

Introduction to GIS

9th Annual Crime Mapping Conference Pittsburgh, Pennsylvania March 28 -31, 2007

> Timothy J Dolney Department of Geography Kent State University Kent, Ohio 44242-0001 Email: tdolney@kent.edu Internet: http://tdigs.geog.kent.edu

What is a GIS?

• $GIS = GI \cup IS$

GI = Geographically referenced information

IS = Information system

Components of a GIS

- People
- Procedures / Method
- Hardware
- Software
- Data

Data Capture

- Databases
- Digitizing paper maps
- Digitizing scanned images
- Global positioning systems
- Internet sources
 - digital data clearinghouses

http://www.geographynetwork.com/

http://data.geocomm.com

Agriculture: Agriculture Census 2002 - Crops, Expenses, Farmland...

Biology: Bat Ranges, Butterflies, Forests, Invasive Species, Land Cover...

Boundaries: Congressional Districts, Counties, Federal lands, States...

Climate: Precipitation, Hazard Events, Hurricanes, Sea Temperature...

Environment: Air Releases, Hazardous Waste, Toxics Release...

EPA Envirofacts Data - Air Releases	View map layer description	View sample layer in Map Maker
EPA Envirofacts Data - Hazardous	View map layer	View sample layer in Map
Waste Handlers	description	Maker
EPA Envirofacts Data - Superfund	View map layer	View sample layer in Map
National Priorities List Sites	description	Maker
EPA Envirofacts Data - Toxics	View map layer	View sample layer in Map
Release Inventory	description	Maker
EPA Envirofacts Data - Water	View map layer	View sample layer in Map
Discharge Permits	description	Maker

Geology: Earthquakes, Landslides, Shaded Relief, Volcanoes...

History: Presidential General Election 2000 County and State Results.

Map Reference: Cities and Towns, Urban Areas...

People: Census, Crimes, Energy Consumption, Mortality...

Transportation: Airports, Parkways and Scenic Rivers, Railroads, Roads...

Water: Aquifers, Dams, Watersheds, Streams and Waterbodies...

http://nationalatlas.gov/atlasftp.html

KENT STATE 8

P A S Permytvaria Spatial De The Pennsylvania Geospatia	D A ta Access I Data Clearinghouse	Data Access	Wizard	Helj	
Shortcuts	Aerial Photography	Topographic Maps	State-wide Data	Browse FTP	
Online Maps & Services Help Home	Find Data Search using one of the	ne following options	View Yo	ur Data Cart	
The Data Access Wizard combines a powerful search engine with web-based	Search by Keyword	(s) : © AND O OR	Submit		
geoprocessing capabilities to provide users with improved access to PASDA's GIS data.	Search by Theme:	▼ Submit			
	Search by Data Prov	/ider:		Submit	
	Search by County:	mit			
	Browse MapService Submit	s:			
	Browse All Data: Submit				14
http://www.pa	asda.psu.edu/		PENNSYL The Penns	A S	

UNIVERSITY

Capturing data

Representing features in vector data

 Real-world entities are abstracted into three basic shapes

Storing data

- Vector formats
 - Discrete representations of reality

- Raster formats
 - Use square cells to model reality

Reality (A highway)

Attribute Data

- Attribute or descriptive data
 - Statistical information
 - Numerical information
 - Characteristic information
- Linked to geographic objects
- Most important in GIS
- Operations
 - Joining,
 - Relating,
 - Querying

ROW	COL	LU_CODE
1	1	2
1	2	2
1	3	2
1	4	2
1	19	101

LU_CODE	LAND_COVER	NAME	CELLS
1	forest	Sherwood Forest	100
2	grassland	Marshall Field	150
100	lake	Blue Lake	75
3	marsh	Okeefenokee Swamp	55
 101	river	Suwanee River	20

KENT STATE 15

Components of geographic data

• Three general components to geographic information

• Each feature corresponds to a record in the attribute table

GIS functions

Using spatial relationships

• The relative position of features determines relationships

Query

• Identifying specific features

Identify Results			×
Layers: <top-most layer=""></top-most>		•	
	Location: (-83.598	3050 30.1241	64)
	Field	Value	▲
	FID	2808	
	Shape	Polygon	
	NAME	Taylor	
	STATE_NAME	Florida	-
	•		

Identifying features based on conditions

Florida counties with a population greater than 300,000

Data Management

Data Management

Analysis

Display

Map scale

• Map scale determines the size and shape of features

Output

Projection and Rectification

3D globe to 2D maps/displays

- Shape
- Area
- Direction
- Distance

Data Modeling

- The process of abstraction from the real world for the purpose of representation and analysis in a GIS.
- Field view
- Object view
- Attribute data

New York's Subway

- Network and stations
- Status and statistics
- Queries

http://www.cmap.nypirg.org/netmaps/Straps/view.asp

US Dept of Housing and Urban Development

- Interactive mapping service
- Community development
- Housing program
- Environmental data

Urban Growth Simulator

- Growth scenarios
- Growth management
- Environmental impacts

Nutrient Loadii	ng by Developmer	nt and Hydrosoil	Group		
RESIDENTIAL	A	В	с	D	
cultivated	N 0.00-0.00	N 0.43-1.73	N 1.92-7.66	N 0.49-2.44	
	P 0.00-0.00	P 0.06-0.25	P 0.28-1.10	P 0.07-0.35	
pasture/range	N 0.00-0.00	N 0.43-1.51	N 1.92-6.70	N 0.83-2.20	
	P 0.00-0.00	P 0.06-0.22	P 0.28-0.96	P 0.12-0.32	
woodland	N 0.00-0.00	N 0.22-1.08	N 0.96-4.79	N 0.49-1.47	
	P 0.00-0.00	P 0.03-0.16	P 0.14-0.69	P 0.07-0.21	
COMMERCIAL	A	В	с	D	
cultivated	N 0.00-0.00	N 0.00-0.00	N 0.00-0.00	N 0.00-0.00	
	P 0.00-0.00	P 0.00-0.00	P 0.00-0.00	P 0.00-0.00	
pasture/range	N 0.00-0.00	N 0.00-0.00	N 0.00-0.00	N 0.00-0.00	
	P 0.00-0.00	P 0.00-0.00	P 0.00-0.00	P 0.00-0.00	
woodland	N 0.00-0.00	N 0.00-0.00	N 0.00-0.00	N 0.00-0.00	
	P 0.00-0.00	P 0.00-0.00	P 0.00-0.00	P 0.00-0.00	
C					- - -

KENT STATE

33

http://empact.geog.kent.edu/

VERTUS Model

- urban growth
- commuting patterns
- vehicle emissions

🗸 Calcula	te Highv	vay Emi	issions																	
🧕 Q*	<u>a</u> [?]	κ 💷	Load Street	Layer	Load	CBDs	Set Star	t Po	pint	Sta	art _	Б	Reset					A	dd Start	
Townsh	ip/Villag Passer ight-Duty Calcula Emissio	ge Home-N nger Cal Vehicle ate ons	Parkma New H Nork Jou rs 89 es 11 Gi	n Town louses urneys % % enerat	nship 50 69 61 8 e								•		•					
Ashtabula Cuyahoga Geauga	% 0.8 17.3 64.4	NO. 1 12 44	Distance 36.5 32.7	e miles miles miles	Total Distances 36.5 392.4 501.6															
Lake Lorain Mahoning	4.3 0.3	3	31.7 56.	miles miles	95.1	1	Passenger Cars	-	Light-Duty Trucks	,	1-Day Tota (pounds	al)	1-Day Tota (tons)	al 1	I-Year Tota (tons)	al	Local Emissio	Hi ns I	ighway a Local To	ind tal
Medina	1.1	1	50.1	miles	50.1	HC	7.7	lb	1.2	lb	8.9	lb	0.004	tn	1.1	tn	0.1	tn	1.2	tn
Portage	4.2	3	24.1	miles	72.3	со	70.5	lb	11.8	lb	82.2	lb	0.04	tn	10.2	tn	1.4	tn	11.6	tn
Stark	0	0	48.2	miles	0	NOv	50	lb		lb	0.00	в		ha		ha		- 40		- ho
Summit	6.5	4	36.1	miles	144.4	NUX	15.3	ID	10.8	10	16.19	10	10.003	αı	JU.8	u.	JU.1	a	0.9	an
Trumbull	1.1	1	19.2	miles	19.2	PM10	0.03	lb	0.0044	lb	0.04	lb	0.00002	tn	0.0044	tn	0.001	tn	0.005	tn
Total	100	69	377.4	Miles	1311.6	C02	1902.7	lb	324.8	lb	2227.5	lb	1.11	tn	277.3	tn	37	tn	314.3	tn

GIS Spatial Analysis

- What is at ...?
- What is it ...?
- What has changed since ...?
- What spatial patterns exist?
- What if ...?
- GIS uses geography, or space, as the common key element between data sets.
- Information is linked only if it relates to the same geographic area.

Spatial Analysis

- Query georeferenced information
 - Location?
 - Proximity?
 - Adjacency?
 - Longevity?
 - Multiple criteria evaluation?
 - Clusters? Hot/cold spots?

- For example:
 - How many people live within one mile of a Superfund hazardous waste site in the United States?
 - How many counties does I-76 pass in Pennsylvania?
 - What are the neighboring land parcels of a parcel that is requesting change of use from residential to commercial?

Developing a GIS

- Objectives
- Feasibility studies
- Hardware input, processing, output
- Software basic and tailored applications
- Data currency, accuracy, scale, versions
- Personnel training, workload
- Procedures In-house/out-source
- Pilot study

GIS Management

- Inter-unit collaboration and intra-unit operation
- Maintenance
 - Budget
 - short-term, long-term
 - Data
 - acquisition, updates, sharing, dissemination
 - Products
 - legal issues, cost/income

Demonstration: GIS Overview

A quick tour

- Data exploration
- Data manipulation
- Data display

Commercial GIS

- ESRI
 - ArcInfo, ArcView 3.x, ArcGIS, etc.
 - AML, Avenue, MapObjects, ArcGIS VBA
 - Internet Map Services
- Intergraph
 - GeoMedia suite, ImageStation, etc.
 - Internet Map Services
- MapInfo
 - MapInfo
 - MapBasics
- Others

Free GIS

- ArcVoyager Special Edition
 - <u>http://www.esri.com/industries/k-</u> 12/education/voyager.html
- ArcExplorer
 - http://www.esri.com/software/arcexplorer/index.html
- DIVA-GIS
 - http://www.diva-gis.org/
- FlowMap
 - <u>http://flowmap.geog.uu.nl/</u>
- GMT-Generic Mapping Tools
 - http://gmt.soest.hawaii.edu/

Free GIS (cont'd)

- GRASS
 - <u>http://www.geog.uni-hannover.de/grass/index.php</u>
- SPRING
 - http://www.dpi.inpe.br/spring/english/
- TNT Lite
 - http://www.microimages.com/tntlite/
- uDig
 - <u>http://udig.refractions.net/confluence/display/</u> <u>UDIG/Home</u>

Studies of Crime

- Pre-1970: Sociology & Psychology (George 1978)
- Since 1970: Spatial Components
 - Geographic patterns and distributions
 - Contributing factors
 - Program controls and assessment
- Georges, D. E. (1978) The geography of crime and violence: A spatial and ecological perspective, Association of American Geographers: Resource Papers for College Geography, 78(1).
- Jerry Ratcliffe, GIS and Crime Mapping

Law Enforcement and GIS

http://www.esri.com/industries/lawenforce/business/law_gis_enterprise.html

GIS and Law Enforcement

- Same law enforcement tasks
 -+ GIS = more timely
- Data Management
 - integration
 - analysis
 - allocate resources
 - policy implications

GIS and Law Enforcement

- Overlay multiple data-layers
 - integrate with databases
 - *i.e.* generate list of suspects
- Neighborhoods patrolled

 understand demographics
- Megan's Law
 - identify & notify residents
 about sex offenders in their
 areas

Applications of GIS to Crime

- Santa Clara County, CA
 - RCAP (Regional Crime Analysis Program)
 - interagency partnership
 - standardize, access, share
 - internet, database, GIS
- Identify and reduce crimes
 - crime data
 - incident type; geographic area
 - schools, parks

SOURCE: ArcNews

Where Crimes Occur

- Hot Spot Analysis
 - # crimes/census block
 - identify high crime intensity
 - hot spots
- Drawbacks
 - overall pattern
 - high crime where expected

Red = Hot Spots (High Crime)

Blue = Cold Spots (Low Crime)

SOURCE: ArcNews

Risk Assessment

- Implement crime prevention programs
- Example: vandalism
 - divide vandalism by all crime
 - vandalism as proportion of all crime
 - hot spot analysis on normalized ratios
 - areas where vandalism represents a larger than expected proportion of all crime events
- Lincoln, NE
 - vandalism a suburban issue

Megan's Law

- Notification about sex-offenders
 - web-based GIS
- Query data in relation to
 - neighborhoods, schools, parks, residential areas
 - offender displayed according to seriousness
 - visit local police for further info

SOURCE: ArcNews

53

http://www.familywatchdog.us/

KENT STATE 54

GIS Applications - Crime

Automated Regional Justice Info System

• San Diego Police Department

55

GIS Applications - Crime

COMSTAT

- COMPuter or COMParative STATistics
- NYPD

Radus Rings: Each Radus Rings equais 1000 feet.

Eleanor Am

N Y C Crime											
			MU	RDER		RAPE					
Year	NYC Pop.	Number	Rate	Proj. Rate	Saved by Compstat	Number	Rate	Proj. Rate	Saved by Compstat		
1,985	7,183,984	1,384	19			3,880	54				
1,986	7,179,609	1,582	22			3,536	49				
1,987	7,284,319	1,672	23			3,507	48				
1,988	7,346,352	1,896	26			3,412	46				
1,989	7,369,454	1,905	26			3,254	44				
1,990	7,322,564	2,245	31			3,126	43				
1,991	7,350,023	2,154	29			2,892	39				
1,992	7,375,097	1,995	27			2,815	38				
1,993	7,347,257	1,946	27	29	184	2,818	38	40	118		
1,994	7,336,224	1,561	21	29	565	2,666	36	40	271		
1,995	7,319,546	1,177	16	29	944	2,317	32	40	608		
1,996	7,339,594	983	13	29	1,145	2,332	32	40	602		
1,997	7,320,477	770	11	29	1,354	2,157	30	40	769		
1,998	7,357,745	633	9	29	1,501	2,046	28	40	898		
1,999	7,429,263	664	9	29	1,493	1,702	23	40	1,270		
2,000	8,008,278	673	8	29	1,650	1,630	20	40	1,570		
2,001	8,023,018	714	9	29	1,613	1,664	21	40	1,548		
2,002	8,084,693	587	7	29	1,754	1,689	21	40	1,544		
2,003	8,098,066	597	7	29	1,749	1,609	20	40	1,628		
2,004	8,101,321	570	7	29	1,779	1,428	18	40	1,813		
	Total				15,732				12.638		

http://www.nyc.gov/html/nypd/html/chfdept/compstat-process.html

KENT STATE® 56

Geography of Crime

- To **describe** and **map** the spatial distribution of crime in greater detail and meaning than has been done before.
- To **relate** the spatial patterns of crime to the environmental, social, historical, psychological (cognitive), and economic variables.
- To **develop** associational and predictive models that explain crime manifestation in regard to locale.
- To analyze the dynamics of crime manifestation to help crime control and to assess better the effectiveness of programs they currently use.

KENT STATE 58

KENT STATE 59

