Hylebos Waterway Fish Injury Studies Individual Data and Quality Assurance Results CASE NARRATIVE

Reproductive Toxicology in Flatfish (Revised 1/22/97)

Rapid PCB Analysis of Livers (Table 1)

Calibrations

The calibration data used to quantitate the analytes (Tables 1J and 1K) met the continuing calibration criteria detailed in the "Hylebos Waterway Fish InjuryQuality Assurance Plan, 4/25/95" (QAP).

Method Blank Analysis

The criteria in the QAP for method blanks (Tables 1E and 1F) were met (nomore than 4 analytes to exceed 4 X the MDL).

Surrogate Recoveries

Surrogate recoveries for samples analyzed by HPLC/PDA for dioxin-like PCBs and other selected PCBs and pesticides (Tables 1A, 1D and 1G) were within the guidelines detailed in the QA Plan (60-125% recovery).

Control Material Analyses

An aliquot of NIST whale blubber control materW (QC91-WB1) was analyzed with each of the sample sets and the results (Tables 1E and 1F) met the criteria in the QA plan (concentrations of >70% of these selected analytes, [PCBs 105, 118,138,153,156,180, p,p'-DDE (at 266 nm), o,p'-DDD, p,p'-DDD, pp'-DDT, hexachlorobenzene] were within \pm 50% of the published reference values). Non-certified values for the other analytes in the NIST control material are also shown in the tables.

Sample Duplicates

Eleven samples were analyzed in duplicate (Tables 1H and 1I) and the criteria(RSD \leq 50%) in the QAP were met (QA plan, Table 4).

Reanalyses

The method blank in one sample set (HY015 through HY028) contained a large interfering peak and therefore the English sole liver samples from that set were re-extracted, and reanalyzed as samples HY154 through HY161. The following samples from that set were not re-extracted because < 0.20 g of sample remained to be extracted and thus these samples were not analyzed: 94.35281, 94.3530, 94.3531, 94.3532, 94.3535 and 94.3544. One sample (94.3577) was inadvertently not analyzed with the other samples from the same sample set (HY043 through HY056). Therefore, the QA samples (method blank, NIST whale blubber control material and samples duplicates) from this sample set were reanalyzed with the sample 943577.

Table Revision (01/22/97)

Table 1B-p2. For sample 94.3600, the concentration value of CB189 was inadvertently missed and was reported as <0.16 ng/g, wet weight. The correct value for CB189 is 1.8 ng/g wet weight.

Hylebos Waterway Damage Assessment Project/1994-1995

Rapid Analyses for PCBs Table I Notes

- The concentrations of analytes were calculated using 1,7,8-trichlorodibenzo-*p*-dioxin as the surrogate standard.
- The "less than" symbol (<) indicates that the analyte was not detected in concentrations above the stated value.
- Analyte concentrations were determined by high-performance liquid chromatography with photodiode array detection WLC/PDA) at 220 nm except p,p'-DDE concentrations; this analyte was analyzed by BrLC/PDA at 266 nm.
- Analyte concentrations are rounded to two significant figures.
- The percent recoveries of the surrogate standard were calculated using 1,2,3,4-tetrachlorodibenzo-*p*-dioxin added after the acidic silica gel cleanup step.
- Extract number designation was used for internal lab use and identification only. Field number and site name represent Hylebos Damage Assessment official sample identification designations.
- The sample weights used to calculate concentrations for the method blanks are the mean sample weights calculated for the field samples in the corresponding sample set.

Table 1A-p1: Sample information for English sole liver samples analyzed for dioxin-like PCBs and other selected PCBs and pesticides as part of the Hylebos Waterway Damage Assessment Project.

entre l

Fleid Number	Extract Number	Sample Matrix	Site	Sampling Date	Sample Wr. (a)	TriCDD Rec.	Extract. Date
94.3514	HY002	Liver	Colvos Passage	12/02/94	0.30	114	05/23/95
94.3515	HY003	Liver	Colvos Passage	12/02/94	0.86	120	05/23/95
94.3516	HY004	Liver	Colvos Passage	12/02/94	0.60	120	05/23/95
94.3518	HY005	Liver	Colvos Passage	12/02/94	1.03	116	05/23/95
94.3520	HY006	Liver	Colvos Passage	12/02/94	1.20	116	05/23/95
94.3521	HY007	Liver	Colvos Passage	12/02/94	1.08	107	05/23/95
94.3523	HY008	Liver	Colvos Passage	12/02/94	0.97	111	05/23/95
94.3524	HY009	Liver	Colvos Passage	12/02/94	0.40	118	05/23/95
94.3525	HY010	Liver	Colvos Passage	12/02/94	1.25	112	05/23/95
94.3526	HY011	Liver	Colvos Passage	12/02/94	0.59	118	05/23/95
94.3527	HY012	Liver	Colvos Passage	12/02/94	1.30	116	05/23/95
94.3539	HY029	Liver	Colvos Passage	12/02/94	0.40	103	06/15/95
94.3540	HY030	Liver	Colvos Passage	12/02/94	1.35	66	06/15/95
94.3541	HY031		Colvos Passage	12/02/94	0.42	101	06/15/95
94.3542	HY032	Liver	Colvos Passage	12/02/94	0.43	63	06/15/95
94.3546	HY033	Liver	Hylebos	12/05/94	1.62	97	06/15/95
94.3548	HY035	Liver	Hylebos	12/05/94	0.87	102	06/15/95
94.3550	HY036	Liver	Hylebos	12/05/94	0.64	86	06/15/95
94.3552	HY037	Liver	Hylebos	12/05/94	1.19	66	06/15/95
94.3554	HY036	Liver	Hylebos	12/05/94	1.41	81	06/15/95
94.3560	HY039	Liver	Hylebos	12/05/94	0.92	96	06/15/95
94.3562	HY040	Liver	Hylebos	12/05/94	1.35	95	. 06/15/95
94.3564	HY043	Liver	Hyjebos	12/05/94	1.47	68	06/22/95
94.3565	HY0440	Liver	Hylebos	12/05/94	1.20	74	06/22/95
94.3566	HY046	Liver	Hylebos	12/05/94	0.69	91	06/22/95
94.3567	HY047		Hylebos	12/05/94	0.68	83	06/22/95
94.3568	HY048	Lver	Hylebos	12/05/94	1.08	85	06/22/95
94.3569	HY049		Hylebos	12/05/94	1.06	80	06/22/95
94.3572	HY050	Liver	Hylebos	12/05/94	0.37	98	06/22/95
94.3574	HY051	Liver	Hylebos	12/05/94	1.00	78	06/22/95
94.3575	HY052	Liver	Hylebos	12/05/94	1.95	85	06/22/95
94.3576	HY053	Lver	Hylebos	12/05/94	1.16	94	06/22/95
94.3577	HY054	Liver	Hylebos	12/05/94	0.97	68	06/22/95
94.3578	HY058		Hylebos	12/05/94	0.50	122	07/06/95
94.3581	HY059		Hylebos	12/05/94	1.80	124	07/06/95
94.3586	Н7060	Liver	Hylebos	12/05/94	2.01	121	07/06/95
94.3587	HY061	Liver	Hylebos	12/05/94	0.71	123	07/06/95

TriCDD = 1,7,8-trichlorodibenzo-p-dioxin R - Tissue sample was re-extracted

Table 1A-p2: Sample information for English sole liver samples analyzed for dioxin-like PCBs and other selected PCBs and pesticides as part of the Hylebos Waterway Damage Assessment Project.

Fleid Number	Extract Number	Sampie Matrix	Site	Sampling Date	Sample Wt. (g)	TriCDD Rec. (%)	Extract. Date
94.3588	HY062	Liver	Hylebos	12/05/94	1.25	121	07/DR/PF
94.3589	HY063	Liver	Hylebos	12/05/94	0.61	123	07/06/95
94.3590	HY064	Liver	Hylebos	12/05/94	0.71	121	07/06/95
94.3591	HY065	Liver	Hylebos	12/05/94	2.03	101	07/06/95
94.3592	HY066	Liver	Hylebos	12/05/94	0.91	115	07/06/95
94.3593	HY067	Liver	Hylebos	12/05/94	1.50	118	07/06/95
94.3594	HY068	Liver	Hylebos	12/05/94	0.39	123	07/06/95
94.3594A	HY071	Liver	Hylebos	01/04/95	2.05	121	07/11/95
94.3595	HY072	Liver	Hylebos	01/04/95	1.28	ផ	07/11/95
94.3598	HY073	Liver	Hylebos	01/04/95	1.75	122	07/11/95
94.3600	HY074	Liver	Hylebos	01/04/95	1.73	123	07/11/95
94.3602	HY075	Liver	Hylebos	01/04/95	0.90	121	07/11/95
94.3603	HY076	Liver	Hylebos	01/04/95	0.97	12	07/11/95
94.3604	HY077	Liver	Hylebos	01/04/95	1.25	118	07/11/95
94.3605	HY078	Liver	Hylebos	01/04/95	0.27	120	07/11/95
94.3607	HY080	Liver	Hylebos	01/04/95	0.73	125	07/11/95
94.3615	HY081	Liver	Hylebos	01/04/95	2.02	121	07/11/95
94.3616	HY082	Liver	Hylebos	01/04/95	2.04	119	07/11/95
94.3617	HY085	Liver	Hylebos	01/04/95	1.31	122	07/20/95
94.3618	HY086	Liver	Hylebos	01/04/95	0.95	123	07/20/95
94.3628	HY087		Hylebos	01/04/95	2.02	121	07/20/95
94.3629	HY089	Liver	Hylebos	01/04/95	2.00	112	07/20/95
94.3630	HY090		Hylebos	01/04/95	2.06	119	07/20/95
94.3631	HY091	Liver	Hylebos	01/04/95	0.73	120	07/20/95
94.3632	HY092	Liver	Hylebos	01/04/95	1.32	66	07/20/95
94.3633	HY093	Liver	Hylebos	01/04/95	1.80	123	07/20/95
94.3634	HY094	Liver	Hylebos	01/04/95	1.08	117	07/20/95
94.3635	HY095	Liver	Hylebos	01/04/95	1.50	116	07/20/95
94.3636	HY096	Liver	Hylebos	01/04/95	2.03	119	07/20/95
94.3637	660ÅH	Liver	Hylebos	01/04/95	1.02	104	07/25/95
94.3639	HY100	Liver	Hylebos	01/04/95	0.55	107	07/25/95
94.3644	HY101	Liver	Hylebos	01/04/95	1.01	111	07/25/95
94.3645	HY102	Liver	Hylebos	01/04/95	1.32	107	07/25/95
94.3647	HY103	Liver	Hylebos	01/04/95	1.09	109	07/25/95
94.3648	HY104	Liver	Hylebos	01/04/95	0.54	108	07/25/95
94.3649	HY105	Liver	Hylebos	01/04/95	0.49	111	07/25/95
94.3650	HY106	Liver	Colvos Passage	01/06/95	0.64	110	07/25/95

TriCDD = 1,7,8-trichlorodibenzo-p-dioxin R - Tissue sample was re-extracted

•

•

Table 1A-p3: Sample information for English sole liver samples analyzed for dioxin-like PCBs and other selected PCBs and pesticides as part of the Hylebos Waterway Damage Assessment Project.

Extract.	07/PS/AS	OBIN1 IOC	OR/N1/05	08/01/95	OR/D1/05	OR/D1/95	DR/D1/05	DR/01/05	08/01/95	08/01/95	08/01/95	08/01/95	08/04/95	08/04/95	08/04/95	08/04/95	ORMANS	DRIMBIOS	DR/DR/25	ORADRAS	DRIVERS	08/08/95	08/08/95	08/08/95	08/08/95	DR/DR/DF	08/08/08	10/18/95	10/18/95	10/18/95	10/18/95	10/18/95
TriCDD Rec.	110	117	119	118	118	114	119	108	113	115	119	116	118	123	121	118	122	116	113	116	114	116	119	121	121	95	125	101	88	83	57	86
Sample Wr. (g)	1.46	0.57	1.03	0.72	0.96	1.10	0.90	0.94	1.02	0.98	0.97	1.00	0.95	0.58	1.32	1.07	0.51	0.58	1.08	0.08	0.93	0.98	0.81	1.24	1.05	0.56	0.48	0.26	20	0.25	0.21	0.28
Sampling Data	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	12/02/94	12/02/94	12/02/94	12/02/94	120294
8	Colvos Passage	Colvos Pessage	Colvos Passage																													
Semple Matrix	Liver	Liver .	Liver	Liver																												
Extract Number	HY108	HY113	HY114	HY115	HY116	HY117	HY118	HY119	HY120	HY121	HY122	HY123	HY128	HY129	HY130	HY131	HY132	HY141	HY142	HY143	HY144	HY145	HY146	HY147	HY148	HY149	HY150	HY154	HY155	HY156	HY157	HY159

TriCDD = 1,7,8-irichiorodibenzo-p-dioxin R - Tissue sample was re-extracted

.

377

.

Table 1B-p1: Concentrations (ng/g, wet weight) of dioxin-like PCBs⁺ in English sole liver samples analyzed as part of the Hylebos Waterway Damage Assessment Project.

Site Nurr	d nber 77	105	118	126	156	157	169	170	180	189
Colvos Passa	•6									
94.35	514 < 1.1	1.7	8	•	< 0.7	< 0.64	< 1.3	25	1.6	< 0.67
94.35	s15 < 0.34	22	18	< 0.18	< 0.21	< 0.2	< 0.41	8.5	1.4	< 0.2
94.35	st6 < 0.58	4	8	< 0.31	1.7	< 0.33	< 0.69	18	14	< 0.33
94.35	518 < 0.36	4.7	9	< 0.19	1.3	< 0.21	< 0.43	13	1.7	< 0.21
94.35	20 < 0.35	N	5	< 0.19	< 0.22	< 0.2	< 0.41	5.6	4.5	< 0.2
94.35	23 < 0.37	6.3	24	< 0.2	0.8	< 0.21	< 0.44	9.3	6.4	< 0.21
94.35	24 < 0.58	2.9	13	< 0.31	< 0.36	< 0.33	< 0.7	12	3.9	< 0.34
94.35	25 < 0.29	1.5	4	< 0.16	0.8	< 0.17	< 0.35	10	5	< 0.17
94.35	26 < 0.67	4.4	19	< 0.36	< 0.42	< 0.38	< 0.8	9.6	6.2	< 0.39
94.35	27 < 0.28	12	37	< 0.15	1.1	< 0.16	< 0.34	9.3	11	< 0.17
94.35	39 <1.1	1.4	12	< 0.96	< 0.69	< 0.63	< 1.4	2.8	32	< 0.67
94.35	40 < 0.32	8.8	24	< 0.27	22	< 0.18	< 0.4	5.8	6.6	< 0.19
94.35	41 <1	8.1	8	< 0.89	< 0.64	< 0.58	< 1.3	6.1	9.4	< 0.62
94.35	42 < 12	2.4	12	< 01	< 0.72	< 0.65	< 1.4	2.2	3.7	< 0.7
94.36	52 < 0. 39	20	64	< 0.32	2.1	< 0.21	< 0.43	< 0.24	14	< 0.23
94.36	51 < 0.53	4.1	13	< 0.44	< 0.32	< 0.29	< 0.62	3.3	4.4	< 0.31
94.36	53 < 0. 29	5.7	1 8	< 0.24	< 0.17	< 0.16	< 0.34	6.4	ø	< 0.17
94.36	54 < 0.54	3.9	13	< 0.44	< 0.32	< 0.29	< 0.63	2.8	4	< 0.31
94.36	56 < 0.39	7.6	21	< 0.32	< 0.23	< 0.21	< 0.46	< 0.24	6 .5	< 0.23
94.36	57 < 0.49	4.6	24	< 0.4	< 0.29	< 0.27	< 0.57	5.7	8.7	< 0.29
94.36	58 < 0.48	4.4	0.0	A 0.4	< 0.29	< 0.26	< 0.57	0.66	2.8	< 0.28
94.36	59 < 0.47	9.6	17	< 0.39	< 0.28	< 0.26	< 0.55	< 0.29	7.8	< 0.28
94.36	60 < 0.43	6.1	8	< 0.35	< 0.26	< 0.23	< 0.5	8.7	ŭ	< 0.25
94.36	61 < 0.38	3.6	12	< 0.32	< 0.23	< 0.21	< 0.45	2.9	42	<020
94.36	63 < 0.51	11	2	< 0.42	< 0.31	< 0.28	< 0.6	Ð	5	< 0.3
94.36	64 < 0.46	2.1	2.3	< 0.37	< 0.28	< 0.25	< 0.53	1.1	6.6	< 0.27
94.36	66 < 0.72	10		< 0.58	12	< 0.39	< 0.82	7.7	ន	< 0.42
94.36	67 < 0.3	3.1	8.5	< 0.24	3.3	< 0.16	< 0.34	12	5.8	< 0.18
94.36	69 < 0.42	82	19	< 0.33	< 0.25	< 0.22	< 0.47	N	11	< 0.24
94.36	72 < 0.68	42	16	< 0.55	< 0.4	< 0.37	< 0.77	5.6	5.1	< 0.4
94.36	81 < 0.35	2.6	8	< 0.29	7.1	< 0.19	< 0.4	12	4	< 0.2
94.36	83 < 0.47	9.4	8	< 0.38	0.92	< 0.26	< 0.53	13	10	< 0.27
94.36	84 < 0.48	1.8	6.6	< 0.39	< 0.28	< 0.26	< 0.54	2.7	2.8	< 0.28
94.36	85 < 0.5	9.7	8	< 0.4	< 0.29	< 0.27	< 0.56	5.7	8.2	< 0.29
94.36	87 < 0.34	2.3	11	< 0.27	< 0.2	< 0.18	< 0.38	2.7	2.8	< 0.2
94.36	88 < 0.39	5.4	17	< 0.31	1.6	< 0.21	< 0.44	3.2	5.3	< 0.22
R - Tissue samp • The dioxin-like	ye was re-extracted PCB congeners (shown	in this table) have mi	inimal interference	s from co-eluting	compounds which	generally contrib	ule < 10% to the to	tal concentration.		
	•	•				•				

Table 1B-p2: Concentrations (ng/g, wet weight) of dioxin-like PCBs* in English sole liver samples analyzed as part of the Hylebos Waterway Damage Assessment Project.

Site	Flekd Number	7	105	118	126	156	167			, ,	
	94.3689	v	5.3	8	< 0.85	2.3	01	110	5	901 41	ADI 1
	94.3690	Ť	52	24	< 0.85	< 0.62	200	4 - V 4 - V	2 00	<u>0</u> 2	
	94.3537R	< 2.6	<1.4	10	<2.1	<15	<13	10 V	4 T 4 T	6. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	
	94.3538R	< 2.8	11	9	< 22	< 1.6	4.1 ×	ຸ ເ `	4	8	<pre></pre>
	94.3536R	< 2.6	<1.4	8	20	< 1.5	< 1.3	<2.7	3.7	8	<1.4
	94.3543R	0 V	< 1.6	6.5	<2.4	< 1.7	< 1.5	< 3.2	<1.7	12	< 1.6
Hylebos										l	
	94.3548	< 0.56	8	8	< 0.48	0	1.9	< 0.69	50	67	< 0.33
	94.3550	< 0.61	8	160	< 0.52	14	1.8	< 0.75	54	; 8	0.36
	94.3552	< 0.37	130	530	< 0.32	34	Ø	< 0.46	9	110	~ ~ ~ ~
·	94.3554	< 0.27	2	8	< 0.23	5.4	0.8	< 0.33	8	51	< 0.16
	94.3560	< 0.42	9	8	< 0.36	1.7	< 0.23	< 0.51	9.6	13	< 0.25
	94.3562	< 0.32	12	51	< 0.27	3.3	0.7	< 0.39	24	8	< 0.19
	94.3564	< 0.25	87	8	<0.2	12	1.4	< 0.27	42	4	< 0.14
	94.3566	< 0.78	12	27	< 0.63	2.9	< 0.4	< 0.84	9.5	19	< 0.42
	94.3567	<0.7	80	8	< 0.55	<u>8</u>	6.4	< 0.75	76	130	< 0.37
	94.3568	< 0.43	88	110	< 0.34	9.6	1.3	< 0.46	37	8	< 0.23
	94.3559	< 0.41	0	150	< 0.33	15	32	< 0.44	8 3	130	< 0.22
	84.35/2	5. L ×	6	220	•	18	2.8	< 1.4	8	48	< 0.69
	94.3574	0.0	120	340	< 0.32	27	32	< 0.43	110	160	< 0.21
	94.3575	< 0.21	130	650	< 0.17	8	5.1	< 0.23	11	2	< 0.11
•	94.3576	< 0.37	150	2003	< 0.3	4	8.8	< 0.4	37	130	 0 2 0 2
1	94.3577	< 0.56	8	300	< 0.45	20	4.4	< 0.61	58	8	<. 0.3 2
'	94.3578	< 0.85		250	< 0.72	17	2.9	ţ	13	Q	< 0.49
'	94.3581	< 0.23	87	360	< 0.2	8	4.1	< 0.28	33	67	< 0.14
'	94.3586	< 0.23	51	8	< 0.2	7.9	1.8	< 0.28	2	100	< 0.13
'	94.3587	< 0.56	4	89	< 0.47	2.9	< 0.31	< 0.66	24	37	< 0.32
	94.3588	× 0.38	2	8	< 0.32	6 .5	1.5	< 0.45	8	43	< 022
~~	94.3589	< 0.82	17	4	< 0.7	0.0	< 0.45	< 0.98	12	ន	< 0.47
	94.3590	< 0.69	120	450	< 0.59	8	60	< 0.83	13	8	< 0.4
	94.3592	< 0.55	8	8	< 0.47	5.7	< 0.3	< 0.66	18	31	< 0.32
	94.3593	< 0.35	3.1	13	< 0.3	< 0.22	< 0.19	< 0.42	7.5	4	< 0.2
	94.3594	< 1.3	0.0	99	< 1.1	22	< 0.72	< 1.6	ន	8	< 0.76
	94.3595	< 0.44	74	230	< 0.36	ß	E. 4	< 0.52	57	100	< 0.26
-07	94.3598	< 0.5	4.4	8	< 0.41	1.1	< 0.28	< 0.6	7.4	14	< 0.3
-97	94.3600	< 0.27	110	004	< 0.22 <	41	8.4	< 0.33	210	370	6,1
	94.3602	< 0.52	31	8	< 0.43	3.5	< 0.29	< 0.62	24	19	< 0.31

Table 1B-p3: Concentrations (ng/g, wet weight) of dioxin-like PCBs* in English sole liver samples analyzed as part of the Hylebos Waterway Damage Assessment Project.

	Fleid										*
Site	Number	7	105	118	126	156	167	169	170	160	189
	94.3603	< 0.58	13	8	< 0.48	2.6	< 0.32	< 0.7	10	16	< 0.34
	94.3604	< 0.34	10	37	< 0.28	2.2	<.0.19	< 0.41	15	27	< 0.2
	94.3605	< 22	5	83	< 1.8	4.9	< 12	< 2.6	52	57	< 1.3
	94.3607	< 0.62	8	8	< 0.51	7.1	0.5	< 0.74	23	4	< 0.37
	94.3615	< 0.26	8	88	< 0.21	~	-	< 0.31	19	88	< 0.15
	94.3616	< 0.22	51	110	< 0.18	11	22	< 0.26	58	8	< 0.13
	94.3617	< 0.29	8	520	< 0.25	12	2.4	< 0.34	53	8	< 0.17
	94.3618	< 0.48	4	8 4	< 0.41	< 0.29	< 0.25	< 0.56	11	24	< 0.28
	94.3629	< 0.24	2	240	< 0.21	25	5.9	< 0.28	100	160	< 0.14
	94.3630	< 0.22	6.2	16	< 0.19	1.5	< 0.11	< 0.26	6.7	14	< 0.13
	94.3631	< 0.72	11	36	< 0.61	3.3	< 0.37	< 0.84	20	8	< 0.41
	94.3632	< 0.41	490	2400	< 0.35	150	8	< 0.48	150	450	< 0.24
	94.3633	< 0.2	3.8	110	< 0.17	7.9	1.7	< 0.23	83	61	< 0.11
	94.3634	< 0.36	8	83	<0.3 2	16	3.6	< 0.42	80	110	< 0.21
	94.3635	< 0.32	7.9	82	< 0.27	10	0.9	< 0.36	4	8	< 0.19
	94.3636	< 0.25	4	80	<020	12	22	< 0.3	ន	9	< 0.15
	94.3637	< 0.6	< 0.34	8	< 0.48	2.5	0.37	< 0.66	< 0.36	15	< 0.35
	94.3639	< 0.85	8	120	< 0.68	5.7	0.54	< 0.94	36	8	< 0.49
	94.3644	< 0.54	5.7	20	< 0.43	2.9	< 0.29	< 0.6	53	48	< 0.31
	94.3645	< 0.35	31	2	< 0.28	5.7	0.69	< 0.39	28	35	< 0.2
	94.3647	< 0.35	37	8	< 0.28	8.2	1.8	< 0.38	46	71	< 0.2
	94.3648	< 0.91	21	8	< 0.73	5.3	1.4	<01 0	8	48	< 0.52
	94.3649	< 1.1	5.6	8	< 0.86	< 0.64	< 0.58	< 1.2	9.5	16	< 0.62

R - Tissue sample was re-extracted • The dioxin-like PCB congeners (shown in this table) have minimal interferences from co-eluting compounds which generally contribute < 10% to the total concentration.

Table 1C-p1: Concentrations (ng/g, wet weight) of selected nondioxin-like PCBs^{*} and pesticides in English sole liver samples analyzed as the part of the Hylebos Waterway Damage Assessment Project.

		Nondioxin-like	CB Congenera		•		Selected P	esticides		
Site Number	101	126	138	153	obDD	QQQaa	DDE	onDDT	PDD1	a 471
Colvos Passage									Innda	
94.3514	3.4	0.6	10	7.6	<16 <	0 6 1	-	-	101	
94.3515	3.3	1.6	IJ	7.9	< 0.52	0.0 V		- 0.6R	-076	4 0.0 4 0 0 1
94.3516	8	10	24	40	< 0.87	<15		-	6 F V	vi « ∕
94.3518	6.2	5.3	14	27	< 0.54	< 0.94		< 0.71	62.0 >	<u>, ,</u>
94.3520	4.4	2.5	7.7	10	< 0.52	< 0.91		< 0.68	< 0.77	10
94.3523	0	5.5	12	25	< 0.55	< 0.96	_	< 0.73	< 0.82	14
94.3524	4.1	3.1	6 .6	11	< 0.88	< 1.5	_		< 1.3	
94.3525	6.9	4.5	13	27	< 0.44	< 0.76	_		< 0.65	
94.3526	10	5.4	13	21	•	< 1.7	_	-	< 15	
94.3527	14	8.8	8	30	< 0.43	< 0.74			< 0.63	1.9
94.3539	4.2	22	8.4	0	< 1.6 6.1 ×	< 3.4		-	< 2.3	< 0.64
94.3540	4	8.5	18	50	< 0.45	< 0.98	-		< 0.67	1.1
94.3541	21	6.8	19	31	< 1.5	< 3.2	-	< 1.9	< 22	< 0.59
94.3542	7.6	< 0.62	9.1	14	<1.7	< 3.5	-	< 2.2	<2.4	· < 0.67
94.3652	15	10	23	48	< 0.52	< 1.1	-	_	< 0.75	2.8
94.3651	9.7	3.0	7.9	17	< 0.72	< 1.6	-	-	< 1.2	< 0.29
94.3653	6.5	4.6	9	20	< 0.39	< 0.89	-	< 0.55	< 0.63	1.6
94.3654	7.2	99	7.3	4	< 0.73	< 1.6	-	<t>1</t>	< 12	0.8
94.3656	6.4	52	11	23	< 0.53	< 1 2	-	< 0.74	-	2.5
94.3657	4	6.7	13	28	< 0.66	< 1.5	-	_	<1.1	1.4
94.3658	6.5	12	6.3	13	< 0.65	< 1.5	-	_	-	5
94.3659	9.7	5.9	1	29 .	< 0.64	< 1.5	-	< 0.89	*	< 0.26
94.3660	13	0.0	9	38	< 0.58	< 1.3	-	-	< 0.93	1.8
94.3661	8.5	3.5	9.9	17	< 0.51	< 1.2		-	< 0.83	1.1
94.3663	12	7.6	1 8	8	< 0.69	< 1.6	-	-	< 1.1	e
94.3664	6.2	2.6	8.7	15	< 0.64	< 1.4	-	-	< 0.94	< 0.25
94.3666	52	*	<u>0</u>	56	•	< 2.2	-	-	< 1.5	1.4
84.3667		3.3	6.6	15	< 0.42	< 0.92	-	< 0.54	< 0.61	< 0.17
94.3669	1.1	5.3	.	8	< 0.58	< 1.3	-	< 0.75		< 0.23
24.30/2	51			6	< 0.93	< 2.2	-	-	< 1.4	< 0.37
94.3681	R.		9.7	12	•	< 1.1	-	-	< 0.72	12
1000.42	16	9.0		88 1	-	< 1.5	-	< 0.84	< 0.96	1.8
100000	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	1.6	4	7.6	< 0.65	< 1.5	-	< 0.86	< 0.98	< 0.26
34.3685	8	7.6	16	32	< 0.68	< 1.6	-		•	0.92
94.3687	5.9	5	5.2	10	< 0.46	< 1.1	_	< 0.6	< 0.69	< 0.18
94.3688	0.0	4.3	0.0	19	< 0.53	< 1.2 2		-	< 0.79	2.3
94.3689	ង	8.2	ង	64	41 ×	< 3.3	-		<2.1	< 0.57

HCB = hexachlorobenzene R - Tissue sample was re-extracted - The nondioxin-like PCB congeners (shown in this table) generally co-elute with other PCBs, therefore we report the PCB congener that is usually present in the greatest proportion. - The compound could not be quantitated due to analytical interference with a coeluting PCB congener.

381

Table 1C-p2: Concentrations (ng/g, wet weight) of selected nondioxin-like PCBs⁺ and pesticides in English sole liver samples analyzed as the part of the Hylebos Waterway Damage Assessment Project.

28

1		Ň	ndioxin-like	CB Congenera				Selected P	esticides		
Site	umber	101	128	138	163				TOOLO		
Ō	4.3690	8	4.9	11	24	4 4 4	00,	PPUVE	Inndo	Inndd	HCB
ð	4.3537R	9.8	3.6	8.7	1 -			in a		× 23	< 0.57
ð	1.3538R	18	0	;; *		0.9 V	<./>		< 4.5	< 4.9	<1.7
ð	1.3536R	88	ı ç	3. 7	88	1.5 >	8.7 >	-	-	< 52	< 1.8
đ	1.3543R	7.6		t a 7	9	< 3.4	< 7.2		-	< 4.8	< 1.6
Hylebos				2	D	* *	8.3	-		< 5.5	< 1.9
õ	1.3548	160	38	4	250	0 J D 20	Ţ	-	-		1
б	1.3550	340	8	120	320	N D RR	2 - 2	-			81
ð	1.3552	1100	120	300	710	C:00					8
6	1.3554	6	21	61	150	0.38	5 0	-	-		82
6	1.3560	19	9.8	21	41	< 0.59					2
8	1.3562	8	15	31	120	< 0.45	8.4	-		10.0 ×	9 Q
6	1.3564	140	8	88	230	< 0.35	16	• •	-	<pre>> 0.00</pre>	2
9	.3566	8	13	27	50		001				3 8
94	.3567	410	8	180	490	800		• •			N I
2	.3568	2	9	8	240				-	4.1.5 2.00	130
8	.3569	240	88	140	420	< 0.57	2 8				R
94	.3572	480	30	140	310	<1.8	8 8				5
94	.3574	200	110	230	20	 0.56 					9 9 9
92	3575	1300	120	260	710	< 0.29	110				<u>8</u> 8
8	.3576	1300	170	390	840	< 0.51	86			-	8 8
94	3577	710	8	190	440	< 0.78	48	• `•••			88
94	.3578	530	8	130	330	< 12	35	• •••			Z
2	.3581	770	85	210	470	< 0.33	45	•			<u>9</u> .9
2	3586	160	8	8	250	< 0.33	ţ				₽ 8
96	3587	61	8	8	110	< 0.79	0.0	•	•		6 ¥
94	3588	120	8	8	160	< 0.54	60	•••••			2 8
94	3589	75	17	36	80	<12	9.1		-	<1.7	3 8
5	3590	1000	110	8	630	< 0.99	140	-		<15	;
8	3592	9	8	47	120	< 0.79	< 1.7	-		<15 <12	88
8	3593	19	5.5	4	32	< 0.5	< 1.1	_		< 0.75) (
94	3594	24	17	ą	80	< 1.9	4 ×	-	-	BC.V	6:0 0 1
94	3595	540	72	160	440	< 0.65	35) \	57.04
94	3598	ន	9.1	6	9	< 0.74	< 1.6	-		<12	3
8	3600	200	130	390	1100	< 0.4	55	-		< 0.64	e. 9
8	3602	8	ន	ŝ	130	< 0.76	12	_	_	<12	5 5
94	3603	57	4	ន	72	< 0.86	5.2	-	-	, ; 5	ŕč
94	3604	44	13	31	76	< 0.5	8.5 2.5	-	-	8	8 8
ICB = hexach	orobanzana										

HCB = hexachlorobenzene R - Tissue sample was re-extracted • The nondioxin-like PCB congeners (shown in this table) generally co-ekte with other PCBs, therefore we report the PCB congener that is usually present in the greatest proportion. • The compound could not be quantitated due to analytical interference with a coeluting PCB congener.

Table 1C-p3: Concentrations (ng/g, wet weight) of selected nondioxin-like PCBs⁺ and pesticides in English sole liver samples analyzed as the part of the Hylebos Waterway Damage Assessment Project.

and the

	Flake	ž	ondioxin-like	CB Congener		-		Selected P	esticides		
Site	Number	101	126	136	153	UUUae			2001	TOC	
	94.3605	91	8	2	130	130	0 a 1	-	-	10044	
	94.3607	120	8	8	160	2007	9.0 V				
	94.3615	140	ŝ	20	130	26.0 1	= Ç		-	1901	8 9
	94.3616	140	45	6	250		- 2	.			₽ (
	94.3617	310	85	110	240	20.02				16.0 >	0 80
	94.3618	02	13		110		8	100 al	-	<<	0
	94.3629	280	67	230	480		N S			37	24
	94.3630	8	7.2	8	42 42		0 F			80.0 ×	8
	94.3631	8		2		10.0 ×	v			26.0 >	9.5
	94.3632	3700	180	60 F	011				<u> </u>	<1.7	24
	01 3633	160	ş	<u>8</u>	0000	_	400	-	-	< 0.98	27
	0000.40	100	5	69	230	< 0.28	25	-	-		8
	94.3634	360	7	170	480	< 0.51	58	-		< 0.85	2
	94.3635	62	83	83	180					<0.77	•
	94.3636	270	9	86	2	-	25			301	- 4
	94.3637	22	14	32	81	< 0.8 2	13	-	• •		2 6
	94.3639	78	4	80	180	<1.1	10 1	• •		- 0	8
	94.3644	2	24	20	120					0	0.0
	94.3645	120	54	49	140	~ 0 47	: :	u			
	94.3647	130	3	22	006					10.0 2	9
	94.3648	50	24	2	000					0.66	8
	01 9840	: 8					0.7 2	-	-	<1.7	8.8
	5100°50	S	9.7	18	3	<1.4	< 3.1	-	-	<2.1	13

HCB = hexachlorobenzene R - Tissue sample was re-extracted * The nondioxin-like PCB congeners (shown in this table) generally co-elute with other PCBs, therefore we report the PCB congener that is usually present in the greatest proportion. I = The compound could not be quantitated due to analytical interference with a coeluting PCB congener.

Table 1D-p1:	Quality assurance sample informatior PCBs and other selected PCBs and p	i in method blanks and stand ssticides as part of the Hyleb	ard control material analyzed for (os Waterway Damage Assessmen	dioxin-like t Project.
Extract Number	Sample Matrix	Sample WC. (g)	TricDD Rec. (%)	Extract
Method Blank				•
HY001	Method Blank	0.89	113	05/23/95
HY042	Method Blank	1.00	8	06/15/95
HY0550	Method Blank	1.07	2	06/22/95
HY0550	Method Blank	1.07	2	06/22/95
HY057	Method Blank	1.21	121	07/06/95
НҮОВЗ	Method Blenk	1.41	119	07/11/95
700YH	Method Blank	1.57	120	07/20/95
HY111	Method Blank	0.95	107	07/25/95
HY125	Method Blank	0.93	112	08/01/95
HY127	Method Blank	0.83	12	08/04/95
HY151	Method Blenk	0.89	125	08/08/95
HY160	Method Blank	0.25	103	10/18/95
NIST Whale Blubber				
HY014	NIST Whale Blubber	0.30	101	05/23/95
HY041	NIST Whele Blubber	0.34	2	06/15/95
HY0560	NIST Whale Blubber	0.36	2	06/22/95
HY0560	NIST Whale Blubber	0.36	8	06/22/95
HY069	NIST Whale Blubber	0.30	113	07/06/95
HY084	NIST Whale Blubber	0.32	116	07/11/95
HY098	NIST Whale Blubber	0.32	115	07/20/95
HY112	NIST Whale Blubber	0.29	103	07/25/95
HY126	NIST Whale Blubber	0.31	106	08/01/95
HY138	NIST Whale Blubber	0.30	118	08/04/95
HY152	NIST Whale Blubber	0.33	110	08/08/95
HY161	NIST Whale Blubber	0.36	8	10/18/95

Table 1E-p1: QA: Concentrations (ng/g, wet weight) of dioxin-like PCBs in method blanks and standard control material analyzed as part of the Hylebos Waterway Damage Assessment Project.

Field									1	ļ	ļ
Number		ц	105	118	126	156	157	169	170	190	103
Method Blank											
HY001 M	ethod Blank	< 0.45	< 0.27	< 0.29	< 0.24	< 0.28	< 0.26	< 0.53	4.8	< 0.28	< 0.26
HY042 M	ethod Blank	< 0.52	< 0.3	< 0.33	< 0.44	< 0.32	< 0.29	< 0.63	< 0.32	< 0.32	< 0.31
HY0550 M	ethod Blank	< 0.73	< 0.41	< 0.46	< 0.59	< 0.43	< 0.37	< 0.79	< 0.43	1.9	< 0.39
HY0550 Mi	ethod Blank	< 0.44	< 0.25	0.7	< 0.35	< 0.26	< 0.22	< 0.47	< 0.26	< 0.25	< 0.23
HY057 Mi	ethod Blank	< 0.5	< 0.28	< 0.31	< 0.42	< 0.3	< 0.27	< 0.59	16	< 0.32	< 0.29
HY083 Mt	ethod Blank	< 0.4	< 0.22	0.63	< 0.33	< 0.24	< 0.22	< 0.48	1.6	< 0.25	< 0.23
M4 7907H	ethod Blank	< 0.3	< 0.17	0.56	< 0.26	< 0.18	< 0.16	< 0.36	< 0.19	< 0.18	< 0.18
HY111 Mc	ethod Biank	< 0.46	0.65	1.6	< 0.37	< 0.27	< 0.25	< 0.5	< 0.28	< 0.27	< 0.26
HY125 Mu	ethod Blank	< 0.5	< 0,28	0.73	< 0.42	< 0.3	< 0.27	< 0.59	< 0.3	< 0.3	< 0.29
HY127 M	athod Blank	< 0.6	< 0.33	12	< 0.48	< 0.36	< 0.32	< 0.68	< 0.37	< 0.35	< 0.35
HY151 Mc	ethod Blank	< 0.41	< 0.23	< 0.25	< 0.34	< 0.24	< 0.23	< 0.47	< 0.25	< 0.25	< 0.24
HY160 Mi	ethod Blank	~	<1.1	< 1.2	< 1.6	<1.1 >	*	<2.1	< 1.2	<1.1	< 1.1
	Average.		0.65	080					7.47	2	
	DS S		0,00	75.0					6.17	Ö	į
NIST Whale Blu	ubber										
HY014 NI	ST Whale Blubber	<1.1	8	330	۰ ۲	8	6.9	<1.3	170	540	7.7
HY041 NR	ST Whale Blubber	< 1.5	8	310	< 1.3	3	7.4	< 1.8	190	550	3.2
HY0560 NI	ST Whale Blubber	۲	22	240	< 0.8	8	9.7	<1.1 ×	160	480	4.7
HY0560 NI	ST Whale Blubber	< 1.3	R	240	v	8	8 .1	< 1.4	140	480	6.2
HY069 NI	ST Whale Blubber	<1.7	8	ŝ	<1.5	8	7.2	20 2	170	430	5.4
HY084 NI	ST Whale Blubber	<1.7	91	270	<1.4	8	- 11	<2.1	140	480	5.8
1N 960XH	ST Whale Blubber	 1.4 	88	260	< 1.2	8	10	<1.7	160	490	e
HY112 NI	ST Whale Blubber	< 1.4	8	260	<1.1	58	8.7	< 1.5	130	480	3.5
HY126 NI	ST Whale Blubber	<1.4	91	280	< 12	8	6. 8	<1.7	150	470	3.9
HY138 NI	ST Whale Blubber	1.8	8	240	<1.4	27	40	N V	150	470	Ø
HY152 NE	ST Whale Blubber	< 1.3	8	220	*	8	7.4	< 1.5	150	460	4.1
HY161 NI	ST Whale Blubber	<1.7	7	83	< 1.4	8	6.6	< 1.8	140	460	3.4
	Average*		86.58	260.00		28.08	8.07		154.17	483	4.49
	SD		7.76	29.72		2.78	1.60		16.05	8	1.43
NIST Whale Bl	ubber X	ł	6.64	267	1	38.2	l	I	226	463	1
Published concentrati	Na 20.5X		Vest	400.5		67.3			339	724.5	
(ng/g, wet -	w) X - 0.5X		444	133.5		19.1			113	241.5	
:											

X is the exercing concentration (rig/g, wet wt) X + 0.5X is the upper control limit (+50% of published value) X - 0.5X is the lower control limit (-50% of published value)

Sample was analyzed twice by HPLC/PDA.

• When an analyte was detected in some, but not all of the method blanks, the average concentration is based on the concentration when detected and not included in the average calculation when not detected. When an analyte was not detected in any of the method blanks or control materials, the average and SD analyte values are blank.

Table 1F-p1: QA: Concentrations (ng/g, wet weight) of selected nondioxin-like PCBs and pesticides in method blanks and control meterial analyzed as new of the Uviation Wetaway Domain Assessment Divised.

Field	5			iyzeu as pa iondioxin-lii	ke Congene	rylebos wale	nway Damag	e Assessm	ent Projec Selected F	t. Pesticides		
Number			101	120	136	153	opDDD	DODqq	PPDDE	opDT	PPDDT	HCB
Method Bla	ink											
HY001	Method Blank		< 0.29	< 0.25	6.9	1.1	< 0.67	< 1.2	2.5	< 0.88	< 0.99	< 0.25
HY042	Method Blank		< 0.33	< 0.27	5.6	< 0.29	< 0.72	< 1.6	< 0.83	< 0.96	<1.1 >	< 0.29
HY0550	Method Blank		0.84	< 0.38	< 0.45	0.55	ŕ	61 V	<1.1	< 1.3	< 1.5	< 0.45
HY0550	Method Blank		< 0.28	< 0.23	4.7	< 0.25	< 0.61	< 1.2	< 0.68	< 0.79	< 0.89	< 0.27
HY057	Method Blank		< 0.31	< 0.26	7.3	0.63	< 0.71	< 1.5	< 0.82	11	<1.1 <	< 0.28
HY083	Method Blank		< 0.25	< 021	4.3	0.92	< 0.59	< 1.3	< 0.65	< 0.73	< 0.93	< 0.22
HY097	Method Blank		1.1	< 0.16	< 0.19	17	< 0.44	< 0.98	< 0.49	< 0.57	< 0.72	< 0.17
HY111	Method Blank		2.6	< 0.24	< 0.29	2.4	< 0.61	< 1.3	< 0.73	< 0.83	< 0.88	< 0.25
HY125	Method Blank		< 0.31	< 0.26	3.7	2.5	< 0.68	< 1.5	< 0.82	< 0.94	< 1.1	< 0.28
HY127	Method Blank		1.9	< 0.31	10	22	< 0.83	< 1.8	< 0.96	1.6	< 1.2	< 0.33
HY151	Method Blank		4	× 02	3.1	0.97	< 0.56	< 1.3	< 0.64	< 0.74	< 0.85	< 0.23
HY160	Method Blank		< 12	3.7	< 1.2	22	< 2.6	A 5.5 A	< 2.9	< 3.4	< 3.7	< 1.3
	Ave	rage'	2.1	3.7	5.7	2.6			2.5	6.3		
		SD	1.1	0.0	2.1	4.4			0.0	4.7		
NIST Whale) Blubber			1.								
HY014	NIST Whele Blu	ibber	540	170	560	950	48	370	2900	520	1200	ଷ
HY041	NIST Whale Blu	ibber	620	160	570	860	45	320	2800	520	066	41
HY0560	NIST Whale Bhu	ibber.	440	110	470	840	33	310	2400	400	910	42
HY0560	NIST Whale Blu	ibber	430	120	480	. 640	3	340	2600	904	006	38
HY069	NIST Whale Blu	tbber	380	120	440	740	8	270	1900	400	910	32
HY084	NIST Whale Blu	ibber	440	150	500	840	46	320	2300	470	1000	37
HY098	NIST Whale Blu	tbber	490	140	510	950	8	300	2700	410	920	36
HY112	NIST Whale Blu	tbber	83	140	500	098	8	330	2600	410	1100	37
HY126	NIST Whale Blu	tbber	460	140	490	640	37	310	2500	460	096	35
HY138	NIST Whale Blu	bber	8	120	490	620	8	300	2100	390	820	9 8 1
HY152	NIST Whale Blu	bber	300	130	470	780	ą	310	2700	430	830	53
HY161	NIST Whale Blu	bber	450	120	470	810	3	330	3000	370	920	6 0
	Avet	.eđe.	457.5	135.0	495.8	852.5	38.3	317.5	2541.7	431.7	974.2	35.9
		SD	48.0	17.6	35.7	65.8	4.7	23.5	309.5	47.8	86.1	4.0
NIST What	e Blubber d	×	19	: 86	790	870	58.4	260	1750	222**	651	36.9
concent: (na/a_wa	ations X +	0.5X	391,5**	148.5**	966	1305	87.6	390	2625	333**	976.5	55.4
	- X -	0.5X	130.5**	49.5**	332	435	29.2	130	875		325.5	18.4
HCB = hexe	ichiorobenzene											
X is the everage	e concentration (ng/g,	wet wt)										

X + 0.5X is the upper control limit (+50% of published value) X - 0.5X is the lower control limit (-50% of published value) 0 Sample was analyzed twice by HPLC/PDA.

• When an analyte was detected in scome, but not all of the method blarks, the average concentration is based on the concentration when an included in the average calculation when not detected. When an analyte was not detected in any of the method blanks or control materials, the average and SD analyte was not detected in any of the method blanks or control materials, the average and SD analyte was not detected in any of the method blanks or control materials, the average and SD analyte was not detected in any of the method blanks or control materials, the average and SD analyte was not detected in any of the PCB costute with these analytes when analyzed by HPLCPDA, therefore these compounds were not included in the analytes selected for reference material performance criteria.

Table 1G-p1: QA: Sample information for English sole tissue analyzed in replicate for dioxin-like PCBs and other PCBs and pesticides as part of the Hylebos Waterway Damage Assessment Project.

Extract. Date	05/23/95	05/23/95	10/18/95	10/18/95	06/15/95	06/15/95	06/22/95	06/22/95	06/22/95	06/22/95	07/06/95	07/06/95	07/11/95	07/11/95	07/20/95	07/20/95	07/25/95	07/25/95	08/01/95	08/01/95	08/04/95	08/04/95	08/08/95	08/08/95	
TriCDD Rec. (%)	107	20	. 26	66	97	86	77	74	67	70	101	101	121	119	121	118	110	110	118	113	<u>8</u>	ផ	116	121	
Semple Wt. (g)	1.01	1.15	0.28	0.28	1.52	1.44	1.20	1.20	1.25	1.25	2.03	2.06	2.05	1.97	2.02	2.02	0.64	1.34	0.96	0.97	0.51	0.54	0.98	1.09	
Sampling Date	12/02/94	12/02/94	12/02/94	12/02/94	12/05/94	12/05/94	12/05/94	12/05/94	12/05/94	12/05/94	12/06/94	12/06/94	01/04/95	01/04/95	01/05/95	01/05/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/06/95	01/09/95	01/09/95	
Site	Colvos Passage	Colvos Passage	Colvos Passage	Colvos Passage	Hylebos	Hylebos	Hylebos	Hylebos	Hytebos	Hylebos	Hytebos	Hytebos	Hylebos	Hytebos	Hylebos	· Hytebos	Colvos Passage								
Semple Matrix	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	Liver	
Extract Number	Н7007	HY013	HY158	HY159	НУОЗЗ	HY034	HY0440	HY0440	HY0450	HY0450	HY065	HY070	HY071	. 9707H	HY087	HY088	HY106	HY107	HY116	HY124	HY132	HY140	HY143	HY153	
i																									

TriCDD = 1,7,8-trichlorodibenzo-p-dioxin R - Tissue sample was re-extracted 0 Sample was analyzed twice by HPLC/PDA. Table 1H-p1: QA: Concentrations (ng/g, wet weight) of dioxin-like PCBs* in English sole tissue analyzed in replicate as part of the Hylebos Waterway Damage Assessment Project.

Fleid Number	Extract Number	4	105	118	126	156	157	169	170	180	189
94.3521	HY007	< 0.37	12	48	< 0.2	1.9	< 0.21	< 0.45	16	17	< 0.22
94.3521	HY013	< 0.61	8.3	48	< 0.33	2.3	< 0.35	< 0.73	15	16	< 0.35
	Averaget		10.15	48.00		2.10			15.50	16.50	
	SD		1.85	0.00		0.20			0.50	0.50	
	RSD	٢	18.2%	0.0%	د	9.5%	د	2	3.2%	3.0%	~
94.3529R	HY158	4 7 7	14	57	< 1.6	<1.1	<1	<2.1	5	35	<1.1
94.3529R	HY159	<2.1	17	95	< 1.6	< 1.2	< 1.1	< 22	14	25	<1.1
	Average†		15.50	56.50					13.00	28.50	
	08		1.50	0.50					1.00	3.50	
	RSD	د	9.7%	0.9%	~	۲	6	۲	7.7%	12.3%	د
94.3546	HY033	< 0.27	7	190	< 0.23	21	3.9	< 0.33	100	130	< 0.16
94.3546	HY034	< 0.31	81	200	< 0.27	8	4	< 0.38	110	140	< 0.19
	Average†		79.00	195.00		22.00	3.95	•	105.00	135.00	
			2.00	5.00		1.00	0.05		5.00	5.00	
	RSD	2	2.5%	2.6%	2	4.5%	1.3%	د	4.8%	3.7%	٢
94.3565	HY0440	< 0.51	66	260	< 0.41	8	6.5	< 0.55	210	270	< 0.27
94.3565	HY0440	< 0.49	120	320	< 0.39	4	60	< 0.63	260	320	< 0.26
94.3565	HY0450	< 0.44	140	370	< 0.35	45	4	< 0.48	340	330	< 0.24
94.3565	HY0450	< 0.32	160	360	< 0.26	14	42	< 0.35	300	330	< 0.17
	Averaget		129.75	327.50		33.25	5.73		277.50	312.50	
	0\$		22.70	43.23		12.60	1.61		48.15	24.87	
	RSD	6	17.5%	13.2%	6	37.9%	28.2%	~	17.4%	8.0%	د
94.3591	HY065	< 0.33	74	190	< 0.28	17	3.5	4 0.4	8	150	< 0.19
94.3591	HY070	< 0.32	74	190	< 0.27	18	3.6	< 0.38	8	150	< 0.19
	Averaget		74.00	190.00		17.50	3.55		97.50	150.00	
	08	I	0.00	0.00	I	0.50	0.05		1.50	00.0	
	R\$D	٢	0.0%	0.0%	د	2.9%	1.4%	2	1.5%	0.0%	~
94.3594A	HY071	< 0.26	41	160	<0.22	14	2.4	< 0.32	61	<u>1</u> 0	< 0.16
94.3594A	HY079	< 0.25	\$	160	< 021	15	e	< 0.3	8	97	< 0.15
	Averaget		43.50	160.00		14.50	2.70		62.00	98.50	
	8		2.50	0.0	1	0.50	0:30		1.00	1.50	
	USN	٢	6.7%	0.0%	د	3.4%	11.1%	6	1.6%	1.5%	2

H - I Issue sample was re-extracted
 Sample was analyzed twice by HPLC/PDA.
 Sample was analyzed twice by HPLC/PDA.
 The dioxin-like PCB congeners (shown in this table) have minimal interferences from co-eluting compounds which generally contribute < 10% to the total concentration.

1 When an analyte was detected in some, but not all of the replicates, the average concentration is based on the concentration when detected and not included in the average calculation when not detected. When an analyte was not detected in any of the replicates, the average and SD analyte values are blank and a "7" is reported for the RSD.

388

Table 1H-p2: QA: Concentrations (ng/g, wet weight) of dioxin-like PCBs* in English sole tissue analyzed in replicate as part of the Hylebos Waterway Damage Assessment Project.

Field Number	Extract Number	4	105	118	126	158	1 57				į
94.3628	HY087	< 0.23	33	<u>8</u>	< 0.2	9	22	-027	2	100	169
94.3628	HY088	< 0.28	58	110	< 0.24	10	2.5	< 0.33	8	3 F	<0.16 < 0.16
	Averaget		31.00	105.00		10.00	2.35		50.00	81.50	
	80		2.00	5.00		00.0	0.15		0.0	4.50	
	RSD	2	6.5%	4.8%	~	0.0%	6.4%	۲.	0.0%	5.5%	¢
94.3650	HY106	< 0.69	3.6	16	< 0.56	< 0.41	< 0.38	< 0.76	3.8	0.0	101
94.3650	HY107	< 0.37	4.4	17	< 0.3	< 0.22	< 0.2	< 0.41	•	7.2	< 0.22 < 0.22
	Averaget		4.00	16.50					3.90	A	
	80		0.40	0.50						100	
	RSD	۲	10.0%	3.0%	6	6		6	2.6%	15.8%	6
94.3655	HY116	< 0.39	4.1	7	< 0.33	< 024	< 0.21	< 0.46	32	50	6001
94.3655	HY124	< 0.45	3.9	15	< 0.37	< 0.27	< 0.25	< 0.53	m 1	0.4	 0.26
	Averaget		4.00	14.50				- - -	3.10	AO A	
			0.10	0.50					010	0.15	
	RSD	۰	2.5%	3.4%	6	6	د	~	3.2%	3.0%	~
94.3670	HY132	1	N	9.8	€.0.>	< 0.6	< 0.54	<1.1	23	13	0.60
94.3670	HY140	× 0.94	1.7	8.1	< 0.75	< 0.56	< 0.51	<1.1	1.8	: 연	< 0.55
	Average†		1.85	8.95					2.05	10 EA	
	80		0.15	0.85				·	0.25	250	
	RSD	~	8.1%	9.5%	~	۰	6	6	12.2%	4.0%	د
94.3682	HY143	< 0.44	1.5	5.4	< 0.36	< 0.28	< 0.24	4 0.5 A	-	1.7	< 0.26
94.3682	HY153	< 0.31	1:1	4.8	< 0.25	< 0.18	< 0.17	< 0.35	•	5	< 0.18
	Averaget		1.30	5.10					1.00	1.90	
		c	020	0.30		ſ			00.0	0.20	
	MSU		10.476	5.5%	7	6	6	۲	0.0%	10.5%	~

R - Tissue sample was re-extracted 0 Sample was analyzed twice by HPLC/PDA. • The dioxin-like PCB congenens (shown in this table) have minimal interferences from co-eluting compounds which generally contribute < 10% to the total concentration.

† When an analyte was detected in some, but not all of the replicates, the average concentration is based on the concentration when detected and not included in the average calculation when not detected. When an analyte was not detected in any of the replicates, the average and SD analyte values are blank and a "7" is reported for the RSD.

Table 1I-p1: QA: Concentrations (ng/g, wet weight) of selected nondioxin-like PCBs* and pesticides in English sole tissue analyzed in replicate as part of the Hylebos Waterway Damage Assessment Project.

		~	ondioxin-like	CB Congenel	÷.			Selected F	esticides		
Number	Number	101	128	130	153	ODDo	DODaa	PoDDF	TUQUO	TUUna	
94.3521	HY007	21	5	58	55	< 0.56	× 0.98		-	- 0 83	
94.3521	HY013	25	12	54	25	< 0.92	< 1.6			1.4	7 4
	Average†	23.00	12.00	26.00	54.50			80	80		
	SD	2.00	0.00	2.00	0.50			000	000		08.0
		8.7%	0.0%	7.7%	0.9%	٢	2	6	6	د	15.8%
94.3529R	HY158	31	18	8	ŝ	< 2.6	< 5.5	-	< 3.4	<36	110
94.3529R	HY159	8	15	88	67	<2.7	<5.7	-	9.0 V		13
	Average†	32.50	16.50	36.00	66.00			80			,
	3	1.50	1.50	0.00	1.00			800			
	B \$D	4.0%	9.1%	0.0%	1.5%	د	6	ć	6	د	6
94.3546	HY033	340	11	150	200	< 0.38	41	-	-	< 0.56	110
94.3546	HY034	370	61	170	540	< 0.44	42	-	-	< 0.65	110
	Averaget	355.00	69.00	160.00	520.00		41 60	88	80		
		15.00	8.00	10.00	20.00		050				110.00
	B B	4.2%	11.6%	6.3%	3.8%	د	1.2%	6	2 2 2	د	0.0%
94.3565	HY0440	380	100	230	011	64	42	-		5	130
94.3565	HY0440	470	130	280	096	25	40	-	-	7	150
94.3565	HY0450	480	120	300	1300	110	8			 	
94.3565	HY0450	460	120	200	1100	69	8	• ••••	-	0.66	180
	Averaget	447.50	117.50	272.50	1032.50	69.00	61.00	800	80		163.60
	C.	39.61	10.90	25.86	193.83	25.41	18.37	00.0	0.00		12.99
	R\$D	8.9%	9.3%	9.5%	18.8%	36.8%	30.1%	د	د	د	8.5%
94.3591	HY065	250	11	160	440	< 0.47	36	-	-	< 0.7	120
94.3591	НҮ070	270	71	160	440	< 0.46	34	-	-	< 0.68	120
	Averaget	260.00	71.00	160.00	440.00		35.00	0.0	0.0		120.00
		10.00	0.00	0.0	0.00		1.00	0.0	0.00		000
	RSD	3.8%	0.0%	0.0%	0.0%	٠	2.9%	6	د	6	0.0%
94.3594A	HY071	220	45	120	320	< 0.39	8	-	-	< 0.62	55
94.3594A	HY079	220	8	110	300	< 0.37	8	_	-	< 0.59	22
	Averaget	220.00	43.50	115.00	310.00		26.00	00.0	80		53 EV
	80	0.0	1.50	5.00	10.00		0.00	0.00	00.0		1.50
	180	0.0%	3.4%	4.3%	3.2%	6	0.0%	6	~	٤.	2.8%
HCB = hexechlore	sbenzene		-								

R - Tissue sample was re-extracted
 Sample was analyzed twice by HPLC/PDA.
 The nondioxin-like PCB congeners (shown in this table) generally co-elute with other PCBs, therefore we report the PCB congener that is usually present in the greatest proportion.
 The nondioxin-like PCB congeners (shown in this table) generally co-elute with other PCBs, therefore we report the PCB congener that is usually present in the greatest proportion.
 The DDT could not be quantitated due to analytical interference with a coeluting PCB congener.

† When an analyte was detected in some, but not all of the replicates, the average concentration is based on the concentration when detected and not included in the average calculation when not detected. When an analyte was not detected in any of the replicates, the average and SD analyte values are blank and a "7" is reported for the RSD.

-È ŝ Table 11-p2: QA: Concentration

.

i pesticides in English sole tissue analyzed in	Selected Pesticides	
ke PCBs* and t Project.		
ondioxin-li ssessmen		
of selected no ay Damage A	CB Congeners	100
ebos Waterw	ondioxin-like	444
art of the Hyle		101
replicate as F	Extract	Number

	Extract		Nondloxin-like	CB Congener				Selected	Pesticides		
Number	Number	101	128	136	163	QQQoo	000aa	DDE	opDDT	DDT	aCH
94.3628	HY087	130	ន	82	240	< 0.33	12	-		< 0.55	
94.3628	HY088	130	35	68	250	< 0.41	2		-	< 0.67	50 f
	Average	130.00	28.50	85.50	245.00		12.00	000	00.0		25
	08	0.00	6.50	3.50	5.00		00.0	000	00.0		150
	RSD	0.0%	22.8%	4.1%	2.0%	6	0.0%	¢	6	د	3.0%
94.3650	HY106	12	5.2	¢	ន	< 0.92	<2	-	< 1.3	<13 - 13	300
94.3650	HY107	6	4.4	10	21	< 0.5	<1.1		< 0.68	< 0.71	1.6
	Average	10.50	4.80	10.00	21.50			80			
	. QS	1.50	0.40	0.00	0.50			0000			1.20
	R\$D	14.3%	8.3%	0.0%	2.3%	6	د	6	6	6	25.5%
94.3655	HY116	9.2	3.7	7.9	16	< 0.53	<12	.	-	< 0.86	-
94.3655	HY124	8.9	4	6.7	19	< 0.61	< 1.4	-	-	< 0.98	. 4 .1
	Average†	9.05	3.85	8.30	17.50			0000	80		5
	0.8	0.15	0.15	0.40	1.50			0.00	0.0		0.20
	RSD	1.7%	3.9%	4.8%	8.6%	د	د	د	6	د	16.7%
94.3670	HY132	6.2	7	6.6	23	<1.4	< 3.1	-	-	<2	< 0.55
94.3670	HY140	6.6	3.8	6.4	8	< 1.3	< 2.9	-	-	< 1.9	< 0.51
	Average	6.40	5.40	6.50	21.50			80	e		
	08	0.20	1.60	0.10	1.50			00.0	000		
	USU I	3.1%	29.6%	1.5%	7.0%	2	2	6	~	2	6
94.3682	HY143	3.1	1.3	3.3	5.8	< 0.6	<1.4	-	-	< 0.91	10.04
94.3682	HY153	4.2	1.4	3.4	5.6	< 0.42	< 0.97	_	·	< 0.63	< 0.17
	Average	3.65	1.35	3.35	5.70			0.0	80		
		0.00	0.05	0.05	0.10	•		0.00	0.00		
	181	10.17	210	1.0%	1.8%	2	6	~	د	6	6

HCB = hexachiorobenzene R - Tissue sample was re-extracted & Sample was analyzed twice by HPLC/PDA. • The nondioxin-like PCB congeners (shown in this table) generally co-elute with other PCBs, therefore we report the PCB congener that is usually present in the greatest proportion. • The nondioxin-like PCB congeners (shown in this table) generally co-elute with other PCBs, therefore we report the PCB congener that is usually present in the greatest proportion. • The DDT could not be quantitated due to analytical interference with a coeluting PCB congener.

† When an analyte was detected in some, but not all of the replicates, the average concentration is based on the concentration when detected and not included in the average calculation when not detected. When an analyte was not detected in any of the replicates, the average and SD analyte values are blank and a "?" is reported for the RSD.

Table 1J-p1: Continuing calibration verification data* for dioxin-like PCBs in standards run before, during and after the samples in English sole tissue sets analyzed as part of the Hylebos Waterway Damage Assessment Project.

ġ.

Standard Name	4	105	118	126	156	157	169	170	180	189
09/06/95										
PCB/DDT Calib 09/06/95A	0.32184	0.31157	0.31947	0.32514	0.32026	0.31378	0.31769	0.31596	0.32440	0.32510
PCB/DDT Calib 09/06/95B	0.32752	0.32485	0.31910	0.30763	0.32468	0.32271	0.32702	0.32323	0.32461	0.32180
PCB/DDT Calib 09/06/95C	0.32032	0.32812	0.32623	0.33227	0.32285	0.32937	0.32034	0.32933	0.32693	0.32507
PCB/DDT Callb 09/06/95D	0.31832	0.32347	0.32320	0.32790	0.32021	0.32214	0.32294	0.31948	0.31206	0.31604
Average	0.32200	0.32200	0.32200	0.32324	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200
SD	0.003423	0.008255	0.002922	0.009361	0.001880	0.005532	0.003443	0.004952	0.005824	0.003694
RSD	1.1%	1.9%	0.9%	2.9%	0.6%	1.7%	1.1%	1.5%	1.9%	1.2%
09/11/95										
PCB/DDT Callb 09/11/95A	0.31954	0.31844	0.31776	0.32314	0.32092	0.32047	0.33864	0.31706	0.32114	0.31873
PCB/DDT Callb 09/11/95B	0.32703	0.32434	0.32682	0.32079	0.32290	0.32343	0.30931	0.32772	0.31822	0.32459
PCB/DDT Calib 09/11/95C	0.32013	0.32059	0.32379	0.32149	0.31916	0.31492	0.32047	0.32576	0.32563	0.32057
PCB/DDT Callb 09/11/95D	0.32129	0.32463	0.31963	0.32259	0.32501	0.32918	0.31958	0.31746	0.32302	0.32411
Average	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200
SD	0.002973	0.002601	0.003537	0.000918	0.002185	0.005149	0.010561	0.004792	0.002704	0.002444
RSD	0.9%	0.8%	1.1%	0.3%	0.7%	1.6%	3.3%	1.5%	0.8%	0.8%
09/12/95				s.						-
PCB/DDT Callb 09/12/95A	0.31947	0.31739	0.32105	0.32730	0.32267	0.32216	0.32318	0.31582	0.32254	0.32041
PCB/DDT Callb 09/12/95B	0.32691	0.32362	0.32868	0.31932	0.32573	0.32868	0.32106	0.33127	0.31649	0.32947
PCB/DDT Calib 09/12/95C	0.32290	0.32266	0.31542	0.32573	0.31819	0.31849	0.31535	0.32014	0.31747	0.31855
PCB/DDT Calib 09/12/95D	0.31673	0.32434	0.32285	0.31565	0.32141	0.32069	0.32841	0.32077	0.33150	0.31958
Average	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200
OS	0.003241	0.002729	0.004731	0.004730	0.002703	0.002991	0.004679	0.005681	0.005946	0.004361
RSD	1.0%	0.8%	1.5%	1.5%	0.8%	0.9%	1.4%	1.8%	1.6%	1.4%
09/21/95										
PCB/DDT Callb 09/21/95A	0.32456	0.32645	0.32969	0.32000	0.32041	0.31829	0.31877	0.32605	0.32029	0.32122
PCB/DDT Callb 09/21/95B	0.32508	0.32692	0.31263	0.31508	0.32430	0.33407	0.31673	0.31178	0.31975	0.32561
PCB/DDT Callb 09/21/95C	0.31882	0.31443	0.32155	0.32849	0.32007	0.31603	0.33007	0.30543	0.32422	0.31949
PCB/DDT Calib 09/21/95D	0.31954	0.32021	0.32413	0.32442	0.32322	0.31961	0.32243	0.33214	0.32374	0.32168
Average	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.31885	0.32200	0.32200
SO	0.002837	0.005112	0.006158	0.004997	0.001805	0.007085	0.005087	0.010707	0.001996	0.002238
RSU	0.876	1.076	1.870	e/0'1	20.0	4.270	1.076	3.276	0.0%	0.7%

• Data are reported as analyte concentrations using a single point calibration analyzed with each day's sample analyses. This continuing calibration data format is the result of the Millennium PDA Software.

Table 1J-p2: Continuing calibration verification data* for dioxin-like PCBs in standards run before, during and after the samples in English sole tissue sets analyzed as part of the Hylebos Waterway Damage Assessment Project.

Standard Name	7	105	116	act.	15.6	ţ	991			į
10/02/95					8	101	601	2	not	169
PCB/DDT Calib 10/02/95A	0.31834	0.30779	0.30671	0.31207	0.31395	0.31254	0.30008	0.2007.8	0.31436	TWOCE O
PCB/DDT Callb 10/02/95B	0.32695	0.33192	0.33374	0.32264	0.32799	0.32689	0.32526	0.23146	0.32173	0 305.47
PCB/DDT Calib 10/02/95C	0.31455	0.31941	0.31730	0.32138	0.31717	0.31819	0.32229	0.31573	0.32263	0.31415
PCB/DDT Calib 10/02/95D	0.32816	0.32888	0.33026	0.33191	0.32889	0.33037	0.33047	0.33103	0.32928	0.32814
Average	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	032200
SD	0.005730	0.009412	0.010746	0.007029	0.006548	0.007035	0.007532	0.009483	0.005288	0.005349
RSD	1.7%	2.9%	3.3%	2.1%	2.0%	2.1%	2.3%	2.9%	1.6%	1.6%
1005/95						•				
PCB/DDT Calib 10/05/95A	0.29918	0.30965	0.30563	0.31166	0.31187	0.31497	0.31828	0.31327	0.31076	0 30410
PCB/DDT Calib 10/05/95B	0.33097	0.32095	0.32985	0.32607	0.32595	0.32171	0.32347	0.32430	0.32811	0.049610
PCB/DDT Calib 10/05/95C	0.33584	0.33541	0.33053	0.32826	0.32819	0.32932	0.32425	0.32834	0.32713	0.32290
Average	0.32200	0.32200	0.32200	0.32200	0.32200	032200	032200	Weee U	00000	
SD	0.016256	0.010543	0.011581	0.007364	0.007223	0.005862	0.002650	0.002200	0.32200	0.32200
RSD	4.8%	3.1%	3.5%	2.2%	2.2%	1.8%	0.8%	1.9%	2.4%	0.7%
10/16/95										
PCB/DDT Callb 10/16/95A	0.31935	0.32145	0.33388	0.32362	0.32564	0.32442	0.32305	0 33210	0 99467	000445
PCB/DDT Callb 10/16/95B	0.32401	0.31275	0.31911	0.32096	0.31865	0.32392	0.31395	0.31874		61155.0
PCB/DDT Calib 10/16/95C	0.33459	0.33039	0,32184	0.32194	0.32771	0.32844	CARCE O	0.91870	24120.0	81915.0
PCB/DDT Calib 10/16/95D	0.31005	0.32341	0.31316	0.32146	0.31600	0.31122	0.32458	0.010.0	52220.0	0.32436
Averade	0.32200	0.92200	U accent	0.0000	000000			70100	107150	0.31331
	0.008837		0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200
HSD	2.9%	1.9%	2 44%	795 U			0.004798	0.005831	0.006726	0.006572
11/01/95							.076	1.8%	2.2%	2.1%
	0.32745	0.32078	0.32363	0.31921	0.32606	0.32835	0.32445	0.32370	0.32391	0.33525
PCB/DDT Calib 11/01/95B	0.31123	0.31703	0.31491	0.31780	0.31524	0.31533	0.31110	0.31084	0.31128	0.30693
PCB/DDT Calib 11/01/95C	0.32732	0.32819	0.32746	0.32900	0.32470	0.32233	0.33045	0.33146	0.33081	0.32382
Average	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200
SO	0.007616	0.004637	0.005252	0.004961	0.004812	0.005320	0.008087	0.008503	0.008087	0.011633
NSU	2.3%	1.4%	1.6%	1.5%	1.6%	1.7%	2.4%	2.6%	2.4%	3.6%

* Data are reported as analyte concentrations using a single point calibration analyzed with each day's sample analyses. This continuing calibration data format is the result of the Millennium PDA Software.

Table 1K-p1: Continuing calibration verification data⁺ for selected nondioxin-like PCBs and pesticides in standards run before, during and after the samples in English sole tissue sets analyzed as part of the Hylebos Waterway Damage Assessment Project.

Standard	Ž	ondioxin-lik	e CB Cong	eners	-		Pe	sticides		
Name	101	128	138	153	opDD	UUQue	an DDF	TUUUN	TUQuu	ACH
09/06/95								10000	10044	
PCB/DDT Callb 09/06/95A	0.31072	0.31287	0.31442	0.31606	0.30738	0.29297	0.3177	0.30888	0.33245	0.31648
PCB/DDT Callb 09/06/95B	0.32546	0.32782	0.32321	0.32588	0.33181	0.33424	0.32395	0.33617	0.31119	0.32368
PCB/DDT Calib 09/06/95C	0.32419	0.32484	0.32581	0.32300	0.32570	0.35087	0.32359	0.32101	0.31325	0.32442
PCB/DDT Calib 09/06/95D	0.32763	0.32247	0.32456	0.32306	0.32311	0.31458	0.32276	0.32194	0.33110	0.32342
Average	0.32200	0.32200	0.32200	0.32200	0.32200	0.32317	0.32200	0.32200	0.32200	0.32200
SD	0.006628	0.005602	0.004472	0.003622	0.009013	0.021654	0.002520	0.009668	0.009816	0.003208
RSD	2.0%	1.7%	1.4%	1.1%	2.8%	3.0%	0.8%	3.0%	3.0%	1.0%
09/11/95						•				
PCB/DDT Calib 09/11/95A	0.31685	0.31885	0.31997	0.32235	0.31685	0.32139	0.32285	0.32821	0.32011	0.31895
PCB/DDT Callb 09/11/95B	0.32148	0.32832	0.32546	0.32390	0.32693	0.34005	0.32761	0.32059	0.32793	0.32048
PCB/DDT Callb 09/11/95C	0.32639	0.32293	0.32145	0.32645	0.32873	0.30920	0.32084	0.32053	0.31558	0.32583
PCB/DDT Calib 09/11/95D	0.32328	0.31790	0.32112	0.31530	0.31549	0.31736	0.31670	0.31867	0.32438	0.32273
Average	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200
OS .	0.003453	0.004109	0.002072	0.004136	0.005884	0.011309	0.003925	0.003667	0.004626	0.002589
RSD	1.1%	1.3%	0.6%	1.3%	1.9%	1.4%	1.2%	1.2%	1.4%	0.8%
08/12/95	-									
PCB/DDT Callb 09/12/95A	0.31701	0.31925	0.32014	0.32004	0.31865	0.32627	0.32541	0.32585	0.33046	12000
PCB/DDT Callb 09/12/95B	0.32670	0.32975	0.32608	0.32513	0.32727	0.32614	0.32124	0.31981	0.33055	0.3050
PCB/DDT Callb 09/12/95C	0.32261	0.32022	0.31831	0.31997	0.31106	0.31493	0.32067	0.32123	0.29412	0.31880
PCB/DDT Calib 09/12/95D	0.32168	0.31879	0.32347	0.32285	0.33101	0.31866	0.32068	0.32111	0.33287	0.32119
Average	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	032200	032200
SD	0.003445	0.004503	0.002995	0.002150	0.007744	0.005410	0.001982	0.002291	0.016125	0.002357
RSD	1.1%	1.4%	0.8%	0.7%	2.3%	4.8%	0.6%	0.7%	4.8%	0.7%
09/21/95					·					
PCB/DDT Calib 09/21/95A	0.32626	0.33424	0.32676	0.32618	0.32149	0.33083	0.33578	0.34025	0.32806	0.32732
PCB/DDT Callb 09/21/95B	0.31843	0.31987	0.32002	0.31910	0.31098	0.30932	0.31942	0.31210	0.29539	0.31360
PCB/DDT Calib 09/21/95C	0.32372	0.31524	0.31477	0.32488	0.33090	0.33945	0.31609	0.31583	0.40544	0.32331
PCB/DDT Callb 09/21/95D	0.31959	0.31865	0.32643	0.31784	0.32463	0.30840	0.31670	0.31982	0.30426	0.32377
Average	0.32200	0.32200	0.32200	0.32200	. 0.32200	0.32200	0.32200	0.32200	0.33329	0.32200
	0.003145	0.00/268	0.004967	0.003588	0.007208	0.013493	0.008055	0.010885	0.043336	0.005092
Non	% <u>0</u> .1	2.376	1.5%	1.1%	2.2%	14.2%	2.5%	3.4%	14.2%	1.6%

* Data are reported as analyte concentrations using a single point calibration analyzed with each day's sample analyses. This continuing calibration data format is the result of the Millennium PDA Software.

Continuing calibration verification data* for selected nondioxin-like PCBs and pesticides in standards run before, during and after the samples in English sole tissue sets analyzed as part of the Hylebos Waterway Damage Assessment Project. Table 1K-p2:

~

Standard	Ň	ondioxin-like	e CB Cong	eners			đ	sticides		
Name	101	128	138	163	ODDa	QQqq	anD15	TUQue	nn001	HCR
10/02/95						22244	PPUCE	10040	1000	
PCB/DDT Calib 10/02/95A	0.31992	0.30716	0.31311	0.31006	0.30847	0.29296	0.31774	0.31438	0.31175	0.31462
PCB/DDT Calib 10/02/95B	0.32666	0.33126	0.33084	0.32918	0.34135	0.32894	0.32370	0.32194	0.32068	0.32720
PCB/DDT Callb 10/02/95C	0.31511	0.32117	0.31845	0.32026	0.31914	0.31928	0.31764	0.32335	0.33187	0.31923
PCB/DDT Callb 10/02/95D	0.32632	0.32840	0.32560	0.32850	0.31904	0.34682	0.32892	0.32834	0.32370	0.32695
Average	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200
	0.004800	0.009322	0.006759	0.007736	0.011984	0.019461	0.004689	0.005002	0.007196	0.005331
10/05/95		2	2	0/4/2	9. D. D.	2.2%	1.4%	1.5%	2.2%	1.6%
PCB/DDT Callb 10/05/95A	0.30100	0.31100	0.30799	0.30423	0.31705	0.31553	0.31448	0.30297	0.30634	0.27380
PCB/DDT Callb 10/05/95B	0.33176	0.32209	0.32686	0.32925	0.3220	0.31928	0.32809	0.33251	0.33642	0.34648
PCB/DDT Callb 10/05/95C	0.33324	0.33291	0.33115	0.33252	0.32674	0.33120	0.32344	0.33052	0.32324	0.34572
Average	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200
00	0.014862	0.006945	0.010060	0.012636	0.003959	0.006681	0.005648	0.013481	0.012311	0.034084
RSD	4.5%	27%	3.0%	3.8%	1.2%	3.8%	1.7%	4.1%	3.8%	9.9%
10/16/95		•	!							
PCB/DDT Callb 10/16/95A	0.33209	0.32275	0.32572	0.33055	0.33925	0.33669	0.33378	0.33512	0.33017	0.32156
PCB/DDT Calib 10/16/95B	0.31145	0.31927	0.31587	0.31341	0.30755	0.30910	0.31565	0.31934	0.32087	0.32502
PCB/DDT Calib 10/16/95C	0.32818	0.33048	0.32825	0.33162	0.32670	0.31727	0.32632	0.31925	0.31987	0.32474
PCB/DDT Calib 10/16/95D	0.31629	0.31549	0.31817	0.31241	0.31450	0.32494	0.31225	0.31429	0.31709	0.31667
Average	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200
SD RSD	0.008425	0.006530	0.005127	0.009102 2 0%	0.012090	0.010164	0.008556	0.007846	0.004916	0.003363
11/01/95	Ì					e.o.1	e N	2.5%	1.6%	1.1%
PCB/DDT Calib 11/01/95A	0.32530	0.32486	0.32124	0.31968	0.32212	0.33013	0.32687	0.33191	0.31426	0.32200
PCB/DDT Callb 11/01/95B	0.32099	0.31267	0.31767	0.31948	0.30818	0.30566	0.31807	0.31851	0.33634	0.31426
PCB/DDT Callb 11/01/95C	0.31971	0.32627	0.32689	0.32685	0.33570	0.33021	0.32107	0.31558	0.31540	0.32875
Average	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200	0.32200
RSD	0.7%	2.0%	1.1%	1.0%	3.3%	3.2%	0.003653 1.1%	0.007109 2.3%	0.010151 3.2%	0.005957 1.8%

[•] Data are reported as analyte concentrations using a single point calibration analyzed with each day's sample analyses. This continuing calibration data format is the result of the Millennium PDA Software.