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Abstract. Diffusion approximation (DA) methods provide a powerful tool for popu­
lation viability analysis (PVA) using simple time series of population counts. These methods 
have a strong theoretical foundation based on stochastic age-structured models, but their 
application to data with high sampling error or age-structure cycles has been problematic. 
Recently, a new method was developed for estimating DA parameters from highly corrupted 
time series. We conducted an extensive cross-validation of this new method using 189 long-
term time series of salmon counts with very high sampling error and nonstable age-structure 
fluctuations. Parameters were estimated from one segment of a time series, and a subsequent 
segment was used to evaluate the predictions regarding the risk of crossing population 
thresholds. We also tested the theoretical distributions of the estimated parameters. The 
distribution of parameter estimates is an essential aspect of a PVA because it allows one 
to calculate confidence levels for risk metrics. This study is the first data-based cross-
validation of these theoretical distributions. Our cross-validation analyses found that, when 
parameterization methods designed for corrupted data sets are used, DA predictions are 
very robust even for problematic data. Estimates of the probability of crossing population 
thresholds were unbiased, and the estimated parameters closely followed the expected 
theoretical distributions. 

Key words: Dennis method; Dennis-Holmes method; diffusion approximation; extinction; model 
validation; population viability analysis; salmon; sampling error. 

INTRODUCTION quires detailed population data; unfortunately, such 

Population viability analysis (PVA) has become a data are seldom available. Instead, simple population 

standard tool in conservation biology (Boyce 1992). counts are often the only available data for species of 

Conservation organizations such as The Nature Con- conservation concern. Although PVA methods for 

servancy use it to rank the quality of sites, the IUCN count data exist, cross-validations of these methods are 

(International Union for the Conservation of Nature) lacking. 

uses it to establish the degree of risk faced by species, In this paper, we examine diffusion approximation 

and federal agencies use it to assist management de- (DA) methods for count-based viability analysis using 

cisions regarding threatened and endangered species. a data set of 189 time series from western North Amer-

In spite of its widespread use, there is vigorous debate ican salmon, many from populations that are currently 

in the academic literature regarding the merit of PVA listed as endangered or threatened under the U.S. En-
models. Opinions range from the argument that PVA dangered Species Act. Although DA methods have 
is a poor idea because confidence intervals surrounding been used in a variety of conservation settings (Nich­
risk metrics are too large (Fieberg and Ellner 2000) olls et al. 1996, Gerber et al. 1999, NMFS 2000), they 
and sampling error makes parameterization error-prone are known to be sensitive to sampling error and other 
(Ludwig 1999), to the belief that PVA can be used to non-environmental variability in the data. Salmon time 
establish relative risk even though absolute estimates series suffer from such problems to an extreme degree. 
are tenuous (Fagan et al. 2001), to the contention that The data are characterized by high observation errors, 
PVA is supported by data and sufficiently accurate for and the life history of salmon makes them prone to 
risk assessments (Brook et al. 2000). Missing in this severe age-structure oscillations. Such problems hide 
debate have been rigorous validation studies with large the underlying stochastic process. The standard meth­
and long-term data sets. Brook et al. (2000) presented ods for estimating DA parameters are designed for low 
the first such validation study and examined detailed non-environmental noise (Dennis et al. 1991) and fail 
age-structured PVAs. This type of PVA, however, re- in this situation. 

A new DA method was recently developed (Holmes 
Manuscript received 11 June 2001; revised 25 September 2001) to handle these types of data problems by par­

2001; accepted 13 November 2001; final version received 12 
February 2002. titioning the variability of a population time series into 

3 E-mail: eli.holmes@noaa.gov ‘‘non-process’’ error, such as observation errors or cy-
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cles linked to age-structure perturbations, vs. ‘‘process 
error,’’ the environmental variability driving the long-
term statistical distributions of population trajectories. 
Here, we cross-validate the new method using time 
series of salmon. Our large number of long time series 
allows us to cross-validate not only the bias in risk 
metrics (as did Brook et al. 2000), but also the statis­
tical distributions of the estimated parameters. The sta­
tistical distributions of parameter estimates are perhaps 
the most critical aspect of a PVA because they allow 
one to calculate the uncertainty in one’s risk estimates. 
Point estimates of risk metrics, such as the probability 
of extinction in x years, are by themselves of limited 
value, because even a simple comparison of risk be­
tween populations is meaningless without knowledge 
of the statistical distribution of the estimated risk met­
ric. One strength of DA methods is that these distri­
butions can be calculated. However, these calculations 
require numerous simplifying assumptions. Our study 
presents the first empirical cross-validation of these 
calculated distributions and, consequently, the theory 
underlying DA methods for PVAs. 

METHODS 

We assembled a data set of 147 chinook salmon and 
42 steelhead time series of yearly spawner indices from 
databases maintained by the U.S. National Marine Fish­
eries Service and the Pacific States Marine Fisheries 
Commission (summarized in Appendix A with raw data 
in Supplement 2). The data are from Evolutionarily 
Significant Units (ESUs) in Washington, Oregon, and 
California, USA, and consist of egg-bed counts, dam 
counts, carcass counts, peak live counts, or total live 
estimates. Each time series was divided into 20-, 30-, 
or 40-yr overlapping segments (depending on the anal­
ysis), with the segments separated by five years; e.g., 
a 1960–1999 time series would be divided into the 30­
yr segments: 1960–1989, 1965–1994, and 1970–1999. 
To limit overrepresentation of long time series, we al­
lowed a maximum of 10 randomly chosen segments 
from each time series. To limit overrepresentation by 
two ESUs with a disproportionate number of time se­
ries, only one segment (randomly chosen) was used 
from each time series in the Snake River spring/summer 
chinook ESU, and only three were used from each se­
ries in the Oregon Coast chinook ESU. These restric­
tions applied to all analyses except the �2 estimates, 
which required a larger sample size. We also did a 
separate comparative analysis focused on a smaller 
geographic scale, using all time series in the Snake 
River spring/summmer chinook ESU in the Columbia 
River basin. 

Each segment was divided into a parameterization 
period followed by an evaluation period. Parameter dis­
tributions and risk levels were predicted from the pa­
rameterization period, and then the data in the evalu­
ation period were used to test these predictions. We 
did two basic analyses. First we cross-validated the 

parameter distributions estimated from the parameter­
ization period; this tests the distributions used to cal­
culate confidence intervals for DA risk metrics. Sec­
ond, we asked, ‘‘Do diffusion approximations properly 
estimate the probability of crossing population thresh­
olds?’’ This cross-validation addresses whether DAs 
are a reasonable tool for analyzing the risks of decline 
evident in the actual salmon population trajectories. 

Estimating population viability metrics from 
corrupted counts 

DA methods for viability analysis arose from den­
sity-independent, stochastic, age-structured models. 
Such population processes can be approximated by: 
Nt�1 � Ntexp(� � �p), where �p �Normal(0, �p) (Tul­
japurkar 1989, Dennis et al. 1991). This model is a 
stochastic process where the annual population growth 
rate is a lognormally distributed random variable. The 
median annual growth rate is �. The stochasticity in 
the annual growth rate is determined by the process 
error term, �p, which is normally distributed with var­
iance �2. A diffusion approximation of this process p 

gives the statistical distribution of the ratio of popu­
lation size at time t vs. the population size at time � 
later: ln(Nt�� /Nt) is distributed Normal(��, �p��). 
From this distribution, risk metrics such as mean long-
term growth rates, probabilities of decline or extinc­
tion, and the mean time to extinction can be calculated 
(Dennis et al. 1991). Dennis et al. discuss methods for 
estimating � and �2

p using a time series of counts. These 
methods work well when the variability due to non-
process error (e.g., sampling error or strong age-struc­
ture cycles) is low (see the petrel example in Holmes 
2001). However, when the data are characterized by 
high non-process error, as are salmon data (Hilborn et 
al. 1999), the standard methods result in severe over­
estimates of �2

p, leading to poor estimation of risk met­
rics (Holmes 2001). 

To deal with such problems, an alternative param­
eterization method was developed (Holmes 2001). We 
refer to viability analysis using this method as the Den­
nis-Holmes method, wherein estimation of model pa­
rameters follows Holmes (2001) and calculation of the 
risk metrics from the parameters follows Dennis et al. 
(1991). This method seeks to estimate � and �p

2 from 
a time series representing highly corrupted observa­
tions, Ot, of the true population size, Nt: 

N � N exp(� � � ) where � � Normal(0, � )t�1 t p p p 

O � N exp(� ) where � �  f (�, � ). (1)t t np np np 

The parameter �np represents the level of non-process 
error that corrupts the observations of the true popu­
lation size. It has some unknown distribution with mean 
� and variance �2 . This noise makes the underlying np 

environmental variability ( �2 ) impossible to observe np 

directly. The log of Eq. 1 is known as a linear state– 
space model. Such models are extensively studied in 
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the engineering literature, and Expectation–Maximi­
zation (EM) algorithms using Kalman filters have been 
developed to estimate the parameters from noisy data 
(Shumway and Stoffer 1982, Ghahramani and Hinton 
1996), but to accurately estimate �p, these methods re­
quire information about the non-process error, partic­
ularly the bias, �. Such information is often not avail­
able for ecological data. 

The method by Holmes (2001) adopts another ap­
proach designed for DA models used for population 
processes and does not require information about the 
non-process error. It takes advantage of the contrasting 
effects of process error (the environmental variability) 
vs. non-process error (e.g., sampling error) on the var­
iance between Ot�� and Ot, namely var(ln(Ot�� /Ot)) � 

2 2� � � � . This suggests that the slope of var(ln(Ot�� /p  np  

Ot)) vs. � could recover the process error term in the 
face of high corruption. Unfortunately, this regression 
has problems for short time series because negative 
slopes (i.e., negative variance estimates) are frequent. 
The method circumvents this problem by noting that a 
short sum of L sequential Ot’s (Rt � �L

i�1Oi�i�1) retains 
the variance vs. � relationship, but filters out the noise. 
The �p

2 estimate, termed �̂ slp  
2  , is the slope of a regression 

of var(ln(Rt�� /Rt)) vs. � with the intercept free. Simu­
lations indicate that L � 3 to 5 is a good compromise 
between loss of information due to high filtering and 
errors due to low filtering (see Holmes 2001; also see 
Appendix B). For all of our analyses, L � 4 and max 
� � 4. 

Numerical simulations indicate that �̂ slp
2 has approx­

imately a �2 distribution: 

dfslp�̂ 2slp 
� �2 . (2)

� 2
slp 

dfslp 

For a time series of length n, dfslp � 0.333 � 0.212n 
� 0.387L for n � 15, gives a good estimate of the 
degrees of freedom. See Appendix B for a discussion 
and derivation of the �2 distribution and the numerical 
estimation of the formula for dfslp. Note, �̂ slp

2 is a biased 
estimator of �2. Appendix B shows the bias for simple p 

lognormal observation error, and Holmes (2001) shows 
the biases using stochastic matrix models. In general, 
the bias will be poorly known, but the cross-validation 
results indicate that the level is not so severe as to 
significantly affect the predictions. 

Estimation of � from the corrupted time series does 
not generally suffer from bias, but does suffer from 
loss of precision. Use of running sums (the Rt’s) helps 
to reduce this problem: �̂ R is the sample mean of 
ln(Rt�1/Rt). For �np small (e.g., �1) and L small, the 
distribution of this estimate is: 

�̂ R � Normal(�, ��,R) where 

� 2 � 
1

2 �2 
� 2 � (n � L)� 2� . (3)�,R np p(n � L) L 

As the time series length, n, increases, the variance of 

�̂ R goes to �p
2 /(n � L). This suggests that we could 

estimate the distribution of �̂ R from the data by using 
our estimate of �2, i.e., from �̂2 :p  slp  

�̂ R � �  1 
� tdfslp��̂2 /(n � L) ��slp 

where 

� 2
slp

� �  . (4) 

2 2� 2 �L(n � L) np p 

Although � is unknown, its range is not large (see 
Appendix B). For the salmon data sets, the observed 
mean � was 0.7–1.2. Note that for corrupted time series, 
var(�̂ R) � var(ln(Rt�1/Rt))! 

Derivations for Eqs. 2–4 are in Appendix B. The 
distributions of the estimated parameters (Eqs. 2–4) 
are approximate and involve a variety of simplifying 
assumptions. One main goal of this cross-validation is 
to test whether these approximate distributions are sup­
ported by data. This is critical because these distri­
butions are used to calculate confidence intervals for 
risk metrics. Supplement 1 has S-PLUS code for es­
timating �̂ R, �̂ 2slp, �̂2 

�,R, and �̂ 2np from a time series, and 
S-PLUS code for estimating risk metrics and confi­
dence intervals. 

Cross-validating parameter distributions using 
time series 

Our first cross-validation tested whether the �̂ R es­
timates from the data are consistent with the theoretical 
distribution of �̂ R (Eq. 4). To do this, we derived a t 
distribution governing the difference between �̂ R from 
the parameterization and evaluation periods ( �̂ R,p � 
�̂ R,e): 

(�̂ R,p � �̂ R,e) 1 

dfslp�̂ 2slp,p � dfslp�̂ 2slp,e 1 
� 

1 
� 

�� 
t2dfslp

. 

� 2dfslp 
�np � L ne � L� 

(5) 

The t statistic (the right-hand side of Eq. 5) was de­
signed so that it has the same t distribution regardless 
of � or �2

p (See Appendix C). In this way, the t statistics 
from all the segments and time series could be com­
bined and tested for their conformity to a single t dis­
tribution (the left-hand side of Eq. 5). It is not possible 
to simply compare �̂ R’s to some distribution because 
each time series represents a different population with 
a different underlying distribution of annual growth 
rates driving its stochastic population process (i.e., the 
�’s and �2

p’s are different). For this analysis, we used 
15-yr parameterization (p) and evaluation (e) periods 
(to derive the t distribution, the periods must be the 
same). With n � 15, dfslp � 1.96. 

For the second cross-validation, we examined wheth­
er the ratios of �̂ slp,e

2 from the evaluation period to 
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FIG. 1. Histogram of the predicted vs. observed distribution of �̂ R, the estimate of median annual population growth rate. 
The solid lines show the expected (theoretical) t distribution governing the difference between �̂ R measured in the param­
eterization vs. evaluation periods. The bars show the observed distribution of t statistics measured from the actual time series. 
The P values are from a Kolmogorov-Smirnov goodness-of-fit test to a t distribution with 2 � 1.96 degrees of freedom: t3.92/ 
��, where � for each species was estimated from the data. For the chinook and steelhead analyses, the set of segments used 
was variable because of random subsampling to reduce overrepresentation by long time series and by ESUs (Evolutionarily 
Significant Units) with many time series. The analysis was repeated 100 times with different random samples of segments. 
For the chinook analysis, the 5% and 95% quantiles for the P values and �’s were (0.50 and 0.93) and (1.07 and 1.27), 
respectively. For the steelhead analysis, the 5% and 95% quantiles for the P values and �’s were (0.24 and 0.58) and (0.71 
and 0.77), respectively. 

�̂ slp,p
2 from the parameterization period were consistent 

with the expected distribution of �̂ slp
2 (Eq. 2). If so, 

(�̂ slp,e
2 /�̂ slp,p

2 ) � F(dfslp, dfslp). We examined three paired 
lengths of parameterization and evaluation periods (10 
yr, 10 yr,  dfslp � 1.4), (15 yr, 15 yr, dfslp � 1.96), and 
(20 yr, 20 yr, dfslp � 3.0). This allowed us to compare 
the observed �̂ slp

2 ratios to three different expected F 
distributions corresponding to the different dfslp values. 
To estimate F distributions with low degrees of free­
dom, we needed a large sample size, and therefore we 
pooled the chinook and steelhead data and did not sub-
sample the Snake River spring/summer chinook and 
Oregon Coast chinook ESUs. This analysis studied the 
distribution of �̂ slp

2 ; the next analysis explored the de­
gree and effect of bias between �̂ 2slp and �2

p. 

Cross-validating the probability of crossing 
population thresholds 

The DA estimate of the probability that an observed 
trajectory will decline from Ostart at the beginning of 
an evaluation period to at or below xOstart at the end of 
an evaluation period is the following: 

� ln(x) � �̂ R� e �Pr(Oend � xOstart ) � 1 � �  
2 2 ��2� � �̂np slp e 

assuming � � Normal(0, � ) (6)np np 

where �(·) is the cumulative distribution of the unit 
normal and �e is the length of the evaluation period 
(Dennis et al. 1991). We used a metric pertaining to 
the observed trajectory because the true trajectory is 
hidden. A point estimate of �np

2 , �̂ np
2 � (var(ln(Nt�1/Nt)) 

� �̂ slp
2 )/2, was used for this calculation (see Appendix 

B). Pr(Oend � xOstart) is much less sensitive to �np
2 than 

other metrics, such as the probability that the time to 
first crossing is less than �e, and this makes it especially 
useful for validating bias in �2

p estimates. 
We compared the observed fraction of evaluation 

periods experiencing a given decline to the expected 
fraction. The expected fraction is the average Pr(Oend 

� xOstart) calculated over all segments. Differences be­
tween the expected and observed fractions may either 
indicate that the underlying DA approach is simply a 
poor approximation of the real trajectories, or may in­
dicate persistent bias in the estimated parameters. For 
example, under- or overestimation of � leads to under-
or overestimation of the probability of crossing thresh­
olds, whereas overestimation of �p

2 leads to underes­
timation of the probability of hitting x � 1 thresholds 
combined with overestimation of the probability of hit­
ting x � 1 thresholds. 

RESULTS 

Fig. 1 shows the observed and expected distribution 
of �̂ R,p � �̂ R,e. The close agreement between the ob­
servations and predictions supports that on average �̂ R 

is an unbiased estimator of the long-term rate of 
growth/decline and that the theoretical distribution of 
�̂ R is correct. To examine whether density dependence 
led to changes in �, we examined the association be­
tween �̂ R,p � �̂ R,e and the overall rate of growth/decline 
within a segment. The observed mean t statistics for 
segments increasing at �5% per year (n � 42), fluc­
tuating between 2.5% and �2.5% annual growth (n � 
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FIG. 2. Predicted vs. observed distribution of the process error estimate, �̂ slp
2 . The solid lines show the theoretical F 

distribution of the ratio between �2 measured in the parameterization vs. evaluation periods (slp � slope). The histogram ˆ slp 

shows the observed distribution of log-transformed F statistics measured from the actual time series. The P values are from 
a Kolmogorov-Smirnov goodness-of-fit test of the observed F statistics to �F(dfslp, dfslp), where dfslp is �1.42, 1.96, and 3.0 
for the 10-, 15-, and 20-yr analyses, respectively. For this analysis, segments from both chinook and steelhead time series 
were evaluated together. The analysis with 10-yr parameterization and evaluation periods (right-hand graph) required only 
20 yr of data (rather than 30–40 yr); thus, we were able to use an additional 91 shorter time series of data for this specific 
analysis. 

128), or decreasing �5% (n � 78) per year was 0.59 
(P � 0.001), �0.34 (P � 0.18), and �0.06 (P � 0.80), 
respectively. The P values are for a test of whether the 
t statistics come from a t distribution with mean 0; i.e., 
whether �̂ R,p � �̂ R,e. Thus, for fluctuating or rapidly 
declining segments, there was no significant difference 
between the median annual growth rates in the param­
eterization and evaluation periods. However, for seg­
ments that exhibited rapid increases in population size, 
the mean rate of growth within the parameterization 
periods (with smaller population size) was significantly 
greater than the mean rate within the evaluation periods 
(with larger population size). 

Fig. 2 shows the observed vs. expected distribution 
of F statistics for the �̂ 2slp,e/�̂ 2slp,p ratios. In the plots, the 
F statistics were log-transformed to make visual com­
parison easier. The observed distributions were very 
close to (a constant, �) � F(dfslp, dfslp) with the ex­
pected degrees of freedom. Fit was determined by Ko­
lomogorov-Smirnov goodness-of-fit tests. This indi­
cated that �2 had the expected �2 distribution, but the ˆ slp 

constant, �, indicated a consistent bias between �̂ slp,p
2 

and �̂ 2 . Specifically, �̂ 2 was greater than �̂2 by a slp,e slp,e slp,p 

factor of 1.3, 1.7, and 1.5 for the 10-, 15-, and 20-yr 
analyses, respectively. Closer examination showed that 
the bias occurred only in the rapidly declining stocks 
characterized by an evaluation period with very low 
count numbers (e.g., 0–10 egg nests counted in a cen­
sus) following a parameterization period with higher 
count numbers. We suspect that the bias occurred be­
cause of increased sampling error when counts are very 
low. When this happens, large percentage errors are 
common, because doubling or even tripling of the count 

represents a small difference in absolute numbers. 
Higher sampling error increases the expected value of 
ˆ slp and would lead to the bias that we observed. �2 

Fig. 3 shows the observed and expected fraction of 
segments declining to or below different threshold lev­
els in 10 or 20 yr. This analysis used 20-yr parame­
terization periods. The solid gray lines show the ex­
pected fraction when parameters were calculated with 
the Dennis-Holmes method. We found close agreement 
between the observed and expected fractions for the 
10-yr projections. For the 20-yr projections, the pre­
dictions began to diverge. The divergence is charac­
teristic of the biases that occur due to variability (rather 
than bias) in � estimates. However, some of the di­
vergence also occurred because the set of time series 
with 40� years needed for the 20-yr analysis included 
a larger fraction of increasing time series than the set 
of time series with 30� years for the 10-yr analysis. 

We noted previously that � declined in the rapidly 
increasing segments. This should lead to underesti­
mation of the risk of crossing thresholds, and indeed, 
for the rapidly increasing segments, we saw precisely 
this pattern. We also observed changes in �2 , but we ˆ slp 

suspect that this was due to changes in the level of 
sampling error rather than temporal changes in �2

p. In­
deed, the close correspondence between the observed 
and expected probabilities of decline indicated that the 
correspondence between �̂ 2 and �2 was close enough slp p 

to permit unbiased predictions. For comparison, the 
expected fractions using �2

p estimated with standard 
parameterization methods (Dennis et al. 1991) are 
shown with the dashed gray lines. For highly corrupted 
data, these methods overestimate �2

p, and the shift be-
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FIG. 3. Observed vs. predicted fraction of segments that reach population thresholds in 10 or 20 years. Segments were 
evaluated by determining whether the count at the end of the evaluation period, Oend, was less than or equal to xOstart, where 
Ostart is the count at the start of the evaluation period. The x-axis (note log scale) is the factor x in xOstart. The 20-yr projection 
was only done for the chinook data set for which there were sufficient numbers of long time series. The predicted fractions 
were calculated using estimates of from the ‘‘standard’’ methods of Dennis et al. (1991) vs. the Dennis-Holmes (‘‘D-H’’) 2�p 

method. 

tween the observed and predicted lines is characteristic 
of high overestimation of �2

p. However, note that if data 
corruption is very low, the standard methods should 
give unbiased and less variable �2

p estimates. 

DISCUSSION 

There are many reasons to expect viability assess­
ments to fail (Coulson et al. 2001). A common concern 
is that population processes are not sufficiently sta­
tionary, meaning that the parameters describing the 
process change through time. For salmon, this might 
happen because reproduction is density dependent (as 
is normally assumed) or because environmental vari­
ability is autocorrelated. However, our analysis found 
that, despite an assumption of no density dependence 
and a host of other simplifying assumptions (such as 
low demographic stochasticity, stationarity, and low 
auto-correlation), DA methods worked remarkably 
well for describing the statistical distribution of fluc­
tuating or declining population trajectories. Only for 
rapidly increasing populations did we see evidence of 
shifts in annual growth rates that were sufficient to 
cause overestimation of the risk of crossing thresholds. 

It should not be entirely surprising that DAs worked 
well for all but the rapidly increasing stocks; the as­
ymptotic behavior of generalized stochastic age-struc­
tured population models (with survivorships and fe­
cundities drawn from any of a variety of statistical 
distributions) is described by a DA model. Serious 
problems would not be expected unless there were se­
rious violations of the stationarity assumptions. Our 
results, however, are striking because we concentrated 
exclusively on ‘‘problematic time series’’ plagued by 
high observation error and other non-process error. 
This noise masks the environmental variability that 
drives the statistical distributions of stochastic popu­
lation trajectories. Indeed, it has been one of the crit­
icisms of PVA analyses that they are sensitive to errors 
in the data (Ludwig 1999). Using a new method for 
correcting for such problems, we showed that unbiased 
estimates of parameters and probabilities of decline are 
possible. Our cross-validation results give empirical 
support for the Dennis-Holmes method for error-ridden 
data sets and, more generally, for count-based PVA 
analyses using diffusion approximations. 

In any PVA analysis, one needs to address how to 
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present risk metrics, given parameter uncertainty. A 
strength of the Dennis-Holmes method (like other DA 
approaches) is that the parameter distributions can be 
calculated, have a strong theoretical foundation based 
on age-structured models, and, with these analyses, 
also have empirical support. These distributions allow 
one to calculate risk metric uncertainty in a rigorous 
manner. The most common approach has been to pre­
sent point estimates of risk metrics with confidence 
intervals, but confidence intervals can be very broad 
and can give the mistaken impression that there is little 
support for any specific risk level. An alternate, ar­
guably more informative, approach presents the overall 
support for risk ranges. For example, ‘‘Given the data, 
what is the probability that the population is collapsing 
at �10% per year, or that it will go extinct in 20 yr or 
less?’’ This approach is common in Bayesian methods 
for conservation and fisheries biology (Hilborn and 
Mangel 1997, Wade 2000, 2001). Frequentist ap­
proaches using likelihood inference are also available 
(for a review, see Wade 2001). 

Practical, count-based PVA methods have prolifer­
ated in the last ten years in response to the needs within 
conservation biology, because sufficient data for full 
PVA models are not normally collected or even 
planned. Indeed, a recent survey found that of 136 
recovery plans approved by the U.S. Fish and Wildlife 
Service, only 23% proposed collecting sufficient data 
for an age-structured PVA model, whereas 78% 
planned to collect data sufficient for a count-based PVA 
(Morris et al. 2002). Methods to deal with high data 
corruption greatly expand the utility of count-based 
PVAs, but new methods are still needed in many areas. 
Standardized methods for dealing with cycles and 
trends within population time series and for incorpo­
rating incomplete life history information are clearly 
needed. Algorithms used in computer graphics and en­
gineering for analyzing corrupted signals may prove 
particularly useful in these regards. However, they will 
need to be adapted to fit the constraints particular to 
ecological and conservation data. 
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APPENDIX A 

A table presenting the salmon time series used in the analyses is available in ESA’s Electronic Data Archive: Ecological 
Archives E083-047-A1. 

APPENDIX B 

Derivations of the distributions of the estimated parameters are available in ESA’s Electronic Data Archive: Ecological 
Archives E083-047-A2. 
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APPENDIX C 

A derivation of the distributions for cross-validating parameter estimates is available in ESA’s Electronic Data Archive: 
Ecological Archives E083-047-A3. 

SUPPLEMENT 1 

The S-PLUS code for estimating Dennis-Holmes parameters and calculating risk metrics from a time series is available 
in ESA’s Electronic Data Archive: Ecological Archives E083-047-S1. 

SUPPLEMENT 2 

Raw data for the salmon time series used in the cross-validations are available in ESA’s Electronic Data Archive: Ecological 
Archives E083-047-S2. 
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