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Introduction and background

• Count Outcome Examples:
– Number of Job Changes, Ship Accidents, Strikes, 

Patents Filed, Crimes Recorded, etc.

• Count Outcome/Model Peculiarities:
– Low non-negative integers (0,1,2,3,…)
– Discrete/Skewed
– May exhibit extra-Poisson variation
– Preponderance of one or more counts (e.g., 0)

• Correlation Across Space
– Can be substantive or a nuisance
– Usually contaminates inferences
– Particularly difficult to deal with in non-linear models
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Overview of this presentation

• What are moments of a distribution?
• Derive a Multi-Moment Generalized Poisson Model:

– Amount of violence
– Predictability of violence
– Mere occurrence of a violent event
– Substantive spatial structure

• Simulated evidence
• Homicides in Chicago neighborhoods
• Model implications
• Discussion
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Distributional Moments

• If       are a sample of some random variable, then its 

– rth raw moments is defined as: 

– rth central moments is defined as:

– rth geometric moments is defined as:

• Generically, we can define moments as the mean of 
various transformations of the original variable
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Why Study Multiple Moments?

• Typically researchers study only the 1st moment: the 
expected value. But what about …
– the expected variance, skewness, etc.

• Example from Financial Econometrics (returns on 
investment). Investors prefer …
– Higher returns (i.e., higher mean return)
– More certain return (i.e., more predictable returns)
– Left Skewed returns (i.e., surprise gain better than surprise 

loss)

• Different moments capture different aspects of the 
phenomenon under study
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Setting up the generic problem - I

• N Observed Outcomes: 

• N Emitted Signals: 

• Approximate relationship at the individual level

• Partial guidance from theory: the presence or 
magnitude of some attributes induce variation in the 
signals. I.e., suggests relevance of attributes.
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Setting up the generic problem - II

• Step 1: Re-parameterize unknown signals into proper 
probabilities (as weighted sum of propositions)

• Step 2: Quantitative relevance of attributes yield 
constraints on the probabilities.

• Result: Ill-posed inversion problem (infinite solutions)
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Setting up the generic problem - III

• IT Solution: Choose most uncertain / least informative 
solution using Maximum Entropy (Ed Jaynes)

• If corresponding priors (p0) exist, choose solution that 
minimizes Cross Entropy

• If priors are uniform, both problems are identical
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Setting up the generic problem - IV

• Primal Constrained Optimization Problem

• Optimal Solution

• Resulting Dual Unconstrained Optimization Problem
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The Poisson model derived

• Define Support Space as:

• Assume Priors are:

• The solution is …

• … the Poisson model with a log-link function

• But, the Poisson model could be mis-specified …
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• … potentially mis-specified Poisson model means 
potentially incorrect priors          .

• Solution: Parameterize dependence of        on priors.

• Re-write solution as:

• Generalized Poisson: replace     by        .
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Generalized Poisson Model - II

• How to obtain this generalized solution?

• Simultaneously impose constraints

• Which yields the desired solution

• More generally, impose multi-moment constraints
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Spatial Structure in the Outcomes

• Spatial Autocorrelation: Standard Poisson process

• Modified constraints needed

• Generalized Poisson process with spatial 
autocorrelation among multiple moments
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Testing Hypothesis and Specifications

• Asymptotic Covariance of parameters: approximated 
by the negative inverted Hessian of the dual objective 
function:

• Nested Specifications: Entropy Ratio Statistic

• Can always use Huber-White Robust Standard Errors 
(is we suspect remaining structure in errors)
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Yeah! But does it really work … 
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A Single Randomly Generated Sample

• Does the Generalized Poisson Model recover over-dispersion or 
under-dispersion in the data? 
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Some Simulation Results
1. How does the ER statistic used for testing 

unobserved heterogeneity perform?

2. Consequences of ignoring unobserved 
heterogeneity (with and without nuisance spatial 
autocorrelation in this heterogeneity) 
– Over rejection under the null, i.e.,              or 
– Does the Generalized Poisson model do better?

• Simulation design:                          N=343

where
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Simulation Results – I 
ER Test for Unobserved Heterogeneity

• DGP nn ue ×=σ
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Simulation Results – II 
Wald Test for Lagrange Multiplier
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OK! So, maybe it works with 
simulated data …

What about the real world … ?
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Application: Homicide Counts in Chicago 
Neighborhoods (1989-1990)

• Counts of homicides recorded in each of 343 Chicago neighborhood
(PHDCN) between 1989-1991.

• Explanatory variables include (all census)
– LPOP: Natural log of residential population (scale)
– RESDEP: Resource depravation index (measuring concentrated 

disadvantage)
– RESST: Percent of neighborhood households where the head of 

household has lived for more than 5 years (measuring residential
stability)

– YMEN: Young men as a % of population
– PNFH: % of Non-family households

• Spatial Link Matrix: First Order Queen Criterion
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Observed Spatial Distribution of the 
Homicide Count

Neighborhood Clusters
All Homicides
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Results:
All Homicides, Various Models

Intercept -7.800 * -8.380 * -4.887 * 0.718 -7.373 -5.786 * 0.643 -1.424

LPOP 0.953 * 0.973 * 0.465 * 0.034 1.040 0.603 * -0.012 0.342

RESDEP 0.714 * 0.816 * 0.841 * -0.201 * 1.577 * 0.950 * -0.244 * 0.725

RESST 0.151 * 0.198 * 0.127 -0.017 0.268 0.061 0.015 -0.044

YMEN 0.554 * 0.868 * 0.960 * -0.341 * -1.017 0.869 * -0.319 * -0.170

PNFH 0.124 0.238 0.384 -0.152 1.259 -0.156 0.093 2.389

Scale … 0.171 * … … … … … …

ρ … … … … … 0.211 * 0.467 * -0.710

R2 61% 59% 72% 74%
* = p < 0.05; + = p < 0.1

Poisson Negative
Binomial

Amount
of Violence

Predictability
of Violence

Some
Violence

Amount
of Violence

Predictability
of Violence

Some
Violence

Zero-Inflated Generalized
Poisson Model

Spatial Zero-Inflated Generalized
Poisson Model
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Results: 
Expressive Homicides, Various Models

Intercept -9.085 * -9.298 * -6.674 * 0.740 -1.390 -7.059 * 0.747 0.326

LPOP 1.076 * 1.057 * 0.609 * 0.055 0.467 0.661 * 0.035 0.278

RESDEP 0.825 * 0.938 * 0.928 -0.214 * 1.290 * 0.952 * -0.227 * 1.283 *

RESST 0.028 0.059 -0.153 0.081 0.949 -0.147 0.081 0.956

YMEN 0.307 * 0.594 * 1.747 * -0.816 * -3.902 * 1.606 * -0.760 * -3.461 *

PNFH 0.192 0.355 0.838 -0.369 -0.732 0.867 -0.369 -1.042

Scale … 0.178 * … … … … … …

ρ … … … … … 0.084 0.218 -0.251

R2 60% 58% 72% 73%
* = p < 0.05; + = p < 0.1

Zero-Inflated Generalized
Poisson Model

Spatial Zero-Inflated Generalized
Poisson Model

Some
Violence

Amount
of Violence

Predictability
of Violence

Some
ViolencePoisson Negative

Binomial
Amount

of Violence
Predictability
of Violence
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Results: 
Instrumental Homicides, Various Models

Intercept -8.691 * -8.506 * -4.122 -2.271 -0.885 -3.372 -3.779 * -1.077

LPOP 0.902 * 0.862 * 0.429 0.294 -0.058 0.417 + 0.406 * -0.031

RESDEP 0.787 * 0.855 * 0.749 * -0.179 0.237 0.260 * 0.263 * 0.794 *

RESST -0.133 -0.147 -0.084 0.048 -0.307 0.239 -0.187 -0.687 +

YMEN 0.697 * 0.865 * 0.356 -0.120 1.271 0.100 + 0.215 1.510 +

PNFH 0.349 0.468 -0.573 0.418 1.941 -0.642 * 0.790 * 1.677

Scale … 0.243 * … … … … … …

ρ … … … … … -0.782 * 0.955 * 0.320

R2 42% 42% 45% 51%
* = p < 0.05; + = p < 0.1

Poisson Negative
Binomial

Amount
of Violence

Predictability
of Violence

Zero-Inflated Generalized
Poisson Model

Spatial Zero-Inflated Generalized
Poisson Model

Some
Violence

Amount
of Violence

Predictability
of Violence

Some
Violence
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Interesting Model Implications

• Tease out decomposition of marginal effects

where            is the covariance between the ith and jth
moments.

• Examine variation in marginal effects across space
– Map out variations in effects
– Study what correlates with high/low effects
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Spatial Variation in the Effect of RESDEP
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Spatial Variation in the Effect of YMEN
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Marginal Effects of RESDEP versus 
RESDEP

RESDEP
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Marginal Effects of YMEN versus YMEN 
and RESDEP

Spatial Distribution
of YMEN
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Concluding Thoughts

• Approach presented here has several good features
– Minimal distributional assumptions invoked a-priori
– Extends easily to incorporate several real-word data/sample 

features
– Other non-sample knowledge can be included
– Yields varying effects across space
– Can yield very precise policy recommendations

• Further Extensions
– Endogenous predictors (e.g., resource depravation ?)
– Simultaneous Equation Count Models (e.g., different types of 

homicides)
– Space-time models

• To do …
– More Simulations
– More cross method comparisons (e.g., Bayesian)
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