JTC|O) ≈ ------

Prior probability of all crime locations

Tests:

- Whether Bayesian methodology is more accurate than JTC alone
- Whether Bayesian methodology is more accurate than Center of Minimum Distance (CMD)
- Whether a combination of methods is more accurate than one method only

Stat III 💝				<u>_ D ×</u>
Data setup Spa	atial description	Spatial modeling	Crime travel der	nand Options
Interpolation Space-:	ime analysis Journey-to	o-Crime Bayesian Journey-t	o-Crime Estimation	
Journey-to-crime est © Use already-	imate calibrated distance func	tion		-
Jtcfull.txt		Brov	vse Graph	
© Use mathem Distribution: Coefficient: Unit: Origin-destination e: Observed tri Observed n. Orig_ID: Dest_ID:	Atical formula Negative exponentia 1.89 0 Miles stimate p file: umber of origin-destination ORIGIN DEST Dest_	al Exponent: -0.06 O O Distribution dbf on tips: FREQ CORIGINX Orig X: DESTX Des	Browse	
✓ Diagnostics for Journey to crime methods Select data file for calibration ✓ Estmate likely origin location of a serial offender Save accumulator matrix Save output to Method to be used ○ Use cnly P(Jtc) estimate O Use P(0 Jtc) estimate Save accumulator matrix Save output to ○ Use P(0 Jtc) estimate ○ Use general P(0) estimate ▼ ▼ ○ Use general P(0) estimate ▼ ▼				
C	ompute	<u>Q</u> uit		<u>H</u> elp

Data Sets:

- 88 serial offenders from Baltimore County (Md) who committed various crimes from 1993-1997
- 103 serial offenders from Chicago (IL) who committed robberies from 1996-1998

For Each Offender:

Each of seven measures are calculated:

- P(JTC)
- P(O)
- P(O|JTC)
- P(JTC) * P(O|JTC)
- [P(JTC) * P(O|JTC)]/P(O)
- Average P(JTC) & P(O|JTC)
- CMD

"JTC probability"

- "General probability"
- "Conditional probability"
- "Product probability"
- "Bayesian risk probability"
- "Average probability"
- "Center of minimum distance"

Accuracy Assessed with Four Measures:

- **Probability in cell where offender actually lived**
- Percentage of study area that has to be searched to find offender (% of cells with probabilities higher than cell where offender lived)
- Distance between cell with highest probability and cell where offender actually lived
- Percent of offenders who live within one (1) mile of cell with the highest probability

Results for Baltimore County Data Set:

(Average of 88 Serial Offenders)

Distance from

<u>Method</u>	Probability in <u>Offender Cell</u>	% of Study Area with Higher Probabilities	Highest Prob. Cell to Offender Cell (mi)
JTC	0.00084	4.6%	2.78
General	0.00025	16.7%	8.21
Conditional	0.00052	4.6%	3.12
Product	<u>0.00176</u>	4.2%	2.65
Bayesian risk	0.00134	4.6%	3.23
Average	0.00068	<u>4.1%</u>	2.70
CMD	n.a.	n.a.	<u>2.62</u>

Results for Baltimore County Data Set:

(Average of 88 Serial Offenders)

	% of Offenders Who Live
<u>Method</u>	Within 1 Mile
JTC	56.8%
General	2.3%
Conditional	47.7%
Product	59.1%
Bayesian risk	51.1%
Average	<u>60.2%</u>
CMD	54.5%

Results for Chicago Data Set:

(Average of 103 Serial Robbers)

Dictoroo from

<u>Method</u>	Probability in <u>Offender Cell</u>	% of Study Area with Higher Probabilities	Highest Prob. Cell to Offender Cell (mi)
JTC	0.0073	4.1%	1.99
General	0.0011	13.6%	3.98
Conditional	0.0056	<u>1.4%</u>	1.95
Product	<u>0.0274</u>	2.6%	<u>1.86</u>
Bayesian risk	0.0202	3.2%	1.93
Average	0.0065	2.2%	1.93
CMD	n.a.	n.a.	1.89

Results for Chicago Data Set:

(Average of 103 Serial Robbers)

	% of Offenders Who Live
<u>Method</u>	Within 1 Mile
JTC	42.7%
General	11.7%
Conditional	<u>52.4%</u>
Product	46.6%
Bayesian risk	45.6%
Average	45.6%
CMD	45.6%

Separate Methods for Different Crimes?

By Specific Crime Types: Baltimore County

(Distance Measure Only)

	Distance from Highest Prob. Cell <u>to Offender Cell (mi)</u>	Best Method
Assault	0.99	"CMD"
Burglary	2.33	"Conditional"
Larceny	3.22	"CMD"
Robbery	0.85	"Average"
Vehicle theft	2.43	"Conditional"
Other	0.35	"Product"/"Average"
Weighted mear	<u>n = 2.40</u>	

Conclusion:

- Bayesian "product" probability had the highest probability in the cell where the offender lived
- For search area, "product" probability was very efficient for about half the cases
- Bayesian "product" probability was about as accurate as the Center of Minimum Distance
- Using crime-specific methods *may* increase accuracy
- "General" probability is very inaccurate

Conclusion: (continued)

- The method can predict both 'marauders' and 'commuters' since the anchor point can be outside the convex hull
- The method still has a lot of error

Illustrations from Baltimore County

Offender S14A:

7 larceny thefts4 aggravated assaults2 robberies1 burglary

Bayesian Journey to Crime Routine

Product Estimate of Predicted and Actual Residence Location of Offender S14A

Bayesian Journey to Crime Routine Bayesian Risk Estimate of Predicated and Actual Residence Location of Offender S14A **Baltimore County** Legend Residence of S14A Incidents committed by S14A Contraction of the second Crnd of S14A Beltway Bayesian risk estimate (S14A) City of Baltimore Less than 0.000100 0.000100 - 0.000199 0.000200 - 0.000299 0.000300 - 0.000399 0.000400 or more Baltimore County City of Baltimore

v

Illustrations from Baltimore County (continued)

Offender TS15A:

6 larceny thefts2 aggravated assaults

- **2 vehicle thefts**
- **1 robbery**
- **1** burglary
- 3 arson incidents

Bayesian Journey to Crime Routine Conditional Estimate of Predicted and Actual Residence Location of Offender TS15A ------**Baltimore County** Legend Residence of TS 15A Incidents committed by TS15A Cmd of TS15A Beltway City of Baltimore Baltimore County City of Baltimore P(OUtc)estimate(TS15A) Less than 0.000100 0.000100 - 0.000199 0.000.200 - 0.00029.9 0.000300 - 0.000399 0.000.400 or more

Bayesian Journey to Crime Routine Product Estimate of Predicted and Actual Residence Location of Offender TS15A

