Blood Supply Modeling: Smallpox vaccination example and Applications for Pandemic Influenza

Steve Anderson

Office of Biostatistics & Epidemiology FDA-Center for Biologics Evaluation and Research

Advisory Committee on Blood Safety and Availability January 6, 2006

Blood Supply Modeling for emerging infectious agents

Smallpox vaccination example

- Effect of 21 day vaccination campaign on blood supply an ACUTE challenge
- Period of vaccination impact on blood supply short ~ 45d
- More certainty implementing vaccination campaign

Pandemic influenza

- Significant UNCERTAINTY of epidemic, duration, etc.
- Effect of Pandemic on blood supply SUSTAINED and LONGTERM challenge (6 months to 18+ months)
- Incorporate Blood Center / Support / healthcare staffing
- Our modeling efforts influenza & blood supply initial stages

Smallpox Vaccination

NAMES A CONTRACT OF A DESCRIPTION OF A DES INFORMA DESCRIPTION OF A DESCRI

- Since 2001 Government agencies developed plans to vaccinate US population should smallpox emerge
- Live virus vaccine -Vaccinia virus (cow pox)
- Viremia vaccinia bloodstream 3-10 days post-vaccination
- Vaccinia transfused into immunocompromised may have serious consequences (generalized vaccinia, etc.)
- Assume minimum 21 days for vaccination recovery and deferral

Blood supply modeling question

What would be the impact of a <u>21 day</u> smallpox vaccination campaign on the US blood supply?

Modeling Approach

Combine

A. Infectious Disease Model

Number donors affected vaccination and deferred

Link results with

B. Blood Supply Model (Supply and Demand)

- Supply Collection from capable donors
- Demand Need / Utilization by patients, etc.

A. Infectious Disease Modeling of US donor population

IN ADDRESS AND RESS OF A DECEMPTORY OF A DECEMPTORY AND A DECEMPTORY OF A DECEMPTORY AND A DECEMPTORY

Susceptible, Vaccinated (Infected), Recovered (SV(I)R)

B. Blood Supply Modeling: Key Variables

Total Amount of blood available (B_a)

• Amount (or rate) of daily blood collected (B_c)

Susceptible daily donor pool (un-vaccinated) (S)

<u>Recovered</u> daily donor pool (R)

Amount (or rate) daily blood utilized $(B_u)^{\dagger}$

B. Blood Supply Modeling (cont'd)

Model estimates cumulative total amount of blood available on a given day:

Model provides graphical output of available blood units for US

Modeling done using Microsoft Excel

US Whole Blood System Assumptions used in Supply Model

REDECTATION CONTRACTOR AND A CONTRACTOR AND AN AN ANY MOMENTAL OF AN ANY MATCHING AND AND AN ANY ANY AND AND AN

- Approximately 14 million units donated / yr
- ~ 38,500 units donated / day (Bc)
- ~30,500 units utilized / day (Bu)
- Approximately 5% population donate
- About 60% of population qualified donors
- Store refrigerated for 42 days
- Can donate once every 56 days

Donor Availability - during a 21 day vaccination program

Modeling can <u>evaluate interventions</u> to preserve blood supply

prior to potential smallpox event:

1. Policy that increased donation rate by 200%

2. Emergency utilization policy (50% reduction utilization)

Vaccination: Assuming no interventions to preserve supply (unlikely scenario)

US Blood Supply and Smallpox Vaccination -<u>Normal</u> Donation rates <u>Normal</u> Utilization rates

Days post-event vaccination

Increased Donation Rate by 200%

Emergency utilization policy (50% reduction utilization)

US Blood Supply and Smallpox Vaccination <u>Normal</u> Donation Rates <u>50%</u> Utilization Rate (Emergency Policy)

What duration of vaccination program will result in little or no disruption of the US blood supply?

Duration of Vaccination Plan with least impact-<u>Normal</u> Collection rate -Normal Utilization rate

Days post-vaccination

Summary

- Modeling can provide important information for decision makers into the impact of vaccination or an infectious agent on the blood supply
- Models can identify strategies to mitigate impact of vaccination on the blood supply
- Smallpox vaccination campaign >20 days may require
 1 or a combination of interventions to maintain supply

Campaign >90 days may have little impact on the blood supply

Pandemic Influenza

CONTRACTOR AND AND A DESCRIPTION OF A DE

Pandemic Influenza Considerations for Modeling

UNCERTAINTY, UNCERTAINTY, UNCERTAINTY

- Viremia possible? if so, duration?
- Pathogenesis mortality rate, age specificity, etc.
- Deferrals
 - Flu symptoms fever, etc.
 - Exposure family members, etc.

Fear - Individuals fear of public places

Effect on blood collection centers/support infrastructure and healthcare providers

Proposed Modeling Approach: Influenza Impact on Blood Supply

Combine

Infectious Disease Model

- Number donors affected by Influenza
- Calculate susceptible, infected, recovered populations based on
 - Historical trends
 - Published literature Influenza modeling (Longini, Halloran, Meltzer, Valleron, others)
- Issues incubation period, duration of epidemic, etc.

Link results with

Blood Supply Model (Supply and Demand)
 Supply - Collection from capable donors
 Demand – Need / Utilization by patients, etc.

A. Infectious Disease Modeling of Influenza and US donor population

Approach:

- Assume up to one-third US population affected (100 million)
- Working with DHHS, Government agencies, stakeholders other partners Develop <u>multiple epidemic scenarios</u> based on historical trends and / or published literature
 - Most likely
 - Worst case (for blood supply)
 - Interventions
- Example scenario:

Do a proportional fit of 100 million influenza cases to infection/mortality curves for 1918 influenza and determine impact on current US blood supply

1918 Influenza: Death Rates for 3 US Cities

A. Infectious Disease Modeling of Influenza and US donor population

Susceptible, Infected (Exposed), Recovered (SI(E)R)

Pandemic Influenza Possible Assumptions

RESERVATION FOR COMPANY REPORT OF THE DESCRIPTION OF THE DESCRIPTION OF THE DESCRIPTION OF THE DESCRIPTION OF T

DHHS Pandemic Influenza Plan

- Susceptibility Universal
- One-Third US population affected (100 million)
- Incubation time approximately 2+ days
- Multiple waves of illness (2 3 mos per wave)
- 50% will seek outpatient care
- 1% 10% hospitalized
- Infection provides immunity
- Many others

Pandemic Influenza Additional Aspects to add to model

Infectious Disease Model

- Antiviral treatment
- Vaccination

Blood Supply Model

- Impact on blood center staff and collections
- Age groups (≥18yrs, >65yrs, etc.)
- ABO and Rh+/-
- US geographic regions
- Seasonality

Modeling Pandemic Influenza and Blood Supply: Potential Outcomes

- Pandemic influenza may have a <u>sustained</u>, long-term impact on donor population and blood supply
- Modeling can estimate potential effects on blood supply
- Identify interventions to maintain supply
- Interventions may utilize flu-recovered populations as potential donors, esp in later stages of pandemic

Summary: Pandemic Influenza and Blood Supply

- Modeling of potential influenza scenarios and impact on blood supply in <u>initial stages</u>
- Considerable <u>uncertainties</u> in course and evolution of pandemic and effect on blood supply
- Influenza/Blood supply modeling will require input from many sources – DHHS, stakeholders, academics, others
 - Require Data and Research
 - Modeling is RESEARCH

Generate a useful product and outputs to inform planning efforts to maintain blood supply

Thanks !