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Abstract. Census data on endangered species are often plagued by problems that make 
quantitative population viability analysis (PVA) a challenge. This paper addresses four such 
problems: sampling error, density dependence, nonstable age structure, and population 
supplementation that masks the true population status. Estimating trends and extinction 
risks using such corrupted data presents serious parameter estimation difficulties. Here I 
review diffusion approximation (DA) methods for estimating population status and risks 
from time series data. A variety of parameterization methods are available for DA models; 
some correct for data corruption and others do not. I illustrate how stochastic Leslie matrix 
models can be used to evaluate the performance of a proposed DA model and to select 
among different DA parameterization methods for a given application. Presenting the un­
certainty in estimated risks is critical, especially when the data are highly corrupted and 
estimated parameters are more uncertain. Using a Bayesian approach, I demonstrate how 
the level of data support for different risk levels can be calculated using DA parameter 
likelihood functions. 
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INTRODUCTION ⎛n1,t�1⎞ ⎛n1,t⎞ 
n2,t�1 n2,t⎜ ⎟ ⎜ ⎟Limited data are a common stumbling block for ⎜n3,t�1⎟ � At ⎜n3,t⎟ (1) 

quantitative population viability analysis (PVA). Suf­
ficient data for developing detailed life-history models ⎜ ⎟ ⎜ ⎟ 

⎝nk,t�1⎠ ⎝nk,t⎠are often unavailable; indeed often the only available 
or planned data are a simple time series of counts (Mor- where At is a stochastic population transition matrix, 
ris et al. 2002). In the last decade, diffusion approxi- e.g., a Leslie matrix, for time t. The At’s are assumed 

mation (DA) methods have been developed that use to be drawn from some unspecified stationary statistical 

count data alone for the estimation of PVA risk metrics, distribution, although they need not be drawn random-

such as the probability of crossing extinction thresh- ly. For example, At�1 might be drawn conditioned on 

olds, mean passage times, and average long-term rates At if there is temporal correlation in year-to-year en-

of population growth or decline (Lande and Orzack vironmental conditions (i.e., good years follow good 

1988, Dennis et al. 1991). These methods have since 
years). For such models, the asymptotic behavior of 
any weighted census of the population, Nt � �i wini,t,been used to estimate extinction risks for numerous 
is a stochastic exponential process (Tuljapurkar and 

species of conservation concern (Dennis et al. 1991, Orzack 1980, Tuljapurkar 1989):

Nicholls et al. 1996, Gerber et al. 1999, Morris et al.

1999, McClure et al. 2003). The appeal of DA methods Nt � N0exp(�t � �t) (2)


from an applied standpoint is their simplicity and their where �t is distributed normally with mean 0 and var­

reliance on simple census data alone, and they have iance �2t for t big. The statistical distribution of future 
become one of the basic quantitative tools presented population sizes, here log Nt /N0, is distributed normally 
in recent books on PVA methods (Morris and Doak with mean �t and variance �2t, for t big. The weights 
2002, Lande et al. 2003). wi can be equal to 1 so that Nt is simply the total number 

Diffusion approximation methods stem from theory of individuals alive at time t, but other weightings, such 
concerning the behavior of stochastic age-structured wi equals the fraction of age i individuals that even-
population models with no density dependence: tually become reproductive, may be more appropriate 

when calculating extinction metrics. The parameter � 
in Eq. 2 determines the rate at which the median log 

Manuscript received 13 March 2002; revised 1 August 2003; population size, log(Nt/N0), increases through time, accepted 23 September 2003; final version received 18 December 
2003. Corresponding Editor: L. B. Crowder. while �2 determines the rate at which the distribution 
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population sizes at time t. Throughout this paper, �2 

will be referred to as process error. See Caswell (2001: 
section 14.3.3) for a review of the theory of products 
of random matrices in the context of stochastic age-
structured models, and Morris and Doak (2002: chapter 
3) for a discussion of stochastic exponential models. 

Diffusion approximation methods assume that Eq. 2 
holds for all t � 0 including small t and that the �t are 
independently and identically distributed. This allows 
one to model the population as a diffusion process 
(Lande and Orzack 1988): 

�p/�t � ���p/�x � (�2/2)�2p/�x2 (3) 

where p is the probability density of (Nt/N0) � x. The 
diffusion model has the property that log Nt /N0 is dis­
tributed normally with mean �t and variance �2t, like 
the stochastic exponential process it is used to ap­
proximate. See Dennis et al. (1991) for a fuller dis­
cussion of the diffusion approximation. 

This approximation opens a toolbox of parameteri­
zation methods for linear models with normal error. It 
also provides analytical estimates of passage proba­
bilities, i.e., the probability of crossing a particular 
threshold within a given time frame, for example ex­
tinction estimates (to one individual) or quasi-extinc­
tion estimates to some critical population size �1. 
Strictly speaking, however, an age-structured popula­
tion process is not a diffusion process. For a time series 
from an age-structured population, log Nt�� /Nt where � 
� 1 is not normally distributed; only log Nt�� /Nt where 
� is big, is normally distributed. Also in an age-struc­
tured population time series, the temporal indepen­
dence assumptions at � �  1 are violated since the ratios, 
log Nt�1 /Nt and log Nt�2 /Nt�1, will be correlated, even 
if the environment is uncorrelated. 

Despite these assumption violations, the diffusion 
model approximates many types of stochastic age-
structured population processes, as seen both from sim­
ulated and real data (Lande and Orzack 1988, Dennis 
et al. 1991, Holmes and Fagan 2002; W. F. Fagan, J. 
Rango, A. Folarin, J. Sorensen, J. Lippe, and N. E. 
McIntyre, unpublished manuscript). There are, how­
ever, well-known cases where the diffusion approxi­
mation performs poorly, such as when year-to-year var­
iability is high and populations are small (Ludwig 
1996b, 1999), when demographic stochasticity intro­
duces strong nonlinearities (Wilcox and Possingham 
2002), and when density dependence is extreme (Sabo 
et al. 2004). Thus, it is critical to carefully evaluate 
the appropriateness of the diffusion model given the 
life history of the species at hand and given the types 
of extinction or quasi-extinction metrics one would like 
to estimate. In addition, careful selection of parame­
terization methods for estimating the DA parameters is 
essential since many real population time series will 
contain extraneous variability whether due to age-
structure cycles, density-dependent feedback, or sam­
pling error, and this will confound proper parameteri­

zation. In this paper, I discuss and illustrate the appli­
cation of DA methods with the biologist faced with 
assessing risks for a real population in mind. I discuss 
the available parameterization methods and present a 
quantitative approach for assessing the performance of 
the diffusion approximation and its parameterization. 

Once a parameterization method is chosen, evalua­
tion of which risk metrics to use is needed. Some met­
rics will be robust and others may be useful only over 
certain time frames. In particular, estimates of the prob­
ability of crossing population thresholds (e.g., extinc­
tion metrics) can be extremely variable for certain pa­
rameter ranges (Fieberg and Ellner 2000, Ellner et al. 
2002). This is not a problem specific to the DA ap­
proach; it is a feature of stochastic population processes 
in certain parameter ranges. Nonetheless, conservation 
biologists are often asked to make an assessment of 
extinction or quasi-extinction risk; indeed, such an as­
sessment may be mandated by law when working with 
species being considered under the U.S. Endangered 
Species Act. One of the positive features of DA meth­
ods is that uncertainty is well characterized and can be 
estimated from the data. Thus, while we may be un­
certain about the point estimates of the risk metrics, 
we can be precise about the level of uncertainty. In this 
paper, I discuss two different methods for representing 
uncertainty: confidence intervals and posterior proba­
bility distributions. 

These methods for evaluating and presenting DA risk 
metrics are illustrated using three simulated popula­
tions of different salmonid species. These concrete ex­
amples are intended to illustrate analyses and models 
that can be used to assess the performance of a pro­
posed DA approach given the life histories and data 
corruption one expects in a particular PVA application. 
The paper is divided into four steps, reflecting the steps 
of evaluating a proposed DA application: (1) evaluating 
whether a diffusion approximation is reasonable for the 
population at hand, (2) evaluating and selecting a pa­
rameterization method, (3) evaluating the sensitivity of 
proposed risk metrics to parameterization errors, and 
(4) estimating parameters and risk metrics given a cen­
sus time series from the concerned population and pre­
senting the uncertainty in these estimates. 

EVALUATING THE DIFFUSION APPROXIMATION


FOR THE POPULATION


Simulated data 

The first step in evaluating a proposed DA appli­
cation is to develop a model that captures the basic life 
history and that has realistic environmental variability, 
including the temporal correlation in the environment. 
Although a precise model for the population will likely 
not be available, given that diffusion approximations 
are typically used where data are limited, often enough 
natural history information will be available to roughly 
parameterize a model for the purpose of evaluating the 
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performance of proposed methods. Such an evaluation 
is illustrated here using stochastic matrix models for 
Snake River spring/summer chinook, Snake River fall 
chinook, and upper Columbia River steelhead, which 
are currently listed under the U.S. Endangered Species 
Act. Although this paper uses matrix models, the sim­
ulated data could be produced by any variety of models 
or by using a bootstrapping method to simulate from 
actual time series data, e.g., Hinrichsen (2002). 

The basic model used here tracks individuals from 
age 1 to spawners: 

⎛ age 1 ⎞ ⎛ age 1 ⎞ 
age 2 age 2 ⎜ ⎟ ⎜ ⎟


⎜ age 3 ⎟ � At ⎜ age 3 ⎟ (4) 

⎜ ⎟ ⎜ ⎟

⎝spawners⎠ t�1 ⎝spawners⎠ t 

where At is the Leslie matrix model describing the tran­
sition probabilities from age i to i � 1. The stochastic 
matrices used for the three salmonid populations are 
given in Table 1, along with parameter definitions and 
estimates. 

Stochasticity was added to survivorships and fecun­
dity by multiplying the survivorship and fecundity 
terms by a random variable �i with the maximum pos­
sible survivorship capped at 1.0. The �1 term represents 
variability in spawner to age 1 ratios. For all matrices, 
�1 variables were drawn from a lognormal distribution 
specified by exp(normal(mean � 0, variance � 0.13)). 
The variance was estimated from spawner to smolt 
(�age 1.5) data for spring/summer chinook in the 
Snake River (P. Levin, unpublished data). The �2 var­
iables associated with age 1 to age 2 survivorship for 
spring/summer chinook and steelhead were drawn from 
a lognormal distribution specified by exp(normal(mean 
� 0, variance � 0.08)). The variance was estimated 
from parr to smolt (�age 0.5 to age 1.5) survivorship 
data for spring/summer chinook in the Snake River 
(Achord et al. 2003). The �1 and �2 variables were set 
to covary slightly (correlation � 0.2) since both are 
associated with basin conditions, although one is as­
sociated more with spawning ground conditions and 
the other is associated more with downstream migra­
tion. The �o variables associated with ocean survivor­
ship were drawn from a lognormal distribution speci­
fied by exp(normal(mean � 0, variance � 0.02)). The 
variance for �o was chosen such that the resulting �2 

estimates at the population level reflected approxi­
mately that estimated from actual time series. The �o 

variables associated with different ages were set to cov­
ary strongly (correlation coefficient � 0.8) since they 
are all associated with ocean conditions. 

In addition, studies of ocean condition indices and 
studies of cohort (i.e., all young-of-year t) survivorship 
data for Columbia River salmonids suggest that there 
is also strong year-to-year correlation in ocean survi­
vorship, i.e., good ocean survivorship one year tends 

to be followed by good ocean survivorship the next 
year. To model this, the mean ocean survivorship across 
ages was chosen such that it covaried strongly (cor­
relation coefficient � 0.7) with the mean ocean sur­
vivorship in the previous year. The level of correlation 
was chosen from the levels seen in time series of cohort 
survivorship data. Temporally correlated juvenile sur­
vivorship (in-stream survivorship) was not included 
since evidence of this was not seen in the study by 
Achord et al. (2003). 

Although current densities of salmon in these three 
populations are well below historical levels, density 
dependence in parr to smolt survivorship has been 
shown from studies on Snake River spring/summer chi­
nook (Achord et al. 2003). Achord et al. postulate that 
juveniles continue to show density dependence at low 
density because of nutrient limitation from the asso­
ciated low densities of spawner carcasses. Density de­
pendence was incorporated into the egg to age-1 sur­
vivorship term (s1) by fitting a linear model to the ju­
venile survivorship data in Achord et al. (their Fig. 3), 
giving the following: 

s̃1,t � 0.7393 � s1 � 0.2607 � s1 

t�11 

� Ns,t�1 10 j�t�1 
Ns,  j (5)� � 1 � � 

where s1 is the mean egg to age-1 survivorship in Table 
1 and Ns,t is the number of spawners in year t. The 
minimum s̃1,t was set at 0.39s1 and the maximum at 
1.17s1. The effect of Eq. 5 was an increase in s̃1,t of up 
to 17% over s1 when spawner density was lower than 
the previous 10-year mean spawner density and up to 
61% lower than s1 survivorship when spawner density 
was higher than the 10-year average. 

Using the stochastic matrices and Eq. 4, 1000 pop­
ulation time series were generated for each species. The 
time series were started from a stable age structure 
drawn at random from the stochastic distribution of 
stable age structures. The distribution of log Nt /N0 from 
the 1000 time series describes the statistical distribu­
tion of population size at time t. 

Performance of the diffusion approximation 
for simulated salmonid time series 

The goal was to determine whether a diffusion model 
exists that describes the future distribution and quasi-
extinction risks for the number of current and future 
spawners within a salmon population. A weighted total 
population at time t was defined as Nt � �i wini,t where 
wi equals the average fraction of age i fish that will 
eventually become spawners. This was used instead of 
simply Nt � �i ni,t since the age structure is heavily 
dominated by age-1 individuals due to low age-1 to 
age-2 survivorship and using �i ni,t would mean effec­
tively tracking the dynamics of age-1 individuals alone 
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TABLE 1. Matrix models and parameter estimates. 

A) Matrix models 

Snake River spring/summer chinook (adapted from Kareiva et al. [2000] and modified to separate out the spawner class): 

⎡ 0 0 0 0 ps̃1,t m�1⎤ 
s � 0 0 0 02 2⎢ ⎥ 

A � ⎢ 0 s � 0 0 0 ⎥ .t o o  

0  0 (1  � b4)so�o 0 0⎢ ⎥ 
0 0 b s  � b s  � 0⎣ 4 o o  5 o o  ⎦ 

Snake River fall chinook (adapted from Kareiva et al. [2000]): 

⎡ 0 0 0 0 0 ps̃1,t m�1⎤ 
(1 � h2)so�o 0 0 0 0 0⎢ ⎥0  (1  � h3)so(1 � b3)�o 0 0 0 0 

A t � ⎢ ⎥ . 

⎢ 
0  0 (1  � h4)so(1 � b4)�o 0 0 0 

⎥0  0  0 (1  � h5)so(1 � b5)�o 0 0 

0  (1  � h )s b  � (1 � h )s b  � (1 � h )s b  � (1 � h )s � 0⎣ 3 o 3 o 4 o 4 o 5 o 5 o 6 o o ⎦ 

Upper Columbia steelhead: 

⎡ 0 0 0 0 0 ps̃1,t m�1⎤ 
s2(1 � b2)�2 0 0 0 0 0⎢ ⎥0 so(1 � b3)�o 0 0 0 0 

A t � ⎢ ⎥ . 

⎢ 
0 0 so(1 � b4)�o 0 0 0 

⎥0 0 0 so(1 � b5)�o 0 0 

s b  � s b  � s b  � s b  � s � 0⎣ 2 2 2 o 3 o o 4 o o 5 o o o ⎦ 

B) Parameter estimates 

Spring/summer 
Parameter chinook Fall chinook Steelhead 

p, mouth to spawning ground survival† 0.4815 0.36 0.58 
s1, egg to age-1 survival 0.018 0.0044167 0.047 
s2, mean age-1 to age-2 survival in-stream 0.044 NA 0.009 
so, ocean survivorship 0.8 0.8 0.8 
b2, fraction of age 2 that spawn 0 0 0.009 
b3, fraction of age 3 that spawn 0 0.081 0.333 
b4, fraction of age 4 that spawn 0.216 0.65 0.693 
b5, fraction of age 5 that spawn 1.0 0.863 0.923 
b6, fraction of age 6 that spawn NA 1.0 1.0 
h2, in ocean harvest of age 2 NA 0.0123 NA 

h3, in ocean harvest of age 3 NA 0.0465 NA 

h4, in ocean harvest of age 4 NA 0.1368 NA 

h5, in ocean harvest of age 5 NA 0.1838 NA 

h6, in ocean harvest of age 6 NA 0.1953 NA 

m, average female eggs per female spawner 2747 1500 2500 

Notes: The parameter estimates for both chinook models are based on estimates for Marsh Creek (1980–1998; M. McClure, 
unpublished data). Parameter estimates for steelhead were based on estimates for Methow River steelhead for pre-1998 
conditions (T. Cooney, unpublished data). 

† The parameter p is the fraction that survive harvest during upstream migration � fraction that survive upstream migration 
to spawning ground � survival on the spawning ground. 

rather than the individuals with reproductive potential log Nt /N0 equal constants. Fig. 1(a–c) shows the mean 
across all ages. and variance of log Nt /N0, divided by t for the simulated 

First the predicted vs. observed distribution of log salmon populations. This figure illustrates that the 
Nt /N0 was tested. The predicted distribution is normal mean and variance increased linearly with t as predicted 
with a mean and variance that increase linearly with by theory. The mean and variance of log Nt /N0 divided 
time, such that (1/t) times the mean and variance of by t reached a constant after �5 years (Fig. 1a–c). The 



�� � 

1276 ELIZABETH E. HOLMES Ecological Applications 
Vol. 14, No. 4 

distribution of log Nt /N0 approached normality on the 
same time frame, as determined by the difference be­
tween the cumulative distribution of log Nt /N0 vs. the 
cumulative distribution of a normal with mean �t and 
variance �2t (not shown). This evaluation indicates that 
for time periods past five years in the future, there exists 
a diffusion model that properly describes the statistical 
distribution of population sizes at time t � 5. The pa­
rameters, � and �2, for this diffusion model are given 
respectively by the two constants: (1/t) times the mean 
and variance of log Nt /N0 as t increases. The next step 
is to ask whether and over what time frames, a diffusion 
model gives reasonable approximations for the extinc­
tion or quasi-extinction metric of interest. 

Even though the distribution of log Nt /N0 for t not 
too small may be properly characterized by a diffusion 
model, the probability of crossing thresholds may not 
be since the variance of log Nt /N0 is higher than �2t 
for t � 5 and since there is temporal correlation in the 
population process due to age structure in the popu­
lation model. Thus the extinction or quasi-extinction 
metric itself needs to be tested. For this paper, the ex­
tinction metric of interest was the probability of 90% 
decline within different time frames. Although esti­
mating extinction to one individual is a popular risk 
metric, and unfortunately sometimes mandated, the 
reader is cautioned about using the diffusion approx­
imation to estimate extinction to very low numbers 
since factors that drive dynamics at very low popula­
tion sizes (such as demographic stochasticity) and the 
catastrophes often associated with ultimate extinction 
will likely be poorly represented in a time series of a 
relatively larger population declining to low numbers 
(e.g., Fagan et al., unpublished manuscript). 

The diffusion approximation was tested by compar­
ing the actual probabilities from the 1000 simulations 
to those predicted by the diffusion model with param­
eters � and �2 from Fig. 1(a–c). For the diffusion mod­
el, the probability of decline to a threshold population 
size Ncrit within t years is (Lande and Orzack 1988, 
Dennis et al. 1991): 

Pr(decline to Ncrit in 0 to  t) 

�log(N0 /Ncrit  ) � ���t 
� �� �  �� [ ]
��t 

2 log(N0 /Ncrit  )��� 
� exp 

� 2[ ] 
�log(N0 /Ncrit  ) � ���t 

� �  (6)[ ]���t 

where 

1 � � 0 
2�exp[�2� log(N0 /Ncrit  )/� ] � � 0. 

For 90% decline, N0 /Ncrit � N0 /(0.1N0) � 10. �( y) is  
the value of the cumulative distribution function at y 

of a standard normal distribution with mean 0 and var­
iance 1. Eq. 6 gives the probability of 90% decline at 
any time within 0 to t; however in the simulations, 
population size is only observed at discrete yearly in­
tervals. In this application, the difference between Eq. 
6 and the technically correct comparison, the proba­
bility of observing quasi-extinction at a discrete set of 
yearly intervals, is minor, but this is not always the 
case. If needed, the probability of observing quasi-
extinction at discrete intervals can be calculated nu­
merically by simulating the diffusion process. 

Fig. 1(d–f ) shows the actual (gray lines) vs. diffusion 
approximation estimates (black lines) of the probability 
of 90% decline. The plots illustrate that the diffusion 
model correctly described the probability of 90% de­
cline within different time frames for the simulated 
time series of current and future spawners. This was 
true despite the fact that these time series were not 
strictly speaking a diffusion process. These results are 
for a particular passage metric of interest, i.e., the prob­
ability of 90% decline. The results should not be over-
generalized to say that a simple diffusion model would 
correctly describe all extinction and quasi-extinction 
metrics for salmonids. It is important to test particular 
metrics of interest such as done here for the probability 
of 90% decline. Also it is important to consider what 
segment of the population to track. ‘‘Future and current 
spawners’’ integrates over multiple age classes without 
over representing any one age class and smoothes out 
the year-to-year boom–bust cycles that salmon are 
prone to. This effectively limits the nonprocess error 
in the time series and enables Eq. 6, which is based on 
a diffusion model with no nonprocess error, to work 
well. 

PARAMETER ESTIMATION FOR DIFFUSION


APPROXIMATIONS


This first evaluation indicated that there exists a dif­
fusion model that correctly approximates the behavior 
of these simulated salmon populations for the purposes 
of estimating the distribution of future reproductive 
population sizes and for estimating the probability of 
hitting a critical level of 10% of current size. The next 
question is how well the parameters of this diffusion 
model can be estimated given realistic data constraints. 
Here I review currently available methods for param­
eterizing a diffusion model: maximum likelihood meth­
ods assuming low data corruption (Dennis et al. 1991), 
the same methods but using a running sum transfor­
mation of the data (Holmes 2001), maximum likelihood 
methods using a Kalman filter (Harvey 1989, Lindley 
2003), slope methods (Holmes 2001, Holmes and Fa­
gan 2002), and asymptotically unbiased estimators for 
random matrix products (Heyde and Cohen 1985). 
Code for these methods is given in Supplement 1. The 
different methods have their pluses and minuses de­
pending on the quality and length of data available. 
Below these methods are described and in the next 
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FIG. 1. Behavior of the population trajectories from the age-structured salmonid models versus the behavior of the diffusion 
approximation. For a diffusion model, the mean and variance of log population size (Nt /N0) � (1/ t) should be a constant. 
The age-structured models had this property beginning at approximately t � 5 (a–c). The diffusion model also correctly 
estimated the probability of 90% decline (Nt /N0 � 1/10) within different time frames (d–f ). ‘‘Spr/Sum chinook’’ indicates 
spring/summer chinook. 

section, I evaluate the performance of these different 
methods given the data constraints faced by a PVA of 
Columbia River endangered and threatened salmonid 
populations (McClure et al. 2003). 

All these methods start with a time series of cen­
suses, O1 O2 O3 · · · Ok, of the population. For the pur­
poses of this paper, I assume Ot represents yearly cen­
suses. The census need not enumerate the entire pop­
ulation; index counts, such as a segment of the popu­
lation or a specific age or stage class, can also be used. 

Maximum likelihood methods 

I use the following state-space model to model the 
relationship between the diffusion model we wish to 
estimate from the data, the actual population counts, 
and the observed counts: 

Xt � Xt�1 exp(� � �p) (7a) 

where �p � normal(mean � 0, variance � � 2), 

Nt � Xt exp(�n) (7b) 

where �n � g(mean � 0, variance � � n
2), 

Ot � Nt exp(�se) (7c) 

where �se , variance � � 2 ).� f(mean � � se 

In the above equations, ‘‘�’’ means ‘‘is distributed 
as’’ and g(·) and f(·) are some unspecified statistical 
distributions. Xt represents the diffusion process, which 
correctly approximates the age-structured population 
process for t not too small. Nt are the true population 
counts, which include process error (the Xt part) and 
nonprocess error, �2

n, which is variability due for ex­
ample to density-dependent feedback or age-structure 
cycles. Nonprocess error is apparent in the time series, 
but does not multiply through time as �p does in Eqs. 
7. Observations of Nt are made and these observations 
are corrupted by some sampling error, �se. Eqs. 7 reduce 
to: 

Xt � Xt�1 exp(� � �p) 

O � X exp(� � �  ) (8)t t n  se  

where �n � �se � h(mean � �, variance � �np
2 ) and 

where h(·) is an unspecified statistical distribution. In 
this paper, I refer to this state-space model as a cor­
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rupted diffusion process. The total nonprocess error, T [yt � E(yt � {y1, y2,  . . . ,  yt�1})]2 

� exp ��2
np, equals nonprocess error in the age-structured pop- � 

t�1 � 2Ft 
� 

ulation process, �2
n, plus nonprocess error from sam­

pling error in the censuses of the population, �2
se. 

If we assume that there is no nonprocess error in our 
observations, �2

np � 0 and Ot � Xt. Then the maximum 
likelihood estimates of � and �2 are (Dennis et al. 
1991): 

�̂d � mean of log(Ot�1/Ot) 

�̂ 2d � variance of log(Ot�1/Ot) 

for t � 1,  2,  3,  . . . ,  k � 1. (9) 

Eq. 9 assumes that there are no missing data; cf. Dennis 
et al. (1991) for methods when there are missing data. 
Although the assumption of no nonprocess error in the 
data will never strictly hold for real data, analysis of 
a variety of nonsalmon time series suggests that it can 
be a reasonable approximation (Fagan et al., unpub­
lished manuscript). 

The estimates �̂ d and �̂ 2d are the maximum likelihood 
estimates for the diffusion approximation (Eq. 8) not 
of the age-structured process itself. This creates prob­
lems if the life history of the species of concern is such 
that there is high nonprocess error in the time series 
due to age-structure cycling. If there is also sampling 
error in the data, this adds additional nonprocess error 
variability. Thus Eq. 9 will produce biased estimates 
of �2 because it attributes the nonprocess error in the 
data to process error, and the expected value of �̂ d2, 
E(�̂ d2), is �2 � 2�np  

2  . In this case, it is more appropriate 
to use the full state-space model (Eq. 8) with �2

np not 
assumed to be zero. Kalman filters are widely used in 
time series analysis for maximum likelihood estimation 
for state-space models of the form of Eq. 8 with �np 

assumed to be normally distributed (Harvey 1989: sec­
tion 3.4). Lindley (2003) gives a specific case of such 
an algorithm for population processes of the form of 
Eq. 8. 

This approach for maximum likelihood estimation 
for Eq. 8 can be summarized as follows. Assume h(·) 
in Eq. 8 is normal with � �  0 (if � is non-zero it can 
be factored out) and define yt � log Ot, then the dis­
tribution of yt given all the data prior to yt is: 

yt � {y1, y2,  . . . ,  yt�1} 

� normal[mean � E(yt � {y1, y2,  . . . ,  yt�1}), 

variance � Ft] (10) 

where E(·) is ‘‘expected value’’ andFt denotes the var­
iance of yt � {y1, y2,  . . . ,  yt�1}. The likelihood of a par­
ticular set of �, �2

np and �2 given the data, {y1, y2,  . . . ,  
yT}, is 

L(�, � 2
np, � 2 � {y1, y2,  . . . ,  yT}) 

T 

� � p(yt � {y1, y2,  . . . ,  yt�1}) 
t�1 

� (2�Ft )�1/2 

and the log likelihood is 

log L(�, � 2
np, � 2 � {y1, y2,  . . . ,  yT}) 

T T 2T 1 � 1 � �t� �  log 2� �  logFt � 
2 2 t�1 2 t�1 Ft (11) 

where vt � yt � E( yt � {y1, y2,  . . . ,  yt�1}). The Kalman 
filter calculates vt and Ft given a particular set of �, 
�2

np, and �2. The Kalman filter for this application is 
given in Appendix A or see Harvey (1989: chapter 3). 
The maximum likelihood estimates are the set of �, 
�2

np, and �2 that maximize Eq. 11 and are denoted here 
as �̂ ka and �2 .ˆ ka 

A variant of the maximum likelihood methods uses 
a running sum transformation of the data in place of 
Ot in Eq. 9. A running sum is defined in this case as 

L�1 

R � a O  (12)t i t�i 
i�0 

where the ai are weightings. The running sum estimate 
for � is 

�̂ run � mean of log(Rt�1/Rt) 

for t � 1,  2,  3,  . . . ,  k � L. (13) 

Often the purpose of the running sum is to transform 
the data into a population-level count (see examples in 
Dennis et al. 1991 and Holmes 2001). But the trans­
formation has an independent benefit when data are 
corrupted by extraneous variability. In this case, �̂ run 

can have lower variability and bias than �̂ d (Holmes 
2001, Holmes and Fagan 2002). The process error, �2, 
cannot be estimated using Rt in Eq. 9. The running sum 
transformation filters out not only the extraneous var­
iability but also the process error that we are trying to 
estimate. 

Slope method 

The slope method was developed to deal with situ­
ations where Ot is corrupted with high nonprocess var­
iability, �2

np, that is up to one to two orders of magnitude 
��2 and has an unknown statistical distribution 
(Holmes 2001, Holmes and Fagan 2002). It also uses 
the corrupted diffusion model, but estimates the pa­
rameters by examining how the distribution of log Ot�� / 
Ot changes with �. From Eq. 8: 

mean of log(Ot�� /Ot) � ��  

2 2variance of log(Ot�� /Ot) � �  � �  2� np (14) 

where the � are chosen such that consecutive Ot�� /Ot 

ratios do not overlap. The slopes of the linear regres­
sions of the mean and variance of log (Ot�� /Ot) vs. � 
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give estimates of � and �2, respectively. An unbiased 
estimator for �2 can be devised using Eq. 14 with a 
long enough time series, however when the available 
time series is short (such as �20 years) such an esti­
mator is prone to negative variance estimates. To sta­
bilize the estimates, regression can be done on the run­
ning sum transformed data, Rt�� /Rt instead (Holmes and 
Fagan 2002): 

Rt���̂ � slope of mean log � � vs. � , intercept � 0slp [ ]
Rt 

Rt���̂ 2 vs. � , intercept free slp � slope of var log[ � �] (15)Rt 

for t � 1,  2,  3,  . . . ,  k � L and maximum � � 5. This 
slope estimate for �2 is biased; from numerical simu­
lations E(�̂ 2slp) � 0.5�2 � 0.15�2

np . If nonprocess error 
is an order of magnitude greater than the process error, 
the result is mean estimates that are approximately 
200% of the correct value. 

Asymptotically unbiased estimator for �2 

The previous methods are all based on the diffusion 
approximation for log Nt�� /Nt, which has variance �2� 
for very small �. The �2 estimates from these methods 
will tend to be biased to some degree even if the time 
series is infinitely long. This problem is worst for �̂ d2, 
which relies on the variance at � �  1 for estimation of 
�2. Heyde and Cohen (1985) provide an estimator for 
�2 that is not based on the diffusion approximation but 
rather on products of random matrices: 

1 � 
1/2 [ 1 T�1 Nj�1

�̂ 1/2 � � �  � j�3/2 �log� �  � j��hc 2 2 log(T � 1) j�1 N1 

1 T�2 Nj�2�3/2 � j �log� � � j��] . (16)
log(T � 2) j�1 N2 

This estimator is asymptotically unbiased, i.e., unbi­
ased as the length of the census time series goes to 
infinity, although not necessarily unbiased for short 
time series as shall be seen. The asymptotically un­
biased estimator for � is the same as �̂ d. 

Correcting for inputs 

All these methods assume that there are no external 
inputs into (or subtractions from) the population. If 
inputs are occurring, they will mask the true � and thus 
must be corrected to prevent bias in the estimation of 
�. In Appendix B, a general method to correct for the 
input problem is derived. The formulation of the cor­
rection depends on the life history of the species at 
hand and the ages at which individuals are externally 
input into the population. Thus a specific correction 

Hatchery-reared juvenile fish are regularly released 
into Pacific salmon stocks as part of remediation for 
impacts or to provide fishing opportunities. If these 
hatchery-born fish return to reproduce in the wild, their 
offspring are indistinguishable from the offspring of 
wild-born fish, for typical census purposes at least. The 
goal of the input correction is to estimate what � would 
be if no supplementation were occurring. As described 
in Appendix B, correcting for inputs requires deter­
mining the relationship between the true mean number 
of offspring per wild-born spawner at year t, denoted 
R0,t, to the apparent mean number, denoted R̃ 

0,t, based 
on the population growth rate with inputs occurring. 
The species in this study reproduce once and die, which 
makes R0,t /R̃ 

0,t a relatively straightforward calculation 
(cf. Appendix B): 

R̃0,t � R0,t(1 � Sh,t /Sw,t) � R0,t / fw,t (17) 

where fw,t is an estimate of the fraction of returning 
spawners at year t that were wild-born. For notational 
simplicity, it is assumed here that hatchery fish repro­
duce at the same rate as wild-born fish. If hatchery fish 
reproduce at lower effectiveness, Sh,t can be reexpressed 
as wild-equivalents by multiplying Sh,t by the repro­
ductive effectiveness of hatchery fish relative to wild-
born fish. 

To solve for the no supplementation population 
growth rate at year t, denoted �t, in terms of the ob­
served with supplementation growth rate, denoted �̃ t, 
the relationship log(�) � log(R0 )/T was used. Here T 
is mean generation time (Caswell 2001: 126–130). 
Combining this relationship with Eq. 17 gives 

log(�t) � 
1 

log 
R
˜

0,t � log(�̃ t)T R0,t 

� 
1 

log( fw,t) � log(�̃ t). (18)
T 

As discussed in Appendix B, �̃ t could be estimated from 
the ratio of wild spawners at year t � 1 vs. year t, e.g., 
( fw,t�1St�1 / fw,tSt), or by the ratio of age-1 fish, e.g., (FtSt / 
Ft�1St�1), where Ft is the fecundity of spawners. How­
ever, for Pacific salmon populations, fw,t is often ap­
proximate, and yearly estimates of Ft are unusual. In­
stead, I will use here the total spawner ratios, St�1 /St, 
to estimate �̃ t. This is an approximation since it tacitly 
assumes that either fw,t or Ft remain relatively constant 
from year to year, but reflects an approximation that is 
required given real data constraints. The input-cor­
rected � estimate is then 

1 St�1�̂ ic � mean of log( f̂w,t) � log . (19)[ � �]T St 

will have to be derived following the methods in Ap- Overview of parameterization performance 
pendix B for the species of concern. Here the calcu­
lation is illustrated for salmon populations experienc- Table 2 gives an overview of the four different pa­
ing regular hatchery fish introductions. rameterization methods in terms of whether they cor­
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TABLE 2. Overview of estimator performance and limitations. 

Corrects for No. years 
sampling Expected needed (rules 

Estimators error value of thumb) 

� estimators 
Dennis (same as Heyde-Cohen) no �, sensitive to age-structure perturbations in data 10� 
Kalman yes � 10� 
Runsum yes � 15�

Slope yes � 20�


�2 estimators 
Dennis no �2 � 2�2 10�np 

Kalman yes �2† 20–50�† 
2Slope yes �0.5�2 � 0.15�np 20� 

2 � 2�2Heyde-Cohen no �� np for short series 100� 

† Although the mean estimates are equal to the true value, i.e., are unbiased, the distribution of estimates can be highly 
2skewed for short time series with low �2 and high �np (total nonprocess error), such that the vast majority of estimates can 

be 0 and a few rare extremely high estimates bring the mean up to �2. 

rect for extraneous variability in the time series and 
some rough guidelines regarding their data needs. The 
table emphasizes that there is a trade-off between data 
needs and the ability to correct for error in the data. 
When the data contain high extraneous variability, the 
reduction in parameter bias warrants the increase in the 
variability of parameter estimates. The flip side of this 
is that using a method that corrects for error on time 
series with low errors will lead to an unnecessary loss 
of precision. 

PERFORMANCE OF PARAMETERIZATION METHODS 

GIVEN DATA CONSTRAINTS 

Although Table 2 can help select likely candidate 
methods for a particular application, a more quantita­
tive evaluation of the performance of particular param­
eterization methods is needed since actual census data 
often have a level extraneous error somewhere between 
none and severe and thus the trade-off between pre­
cision and bias is unclear. Such an evaluation is illus­
trated here using the stochastic matrix models for the 
three salmonid populations. This evaluation incorpo­
rates the following data constraints faced by a PVA of 
these populations (McClure et al. 2003): (1) counts of 
only the spawning segment of the populations, (2) time 
series limited to 20 years, (3) severe age-structure per­
turbations in the beginning of some time series due to 
reproductive collapses during dam construction (Wil­
liams et al. 2001), and (4) high sampling error. 

To examine the robustness of the parameter estimation 
methods to these constraints, 20-year time series of 
spawner only counts were generated using the matrix 
models. The time series were generated using either an 
initial stable age structure (drawn randomly from the 
stable set) or an initial age structure with no age-1 in­
dividuals. The simulated spawner time series, St, were 
then corrupted with lognormal sampling error: 

Ot � St exp(�se) 

with � � normal(mean � �, variance � � 2 ).se se 

(20) 

The observed spawner count at year t is Ot . The DA 
parameters, � and �2, were estimated from each 20­
year simulated time series using the Dennis, Kalman, 
running sum, Heyde-Cohen, or slope methods. For the 
running sum and slope methods observed, spawner 
counts were transformed by adding four consecutive 
counts: Rt � �3 

i�0 Ot�i. Parameter estimates were com­
pared with the correct DA parameters determined from 
Fig. 1. 

Realistic levels of sampling error to add were esti­
mated from studies on sampling error in spawner and 
redd surveys (Jones et al. 1998, Dunham and Rieman 
2001) and from an examination of the average non-
process error in Columbia River redd count data. Redds 
are the egg nests made by spawning salmon, and redd 
counts were the most common data type for the Co­
lumbia River PVA in McClure et al. (2003). Using a 
lognormal model for observation errors, Jones et al. 
(1998) found levels of total within plus between ob­
server sampling error variability of �se

2 � 0.09 to 0.78. 
These levels of lognormal sampling variability are con­
sistent with those found in another study of variability 
between different observers’ counts of redds (Dunham 
and Rieman 2001). To find the average total nonprocess 
error (which includes sampling variability plus other 
nonprocess error) in actual time series, I examined a 
collection of 44 20-year redd-count time series from 
different spawning areas in the Snake River basin, Ida­
ho (data in supplements of McClure et al. 2003). I 
estimated an average total nonprocess error of �np

2 � 
0.56 in this redd-count data. The empirical studies on 
sampling errors combined with the average total non-
process error within redd-count time series suggest that 
year-to-year sampling error variability is likely to be 
in the range of �se

2 � 0.1 to 0.75, with 0.1 on the low 
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FIG. 2. Performance of the � estimates from the Dennis, runsum, Kalman, and slope methods. One thousand 20-year 
spawner time series were generated from the spring/summer chinook, fall chinook, and steelhead stochastic matrix models. 
The column labels indicate the type of error added: ‘‘None’’ indicates stable starting age structure and no sampling error; 
‘‘Age’’ indicates no sampling error but perturbed age structure; ‘‘Low,’’ ‘‘Med,’’ and ‘‘High’’ indicate stable age structure 
plus lognormal sampling error with �se

2 � 0.1, 0.5, or 0.75, respectively. The box plots summarize the estimates among all 
1000 simulations. The line in the box shows the median estimates, and the box encloses the middle 75% of the estimates; 
the whiskers enclose 95% of the estimates. 

end given minimum observer variability alone and 0.75 
on the high end given that this is more than observed 
levels of total nonprocess error. These levels of sam­
pling error are �10–100 times larger than the median 
process error estimates from actual salmonid time se­
ries in the Columbia River basin. 

To model these sampling error levels, lognormal 
sampling error was added to the spawner counts using 
Eq. 20 with low ( �se

2 � 0.1), medium ( �se
2 � 0.5), or 

high ( �2
se � 0.75) sampling error. The bias in error, �, 

drops out since the parameter estimates always use the 
difference between log counts (e.g., log Ot�1 � log Ot). 
Jones et al. (1998) found that observers have a non­
linear tendency to underestimate as the number of ob­
jects to be counted increases. However, they found this 
for counts of tens of thousands of salmon; Dunham and 
Rieman (2001) did not find this pattern for redd counts 

in the hundreds, which are more typical of the counts 
for the endangered and threatened salmon populations 
simulated in this study. Thus, I assumed that the sam­
pling error was independent of total spawner numbers. 

Fig. 2 shows the performance of the � estimators 
with either no sampling error and a stable starting age 
structure, with only an age-structure perturbation and 
no sampling error, or a stable initial age structure and 
low, medium, or high sampling error. In the box plots, 
the middle line is the median and the box encloses 75% 
of the estimates from the 1000 simulations. All meth­
ods gave unbiased estimates of � for the simulations 
started with a stable age structure. The Dennis and 
slope estimates of � were most variable, and the run-
sum and Kalman estimates were generally least vari­
able. The age-structure perturbation led to an under­
estimation of � that was most apparent for the Dennis 
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FIG. 3. Performance of the �2 estimates (log scale) from the Dennis, Heyde-Cohen, Kalman, and slope methods for the 
spring/summer chinook, fall chinook, and steelhead simulations. See Fig. 2 for details. 

estimate, while the other three methods showed only 
slight underestimation. For the runsum and Kalman 
estimates, 75% of the estimates were within �0.05 of 
the correct value for low and medium sampling errors. 
For high sampling error, the range of the estimates 
increased to 75% of estimates between �0.08 of the 
correct value. These errors can be translated into errors 
in percentage yearly growth rate by multiplying by 100. 

Fig. 3 shows the performance of the �2 estimators. 
The Dennis method overestimated �2 for all cases, with 
and without sampling error. For example, with no sam­
pling error and a stable starting age structure, the me­
dian �̂ d2 estimates were 0.35, 0.12, and 0.08 vs. the 
correct values of 0.033, 0.042, and 0.040 for spring/ 
summer chinook, fall chinook, and steelhead, respec­
tively. The bias was due to the tendency of the salmon 
simulations, like real salmon populations, to exhibit 
boom and bust cycles. The result was high nonprocess 
error in the time series even without added sampling 
error. With a perturbed age structure, the �̂ 2d more highly 
overestimated �2, and with sampling error added in 
addition, the overestimation was severe. The median 

�2
d were 2.02, 1.74, and 1.71 for the three species with 

the high added sampling error. The Heyde-Cohen es­
timates were similarly highly biased with high non-
process error. 

In contrast to the overestimation by these estimators, 
the Kalman estimator was prone to underestimating the 
correct �2; median Kalman estimates were close to 
10�16 for spring/summer chinook across all corruption 
levels and for fall chinook and steelhead for the higher 
sampling error levels. Even when the median estimates 
were close to the true values (i.e., for fall chinook and 
steelhead with low sampling error), �2 estimates close 
to zero were still common and comprised 20–30% of 
the estimates. Overall for the 20-year time series es­
pecially the time series with high sampling error levels, 
the data were usually most likely under a scenario with 
all the variability attributed to nonprocess error and 
thus �2 � 0. In contrast, the mean estimate of �2 (rather 
than the median) was uniformly close to the true �2 

(similar to the results by Lindley [2003]). This differ­
ence between the mean and median estimates occurred 
because the distribution of estimates was highly 
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skewed, with most estimates essentially zero except for 
a few very high estimates, which brought up the mean. 
This difference between the median Kalman estimates 
and the correct DA values diminished if a longer time 
series was used, and largely disappeared for 100-year 
time series. 

The slope method gave estimates that were overall 
closest to the true �2 for the 20-year time series, al­
though with no sampling error added to the time series, 
they tended to underestimate the true value as pre­
dicted. With a stable initial age structure and no sam­
pling error, the median estimates were 0.025, 0.022, 
and 0.018 relative to the correct values of 0.033, 0.042, 
and 0.040 for the three species, respectively. The es­
timates were not appreciably changed by the age-struc­
ture perturbation nor low sampling error. As sampling 
error increased to the medium and high levels, however, 
the slope estimator began to increase and for the highest 
sampling error the median estimates were 0.12, 0.12, 
and 0.12, for the three species. These estimates were 
still substantially closer to the true values than the Den­
nis and Heyde-Cohen estimators at high sampling error 
levels. 

Testing the input corrector 

To study the robustness of the input correction (Eq. 
19), simulations were run as above but with a random 
number of age-1 hatchery fish added each year. Be­
tween 1 and 1 � 105 fish were added each year; the 
number drawn from a uniform random distribution. All 
simulations were started with a stable age structure. 
Each simulation produced wild and hatchery spawner 
counts of which observations, Ow,t and Oh,t, were made 
with medium sampling error. The parameter � was es­
timated using �̂ d with either no input correction (Eq. 
13 with Ot � Ow,t � Oh,t) or with input correction (Eq. 
19). The wild fraction was estimated from the Ow,t and 
Oh,t counts: 

Ow,tf̂w,t � . (21)
Ow,t � Oh,t 

The slope method (Eq. 15 with Rt � �i
3 
�0 Ot�i) was used 

to estimate �2. 
The top panel of Fig. 4 contrasts the input-corrected 

vs. the uncorrected � estimates. Without correction for 
inputs, the median estimates of � were 0.00, 0.02, and 
0.00 indicating stable or increasing populations with 
the inputs relative to the correct values of �0.093, 
�0.015, and �0.18, indicative of declining wild dy­
namics for the three species, respectively. With cor­
rection, the median estimates were �0.096, �0.023, 
and �0.18. Thus, the input correction successfully ex­
tracted the correct value from population trajectories 
that otherwise appeared to come from a process with 
much higher � due to hatchery inputs. The lower panel 
illustrates that the �̂ slp

2 estimate with no explicit hatch­
ery correction gave a relatively unbiased �2 estimate 
despite the variable hatchery inputs. 

SENSITIVITY OF RISK METRICS TO PARAMETER 

MISESTIMATION 

The errors in parameter estimation seen in Figs. 2 
and 3 translate into errors in the estimated risk metrics. 
Two risk metrics were evaluated for their sensitivity to 
parameterization errors: the long-term population 
growth rate, � � exp(�) and the probability of a 90% 
decline within a given time frame (Eq. 6). Fig. 5 com­
pares the estimates of �. The figure shows the proba­
bility density function, i.e., P(� � � � � � d�)/d�. 
Since the variability of � estimates was not dramati­
cally different among the estimators, the variability in 
� using only �̂ run is shown. The figure illustrates that 
50% of the estimates were within �0.04 of the correct 
value even for high sampling error; although, much 
lower and higher estimates were not uncommon. With 
low sampling error 10% of estimates were more than 
�0.07 greater than the correct values for the three spe­
cies. For high sampling error, this increased to �0.10. 
This level of variability indicates that unless the pop­
ulation is declining very rapidly, a 20-year time series 
is unlikely to be sufficient to reject a null hypothesis 
that the population is stable or increasing (� � 1) at 
the P � 0.05 level using a standard t test. 

Fig. 6 compares the estimates of the probability of 
90% decline from simulated time series with a stable 
initial age structure and no sampling error added. Three 
methods for estimating the parameters were contrasted. 
The first used the Dennis estimators, which assumed 
zero nonprocess error (as in Dennis et al. 1991). The 
second method used the Kalman estimates with normal 
nonprocess error. The third used the slope method for 
�2 and the running sum method for � (as in Holmes 
and Fagan 2002). Due to high overestimation of �2 by 
�̂ 2d, the median probability estimates using the Dennis 
estimators were highly biased relative to the observed 
probabilities from the simulated spring/summer chi­
nook and fall chinook time series (Fig. 6, left panels). 
The probability of 90% decline for steelhead was dom­
inated by the very low �, and was less affected by 
overestimation of �2. The majority of Kalman estimates 
for �2 were severe underestimates for spring/summer 
chinook (Fig. 3), and the median probability estimates 
were correspondingly biased for this species (Fig. 6, 
middle panels). For steelhead and fall chinook, the me­
dian Kalman estimates for �2 were close to the true 
values when no sampling error was added (Fig. 3), and 
in this case the median probability estimates were cor­
respondingly close to the true probabilities. The slope 
estimates of �2 were generally close to the true values 
for all species, and the median probability estimates 
using �̂ slp

2 matched the observed probabilities across 
species. 

Estimation of the probability of 90% decline using 
the parameter estimates, �̂ slp

2 and �̂ run, was also tested 
for sensitivity to sampling error levels. Estimation was 
generally robust to low to medium sampling error (ex­
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FIG. 4. Error in � and �2 estimates (log scale for �2) due to yearly hatchery inputs into the salmon simulations. The 
starting age structure was perturbed, and low sampling error ( �2

se � 0.1) was added. The parameter � was estimated using 
�̂ d with either no input correction (Eq. 13) or with input correction (Eq. 19). The �2 parameter was estimated using �̂ d2 vs. 
�2 with no explicit hatchery correction. ˆ slp 

FIG. 5. Variability of � estimates using �̂ run. See Fig. 2 for simulation details. 
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FIG. 6. Estimated vs. true probability of 90% decline within a given time horizon. Probability estimates were calculated 
using Eq. 6 with �̂ d and �̂ d2 (Dennis), Eq. 6 with �̂ ka and �̂ ka  

2  (Kalman), or Eq. 6 with �̂ run and �̂ slp  
2  (runsum/slope). The 

parameters were estimated from simulated spawner counts. The true probability was calculated from 1000 100-year time 
series generated from each stochastic matrix model. Results are shown for simulations with no sampling error added to the 
spawner counts. Simulations were started with a stable initial age structure. The solid line shows the median errors observed 
in the simulations, and the dashed and dotted lines encompass 75% and 95% of the estimates, respectively. 

cept for fall chinook), but a mismatch between median correctly tracked the true probabilities. Nonetheless the 
predictions and the true probabilities became apparent probability estimates were variable and accurately rep-
with high sampling error (Fig. 7) when the difference resenting the variability is critical to the use of prob­
between �̂ 2slp and �2 increased (Fig. 3). This was es- ability metrics in applications, as discussed in the next 
pecially true for fall chinook with the predicted prob- section. 
abilities bearing little relationship to the true low prob­
abilities. Variability in the estimated probabilities was APPLICATION TO ACTUAL DATA 

highest for fall chinook and lowest for steelhead. These The previous sections have focused on using simu­
differences in the variability of estimates between spe- lated data to evaluate the appropriateness of the dif­
cies was likely due to differences between their rates fusion approximation for a given application and to 
of decline; � was closest to 1.0 for fall chinook (with select parameterization methods. Once this is com­
� � 0.98) and farthest for steelhead (with � � 0.84). pleted, the next step is to use the diffusion approxi-
Fig. 7 illustrates that in some cases, e.g., the fall chi- mation to estimate risk metrics using the actual time 
nook with � close to 1.0, estimated probabilities of series data from the population of concern. This final 
severe declines were so variable as to provide little step is illustrated using a 38-year time series from 
useful risk information. In other cases, however, e.g., spring chinook in the Upper Columbia River basin (T. 
the spring/summer chinook and steelhead with � values Cooney, unpublished data). To analyze this data, two 
farther from 1.0, the median estimated probabilities approaches were used. The first focuses on point es­
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FIG. 7. Effect of sampling error on estimated vs. actual probability of 90% decline within a given time horizon. Probabilities 
were calculated using Eq. 6 with �̂ run and �̂ slp

2 . Results are shown for simulations with low, medium, or high sampling error 
added to the spawner counts. Simulations were started with a stable initial age structure. The solid line shows the median 
errors observed in the simulations, and the dashed and dotted lines encompass 75% and 95% of the estimates, respectively. 

timates and confidence intervals. The second uses a 
Bayesian approach and estimates the probability of the 
parameters and risk metrics given the data. This ap­
proach gives a measure of the data support for different 
potential true risk levels. Preliminary diagnostic tests 
for the data, namely testing log Nt�1 /Nt for normality, 
outliers, and serial correlation, are not discussed here, 
but are reviewed in Dennis et al. (1991). 

Point estimates and confidence intervals 

The approach here consists of four steps: (1) select 
estimators and make the needed assumptions about 
their expected values, (2) calculate the point estimates, 
(3) specify their expected distributions, and (4) use 
parametric bootstrapping to estimate confidence inter­
vals. 

1) Estimators and their expected values.—The pre­
vious analyses suggest that given the expected levels 
of process and nonprocess error in salmonid data: 

E(�̂ 2slp) � � 2 

E(�̂ 2) � 2� 2 (since � 2 k � 2)d  np  np  

E(�̂ run) � �. (22) 

2) Point estimates.—From the time series, the fol­
lowing estimates were calculated: � �0.07, 2 ��̂ run �̂ slp 

0.01, and �̂ d2 � 0.50. Using the assumptions in Eq. 22, 
the point estimates of the risk metrics can be calculated. 
The point estimate of � for this population is �̂ � 
exp(�̂ run) � 0.93, indicating a 7% per year decline. The 
point estimate for a 90% decline within 25 years uses 
Eq. 6 with � � �̂ and �2 � �2 : P(N25 � 0.1 � N0) 
� 0.44. 

3) Their estimated distributions.—The statistical 
distributions of the parameter estimates are themselves 
estimated using the known distribution of the parameter 
estimates (Holmes and Fagan 2002) and in place of the 
expected or true value of the parameters, which appear 

run ˆ slp 
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in these distributions, using the point estimates for the 
parameters (from step 2): 

2 slp
�̂ � gamma�2�̂ 2 

, 
df �df 2 

is the estimated �̂ 2 distribution given 

2E(�̂ 2slp) df 
�̂ 2slp � gamma ,[ ]df 2 

and using �̂ 2slp as an estimate of E(�̂ 2slp ); 

1 �̂ 2d n � 1 
�̂ 2np � �̂ 2d � gamma� , �2 n � 1 2 

is the estimated �̂ np
2 distribution given 

2E(�̂ 2dp) n � 1 
�̂ 2d � gamma ,[ ]n � 1 2 

and using E(�̂ 2d) � �̂ 2d; 

�̂ 2 2�̂ 2 

�̂ � normal �̂ run, � 
np 

2� n � L (n � L) � 
is the estimated �̂ distribution given 

� 2 2� 2
np

�̂ run � normal �, � (23)[ ]n � L (n � L)2 

and using the estimated �2 and �2 . The parameter n isnp 

the length of the time series, L is the number of counts 
summed together to form a running sum, and df � 0.333 
� 0.212n � 0.387L. The distribution gamma(�,�) de­
notes a gamma distribution with scale � and shape �, 
a �2(�) denotes a chi-square distribution with � degrees 
of freedom and a normal(a, b) denotes a normal dis­
tribution with mean a and variance b. 

4) Confidence intervals via parametric bootstrap­
ping.—The confidence intervals were estimated by 
generating thousands of parameter estimates from their 
estimated distributions (Eq. 23). First �̂ 2 and �̂ np

2 were 
drawn using their estimated distributions, and then a 
�̂ was generated using the �̂ 2 and �2 draws. For each ˆ np 

parameter set, � and P(N25 � 0.1 � N0) were calculated. 
This was repeated 10 000 times. The 95% confidence 
intervals contain 95% of the estimates: � 95% confi­
dence intervals were (0.85, 1.04) and P(N25 � 0.1 � 
N0) 95% confidence intervals were (0.04, 0.94). 

Posterior probability distributions 

The point estimates do not take into account the un­
certainty in the parameter estimates, and the confidence 
intervals, which do, are difficult to use in a decision-
making framework. For example, the 95% confidence 
intervals on � include 1.0. However, this population 
has declined 93% over the last 38 years, and the data 
are most consistent with a � � 1.0, even though it is 
possible for such a decline to have occurred by chance 
in a population with long-term nondeclining dynamics 
(i.e., true � � 1). Statistical decision theory (e.g., Ber­
ger 1985) presents a framework for incorporating un­

certainty in the true risk levels and the costs of different 
management decisions given different true risk levels. 
Wade (2000) and Dorazio and Johnson (2003) provide 
recent discussions of this Bayesian decision framework 
in conservation biology and resource management con­
texts. This framework relies on calculating the prob­
ability of different risk levels (i.e., the posterior prob­
ability distributions) given the uncertainty in the un­
derlying true parameters, in this case in �, �2, and 
�2 .np 

Calculation of the posterior probability distribution 
for a given risk metric, �, involves calculating the 
probability that the risk metric is some particular value, 
�, given the data. This is calculated by integrating ‘‘the 
probability of the data given a particular set of param­
eter values, �, times the probability of that � set’’ over 
all sets of parameter sets, �, for which the risk metric 
equals �: 

p(� � � � data) 

� L(� � data)� (�)
� d� (24)

�(data)all � for which ��� 

where p(� � � � data) is the probability density at � 
� � given the data (i.e., the posterior probability den­
sity function for �), L(� � data) is the probability of the 
data given the parameters � (i.e., the likelihood func­
tion), �(�) is the initial assumption regarding the prob­
ability of different true process parameters (i.e., the 
prior), and �(data) is a normalizing constant. There are 
many texts on Bayesian statistics. The sections in Hil­
born and Mangel (1997) on Bayesian methods are par­
ticularly accessible for ecological applications. 

The following algorithm calculates p(� � � � data) 
using �̂ run, �̂ d2, �̂ slp  

2  as the data. Similar algorithms can 
be found in Hilborn and Mangel (1997:256–260). The 
code to run this algorithm and produce Figs. 8 and 9 
is given in Supplement 1. 

Step 1.—Specify prior distributions for �, �2, and 
�2 . For this example, I used a uniform distribution of np 

� on (�0.2, 0.2) and a uniform distribution of �2 onnp 

(0, 1). As will be seen, the data provide much infor­
mation on � and �2 , and so the posterior distributions np 

are quite different than the priors. The same cannot be 
said for �2. My subjective prior having examined hun­
dreds of salmonid time series, is that �2 is between 
0.001 and 0.1. To express this, I used a prior for �2 of 
a gamma distribution with scale of 0.25 and shape of 
5. I compared this with an alternate prior of a uniform 
distribution on (0, 0.5). This prior says the prior belief 
is that �2 � 0.1 by a factor of four to one, which seems 
unlikely. A standard reference prior for normal vari­
ances is uniform on log �2 (cf. Lee 1989: section 2.7), 
but for the corrupted diffusion model, L(�2 � data) goes 
to a constant as log �2 goes to negative infinity since 
�2 � 0 is perfectly plausible from the model’s stand­
point. Thus this prior will lead to infinite probability 
densities when Eq. 24 is integrated. 
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FIG. 8. Priors and estimated posterior probability distributions for �, �2, and �np
2 . This analysis used a 1960–1998 spawner 

count time series from Methow River spring chinook in the Upper Columbia River basin. The right panels show the estimated 
distributions using an informative prior, which put most prior probability on �2 between 0 and 0.1. The left panels show the 
estimated distributions using a uniform prior which put an even prior probability on �2 between 0 and 0.5. 

Step 2.—Randomly draw values of �, �2, and �np
2 Step 4.—Calculate the total likelihood, L, of the �, 

from their priors. �2, and �2 parameters generated in step 2 given the np 

Step 3.—Calculate the � using the values of �, �2 actual �̂ run, �̂ d2, �̂ slp  
2  estimates from the data: 

from step 2. If the risk of interest is the probability of L � L(�, �2, �2 � �̂ ) � L(�, �2, �2 � �̂2 )
90% decline in a given time frame, this means putting 

np run np slp 

these parameters into Eq. 6 to calculate �. If the risk � L(�, �2, �np
2 � �̂ d2). 

metric of interest is �, � � exp(�). Note that �̂ run is independent of �̂ d2 and �̂ slp  
2  . To simplify 
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FIG. 9. Priors and estimated posterior probability distributions for �, the probability that the population ever experiences 
a 90% decline at some point in the future, and the expected value of the probability of 90% decline within different time 
frames. 

this step, I also assumed that �̂ 2 and �̂ 2 are indepen­d  slp  

dent, given a particular set of parameters. This is not 
entirely true. In simulations, I have found correlation 
coefficients of �0.2. 

The likelihoods are calculated from the probability 
of �̂ run, �̂ 2d, �̂ 2slp  given the �, �2, and �2

np  parameters 
generated in step 2. The distributions of �̂ run, �̂ d2, and 
�̂ slp

2 are given in Eq. 23, and from these the likelihoods 
are calculated. The L(�, �2, �2 � �̂ ) equals the prob­np run

ability density at �̂ run of a normal with mean � and 
variance (�2 � 2�np

2 )/(n � L). The L(�, �2, �np
2 � �̂ slp

2 ) 

equals the probability density at �2 of a gamma with ˆ slp 

scale � and shape � where � � (0.5�2 � 0.15�np
2 )/� 

and �̄ � (0.333 � 0.212n � 0.387L)/2. Recall from 
Eq. 15 that E(�̂ 2slp) � (0.5�2 � 0.15�2

np ). The L(�, �2, 
�2 � �̂ 2) equals the probability density at �̂ 2 of a gamma np d d 

with scale � and shape � where � �  (�2 � 
2�2 )/�̄ and �̄ � (n � 1)/2. Recall the introduction of np 

ˆ that E( )  � (�2 � 2� ). See any statistics text for �2
d �̂ 2d  

2
np  

the probability density functions for normal and gamma 
distributions. The gamma distribution arises given that 
q�̂ 2/E(�2) � �2(q); thus �̂2 � �2(q)E(�2)/q, which equals 
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a gamma distribution with scale � 2E(�2)/q and shape 
� q/2. 

Step 5.—Repeat steps 2–4 thousands of times, re­
cording the parameters (step 2), the risk values (step 
3), and total likelihood (step 4) for each iteration. 

Step 6.—Divide the outputs of interest, e.g., risk val­
ues and parameters, into discrete intervals and calculate 
the proportion of the total likelihood (L summed over 
all the iterations) within each interval. Divide the prob­
abilities by the size of the interval. This gives the pos­
terior probability distribution for the output of interest. 

Fig. 8 shows the posterior probability distributions 
for �, �2, and �2 relative to the priors for the 1960– np 

1998 Methow River spring chinook data. The plots 
(Fig. 8d–f ) show the posterior distributions using the 
uniform prior on �2. The posterior on �2 is not uniform 
and gives more weight to �2 � 0.2 than �2 � 0.2. The 
plots (Fig. 8a–b) show the posterior distributions using 
my quite informative prior on �2 based on previous 
analyses. The posterior distribution for �2 is the same 
as the prior in this case. Together, this indicates that 
the data are not providing much information beyond 
that �2 is more likely to be �0.2. For � and �2 , the np 

data provide much more information, and the posteriors 
are quite different than the uniform priors. Putting a 
strong prior on small �2 decreases the uncertainty in � 
and �2 , and their posterior distributions are more peak­np 

ed, but even with a prior that gives weight to higher 
�2, there is still considerable information on � and 
�2 .np 

Fig. 9 shows the posterior probability distributions 
for the following risk metrics: � � exp(�), the prob­
ability that the population ever experiences a 90% at 
some point in the future (this is �� in Eq. 6), and the 
expected value of the probability of 90% decline within 
different time frames. The expected value of the prob­
ability of extinction multiplies the probability of ex­
tinction given a particular set of true parameters by the 
probability of those parameters (specified by the pos­
terior probability distribution) and integrates this over 
all possible parameter values. See Ludwig (1996a) for 
an extensive discussion of the expected value of the 
probability of extinction, which he terms the Bayesian 
probability. A simple algorithm to calculate the ex­
pected probability is to divide 0 to 1 into regular in­
tervals, take the value of the posterior probability den­
sity of P(90% decline in x years) from step 6 at the 
center of those intervals and multiply that by the width 
of the interval, and then sum these together to calculate 
the expected value of P(90% decline in x years). 

Most of the area of posterior probability distribution 
of � is in the region � � 1 (Fig. 9a,d) indicating that 
the data give high support to long-term declining dy­
namics (� � 1). The support is considerably higher 
when strong prior information on �2 is included (Fig. 
9a), but is still high when less specific prior information 
on �2 is used (Fig. 9d). Fig. 9(b,e) shows the posterior 
distributions of the probability of eventual 90% de­

cline. The prior (based on the parameter priors) gave 
roughly equal weight to a 0 or 1  probability. The pos­
terior distribution was strongly skewed toward a prob­
ability of 1 for eventual 90% decline indicating that 
the data strongly support a high probability of eventual 
90% decline. This occurred because either � � 0, which 
means 90% decline is certain eventually, or if � � 0, 
�2 was large since that is the only way we could have 
observed a 7% yearly decline over the last 38 years by 
chance with � � 0. Thus the probability of eventual 
90% decline was still high. Given that data strongly 
support eventual probability of a 90% decline, when is 
it likely to occur? Fig. 9(c,f ) shows the expected value 
of the probability of 90% decline within different time 
frames. Fifty percent of the population trajectories gen­
erated by sampling from the posterior distributions of 
the parameters would have declined 90% within 30 
years. Over 65% would have declined 90% within 50 
years. 

Overall, � appeared to be the most straightforward 
metric to use. It behaved well and is not overly sensitive 
to estimation of �2, which is imprecise. The � metric 
is also transparent. If � � 1, the population is declining; 
if � � 0.9, it is collapsing. If the population needs to 
be recovered from low levels, � must be increased 
above 1.0. Risk metrics involving probabilities are 
much more problematic. They are highly variable and 
sensitive to estimation of �2. This section gave an ex­
ample of how to incorporate uncertainty into proba­
bility metrics and how to express that uncertainty, how­
ever much work remains to be done in this area. It is 
tempting to argue that because of their high uncertainty, 
metrics involving extinction or quasi-extinction prob­
abilities are bad and should simply be abandoned; in­
deed others have argued as much. However, a measure 
of extinction risk is integral to the legal definition of 
‘‘jeopardy’’ under the U.S. Endangered Species Act. 
While this is true, research into how to quantify and 
express the extinction risk in a way that properly char­
acterizes what we do and do not know about the prob­
ability of population declines to critical levels is es­
sential to science-based decision making for threatened 
and endangered species. 

CONCLUDING REMARKS 

The diffusion approximation approach has a solid 
foundation on theory concerning the behavior of sto­
chastic age-structured models and opens a large tool­
box of quantitative methods for linear stochastic mod­
els. In addition, the fact that many population processes 
with a multitude of parameters can be approximated 
by a three parameter model means that parameters can 
be estimated with increased statistical power (relative 
to trying to estimate a large number of parameters with 
limited data). However, the diffusion approximation 
approach makes simplifying assumptions, which will 
always be violated to some degree for real populations. 
This paper describes a method for evaluating the ap­
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propriateness of the diffusion approximation for a par­
ticular PVA application and for selecting among the 
currently available parameterization methods. The sal­
monid populations modeled in this paper exhibit sub­
stantial deviations from the diffusion model, such as 
nonstable age structure, high temporal autocorrelation 
in ocean survivorship, and juvenile density depen­
dence, yet the diffusion model does approximate the 
behavior of the simulated population trajectories, in 
terms of probabilities of crossing severe decline thresh­
olds and of the predicted distribution of future popu­
lation sizes. 

The analyses also illustrate that careful estimation 
of the diffusion parameters is critical and that poor 
performance of estimators should not be confused with 
poor performance of the diffusion approximation. In 
particular, one should be cautious about assuming that 
nonprocess error within the data is low even if sampling 
error is known to be low. In the simulated salmonid 
populations, density dependence in the juvenile stage 
and perturbation of the age structure created feedbacks 
that led to nonprocess error variability within the data. 
The result was high nonprocess error variability even 
with no sampling error added. This led to overesti­
mation of the process error with parameterization meth­
ods that are not designed to deal with high nonprocess 
error. Two estimators designed to deal with high non-
process error were tested: a Kalman filter maximum 
likelihood estimator and a slope estimator. For the 20­
year salmon time series with small process error, the 
majority of Kalman filter maximum likelihood esti­
mates of �2 were essentially zero. In other words, a 
model with nonprocess error alone had the highest like­
lihood of producing the data. An alternative estimator, 
the slope estimator for �2, performed better for the 
simulated salmon populations and gave �2 estimates 
that were within 50–150% of the true value. For low 
to medium sampling error levels relative to those ex­
pected within actual salmon censuses (but still 5–50 
times higher than the expected process error), �2 gaveˆ slp 

median estimates that did not appear to substantially 
degrade quasi-extinction estimates; however for high 
sampling error, �2 estimates were an order of magnitude 
too high and this did degrade the estimates. The ro­
bustness of �2 to nonprocess error due to density de­ˆ slp 

pendence is encouraging; similar robustness was also 
found in a cross-validation of diffusion-approximation 
methods using a large collection of real salmon time 
series (Holmes and Fagan 2002). 

The purpose of this paper is to illustrate a method 
for investigating the appropriateness of diffusion ap­
proximation for a specific population and to evaluate 
its parameterization given the data constraints for that 
population. New parameterization methods are being 
continually refined, and no doubt better methods than 
those presented here will eventually be available. The 
methods described here can be used to evaluate and 
compare these new methods to existing ones. Experi­

ence suggests that the best parameterization method is 
application specific; that is, it may not be possible to 
find a method that is best for all situations. In particular, 
the relative performances of the different parameteri­
zation methods for the simulated salmonid time series 
in this paper should not be overgeneralized to their 
performance for other population time series. The max­
imum likelihood estimates assuming zero nonprocess 
error did especially poorly for the salmonid time series. 
However, a study of the performance of these esti­
mators on a large collection of real time series found 
that they provided good estimates for time series of a 
wide variety of species, just not for salmon (Fagan et 
al., unpublished manuscript). Presumably, the level of 
nonprocess error in many nonsalmonid time series is 
not so large as to significantly bias �2 estimates. Sim­
ilarly, maximum likelihood estimation assuming non­
zero nonprocess error (the Kalman estimates) produced 
severe underestimates of �2 for the 20-year salmonid 
time series. However this was not a problem with lon­
ger simulations (100� years), and for nonsalmonid 
population processes, it may perform well for short 
time series. It is also worth noting that the Kalman 
algorithm does estimate the parameters with the highest 
likelihood of producing the data, assuming all param­
eters are equally likely. In the real world, all parameters 
are not equally likely; specifically process error equal­
ing essentially zero is unlikely given that year-to-year 
variability in survivorship and fecundity is occurring. 
Incorporating informative priors on �2 into the Kalman 
algorithm may be a way to formally avoid unrealistic 
parameter estimates. 

Regardless of the PVA model used, a certain amount 
of variability in estimated parameters and risk metrics 
is an unavoidable aspect of the analysis of stochastic 
population processes, simply due to the nature of these 
processes. One of the strengths of DA methods is that 
the statistical distributions of the estimated parameters 
are known. As a result, the uncertainty in the estimated 
risks can be calculated. This is often not the case for 
other PVA approaches, such as Leslie matrix models 
or individual-based simulations, where uncertainty in 
the estimated model parameters is often poorly known, 
if known at all. Even though the uncertainty in DA risk 
metrics can be calculated, this uncertainty is definitely 
high. In this situation, examining either the likelihood 
functions or the posterior probability distributions for 
the risk metrics, rather than simply the point estimates 
and confidence intervals, will help to clarify the level 
of data support for different risks and to choose risk 
metrics that are most informative. Statistical decision 
theory (e.g., Berger 1985) provides a framework for 
integrating estimates of the data support for different 
risk levels with the consequences of different true risk 
levels. Taking an approach that assesses the degree of 
data support for questions of conservation concern em­
phasizes that while uncertainty does exist, being un­
certain does not mean we know nothing. 
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APPENDIX A 

The Kalman filter for maximum likelihood estimation given corrupted observations is available in ESA’s Electronic Data 
Archive: Ecological Archives A014-023-A1. 
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APPENDIX B 

The development of a general method for correcting for age-specific inputs into the censused population is available in 
ESA’s Electronic Data Archive: Ecological Archives A014-023-A2. 

SUPPLEMENT 1 

The Splus code for estimating parameters and calculating the posterior probability distributions for DA risk metrics is 
available in ESA’s Electronic Data Archive: Ecological Archives A014-023-S1. 

SUPPLEMENT 2 

The Matlab code for running a stochastic matrix model and generating diagnostic plots is available in ESA’s Electronic 
Data Archive: Ecological Archives A014-023-S2. 


