Hylebos Waterway Fish Injury Studies Individual Data and Quality Assurance Results CASE NARRATIVES

Toxicopathic Conditions in Flatfish

Semivolatile Organics (Tables 1, 2)

Calibrations

The calibration data used to quantitate the analytes met the initial (Tables 1J, 2G) and continuing (Tables IK, 1L and 2H) calibration criteria detailed in the "Commencement Bay Quality Assurance Plan, 12/95" (QAP).

Method Blank Analysis

Method blanks were analyzed for CHs (Tables 1E, IF) and AHs (Table 2D). The criteria in the QAP for method blanks were met (no more than 4 analytes to exceed 3 X the MDLs listed in Tables IM, 2I).

Surrogate Recoveries

Surrogate recoveries for samples analyzed by GC/MS for AHs and by GC/ECD for PCBs, DDTs and pesticides (Tables 1A, 1D, 2A, and 2C) were within the guidelines detailed in the QA Plan (50-125% recovery).

SRMAnalyses

An aliquot of NIST tissue SRM 1974a was analyzed with each of the sample sets, and the results (Tables IE, IF, and 2D) met the criteria in the QA plan (>70% of concentrations for the certified analytes that were present in NIST SRM 1974a in concentrations greater than 10 times the MDL were within 35% of either end of the NIST values. Noncertified values for the other analytes in the SRM and concentrations from samples of the SRM analyzed previously are also shown in the tables.

Sample Duplicates

Three samples were analyzed in duplicate for CHs (Tables 1H, 1I), one sample was analyzed in duplicate for AHs (Table 2F) and the criteria in the QAP were met (QA plan, Table 6.2).

Reanalyses

There is no plan to reanalyze any samples.

GC/MS Confirmations

Six samples (Table 1N, 1O) were analyzed using GOMS to confirm the presence of the pesticides and PCBs determined previously by GC/ECD.

Hylebos Toxicopathic Conditions in Flatfish Study

Analyses for Chlorinated Hydrocarbons Table 1 Notes

- The concentrations of analytes were calculated using 4,4'-dibromoctafluorobiphenyl as the surrogate standard.
- The "less than" symbol (<) indicates that the analyte was not detected in concentrations above the stated value.
- Results were determined by gas chromatography with electron capture detection (GC/ECD).
- Concentrations less than 10 ng/g are rounded to two significant figures; concentrations greater than or equal to 10 ng/g are rounded to three significant figures.
- The percent recoveries of the surrogate standard were calculated using tetrachloro-o-xylene to correct for the fraction of the total extract used for the HPLC cleanup step.
- The concentration reported for "Total PCBs" is the sum of the 17 PCB congeners multiplied by 2 (as defined in the QA Plan).
- Set # and Sample # designations are intended for internal lab use and identification only. Jar # and site name represent Hylebos Damage Assessment official sample identification designations.
- The sample weights used to calculate concentrations for the method blank are the mean sample weights calculated for the field samples in the same set.

Sample information for flatfish liver and stomach contents analyzed for chlorinated hydrocarbons as part of the Hylebos Toxicopathic Conditions in Flatfish Study. Table 1A-p1:

Set	Sample	Sample Type	Species	dar #*	SITE	Collection Date	Sample Wt. (g)	DOB Rec.
H:303R	110-388R	Tissue - Ilver	English sole	94.3002,3003,3014/3016	UPPER TURNING BASIN	7/21/94	3.00	86
H303R	110-389R	Tissue - Hver	English sole	94.3039,3046,3048,3049,3053	UPPER TURNING BASIN	7/22/94	3.00	66
H303R	110-390R	Tissue - liver	English sole	94.3001,3005/3008	UPPER TURNING BASIN	7/21/94	3.01	86
H303R	110-391R	Tissue - liver	English sole	94.3010/3013,3034	UPPER TURNING BASIN	7/21/94	2.53	16
HOOOH	110-392R	Tissue - liver	English sole	94.3017/3021	UPPER TURNING BASIN	7/21/94	3.01	86
H303R	110-393R	Tissue - Mver	English sole	94.3022/3026	UPPER TURNING BASIN	7/21/94	3.01	86
HOOCH	110-394R	Tissue - Niver	English sole	94.3001,3005/3008	UPPER TURNING BASIN	7/21/94	2.99	66
H303R	110-395R	Tissue - liver	English sole	94.3063,3064,3068,3072,3081	LOWER TURNING BASIN	7/21/94	3.00	96
H303R	110-396R	Tissue - Niver	English sole	94.3061,3062,3067,3082,3084	LOWER TURNING BASIN	7/21/94	3.02	86
H303R	110-397R	Tissue - liver	English sole	94.3065,3066,3069/3071	LOWER TURNING BASIN	7/21/94	3.01	100
H304	110-417	Tissue - liver	English sole	94.3071, 3073/3076	LOWER TURNING BASIN	7/22/94	3.00	119
H304	110-418	Tissue - Nver	English sole	94.3078, 3083, 3086/3088	LOWER TURNING BASIN	7/25/94	3.05	115
H304	110-419	Tissue - liver	English sole	94.3089, 3092/3095	LOWER TURNING BASIN	7/25/94	3.03	239
H304	110-420	Tissue - fiver	English sole	94.3121, 3123, 3124, 3126, 3131	11TH STREET BRIDGE	7/26/94	3.01	121
H304	110-421	Tissue - Wer	English sole	94.3132, 3139, 3145, 3146, 3149	11TH STREET BRIDGE	7/26/94	3.02	121
H304	110-422	Tissue - Ilver	English sole	94.3122, 3128, 3130, 3133, 3134	11TH STREET BRIDGE	7/26/94	3.03	114
H304	110-423	Tissue - liver	English sole	94.3136, 3142, 3175/3177	11TH STREET BRIDGE	7/26/94	3.00	120
H304	110-424	Tissue - liver	English sole	94.3179, 3180, 3182/3184	11TH STREET BRIDGE	7/26/94	3.02	121
H304	110-425	Tissue - liver	English sole	94.3185/3189	11TH STREET BRIDGE	7/28/94	3.01	112
H304	110-426	Tissue - liver	Rock Sole	94.3152, 3153, 3155/3157	11TH STREET BRIDGE	7/26/94	3.01	115
H306	110-431	Tissue - Hver	Rock Sola	94.3437/3440,3442	COLVOS PASSAGE	10/20/94	2.90	107
H306	110-432	Tissue - liver	Rock Sole	94.3443/3444,3446/3448	COLVOS PASSAGE	10/20/95	1.88	16
H306	110-433	Tissue - liver	English sole	94.3325/3326,3329/3330,3339	COLVOS PASSAGE	9/22/94	1.96	101
H306	110-434	Tissue - liver	English sole	94.3311/3312,3314/3316	COLVOS PASSAGE	9/22/94	3.02	106
H306	110-435	Tissue - iiver	English sole	94.3317/3319,3333,3335	COLVOS PASSAGE	9/22/94	2.64	109
H306	110-436	Tissue - liver	English sole	94.3321/3324,3327	COLVOS PASSAGE	9/22/94	2.62	108
25	I described							

DOB = dibromoctafluoroblphenyl

^{*}Jar #s represent official Hylebos Damage Assessment sampling numbers. If more than one jar # is given, the sample analyzed was a composite of those jars.

Sample information for flatfish liver and stomach contents analyzed for chlorinated hydrocarbons as part of the Hylebos Toxicopathic Conditions in Flatfish Study. Table 1A-p2:

						Collection	Sample Wt.	DOB Rec.	
Set #	Sample#	Sample Type	Species	3 21 #	Site	Date			
H306	110-437	Tissue - liver	English sole	94.3331/3332,3336/3338	COLVOS PASSAGE	9/22/94	3.03	111	
90EH	110-438	Tissue - liver	English sole	94.3341/3345	COLVOS PASSAGE	9/22/94	2.35	112	
H305	110-443	Tissue - liver	Rock Sole	94.3158/3160,3162/3163	11TH STREET BRIDGE	7/26/94	1.62	102	
H305	110-444	Tissue - liver	Rock Sole	94.3151,3164/3167	11TH STREET BRIDGE	7/26/94	1.68	108	
H305	110-445	Tissue - liver	Rock Sole	94.3169/3172,3174	11TH STREET BRIDGE	7/26/94	1.83	107	
H305	110-446	Tissue - liver	Rock Sole	94.3206/3210	11TH STREET BRIDGE	7/28/94	2.69	107	
H305	110-447	Tissue - Hver	Rock Sole	94.3211/3215	11TH STREET BRIDGE	7/28/94	3.10	107	
H305	110-448	Tissue - liver	Rock Sole	94.3208/3210	11TH STREET BRIDGE	7/28/94	2.74	104	
H305	110-449	Tissue - fiver	Rock Sole	94.3416/3417,3421,3423/3424	COLVOS PASSAGE	10/19/94	2.55	102	
H305	110-450	Tissue - liver	Rock Sole	94.3425/3429	COLVOS PASSAGE	10/19/94	1.95	103	
H305	110-451	Tissue - liver	Rock Sole	94.3418/3420,3422,3430	COLVOS PASSAGE	10/19/94	2.88	102	
H305	110-452	Tissue - liver	Rock Sole	94.3431/3433,3435/3436	COLVOS PASSAGE	10/20/94	1.70	100	
H307	110-402	Tissue - stomach contents	English sole	94.3002,3003,3015,3016,3034	UPPER TURNING BASIN	7/21/94	3.01	100	
H307	110-403	Tissue - stomach contents	English sole	94.3039,3046,3048,3049,3053	UPPER TURNING BASIN	7/21/94	3.06	240 3	340
H307	110-404	Tissue - stomach contents	English sole	94.3063,3064,3068,3072,3081	LOWER TURNING BASIN	7/22/94	3.02	66	
H307	110-405	Tissue - stomach contents	English sole	94.3061,3062,3067,3062,3084	LOWER TURNING BASIN	7/22/94	3.06	100	
H307	110-408	Tissue - stomach contents	English sole	94.3121/3124,3126,3131	11TH STREET BRIDGE	7/26/94	1.86	101	
H307	110-407	Tissue - stomach contents	English sole	94.3132,3139,3145,3146,3149	11TH STREET BRIDGE	7/26/94	3.01	. 124	
H307	110-408	Tissue - stomach contents	Rock Sole	94.3152,3153,3155/3157	11TH STREET BRIDGE	7/25/94	3.00	116	
H307	110-409	Tissue - stomach contents	Rock Sole	94.3158/3160,3162,3163	11TH STREET BRIDGE	7/26/94	3.01	105	
H307	110-410	Tissue - stomach contents	Rock Sole	94.3416,3417,3421,3423,3424	COLVOS PASSAGE	7/19/94	3.01	100	
H307	110-411	Tissue - stomach contents	Rock Sole	94,3425/3429	COLVOS PASSAGE	7/19/94	2.78	101	
H308	110-457	Tissue - stomach contents	English sole	94.3325,3326,3329,3330,3339	COLVOS PASSAGE	9/22/94	1.70	79	
H308	110-458	Tissue - stomach contents	English sole	94.3311,3312,3314,3315,3316	COLVOS PASSAGE	9/22/94	3.00	70	
H308	110-459	Tissue - stomach contents	English sole	94.3317,3318,3319,3333,3335	COLVOS PASSAGE	9/22/94	2.53	9/	
H308	110-460	Tissue - stomach contents	Rock Sole	94.3152,3153,3155/3157	11TH STREET BRIDGE	7/25/94	3.00	06	
DOB - dibrom	romoodafiiocohinhanvl	phonyl							

DOB = dibromooctafluorobiphenyl

^{*}Jar #s represent official Hylebos Damage Assessment sampling numbers. If more than one jar # is given, the sample analyzed was a composite of those jars.

Table 18-p1: Concentrations (ng/g, wet weight) of pesticides in flatfish liver and stomach contents samples analyzed as part of the Hylebos Toxicopathic Conditions in Flatfish Study.

# PLU HES	22	, a		HEDT	. Aldrin	α + γ	e in the interest of the inter			100.4
110-388R	3.6	13.9	0.35	3.5	< 0.24	6.8	3.1	96.6	68.1	13.2
110-389R	5.3	15.9	0.49	3.6	< 0.24	12.9	3.1	67	95.7	11.7
110-390R	9.9	12	0.48	3.4	< 0.34	7.8	2.7	51.4	62.5	11.9
110-391R	4.7	12.8	0.49	7.7	< 0.42	6.6	2.7	99	49.3	6.2
110-392R	9	19.9	0.48	4 .3	< 0.22	8.2	2.7	68.4	8	11.3
110-393R	4.6	13.4	0.45	8	< 0.24	9.4	3.3	43.9	73.4	7
110-394R	3.3	12.1	0.32	3.1	< 0.23	6.7	2.2	55.1	65.6	11.4
110-395R	4.9	18.4	0.53	3.6	< 0.24	7.9	2.4	50.9	75.5	17.8
110-396R	4.8	16.6	0.36	5.9	< 0.25	8.6	1:9	33.2	55.6	12.9
110-397R	8.3	24.2	0.62	1	< 0.16	11.6	2.6	72.2	116	24.9
110-417	4.4	16.3	0.5	< 0.17	0.5	6.2	3.3	33.3	2	10.4
110-418	9.7	24.5	0.62	< 0.18	0.53	7.9	3.4	47.8	59.2	9.3
110-419	4.9	18	0.54	< 0.14	0.56	6.1	3.5	52.8	133	23.3
110-420	11.1	36.6	0.84	< 0.14	0.85	6.1	3.7	40.1	9.69	12.5
110-421	16.4	62	7:	< 0.14	N	6.4	8	26.6	41.8	8.6
110-422	-	44.3	0.73	< 0.15	1.2	4.6	< 0.09	8	22.1	9.
110-423	15.1	25	0.73	< 0.13	2.1	5.	< 0.078	21.9	38.2	5.1
110-424	23.4	20	-	< 0.13	1.7	60	3.7	11	28.7	5.9
110-425	6.0	51.5	1.3	< 0.15	0.98	6.5	< 0.086	37.1	48.1	14.8
110-426	23.2	98.5	0.98	< 0.15	4.1	G.	8.9	39.7	33	13.3
110-431	0.25	0.87	0.52	< 0.16	< 0.089	-	0.82	6.2	=	0.7
110-432	0.41	1.4	0.76	< 0.29	< 0.16	1.7	1.3	6.5	÷ 1.8	0.79
110-433	0.33	1.6	0.82	0.68	< 0.13	8	1.6	10.5	3.9	1.5
110-434	0.25	1.	0.54	0.25	< 0.1	9.1	1.2	7.1	8	-
110-435	< 0.07	0.74	0.35	< 0.18	< 0.1	0.8	0.65	4	1.3	0.54
110-436	0.37	0.81	0.47	< 0.22	< 0.12	1.2	0.78	2.6	1.2	0.36
110-437	0.28	=	0.52	0.27	× 0.1	::	1.1	5.4	2.1	0.78
110-438	0.37	1.3	0.75	0.52	< 0.12	1.6	1.2	3.6	2.1	99.0
110-443	243	102	0.81	< 0.16	< 0.13	4.4	< 0.13	83	20.8	8.1
110-444	16.5	33.2	0.35	< 0.16	< 0.13	2.3	< 0.13	14.4	9.5	, Б

HCBD = hexachlorobutadiene; HCB = hexachlorobenzene; LIND = lindane; HEPT = heplachlor.

Concentrations (ng/g, wet weight) of pesticides in flatfish liver and stomach contents samples analyzed as part of the Hylebos Toxicopathic Conditions in Flatfish Study. Table 1B-p2:

Sample#	HCBD	НСВ	LIND	HEPT	Aldrin	α + γ Chlordane	Dieldrin	P.PDDE	000-,00	D.D 0.0T
110-445	34.7	41.8	0.47	< 0.17	< 0.14	3.7	2.1	12.5	12.8	3.2
110-446	105	153	0.81	< 0.17	< 0.14	5.2	2.8	49.9	28.4	6.
110-447	82.8	112	0.65	< 0.15	< 0.13	5.1	*	25.1	17.8	ĸ
110-448	105	158	0.79	< 0.18	< 0.15	5.1	3.2	51.1	29.8	89.
110-449	0.28	1.6	99.0	< 0.22	< 0.19	1.5	£.	*	1.2	0.45
110-450	0.28	1.5	0.64	< 0.17	< 0.14	2.7	5.1	80	1.9	1.2
110-451	0.35	2.5	-	< 0.24	< 0.2	3.3	6	60	2.9	70.
110-452	< 0.13	1.3	0.48	< 0.21	< 0.18	1.4	1.4	5.6	1.2	0.61
110-402	0.52	1.9	< 0.13	< 0.16	1.9	0.83	0.76	6.3	11.2	5.5
110-403	0.62	1.7	0.15	< 0.17	0.27	1.5	1.2	3.3	11.1	0.42
110-404	0.87	1.9	< 0.15	< 0.19	< 0.1	1.3	5.	3.4	11.3	2.2
110-405	0.64	8	< 0.14	< 0.17	< 0.096	. 	1.2	3.2	10.3	1.8
110-406	7.8	€	0.43	< 0.29	< 0.16	8.4	0.38	1.2	3.7	N
110-407	8 9	32.3	2.2	< 0.14	0.26	4.2	< 0.085	0.7	4.1	0.93
110-408	7.5	12.7	0.27	< 0.15	< 0.082	1.9	0.98	0.77	4.4	1.6
110-409	3.8	4.6	< 0.15	< 0.19	< 0.11	0.49	< 0.12	0.55	1.2	0.3
110-410	< 0.073	< 0.073	< 0.15	< 0.19	× 0.1	0.29	0.15	0.52	< 0.2	< 0.22
110-411	< 0.089	< 0.089	< 0.18	< 0.23	< 0.13	< 0.28	< 0.14	0.31	< 0.24	< 0.26
110-457	0.52	< 0.16	< 0.24	< 0.32	< 0.21	< 0.4	< 0.22	0.32	0.46	< 0.38
110-458	0.31	< 0.097	< 0.15	< 0.2	< 0.13	< 0.24	< 0.14	0.29	< 0.21	< 0.23
110-459	0.24	0.1	< 0.12	< 0.16	< 0.1	0.23	0.17	0.36	0.3	< 0.19
110-460	7.5	12.1	0.53	< 0.19	< 0.12	1.6	0.55	0.73	က	1.2

Table 1C-p1: Concentrations (ng/g, wet weight) of chlorobiphenyl congeners (chlorination level/IUPAC number) in flatfish liver and stomach contents samples analyzed as part of the Hylebos Toxicopathic Conditions in Flatfish Study.

		Condi	tions i	in tlattish liver and stomacii Conditions in Flatfish Study.	i stomi ish Stu			- Salling	163 an	contents samples analyzed as part of	2				-			Total
				4/63	4/44	=	8/108	6/118	6/128	6/138	6/153	7/170	7/180	7/187	9/196	9/206 1	002/0	PCBS
Samples	3/18	37.20	48.4	114				561	72.8	572	763	52.7	50.3	95.4	5.5	22	10.1	6400
110-3000	- 6 - 6	2 00	35.7	113	63.3	366	82.4	314	39.6	320	366	23.6	56.8	41.8	3.3	16.3	6.0	3800
0000	11.7	17.3	27.3	95.4	27	348	63.5	280	30.1	267	320	21.4	19.7	38	5.6	11.1	6.3	3200
110-3907	401	15.7	25.8	66.8	37.6	202	35.3	478	21.1	146	217	16.8	17.6	30.6	2.7	14.6	7.7	2700
110.3311	, 4	23.0	42	156	94.7	200	7.96	273	49.3	343	462	28.5	30.3	46.7	3.7	19.1	10.6	4400
110.303B	13	17.6	31.5	105	55.3	339	53.5	282	æ	243	322	16.9	18.7	27.2	1.9	9.1	©	3100
110-394B	5 5	17.6	27.1	8	57.4	351	61.5	331	31	279	336	22.4	50.9	39.9	2.7	11.4	6.8	3400
110-395R	10.8	15.7	35.6	114	55.4	427	86.5	242	48	362	479	39.5	34.4	62.9	4.2	19.1	12.7	4100
110-396R	6	6	26.5	88	37.5	317	54.2	446	34.1	262	321	20.7	19.9	39.3	3.3	18.3	11.5	3400
110-397B	10.8	19.8	49.2	167	54.3	581	118	< 0.21	99	437	561	37.5	8	58.9	4.2	21.2	13.8	4500
110-417	14.7	1.1	30.3	4.00	30.2	383	1.09	297	34.1	273	357	20.7	18.4	35.2	2.5	12.6	. 69	3400
110-418	16.8	10.3	21.8	55	15.4	218	31.7	152	22.6	178	325	20.5	27.7	88	6.6	18.2	11.5	2300
110-419	17.1	15.1	34.1	110	30.9	437	63.1	345	43.2	348	443	26.2	8	39.6	5.9	16.4	10.8	4000
110-420	26.1	5.6	19.4	71.3	20.4	349	51.4	528	30.8	522	370	24.3	26.8	49.4	4.5	30.4	18.2	3200
110-421	62.5	3.3	32.3	37.6	12.4	175	35.9	117	24.1	195	300	28.3	34.8	64.4	8.1	64.6	37.9	2500
110.422	24	2.6	14.4	20.9	6.5	79.8	19	60.7	13.7	102	137	16.5	25.7	38.1	4.8	38.7	23.7	1300
110-423	37.1	1.7	21.6	39.5	10.8	118	8	89.9	16	117	173	17.6	24.4	30	5.5	47.9	28.5	1600
110.424	46.6	2.8	23.1	22.7	7	81.5	18.6	58.9	14.2	105	145	18.6	24.9	41.5	9	6.09	29.1	1400
110-425	4		8	52.4	14.1	223	33.8	171	21.8	198	310	25.2	30.2	47.8	6.4	33	20.7	2500
110-426	165	4.8	6.69	47	8.8	172	41.5	275	88	369	467	62.3	121	124	17.1	153	89	4400
110-431	< 0.3	0.69	=	1.7	1.2	4.9	1.3	7.1	1.9	15.3	20.5	2.5	9 .	ß	0.38	1.2	0.74	. 140
110-432	× 0.53	0.0	2.2	2.6	1.6	7	0.7	7.9	2.6	18.1	24.8	3.1	6.4	9.9	0.52	1.7	-	180
110-433	0.58	0.95	2.2	3.5	2.8	12.2	23.3	10.7	3.7	27.6	36.2	5.3	8.4	7	-	3.7	2.3	270
110-434	< 0.35	0.62	1.5	2.5	1.9	8.7	1.7	7.4	2.4	18	23.2	3.1	8.6	89	0.49	1.7	Ξ	180
110-435	0.37	0.64	5.	6.1	81	5.9	4.	5.1	1.7	12.2	15.7	CV ·	4.7	5.9	0.32	1.1	0.75	130
110-436	× 0.4	0.66	1.6	1.5	1.6	4.7	0.92	4	7.	8	11.6	4.	5.6	4.4	0.23	0.8	0.58	5 0

• The concentration reported for "Total PCBs" is the sum of the 17 PCB congeners multiplied by 2 (as defined in the QA Plan).

Table 1C-p2: Concentrations (ng/g, wet weight) of chlorobiphenyl congeners (chlorination level/IUPAC number) in flatfish liver and stomach contents samples analyzed as part of the Hylebos Toxicopathic

Total	10/209	1.1	0.54 120	42.4 2300	35.9 1300	24.4 1100	88.5 4900	55.6 2500	94 5200	1.4 130	2 220	1.2 220	1.5	0.61 480	0.81	1.2 390	1 350	4.1 150	4.1	3.6 220	2.6 83	< 0.074 13	0.11	0.22	0.18 18	0.26 21	4.1
	9/206 1	1.5	0.75	120	9.62	57.1	212	127	231	1.6	2.6	1.3	1.8	0.8	0.7	0.95	::	3.8	3.8	3.2	3.2	> 0.08	0.097	< 0.15	0.1	0.13	3.4
•	8/195	0.43	0.23	10	7.7	2.2	8	12.7	23.3	0.44	0.77	0.41	0.5	0.23	0.15	0.21	0.27	99.0	0.59	0.65	0.27	< 0.063	< 0.077	< 0.14	< 0.088	< 0.07	0.59
 	7/187	1.7	4.6	73.8	42.3	36.7	197	1.88	214	5.1	9.3	7.5	5.9	4.3	ෆ	3.4	3.9	4.3	4.4	8.3	3.1	0.52	0.43	0.52	0.46	99.0	8.7
	7/180	5.7	3.4	72.9	40.1	39.1	134	77.2	142	4.8	9.5	10.3	6.1	6	=	4.1	1.7	1.7	~	3.5	1.6	0.23	0.25	0.28	0.22	0.3	3.3
	7/170	2.7	1.7	44.3	25.1	22.2	97.6	45.5	103	2.4	4.1	6	3.1	2.9	5.9	2.8	6	2.2	2.7	2.8	1.5	0.08	0.18	0.33	0.25	0.4	9. 8
	6/153	20.9	13.8	255	136	109	550	270	929	15.7	25.9	26.1	21.4	43.6	29.6	37.3	33.7	13.1	18.2	25.1	8.2	0.95	1.7	1.6	1.3	1.5	23.7
	6/138	16	=	176	100	83.6	422	204	441	12.2	21.2	20.5	17.4	83	32.7	26.3	26.6	=	12.2	17.8	5.5	7	1.4	9.1	=	1.6	16.8
	6/128	2.1	1.4	ୖ	11.9	=	41.9	20.3	43.1	2.1	2.9	60	2.4	5.6	3.4	4.1	4.6	.	2.8	2.2	0.99	0.15	0.14	< 0.16	0.14	0.19	2.1
	5/110	7.1	5.4	89.8	54.7	43.4	270	108	281	5.7	G	10.4	8.1	38.5	28	29.8	28.5	13	80	11.6	4	0.56	0.75	0.72	0.53	0.56	6 .
	5/105	1.5	1 .	23.8	13	6.6	47.9	18.9	47.9	1.3	2.4	2.7	2.4	60.5	5.3	4.7	9	1.7	1.9	0.88	0.64	0.17	0.25	0.21	0.17	0.2	5.
	5/101	7.1	6.9	83.2	47.4	40.8	185	74.4	193	5.	9.2	5.5	ro ro	47.7	38.4	39.5	34.7	9	11.9	12.2	4.3	0.58	0.8	-	0.77	1.1	12.1
ifish S	4/66	2.3	2.4	19.3	6.6	12.1	24	20.3	22.5	1.3	2.3	3.5	1.3	10.7	9.5	13.7	0	2.2	9.6	9.5	0.98	< 0.14	< 0.17	0.87	0.64	0.81	7.2
in Fla	4/52	2.1	2.4	28.9	13.4	14.4	51.1	27.5	62.4	2.4	9.3	5.3	2.3	20.2	19.5	18.1	13.6	7	3.5	5.1	2.4	0.3	0.45	0.51	0.41	0.43	4
Conditions in Flatfish Study.	4/44	1.5	1.8	7.7	4.	7	9	3.6	9.6	1.5	6 .	6.	6.1	10.8	9.5	•	6.2	3.1	1.9	2.5	1.5	5.	1.3	2.2	3	1.5	6
Cond	3/28	0.62	0.85	3.7	8	2.2	4.9	89.	4.7	-	1.3	8.	1.3	7.4	4.9	2.4		=	1.7	0.78	0.64	0.34	0.4	0.75	0.61	. 0.54	0.91
	3/18	< 0.35	0.55	26.7	18.3	25.6	92.6	71.6	98.3	< 0.7	0.58	< 0.74	0.7	4.5	3.5	< 0.35	× 0.32	< 0.53	2.6	0.28	< 0.36	< 0.35	< 0.43	^ 0.64	0.57	0.38	9.4
	Semales	110-437	110-438	110-443	110-444	110-445	110-446	110-447	110-448	110-449	110-450	110-451	110-452	110-402	110-403	110-404	110.405	110-408	110-407	110-408	110-409	110-410	110-411	110-457	110-458	110-459	110-460

• The concentration reported for "Total PCBs" is the sum of the 17 PCB congeners multiplied by 2 (as defined in the QA Plan).

Quality assurance sample information in method blanks and standard reference material (SRM 1974a) analyzed for chlorinated hydrocarbons as part of the Hylebos Toxicopathic Conditions in Flatfish Study. Table 1D-p1:

DOB Rec			16	16	96	93	99
Sample Wt		2.96	3.02	2.27	2.55	2.88	2.04
Sample Type		Method Blank	Method Blank	Melhod Blank	Method Blank	Method Blank	Method Blank
Sample	Blank	110-399R	110-428	110-454	110-440	110-413	110-467
Set	Method Blank	H303A	H304	H305	H306	H307	H308

2000	- 77.07	•			
SHM	19/48				
HOOGH	110-398R	SRM 1974a	3.00	88	
H304	110-427	SRM 1974a	3.01	104	
H305	110-453	SRM 1074a	3.12	901	
H306	110-439	SRM 1974a	3.03	101	
H307	110-412	SRM 1974a	3.06	104	
H308	110-466	SRM 1974a	3.01	**	

QA: Concentrations (ng/g, wet weight) of pesticides in method blanks and standard reference material (SRM 1974a) analyzed as part of the Hylebos Toxicopathic Conditions in Flatfish Study. Table 1E-p1:

Sample #	Sample Type	HCBD	HCB	Lindane	HEPT	Aldrin	Chiordane	Dieldrin	P,p'-DDE	D.pDDD	p,pDDT
Method Blank											
110-399R	Method Blank	< 0.27	< 0.27	< 0.35	< 0.45	< 0.33	< 0.64	< 0.34	< 0.33	< 0.55	< 0.59
110-428	Method Blank	< 0.077	< 0.077	< 0.16	< 0.19	< 0.11	< 0.21	< 0.11	< 0.095	< 0.18	< 0.19
110-454	Method Blank	< 0.23	< 0.23	< 0.31	< 0.36	< 0.3	< 0.59	< 0.3	< 0.27	< 0.42	< 0.44
110-440	Method Blank	0.47	< 0.091	< 0.19	< 0.23	< 0.13	< 0.26	< 0.14	< 0.12	< 0.25	< 0.27
110-413	Method Blank	< 0.084	< 0.084	< 0.17	< 0.22	< 0.12	< 0.24	< 0.13	< 0.11	< 0.23	< 0.25
110-467	Method Blank	0.17	< 0.072	< 0.11	< 0.14	< 0.094	< 0.18	< 0.1	< 0.088	< 0.16	< 0.17
	Average.	0.11	00.0	0.00	0.00	0.00	0.00	0.00	00.0	0.00	00:00
	Standard Daviation	0.17	00:0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Relative	Relative Standard Deviation	162.7%	2	2	2	1	٥	2	-	2	2
SRM 1974a											
110:398R	SRM 1974a	< 0.26	< 0.26	< 0.34	< 0.44	< 0.32	4	0.68	4.1	6.9	0.66
110-427	SRM 1974a	< 0.076	< 0.076	< 0.16	< 0.19	< 0.1	9.6	0.83	4.6	6.4	0.62
110-453	SRM 1974a	0.21	< 0.12	< 0.16	< 0.19	< 0.16	4.2	0.74	4.2	5.8	0.25
110.439	SRM 1974a	0.31	< 0.064	< 0.13	< 0.16	< 0.091	9.9	0.54	5,2	6.3	0.21
110-412	SRM 1974a	< 0.079	< 0.079	× 0.16	< 0.2	< 0.11	3.4	< 0.12	2.8	6.3	0.32
10-466	SRM 1974a	0.15	< 0.091	< 0.14	< 0.18	< 0.12	3.0	0.74	4.2	6.3	0.27
	Average	0.11	0.00	0.00	0.00	0.00	3.80	0.59	4.18	6.18	0.39
	moltaly of preparate	21.0	0.00	000	0.00	00.0	0.35	0.28	0.71	0.24	0.18
Refetive	Relative Standard Deviation	108.7%	~	~	~		0.1%	47.2%	17.0%	3.0%	47.2%

SRM 1974a	1×				1	1	1		0.7	6.04	4.00	0.48
Certified	10 % CI	•								6.73	7.59	0.69
(ng/g, wet wt)	털털									3.39	2.72	0.25
SRM 1974a	J×		9	P	P		9	2.86‡	0.88	9.0	9.0	0.35
Previously analyzed concentrations (ng/g, wet wf, n=10)	3.D			1	1		i	0.15	0.29	0.7	0.7	0.07

HCBD = hexachlorobutedlene; HCB = hexachlorobenzene; HEPT = heptachlor.

X = the everage concentration (ng/g, wet wt); 95% CI = the 95% confidence interval; UCL = the upper confidence limit (95% confidence limit + 35%); LCL = the lower confidence limit - 35%).

n = the number of values being averaged; S.D.= the standard deviation; nd = not detected in previous samples, or detected at levels below the firm? of detection.

'Dieldrin is given as a noncertified value.

‡ indicates that n<10 because the analyte was either not detected or not analyzed for in some samples.

* When an analyte was detected in some, but not all of the method blanks or SRMs, the average concentration is based on the concentration when detected and zero when not detected. When an analyte was not detected in any of the method blanks or SRMs, zero is reported for the average and the SD and a "?" is reported for the RSD.

QA: Concentrations (ng/g, wet weight) of chlorobiphenyl congeners (chlorination level/IUPAC number) in method blanks and standard reference material (SRM 1974a) analyzed as part of the Hylebos Toxicopathic Conditions in Flatfish Study. Table 1F-p1:

Nethod Blank																			Tabak
Hard Color	Sample #	3/10	3/20	4/44	4/52	4/66	5/101	5/105	5/110	6/128	6/138	6/153	7/170	7/180	7/107	8/195	9/206	10/209	PCBs:
Courage Cour																			
Colin Coli	110-399R	-	0.61	1.3	< 0.69	< 0.47	< 0.5	< 0.31	<0.41	< 0.28	0.81	< 0.41	< 0.26	< 0.29	< 0.37	< 0.26	< 0.26	< 0.31	5.4
Colin Coli	110-428	< 0.29	0.22	0.97	0.26	0.24	0.3	0.11	0.3	< 0.072	0.35	0.23	< 0.064	< 0.071	< 0.088	< 0.061	< 0.06	< 0.073	9
Average Co.043 0.41 1.2 Co.29 0.23 0.21 Co.29 Co.01 0.32 Co.01 0.32 Co.01 0.32 Co.01 0.32 Co.03 0.31 Co.09 Co.09 Co.01 0.31 Co.03 0.37 Co.09 Co.09 Co.01 0.32 Co.01 0.31 Co.02 0.32 Co.03 0.31 Co.02 0.32 Co.03 0.31 Co.02 0.02 0.00 <	110-454	< 1.1	0.05	1.6	< 0.74	0.46	0.55	< 0.27	0.53	< 0.24	5.2	0.64	< 0.2	< 0.24	< 0.34	< 0.2	< 0.21	< 0.25	5
Average 0.04 0.55 1.2 0.27 0.01 0.02 0.03 0.03 0.04 0.07 0.09 0.00 <	110-440	< 0.43	0.41	1.2	< 0.29	0.23	0.27	< 0.12	0.29	× 0.1	0.37	0.24	< 0.085	> 0.096	< 0.13	< 0.078	< 0.074	< 0.092	6.1
Average 0.00 0.61 1.20 0.13 0.15 0.28 0.01 0.31 c.0.072 0.46 0.37 c.0.085 c.0.075 c.0.085 c.0.	110-413	< 0.4	0.55	1.2	0.27	< 0.16	0.29	0.12	0.35	< 0.093	0.37	0.29	< 0.078	< 0.088	< 0.12	< 0.072	< 0.068	< 0.085	6.8
Average* 0.00 0.61 1.20 0.13 0.16 0.06 0.30 0.00 0.60 0.30 0.00	110-467	< 0.29	0.94	0.92	0.23	< 0.13	0.28	0.11	0.31	< 0.072	0.46	0.37	< 0.065	< 0.075	< 0.095	< 0.065	< 0.066	< 0.078	7.3
faird Deviation 0.00 0.26 0.23 0.15 0.05 0.15 0.05 0.15 0.05 0.15 0.00 0.02 0.09 0.00	Average*	0.00	0.61	1.20	0.13	0.15	0.28	90.0	0.30	0.00	0.60	0.29	0.00	0.00	0.00	0.00	0.00	0.00	7.24
1974a A 4.5 9.4 10.4% 100.4% 112.1% 57.0% 100.3% 52.2% 7 53.5% 64.5% 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Standard Deviation	0.00	0.26	0.23	0.13	0.17	0.16	90.0	0.15	0.00	0.32	0.19	0.00	0.00	0.00	0.00	00.0	000	2.17
1974a R 4.5 8.4 10.7 15.9 14 18.3 4.5 16.2 2.5 17.7 23.8 0.96 1.1 5 3.9 8.8 8.5 13.7 7.6 16.5 5.4 14.9 2.4 15.9 14.7 1 1.2 4.4 3.9 8.8 8.1 13.7 7.3 14.5 4.8 13.6 2.1 14.3 13.9 0.66 0.93 3.9 3.7 8.4 10.1 14.2 8.1 16.6 5.1 15.1 2.5 16.5 16.5 16.5 16.5 16.5 16.1 4.3 13.9 0.66 0.93 3.9 A verage* 3.92 7.56 8.84 14.32 10.52 16.47 4.95 15.03 2.41 16.02 18.34 0.85 1.06 4.37 A stand. Dev. 7.8% 22.0% 6.0% 27.0% 6.0% 6.7% 6.7% 6.3% 6.5% 6.4% 20.0% 17.9% 8.2% 8.4% 11.	Relative Stand. Dev.	~	45.4%	19.4%	100.4%	112.1%	22.0%	100.3%	52.2%	2	53.5%	64.5%	~	2	•	~	~	2	30.0%
H 4.5 B4 10.7 15.9 14 18.3 4.5 16.2 2.5 17.7 23.8 0.96 1.1 5 3.9 8.8 9.5 13.7 7.6 16.2 5.4 14.9 2.4 15.6 20.3 0.96 1.1 4.1 3.0 8.6 9.5 13.7 12.2 16.6 5 14.8 2.4 15.6 20.3 0.96 1.1 4.1 3.7 9.4 10 15.3 13.9 16.6 4.8 13.6 2.1 14.3 13.9 0.66 0.93 3.9 3.7 9.4 10.1 14.2 0.1 16.6 5.1 15.1 2.5 16.5 16.5 16.5 16.5 16.5 16.1 4.5 < Average* 3.92 7.56 9.84 14.32 10.52 16.47 4.95 15.03 2.41 16.02 18.34 0.85 1.06 4.37 18.1 16.0 0.91 1.00 0.28 0.79 0.13 1.02 3.66 0.15 0.09 0.37 18.1 16.7 16.7 16.7 16.7 16.8 5.7% 5.3% 5.5% 6.4% 20.0% 17.9% 8.2% 8.4% 11.8 16.2 16.4% 11.8 16.4% 11.8 16																			
3.6 5.7 6.6 13.7 7.6 16.2 5.4 14.9 2.4 15.0 14.7 1 1.2 4.4 3.9 6.8 6.5 13.7 12.2 16.6 5 14.8 2.4 15.6 20.3 0.96 1.1 4.1 3.6 5.6 0.1 13.7 12.2 16.6 14.8 2.4 15.6 20.3 0.96 1.1 4.1 3.7 0.4 10 15.3 13.9 16.6 4.6 15.6 2.5 16.1 21.2 0.82 0.98 4.4 4 6.4 10.1 14.2 0.1 16.5 15.0 2.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5 16	110-398R	4.5	2	10.7	15.9	=	18.3	4.5	16.2	2.5	17.7	23.8	0.96	-:	9	< 0.25	< 0.25	< 0.3	280
3.9 8.8 9.5 13.7 12.2 16.6 14.8 2.4 15.6 20.3 0.96 1.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	110-427	3.0	5.7	9.	13.7	7.6	16.2	 4	14.9	2.4	15.0	14.7	-	5.	4.4	0.27	0.66	0.42	240
3.6 6.6 9.1 13 7.3 14.6 4.8 13.6 2.1 14.3 13.9 0.66 0.93 3.9 3.7 9.4 10 15.3 13.9 16.6 4.8 15.6 2.5 16.1 21.2 0.82 0.99 4.4 Average 3.92 7.56 9.84 14.32 10.52 16.47 4.95 15.03 2.41 16.02 18.34 0.85 1.06 4.37 Average 0.31 1.67 0.49 1.01 2.90 1.09 0.26 0.79 0.13 1.02 3.66 0.15 0.09 0.37 Stand. Dev. 7.8% 22.0% 5.0% 5.0% 27.6% 6.6% 5.7% 5.3% 5.5% 6.4% 20.0% 17.9% 8.2% 8.4% 11	110-453	0 .0	9.9	9.5	13.7	12.2	16.6	40	14.8	2.4	15.6	20.3	96.0	-	4.1	× 0.11	0.3	0.19	260
3.7 9.4 10 15.3 13.9 16.6 4.6 15.6 2.5 16.1 21.2 0.82 0.98 4.4 <	110-439	3.6	9	-	5	7.3	14.5	4.8	13.6	2.7	14.3	13.9	0.66	0.93	3.0	0.067	< 0.052	0.086	220
4 6.4 10.1 14.2 0.1 18.6 5.1 15.1 2.5 16.5 16 0.65 1.1 4.5 < 4 Average 3.92 7.56 9.84 14.32 10.52 16.47 4.95 15.03 2.41 16.02 18.34 0.85 1.06 4.37 ard Deviation 0.31 1.67 0.49 1.01 2.90 1.09 0.28 0.79 0.13 1.02 3.66 0.15 0.09 0.37 ard Deviation 0.31 1.67 0.49 1.01 2.90 1.09 6.28 5.7% 5.3% 5.5% 6.4% 20.0% 17.9% 8.2% 84% 168	110-412	3.7	6	0	15.3	13.9	16.6	4.8	15.6	2.5	16.1	21.2	0.82	0.98	4.4	< 0.068	< 0.065	< 0.08	270
3.92 7.56 9.84 14.32 10.52 16.47 4.95 15.03 2.41 16.02 18.34 0.85 1.06 4.37 0.31 1.67 0.49 1.01 2.90 1.09 0.28 0.79 0.13 1.02 3.66 0.15 0.09 0.37 7.8% 22.0% 6.0% 7.0% 27.6% 6.6% 6.7% 6.3% 5.5% 6.4% 20.0% 17.9% 8.2% 8.4% 168	110-466	•	6.4	10.1	14.2	9.1	16.6	5.1	15.1	2.5	16.5	16	0.65	:	4.5	< 0.082	0.15	0.31	240
0.31 1.67 0.49 1.01 2.90 1.09 0.28 0.79 0.13 1.02 3.66 0.15 0.09 0.37 7.8% 22.0% 5.0% 7.0% 27.6% 6.6% 5.7% 5.3% 5.5% 6.4% 20.0% 17.9% 8.2% 84% 16	Average.	3.92	7.56	9.84	14.32	10.52	16.47	4.05	15.03	2.41	16.02	18.34	0.85	1.06	4.37	90.0	0.19	0.17	252.14
7.8% 22.0% 5.0% 7.0% 27.6% 6.6% 5.7% 5.3% 5.5% 6.4% 20.0% 17.9% 8.2% 8.4% (Standard Deviation	0.31	1.67	0.49	1.01	2.80	1.09	0.28	0.79	0.13	1.02	3.66	0.15	0.09	0.37	0.10	0.24	0.16	24.11
	Relative Stand. Dev.	7.8%	22.0%	5.0%	7.0%	27.6%	6.6%	5.7%	5.3%	5.5%	6.4%	20.0%	17.9%	8.5%	8.4%	166.3%	128.2%	93.1%	89.0

	;	6.12 0.04
		6.12 0.06
ı		0.00
3.87	2.55	6.1
1.95	0.88	 0.0
0.63	0.01	0.0
16.54	23.6	20 20 20 30 30 30
15.2	22.0	2. 2.
2.5	3.90	% 0.
14.0	20.7	. 6. 6. 0.
6.04		1.0 1.0
4.6	21.2	2.4
11.54	16.25	2.0
13.1	2.7	13.6
9.28	12.31	
Ġ.		
3.71		9.0
ے ×ا لا	<u> </u>	8.D.
SRM 1974a	concentrations UCL (ng/g. wet wt) LCL	SRM 1974a Previously Analyzed conce S. (ngg. wet wt, n=10)

X = the average concentration (ng/g, wet wt); 95% Ct = the 95% confidence interval; UCL = the upper confidence limit (95% confidence limit (95%); LCL = the lower confidence limit (95% confidence limit (95%); LCL = the lower confidence limit (95%) n = the number of values being averaged; S.D.= the standard deviation; nd = not detected in previous samples, or detected at fevels befow the limit of detection.

*PCBs 3/18 and 3/28 are given as a noncertified values.

‡ Indicates that n<10 because the analyte was either not detected or not analyzed for in some samples.

* When an analyte was detected in some, but not all of the method blanks or SRMs, the average concentration is based on the concentration when detected and zero when not detected. When an analyte was not detected in any of the method blanks or SRMs, zero is reported for the average and the SD and a "?" is reported for the RSD.

[&]quot;The concentration reported for "Total PCBs" is the sum of the 17 PCB congeners multiplied by 2 (as defined in the QA Pian).

Table 1G-p1: QA: Sample information for flatfish tissue analyzed in replicate for chlorinated hydrocarbons as part of the Hylebos Toxicopathic Conditions in Flatfish Study.

Set #	Semple #	Sample Type	Species	e ser	⊕ 1 :0	Date Collected	Sample Wt. (g)	DOB Rec. (%)
H303R	110-390R	Tissue - liver	English sole	94.3001,3005/3008	UPPER TURNING BASIN	7/21/94	3.01	88
H303R	110-394R	Tissue - liver	English sole	94.3001,3005/3008	UPPER TURNING BASIN	7/21/94	2.99	86
H305	110-446	Tissue - Wer	Rock Sole	94.3208/3210	11TH STREET BRIDGE	7/28/94	5.69	107
H305	110-448	Tissue - liver	Rock Sole	94.3206/3210	11TH STREET BRIDGE	7/28/94	2.74	104
LOCH	110-408	Tissue - stomach contents	Rock Sole	94.3152,3153,3155/3157	11TH STREET BRIDGE	7/25/94	3.00	116
H308	110-460	Tissue - stomach contents	Rock Sole	94.3152,3153,3155/3157	11TH STREET BRIDGE	7/25/94	3.00	8

DOB = dibromooctafluorobiphenyl
Replicate sample analyses are identified by jar #.

[&]quot;Jar #s represent official Hylebos Damage Assessment sampling numbers. If more than one jar # is given, the sample analyzed was a composite of those jars.

Table 1H-p1: QA: Concentrations (ng/g, wet weight) of pesticides in flatfish tissue analyzed in replicate as part of the Hylebos Toxicopathic Conditions in Flatfish Study.

								α+γ				
Sample #			HCBD	нсв	Lindane	HEPT	Aldrin	Chiordane	Dieldrin	Dieldrin p,p'-DDE p,p'-DDD p,p'-DDT	p,p'-DDD	p,p'-DDT
Tissue -	- liver											
110-390R			3.3	12	0.48	3.4	< 0.34	7.6	2.7	51.4	62.5	11.9
110-394R			9.3	12.1	0.32	3.1	< 0.23	6.7	2.2	55.1	65.6	11.4
		Average*	3.32	12.03	0.40	3.25	0.00	7.15	2.43	53.25	64.05	11.61
	Standard	Standard Deviation	0.02	0.05	0.08	0.15	0.00	0.46	0.24	1.89	1.52	0.25
	Relative Standard	Deviation	0.7%	0.4%	19.6%	4.5%	2	8.5%	%6.6	3.5%	2.4%	2.1%
110-446		-	105	153	0.81	< 0.17	× 0.14	5.2	2.8	49.9	28.4	8.1
110-448			105	156	0.79	< 0.18	< 0.15	5.1	3.2	51.1	29.8	8.8
		Average*	104.88	154.88	0.80	0.00	0.00	5.18	2.98	50.54	29.10	8.44
	Standard	Standard Deviation	0.37	1.53	0.01	00.0	0.00	0.03	0.21	0.61	0.71	0.32
- :	Relative Standard	Devlation	0.4%	1.0%	1.3%	7	2	0.7%	7.0%	1.2%	2.4%	3.8%
Tissue .	Tissue - stomach contents						in the second			•		
110-408			7.5	12.7	0.27	< 0.15	< 0.082	1.9	0.98	0.77	4.4	9.
110-460			7.5	12.1	0.53	< 0.19	< 0.12	4.6	0.55	0.73	e .	1.2
		Average*	7.46	12.38	0.40	0.00	0.00	1.75	92.0	0.75	3.69	1.37
	Standard	Standard Deviation	0.00	0.28	0.13	00.0	0.00	0.17	0.21	0.02	0.69	0.21
	Relative Standard	Deviation	%1.0	2.3%	32.2%	2	2	89.6	28.1%	2.6%	18.8%	15.7%

HCBD = hexachlorobutadiene; HCB = hexachlorobenzene; HEPT = heptachlor.

Replicate sample analyses are identified by jar #.

^{*} When an analyte was detected in some, but not all of the replicates, the average concentration is based on the concentration when detected and zero when not detected. When an analyte was not detected in any of the replicates, zero is reported for the average and the SD and a "?" is reported for the RSD.

Table 11-p1: QA: Concentrations (ng/g, wet weight) of chlorobiphenyl congeners (chlorination level/IUPAC number) in flatfish tissue analyzed in replicate as part of the Hylebos Toxicopathic Conditions in Flatfish Study.

a din ma	9/18	3/28	4/44	4/52	4/88	5/101	5/105	5/118	6/128	6/138	6/153	7/170	7/180	7/107	8/195	9/206 10/209	10/209	Total PCBs
Tissue - liver				:							1							
	11.7	17.3	27.3	95.4	57	348	63.5	280	30.1	267	320	21.4	19.7	39	2.6	=	6.3	3200
110-394R	11.3	17.6	27.1	693	57.4	351	61.5	331	31	279	336	22.4	20.9	39.9	2.7	11.4	8.8	3400
Average*	1150	17.47	27.17	94.20	57.20	349.52	62.47	305.14	30.53	272.78	328.09	21.90	20.30	39.45	2.65	11.24	6.54	3316.32
Standard Deviation	0.17	0.17	0.09	1.21	0.21	1.51	0.98	25.56	0.48	6.20	8.00	0.45	09.0	0.49	0.05	0.18	0.25	83.38
Relative Stand. Dev.	1.4%	1.0%	0.3%	1.3%	0.4%	0.4%	1.6%	8.4%	1.6%	2.3%	2.4%	2.1%	3.0%	1.2%	0.8%	1.6%	3.9%	2.5%
110-446	92.6	4.9	9	51.1	24	185	47.9	270	41.9	422	550	97.6	134	197	22	212	86.5	4900
110-448	98.3	4.7	9.6	52.4	22.5	193	47.9	281	43.1	441	976	103	142	214	23.3	231	94	5200
Average	96.95	4.79	9.79	51.72	23.25	189.05	47.92	275.33	42.51	431.23	562.72	100.29	138.17	205.46	22.65	221.61	90.26	5027.40
Standard Deviation	1.36	0.11	0.22	0.64	0.73	3.97	0.00	5.62	0.61	9.32	12.78	2.67	3.99	8.29	0.63	9.19	3.76	123.54
Relative Stand. Dev.	1.4%	2.3%	2.2%	1.2%	3.2%	2.1%	%0.0	2.0%	1.4%	2.5%	2.3%	2.7%	2.9%	4.0%	2.8%	4.1%	4.2%	2.5%
Tissue - stomach contents	content	8																
110-408	0.28	0.78	2.5	5.1	9.5	12.2	0.88	11.6	2.2	17.8	25.1	2.8	3.5	6.3	0.65	3.2	3.6	220
110-460	4.0	0.91	6	4.9	7.2	12.1	1.2	9.6	2.1	16.8	23.7	2.8	3.3	8.7	0.59	3.4	4.1	210
Average	0.34	0.85	2.78	5.00	8.22	12.15	1.05	10.73	2.10	17.26	24.39	2.84	3.38	0.50	0.62	3.30	3.83	214.67
Standard Deviation	90.0	0.07	0.22	0.0	10.1	0.04	0.16	0.91	0.05	0.51	0.68	0.00	0.08	0.18	0.03	0.14	0.27	4.58
Relative Stand. Dev.	18.5%	7.7%	7.9%	1.6%	12.3%	0.4%	15.7%	8.5%	2.3%	2.9%	2.8%	0.1%	2.4%	2.5%	2.5%	4.2%	7.0%	2.1%

When an analyte was detected in some, but not all of the replicates, the average concentration is based on the concentration when detected and zero when not detected. When an analyte was not detected in any of the replicates, zero is reported for the average and the SD and a "?" is reported for the RSD.

^{**} The concentration reported for "Total PCBs" is the sum of the 17 PCB congeners multiplied by 2 (as defined in the QA Plan).

Table 1J-p1: Standard curve correlation (r) from the linear regression of the concentration of the analyte to the area response for the multilevel standards.

	H303R	H304	H305 ^b	H306 ^b	H307*	H308*
Analyte	-	> -	-	-	_	-
hexachlorobenzene	1.0000	0.9999	0.9996	0.9999	0.9995	0.9998
lindane	1.0000	0.9995	0.9989	0.9994	0.9997	0.9999
3/18	9666.0	0.9999	0.9998	0.9997	0.9999	0.9997
3/28	0.9999	1.0000	1.0000	0.9999	1.0000	1.0000
heptachlor	9666.0	0.9993	0.9994	0.9997	0.9997	0.9992
4/52	0.9998	0.9999	0.9998	0.9997	0.9999	0.9998
aldrin	0.9998	0.9998	0.9997	0.9997	0.9998	0.9998
4/44	0.9998	0.9999	0.9999	0.9998	0.9999	0.9998
4/66	0.9999	1.0000	0.9999	0.9999	1.0000	1.0000
gamma-chlordane	1.0000	1.0000	9666.0	0.9997	1.0000	1.0000
5/101	0.9999	0.9999	0.9999	0.9998	1.0000	0.9999
alpha-chlordane	1.0000	1.0000	0.9998	0.9998	1.0000	1.0000
dieldrin	0.9999	1.0000	0.9995	0.9997	0.9999	0.9998
p,p'-DDE	0.9999	0.9999	0.9997	0.9999	0.9999	0.9999
5/118	1.0000	1.0000	0.9999	0.9998	1.0000	1.0000
OGO-,d'd	0.9999	0.9998	0.9998	0.9999	1.0000	0.9998
6/153	0.9999	1.0000	0.9999	0.9998	0.9999	0.9999
5/105	1.0000	0.9999	1.0000	0.9997	0.9999	1.0000
p,p'-DDT	0.9998	0.9993	0.9999	1.0000	0.9999	0.9996
6/138	1.0000	1.0000	0.9999	1.0000	1.0000	1.0000
7187	0.9999	1.0000	0.9999	0.9849	1.0000	1.0000
6/128	1.0000	1.0000	0.9999	0.9999	1.0000	1.0000
7180	1.0000	1.0000	0.9999	0.9999	1.0000	1.0000
7170	1.0000	1.0000	0.9998	0.9999	0.9999	1.0000
8/195	1.0000	0.9999	0.9997	0.9998	0.9999	1.0000
9/206	1.0000	0.9999	9666.0	0.9998	0.9999	1.0000
10/209	1.0000	0.9999	0.9997	0.9998	0.9999	1.0000

*Based on six concentration levels of standards.

*Based on eight concentration levels of standards (except HCB, which is based on seven levels).

standards run before, during and after the samples in a flatfish tissue set analyzed as part of the Hylebos Toxicopathic Conditions in Flatfish Continuing calibration verification data* for chlorinated pesticides in Study. Table 1K-p1:

	Study.				10.444		20110			100°, a a 200°, a a	TOO.'a	
ML Name		нсв	LIND	HEPT	Aldrin	Aldrin a.CHLOR I.CHLOR	I-CHLOH	Dielarin	p,p -uue	ממח- מימ	100	1
H303R												
H303RCH5E1A		96	98	96	101	86	96	66	101	100	86	
H303RCH5E1B		95	96	96	66	16	16	86	66	86	96	
H303PCH5E1C		08	88	08	06	68	68	18	91	88	81	
Average		93	26	16	26	96	95	95	97	95	92	
S. OS		(S)	4.5	7.5	4.6	3.9	4.0	5.4	4.4	5.2	7.2	
RSD		3.0%	4.8%	8.3%	4.8%	4.2%	4.3%	2.7%	4.5%	5.5%	7.9%	
								, i				
H304												
H304CH5E1-A		100	98	83	100	16	16	26	66	16	92	
H304CH5E1-B		86	102	86	16	16	96	96	97	26	97	
H304CH5E1C		66	16	92	86	26	98	96	86	26	85	
Aceres		66	86	98	86	26	96	96	88	97	92	
		0.6	2.9	2.1	1.1	0.2	0.3	0.5	0.9	0.2	2.2	
HSD.		0.6%	2.9%	2.2%	1.1%	0.5%	0.3%	0.5%	%6.0	0.2%	2.3%	
							· .					
H305	÷							•		2.7		1
H305CH5E1A		88	29	11	69	11	69	72	02	99	, 16	
H305CH5E1B		68	69	83	71	79	71	74	71	88	93	
H305CH5E1C		92	2	73	99	75	68	7	02	65	79	
Average		88	29	78	69	11	69	72	70	99	87	
		1.7	2.2	4.3		1.5	1.3	+ : +	9.0	==	6.3	
RSD		1.9%	3.4%	5.6%	1.5%	1.9%	1.8%	1.9%	%6.0	1.6%	7.2%	

HCB = hexachlorobenzene; LIND = lindane; HEPT = heptachlor; CHLOR = chlordane *Data are reported as percent recovery calculated using the mutillievel curve analyzed with each set.

standards run before, during and after the samples in a flatfish tissue set analyzed as part of the Hylebos Toxicopathic Conditions in Flatfish Study. Continuing calibration verification data* for chlorinated pesticides in Table 1K-p2:

Amen 14	Stuny.			1000			20 110 2		1			
Mr. Malilo		200	LIND	neri	Aldrin	מינים וינים מינים	יייייי	Dielarin	מח- מים	שיחי- קים שיחי- קים	ימטי שיש	
H306												
H306CH5E1A		95	99	11	72	78	0.2	69	78	75	93	
H306CH5E1B		95	75	78	73	79	71	71	78	79	96	
H306CH5E1C		84	72	71	73	78	69	69	9/	72	87	
Average		95	7	75	73	78	20	02	11	75	92	
SD		4.0	4.0	2.9	0.4	0.7	0.8	1.0	1.0	2.7	3.7	
RSD		0.4%	2.6%	3.8%	0.6%	0.9%	1.2%	1.4%	1.3%	3.6%	4.1%	
H307							•					
H307CHSE1A		88	982	93	8	96	96	97	96	96	93	
H307CH5E1B		88	87	92	46	88	92	92	96	96	94	
H307CH5E1C		83	85	86	6	88	92	92	80	88	88	
Average		87	91	91	97	26	94	94	6	94	85	
SD		2.4	6.7	3.5	2.3	6.	1.7	1.9	1.3	3.2	2.4	
RSD		2.7%	7.4%	3.9%	2.4%	2.0%	1.8%	2.0%	1.4%	3.4%	2.6%	
H308					. .	÷						
H308CH5E1-A		112	119	116	122	119	119	121	122	121	117	
H308CH5E1-B		85	91	63	96	98	92	06	66	85	98	
H308CH5E1-C		92	102	96	104	501	102	103	104	102	16	
Average		100	δ	96	108	501	105	105	108	105	100 00 1	
SD		9.1	11.5	13.4	10.3	10.0	10.1	12.7	9.8	11.9	13.1	
RSD		9.1%	11.1%	13.6%	9.5%	9.5%	89.6	12.1%	80.6	11.3%	13.1%	

HCB = hexachlorobenzene; LIND = findane; HEPT = heplachlor; CHLOR = chlordane *Data are reported as percent recovery calculated using the multilevel curve analyzed with each set.

Continuing calibration verification data* for chlorobiphenyl congeners (chlorination level/IUPAC number) in standards run before, during and after the samples in a flatfish tissue set analyzed as part of the Hylebos Toxicopathic Conditions in Flatfish Study. Table 1L-p1:

M Neme	- E	972B	4/44	4/50	4/88	F/101	E / 4 O F	4										
H303R																90718		1
H303RCHSE1A	94	96	95	98	96	96	86	97	88	97	96	86	86	96	86	86	86	ĺ
H303RCH5E1B	83	92	94	94	96	94	86	95	98	95	95	96	96	94	96	96	96	
H303RCHSE1C	06	8	06	06	91	8	8	08	06	06	88	68	68	90	89	88	89	
Average	95	93	83	93	94	93	95	94	94	94	93	95	2	83	95	94	94	I
SD	1.6	2.5	2.2	1.9	2.3	2.3	4.1	3.0	3.4	3.0	3.4	3.8	3.6	2.4	3.9	4.1	4.0	
RSD	1.7%	2.7%	2.3%	2.1%	2.5%	2.5%	4.4%	3.2%	3.6%	3.2%	3.7%	4.1%	3.8%	2.6%	4.1%	4.3%	4.2%	
H304																		
H304CH5E1-A	94	96	95	95	98	96	97	96	97	96	96	97	97	96	86	98	86	1
H304CHSE1-B	95	96	92	95	92	95	84	96	96	96	94	86	8	96	96	6	87	r
H304CHSE1C	96	16	96	96	16	87	8	48	26	16	92	16	16	96	84	96	96	-
Average	95	96	96	95	96	96	86	96	97	96	95	26	26	96	16	18	16	254 •
SD	0.5	0.4	0.5	9.0	0.7	0.6	9.0	0.4	0.4	0.4	0.8	0.5	0.4	0.2	9.0	9.0	0.9	-
RSD	%9.0	0.4%	0.6%	%9.0	0.7%	%9 .0	0.7%	0.4%	0.4%	0.4%	%6.0	0.5%	0.4%	0.2%	%9.0	0.8%	0.9%	
														•				
H305								1		•								
H305CH5E1A	125	104	119	125	114	126	101	124	113	114	126	101	55	122	66	103	109	
H306CH5E1B	125	105	120	126	114	125	86	124	112	114	132	92	100	122	86	102	107	
H305CH5E1C	118	101	114	119	108	118	88	117	901	108	120	88	86	115	83	92	001	
Average	123	103	118	123	112	123	86	122	Ξ	112	126	66	101	120	26	100	105	
SD	3.1	1.7	2.8	2.9	2.7	3.5	2.2	3.5	3.2	3.0	5.2	2.6	2.6	3.2	2.5	3.5	4.0	
RSD	2.5%	1.7%	2.4%	2.4%	2.4%	2.9%	2.3%	2.9%	2.9%	2.7%	4.1%	2.6%	2.6%	2.7%	2.6%	3.5%	3.8%	

*Data are reported as percent recovery calculated using the mutilitevel curve analyzed with each set.

Continuing calibration verification data* for chlorobiphenyl congeners (chlorination level/IUPAC number) in standards run before, during and after the samples in a flatfish tissue set analyzed as part of the Hylebos Toxicopathic Conditions in Flatfish Study. Table 1L-p2:

ML Name	3/18	3/28	4/44	4/52	4/66	5/101	5/105	5/118	6/128	6/138	6/153	7/170	7/180	7/187	8/195	9/206	10/209	- 1
H306																-		
H306CH5E1A	134	116	127	132	121	131	108	130	116	119	130	107	108	123	103	106	112	
H306CH5E1B	133	117	127	133	123	131	108	131	117	119	134	106	108	124	10	104	110	
H306CH5E1C	131	115	124	130	119	127	107	127	113	115	126	2	50	121	96	66	104	
Average	133	116	126	132	121	130	108	129	116	118	130	50	107	123	101	103	109	1
SD	1.3	0.8	=	1.	1.5	1.5	0.4	1.8	1.7	1.7	3.3	1.8	7.1	1.5	2.0	2.8	3.2)
RSD	1.0%	0.7%	%6.0	0.8%	1.3%	7.5%	0.4%	1.4%	1.4%	1.4%	2.5%	1.7%	1.3%	1.2%	1.9%	2.7%	3.0%	
					•													
		• .																
H307																		
H307CH5E1A	93	92	28	93	2	94	86	98	96	98	94	8	88	92	97	97	16	
H307CHSE1B	96	96	96	96	96	96	92	95	92	82	16	9	88	96	95	95	82	
H307CH5E1C	88	8	69	88	06	68	83	06	06	06	87	91	8	68	91	06	06	
Average	92	94	93	93	93	93	98	93	94	94	93	2	2	93	94	94	94	
SD	3.1	5.6	2.7	3.5	2.4	2.9	4.1	2.4	2.5	2.4	3.9	2.5	5.4	2.6	2.6	2.7	2.8	
RSD	3.4%	2.8%	2.9%	3.4%	2.6%	3.1%	1.5%	2.6%	2.6%	2.6%	4.2%	2.6%	2.5%	2.8%	2.7%	2.9%	3.0%	
					•													
H308	-					•				•								- 1
H308CH5E1-A	115	117	116	116	117	116	119	118	119	118	116	119	119	117	119	119	118	
H308CH5E1-B	94	8	94	92	95	95	25	92	96	92	87	8	96	92	96	95	92	
H308CH5E1-C	96	66	86	96	96	26	6	86	66	86	- 88	66	8	26	66	66	96	
Average	102	20	103	102	104	103	104	5	104	104	104	±0±	105	103	105	104	104	
SD	9.5	9.6	9.4	9.5	9.7	8.6	10.7	10.0	10.1	10.0	6.9	10.4	10.0	10.0	10.3	10.5	10.4	
RSD	9.4%	9.2%	9.1%	9.3%	9.3%	9.5%	10.3%	9.7%	9.7%	%9.6	8.6%	10.0%	9.6%	9.7%	86.6	±0.1%	%1.01	

*Data are reported as percent recovery calculated using the multilevel curve analyzed with each set.

Table 1M-p1: Concentrations of analytes in 7 replicates of spiked clean matrix and calculated method detection limits (MDL, ng/g, wet weight) for pesticides, DDTs and chlorobiphenyl congeners. MDLs were calculated by the method in appendix B of 40CFR part 136 (sample set II288, 3/95).

-	100	_	_		_			_	<u></u>	_		_	1	ิ															
4\52	6.9	7.0		0.0	6.9 6.9	9	9	9 6	6.5	6.9	0.07	0.21	0.63																
4/44	7.1	7 1		9.	7.1	7.2	7.1		7:1	7.1	0.05	0.16	0.48	21 :2	000,00	10/209	6.3	6.2	<u> </u>		2 0	0.3	6.4	6.3	6.3	0.09	0.29	OAR	2.02
3/28	6.7	V		6.0	6.8	6.7	5	7.0	6.5	9.9	0.15	0.46	1 28	100.1	ľ		6.2	0.9			9.0	6.3	6.3	6.2	6.2	0.00	31	000	0.361
3/18	6.7	7 7		6.4	6.1	6.1	- -	0 .4	9.9	6.4	0.25	0.78	1/6.6	11.5		8/195	6.1	6.5	9	9 0	9.0	2.9	6.1	6.1	6.11	800	200	200	0.00
TUU-'u u	7.4		7.7	7.4	7.6	7.7	: 1	4.7	7.8	7.5	0.22	0.70	21.0	7.1.7		7/187	6.4	9		0.0	6.4	6.4	6.2	6.4	6.3	0	0.03	20.0	0.821
מיין שניין עי		2 1	0.	7.1	7.3	. ^	c. /	7.2	7.2	7.2	0.17	0 54	500	1.03		7/180	6.3	9	- 6	0.0	6.1	6.2	6.2	6.3	6.21		0.00	0.33	1.00
מ ממט ימ מ	. 1 .	0.0	6.4	6.5	æ	9 6	ρ.	8.9 8	2.9	8 9	0.45	1.7.1	- 6	4.23		7\170	6.4	. 9		9.	6.3	6.3	6.4	6.3	6.3		0.12	0.38	1.141
al dela		0.0	- 9	6.2	6.4		9.9	6.3	6.3	6.4	218	200	0.37	1.70		6/153	6.9	9	0.0	2.9	6.9	6.9	9.9	8	100	0 0	0.10	0.32	0.96
gamma	-1	7.0	0.1	0.1		- 0	0.5	0.2	0	0.21	200	0.05	0.00	0.18		6/138	0 9		0.0	8.9	7.1	7.0	7.0	7.0	200	2.0	0.1	0.34	1.03
alpha		6.5	6.2	8		4.0	6.5	6.3	6.4	T V		2	0.41	1.24		R1128	2712	9	- •	6.1	6.2	6.3	6.1	0	2,0	2.0	0.09	0.28	0.85
	~ 1	5.8	5.4	ď	י טינ). (5.9	4.2	י ני	2	0.0	0.61	0.65	1.95		5/119		0.1	5.4	5.5	2.6	5	7	. ע	0.0	2.2	0.08	0.26	0.77
	HEPT	7.3	7.1	7.2	J .*	۲.4	7.7	7.5			7.0	0.19	0.58	1.75		E1 10C	2010	7.0	5.8	0.9	6.2	6.2		7.0	2.0	9.1	0.15	0.48	1.43
	CIND	6.5	6.2		0.0	6.4	6.8	9 9	9	0	6.4	0.22	0.68	2.03		61401	3/101). -	6.7	9.9	6.7		9 0	2 0	٥,	6.7	90.0	0.18	0.55
	HCB	6.7	9	3	1.0	6.5	9.9	6 9		0.0	6.5	0.13	0.41	1.22		2017	4/60	8.9	6.7	9.9	8	9 0	1 0) C	6.7	6.7	90.0	0.20	0 60
	Sample#	110-288	110.289	502.011	067-011	110-291	110-292	10000	110-293	110-294	Average	Std Dev	MDL	3XMD!			Sample#	110-288	1110-289	110-290	110.201	100-011	110-535	110-293	110-294	Average	Std Dev	MDI	2 VAIDI

HCB = Hexachlorobutadiene, LIND = Lindane, HEPT = Heptachlor.

MDLs were determined using 3g of tissue. MDLs for samples that are smaller that 3g will need to be adjusted for the difference in sample weight.

Tat	Table 1N-p1:	GC/MS confirmation of pest Toxicopathic Conditions in	of pesticions in Fla	les in 10 tfish Stu	% of the dy. (Co	flatfish	tissue : ions sh	licides in 10% of the flatfish tissue samples analyzed as part of the Hylebos Flatfish Study. (Concentrations shown are originally reported data	nalyzed originally	as part	of the H	ylebos
		determined by GC/ECD, Table 1B.)	D, Table	18.) HCB ¹	LIND	HEPT 2	Aldrin ²	α+γ Chlordene¹ Dieldrin² p.p'-DDE¹	Dieldrin ²	p,p'-DDE ^t	p,p'-DDD	P,P'-00T
H303R	110-397R	94.3065,3066,3069/3071	8.3	24.2	0.62	4.1	< 0.16	. 11.6	2.6	72.2	118	24.9
H304	110-419	94.3089, 3092/3095	6.4	8 1	0.54	< 0.14	0.58	6.	3.5	52.8	133	23.3
H308	110-433	94.3325/3326,3329/3330,3339	0.33	1.	0.82	0.68	< 0.13	QI .	9:1	10.5	3.9	5.
H306	110-443	94.3158/3160,3162/3163	243	102	0.81	× 0.18	< 0.13	4.4	< 0.13	8	20.8	1.0
H307	110-402	94.3002,3003,3015,3016,3034	0.62	9:1	< 0.13	< 0.16	6.1	0.83	0.76	6.3	1.2	2 .
H308	110-465	94.3575,3576,3577	0.96	7.1	· en	< 0.13	< 0.087	9.	8.3	30.4	116	80.4

HCBD = hexachlorobutadiene; HCB = hexachlorobenzene; LIND = lindane; HEPT = heplachlor

Approximate detection limits determined by GCMS (based on the CH3E1 ML Std for chlorinated pesticides) range from =0.5 to = 3 ng/g.

[&]quot;Jar #s represent official Hylebos Damage Assessment sampling numbers. If more than one jar # is given, the sample analyzed was a composite of those jars.

¹ The presence of this analyte has been confirmed by GC/MS using a selected for monitoring mode for the samples listed.

² The concentration of this analyte was too low to be confirmed by GC/MS in these tissue samples.

³ The presence of this analyte has been confirmed by GC/MS using a selected for monitoring mode for the samples listed, except in 110-433 and 110-402.

of ish	9/206 10/209	13.8	10.8	8.	45.4	0.61	6:
in 10% in Flati	9/206	2.2	16.4	3.7	120	8 :0	5.6
mber) tions i /ECD,	8/195	4 .2	2.9	-	6	0.23	0.35
chlorobiphenyl congeners (chlorination level/IUPAC number) in 10% of les analyzed as part of the Hylebos Toxicopathic Conditions in Flatfish shown are originally reported data determined by GC/ECD,	6/153 7/170 7/180 7/187 8/195	58.9	39.6	7	73.8	4.3	6.6
pathic nined	7/160	38	8	æ. 4.	72.9	6 .	3.2
ion lev Toxico detern	7/170	37.5	26.2	න භ	4 6.3	5.0	9.5
orinat lebos I data	6/153	561	443	36.2	255	43.6	Ξ
rs (chi the Hyl	5/101 5/105 5/118 6/128 6/138	437	348	27.6	178	83	001
ngene art of t ally re	6/126	8	43.2	3.7	80	9.9	14.4
nyl co l as pa origin	5/116	< 0.21	345	10.7	89.8	38.5	190
obiphe alyzed vn are	5/105	116	1.89	2.3	23.8	6 0	59.2
chlore les an s shov	5/101	581	437	12.2	83.2	47.7	586
GC/MS confirmation of the flatfish tissue samplestudy. (Concentrations	4/66	54.3	30.9	8. 89	10.3	10.7	35.2
firmat tissue oncent	4/52	167	110	3.5	28.9	20.2	100
AS cor latfish y. (C	rable 1C.)	49.2	34.1	2.2	1.7	10.0	36.2
GC/MS the flatf Study.	Tabl	19.8	15.1	0.95	3.7	7.4	6.7
Table 10-p1:	3/18	10.8	17.1	0.58	26.7	4.5	6.8
Table	*elameS	110-397R	110-419	110-433	110-443	110-402	110-465

Detection limits determined by GC/MS (based on the CH3E1 ML Std, for chlorobiphenyl congeners) range from =0.5 to =1 ng/g. The presence of this analyte has been confirmed by GCMS using a selected ion monitoring mode for the samples listed.

Hylebos Toxicopathic Conditions in Flatfish Study

Analyses for Aromatic Hydrocarbons Table 2 Notes

The concentrations of the analytes naphthalene and 2-methylnaphthalene were calculated using naphthalene-d8 as the surrogate standard; analytes from acenaphthylene through pyrene were calculated using acenaphthene-d10 as the surrogate standard; and analytes from benz[a]anthracene through benzo[ghi]perylene were calculated using benzo[alpyrene-d12 as the surrogate standard.

The "less than" symbol (<) indicates that the analyte was not detected in concentrations above the stated value.

Results were determined by gas chromatography/mass spectrometry (GC/MS).

Concentrations less than 10 ng/g are rounded to two significant figures; concentrations greater than or equal to 10 ng/g are rounded to three significant figures.

The percent recoveries of the surrogate standards were calculated using phenanthrene-d10 to correct for the fraction of the total extract used for the HPLC clean-up step.

Set # and Sample # designations are intended for internal lab use and identification only. Jar # and site name represent Hylebos Damage Assessment official sample identification designations.

The sample weights used to calculate concentrations for the method blank are the mean sample weights calculated for the field samples in the same set.

Sample information for flatfish stomach contents analyzed for aromatic hydrocarbons as part of the Hylebos Toxicopathic Conditions in Flatfish Study. Table 2A-p1:

Set	Sampie#	Sample Type	Species	Jar #*	• 18	Date	Sample Wt. (g)	DNPH Rec. (%)	DACE Rec. (%)	DBAP Rec. (%)	
11307	110-402	Tissue - stomach contents	English sole	94.3002,3003,3015,3016,3034	UPPER TURNING	7/21/94	3.01	62	18	,	11
H307	110-403	Tissue - stomach contents	English sole	94.3039,3046,3048,3049,3053	UPPER TURNING	7/21/94	3.06	49	78	60	82
H307	110-405	Tissue - stomach contents	English sole	94.3061,3062,3067,3062,3084	LOWER TURNING	7/22/94	3.06	89	18	,	"
H307	110-404	Tissue - stomach contents	English sole	94.3063,3064,3068,3072,3081	LOWER TURNING	7/22/94	3.02	69	78		
H307	110-406	Tissue - stomach contents	English sole	94.3121/3124,3126,3131	11TH STREET BRIDGE	7/26/94	1.86	75	88	G)	91
H307	110-407	Tissue - stomach contents	English sole	94.3132,3139,3145,3146,3149	11TH STREET BRIDGE	7/26/94	3.01	63	#		92
H307	110-408	Tissue - stomach contents	Rock Sole	94.3152,3153,3155/3157	11TH STREET BRIDGE	7/25/94	3.00	89	82	8	87
H308	110-460	Tissue - stomach contents	Rock Sole	94.3152,3153,3155/3157	11TH STREET BRIDGE	7/25/94	3.00	200	11	•	0
H307	110-409	Tissue - stomach contents	Rock Sole	94.3158/3160,3162,3163	11TH STREET BRIDGE	7/28/94	3.01	74	88	0	85
H308	110-458	Tissue - stomach contents	English sole	94.3311,3312,3314,3315,3316	COLVOS PASSAGE	9/22/94	3.00	. 85	83	•	83
H308	110-459	Tissue - stomach contents	English sole	94.3317,3318,3319,3333,3335	COLVOS PASSAGE	9/22/94	2.53	8	8	•	84
80CH	110-457	Tissue - stomach contents	English sole	94.3325,3326,3329,3330,3339	COLVOS PASSAGE	9/22/94	1.70	106	88	•	260
H307	110-410	Tissue - slomach contents	Rock Sole	94.3416,3417,3421,3423,3424	COLVOS PASSAGE	7/19/94	3.01	0.2	<i>n</i>		92
H307	110-411	Tissue - stomach contents	Rock Sole	94.3425/3429	COLVOS PASSAGE	7/19/94	2.78	02	8	€	68

DNPH = naphthalene-d8; DACE = acenaphthene-d10; DBAP = benzolalpyrene-d12.

*Jar #s represent official Hylebos Damage Assessment sampling numbers. If more than one jar # is given, the sample analyzed was a composite of those jars.

Concentrations (ng/g, wet weight) of aromatic hydrocarbons in flatfish stomach contents analyzed as part of the Hylebos Toxicopathic Conditions in Flatfish Study. Table 2B-p1:

1	2	2	>	. 80	=	2	ANT	Y LAH.	FLA	PYR	BAA	CHB	BFLA	BAP	IDP	DBA	BZP 2	EHAHs
110-402	9	18.6	9.6	62.8	65.8	286	211	663	3140	2670	119	1180	1040	535	70.5	23.8	90.8	9370
110-403	5.1	G	4.4	19.4	18.7	120	57.4	230	1680	3590	430	1090	1330	393	89.2	35.4	127	8780
110-405	6.3	7.4	0.	18.2	24.1	142	38.1	237	451	642	101	569	330	89.6	51.8	89	40.1	1980
110-404	6.1	6.2	7.9	7.17	21.1	96.1	43.7	263	878	906	155	400	431	117	32.8	12.3	56.8	2790
110-406	. 11.5	4.0	2.7	7.6	91	74.5	54.2	176	215	211	29	117	154	6.09	19.4	6.9	28.3	898
110-407	19.1	11.8	ю	5	18.7	114	37.7	218	362	364	108	173	257	80.7	32	10.6	45.5	1420
110-408	6.7	6.2	6	. 9	10.2	80.6	23.3	136	254	238	108	204	324	122	61.9	16.2	88.6	1420
110-460	6.3	7.1	α.	7	6.3	46.1	17.7	1.16	170	182	87.3	159	288	93.3	56.9	5	77.6	1130
110-409	6.2	3.3	96	9.	7.3	56.6	9.3	89.5	102	83.4	38.5	6.09	62.2	21.5	7.6	2.1	8.5	376
110.458	0.89	0.87	< 0.13	< 0.18	0.23	2	0.15	9.3	3.8	5.9	-	2.1	9.7	0.84	0.87	0.12	1.2	15.9
110-459	1.5	5.	< 0.18	< 0.24	0.31	2.1	0.26	2.3	6.1	4.6	1.3	8.	1.9	4 :	7.	0.18	2.3	25.1
110-457	1.3	*3	< 0.22	< 0.29	0.34	1.4	0.21	4.6	3.3	2.6	0.73	1.7	3.3	::	-	0.12	7	14.9
110-410	1.1	**************************************	× 0.4	< 0.53	< 0.41	0.87	< 0.27	6	3.3	9.	0.48	1.7	1.7	0.43	0.28	< 0.15	ο.	11.4
110-411	1.6	£.3	< 0.30	< 0.52	× 0.4	0.89	< 0.28	3.8	2.6	.	0.3	0.88	92	0.36	0.2	< 0.13	0.38	7.5

NPH = naphthatene; 2MN = 2-methytnaphthatene; ACV = acenaphthene; ACE = acenaphthene; FLU = fluorene; PHN = phenanthrene; ANT = anthracene; FLA = fluorenthene; BAP = benzo[a]anthracene; BAP = benzo[b]fluoranthene + benzo[k]fluoranthene; BAP = benzo[k]fluoranthene + benzo[k]fluoranthene; BAP = benzo[b]fluoranthene + benzo[k]fluoranthene; BAP = benzo[b]fluoranthene + benzo[k]fluoranthene +

DLAHS = NPH + 2MN + ACY + ACE + FLU + PHN + ANT; DHAHS = FLA + PYR + BAA + CHR + BLFA + BAP + IDP + DBA + BZP.

† Chrysene (CHR) and triphenylene are not resolved by our gas chromatographic procedure. In addition, the two compounds have very similar spectra, therefore we report their combined concentrations as "CHR".

Quality assurance sample information in method blanks and standard reference material (SRM 1974a) analyzed for aromatic hydrocarbons as part of the Hylebos Toxicopathic Conditions in Flatfish Study. Table 2C-p1:

			Sample Wt.	DNPH Rec.	DACE Rec.	DBAP Rec.
Set #	Sample #	Sample type	(6)	(%)		8
Method Blank	Blank					
H307	110-413	Method Blank	2.88	62	85	99
H308	110-467	Method Blank	2.04	88	62	90

SRM 1974a					
110-412	SPM 1974a	3.06	2	10	82
H208	SPM 1974a	3.01	2	79	8

DNPH = naphthalene-d8; DACE = acenaphthene-d10; DBAP = benzo(alpyrene-d12.

QA: Concentrations (ng/g, wet weight) of aromatic hydrocarbons in method blanks and standard reference material (SRM 1974a) analyzed as part of the Hylebos Toxicopathic Conditions in Flatfish Study. Table 2D-p1:

Sample #	Sample # Sample Type	HDH		2MN ACY ACE	ACE	FLU	PHN	ANT ELAHS	LAHs	FLA	PYR	BAA	CHR	CHR1 BFLA	BAP	100	DBA	47A	4 UAUS
Method Blank	Blank									i									
110-413	Method Blank	=	0.86	< 0.44	< 0.58	< 0.45	0.44	< 0.3	2.5	< 0.25	< 0.23	< 0.29	< 0.28	< 0.22	< 0.24	< 0.21	< 0.21	< 0.19	0
110-467	Method Blank	0.77	0.55	< 0.19	< 0.28	< 0.22	0.3	< 0.17	1.6	0.17	0.13	< 0.22	< 0.17	< 0.13	< 0.14	< 0.16	< 0.15	< 0.12	.29
		96.0	0.71	000	000	00.0	0.37	0.00	2.0	90.0	90:0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.1
e s	Standard Deviation	0.2	0.2	0.0	0.0	0.0	0.1	0.0	4.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
Rolative	Relative Standard Dev.	19.4%	22.2%	2	2	-	18.9%	2	20.3%	100.0%	100.0%	٤	~	~	2	~	2	~	100.0%
SRM 1974a	974a					-													
110-412	SPIM 1974a	1.8	=	< 0.32	1.7	0.39	2.2	9.0	8.3	23.5	21.4	3.3	10.4	6	1.7	4.1	0.36	2.8	73.9
110-466	SRM 1974a	1.3	-	0.5	< 0.34	0.45	2.8	0.87	1	28.7	27.4	4.9	11.8	10.6	2.1	1.7	0.32	3.4	80.8
	Average	1.56	1.20	0.41	0.83	0.42	2.48	0.74	7.6	26.07	24.39	4.09	11.09	9.79	1.91	1.54	0.34	3.11	82.3
S	Standard Deviation	0.5	0.5	0.1	0.8	0.0	0.3	0.1	0.7	2.8	3.0	0.0	0.7	0.0	0.0 7,7	7.3%	0.0	0.3	8.4 10.2%
Relative	Relative Standard Dev.	13.0%	15.4%	22.8% 100.0%	100.0%	24.7	21.67 8	4 n. n	20.3	60.0	27.7	2	2.0	0.5.0	200	2.			

SRM 1974a Certified Concentrations (ng/g, wet wt)	ICL NCL × ×	x 2.60 1.16' 0.598' 0.359' 6 Cl 0.50 UCL 4.20 LCL 1.42	1.16	0.5981	0.3591	0.65	2.0 0.26 1.00 1.56	0.69 0.20 1.20 0.32	2 7 7 7	10.6 1.0 26.5 11.4	17.3 0.74 24.3 10.7	3.7 0.54 2.06	5.04 0.26 7.16 3.11	7.58	1.76 0.073 2.50 1.11	1.62 0.32 2.62 0.85	0.142'	2.50 0.25 3.71 1.46	¥
SRM 1974a Previously Analyzed Concs (ng/g, wet wt, n=6)	l×	8 0 8 3	1.7	0.42	፮ ፡	0.46	0.5	0.61		ක ල ම බ		6. 0. 8. 0	1.0	 6	0.1	2.0	0.36	3.0	

NPH = naphthalene; 2MN = 2-meltyknaphthalene; ACY = acenaphthylene; ACE = acenaphthene; PLU = fluorene; PHN = phenanthrene; ANT = anthracene; PLA = fluoranthene; PAR = benzelafanthracene; BAR = benzel

SLAHS = NPH + 2MN + ACY + ACE + FLU + PHN + ANT; SHAHS = FLA + PYR + BAA + CHR + BLFA + BAP + IDP + DBA + BZP.

x = the average concentration (ng/g, wet wt); 95% CI = the 95% confidence interval; UCL = the upper confidence limit (95% confidence limit + 35%); LCL = the lower confidence limit (95% confidence limit - 35%). n = the number of values being averaged; S.D. = the standard deviation; nd = not detected in previous samples, or detected at levels below the limit of detection.

† Chrysene (CHR) and triphenylene are not resolved by our gas chromatographic procedure, whereas these compounds are resolved by the NIST procedure. In addition, the two compounds have very similar mass spectra, therefore we report their combined concentrations as "CHR". Consequently, the value we report for CHR is higher than the NIST value.

• When an analyte was detected in some, but not all of the method blanks or SRMs, the average concentration is based on the concentration when detected and zero when not detected. When an analyte was not detected in any of the method blanks or SRMs, zero is reported for the SD and a "7" is reported for the RSD. 2MN, ACY, ACE, FLU, BFLA, and DBA are reported as noncertified values.

QA: Sample information for flatfish stomach contents analyzed in replicate for aromatic hydrocarbons as part of the Hylebos Toxicopathic Conditions in Flatfish Study. Table 2E-p1:

4		a signature of the sign	20 e 0 8	. 5	Date Collected	Sample Wt. (g)	DNPH Rec. DACE Rec. (%)	ACE Rec. (%)	DBAP Rec. (%)
H307	110-408	Tissue - stomach contents	i	11TH STREET BRIDGE	7/25/94	3.00	89	78	87
H308	110-460	Tissue - stomach contents	Rock Sole	11TH STREET BRIDGE	7/25/94	3.00	28	11	06

DNPH = naphhalene-d8; DACE = acenaphhene-d10; DBAP = benzolalpyrene-d12

Replicate sample analyses are identified by Jar #.

*Jar #s represent official Hylebos Damage Assessment sampling numbers. If more than one jar # is given, the sample analyzed was a composite of those jars.

QA: Concentrations (ng/g, wet weight) of aromatic hydrocarbons in flatfish stomach contents analyzed in replicate as part of the Hylebos Toxicopathic Conditions in Flatfish Study. Table 2F-p1:

Sample #	NPH	2MN	ACY	NPH 2MN ACY ACE FLU	FLU	PHN	ANT	X LAH.	FLA		PYR BAA	CHR	BFLA	BFLA BAP IDP DBA	IDP	DBA	BZP	У НАН В
Tissue - stomach contents	th contents																	
110-408	6.7	6.2	9	6.4	10.2	80.6	23.3	136	254	238	108	204	324	122	6119	16.2	88.6	1420
110-460	8.3	8.3 7.1	~	4.1 6.3	6.3	46.1	17.71	91.7	170	182	87.3	159	288	93.3	6.99	13	9.77	1130
															:			
Average	7.5	8.8	2.5	5.3	8.2	63.4	20.5	114.0	212	210	86	182	306	107	20	15	83	1271.7
Standard Deviation	lon 0.8	0.5	0.5	1.2	2.0	17.2	2.8	22.35	45.0	28.1	10.6	22.4	17.9	14.2	2.5	1.6	5.5	144.90
Relative Standard Dev.	Dev. 11.2%	7.2%	7.2% 19.2%	22.7%	23.8%	27.2%	13.6%	19.6%	19.8%	13.4%	10.8%	12.3%	5.8%	13.2%	4.3%	11.1%	%9.9	11.4%

NPH = naphthatene; 2MN = 2-methythatene; ACY = acenaphthytene; ACE = acenaphthene; FLU = fluorene; PHN = phenanthrene; ANT = arrhivacene; FLA = fluoranthene; PYR = pyrene; BAA = benz[a]arrhivacene; BZP = benze[ght]berytene. BAA = benze[b]tluoranthene + benze[ght]berytene.

^{\$\}infty = NPH + 2MN + ACY + ACE + FLU + PHN + ANT; \infty AAHS = FLA + PYR + BAA + CHR + BLFA + BAP + IDP + DBA + BZP.

Replicate sample analyses are identified by jar #.

[†] Chrysene (CHR) and triphenylene are not resolved by our gas chromatographic procedure. In addition, the two compounds have very similar spectra, therefore we report their combined concentrations as "CHR".

Table 2G-p1: Standard curve correlation (r) from the linear regression of the concentration of the analyte to the area response for the multilevel standards.

	H307	H308
Analyte		•
naphthalene	0.9998	0.9999
2-methylnaphthalene	0.9998	0.9998
acenaphthylene	0.9994	0.9994
acenaphthene	0.9998	0.9998
fluorene	0.9998	0.9997
phenanthrene	0.9996	0.9998
anthracene	0.9996	9666.0
fluoranthene	0.9995	0.9997
	0.9996	0.9997
benz[a]anthracene	0.9995	0.9994
chrysene	0.9994	0.9998
benzofluoranthenes (b+k)	0.9994	0.9997
benzo[a]pyrene	0.9995	0.9998
indeno[1,2,3-cd]pyrene	0.9995	0.9995
dibenz[a,h]anthracene	0.9994	0.9995
benzo[ghi]perylene	0.9995	0.9998
d8-naphthalene	0.9998	0.9999
d10-acenaphthene	0.9997	0.9998
d12-benzofalbyrene	0.9995	0.9997

Based on five concentration levels of standards.

Continuing calibration verification data* for aromatic hydrocarbons in standards run before, during and after the samples in a tissue set analyzed as part of the Hylebos Flatfish Toxicopathic Conditions in Flatfish Study. Table 2H-p1:

ML Name	HdN	2MN	ACY	ACE	FLU	PHN	ANT	FLA	PYR	BAA	CHB	BFLA	BAP	100	DBA	В2Р
H307									-							
H307AH4J2A	97	103	101	100	108	\$	101	104	102	100	102	101	102	16	66	101
H307AH4J2B	100	100	001	901	8	001	00	100	100	90	001	100	001	100	100	001
H307AH4J2C	88	66	98	60	16	901	103	107	105	106	107	104	106	103	108	103
Average	95	66	66	86	102	103	101	104	102	102	103	102	103	1 00	102	101
	5.1	0.4	2.5	3.1	8.4	2.5	1.1	3.0	2.0	8.8	3.1	5.0	2.3	2.4	3.7	1.3
RSD	5.4%	4.1%	2.6%	3.2%	4.7%	2.4%	1.1%	2.9%	2.0%	2.8%	3.0%	1.9%	2.3%	2.4%	3.7%	1.3%
H308			,	-			,			•						
H308AH4J2A	116	118	101	105	<u>\$</u>	100	94	93	92	84	88	68	92	11	78	8
H308AH4J2B	001	001	8	6	8	00	00	100	100	001	100	0 <u>0</u>	.00	100	001	00
H308AH4J2C	66	126	107	901	001	66	105	100	16	901	98	95	16	. 102	001	92
Average	105	114	103	104	101	100	001	88	97	96	86	95	94	93	93	91
	7.7	10.7	3.3	2.8	2.0	0.4	4.2	3.4	3.3	9.3	2.0	4.3	4.0	11.3	10.4	8.2
RSD	7.3%	9.3%	3.2%	2.6%	1.9%	0.4%	4.2%	3.4%	3.4%	89.6	2.1%	4.6%	4.3%	12.1%	11.2%	9.1%

NPH = naphthalene; 2MN = 2-methylnaphthalene; ACY = acenaphthylene; ACE = acenaphthene; FLU = fluorene; PHN = phenanthrene; ANT = anthracene; FLA = fluoranthene; PYR = pyrene; BAA = benzelalanthracene; CHR = chrysene; BFLA = benzelalfthoranthene + benzelkfithoranthene; BAP = benzelalpyrene; IDP = indenef1,2,3-cdlpyrene; DBA = dibenzela.hjanthracene; BZP = benzelghilperylene.

^{*}Data are reported as percent recovery calculated using the -B standard.

Table 21-p1: Concentrations of analytes in 7 replicates of spiked clean matrix and calculated method detection limits (MDL, ng/g, wet weight) for aromatic hydrocarbons. MDLs were calculated by the method in appendix B of 40CFR part 136 (sample set 11288, 3/95).

è

	11011	144.6	100	100	1 1 1 1		4 6 17		92.0	4 4 0	0110	מטט	07/6	0 4 0
Sample	E	ZWZ	ACY	ACE	3	Z	AN	FLA	FTK	DAA	Z Z	DDL	מאנ	BAR
110-288	10.1	8.2	5.8	6.3	6.4	7.2	4.9	7.1	6.8	4.4	4.9	5.0	5.3	4.6
110-289	11.0	8.1	5.9	9.9	9.9	7.3	4.9	7.1	7.0	4.5	5.1	5.1	5.6	4.7
110-290	9.6	7.8	5.6	6.3	6.3	6.9	4.6	6.7	9.9	4.4	2.0	4.9	5.5	4.5
110-291	6.6	7.9	5.7	6.5	6.3	7.1	4.8	6.9	6.8	4.7	5.3	2.0	5.5	4.8
110-292	10.4	8.0	5.8	9.9	9.9	7.3	4.9	7.2	7.2	4.7	5.5	5.1	9.6	4.7
110-293	10.0	7.7	5.8	9.9	6.5	7.3	4.8	7.0	6.9	4.6	5.4	4.8	2.7	4.6
110-294	6.6	9.7	5.3	6.2	6.2	7.0	4.6	7.0	6.8	4.4	5.5	4.6	5.6	4.5
Average	10.1	7.9	5.7	6.5	6.4	7.1	4.8	7.0	6.9	4.5	5.2	4.9	5.5	4.6
Std Dev	0.47	0.21	0.18	0.18	0.16	0.16	0.15	0.16	0.18	0.14	0.20	0.20	0.19	0.12
MDL	1.47	99.0	0.57	0.55	0.51	0.51	0.48	0.52	0.56	0.45	0.64	0.62	0.60	0.37
3XMDL	4.40	1.99	1.70	1.66	1.54	1.52	1.44	1.55	1.67	1.35	1.91	1.85	1.80	1.12

ZP	4.	4	4.	ĸ.	ı.	4.	3.6	4.3	33	03	8
В	4	4	4	4	4	4	m	4	0	1 .0	3
DBA	3.7	3.8	3.9	3.9	3.8	3.7	3.1	3.7	0.28	0.87	2 62
IDP	_	80.	9	9.	9.	_	3.8	4.	37	1	Ç
=	4	4	4	4	4	4	m	4	0	1.17	~
9	288	289	290	291	292	293	294	ge	e e		
Sample	110-	110	110-	110-	110-	110-	110-294	Average	Std Dev	MDL	3XMDI

NPH = naphthalene, 2MN = 2-methytnaphthalene, ACY = acanaphthane; ACE = acanaphthene; FLU = fluorene; PtR = phenanthrene; ANT = anthracene; FLA = fluoranthene; PYR = pyrene. BAA = benzo[a]pyrene; BPF = benzo[b]fluoranthene; BBK = benzo[k]fluoranthene; BAP = benzo[a]pyrene; BPP = indeno[1,2,3-cd]pyrene; DBA = dibenz[a,h]anthracene; BZP = benzo[ghi]perylene.

MDLs were determined using 3g of tissue. MDLs for samples that are smaller that 3g will need to be adjusted for the difference in sample weight.