Bayesian Journey to Crime Modeling: Improvements to Geographic Profiling Methodology

Ned Levine, PhD
Ned Levine \& Associates
Houston, TX

Richard Block, PhD
Loyola University
Chicago, IL

Ninth Crime Mapping Research Conference
Pittsburgh, PA
March 31, 2007

Purpose:

-

Describe the Bayesian Approach to Journey to Crime (JTC) Modeling

Compare its Accuracy to Existing Methods IIIustrate its use in CrimeStat III (ver 3.1)

Current Jtc Methodology

- Utilizes travel demand (distance) function
- Applies function to incidents committed by serial offender to produce density estimate
- Sums densities across all incidents
- Interpolates results to grid framework

Existing Software Use Different Travel Demand Functions

- Type of mathematical function

Inverse distance
Negative exponential
Lognormal
Single v. mixed mathematical distributions
Fixed v. variable parameters in mathematical functions

- Mathematical v. empirically-derived function

Negative Exponential Impedance Function

Lognormal Impedance Function

Journey to Crime Interpolation Routine

Reference grid

Predicted and Actual Location of Serial Thief

Man Charged with 24 Offenses in Baltimore County

Predicted with Mathematical and Kernel Density Models for Larceny

Limitations of JTC Methodology

Will always locate highest probability within convex hull of incidents.

- Cell with highest probability is approximated by Center of Minimum Distance (CMD)
- Travel demand function used is invariant. Does not distinguish between:

Types of crime
Types of offender
Sub-regions of the study area
Directionality in travel
Time periods (e.g., 5 pm v. 3 am)

Distance is Not an Independent Variable

- Travel distance (or travel time) is the result of predispositions by offenders, opportunities, and the travel network
- People only set loose limits on travel distance/time

Increasing mobility of American society has made automobiles almost universally available and travel very cheap

Bayesian Approach to JTC Modeling

- Incremental improvement to Journey to crime modeling

Adds new information to update travel distance estimates

Implicitly weights the travel distance by predispositions, opportunities, and the travel network

Bayes Theorem

- Relates marginal and conditional probabilities of two events together
-

Marginal probability is the probability of an event independent of any other event
$P(A)$ and $P(B)$ are two marginal probabilities

- Conditional probability is the probability of an event given that some other event has occurred
$P(A \mid B)$ is the probability of A given that B has occurred while $P(B \mid A)$ is the probability of B given that A has occurred

Bayes Theorem (continued)

Relates two ‘AND’ conditions together:

$$
P(A \text { and } B)=P(A) * P(B \mid A)=P(B) * P(A \mid B)
$$

Thus:

$$
\begin{aligned}
& P(B) \text { * } P(A \mid B) \\
& P(B \mid A)=----------------- \\
& P(A) \\
& P(A) \text { * } P(B \mid A) \\
& P(A \mid B)= \\
& \text { P(B) }
\end{aligned}
$$

Bayesian Inference

- In statistical interpretation of Bayes Theorem, probabilities are estimates of random variables
- Let θ be a parameter and let X be some data

$$
P(\theta \mid X)=\frac{P(X \mid \theta)}{}{ }^{*} P(\theta)
$$

where:
$P(\theta)$ is probability that θ has certain distribution
$P(X \mid \theta)$ is probability that data would have been obtained if θ is true
$P(X)$ is the probability of obtaining the data

Bayesian Inference (continued)

Logically:

Since it's difficult to estimate the probability of obtaining the data under all circumstances:

Probability that \quad| Likelihood of |
| :--- |
| θ is true given |
| obtaining the data, |
| the data, X |$\quad \therefore \quad X$, given θ is true \quad Prior probability of θ

Application to Journey to Crime Estimation

Update JTC estimate with information on where other offenders lived who committed crimes in same locations

Sees behavior of offenders as being a mixture of:

1. Unique tendencies
2. The crime attractions associated with other offenders

Crime Origin-Destination Matrix

Crime destination zone

Bayesian Journey to Crime Routine
 Selecting Zones Where Offender Committed Crimes

Conditional Origin-Destination Matrix

Destination zones where serial offender committed crimes

Crime destination zone

Marginal totals for selected zones only

Application to Journey to Crime Estimation (cont)

Change definitions:

- $\quad P(J T C)$ is a probability estimate from Jtc method
- $\quad \mathrm{P}(\mathrm{O} \mid \mathrm{JTC})$ is a probability estimate based on the distribution of all offenders who committed crimes in same locations as JTC
- $\quad P(O)$ is a probability estimate based on the distribution of all offenders

Application to Journey to Crime Estimation (cont)

From:

$$
P(\theta \mid X)=\frac{P(\theta) * P(X \mid \theta)}{P(X)}
$$

We have an approximation:

$$
\mathrm{P}(\mathrm{JTC} \mid \mathrm{O}) \approx \frac{\mathrm{P}(\mathrm{JTC})}{} \text { * } \mathrm{P}(\mathrm{O} \mid \mathrm{JTC})
$$

Application to Journey to Crime Estimation (cont)

Prior probability of JTC * Likelihood of origins given crime locations
$\mathrm{P}(\mathrm{JTC} \mid 0) \approx$
Prior probability of all crime locations
"Product probability"

"Bayesian Risk"
"General probability"

Tests:

Whether Bayesian methodology is more accurate than JTC alone

Whether Bayesian methodology is more accurate than Center of Minimum Distance (CMD)

Whether a combination of methods is more accurate than one method only
Data setup \mid Spatial description Spatial modeling \mid Crime travel demand \mid Options

Data Sets:

88 serial offenders from Baltimore County (Md) who committed various crimes from 1993-1997

103 serial offenders from Chicago (IL) who committed robberies from 1996-1998

For Each Offender:

Each of seven measures are calculated:

- P(JTC)
- P(O)
- P(O|JTC)
- P(JTC) * P(O|JTC)
- [P(JTC) * P(O|JTC)]/P(O)
- Average P(JTC) \& P(O|JTC)
- CMD
"JTC probability"
"General probability"
"Conditional probability"
"Product probability"
"Bayesian risk probability"
"Average probability"
"Center of minimum distance"

Accuracy Assessed with Four Measures:

- Probability in cell where offender actually lived
- Percentage of study area that has to be searched to find offender (\% of cells with probabilities higher than cell where offender lived)

Distance between cell with highest probability and cell where offender actually lived

Percent of offenders who live within one (1) mile of cell with the highest probability

Results for Baltimore County Data Set:

(Average of 88 Serial Offenders)

Method	Probability in Offender Cell	\% of Study Area with Higher Probabilities	Distance from Highest Prob. Cell to Offender Cell (mi)
JTC	0.00084	4.6\%	2.78
General	0.00025	16.7\%	8.21
Conditional	0.00052	4.6\%	3.12
Product	0.00176	4.2\%	2.65
Bayesian risk	0.00134	4.6\%	3.23
Average	0.00068	4.1\%	2.70
CMD	n.a.	n.a.	$\underline{2.62}$

Results for Baltimore County Data Set:

(Average of 88 Serial Offenders)
\% of Offenders
Who Live
Within 1 Mile

Method
JTC
General
Conditional
Product
Bayesian risk
Average
CMD
60.2\%
54.5\%

Results for Chicago Data Set:

(Average of 103 Serial Robbers)

Method	Probability in Offender Cell	\% of Study Area with Higher Probabilities	Distance from Highest Prob. Cell to Offender Cell (mi)
JTC	0.0073	4.1\%	1.99
General	0.0011	13.6\%	3.98
Conditional	0.0056	1.4\%	1.95
Product	$\underline{0.0274}$	2.6\%	1.86
Bayesian risk	0.0202	3.2\%	1.93
Average	0.0065	2.2\%	1.93
CMD	n.a.	n.a.	1.89

Results for Chicago Data Set:

Method
JTC
General

Conditional
Product

Bayesian risk
Average
CMD
(Average of 103 Serial Robbers)
\% of Offenders
Who Live
Within 1 Mile
42.7\%
11.7\%
52.4\%
46.6\%
45.6\%
45.6\%
45.6\%

Separate Methods for Different Crimes?

By Specific Crime Types: Baltimore County

(Distance Measure Only)
Distance from Highest Prob. Cell to Offender Cell (mi)
0.99 $\quad \begin{aligned} & \text { Best Method } \\ & \text { "CMD" }\end{aligned}$
Assault

Burglary	$\mathbf{2 . 3 3}$	"Conditional"
Larceny	$\mathbf{3 . 2 2}$	"CMD"
Robbery	$\mathbf{0 . 8 5}$	"Average"
Vehicle theft	$\mathbf{2 . 4 3}$	"Conditional"
Other	$\mathbf{0 . 3 5}$	"Product"\|"Average"

$\underline{\text { Weighted mean }=\underline{2.40}}$

Bayesian Journey to Crime Routine

Average Search Circle of Jtc, Bayesian Product and Crime Type Minimum Estimates

Conclusion:

.

- For search area, "product" probability was very efficient for about half the cases

Bayesian "product" probability was about as accurate as the Center of Minimum Distance

- Using crime-specific methods may increase accuracy
"General" probability is very inaccurate

Conclusion: (continued)

The method can predict both 'marauders' and 'commuters' since the anchor point can be outside the convex hull

The method still has a lot of error

Illustrations from Baltimore County

Offender S14A:

7 larceny thefts
4 aggravated assaults
2 robberies
1 burglary

Bayesian Journey to Crime Routine

0	2.5	5	10	15 Miles

Bayesian Journey to Crime Routine

$+$
$\begin{array}{lllll}0 & 2.5 & 5 & 10 & 15 \text { Wiles }\end{array}$

Bayesian Journey to Crime Routine

Jtc Estimate of Predicted and Actual Residence Location of Offender S14A

Legend

1 Residence of $\$ 14 A$

- heidents cormitted by S14A
+ Ond of S14A

\square
\square
\squareBelturay City of Baltimore
to estimate ($\$ 14 \mathrm{~A})$
Less than 0.000100$0000100-0.000199$
$0.000200-0.000299$
$0.000300-0.000399$
0000400 or more

Bayesian Journey to Crime Routine

 Conditional Estimate of Predicted and Actual Residence Location of Offender S14A

Legend

산 Residence of $\$ 14 A$

- heidents cormitted by $\$ 14 A$
+ Cnd of S14A

\square
\square
\square
Beltuay
City of Baltimore
Batimore County
P(0) Htc) estimate (\$149)
Less than 0.000100 $0000100-0.000199$ 0000200-0.000299 0.000300-0.000399

0000400 ormore

Bayesian Journey to Crime Routine

Product Estimate of Predicted and Actual Residence Location of Offender S14A

Legend

1- Residence of S14A

- heidents cormitted by S 14A
+ Cnd of S14ABeltway
Oity of Balimore
Baltimore County
$\mathrm{P}(\mathrm{Htc}) * \mathrm{P}(0) \mathrm{Htc})$ estimate (S 14 4,)
Less than 0.000100
0000100-0.000199
0000200-0.000299
$0000300-0.000399$
0000400 ormore

Bayesian Journey to Crime Routine

Average Estimate of Predicted and Actual Residence Location of Offender S14A

Legend

- Residence of S 14 A
- heidents committed by $\$ 14 \mathrm{~A}$
+ Cnd of S14A

\square
\squareBeltuay City of Baltimore
\square Batimore County Average estimate (S14A)

Less than 0.000100
$0000100-0.000199$
0000200-0.000299
$0000300-0.000399$
0000400 or more

Illustrations from Baltimore County (continued)

Offender TS15A:
6 larceny thefts
2 aggravated assaults
2 vehicle thefts
1 robbery
1 burglary
3 arson incidents

Bayesian Journey to Crime Routine

Legend

1. Residence of TS 15A

- heidents committed by TS15A
——BettuayCity of Baltimore
Baltimore County

Bayesian Journey to Crime Routine

 Jtc Estimate of Predicted and Actual Residence Location of Offender TS15A

Legend

- Residence of TS 15A
- Cmd of TS15A
- heidents cormitted by TS15A
——Beltuay

\squareCity of Baltimore Baltimore County
to estimate (TS15A)
Less than 0.000100 $0000100-0.000199$ 0000200-0.000299 $0000300-0.000399$

0000400 ormor

0	2.5	5	10	15 Wiles

Bayesian Journey to Crime Routine

Conditional Estimate of Predicted and Actual Residence Location of Offender TS15A

Legend

․ Residence of TS 15A

- hoidents committed by TS15A
+ Cind of TS15A

\square
\square
\squareBettway
City of Baltimore
Baltimore County

Less than 0.000100
$0000100-0.000199$
0000200-0.000299
0000300-0.000399
0000400 or more

Bayesian Journey to Crime Routine Product Estimate of Predicted and Actual Residence Location of Offender TS15A

