ENVIRONMENTAL STUDIES, SOUTH TEXAS OUTER CONTINENTAL SHELF, 1975 BIOLOGY AND CHEMISTRY

ENVIRONMENTAL STUDIES, OF THE SOUTH TEXAS OUTER CONTINENTAL SHELF, BIOLOGY AND CHEMISTRY

Submitted to:

The Bureau of Land Management Washington, D. C.
by
The University of Texas Marine Science Institute Port Aransas Marine Laboratory

Port Aransas, Texas 78373

Acting For and on Behalf of A Consortium Program Conducted by:

Rice University
Texas A\&M University
The University of Texas

SUPPLEMENTAL REPORT
TO THE FINAL REPORT
In Fulfillment of Contract AA550-CT5-17

This report has neither been reviewed by the Bureau of Land Management nor approved for publication. Approval will not signify that the contents reflect the views and policies of the Bureau, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.
Page
Abstract.
Introduction. 1
Purpose 1
Literature Survey 1
She11ed Microzooplankton 1
General Microplankton 3
Shelled Microzoobenthon 5
Methods and Materials 5
Collecting Procedures 5
Nansen Tows 5
Niskin Bottle Samples 6
Bottom Sediment Samples for Shelled Microzoobenthon 6
Post-Collecting Procedures. 7
Nansen Samples 7
Niskin Samples 7
Microzoobenthon Samples 8
Statistical Methods 9
Cluster Analysis. 9
Other Statistical Methods 10
Error Analysis. 10
Results and Discussion 12
General Distribution. 12
Shelled Microzooplankton 12
General Microplankton 30
Shelled Microzoobenthon 51
Benthonic Foraminifera. 51
Indicators of Water Mass Distribution and Movements 68
Areas of Possible Upwelling, Volumes and Route of Currents and Possible Upwellings 82
Notes on the Niches of Radiolarians and Planktonic Foraminiferans 89
Benthonic Foraminifera in the Water Column. 92
Relict Populations 92
Down Core Studies 97
Conclusions and Indicators. 110
Immediate Indicators. 111
Seasonal Indicators 114
Historical Indicators 115
Down Core, Relict and Micropaleontological 115
Literature Cited. 117
Appendieies 123
A. 1975 Q-Mode Cluster Characteristics 124
B. Summary of Microplankton Group Abundances and Statistical Information Computed from 1975 Niskin Data 127
C. Error of Estimate 129
D. Species of Radiolaria and Foraminifera Collected, 1975 137
E. General Microplankton Data Sheet 145

TABLE OF CONTENTS (CONT.'D)

Page

F. Data Sheets for Shelled Microzooplankton-Microzoobenthon . . . 147
G. Data From Niskin (Discrete Depth) Sampling 175

Supplemental Report
to

The Bureau of Land Management
Washington, D. C.

Principal Investigator:
Richard E. Casey
Associate Investigators:
Jane Anepoh1
Mary Bauer
Joel Gevirtz
Linda Gust
Camille Hueni
Rudy Schwarzer
Damon Williams

Abstract

Nansen net and Niskin bottle samples, and sub-cores from bottom grab samples were collected in the BLM-STOCS study area during the winter (1974), spring and summer (1975). Shelled microzooplankton and general microplankton were studied from Nansen net and Niskin bottle samples; living benthonic foraminiferans were studied from grab samples; and dead benthonic and planktonic foraminiferans were studied from down-core samples.

The shelled microzooplankton and general microplankton data from the net and bottle samples were compared to the physical oceanography of the study area by use of density, diversity and other plots of biological data as compared to temperature and salinity diagrams, isohaline, isothermal contouring, and other plots of the physical oceanographic data. These comparisons revealed: biological indicators of water masses and other physical oceanographic phenomena; a picture of the general microplankton seasonally; indications of upwelling; and, a generalized seasonal picture of the circulation and water mass patterns. With the aid of cluster analyses, certain of the shelled microzooplankton were designated as biological indicators of eutrophic and oligotrophic conditions, nearshore and offshore faunas, specific water masses, upwelling and seasonality.

Studies of living benthonic foraminiferans revealed: species indicative of nearshore, mid-shelf, and outer-shelf; eutrophic and oligotrophic conditions; and, to some extent, seasonality.

The down-core studies illustrated that some cores had penetrated sediments older than 100,000 years, with two cores penetrating through sediments of the last glacial period. Rates of sedimentation in these cores ranged from a low of $0.6 \mathrm{~cm} / 1000$ years to a maximum of at least $15 \mathrm{~cm} /$ 1000 years. The thickness of the Holocene sediments were determined in a few cores (about 30 and 50 cm in two cases on the outer shelf).

Other aspects of the South Texas Outer Continental Shelf included in this study were the definition of a relict population of radiolarians and the occurrence of previously thought to be strictly benthonic forms of foraminifera in the water column.

INTRODUCTION

Purpose

This component of BLM-STOCS was charged with a baseline inventory of: the shelled microzooplankton; general microplankton; shelled microzoobenthon; down-core studies using microfossil evidence; correlation of these data with other biological, chemical and physical oceanographic data; and, the detection and use of certain species as biological indicators of oceanographic processes. Toward these ends, this study involved the taxonomic identification and counts of shelled microzooplankton, general microplankton and shelled microzoobenthon. Studies were based on shelled microzooplankton from Nansen tows (integrated samples), the general microplankton from Niskin bottle filtrates (discrete samples), and the shelled microzoobenthon from known surface area subsamples of grab samples and a few downcore samples from gravity cores collected by the U.S. Geological Survey, Corpus Christi, Texas. These data (except for the down core studies) were placed on computer cards, and R and Q mode cluster analyses were performed to construct dendrograms of species and samples. These dendrograms, selected species, group densities, diversities and dominances were correlated to the literature and other oceanographic components (biological, physical, chemical and geological) of the STOCS area.

Literature Survey and Previous Work

Shelled Microzooplankton
There have been few studies on living radiolaria. Haeckel (1887) examined plankton tows from the CHALLENGER expedition; Popofsky (1907, 1908,1912 and 1913) examined radiolaria from the Deutsche Subpolar Expedition and observed bipolarity as well as water-mass preferences; Reshetnyak (1955) studied the vertical distribution in the Kuril-Kamchatka Deep;

Casey (1966, 1971a and 1971b, and In Press a) studied seasonal variations of radiolaria in the southern California borderland and established the preference of individual species for specific water masses and the radiolaria that are indicative of seasonality of the area; Petrushevskaya (1971) studied living radiolaria from the southwestern Pacific; and, Renz (1973) studied assemblages of the central Pacific. The only studies of radiolarians from the Gulf are those that have been and are currently being done by the Principal Investigator (R. E. Casey) and a former graduate student (K. J. McMillen). These studies have been and are currently on the South Texas Outer Continental Shelf (STOCS) and the open Gulf of Mexico and Caribbean (supported by NSF).

McMillen (1976), Casey and McMillen (1977) and McMillen and Casey (In Press a) have delineated the radiolarians "endemic" to the major water masses of the Gulf of Mexico. Casey and McMillen (1977) have delineated the radiolarians indicative of the seasonal trends (1975) of the STOCS and the densities and diversities of these forms. Casey, McMillen and Bauer (1975) noted a fauna of relict radiolarians in the Gulf of Mexico and STOCS area.

Living planktonic foraminifera have been studied to a much greater extent than radiolarians. A brief and incomplete review follows: Schott (1935) made some preliminary investigations in the North Atlantic; Be (1960) worked on seasonal distribution in the North Atlantic; and, Cifelli (1965,1974) examined the distribution of planktonic foraminifera in the vicinity of the North Atlantic Current, the Mediterranean and adjacent Atlantic waters. Few studies have been done on the planktonic foraminifera of the Gulf of Mexico. Phleger (1951) examined species and abundances for 27 plankton tows in the northwestern Gulf (close to the STOCS area). Jones (1968) inferred the source regions for planktonic foramini-
fera in the southern Gulf of Mexico and the straits of Florida to be of Caribbean origin. Bauer (1976) and Casey and Bauer (1976) studied the seasonal distribution of planktonic foraminiferans, in the STOCS study area in 1975 , and found a seasonality that could be related to the phy- phapsical oceanography of the area. The authors also noted that a benthonic foraminiferan (BoZivina or Brizalina Zowmani) occurred commonly in their innermost stations and may be meroplanktonic.

McGowan (1960 and 1967), Fager and McGowan (1963), Chen and Hillman (1970) and Hida (1957) have shown that pteropods are good biological indicators of water masses and currents; and Herman and Rosenberg (1969) have shown that pteropods can be used as bathymetric indicators. As early as 1933, Burkenroad (1933) studied the pteropods off Louisiana. The other major works on pteropods, in the Gulf of Mexico, have been unpublished theses by Hughes (1968) and Snider (1975), which related specific pteropods to the water masses of the Gulf. Casey (In Parker, 1976) listed the pteropods taken off the STOCS for 1975.

General Microplankton

There have been many studies in the Gulf of Mexico that have included some microplankton work. Our (STOCS) investigation of the general microplankton was, and is, patterned after and compatible with, the investigations of Beers and Stewart (1967), Beers (1969a and b, 1970 and 1971) and Beers, Reid and Stewart (1975). Their work has been mainly in the waters off southern California, in the central and equatorial Pacific, and Gulf of Mexico. The only comparable investigations are the ones on which we are currently working.

The review of previous work is abstracted from Williams (1977). Hulburt and Corwin (1972) reported a change from a coccolithophorid
dominated flora offshore to a diatom dominated flora nearshore. They noted this general trend in the eastern and central Gulf and suggested it may be a wide geographic phenomena. Ryther (1969) recognized three regions of productivity; open ocean, coastal water over continental shelves, and major upwelling areas. He reports photosynthetic rates on continental shelves to be about twice that of the open ocean, with upwelling areas nearly ten times of the open ocean. The STOCS area would mainly fall into his coastal zone region.

Numerous investigators have conducted studies to determine the relative importance of net (plankton net captured) and nannoplankton in terms of productivity. Watt (1971), using measurements of photosynthesis of individual phytoplankters by C^{14} autoradiography, concluded that large diatoms and dinoflagellates showed little photosynthetic activity in comparison to nannoplankton photosynthetic activity. Watt (1971), Malone (1971) and others have estimated that net phytoplankton productivity is only about 10% of the amount of nannoplankton productivity. (The Niskin plankters are most similar in size range to net plankton and therefore the Niskin collected plankton should be compared to net plankton, not nannoplankton.)

Pomeroy and Johannes (1968), Hobbie et al. (1972), Turner (1974), and others have studied the relative amounts of respiration of net plankton and marine microorganisms. In virtually all cases respiration of microorganisms exceeded that of net plankton, usually 10 times as great. It should be noted that this microplankton study does not include nannoplankton abundances which may contain the largest fraction of primary producers.

However, Beers and Stewart (1967, 1969a) concluded that significant portions of the energy budget of a planktonic ecosystem are consumed by microzooplankton. Hulburt (Hulburt and Corwin, 1972) suggested that
diatoms were dominant in nearshore regions and Beers and Stewart's studies seems to indicate that microplankton make up a significant fraction of the primary producers and consumers in nearshore regions such as the STOCS. This indication, as concurred by Pomeroy (1974), makes such an investigation worthwhile.

Shelled Microzoobenthon (Benthonic Foraminifera)

Most of the many studies of the foraminifera of the Gulf of Mexico and its continental shelf have been concerned with the distribution of dead and total assemblages. There have been relatively few studies of living populations of the northwestern Gulf of Mexico. Of these the most useful are the studies of Phleger (1951, 1956). There have been no comprehensive seasonal studies except for our current study and Parker, Phleger and Pierson's (1953) studies of the Texas bays. Tresslar (1974) studied the living benthonic foraminiferal fauna of the West Flower Garden Bank; and, a thesis by Anepohl (1976) concerns itself with the benthonic foraminifera collected in the STOCS area during 1975.

METHODS AND MATERIALS

Collecting Procedures

Nansen Tows (Integrated Samples)

Nansen tows were taken at Stations 1, 2 and 3, on all transects, during the seasonal sampling (36 samples). At all Nansen stations a Nansen net with a mouth opening of 30 cm and mesh size of $76 \mu \mathrm{~m}$, was placed on the wire, lowered to just off the bottom and slowly towed to the surface at approximately 20 m per minute. The net was then washed down with seawater from the outside of the mesh and the material in the cod end was preserved in a 500 ml Nalgene bottle, with a 5% solution of formalin, sodium borate, strontium chloride and rose Bengal. This solution was prepared in the fol-
lowing manner: 1 gallon of 37% (stock) formaldehyde $+80 \mathrm{gm} \mathrm{Na} \mathbf{N}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ (sodium borate) $+18.2 \mathrm{gm} \mathrm{SrCL}_{\mathrm{x}} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (strontium chloride) +2 gm rose Bengal. The bottle was then labeled, a shipboard data sheet filled out, and the samples and data sheets transmitted to the Principal Investigator.

Niskin Bottle Samples (Discrete Samples)

Niskin samples ($30-\ell$) were taken at depths of 10 m and one-half the depth of the photic zone (as determined with a Secchi disk or photometer) at Stations 1 and 2; and at depths of 10 m , one-half the depth of the photic zone, the photic zone and one-half the distance between the bottom of the photic zone and bottom, or just off the sea floor, at Station 3 during the seasonal sampling (32 samples). At every Niskin cast, one liter was tapped off as an extra archive sample for possible future use. The remaining 29 \& were filtered through a $38 \mu \mathrm{~m}$ mesh net. The microplankton were washed into a 500 ml Nalgene bottle and preserved in a two to three percent solution as described for the Nansen tows, except that rose Bengal was not used. The bottle was then labeled, a shipboard data sheet filled out, and the samples and data sheets transmitted to the Principal Investigator.

Bottom Sediment Samples for Shelled Microzoobenthon (Foraminifera)
Bottom samples were obtained by subsampling the Smith-McIntyre grabs at Stations 1,2 and 3 during the winter and spring sampling period. There were 24 samples studied although only 12 samples (one season) were required by the contract. The subsampling was accomplished by inserting a $6-1 / 2 \mathrm{~cm}$ coring tube at least five cm into the sediment from the sediment surface. The sample was then placed into a container and 25 cc of formalin solution (the same solution as described under the Nansen collecting technique) was added to the sample (with sea water if needed) and the bottle was
sealed and shaken to mix sediment and solution. The bottle was then labeled, a shipboard data sheet filled out and the samples and data sheets transmitted to the Principal Investigator.

Post-Collecting Procedures

Nansen Samples

1. The samples were split into $1 / 2$ working and $1 / 2$ archive subsamples using a plankton splitter.
2. The samples were then picked and placed on micropaleontological slides using a breaking pipette and a plankton microscope.
3. The radiolarians, plankton and "benthonic" foraminiferans and pteropods were identified and these data placed on data sheets.
4. These data were placed on computer cards and cluster analysis performed, resulting in Q and R mode dendrograms.
5. These dendrograms, Q mode seasonal maps of planktonic foraminifera and radiolaria, and radiolaria seasonal density and diversity plots were then compared to other oceanographic phenomena and reported on.

Niskin Samples

1. The entire sample was allowed to settle in its original collection bottle.
2. The supernatant was decanted and saved for archiving of that sample. The residue was placed in a plankton counting chamber.
3. The plankton counting chamber was placed on a modified stage (which holds it in place) of a plankton microscope. The first 100 organisms (or fecal pellets) were identified and counted starting at the top of the chamber, and the amount of area of the chamber traversed on the count was recorded.
4. In some samples, the total number of planktonic individuals was so
great that overlapping occurred in the settling chamber. This would tend to distort the results of the relative abundances, density estimates, and possibly obscure the presence of some shelled microplankton. A specific procedure was devised for these samples in order to avoid these problems. An aliquot of the original sample was taken with a Hensen-Stemple pipette. The size of the aliquot was usually a $1 / 100$ of the sample ($5 \mathrm{ml} / 500 \mathrm{ml}$), but in the case of a few extremely dense samples a $1 / 500$ aliquot ($1 \mathrm{ml} / 500 \mathrm{ml}$) was taken. After the aliquot was obtained and transferred to the settling chamber, the general counting procedures outlined above were performed. After most of the 1975 and 1976 Niskin samples had been completed, differences in the density estimates for one-half the depth of the photic zone samples for the two years were detected. The density èstimates were recalculated, using the aliquot method described above, for some of these samples, and a conversion factor of 45 times the density of the 1975 samples was used to convert the 1975 one-half the depth of the photic zone densities to be compatible with 1976 densities, as used in the 1976 Draft Final Report.
5. The residue and supernatant were combined and stored as the archive.
6. The data were placed on computer cards and cluster analyses were performed for Q and R mode dendrograms.
7. The dendrograms, seasonal density data, general microplankton, seasonal plots, etc, were then compared to other oceanographic phenomena and reported.

Microzoobenthon Samples

1. The samples were mixed and split in a large modified plankton splitter.
2. One-half the sample was archived and one-half was washed through a $63 \mu \mathrm{~m}$ screen. The sands accumulated on the screen were dried in a $70^{\circ} \mathrm{C}$ oven.
3. The live:foraminiferans were picked from the samples under a dissecting microscope and placed on cardboard foraminiferan slides.
4. The organisms were then identified to species, if possible, and counted.
5. These data were placed on computer cards and cluster analyses were performed resulting in Q and R mode dendrograms.
6. These dendrograms, Q mode seasonal maps, and seasonal faunal maps were then compared to other oceanographic phenomena and reported.

Statistical Methods

Most of the statistical methods employed in this study were done on the Rice University IBM 371-55 Series Computer. Once a corrected data set was obtained, statistical tables summarizing abundances were assembled (Appendix B). Variables occurring in approximately 10% or fewer of the samples were deleted because retention of such low percentages, rare individuals can distort the results of cluster analysis (Gevirtz et aZ., 1971). However, some shelled microplankton groups which were not present in more than 10% of the samples were retained because of their interest to the investigators and BLM.

Cluster Analysis

Cluster analysis is a multivariate technique which can be of aid in pattern recognition and objective classification of multivariate data (Gevirtz, 1971; Sokal and Sneath, 1963; Sneath and Sokal, 1973; Davis, 1973). Much of its application to this kind of work came from attempts to develop objective classification systems for numerical taxonomy. Basically, cluster analysis groups samples or variables into a hierarchical classification based on an index of similarity computed from abundance data. This hierarchy may be represented as a dendrogram (a one-dimensional graph). Numerous cluster analysis methods and similarity coefficients are available; the one used was the Unweighted Pair-Group Average Linkage Method (Sokal and Sneath, 1963; Sneath and Sokal, 1973).

The similarity coefficient used to compare samples and biotic classes
is a coefficient proposed by Sorensen. Sorensen's coefficient is defined as $2 \mathrm{~W} /(\mathrm{A}+\mathrm{B})$, where W is equal to the sum of the minimum values for all the paired variables in the two samples being considered, A is equal to the sum of all characters in the first sample, and B is equal to the sum of all characters in the second sample (Park, 1968). Two basic clustering configurations are employed: R-mode which clusters variables according to their occurrence in samples; and Q-mode which clusters samples according to the variables they contain.

The first step in clustering is the computation of a similarity array for all the characters present (samples or variables). The two samples (for Q-mode) most similar to one another are found and their variable distributions are averaged to create a new sample. This process continues until all the matrix is reduced to triviality. The results of this procedure are displayed in a one-dimensional dendrogram.

Other Statistical Methods

Analysis of variance was used to examine precision for the general laboratory counting procedures outlined. A full discussion of its application is presented in the following section on error analysis. Finally, trend surface analysis for a few of the major microplanktonic groups was done. The results obtained are not presented in this report because their significance was low due to the small number of data points.

Error Analysis

Determination of analytical error in microplankton data arising from laboratory technique was done in the following manner: a sample containing a large number of microplankton was selected and a 5 ml aliquot was drawn after the sample was agitated to completelymix the contents. The aliquot was then poured into a plankton settling chamber and allowed to settle out. After the microplankton had settled, five replicate counts of 100 organisms
each were made following the general procedures outlined. Thus 500 total organisms were counted and approximately five times the area covered in counting 100 organisms was examined. The results of these replicate counts are given in Appendix C. The total number of groups represented in the various counting stages was listed to determine if rare microplankton groups were under-represented.

A graph of the number of groups as a function of the total number of organisms counted was made (Appendix C). The results indicate that no increase in counting precision in terms of representing rare groups was gained in counting more than 100 organisms. This would seem to justify the selection of counts of 100 organisms. Indeed, Beers has relied on counts of 40 individuals in his microplankton studies (Beers and Stewart, 1969).

From values obtained by replication, a new table was constructed in order to test whether the differences in values obtained in counting 100 organisms, 200 organisms, etc., were significant. Using the mean values obtained by the different count totals and considering them as subsamples, a one-way analysis of variance problems was set up to see if the differences were slgnificant (Appendix C). The calculated F-value of 0.00762 is far smaller than the F-value for rejection $\left[F_{25}^{4}(99.9 \%\right.$ confidence leve1) $=6.49)$. Therefore, the null hypothesis cannot be rejected. This result would seem to indicate that no significant increase in counting precision can be obtained by counting greater than 100 organisms.

In order to obtain a total error of estimate due to analytical (i.e. counting) procedure, means, standard deviations, and coefficients of variation were computed for those categories with sufficient measurements present (Ceratium, Noctiluca and Naupliar larvae were excluded) using replicate table information (Appendix C).

The results of these computations are given in Appendix C. The total variation due to counting procedures was 12.15%. This value for counting
error of estimate agrees well with the expected value of 10% for counts of 100 predicted by the standard counting error curve (Dryden, 1931). Individual components of variation agree well with expected results. Centric solitary diatoms, the most abundant category, has the lowest coefficient of variation (5\%). Both colonial diatom groups have higher coefficients of variation (15\%) as would be expected. Finally, the low percentage, rare groups had significantly higher coefficients of variation (35-40\%). These findings suggest that the abundant groups are well represented quantitatively in the data, while the rare groups are represented in a more qualitative fashion (i.e. presence or absence) with relatively less significance in the numbers themselves.

RESULTS AND DISCUSSION

General Distribution

Shelled Microzooplankton (Nansen)
Fifteen live planktonic foraminifera (approximately 100 live radiolarian species and a dozen pteropod species) were collected and studied. In general, the planktonic foraminifera and radiolaria were sparse or absent in the innermost stations and increased in density and diversity offshore. These trends for radiolarians are illustrated in Figure 1. Figure 1 also illustrates some of the general seasonal trends seen in the radiolarians, many of which were shared with the planktonic foraminifera. The nearshore stations were dominated by spumellarian radiolarians with the number of nassellarian radiolarians increasing offshore (Figure 1).

Figure 1. Radiolarian Ecologic Trends Along the South Texas Continental Shelf.

WINTER 1974-1975

SPRING 1975

SUMMER 1975

Figure 2. Seasonal Trends Derived from Radiolarian Data.
except the spring samples. The reason for the $1: 1$ ratio in the spring may have been due to the almost total exclusion of radiolarians from the innerand mid-shelf stations, due to the intrusion of 'Mississippi water" and the resultant bloom of large centric diatoms, which excluded the radiolarians (see section on radiolarian niche herein). The greatest standing crop of radiolarians (and planktonic foraminifera) occurred in the summer. A standing crop of radiolarians (and planktonic foraminifera) almost as high, occurred in the winter, and a standing crop of about one-half that of winter or summer occurred in the spring. The lowest diversity of radiolarians (and planktonic foraminifera) occurred in the summer, with higher and almost equal diversities occurring in winter and spring, respectively (diversity here refers to number of species represented per season). There appeared to be a distinct winter and summer assemblage of radiolarians and a mixed or transitional assemblage in the spring. (This is also true for the planktonic foraminifera, but to a limited extent due to fewer species.) The winter radiolarian assemblage was dominated by a Theopilium tricostatum-Spirocyrtis scalaris fauna and the summer by a Lamprocyalas maritalis-Euchitonia elegans fauna. Dominant radiolarians were species that were relatively abundant and more or less "endemic" to that season. (This is a subjective dominance.) The spring radiolarian assemblage appears to contain no real dominance; however, Acantharian-?Anthocyrtidium ophiurensis fauna might be considered as such. Figures 3 through 12 were generated using multivariant analysis. The R-mode planktonic foraminiferan dendrogram (Figure 3) contains two significant groups: the Globigernoides ruber-Globigerina bulloides cluster; and, the Globigerina falconensis-Globigerina quinqueloba cluster. Deficiency in cluster tightness, evident in low similarities for the remaining clusters, is indicative of the low densities encountered for many of the species.

Using the clusters from the R-mode dendrogram as a guide (Figure 3),

Figure 3 Continued. Key to Species.
G. cf. TOSAENSIS
C. CONCENTRICUS
A. BECCARI
E. TUMINDULUS
C. SUBGLOBOSA
G. RUBESCENS
G. TRUNCATULINOIDES
G. SPECIES
O. UNIVERSA
B. SPINATA
G. PACHYDERMA
U. PERIGRINA
G. Cf. INCOMPTA
G. TENELIUS
G. RUBER
G. BULLOIDES
G. FALCONENSIS
G. QUINQUELOBA
B. LOWMANI
G. AEQU II,ATERALIS
H. PELAGICA
L. SPIRATA
P. OBLIQUILOCULATA

Figure 4. Winter Q-Mode Cluster of Planktonic Foraminifera.

Figure 5. Spring Q-Mode Cluster of Planktonic Foraminifera.

Figure 7 Continued. Key to Left-Hand Column

```
2/II ANO
1/II EMD
2/I AEP
I/III EWR
2/IV FIY
1/II AKP
2/IV BFQ
2/II EPI
3/I EIX
2/III EZQ
3/II ESM
3/III FCM
3/I ACL
2/III AWU
3/III AZS
3/IV FMM
3/IV BOS
3/II AQQ
3/II CSK
3/III DCF
2/III CZQ
2/I EFT
3/IV DLW
l/IV BCQ
2/I CFT
1?I ECP
3/I CIX
I/IV FFW
2/IV DIO
```


Figure 8 Continued. Key to Left-Hand Column.
C. IRREGULARIS
?P. STRATILOIDES
CHUENICOSPHAGRA
ASTROSPHAERID 3
CENOSPHAERA 4
T. TRACH. DIANAE

PTEROCORYS SP.
T. TRACH. TRACH
H. DODECANTHA
S. (AFF)ELLIPTIC

SPHAERID 2
helotholus 3
ASTROSPHAERID 2
CUBOSPHAERID 1
ASTROSPHAERA 3
?S. GEDDESSI
P. PRAET. EUCOLP
S. SCALARIS

SPHAERID 1
hELOTHOLUS 1
CALOCYCLAS 1
CALOCYCLAS 2
RADIOLARIAN 3
RADIOLARIAN 2
SPONGOSPHAERID 1
?LOPHOPHAENA SP.
P. TRILOBUM
S. CRUCIFERUS
P. SPINIPES
S. PENTAS
S. TETRAS TETRAS
H. PROFUNDUM AD.
H. PROFUNDUM JUV.
T. OCTACANTHA 2
L. BACCA

CENOSPHAERID 7
E. (CF) aCuminatum

CUBOSPHAERID 6
L. QUADRANGULA

CENOSPHAERID 6
COLLOSPHERID 6
C. SCOPARIUS
H. ASTERIASCUS
E. ACUMINATUM
S. GLACIALIS AD.
D. POLYGONALIS
A. VINICULATA
T. OCTACANTHA 1
L. BACCA

CENOSPHAERID 7
E. (CF) ACUMINATUM CUBOSPHAERID 6
L. QUADRANGULA

CENOSPHAERID 6
COLLOSPHAERID 6
C. SCOPARIUS
H. ASTERISCUS
E. ACUMINATUM
S. GLACIALIS AD.
D. POLYGONALIS
A. VINICULATA
T. OCTACANTHA 1

OBLONGA SP.
ACANTHARIAN SP.
C. CAUDATUM
F. B. COLLOPS.
S. ?PENTAS

CIRC. SPONGADISC
ELLIP. SCPONGODISC
S. GLACIALIS JUV.

SPIROCYRTIS 2
A. (CF) MEDIARUM

CYBOSPHAERID 2
S. BISPICULUM
E. EURCATA
Q. TETRATHALAMUS
S. STREPTACANTHA
P. PRAET. PRAET

PHAEO. SPH.
CENOSPHAERA 8
E. ELEGANS
L. VICHOWII
S. GEDDESSI
S. BERMINGHAMI
L. MARITALIS POLY

LOPHOCEPH
CENOSPHAERA 1
C. SPHAERULITES
A. CINERIA
P. ZANCLEUS
T. TRICOSTATUM

ACTINOMA 1
B. SCUTUM

CALLIMITRA SP.
C. TUBEROSA

NASSELARIUM 1
D. ZANGUEBARICA
S. TETRAS IRREG.
E. SPINUS
B. INVAGINATA
D. RING 2

SPYROID 3
C. SIPHON. POLYSI

SPUMELLARIAN 6

Figure 9. Winter Q-Mode Cluster of Radiolarians.

Figure 10. Spring Q-Mode Cluster of Radiolarians.

Figure 11. Summer Q-Mode Cluster of Radiolarians.

Figure 12 Continued. Key to Left-Hand Column.

SPUMELLARIAN G.
?L. RETROVERSA RT
B. INVAGINATA
L. BULLINOIDES RT
C. (CF) SUBGLOBOSA

SPYROID 3
?EPONIDES SP.
C. VIRG CONSTRIC
G. (CF) TOSAENSIS
E. TUMIDULUS

CENOSPHAERID 7
E. (CF) ACUMINATUM CUBOSPHAERID 6 L. QUADRANGULA CENOSPHAERID 6 COLLOSPHAERID 6
L. SPIRATA
H. ASTERISCUS

ACANTHARIAN SP.
E. B. COLLOSP. CENOSPHAERA 1
C. SPHAERULITES
?L. HELICOIDES
?L. INFLATAS RT
LIMACINA 3
?L. TROCHIFORMIS
?L. LESUEURI RT
A. SPINATA-TRANS
L. (CF) INFLATA
L. HELICOIDES
P. PRAET. PRAET.
S. TETRAS TETRAS
S. STREPTACANTHA
G. FALCONESIS
H. PROFUNDUM AD.
?L. INFLATA RT
G. RUBER
G. BULLOIDES
H. PROFUNDUM JUV
L. LESUEURI

G (?) QUINQUELOBA
L. INFLATA
E. CAMPYLURA
C. ACICULA
?L. INFLATA3 RT
ACTINDUA 1
P. ? RETICULATA LIMACINA SP
T. TRACH. TRACH
H. DODECANTHA

PTEROCORYS SP
S. (AFF) ELLIPTIC ?P. RETICULATA
A. SCUTUM

CALLIMITRA SP
G. ROBESCENS
G. TRUNCATULINOID
C. SIPHON. POLYSI
?L. (CF) INFLATA 1
G. SP.
V. (CF) ARAUCANA
?L. INFLATA 2 RT
?L. INFLATA 2 RT
N. BASALOBA

MARGINULINA SP.
N. ANTILLARUM
U. AUBERIANA
C. CONCENTRICUS
C. CURVATA
B. SUBRENARIENSIS
U. HISPIDO-COSTAT
S. BRECCARI
A. SPINATA COSTAT
G. (CF) INCOMPTA

LIMACINA 1
G. TENELLUS

SPHAERID 2
HELOTHOLUS 3
ASTROSPHAERID 2 CUROSPHAERID 1 ASTROSPHAERA 3 ?L. INFLATA \$ RT
A. VINICULATA
P. PRAET. EUCOLP
S. GLACIALIS JUV
A. (CF) MEDIARUM

CIRC. SPONGADISC
ELLIP. SPONGODISC
G. PACHYDERMA
U. PERIGRINA
U. POLYGONALIS
S. SCALARIS
S. BERMINGHAMI
L. MARITALIS POLY
L. VICHOWII
O. TETRATHALMUS

CYBOSPHAERID 2
S. BISPICULUM
E. EURCATA
T. TRICOCSTATUM
O. UNIVERSA

CENOSPHAERA 8

PHAEO. SPH.
G. AEQUILATERALIS

OBLONGA SP.
T. OCTACANTHA 1
L. TROCHIFORMIS
S.? PENTHAS
S. GEODESSI
H. PELAGICA
E. ELEGANS
S. GLACIALIS AD.
C. TUBEROSA

NASSELARIUM 1
C. IRREGULARIS
?P. STRATILOIDES
CHUENICOSPHAGRA
L. BACCA
T. OCTACANTHA 2

CENOSPHAERA 4
T. TRACH. DIANAE
C. SCOPARIUS
C. CAUDATUM
D. ZANGUEBARICA
A. CINERIA
?S. GEODESSI
ASTROSPHAERID 3
SPIROCYRTIS 2
E. ACUMINATUM

P, ZANCLEUS
?L. INFIATA 6. RT SPHAERID 1
?L. RETROVERSA RT
HELOTHOLUS I
CALOCYCLAS 1
CALOCYCLAS 2
RADIOLARIAN 3
RADIOLARIAN 2
SPONGOSPHAERID 1
P. OBLIQUILOCULA
?LOPHOPHAENA SP
P. TRILOBUM
S. CRUCIFERUS
P. SPINIPES
S. BENTOS

LOPHOCEPH
S. TETRAS. IRREG.
E. SPINUS
L. BULLIMOIDES RT

D RING 2
distinct winter and summer foraminiferal assemblages were constructed. The winter assemblage was characterized by very dominant Globigemina falconensis and Globigerina quinqueloba. Less abundant, but also winter characterizing species, were Globigerina rubescens, Globorotalia truncatulinoides, Globigerina pachyderma, Globigemina cf. incompta, Globigerinoides tenellus and Globorotalia cf. tosaensis.

A summer assemblage contained dominant Globigerina bulloides and Globigerinoides muber with subordinate numbers of Globigerina falconensis and Globigerina quinqueloba. Orbulina universa was more abundant and Bolivina Zowmani assumed the position of a dominant faunal component. Hastigerina pelagica first appeared in a spring sample but became moderately abundant in the summer.

The spring sampling period seemed to be transitional between the two more distinct winter and summer seasons. Globigerina quinqueloba was the most abundant spring species; however, there does not appear to be any other distinctly dominant species. Although diversity only slightly decreased for the spring period, density exhibited a significant decrease.

General Microplankton (Niskin)

From the Q-mode cluster of the 1975 Niskin data (Figure 13), two very important trends are apparent: location on the shelf was the first tier of the clustering hierarchy, and seasonality was the next most important parameter (representing the second hierarchicaltier). Offshore clusters were generally related at a higher similarity level to one another, reflecting a greater stability present in biological composition of more normally oceanic microplankton populations, than nearshore clusters (where localized environmental changes are more dramatic).

Depth has generally been considered an important factor in determining the distribution of plankton populations. While this is undoubtedly the

Figure 13 Continued. Key to Left-Hand Column.
The Station/Transect is followed by a three letter sample code, month and day, time of day, and depth ${ }^{1}$.

Figure 13 Continued.

${ }^{1}$ Depth: $.5=5 \mathrm{~m} ; \mathrm{pz}=$ photic zone.
case, only some of the deep offshore samples clustered together. These results may be accounted for, to some extent, by settling of individuals out of the photic zone; thus, giving lower portions of the water column the same general appearance in terms of microplankton composition (especially in phytoplankters) as waters in the photic zone or less dominance in the more open ocean waters. In the 1975 R -mode dendrogram (Figure 14) centric solitary diatoms, naupliar larvae, calanoid copepods, Ceratium (the most common dinoflagellate genus), tintinnids, pennate solitary diatoms, and fecal pellets all showed a very intimate association. Tintinnids, calanoid copepods, and naupliar larvae were mainly herbivores and the diatoms and dinoflagellates above were probably basic constituents of their diet, although the tintinnids may graze primarily on the nannophytoplankton.

In general, the dendrogram seems to represent a descending hierarchy of relatively abundant organisms clustering together first, with relatively rare and extremely rare organisms being added to the cluster at lower similarity levels. This result is to be expected when consistently abundant variables are clustered together with very rare ones.

Absolute densities for the seven shelled microplankton groups were tabulated and plotted in histogram fashion as a function of year, season and station location (Figures 15 through 21).

Diagrams depicting the relative abundance of the major microplanktonic groups (diatoms, dinoflagellates, copepods, and naupliar larvae) along with absolute density estimates of one-half photic zone samples for each station and season for 1975 are shown on Figures 22 through 24. Average densities for Stations 1, 2 and 3 for one-half the depth of the photic zone samples are summarized in Table 1.

Several significant trends were present in these microplankton density data. Winter was the most stable and least "productive" season with densities

Figure 14. R-Mode Cluster Analysis of 1975 BLM-STOCS Niskin Data. Key to Figure on Following Page.

Figure 14 Continued. Key to Left-Hand Column.

Figure 15. Density of Planktonic Foraminiferans.

Figure 16. Density of Benthonic Foraminiferans.

(107.

Figure 17. Density of Nassellarians.

Figure 18. Density of Spumellarians.

Figure 19. Density of Acantharians.

Figure 20. Density of Pteropods.

Figure 22. Relative Abundance (percent of total) of Major Groups and Total Density in Niskin Samples, Winter 1975.

Figure 23. Relative Abundance (percent of total) of Major Groups and Total Density in Niskin Samples, Spring 1975.

Figure 24. Relative Abundance (percent of total) of Major Groups and Total Density in Niskin Samples, Summer 1975.

TABLE 1

AVERAGE MICROPLANKTON DENSITIES (非/m ${ }^{3}$) FOR STATIONS 1, 2 AND 3 DURING WINTER, SPRING AND SUMMER COMPUTED FROM ONE-HALF THE DEPTH OF THE PHOTIC ZONE SAMPLES
Stations 112030

Winter	4.3×10^{5}	2.5×10^{5}	1.9×10^{5}
Spring	7.2×10^{5}	5.9×10^{5}	2.5×10^{5}
Summer	8.0×10^{5}	3.1×10^{5}	1.4×10^{5}

exhibiting less spatial variation than the other two seasons. This observation correlated well with the physical oceanography over the STOCS area for this time period. Winter was characterized by very nearly isothermal, isohaline conditions throughout the water column for the entire shelf. A well-developed Spring Diatom Increase (SDI) was evident in the spring. Probably the single most important oceanographic factor during the spring on the STOCS was the presence of a low-salinity Mississippi water mass extending along the coast. Densities were generally higher along the northern portions of the STOCS.

Nutrient levels are the most important determinants of high microplankton standing stocks (Ryther, 1969). Although upwelling of slope waters onto the shelf may supply important amounts of nutrients, surface run-off was probably the major nutrient source of this portion of the Gulf of Mexico (Parker, 1976). A resultant seaward decrease in nutrient levels and microplankton densities was generally observed for all transects. Thus, the STOCS area could have been characterized by a general trend of eutrophic conditions nearshore changing to more oligotrophic conditions moving offshore and in a southeasterly direction.

The relative abundances of the major microplankton groups reflected this eutrophic to oligotrophic condition of the STOCS (Figures 22 through 24). Diatoms and dinoflagellates generally showed a seaward decrease in total percentage of microplankton, and copepods and naupliar larvae showed a corresponding seaward increase in total percentage of microplankton in relative abundance.

The average density of microplanktonic organisms represented in the seasonal data for samples taken at one-half the depth of the photic zone for the stations was $2.9 \times 10^{5} / \mathrm{m}^{3}$ for spring; and $4.5 \times 10^{5} / \mathrm{m}^{3}$ for summer.

The general microplankton density diagrams (Figures 22 through 24) indicate a decrease in microplankton abundance offshore, and in a southerly direction in the STOCS area. These results correlate well with data collected by the phytoplankton project of the BLM-STOCS study. Their findings indicated that productivity is highest nearshore, and higher at Stations $1 / I$ and $1 / I I$ than Stations $1 / I I I$ and $1 / I V$ (Van Baalen, 1976). Likewise, their investigations into physical or chemical parameters that correlate well with phytoplankton productivity showed an inverse relationship between salinity and chlorophyll a concentration. As stated earlier, surface runoff was the apparent major nutrient supply. Correlations with silicate, nitrate and other nutrient concentrations were not consistent, indicating that the concentration of nutrients in the water column at a specific point in time may not be the best measure of eutrophism or oligotrophism. Results of a mathematical model of plankton patch dynamics as well as a number of other findings, cited by Wroblewski and 0 'Brien (1976), indicated that exmetabolite excretion of nutrients by zooplankters may be a significant source of nutrients in a phytoplankton patch. Nutrient depletion and cycling within a plankton patch could explain why high nutrient concentrations were not always found in conjunction with areas of high productivity.

The major planktonic foraminiferan genus represented in the Niskin casts was Globigerina. Planktonic foraminiferans exhibited a seaward increase in density (Figure 15), reflecting their typically normal marine habitat (Bauer, 1976). Data from 1975 indicated the dominant increase in density (in the Niskin collections) occurred during the spring (Figure 15). This was also the period of lowest planktonic foraminiferan densities as represented by the Nansen data. This may mean that juvenile forms were more prevalent in the spring.

Relatively high benthonic foraminiferan densities in Niskin samples
apparently reflected the suspension of a meroplanktonic stage of these "benthonic" organisms. The dominant benthonic species in Niskin casts was Brizalina Zowmani, which apparently has a meroplanktonic juvenile stage (Bauer, 1976). Densities of benthonic foraminiferans were usually highest at Station 1, all transects (Figure 16). B. Zowmani also may have been displaced from the estuaries by spring "freshwater" outflow, resulting in the spring high at Station 1, all transects, shown in Figure 16.

Nassellarian radiolarian densities (Figure 17) were quite low when compared to spumellarian densities and are restricted to Station 3, all transects.

Spumellarian radiolarian densities (Figure 18) were generally higher than nassellarian densities, and spumellarians were found at Station 1 , all transects. The appearance of one deep living species, Spongotrochus glacialis, in shallow Niskin, casts was a good environmental indicator of upwelled or displaced deeper waters. The increase in spumellarian densities in the spring of 1975 may be considered indicative of upwelling during this time at the offshore stations or perhaps the displacement of an envelope of high productivity water moving out during spring.

Acantharians are non-polycystin radiolarians which can be distinguished from the other major radiolarian groups by their organic-walled test. In the STOCS area acantharians (Figure 19) exhibited a nearshore, low-salinity habitat preference. Spring, 1975, densities showed a substantial increase that is probably tied to surface runoff (perhaps Mississippi River water).

Densities of pteropods (Figure 20) are lowest in the winter and increase in the spring, with a slight tapering off in the summer. Pteropods behaved like most general microplankton groups in showing a decrease in numbers in an offshore direction.

Ostracods were well represented in the larger zooplankton size classes (Park, 1976), but they were almost non-existent in 1976 Niskin data (Figure 21). No general trends other than a spring increase were evident.

Shelled Microzoobenthon

Benthonic Foraminifera

Originally, one season's sampling was to be done to determine the distributional patterns of the benthonic foraminifera in the study area. Studies of this first season suggested that the populations may well show some seasonal trends that would make the projected down-core studies (of an undetermined number of down-core samples obtained from the USGS) less than desirable. The collecting and examination of the spring sampling confirmed these suspicions, and therefore, it was decided to work up two seasons of benthonic samples even though the contract called for only one season. The winter and spring seasons have been worked up and are reported herein. Ms. Anepohl's thesis (1976) gives good coverage on this material.

The average standing crop of benthonic foraminiferans for all stations in winter and spring was 75 individuals $/ 10 \mathrm{~cm}^{2}$. Average values for shelf and marginal marine environments are 50 to $200 / 10 \mathrm{~cm}^{2}$ (Murray, 1973). However, Phleger (1956), studying approximately the same area as the STOCS study area, reported an average from $21 / 10 \mathrm{~cm}^{2}$ for his southern transect (a transect that extended from between Stations $1 / I I$ and $1 /$ III to $3 /$ III), to $61 / 10 \mathrm{~cm}^{2}$ for a more northerly transect which ran from approximately midway between STOCS Stations $1 / I$ and $1 / I I$, terminating offshore at about Station 3/II. When Stations $1 /$ II and $1 /$ III were combined as a composite station, and that composite considered with Stations $2 / I I I$ and $3 / I I I$, a station distribution close to Phleger's southern transect was obtained. (An average density of $89 / 10 \mathrm{~cm}^{2}$ during winter and spring 1975.) Seasonal averages for these stations were 86 for the winter and 91 for the spring.

Phleger's samples were collected in late June, which was closest seasonally to the STOCS spring collecting period. When Stations $1 / I$ and $1 /$ II were combined as a composite nearshore station and averaged with Stations 2/II and $3 /$ II, an average density of 28 was obtained. The averages for these stations seasonally were 20 for the winter and 36 for the spring. These densities are about half as high as those reported by Phleger (1956) for the northern transect, and four times as high as Phleger's values for the southern transect. This may be accounted for by his sampling only one season or use of a different sampling method (a corer). However, considering the small sample size taken in both studies, and the variability and patchiness in distribution of benthonic foraminiferans, the data are considered reasonably compatible.

The average standing crop for all stations during the winter of 1975 was $72 / 10 \mathrm{~cm}^{2}$ and $77 / 10 \mathrm{~cm}^{2}$ for spring. Combining Transects I and II as a northern section, and Transects III and IV as a southern section, the southern section had greater standing crops in both winter and spring ($112 / 10 \mathrm{~cm}^{2}$ to $31 / 10 \mathrm{~cm}^{2}$ in winter and $109 / 10 \mathrm{~cm}^{2}$ to $101 / 10 \mathrm{~cm}^{2}$ in spring). The higher standing crops of benthonic foraminiferans, along the southern transects, may have been representative of their importance as meiofauna in sediments underlying more oligotrophic waters. There probably was a lag time between plankton productivity (both primary and secondary) and benthonic productivity (represented by standing crop). These data suggest that, in general, the high spring plankton productivity was not reflected in the meiofauna until the following winter when the benthonic foraminiferan standing crop dropped, with a probable increase in more opportunistic meiofauna, such as nematodes.

Figures 25 and 26 illustrate standing crop (in numbers of individuals/ $10 \mathrm{~cm}^{2}$) and dominant species (in percent) for each of the stations for winter

Figure 26. Spring Percentages of Dominants and Total Standing Crops of Benthonic Foraminiferans.
and spring. During both seasons there was a general decrease in standing crop shelfward, with a winter and spring average for Station 1, all transects, being $137 / 10 \mathrm{~cm}^{2}, 60 / 10 \mathrm{~cm}^{2}$ for Station 2 , all transects, and $27 / 10$ cm^{2} for Station 3, all transects (approximately a 50% reduction from Station 1 to Station 2 and from Station 2 to Station 3). Seasonal averages for Stations 1,2 and 3 , respectively, were 119,57 and 38 for winter, and 154 , 62 and 15 for spring.

The nature of the communities at the species level also changed seasonally. The dominant species (in abundance) on the shelf was Brizalina Zowmani, which exhibited an interesting seasonal pattern (Figures 25 and 26). This species was dominant at Stations 1 and 2, Transects I and II, during the winter. During the spring this species was dominant only at northern and southern transects "nearshore" (Stations $1 / I$ and $1 /$ IV and $2 / I V$), but essentially played a sub-dominant role in the northern section except for Station 1/I. B. Zowmani may be a good immediate indicator of eutrophism in the benthic environment as the above-mentioned trends suggest (it's dominance=eutrophism).

An apparent supra-species seasonal trend was that the northern section appeared to be dominated by fewer species than the southern section. This trend reinforces the previously-stated idea that high plankton productivity is reflected in lower benthonic foraminiferan densities and dominance (especially of B. Zowmani). It also reinforces the suggestion that B. Zowmani might be a good indicator of "benthic productivity" and that its dominance in the winter (northern sector) demonstrates eutrophism of the northern sector. B. Zowmani may well be an opportunistic species which takes advantage of this eutrophism, perhaps at the expense of others (as the nematodes may do). At the same level, the benthic foraminiferans of the southernmost transect (IV) apparently illustrate the more oligotrophic conditions of this
transect. Shared dominance is the rule in the southern portion of the study area.

Perhaps the most obvious correlations of species and standing crop distributions were with depth. Anmonia beccarri, Brizalina lowmani and Nonionella basiloba were dominant at inner and mid-shelf Stations 1 and 2. Fursenkoina pontoni may be indicative of the mid-shelf (Station 2), but the major bathymetric break in the benthonic foraminiferan populations appeared to be mainly between Stations 2 and 3, or at 60 to 70 m as was first noted for the study area by Phleger (1956). Outer shelf depths were indicated by the occurrence of Uvigerina peregrina, Bolivina subspinescens and BrizaZina spinata at the species level, and more generally by increases in Cibicides, Siphonina and other species of Brizalina and Bolivina.

The Q-mode cluster analysis dendrogram for benthonic foraminiferan is given in Figure 27. Clustering was predominantly influenced by depth and secondarily by seasonality. Depth appeared to be the dominant factor controlling the distribution of benthonic foraminiferans in the STOCS study area. Nearshore forms showed a greater seasonality than mid- or outershelf forms. (Mid- and outer-shelf forms occasionally occurred in innershelf samples but were designated as mid- or outer-shelf forms, primarily because their standing crops were maintained in deeper waters, whereas forms that were designated as more nearshore types decreased in standing crop offshore.)

Seasonal variation in distribution of living benthonic foraminifera was apparent from specimens collected during winter and spring samplings. Nonionella basiloba and Brizalina Zowmani dominated winter samples. During the spring, other forms, notably Brizalina spinata and species of Buliminella, Cibicides and Fursenkoina, were dominant. Lowest species diversity and greatest test density occurred during the spring which corresponded to

Figure 27 Continued. Key to Left-Hand Column.

```
2/I CFT
2/II CPM
2/IV BFQ
I/I AMC
2/IV DIO
1/IV DFO
1/III ATV
1/IV BCQ
I/II AKP
I/I CCP
2/I AEP
I/II CMO
1/III CWR
2/II ANO
2/III AWU
2/III CZQ
3/IV DLW
3/IV BOS
3/III AZS
3/II CSR
3/III DCF
3/I ACL
3/II AQQ
3/I CIX
```

increased standing crops of Nonionella basiloba, Brizalina lowmani, Ammonia beccarii and BuliminelZacf.bassendorfensis during that season.

Variations in the living faunal composition occurred from north to south in the study area, with the shallow stations ($18-26 \mathrm{~m}$) to the north dominated by Ammonia beccarii and Brizalina Zowmani while those to the south were dominated by NonionelZa basiloba and species of Buliminella. Faunal changes with depth generally agreed with earlier studies (Phleger, 1951).

Multivariant analyses were performed on these data and the results displayed in Figures 28 through 30. The Q-mode cluster of live benthonic foraminifera (winter and spring) (Figure 27) generated three groups which are displayed in Figures 28 (winter) and 29 (spring). These depicted fairly stable inner and outer groups with a "stable" or constant southern transect (IV) group. The R-mode cluster (Figure 30) generated a dendrogram and clustered the following groups: outer-shelf winter (OSW), and outer-shelf winter and summer (OSWS), inner-shelf winter and summer (ISWS), mid- and outer-shelf winter and summer (MOSWS), and inner and mid-shelf winter (IMSW) assemblages. These data substantiated the investigations, illustrating that there appears to be distinct inner and outer assemblages with a mixed mid-shelf fauna. (Figure 28 also suggests a seasonality superimposed on the dominant "depth" zonation.)

This distinct "depth" zonation fits well with published reports from the study area and other areas (Anepoh1, 1976). Various explanations have been suggested for this depth zonation, such as temperature and/or salinity changes, etc. Winter and spring bottom temperature and salinity contour have been constructed (Figures 31 through 34). It is tempting to infer that these data suggest the inner fauna may be a euryhaline and eurythermal fauna while the other fauna may be more stenohaline and stenothermal; however, it

Figure 29. Spring Q-Mode Cluster of Benthonic Forams.

Figure 30. R-Mode Cluster Analyses of Live Benthonic Forams, Winter and Spring. See Key Next Page.

Figure 30 Continued. Key to Left-Hand Column.
C. FLORIDAMUS
B. SUBAENARIENSIS
B. BARBATA
D. SP.
B. ACULEATA
F. COMPRESSA
L. NEBULOSA
H. ELEGANS
C. SAGRA
R. ATLANTICA
B. HAWNAI
B. HASTATA

SARACENARIA SP.
L. SPIRATA
E. VITREA
B. FRAGILUS
R. COMPRIMA
F. ATLANTICUS
S. PULCHRA
T. JAMAICENSIS
M. ANTILLARUM
F. ASTRICTA
B. SUBSPINICENS
F. GRATELOUPI
C. SUBGLOBOSA
U. PERIGRINA
U. BELLULA
S. BRADYANA
C. SP.
E. REPANDUS
C. HOLLIS
C. UMBONATUS
U. PARVULA
E. SP.
A. BREC்CARII
B. ELEGANTISSIMA
B. BASSENDORFENSI
H. STRATIONI
B. SPINATA
F. PONTONI
B. LOWMANI
N. BASILOBA
T. BELLA
L. SP.
L. ATLANTICA
M. WARRENI
L. CALCAR
T. PARVULA
M. BARLEEANUS
E. GUNTERI
S. COMPLANATA
B. IRREGULARIS

1F. SPINICOSTATA
S. PULCHELLA.PRIM
S. MINUTA
R. ADVENA
A. PSEUDOSPIRALIS
B. MARGINATA
E. POEYANUM
T. CANDEIANA
S. SP.
V. PERTUSA
S. AFFINIS
G. AEQUR
Q. COMPTA
A. PAUCILOCULATA
B. ORDINARIA
B. GIBBA
Q. OBLONGA

Figure 31. Winter Bottom Temperatures (${ }^{\circ} \mathrm{C}$).

Figure 32. Winter Bottom Salinities (ppt).

Figure 33. Spring Bottom Temperatures (${ }^{\circ} \mathrm{C}$).

Figure 34. Spring Bottom Salinities (ppt).
is too early for such suggestions. It is also intriguing to imagine that the nepheloid layer, described by the USGS and other investigators in the study area, may have some significance in this "depth" zonation. Perhaps the inner fauna constituted a nephelophobic fauna and the outer fauna a nephelophilic fauna; however, more research is necessary before this question can be answered.

In relating the benthonic foraminiferan studies to geological studies of Berryhill et $a Z$. (1976), a good relationship between sediment type and benthonic foraminiferan distribution was not evident. However, at the BLM-STOCS Quarterly Conference (Apri1 1977), Berryhill suggested that:

1) the major sediment depocenter was in the northern sector mid-shelf;
2) little current sedimentation was occurring south of 26° North on the shelf;
3) perhaps a convergence existed which divided the shelf into north and south components; and, 4) perhaps internal waves were important in this division of the STOCS into geological (and biological and physical) northern and southern components. We suggest that the major break in the foraminiferal faunas at 60 to 70 m depth is related either to the shallowest common incursion of offshore waters (Phleger, 1956 stated a similar conclusion); or to the distribution of the nepheloid layer (which might be related to internal waves that stir the bottom). The north-south differences in communities (and standing crops) might well be related to internal waves stirring the bottom and a South Texas Shelf Convergence along Transect II. This convergence may be related to sedimentation and eutrophic-oligotrophic patterns that may be related to benthonic foraminiferal distributions, densities and dominances.

Indicators of Water Mass Distribution and Movements
All the temperature and salinity curves for the study year were plotted and "water mass" envelopes were drawn around the seasons of collection
(Figure'35). For 1975 we suggested four "water masses" on this diagram. The "core" of about 36 ppt water we believe to be Western Gulf Surface Water (WGSW) (Armstrong and Grady, 1967), which is always present in the study area. It is always present athdepth on the outer shelf and appears to encroach on the inner shelf in the winter and especially in the summer. Shoreward of this water we suggest there are three shelf water masses (SW). These are: South Texas Summer Shelf Water (STSmSW), South Texas Spring Shelf Water (STSpSW) and South Texas Winter Shelf Water (STWSW). Radiolarians were considered to be more or less endemic to specific water masses (Casey, in press a). With this in mind, a temperature-salinity-radiolarian diagram was constructed (Figure 36). The subpackets denoted by the five symbols represent radiolarian groups (faunas or populations) generated by multivariant analysis and are coded (symbol coded) on the Q-mode cluster dendrogram of live radiolarians (Figure 7). The temperature-salinityradiolarian diagram (Figure 36) suggests the following: specific radiolarians and specific radiolarian populations (Q-mode groups) were indeed "endemic" to "specific water masses", radiolarians were in general "open ocean" forms; radiolarian faunas may be used as indices of water mass incursion onto a shelf environment; radiolarians were indicative of seasonality on the shelf; and in spring the study area was a "mixed" period of both water masses and endemic radiolarian faunas.

The above statement that radiolarians were endemic to specific water masses is made due to the fact that most Q-mode faunas were restricted to one of the water masses defined herein. In fact, there is a fauna that depicted the South Texas Winter Shelf Mass and one that perhaps depicted the South Texas Summer Shelf Water Mass (Figures 35 and 36). The statement that the radiolarians are in general "open ocean" forms, seems apparent from our studies showing their density and diversities increasing offshore

Figure 35. Temperature-Salinity Diagram for the South Texas Outer Continental Shelf. Dashed Lines Enclose Water Masses.

(Figure 1); but, this trend also appears on the temperature-salinityradiolarian diagram which illustrates that three of the five Q-mode groups were "endemic" to the Western Gulf Surface Water. These three groups, "endemic" to the Western Gulf Surface Water Mass, occupied different but overlapping subpackets within this water mass envelope, which may suggest that they occupied different depths within this water mass, a "patchiness" within the water mass, or something else that may be elucidated with further studies (stratified tows are being taken in the BLM STOCS effort). Radiolarians obviously are indicative of a seasonality on the shelf as was illustrated by the representation of winter and summer shallow shelf faunas.
"Water masses" were also represented in a loose context by the information displayed on the R-mode cluster of live radiolarians (Figure 8). Here we have a winter group (W), a winter offshore group (0), a nearshore group (NS), a weak spring assemblage (S) (it clusters well only because there are individual occurrences of some species), a spring upwelling group (SU) and a summer group (SM). These are not as neatly associated with water masses as those generated by the Q -mode, but they do represent nearshore, winter-offshore, spring-upwelling etc. indices.

Water mass movements may be derived from comparing the temperature-salinity-radiolarian diagram (Figure 36) with the maps of the Q-mode radiolarian clusters (Figures 9 through 11). The winter Q-mode cluster is very complicated as is the planktonic foraminiferan cluster for the same period (Bauer, 1976). There does appear to be an incursion of offshore water (Western Gulf Surface Water Fauna) into the study area along Transect III in the winter (Figure 9) as has been depicted in Figure 2. This incursion shows up dramatically as a finger of high radiolarian
density on the winter radiolarian density map (Figure 37), and as a finger of high radiolarian diversity in the winter radiolarian diversity map (Figure 38). This is substantiated to some extent by the inflection of the 22° isotherm shoreward along Transect III on the winter $10-m$ temperature map (Figure 39), although it is not apparent on the $10-\mathrm{m}$ salinity contours (Figure 40).

The spring Q-mode cluster map (Figure 10) shows only two clusters. This was due to the fact that the spring diatom bloom and the 'Mississippi River Water Mass" which are related, had apparently "ellminated" the polycystine radiolarian niche. This will be discussed later within this report. The foraminiferan Q-mode cluster map (Figure 5) illustrates the spring water movements much better than the radiolarian cluster because the cluster (Figure 5) includes benthonic foraminifera that are in the water column (planktonic-benthonic). However, both maps (Figures 5 and 10) show there was an incursion of offshore water faunas (Western Gulf Surface Water Mass Faunas) impinging on the shelf edge at Stations $3 / I I$ and $3 / I I I$, and the radiolarian evidence suggests there was an extension of this water into Station $2 /$ III, therefore, the current arrow indicates this in Figure 2. This is substantiated by both spring radiolarian density (Figure 41) and diversity (Figure 42) maps, with fingers of high density and diversity coming in along these two outer stations. The spring $10-\mathrm{m}$ temperature map (Figure 43) showed this very well with the 25° isotherm extending all the way to Station $1 / I I I$. The spring $10-\mathrm{m}$ salinity (Figure 44) appeared to confirm the "bowing up" of water that might be related to this incursion. The Q-mode of the foraminifera for the spring illustrates very well the incursion of the low salinity water from the north ('Mississippi Water"). This incursion was also well illustrated by the physical oceanography, as can be seen by the bulging 30 ppt salinity contour on Figure 44 , which

Figure 37. Winter Radiolarian Densities (1 / $/ \mathrm{m}^{3}$).

Figure 38. Winter Radiolarian Diversity (${ }^{(1}$ of species/tow).

Figure 39. Winter Temperatures at $10 \mathrm{~m}\left({ }^{\circ} \mathrm{C}\right)$.

Figure 40. Winter Salinity (ppt) at 10 m .

Figure 41. Spring Radiolarian Densities (\#/m3).

Figure 42. Spring Radiolarian Diversity (\# of species/tow) ,

Figure 43. Spring Temperatures $\left({ }^{\circ} \mathrm{C}\right)$ at 10 m .

Figure 44. Spring Salinities (ppt) at 10 m .
matches very well with the inshore bulge of Figure 4 , characterized by the foraminiferan indicator species BoZivina Zowmani (see Table 2).

The summer Q-mode maps for radiolarians (Figure 11) and foraminifera (Figure 6) both show there was an extensive "pushing" of offshore faunas (and offshore waters) shoreward. The summer radiolarian density (Figure 45) and diversity (Figure 46) maps also illustrate this phenomenon. The summer 10 -m temperature (Figure 47) illustrated this for the southern portion of the study area, at least, while the summer 10 -m salinity (Figure 48) showed the 35 ppt contour "pushing" into Stations 1 , on both Transects II and III. Figure 2, therefore, shows the current arrow pushing in along Transects II and III.

Areas of Possible Upwelling, Volumes and Routes of Currents and Possible Upwelling

Radiolarians exhibit a vertical zonation in the water column, therefore, upwelled waters may carry expatriate radiolarians from their normal living depths into shallower waters, as has been found in the waters off southern California (Casey, In Press a). In this current study, deeper living radiolarians were found at some shelf stations (outer stations) during different seasons in differing densities. The best indices of upwelled (or bulging up and encroachment of probably deeper than 200 m Gulf waters) were the radiolarians of the Superorder Phaeodarina. The species Conchasm sphaemulites and Conchoceras caudatum were large and easily recognized species, and therefore, probably the best indicators. Other radiolarians, that were also indices of upwelling, are the polycystins Spongotrochus glacialis (both juvenile and adult forms), and Tetrapyle octacantha. The relative magnitude noted on Figure 2 described the upwelling as minor off Transect III (with components off Transects I and II)

TABLE 2
OCCURRENCES OF LIVING BENTHONIC FORAMINIFERA
IN THE PLANKTON TOWS

Winter

Station/Transect	3/I	2/IV	3/IV
Depth (in meters)	117	47	91
Sample Code	ACL	BFQ	BOS
Ammonia beccarii	0.9		0.8
Bolivina Lowmani	1.5	1.4	0.8
Bolivina spinata	0.3		
Bolivina subaenariensis var. mexicana	0.6	0.8	
Cassidulina cf. subglobosa			0.8
CassiduZina curvata	0.6		
Cibicides concentricus	0.3	0.8	
? Eponides sp.			0.8
Eponides tumiduzus			1.5
Marginulina sp.	0.3		
Neoeponides antilzarum	0.3		
Nonionella basizoba	0.3		
Uvigerina auberiana var. laevis	0.3		
Uvigemina hispido-costata	0.6		
Uvigerina peregrina	0.8		
Valvulinemia cf. araucana	0.3		

Spring

Station/Transect	1/I	$2 / I$	1/II	2/II	I/III	3/III	2/IV	3/IV
Depth (in meters)	20	43	22	48	26	106	47	91
Sample' Code	CCP	CFT	CMD	CPH	CWR	DCF	DIO	DLW
Bolivina lowmani	24.8	2.5	1.6	3.7	2.7		\cdot	
CassiduZina cf. subglobosa		2.5						
Lagena spirata Uvigerina peregrina						0.3	0.8	0.4

Summer

Station/Transect	$1 / I$	$3 / I$	$2 / I I$	$1 / I I I$	1/IV	$2 / I V$	$3 / I V$
Depth (in meters)	18	42	49	25	27	47	91
Sample Code	ECP	EIX	EPI	EWR	FFW	FIY	FMH
BoZivina Zowmani	39.3	0.3	9.4	2.8	1.3	4.5	0.8

Figure 45. Summer Radiolarian Densities (\#/m3).

Figure 46. Summer Radiolarian Diversity (\# of species/tow).

Figure 47. Summer Temperatures $\left({ }^{\circ} \mathrm{C}\right)$ at 10 m .

Figure 48. Summer Salinities (ppt) at 10 m .
for the spring, and fairly strong (intermediate between the two) during the summer. These relative magnitudes of upwelling are only crudely known. The magnitudes of upwelling were determined by the relative densities of the upwelled species, whereby the interpretation is that the more upwelled species present, the stronger the upwelling.

There is some physical data that supports these contentions of upwelling, or encroachment of deeper Gulf waters onto the shelf. The draft report on productivity and low-molecular-weight hydrocarbons by W. M. Sackett (1976) states "dissolved oxygen at all depths during the summer period for all stations, with the exceptions of $2 / I$ and $3 / I$, . . . (are best). . . explained by water from deeper than 200 m of the open Gulf moving onto the shelf at this period". Sackett's data on silicate, phosphate and nitrate also suggests encroachment or upwelling of deeper waters at different times onto the she1f.

Winter bottom temperatures (Figure 31) suggested an encroachment or upwelling of waters at $3 / I I$ and $3 / I I I$ and the offshore winter fauna (0 in Figure 8) might represent this upwelling (S. scalaris may be an upwelling species). The winter bottom salinity, map (Figure 32) might suggest an encroachment of deeper waters illustrated by the shoreward displacement of the 36 ppt contour. Spring bottom temperatures (Figure 33) and spring bottom salinities (Figure 34) both suggested encroachment shoreward through $3 / I I$ by the displacement shoreward of the 22° isotherm and the 36 ppt salinity contour. The spring season appeared to exhibit the strongest upwelling, and a separate spring upwelling group (SU on Figure 8) clusters out. Summer upwelling (Figure 2) appeared to be of intermediate magnitude between the winter "minimum" and the spring "maximum". It is interesting to note that all these upwellings occur "under" encroachments of offshore "shallow" radiolarian faunas. This probably indicated that a
large package of shallow to deep water was pushed onto the shelf, or that the encroachment of shallow water "dragged" the deeper water with it. It should be emphasized that what we are terming as upwelling is not a boiling up of deep water to the surface, which might create a phytoplankton bloom, but rather a bowing up of deeper water and an encroachment of this deeper water onto the shelf.

The routes of currents were determined by the same manner as described for the determination of upwelling. It is hoped that with more data and more estimations, rough measures of volumes transported may be derived. The upwelling regions were designated by the "u's" on Figure 2 (the larger the u the greater the upwelling), and the current transports were designated by the open arrows [the width of the arrow designating the boundaries of the current and the number of lines in the arrow the relative strength (a double line is stronger than a single line)].

Notes on the Niches of Radiolarians and Planktonic Foraminiferans
The possible niches of radiolarians were suggested by Casey (Casey, In Press a). The term niche refers to the organism's place in the ecosystem, and possible radiolarian niches are illustrated in Figure 49. The current study suggested that many radiolarians do indeed occupy the niche labelled Polycystins (herbivores and microherbivores) in Figure 49. In fact, most of the radiolarians probably occupy this niche (or, in other words consume nannophytoplankton). The existence of such a niche is suggested by plankton samples in the spring, when the radiolarians were excluded from the innermost spring stations, which were occupied by the large centric diatom bloom. We suggest that radiolarians feed mainly on nannophytoplankton, and therefore, their food source was eliminated by the bloom of large centric diatoms that were too large to be consumed by

the polycystin radiolarians. This niche was also suggested in a less dramatic way (but perhaps better) by the general increase in radiolarian density and diversity offshore on the STOCS and apparently other shelves of the world's oceans. Hulburt and Corwin (1972) observed a change from a coccolithophorid dominated flora (coccoliths and other nannophytoplankton are probably radiolarian food sources) to one dominated by diatoms, going from offshore into the shallow waters over the continental shelf. They noted this in the eastern and central Gulf and have suggested it to be a wide geographic phenomena (Hulburt and Corwin, 1972). In fact, all the radiolarian niches suggested by Casey (In Press a) are occupied by radiolarians in the study area. The polycystins (with symbiotic zooxanthellae) were represented in the study area by Choenicosphaera sp., Collosphaera tuberosa, Disolenia zanquebarica and Siphonosphaera polysiphonia. The upwelling species most likely represented the bacteria and the suspended and settling organic feeders niche. In fact, many more than those herein designated as upwelling species probably fell within this niche; the radiolarians occur at depths below reasonable phytoplankton densities, and, in some cases, peak below the pigment depth.

Bauer (1976), in investigating stratified tows from the Florida Gulf shelf, noted that planktonic foraminifera occur mainly in the upper 50 m ; however, radiolarians not only occur in abundance in the upper 50 m but also to the depths of the shelf break. This, and the other data referred to, suggests that radiolarians and planktonic foraminifera are important intermediaries in the relatively longer food chains of offshore waters (four or five trophic levels), and their "importance" in the food chain decreases inshore and especially under conditions of large centric diatom blooms (where they may be fewer trophic levels).

Benthonic Foraminifera in the Water Column

Benthonic foraminifera were noted previously in plankton tows from nearshore and offshore regions (Casey, 1966). However, their occurrence in such tows was generally ascribed to a stirring up of the bottom. In this study a number of living (stained with rose Bengal) benthonic foraminifera were collected in our plankton tows (see Table 2 for a list of occurrences showing species, number per tow, station number and depth of each station). Most of these were probably the result of a stirring of the water column and perhaps a suspension in the nepheloid layer; however, the consistent occurrence of at least one species, BoZivina Zowmani, suggested that it is a meroplanktonic stage of the adult benthonic form (Table 2). This species was especially abundant in the inner stations during the spring and appeared to be associated with the incursion of the spring "fresh" water lens ("Mississippi Water"). Another planktonic-benthonic species, which may be a potential indicator, is Uvigerina peregrina; this species is a well-known benthonic indicator of outer-shelf and upper-slope depths and its occurrence in the outermost plankton tows during the spring gives even more substance to the suggestion of a strong spring upwelling in this region.

Relict Populations

One of the most interesting academic aspects of this study was the discovery of a relict population of radiolarians in the study area. Plankton tows from the study area yielded radiolarians previously believed to be extinct. From other current studies we have found that these radiolarians appear to occur in other portions of the Gulf and to some extent in the Caribbean, but were best represented (by density and diversity) in the STOCS study area. These findings are not only of great academic
interest, as shall be discussed; but are also of economic interest since a number of these species have been utilized for biostratigraphy (one species has a biostratigraphic zone named after it), which is of importance to geologic dating and, therefore, oil exploration.

Relict radiolarians collected in plankton tows and stained with rose Bengal include Spongaster pentas, Spongaster berminghami, Spongaster cmaiferus, a "circular" spongaster and an "elliptical" spongaster (all alive and well). The evolution of Spongaster pentas and Spongaster berminghami occurred about 4.5 million years ago in the tropical Pacific (Theyer and Hammond, 1974) and is used to define the base of the Spongaster pentas Zone (Riedel and Sanfilippo, In Press). Spongaster berminghami apparently became extinct (at least in the Pacific) shortly thereafter, and S. pentas apparently became extinct approximately 3.6 million years ago (Casey, In Press b). The "circular" and "elliptical" spongodiscids are believed to have been the ancestors of S. berminghami and they were also found in the plankton tows, as were specimens of Spongaster cruciferus, which appear similar to the same species of the California Eocene.

These species represent a relict radiolarian fauna and their presence suggests some intersting consequences of both biostratigraphic and paleooceanographic significance. The conclusion, that the geologic and geographic ranges of some of the species used in Riedel and Sanfilippo's zonation were provincial, is of biostratigraphic significance. This provinciality is a real problem because the late Neogene part of Riedel and Sanfilippo's zonation was mainly developed using tropical Pacific cores. The findings here suggest that the radiolarian biostratigraphy (and perhaps other microfossil biostratigraphies) in the strato-type localities of the late Neogene in Europe, should be quite different from the "warm-water" Pacific zonation of Riedel and Sanfilippo. Correlation attempts to the

Pacific and European stratotype radiolarians have met with limited success, probably due in large part to the problem of provinciality herein mentioned. This problem was not noted before, probably because the sediments and rocks of the low-latitude Atlantic and its margin are usually void of radiolarians in the post-Miocene. We studied the upper few centimeters of Holocene sediments in the Gulf of Mexico and Caribbean since this finding in the STOCS study area and found specimens of Spongaster pentas and Spongaster berminghami.

The paleooceanographic significance is perhaps of even more importance than the biostratigraphic significance. The Atlantic and Pacific appeared to exhibit more or less "cosmopolitan warm water" radiolarian biostratigraphies until at least the mid-Miocene. Some time after mid-Miocene there appeared to be a divergence of the radiolarian faunas and a development of greater provincialism. The reasons for this divergence were apparently related to geographic and climatic isolation and resultant allopatric speciation and differential geologic ranges of these isolated populations.

The geographic isolation of the tropical Pacific from the tropical Atlantic may have been due to the uplift of the Panamanian Block to "effective sill" during the Miocene, approximately 4.5 million years ago. Isolation is placed at that time, or near the Miocene-Pliocene boundary. Prior to this time the spongaster faunas of the Gulf and Caribbean resemble those of the Pacific, but diverge shortly thereafter. [The sill depth of the Panamanian Block was about 500 m (Bandy and Casey, 1973) 4.5 mi 1110 n years ago.] Therefore, the isolation may well be twofold: restricted circulation due to the emergence of the Panamanian Block; and cooling that resulted in the initiation and development of Neogene glaciations and water mass regimes (Casey, 1973).

Water mass regimes and radiolarian faunas similar to the present may
have been established by mid-Miocene and that Atlantic and Pacific warmwater faunas were isolated from one another at approximately the base of the Spongaster pentas Zone, about 4.5 million years ago, or about the Miocene-Pliocene boundary. We suggest that the STOCS study area, and perhaps to a lesser extent, the rest of the Gulf of Mexico and Caribbean, has maintained, in part, relict radiolarian faunas (Casey, McMillen and Bauer, 1975).

The waters over the study area and the adjacent regions, prespnty, may well be close to "Miocene type waters". If so, why have the spongasters been the only or main survivors? What about the hundreds of other Miocene radiolarian species that died? We believe that we may have generated the answer to this question on the dendrograms derived from multivariant analysis.

The R-mode cluster of live radiolarians (Figure 8) separates the relict radiolarians from the others (they are not associated with any season and only associate at a low similarity level with anything). Spongaster pentas is attached at a low (and probably insignificant) level with the winter group. This is somewhat interesting, for it is within the winter group that Spongaster cmiciferus is associated. However, S. cruciferus associated at a "high level" with a few others; again this high level was due to a few occurrences, and may be excluded with more sampling. Spongaster ?pentas and the "circular" and "elliptical" spongasters all cluster out together between the spring upwelling (SU) and summer (S) radiolarian assemblages.

This exclusion of the radiolarian seasonal cluster groups may imply that either the relict radiolarian could get along with any group (which would be a way to survive) or that they were in an unspecialized niche (can consume a variety of nannophytoplankton or are detritus feeders) and survived as the rest of the populations evolved "around them". This last suggestion is intriguing, and to some extent may be enforced by the
location of these relict radiolarians on the R -mode cluster of radiolarians, | foraminifera and pteropods (Figure 12). Here again the Spongaster pentas and S. cruciferus were well removed from all other groups, with S. cruciferus being so removed due to few specimens collected. The "circular" and "elliptical" spongasters separated with, but were somewhat removed from, Globigerina pachyderma and Uvigemina peregrina. These were separated into relict shallow (Rs) and relict deep (Rd) components with the spongasters being shallow and the foraminifera deep. We believe that this is very significant, as all the relict radiolarians were associated with very shallow water radiolarians. Perhaps this is associated in some way with their survival as adaptors to the "Miocene eurythermal and euryhaline conditions" that were maintained in their present distributional ranges. Globigerina pachyderma is the only "relict" foraminiferan seen in the plankton except for one occurrence of what we believe might have been Globorotalia tosaensis. Globigerina pachyderma is not a relict in the sense that we have been using the term as applied to the radiolarians. Perhaps a better term for it would be a "local relict" for it lives today in high latitude faunas. It was found in the Gulf by Phleger (1951) and he suggested that it was relict either as a holdover from the colder Pleistocene conditions of the Gulf, or it is introduced sporadically around the southern tip of Florida. Our t data to date) cannot distinguish which, if either, of Phleger's suggestions are correct, but the data does give a clue to where and why Globigerina pachyderma exists today as a cold water form in the tropical and subtropical Gulf. G. pachyderma clustered out with Uvigerina peregrina, a benthonic indicator of outer-shelf and upper-slope regions, which is found ocicasionally in the plankton. U. peregrina's association with G. pachyderma may suggest that both are upwelling forms, and that G. pachyderma's natural
habitat is in the deeper and colder waters of the offshore region, an area more conducive for a normally high latitude form.

Down Core Studies

Approximately 200 samples [taken from USGS gravity cores $12,38,42,70$, 81, 82, 88, 95, 114, 115, 157, 160, 176, 193, 214, 241 and 256 (see Figure 50 for locations)] were sampled at 20 -cm intervals in amounts of approximately 27 cc each. Seven of the cores proved worthy of micropaleontological analysis (cores $70,88,95,114,115,157$ and 256) and were processed for microfossils. For taxonomic work, the sample was processed by washing through a $63 \mu \mathrm{~m}$ screen. Counts and species identifications were made using a reflecting light microscope at magnification to 120 X .

Four gravity cores were used for paleomagnetic studies (cores 42, 70, 95 and 115). These cores were sampled with paleomagnetic boxes at 20 -cm intervals. Because of their relatively low magnetic intensities (10^{-4} to $10^{-5} \mathrm{emu}$), these samples were studied using the cryogenic magnetometer at the University of Texas, Marine Science Institute, Galveston Geophysical Laboratory. Samples were taken from the middle of the core to avoid contamination and possible man-made "reworking" due to the coring process. Each sample was marked to indicate core orientation. Natural remnant magnetization (NRM) was determined for the horizontal and vertical components of each sample. Secondary viscous components were satisfactorily removed by alternation field demagnetization to 200 oersteds. From these data, the total intensity, inclination and declination of each sample were derived.

Three cores were useful for a study of shelf history (USGS cores 88, 115 and 256). Following the technique of Kennett and Huddleston (1972), attempts were made to biostratigraphically date the cores and to determine

the paleotemperature (related to time) of one of the cores. The abundant occurrences of the Globorotalia menardii complex, Pulleniatina obliquiloculata and Sphaeroidinella dehiscens (all or any) were used to designate warm water conditions (interglacial). Cold water (glacial) conditions were indicated by Globigerina bulloides and G. falconensis in the absence of, or with few, warm forms. A marginally warm interval was indicated by Globorotalia truncatulinoides and Globigerinoides sacculifer. Core OCS-GC 88 was the best for determining a relative paleotemperature curve using the above-mentioned criteria (Figure 51).

Ericson and Wollin $(1956,1968)$, for the tropical and subtropical Atlantic, and Kennett and Huddlestun (1972), for the Gulf of Mexico, utilized a semi-quantitative evaluation of the relative abundance of the Globorotalia menardii complex to develop a sequence of zones designated Q-Z in order of decreasing age. These zones represented alternating warm and cold intervals and were supported by oxygen isotope curves. Of interest were zones Z, Y and X which apparently were represented in at least a few of the South Texas shelf cores. The age of the $\mathrm{Z}-\mathrm{Y}$ boundary was the Holo-cene-Pleistocene boundary [about 10,000 to 11,000 years before present (ybp)]; and the $\mathrm{Y}-\mathrm{X}$ boundary was most likely a datum within the Pleistocene designating the base of the last glacial (about 90,000 to $95,000 \mathrm{ybp}$). Core OCS-GC 88 (Figure 51) penetrated to the X zone and was about 10,000 years between 40 and 60 cm and 90,000 years between 140 and 160 cm . This core was composed of lightly bioturbated mud (Berryhill et al., 1976), with shell remains in the interval designated herein as the Y zone. Rates of sedimentation for the Holocene portion (Z zone) were about $4 \mathrm{~cm} / 1000$ yrs and about $1 \mathrm{~cm} / 1000$ yrs for the period representing the last glacial (Y zone). Core OCS-GC 115 (Figure 52) did not penetrate the Z zone; therefore, a minimum sedimentation rate of about $15 \mathrm{~cm} / 1000$ yrs was indica-

Figure 51. Biostratigraphy, Paleotemperatures and Paleodepths Determined from Planktonic Foraminiferans, Benthonic Foraminiferans and Other Organisms. $X=$ present, $R=$ rare (less than 1% of benthonic foraminiferans), $\mathrm{C}=$ common (about 5\%), $\mathrm{A}=$ abundant (about 10% or more). For Core OCS-GC 88.

Figure 52. Biostratigraphy and Paleotemperatures for OCS-GC 115. $\mathrm{X}=$ common.
ted. Core OCS-GC 256 (Figure 53) represented the slowest sedimentation rates of the three cores with rates of about $3 \mathrm{~cm} / 1000 \mathrm{yrs}$ for the Holocene, $0.6 \mathrm{~cm} / 1000$ years for the last glacial (Y zone), and an unknown amount for the X zone.

These cores were taken from stations on the outer shelf that were below sea level during the times represented in the cored intervals. The Y zone was "compressed" in relation to the Z zone due to a drop in sea level at this time (Y time), resulting in slow rates of deposition and probable erosion. Shell remains of macroinvertebrates were noted in the Y interval of core OCS-GC 88 (Berryhill et $\alpha Z ., 1976$), and shell hash (of macroinvertebrates) and terrigenous sands were noted in the Y interval in core OCS-GC 256. The shell hashes most likely represented a scouring and reworking of sediments during the lowering of sea level. Also, during this lowering in sea level, shallow water foraminiferans invaded the region of core OCS-GC 88 (Figure 51).

Samples from cores $42,70,95$ and 115 were taken to determine paleomagnetism (See Table 3 for paleomagnetic data). Figures 54 through 57 give the average total intensity, inclination and declination for the samples of each core.

Inshore areas are more affected by sedimentation rates and processes than offshore regions. There is a great volume of sediment being carried into the Gulf from a system of several major rivers by a counter-clockwise current. These two factors make the northwest Gulf of Mexico a clastic reservoir. In this case, perhaps the absence of any polar reversals in the outer shelf locations is just as significant as the large number of reversals in the inshore stations. Considering that the inclinations in Figure 56 are true indications of normal remnant magnetizations $\frac{1}{6}$ the reversals of core 70 could indicate a high rate of sedimentation in a magnetic

TABLE 3
PALEOMAGNETIC DATA FOR CORE SAMPLES
CORE NUMBER DEPTH OF INTERVAL MOMENT DECLINATION INCLINATION

Normal Remnant Magnetization

70	$0-3 \mathrm{~cm}$.08035	355.7108	8.8561
70	$20-23 \mathrm{~cm}$.16305	14.95735	-13.38665
70	$40-43 \mathrm{~cm}$	1.138	32.7026	3.793
70	$60-63 \mathrm{~cm}$	1.0159	20.2484	-36.9571
70	$80-83 \mathrm{~cm}$	4.276	45.1398	-18.7504
70	$100-103 \mathrm{~cm}$	1.6745	15.1114	-6.49775
70	$120-123 \mathrm{~cm}$	1.15865	334.273	-42.377775
70	$140-143 \mathrm{~cm}$	3.3032	315.00269	-50.78803
70	$160-163 \mathrm{~cm}$	2.92675	254.8958	-55.4293

Demagnetization @ 200 Oersteds

70	$0-3 \mathrm{~cm}$
70	$20-23 \mathrm{~cm}$
70	$40-43 \mathrm{~cm}$
70	$60-63 \mathrm{~cm}$
70	$80-83 \mathrm{~cm}$
70	$100-103 \mathrm{~cm}$
70	$120-123 \mathrm{~cm}$
70	$140-143 \mathrm{~cm}$
70	$160-163 \mathrm{~cm}$

.3969	270.4275	40.3485
.19635	305.9309	22.4469
.2699	19.91195	-14.64195
.36455	21.6829	-8.99545
1.58455	64.15955	-22.7132
.8068	352.53901	-17.3415
.677	327.4829	-84.2209
2.0652	309.3628	-38.85085
1.71465	289.66535	-33.53465

Normal Remnant Magnetization

42	$3-6 \mathrm{~cm}$	3.46475	91.8468	-12.1225
42	$18-20 \mathrm{~cm}$	1.82335	176.8289	73.27005
42	$21.5-23 \mathrm{~cm}$	2.6057	118.5031	-37.90466
42	$41-43 \mathrm{~cm}$	2.3824	39.80957	41.4856
42	$53-55 \mathrm{~cm}$	2.19175	83.73338	-3.6475
42	$57-59 \mathrm{~cm}$	2.2894	139.4006	27.1527
42	$80-82 \mathrm{~cm}$.44515	205.44885	17.4495
42	$87-89 \mathrm{~cm}$	2.73885	229.48545	$50.06 \overline{2} 25$
42	$97-99 \mathrm{~cm}$	4.1847	193.15028	15.38203

Demagnetization @ 200 Oersteds

42	$3-6 \mathrm{~cm}$	1.15845	92.338	-23.7426
42	$18-20 \mathrm{~cm}$	1.2568	244.64495	60.76475
42	$21.5-23 \mathrm{~cm}$.60425	183.95395	-8.928
42	$41-43 \mathrm{~cm}$.8955	200.14945	81.29845
42	$53-55 \mathrm{~cm}$.28635	156.8979	10.68766
42	$57-59 \mathrm{~cm}$.8520	190.17385	37.2666
42	$80-82 \mathrm{~cm}$.26815	248.92055	10.5488
42	$87-89 \mathrm{~cm}$	1.30435	256.8795	35.4209
42	$97-99 \mathrm{~cm}$	2.4347	221.0759	15.91125
42	$100-102 \mathrm{~cm}$	1.52216	287.8149	68.080405

TABLE 3. CONT.'D
CORE NUMBER DEPTH OF INTERVAL MOMENT DECLINATION INCLINATION

Normal Remnant Magnetization

95	$0-3 \mathrm{~cm}$	6.3492	3.1742	56.91415
95	$20-23 \mathrm{~cm}$	1.12	94.7042	-79.7415
95	$40-43 \mathrm{~cm}$	7.5943	90.9866	46.7539
95	$60-63 \mathrm{~cm}$	3.0845	12.91545	21.71885
95	$80-83 \mathrm{~cm}$	9.3953	24.80105	37.9431
95	$100-103 \mathrm{~cm}$	4.77045	112.50855	57.9884
95	$120-123 \mathrm{~cm}$	8.6353	86.72875	54.66175
95	$140-143 \mathrm{~cm}$	3.66355	47.156	28.58565
95	$160-163 \mathrm{~cm}$	9.04175	86.46925	64.3937

Demagnetization @ 200 Oersteds

95	$0-3 \mathrm{~cm}$	4.792	29.8994	48.62175
95	$20-23 \mathrm{~cm}$	2.9904	316.6232	-69.1731
95	$40-43 \mathrm{~cm}$	3.27745	68.81915	70.76065
95	$60-63 \mathrm{~cm}$	1.37445	326.0891	50.45025
95	$80-83 \mathrm{~cm}$	4.3092	33.88965	43.70185
95	$100-103 \mathrm{~cm}$	2.9699	101.3507	74.0262
95	$120-123 \mathrm{~cm}$	3.68335	94.97115	67.4188
95	$140-143 \mathrm{~cm}$.9071	44.26505	40.40025
95	$160-163 \mathrm{~cm}$	4.7032	137.75225	77.06315

Normal Remnant Magnetization

115	$0-3 \mathrm{~cm}$	15.1637	168.13515	50.2882
115	$20-23 \mathrm{~cm}$	15.9424	158.0736	54.4572
115	$40-43 \mathrm{~cm}$	13.7912	166.10035	43.23275
115	$60-63 \mathrm{~cm}$	17.9213	129.45615	29.90155
115	$80-83 \mathrm{~cm}$	19.69505	157.66955	38.3868
115	$100-103 \mathrm{~cm}$	12.56223	153.6257	34.0528
115	$120-123 \mathrm{~cm}$	15.63565	164.4835	46.3392
115	$140-143 \mathrm{~cm}$	12.2921	179.9599	61.78345

Demagnetization @ 200 Oersteds

115	$0-3 \mathrm{~cm}$	9.78845	178.2757	45.24625
115	$20-23 \mathrm{~cm}$	9.11985	163.6845	52.55335
115	$40-43 \mathrm{~cm}$	8.6764	170.462	40.4834
115	$60-63 \mathrm{~cm}$	7.1379	155.7715	36.5499
115	$80-83 \mathrm{~cm}$	11.2735	163.02185	33.24255
115	$100-103 \mathrm{~cm}$	8.5443	168.7363	36.8625
115	$120-123 \mathrm{~cm}$	8.9953	186.52135	39.24065
115	$140-143 \mathrm{~cm}$	4.1704	272.68805	50.85265

Figure 54. Average Total Intensity, Inclination and Declination. Per Sample at Depth for OCS-GS Core No. 42.

- - - Samples with Normal Remnant Maqnetization
— Samples after Alternating. Field Demagnetization at 200 oe.

Figure 55. Average Total Intensity, Inclination and Declination per Sample at Depth for OCS-GS Core No. 70.

Figure 56. Average Total Intensity, Inclination and Declination per Sample at Depth for OCS-GS Core No. 95.

reversed field. Core 115 was as normal as would be expected from the biostratigraphy (Figure 52). Cores 42 and 95 may well represent transitional phases between areas of high and no deposition on the shelf, with respect to a particular time interval. Sedimentation varies proportionately to position of the shelf. There is a sand-sized fraction increase toward shore indicating a higher energy regime toward shore. Core 115 was taken from a location dominated mainly by clay deposition, representative of biogenous pelagic sedimentation and suspended sediment influx. This homogeneous clay occurred only at the outer shelf edge. Also sedimentation rate can be a controlling factor in compression, diagenesis, and lithification of sediments, all of which control the degree of magnetic orientation. Areas of high rates of sedimentation have shown anomalous magnetic inclinations. A wide range of paleoenvironments may be represented by this different sedimentation. In our analysis, a lack of polar reversals was just as significant as the presence of them.

CONCLUSIONS AND INDICATORS
From the previous results and discussion it was apparent to us that the shelled microplankton and microbenthon were very good environmental indicators. Our studies indicated that these organisms may be efficiently used to: 1) indicate water mass distributions and movements by use of indicator species and cluster groupings; 2) denote areas and relative magnitudes of upwellings and volumes and routes of currents; and 3) give indications of such things as the length of food chains (through the niche examples), and short term "health" (plankton tows and bottle samples), medium term "health" (the benthonic foraminifera), and long term "health" (the relict populations and down core studies) of the study area. We therefore, consider one of our main objectives and contributions
to be the designation of certain shelled microzooplankton and shelled microzoobenthon as indicators of various aspects of the STOCS area. These indicators have been mentioned, throughout the text and related to the specific phenomena that they indicate. However, it was considered worthwhile to mention them in this section since they are our main conclusions. The indicators are listed in abbreviated form in Table 4.

Our indicators fall into three categories: those indicative of immediate, seasonal (or yearly), and historical oceanographic conditions. Most of our effort has concerned itself with indicators of the immediate "health" of the STOCS because this is what is most useful for a monitoring program.

Immediate Indicators

Indicators of circulation include: 1) the presence of high concentrations of nassellarians, indicative of offshore waters, on the shelf indicating the movement of offshore waters onto the shelf; 2) isolated highs of nassellarians and polycystin radiolarians in general (nassellarians and spumellarians) on the shelf indicative of a pond of offshore water invading the shelf (these ponds may be common in winter); 3) the presence of Spongotrochus glacialis, Chonchasma sphaerulites, Conchoceras caudatum, Tetrapyle octacantha, Uvigerina peregrina and maybe Spirocyrtis scalaris (any of the mentioned), indicative of deeper (probably from 200 m or so) Gulf waters being upwelled and perhaps encroaching onto the shelf; 4) large concentrations of solitary centric diatoms and or Brizalina Zowmani away from shallow waters are usually indicative of shallow water displacement; 5) high concentrations of Acantharians are usually indicative of freshwater runoff and in the STOCS area appear to be tags of the movement of fresh water such as the movement of the "Mississippi River water mass"

TABLE 4

INDICATORS OF OCEANOGRAPHIC CONDITIONS

Immediate Indicators:

Circulation -

1) High concentrations nassellarians=offshore (invade shelf as ponds and "fingers")
2) Upwelling or upbowing and movement of deeper open ocean Gulf water onto STOCS=presence of Spongotrochus glacialis, maybe Spirocyrtis scalaris, TetrapyZe octacantha, Chonochasma sphaemulites, Conchoceras caudatum and suspended Uvigerina peregrina.
3) Nearshore waters out to sea=high concentrations of solitary centric diatoms and or Brizalina Zowmani in suspension.
4) A tag of brackish water movement=high concentrations of acantharians.

Depth and Benthic Position-

1) Inner and mid-shelf depths (Stations 1 and 2)=presence (usually dominance of) of Ammonio beccari, Brizalina Zowmani and Nonionella basiloba.
2) Mid-shelf (Station 2)=Fursenkoina pontoni.
3) Outer shelf (Station 3)=Uvigerina peregrina, BoZivina subspinescens, Brizalina spinata, Cibicides, Siphonina and species of Brizalina and Bolivina not mentioned as indicators of other areas.
4) Northern STOCS (Transect I and II)=Ammonia beccari and Brizalina lowmani as dominants.
5) Southern STOCS (Transects III and IV)=NonioneZZa basiloba and Buliminella as dominants.

Eutrophism to Oligotrophism-

1) Solitary centric and acantharian blooms=eutrophism.
2) Mesotrophism-high concentration of radiolarians (especially nassellarians).
3) Oligotrophism=1ow concentrations of radiolarians (offshore types).

Seasonal (or Yearly) Indicators
Seasonality -

1) Theopilium tricostatum, Spirocyrtis scalaris, GZobigerina falconensis and G. quinqueloba as dominants indicate winter.
2) Acantharians and ?Acanthocyrtidium ophiurensis as dominants might indicate spring.

TABLE 4 CONT.'D
3) Lamprocyclas maritalis, Euchitonia elegans, Globigerina bulloides and Globigerinoides muber as dominants indicate summer.
4) Spring also indicated by the SDI (Spring Diatom Increase), bloom of acantharians, and the drop in densities of polycystin radiolarians and planktonic foraminiferans.
5) Seasonality indicators of benthon dominants include: Nonionella basiloba and Brizalina lowmani for winter; and, Brizalina spinata and species of Buliminella, Cibicides and Fursenkoina for spring.

Eutrophism to Oligotrophism-

1) Eutrophism=an increase in Brizalina Zowmani to dominance with a general decline in benthonic foraminiferal standing corp.
2) Oligotrophism=shared dominance of many benthonic foraminiferan species and a general increase in benthonic foraminiferan standing crops.

Historical Indicators
STOCS Area Relatively Unchanged for Millions of Years (in Part)

1) Relict populations of Spongaster pentas, S. berminghomi, S. cruciferus, "circular" and "eliptical" spongasters.

Down Core "Micropaleontological Indicators"

1) Paleotemperatures=Interglacial or warm (Globorotalia menardii complex, Pulleniatina obliquiloculata and Sphaeroidinella dehiscens); marginally warm (Globorotalia truncatulinoides and Globigerinoides sacculifer); and, cold water or glacial (Globigerina bulloides and Globigerina falconensis).
2) Sea level changes are indicated by the changes downcore in the dominance of the species indicative of depth under immediate indicators-depth and benthic position in this table.
in the spring; 6) deflections in the contours of radiolarian densities and diversities are indications of the direction of shelf water movement and these can, in turn, be tied to: nearshore movements to the offshore [by deflection of high concentrations of acantharians or spumellarians (especially the armed, spongy ones) offshore]; shallow offshore water movement onto the shelf (by high concentrations of radiolarians in general and especially nassellarians and high concentrations of planktonic foraminifera) ${ }^{\boldsymbol{\gamma}}$ deeper or bottom offshore and deeper or bottom shelf water (by following those species mentioned as indicators of upwelling, onto and around the shelf).

Indicators of depth and benthic position on the shelf include: Anmonia beccari, Brizalina Zowmani and Nonionella basiloba, indicative of inner and mid-shelf depths (Stations 1 and 2); Fursenkoina pontoni, indicative of midshelf (Station 2); and, Uvigerina peregrina, Bolivina subspinescens, BrizaZina spinata, Cibicides, Siphonina and species of Brizalina and BoZivina (1) not mentioned as indicators of other areas, appear to be indicative of the outer shelf (Station 3).

The dominances of Ammonia beccarii and Brizalina Zowmani are indicative of the northern two transects (Transects I and II); and X the dominances of Nonionella basiloba and species of Buliminella are indicative of the southern two transects (Transects III and IV).

Seasonal Indicators

Indicators of eutrophic and oligotrophic conditions include: 1) solitary centric diatoms and acantharians in abundance (blooms) are indicative of eutrophism in the water column; and, 2) high concentrations of radiolarians (especially nassellarians) are indicative of "oligotrophism" (really mesotrophism) in the water column and usually represent offshore water (that is, more "oligotrophic" than the shelf waters penetrating the shelf).

Indicators of seasonality for the plankton include: 1) Theopilium tricostatum, Spirocyrtis scalaris, Globigerina falconensis and Globigerina quinqueZoba, indicative of STOCS winter; 2) acantharians and ?Anthocyrtidium ophiurensis, indicative of STOCS spring; and, 3) Lamprocyclas maritalis, Euchitonia elegans, Globigerina bulloides and Globigerinoides mber, indicative of summer. Highly visible indicators of the spring plankton are the SDI (spring diatom increase), the bloom of acantharians and the drop in densities of polycystin radiolarians and planktonic foraminiferans. Indicators of seasonality in the benthon include: 1) Nonionella basiloba and Brizalina lowmani that dominate in the winter; and, 2) Brizalina spinata, species of Buliminella, Cibicides and Fursenkoina that dominate in the spring along with an increase in benthonic foraminiferan standing crops. A dominance of Brizalina lowmani in sediment samples (sometimes associated with a general decline in benthonic foraminiferal standing crop) is indicative of the reflection of eutrophism in the overlying waters.

Historical Indicators

Down Core, Relict and Micropaleontological
Indicators that the Gulf of Mexico and STOCS study area have been relatively unchanged over millions of years when compared to other regions of the world in general are the presence of Spongaster pentas, S. berminghomi, S. cruciferus, "circular" spongasters and "elliptical" spongasters that exist in the area but died out in other areas about 4 million years ago.

Down core indicators (micropaleontological indicators) include:

1) the Globorotalia menardii complex, Pulleniatina obliquiloculata and Sphaeroidinella dehiscens that are indicative of interglacial or warm water conditions; 2) Globorotalia truncatulinoides and Globigerinoides
sacculifer that are marginally warm Indicators; and 3) Globigerina bulloides and Globigemina falconensis that are cold water or glacial indicators. Indicators for changes in sea level are the same that are used for depth position on the present day shelf.

It is also a worthwhile exercise to attempt to use some of these indicators to review the basic physical oceanographic patterns of the STOCS, 1975. Figure 2 illustrates the general physical oceanographic patterns derived from Berryhill (1976) and Smith (personal communication and Parker, 1976) and the related "physical oceanographic patterns" derived from studies of the shelled microplankton studied by our group for the STOCS, 1975.

There apparently was a net transport to the southwest during the winter, most probably related to "northers all along the shelf, with perhaps enough coriolis effects to produce an upbowing of deep she1f waters onto the shelf and a breakoff and transport of ponds of offshore water onto the shelf (Figure 2). During the spring there was a lens of Mississippi River water moving south and offshore producing a strong "estuarine upwelling" along with a net transport south. The combination of the coriolis effect and fresh water moving offshore producing the "open ocean estuarine effect" upwelling described above, appeared to produce the greatest upwelling of any season. The summer pattern showed the effects of shallow open Gulf water impinging on the shelf, with some upwelling.

Appendicles A through G contain the raw and processed data supportive of this report on the shelled microplankton, general microplankton and microzoobenthon of the STOCS for 1975.

LITERATURE CITED

Anepohl, J. K. 1976. Seasonal distribution of living benthonic foraminifera of the south Texas outer continental shelf. M.A. Thesis, Univ. of Texas, Austin, Texas. 130pp.

Armstrong, R. S., and J. R. Grady. 1967. The late-summer waters of the Gulf of Mexico. Comml. Fish. Rev. 30:56-60.

Bandy, 0. L., and R. E. Casey. 1973. Reflector horizons and paleobathymetric history, eastern Panama. G. S. A. Bull., 84:3081-3086.

Bauer, M. A. 1976. Ecology and.distribution of living planktonic foraminifera, south Texas outer continental shelf. M.A. Thesis, Rice Univ., Houston, Texas. 125pp.

BE, A. W. H. 1960. Ecology of recent planktonic foraminifera: Part II. Bathymetric and seasonal distributions in the Sargasso Sea off Bermuda. Micropaleontology. 6:373-392.

Beers, J. R. 1969a. Microzooplankton and its abundance relative to the larger zooplankton and other seston components. Mar. Biol. 4:182-189.
\qquad - 1969b. The vertical distribution of microzooplankton and some ecological observations. J. Cons. perm. int. Explor. Mer. 33:30-44.
. 1970. The preservation of acantharians in fixed plankton samples. Limnol. Oceanogr. 15:825-827.

- 1971. Microplankters in the plankton communities of the upper waters of the eastern tropical Pacific. Deep Sea Res. 18:861-883.
., and G. L. Stewart. 1967. Microzooplankton in the euphotic zones at five locations across the California current. J. Fish. Res. Bd. Canada. 24:2053-2068.
\qquad - 1969. Microzooplankton and its abundance relative to the larger zooplankton and other seston components. Mar. Biol. 4(3):182-189.
., F. M. H. Reid, and G. L. Stewart. 1975. Microplankton of the North Pacific central gyre, population structure and abundance. June 1973. Int. Rev. ges. Hydrobiol. 60:607--638.

Berryhill, H. L., Jr., G. L. Shideler, C. W. Holmes, G. W. Hill, S. S. Barnes, and R. G. Martin, Jr. 1976. Environmental assessment of the south Texas outer continental shelf, geologic investigations. Draft Final Report to the Bureau of Land Management, Washington, D. C. 273pp.

Burkenroad, M. D. 1933. Pteropods from Louisiana. Nautilus 47:54-57.
Casey, R. E. 1966. A seasonal study of the distribution of polycystine radiolarians from waters overlying the Catalina Basin, southern California. Ph.D. Dissertation. Univ. of Southern Calif., Los Angeles, California. 137pp.
\qquad . 1971a. Distribution of polycystine radiolarians in the oceans in relation to physical and chemical conditions. Pages 151-159. In B. M. Funnel and W. R. Reidel, eds., The micropaleontology of oceans. Cambridge Univ. Press, Cambridge.
\qquad . 1971b. Radiolarians as indicators of past and present water masses. Pages 331-341. In B. M. Funnel and W. R. Reidel, eds. The micropaleontology of oceans. Cambridge Univ. Press, Cambridge.
\qquad - 1973. Radiolarian evidence for the initiation and development of Neogene glaciations and the Neogene water mass regimes. G. S. A Meeting, Dallas, Abst. pp. 570-571.
\qquad . 1976. Microzooplankton and Microzoobenthos. In P. L. Parker, ed., Environmental studies of the south Texas outer continental shelf, biology and chemistry. Submitted to the Bureau of Land Management, Washington, D. C. Contract AA550-CT5-17.
\qquad . In Press a. The ecology and distribution of recent radiolaria. In T. S. Ramsay, ed., Oceanic micropaleontology. Academic Press, London.
\qquad - In Press b. Late Neogene radiolarian biostratigraphy related to magnetostrstigraphy, polar to tropics. Bandy Mem. Vol. D. S. Gorsline and R. L. Kalpack, (eds.) Elsevier, N. Y.
., and M. A. Bauer. 1976. A seasonal study of radiolaria and foraminifera in the waters overlying the south Texas outer continental shelf. Abst. Prog. Geol. Soc. Am. 8:11.
., and K. J. McMillen. 1977. Cenozoic radiolarians of the Atlantic basin and margins. Pages 521-544. In F. Swain, ed. Stratigraphic micropaleontology of the Atlantic basin and borderlands. Elsevier, N. Y.
., K. J. McMillen, and M. A. Bauer. 1975. Evidence for and paleooceanographic significance of relict radiolarian populations in the Gulf of Mexico and Caribbean. Abst. Prog. Geol. Soc. Am. 7:1022-1023.

Chen, C., and N. S. Hillman. 1970. Shell-bearing pteropods as indicators of water masses off Cape Hatteras, North Carolina. Bull. mar. Sci. 2:250-267.

Cifelli, R. 1965. Planktonic foraminifera from the North Atlantic. Smithsonian Misc. Colln. 148:1-36.

- 1974. Planktonic foraminifera from the Mediterranean and adjacent Atlantic water (Cruise 49 of the Atlantic II, 1969). J. Foram. Res. 4:171-183.

Davis, J. C. 1973. Statistics and data analysis in geology. John Wiley and Sons, Inc. New York. 550 pp .

Dryden, A. L. 1931. Accuracy in percentage representation of heavy mineral frequencies. Proc. Nat1. Acad. Sci. 17(5):233-238.

Ericson, D. B., and G. Wollin. 1956. Correlation of six cores from the equatorial Atlantic and Caribbean. Deep Sea Res. 3:104-125.
. 1968. Pleistocene climates and chronology in deep-sea sediments. Sci. 162:1227-1234.

Fager, W. W., and J. A. McGowan. 1963. Zooplankton species groups in the North Pacific. Sci. 140:453-460.

Gevirtz, J. L., R. A. Park, and G. M. Friedman. 1971. Paraecology of benthoc foraminifera. Jour. Paleoecology, 45(2):153-177.

Haeckel, E. 1887. Report on the radiolaria collected by H. M. S. CHALLENGER during the years 1873-1876. Challe. Rep., Zool. 18.

Herman, Y., and P. E. Rosenberg. 1969. Pteropods as bathymetric indicators. Mar. Geo1. 7:169-173.

Hida, T. S. 1957. Chaetognaths and pteropods as biological indicators in the North Pacific. U.S. Fish. Wildl. Serv., Spec. Sci. Rep. Fish. 215:1-13.

Hobbie, J. E., O. Holm-Hansen, T. T. Packard, L. R. Pomeroy, R. W. Sheldon, J. P. Thomas, and W. J. Weibe. 1972. A study of the distribution and activity of microorganisms in ocean water. Limnol. and Oceanogr. 17:544-555.

Hughes, W. A. 1968. The thecosomatous pteropods of the Gulf of Mexico. M.S. Thesis, Texas A\&M Univ., College Station, Texas. 59pp.

Hulbert, E. M., and N. Corwin. 1972. A note on the phytoplankton distribution in the offshore water of the eastern and central Gulf of Mexico. Carib. J. Sci. 12:29-38.

Jones, J. I. 1968. The relationship of planktonic foraminiferal populations to water masses in the western Caribbean and lower Gulf of Mexico. Bull. Mar. Sci. 18:946-982.

Kennett, J. P., and P. Huddlestun. 1972. Late pleistocene paleoclimatology, foraminiferal biostratigraphy and tephrochronology, western Gulf of Mexico. Quatern. Res. 2:38-69.

McGowan, J. A. 1960. The systematics, distribution, and abundance of Euthecosomata of the North Pacific. Ph.D. Dissertation, Univ. of Calif., San Diego, LaJolla, Calif. 197pp.

- 1967. Distributional atlas of pelagic molluscs in the California current region. CALCOFI Atlas 6:1-218.
McMilleq. J. J. 1976. Ecology, distribution and preservation of polycystipe rddiolaria in the Gulf of Mexico and Caribbean Sea. Ph.D. Di\&serfation. Rice Univ. Houston, Texas 121pp.
., and R. E. Casey. In Press. Distribution of living polycystine radiolarians in the Gulf of Mexico and Caribbean Sea, and comparison with the sedimentary record. Mar. Micropaleontol.

Malone, T. C. 1971. The relative importance of nannoplankton and net plankton as primary producers in tropical oceanic and neretic phytoplankton communities. Limnol. and Oceanogr. 16:633-639.

Murray, J. W. 1973. Distribution and ecology of living benthonic foraminiferids. Crane, Russak and Co., Inc., New York. 274 pp.

Park, E. T. 1976. Zooplankton. Pages 154-193. In Parker, (ed.), Environmental studies, south Texas outer continental shelf, biology and chemistry, 1975. Final Report to the Bureau of Land Management, Washington, D. C., Contract AA550-CT5-17.

Park, R. A. 1968. Paleontology of Venericardia sensu Zato (Pelecypoda) in the Atlantic and Gulf Coastal provinces; an application of paleosynecologic methods. Jour. Paleontology 42:955-987.

Parker, F. L., F. S. Phleger, and J. F. Pierson. 1953. Ecology of foraminifera from San Antonio Bay and environs, southwest Texas. Cushman Found. Foram. Res. Sepc. Pub. No. 2.

Parker, P. L. (Ed.) 1976. Environmental studies, south Texas outer continental shelf, biology and chemistry, 1975. Final Report to the Bureau of Land Management, Washington, D. C. Contract AA550-CT5-17.

Petrushevskaya, M. G. 1971. Spumellarian and nassellarian radiolaria in the plankton and bottom sediments of the central Pacific. Pages 309317. In B. M. Funnell and W. R. Reide1, (eds.) Micropaleoontology of oceans. Cambridge Press.

Phleger, F. B. 1951. Ecology of foraminifera, northwest Gulf of Mexico. Part I., Foraminiferal distribution. Geol. Soc. Am., Mem. 46:1-88.
\qquad - 1956. Significance of living foraminiferal populations along the central Texas coast. Cont. Cushman Found. Foram. Res. 8:106-151.

Pomeroy, L. R., and R. E. Johannes. 1968. Respiration of ultraplankton in the upper 500 meters. Deep Sea Res. 15:381-391.
1974. The ocean's food web, a changing paradigm. Bio Sci. 24(9):499-504.

Popofsky, A. 1907. Neue radiolarien der Deutsche Sudpolar Expedition. Zool. Anz. 31:698-705.
\qquad - 1908. Die radiolarien det Antarcktis. Deutschen Sudpolar Expedition. 1901-1903. 10:183-305.

- 1912. Die sphaerellarien des warmwassergebeites. Deutschen Sudpolar Expedition. 1901-1903. 13:73-159.
\qquad . 1913. Dies nassellarien des warmwassergebeites. Deutschen Sudpolar Expedition. 1901-1903. 14:217-416.

Renz, G. W. 1973. The distribution and ecology of radiolaria in the central Pacific plankton and surface sediments. Ph.D. Dissertation Univ. of California, San Diego, La Jolla, California 251pp.

Reshetnayak, V. V. 1955. Vertical distribution of the radiolaria of the Kurilian-Kamchatka. Deep Tr. Zool. inat. ANSSR. 21:94-101.
Reide1, W. R., and A. Sanfiliph. In Press. Stratigraphy and evolution of tropical cenozoic radiolarians. Third Planktonic Conf. Vol. E Siebold (Ed.)

Ryther, J. H. 1969. Photosynthesis and fish production in the sea. Sci. 166:72-76.

Sackett, W. M. 1976. Productivity and low-molecular-weight hydcycajbons. Pages 331-373. In Parker, (ed.) Environmental studies, south Texas outer continental shelf, biology and chemistry, 1975. Final Report to the Bureau of Land Management, Washington, D. C. Contract AA550-CT5-17.

Schott, W. 1935. Die foraminiferan in den aquatorialen teil des Atlantischen ozeans. Deutsche Atlantische Expedition II. Heft 6:411-616.

Sneath, P. H. A., and R. R. Sokal. 1973. Numerical taxonomy. W. H. Freeman and Co., San Francisco. 573pp.

Snider, J. E. 1975. Quantitative distribution of shelled pteropods in the Gulf of Mexico including related sampling studies. Ph.D. Dissertation. Texas A\&M Univ., College Station, Texas. 205pp.

Sokal, R. R., and P. H. A. Sneath. 1963. Principles of numerical taxonomy. W. H. Freeman and Co., San Francisco, 359pp.

Theyer, F., and S. R. Hammond. 1974. Paleomagnetic polarity sequence and radiolarian zones, Brunhes to polarity Epoch. 20 Ear. and P1. Sci. Let. 22:307-319.

Tresslar, R. C. 1974. The living benthonic foraminiferal fauna of the West Flower Garden Bank coral reef and biostrome. M. S. Thesis, Texas A α M Univ. College Station, Texas 205pp.

Turner, R. E. 1974. Community plankton respiration in a salt marsh tidal creek, estuary, and coastal waters of Georgia. Ph.D. Thesis, Univ. of Georgia, Athens.

Van Baalen, C. 1976. Phytoplankton and productivity biomass. Pages 4681. In Parker (ed.) Environmental studies, south Texas outer continental shelf, biology and chemistry, 1975. A Final Report to the Bureau of Land Management, Washington, D. C. Contract AA550-CT5-17.

Watt, W. D. 1971. Measuring the primary productivity rates of individual phytoplankton species in natural mixed populations. Deep Sea Res. 18:329-339.

Williams, D. H. 1977. Ecology and distribution of microplankton of the south Texas outer continental shelf. M.A. Thesis, Rice University, Houston, Texas 100pp.

Wroblewski, J. S., and J. J. O'Brien. 1976. A spatial model of phytoplankton patchiness. Mar. Biol. 35:161-175.

APPENDICIES

A - 1975 Q-Mode Cluster Characteristics
B - Summary of Microplankton Group Abundances and Statistical Information Computed from 1975 Niskin Data
C - Error of Estimate
D - Species of Radiolaria and Foraminifera Collected, 1975
E - General Microplankton Data Sheet
F - Data Sheets for Shelled Microzooplankton-Microzoobenthon
G - Data from Niskin (Discrete Depth) Sampling

APPENDIX A

1975 Q-Mode Cluster Characteristics

Explanation of Table:

This table is a key to Figure 13, Page 31 of the text.

WIN 1 Stations 2/III and 3/I, 3/II, 3/III, 10 m and 25 m ($1 / 2$ photic zone) characterized by silicoflagellates (1\%) presence of Oikopleura (1\%), meroplanktonic polychaete (1\%) and acantharians (3\%).

WIN 2 Stations 2/II and 1/IV 10-18 m characterized high percentage phytoplankton (85%) centric solitary diatoms dominant (72%) zooplankton (10\%).

WIN 3 Stations I/IV and 3/IV 7-10 m phytoplankton composed of centric solitary diatoms (46%) and dinoflagellates (15\%) copepod-naupliar larvae total (26\%), presence of echinoderm larvae (2\%).

WIN 4 Stations 1/I and 2/I, 2/IV and 3/IV, and 3/II, predominantly $1 / 2$ photic zone, phytoplankton totals include diatoms (49\%) [centric dominant (40\%)], dinoflagellates (4\%)(Ceratium); calanoid copepodnaupliar larvae total similar to WIN 3 (27%); also characterized by presence of acantharians (2%), coelenterates (1%), and meroplanktonic polychaetes (1\%).

WIN 5 Stations $2 / I$ and $3 / I$, phytoplankton totals (51\%) include no dinoflagellates; pennates dominant (34\%); shelled microplankton very abundant, spumellarians (1\%) acantharians (9\%) benthonic foraminiferans (1\%), fecal pellets quite high (26\%), calanoid copepodnaupliar larvae totals very low (3\%).

SPR 1 Stations $1 /$ II and $1 / \mathrm{I}$, ($1 / 2$ photic zone), low salinity waters, only zooplankton present are coelenterates (5\%), phytoplankton (65\%), centric solitary diatoms and pennate colonial diatoms dominate; very high number fecal pellets (27\%).

SPR 2 Stations 2/II and 2/IV, 1/II, $1 / \mathrm{I}$ and $1 / \mathrm{IV}, 10 \mathrm{~m}$, low salinity, zooplankton (3\%), phytoplankton (93\%), pennate colonial diatoms dominant.

SPR 3 Stations $1 /$ IV and $2 /$ IV ($1 / 2$ photic zone), 11 and 14 m , characterized by presence of benthonic foraminiferans (2\%), coelenterates (1%), meroplanktonic polychaetes (8%), clams (2%).

SPR 4 Stations $3 /$ II and $3 /$ III and 2/II, characterized by Ceratium (12\%) Trichodesmium bloom (15\%), and tintinnids (12\%), developing eggs (1\%), diatoms relatively low (42\%).

SPR 5 Stations $2 / I$ and 3/II characterized by presence of harpacticoid copepods (2%) in water column and high abundance of fecal pellets (26\%) .

SUM 1 Stations $1 / I I$ and $1 /$ IV ($1 / 2$ photic zone), 13 and 11 m characterized by high relative abundance of tintinnids (14\%), meroplanktonic polychaetes (6\%) and presence of Oikopleura (1\%).

SUM 2 Stations $1 / I I$ and $1 /$ III and $2 / I V, 10 \mathrm{~m}$, characterized by higher percentage phytoplankton (68\%), than SUM 1 and greater abundance of copepods (6%), meroplanktonic polychaetes present in lower amount (1\%).

SUM 3 Stations $2 / I$ and $3 / I$ and $3 / I I I$, ($1 / 2$ photic zone and 10 m), characterized by extremely low phytoplankton total (22\%) and extremely high calanoid copepod-naupliar larvae total (45\%).

SUM 4 Stations 3/II, 3/III, 3/IV, 77-105 m, deep water cluster, very low phytoplankton total (31\%), foraminiferans relatively high; benthonic foraminiferans (2\%), planktonic foraminiferans (1\%), coelenterates, holoplanktonic and meroplanktonic polychaetes all present at 1% level; best representation of copepod groups; calanoid (5\%), harpacticoid (1\%), cyclopoid (2\%), only cluster with ostracods present (4\%), fecal pellets high (22%).

SUM 5 Stations $3 / \mathrm{I}, 2 /$ III, 10 m , phytoplankton total (53%), dominated by centric solitary diatoms (16%) and dinoflagellates (21\%), many rare groups spumellarians (2\%), planktonic foraminiferans (1\%), shelled pteropods (1\%), clams (1\%), and echinoderm larvae (1\%) present; highest percentage of calanoid copepods in 1975 (23\%).

APPENDIX B

SUMMARY OF MICROPLANKTON GROUP ABUNDANCES AND STATISTICAL INFORMATION COMPUTED FROM 1975 NISKIN DATA

Explanation of Table:
Maximum $=$ greatest number of the particular organism found in any one sample

Minimum $=$ least number of particular organism occurring in any one sample
Mean $=$ average number of the particular organism computed from all samples
Standard Deviation $=$ the average range of the number of organisms about the mean (+ or -)

Coefficient of Variation $=$ the standard deviation divided by the mean (used to determine if the mean has any real significance)

No. of Occurrence $=$ total number of samples in which a particular organism was counted

Mean of Presence $=$ mean number of organisms computed only from those samples in which the organism was counted.

Sum of Presence $=$ a measure similar to the mean value which takes into account the number of occurrence, mean, and mean of presence; a more conservative estimate than either mean value

APPENDIX C

ERROR OF ESTIMATE

Table 1	Counting Replicates Used in Error Analysis	Page
Table 2	Computation of Total Error of Estimate in Counting Procedures Used (Niskin Data)	130
Table 3	Analysis of Variance Problem Used to Test Counting Procedures	131
Figure 1	Graph of Groups vs Number of Organisms Counted	132

TABLE 1

COUNTING REPLICATES USED IN ERROR ANALYSIS

Explanation of Table:
A sample was taken with sufficient numbers of organisms present in order to test the error of estimate present in using averages computed from only counting 100 organisms. The first 100 organisms counted are replicate 1 , the second 100 are replicate 2 , and so on. This replicate information is used to compute the mean values for subsamples of 100,200 and so on for the ANOVA test.

Replicates	1	2	3	4	5
Total Number Groups	9	9	9	9	9
Centric Solitary Diatoms	43	44	36	45	38
Centric Colonial Diatoms	16	40	34	28	33
Pennate Solitary Diatoms	1	3	2	1	0
Pennate Colonial Diatoms	28	10	22	23	24
Ceratium	2	0	1	0	0
Peridinium	1	2	1	2	0
Noctiluca	1	0	0	0	0
Naupliar Larvae	1	0	0	0	0
Fecal Pellets	7	1	4	1	5

TABLE 2

COMPUTATION OF TOTAL ERROR OF ESTIMATE IN COUNTING PROCEDURES USED (NISKIN DATA)				
	Mean	Standard Deviation	Coefficient Of Variation	Percent of Total Variation
Centric Solitary Diatoms	41.2	3.96	. 048	1.98
Centric Colonial Diatoms	30.2	9.01	. 149	4.50
Pennate Solitary Diatoms	1.4	1.14	. 407	. 57
Centric Colonial Diatoms	21.4	6.76	. 158	3.38
Peridinium	1.2	. 84	. 349	. 42
Fecal Pellets	3.6	2.61	. 36	1.30
Total Variation in Counting Procedure $=$				12.15

ANALYSIS OF VARIANCE PROBLEM USED TO TEST COUNTING PROCEDURES

Explanation of Table:
The problem was set up to test whether or not a subsample of 100 organisms was statistically different from one of 200,300 and so on. That is, are the realtive abundance averages obtained for counts of 100 organisms significantly different from relative abundance averages obtained by counting 200,300 , and so on? In this case the results of the ANOVA test indicate the differences are not significant.

TABLE 3

ANALYSIS OF VARIANCE PROBLEM USED TO TEST COUNTING PROCEDURES

H_{0} : The difference between replicates is due to random effects (i.e. the same population is represented in each subsample).

The measurements represent the mean values for the organisms present in each sample.

Subsample Number Count Totals	$\begin{gathered} 1 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 200 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 300 \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 400 \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ 500 \\ \hline \end{gathered}$
	43	43.5	41	42	41.2
	16	28	30	29.5	30.2
	1	2	2	1.25	1.4
	28	19	20	20.75	21.4
	1	1.5	1.33	1.5	1.2
	7	4	4	3.25	3.6
$\mathrm{X}_{\mathrm{i}}=$	96	98	98.33	98.25	99
X. . $=489.58$					
$\overline{\overline{\mathrm{X}}}=97.916$					
$\mathrm{X}^{2} .=239688$					

$$
\begin{array}{ll}
A=\sum_{i} \frac{X_{1 .}^{2}}{J}=7990.47515 & B=\frac{X_{-}^{2}}{I J}=7989.6 \\
C=\sum_{i} \sum_{j} X_{i j}^{2}=15165.65664 &
\end{array}
$$

	ANOVA TABLE			
Source of Variation	Sum of Squares	Degrees of Freedom	Mean	Square

F of rejection (4 and 25 degrees of freedom, 99.9 confidence level) $=6.49$

FIGURE 1

GRAPH OF GROUPS VS NUMBER OF ORGANISMS COUNTED

Explanation of Figure:
The graph is used to depict whether or not under representation of the total number of microplankton groups (i.e. different types of organisms) is factor in only counting 100 organisms. In this case it is not.

No. of
Groups
Present

Figure 1. Groups Vs. Number of Organisms Counted.

APPENDIX D

SPECIES LIST OF RADIOLARIA AND FORAMINIFERA

SUBCLASS RADIOLARIA SUPERORDER POLYCYSTINA ORDER SPUMELLARIA

FAMILY COLLOSPHAERIDAE

Choenicosphaera sp. Colzosphaera tuberosa Disolenia zanquebarica Siphonosphaera polysiphonia

FAMILY ACTINOMMIDAE SUBFAMILY ARTISCINAE

Cypassis irregularia
Ommatartus tetrathalamus
SUBFAMILIES NOT DESIGNATED
Actinoma 1
Actinoma cf. medianum
Astrosphaera 3
Astrosphaerid 1
Astrosphaerid 2
Astrosphaerid 3
Cenosphaerid 1
Cenosphaerid 4
Cenosphaerid 5
Cladococeus scoparus
Cubosphaerid 1
Cubosphaerid 2
Drymosphaera polygonalis
Radiolarian 1
Radiolarian 2
Radiolarian 3
Sphaerid 1
Sphaerid 2
Spongosphaera streptacantha
Stylacontrarium bispiculum
FAMILY PHACODISCIDAE
Heliodiscus asteriscus
FAMILY SPONGODISCIDAE
Euchitonia furcata
Euchitonia elegans
Hymeniastrum profundum
"Spongasters"
"Circular" spongaster
"Elliptical" spongaster
Spongaster berminghami
Spongaster cruciferus
Spongaster pentas
Spongaster tetras irregularis
Spongaster tetras tetras
Spongobrachium ellipticum

```
    "Spongotrochids"
        Spongotrochus geddessi
        Spongotrochus glacialis
    Others
    Spongosphaerid 1
    FAMILY PYLONIIDAE
    Hexapyle dodecantha
    Tetrapyle octacantha 1
    Tetrapyle octacantha 2
ORDER NASSELLARIA
    SUBORDER SPYRIDA
    Acanthodesma viniculata
    Spyroid 3
    Spyroid 4
SUBORDER CYRTIDA
    FAMILY PLAGONIIDAE
    Callimitra sp.
    HeZothoZus 1
    HeZotholus 3
    Lophophaena sp.
    Peridinium spinipes
    Pteropilium stratiloides
    Theopilium tricostatum
    FAMILY THEOPERIDAE
    Bathypyramis
    Calocyclas 1
    Calocyclas 2
    Eucyritidium accuminatum
    Lithopera bacca
    Nassellarian 1
    Pterocanium praetextum praetextum
    Pterocanium praetextum eucolpum
    Pterocanium trilobum
    FAMILY PTEROCORYTHIDAE
    Anthocyrtidium cineraria
    Lamprocyclas maritalis polypora
    Lamprocyclas mamitalis maritalis
    Lipmanella vichowii
    Pterocorys sp.
    Pterocorys zancleus
    Theocomythium trachelium dianae
    Theocorythium trachelium trachelium
    FAMILY ARTOSTROBIIDAE
    Spirocyrtis 2
    Spirocyrtis scalaris
```

FAMILY CANNOBOTRYIDAE
Botryocyrtis scutum
SUPERORDER ACANTHARINA
Acantharian spp.
SUPERORDER PHAEODARINA
Conchasma sphaemulites Conchoceras caudatum

PLANKTONIC FORAMINIFERA SPECIES
Globigerina bulloides
Globigerina bulZoides falconensis
Globigerina falconensis
Globigerina cf. incompta
Globigerina pachyderma
Globigerina quinqueZoba
Globigerina mbescens
Globigerina sp.
Globigerinella aequilateralis
Globigerinoides miber
Globigerinoides tenellus
Globorotalia cf. tosaensis
Globorotalia truncatulinoides
Orbulina universa
PuZZeniantina obliquizocuZata
BENTHONIC FORAMINIFERA TAKEN IN PLANKTON TOWS

```
Angulogerina bella
Bolivina spinata var. costata
Bolivina Zowmani
Bolivina subaenariensis var. mexicana
Bolivina sp.
Bulmina aculeata
Cassidulina curvata
Cassidulina subglobosa
Cibicides concentricus
Cibicides mollis
Eponides tumidulus
Eponides sp.
Fissurina cf. crassicarinata
Fissurina sp.
Gyroidina sp.
Marginulina sp.
Neoeponides antillamum
Nonionella basizoba
Planulina sp.
QuinqueZoculina compta
```

Russella cf. miocenica
Strebulus beccari
Uvigerina auberiana var. Laevis
Uvigerina hispido-costata
Uvigemina peregrina
Valvulineria cf. araucana

BENTHONIC FORAMINIFERA

```
ORDER FORAMINIFERIDA
    SUBORDER TEXTULARIINA
        FAMILY SACCAMMINIDAE
    Lagenammina atlantica (Cushman)
        FAMILY HORMOSINIDAE
            Reophax comprima (Phleger and Parker)
        FAMILY LITUOLIDAE
            Ammoscalaria pseudospiralis (Williamson)
        FAMILY TEXTULARIIDAE
            Bigenerina irregularis Phleger and Parker
            Siphotextularia affinis (Fornasini)
            Siphotextularia rolshauseni Phleger and Parker
            Textularia candeiana d'Orbigny
            Textularia parvula Cushman
            FAMILY ATAXOPHRAGMIDAE
            EggereZla scabra (Williamson)
            Gaudryina cf. aequa Cushman
    SUBORDER MILIOLINA
    FAMILY MILIOLIDAE
            Miliolinella warreni Anderson
            Quinqueloculina compta Cushman
            Quinqueloculina oblonga Reuss
SUBORDER ROTALINA
    FAMILY NODOSARIIDAE
            Dentalina sp.
            Lagena nubulosa Cushman
            Lagena spirata Bandy
            Lenticulina calcar (Linne)
            Saracenaria sp.
    FAMILY TURRILINIDAE
            Buliminella elegantissima (d'Orbigny)
            BuliminelZa cf. bassendorfensis Cushman and Parker
            Spirobolivina sp.
```


FAMILY BOLIVINITIDAE

Bolivina subspinescens Cushman
Brizalina barbata (Phleger and Parker)
Brizalina fragilis (Phleger and Parker)
Brizalina hastata (Phleger and Parker)
Brizalina lowmani (Phleger and Parker)
Brizalina mexicana (Cushman)
Brizalina ordinaria Phleger and Parker
Brizalina spinata (Cushman)
Rectobolivina advena (Cushman)
FAMILY BULIMINIDAE
Bulimina aculeata d'Orbigny
Bulimina gibba Fornasini
Bulimina marginata d'Orbigny
ReusselZa atlantica Cushman
FAMILY UVIGERINIDAE
Sagrina puZchelZa (d'Orbigny) var. primitiva (Cushman)
Trifamina bella (Phleger and Parker)
Trifarina jomaicensis (Cushman and Todd)
Uvigerina bellula Bandy
Uvigerina parvula Cushman
Uvigerina peregrina Cushman
FAMILY DISCORBIDAE
Bucella hannae (Phleger and Parker)
Cancris sagra (d'Orbigny)
EpistominelZa vitrea Parker
Stetsonia minuta Parker

FAMILY SIPHONINIDAE
Siphonina bradyana Cushman
Siphonina pulchra Cushman
FAMILY ROTALIIDAE
Ammonia beccarii (Linne)
Ammonia pauciloculata (Phleger and Parker)
FAMILY ELPHIDIIDAE
Elphidium gunteri Cole
Elphidium poeyanum (d'Orbigny)
FAMILY EPONIDIDAE
Eponides repandus (Fichtel and Moll)
Neoeponides antillamm (d'Orbigny)
FAMILY CIBICIDIDAE
Cibicides aff. floridanus (Cushman)
Cibicides mollis Phleger and Parker
Cibicides sp.
Cibicides umbonatus Phleger and Parker

```
FAMILY CAUCASINIDAE
    Fursenkoina complanata (Egger)
    Fursenkoina compressa (Bailey)
    Fursenkoina pontoni (Cushman)
    Fursenkoina spinicostata (Phleger and Parker)
    Virgulinella pertusa Reuss
FAMILY LOXOSTOMIDAE
    Loxostomum sp.
FAMILY CASSIDULINIDAE
    CassiduZina subgZobosa Brady
FAMILY NONIONIDAE
    Florilus astricta (McCulloch)
    Florilus atlanticus (Cushman)
    Flomilus grateloupi (d'Orbigny)
    Nonionella basiloba Cushman and McCulloch
FAMILY ANOMALINIDAE
    Hanzowaia strattoni (Applin)
    MiZonis barleeanus (Williamson)
FAMILY CERATOBULIMINIDAE
    Hoeglundina elegans (d'Orbigny)
```

APPENDIX E

GENERAL MICROPLANKTON DATA SHEET

PLANKTON DATA SHEET - MICROPALEONTOLOGY LAB. RICE UNIVERSITY	
STATION _	E_C_LTE
DEPTH__ TIME OF DAY	$\%$ SAIPIR
OTHER	$0 \mathrm{Sin}=$
PLYTOPIANKTON.	
DIATOMS	
CENTRIC SOLITARY	PTEROPODS CCVERLD
CENTRIC COLONIAL	SHELIED COUTITIG 100
PENNATE SOLITARY	NON-SHELIED
PENNATE COLONIAL	CHAETOGNATHS
DINOFLAGELLATES	. POLYCHAETES
PERIDEVIUM	HOLOPLANKTONIC
GONYAULIX	MEROPLANKTONIC
DINOPHYSIS	crustaceans
CERATIUA	EUPHAUSIDS
NOCTILUCA	SHRIMP
OTHER	MYSIDS
SILICOFLAGELinites	"MYSID STAGE"
EBRIDIANS	AMPEIPODS
TRICHODESMIUM	ISOPODS
COCCOLITEOPHORES	Cumaceans
NAKED FTAGELIATES	COPEPODS
OTHER	CALAVOID
	HARPACTICOID
	CYCLOPOED
ZOOPLANKTON	LUCIPER
PROTOZOA	NAUPLIAR LARMA
RADIOLARIANS	MEGALOPS
SPUMELIARIANS	zOEA
NASSELIARIANS	OSTRACODS
ACANTEARIANS	CLADOCERAVS
PHAEODARIANS	PODON
FORAMINIFERAVS	evadne
SENTHONIC	MEROPLANKION CF BEMTEONIC INVERTS
PLANKTONIC	ECHINODERM
TINTINTIDS	SNAILS (VELIGERS)
CILIATA (OTEER TEAV TINTIUNIDS)	CLAM
	BRYOZOAN
OTHER PROTOZCA	TROCHOPHORE
	TUNICATE (TADPOLE)
METAZOA	0.2E?
EGGS	
COELENTERATES	MEROPLANKTON OF NEKTON
SIPHONOPHORES	DEVELOPING EGG
CTENOPHORES	FISH EGG
SALPS	JUVENILE EISH
DOLIOLCM	FECAL PELEETS
OIKOPEURA	
	ORGAVIC DETRITUS
	SEDIMENT

DATA SHEETS FOR SHELLED MICROZOOPLANKTON-MICROZOOBENTHON, WINTER, SPRING AND SUMMER 1975

Explanation:

Densities (Numbers/m ${ }^{3}$)

SHELLED LOLPLAANTGN DLINSITILSAG.L.M.STUDY

	L．ijacin		$6 . ?$	ว．＾	\therefore－i	0.0	¢．し	c． 0	$\mathrm{c} \cdot \mathrm{C}$	0.6	0.0	c． 0	0.0		n．m
	preancrirs Sp		6.6	0．0	． 0.0	0.6	$r .3$	0.0	c．o	0.0	0.3	0.0	0.0		0.0
	p．zanclev；	\cdots	C．：	$0 \cdot \mathrm{c}$	1.20	C．0	C．t．	0.30	0.0	1.10	1.00	c． 0	0.0	：	0．77
	L．vicoriall		C．）	0.0	3.3	\bigcirc	c．${ }^{\text {c }}$	3．${ }^{\text {c }}$	0．0	1.12	－3．3	c． 0	c． 0		0.9
	P．THIL：CNV		$\because . \cap$	0.2	\cdots	0.1	\therefore	0.0	r．e	0.0	c．00	¢． C	0.0		r．
			0.	2.2	$\because 0$	6.	$0 \cdot 0$	c．c	0.0	0.0	0.0	c． 0	c． 0		$n \cdot n$
－	Treicrerentu	－	－＇•＇	6．0	9.9	¢．e	c．0	0.0	8.0	1.10	2.33	c．e	0.0	－	c．
	CALOCYCLAE：		\therefore	\bigcirc	${ }^{1} \cdot \mathrm{r}$	「．	0.0	0.0	c．er	－c	0.33	c．c	0.0		0.9
	CALCEYCLAS：		$\therefore 3$	D．2	\cdots	0．2	，©	0.0	－． c	2.0	0．3	0.0	0.0		0.0
	EACUHHation		\cdots	20.	j．C	－． 0	c．：	0.0	$1 . \mathrm{c}$	0.55	0.33	c． 0	0.0		0.77
－－	c．rcigaryminatua		－． 2	0.3	9	c．n	0.0	U．O	0.0	0.0	c． 0	co	e．0		．
	S．SCALE＇il		\cdots	－．	3.3	\therefore	2．	0.25	c．c	1.65	n．js	c． 0	c． 0		$n \cdot r$
	3016）Cr211：		．	$\bigcirc \cdot$ ？	\therefore ，	－－	r．j	0.0	c．c	c．c	0.33	c． 0	C．0		\cdots ¢ 78
			－．	0.0	\cdots	． 0	c．u	C．se	c．0	1.10	4.00	c． 0	0.76		． 77
	Modrait．rucrit		$\because \cdot$	2.0	？${ }^{\text {e }}$	$\because{ }^{\circ}$	C．C	a．r	c．0	0.55	0.31	c．e	c． 0		の．＾
	A．CIVE：A			\bigcirc ？	－－	\cdots	く．し	0.0	－． 0	0.0	C．ü	c． 0	c． 0		r．3e
	\％escurum		－．	$3 \cdot 6$	2．－	6.1	C．	0.0	$0 \cdot 6$	0.0	c．0	c． 0	0.0		r． 38
	CALLITHWN		こ．：	3.3	\because	$\mathrm{C.C}$	r．	2.0	cor	3.0	c．0	－． 0	0.0		$n \cdot 3 \mathrm{e}$
	Ferqarmociaymi－		9	3．${ }^{\text {a }}$	$\bigcirc{ }^{\circ}$		¢！	$2 \cdot \mathrm{C}$	cos	0.0	0.0	0.0	0.0		r r．n
			c	1.3	2.6	\bigcirc	\cdots	c．c	C．c	0.0	c．c	0.0	0.0		$r \cdot 9$
			こ．	2．${ }^{\text {a }}$	\therefore.	3.6	\％	0.1	r．o	0.0	0.0	0.0	c．0		0.1

SrELLLD CLLPLANKTLN DENaititam.L.M. STUOY
UENSITIES(NLS./CU.M.) OSWNINGU-1975

CENSITITS（NE．／CU．M．）－SU：M－Rー1，75

Specife Mame	STATICN	Numbte And	TeAMSEC ${ }^{\text {ch }}$									
	1－1	2－1	$3 \rightarrow 1$	1－11	2－11	2－1！	1－111	く－1！1	3－111	I－IV	c－IV	x－IV
E．PRAT：．EJA－i	U．し	v．u	J． P	u．v	1.44	0.04	0.0	0.0	0.35	0.0	0.0	1.17
	0.0	0.0	－¢	u，u	$\because 0.7$	1.0	1.42	v．0	0.0	U．0	0.75	0.79
	0.0	0.94	1．20	u．l	1.44	0.0	0.0	0.0	0.0	0.0	0.0	0.0
S．PFNTAC	0.0	0.0	\cdots	0.0	1．4．4	0.0	1.42	0.0	0.0	0.0	0.0	0.0
So？PENTAS	0.6	0.0	い． ve	u．v	c． 17	0.97	0.0	0.63	0.35	0.0	0.75	0.0
S．Gernessi	u．u	0.0	－．75	u．v	0．7？	$0 \cdot 37$	1.47	U．：54	0.35	4.0	0.0	0.0
Ieoctacanima，	C．l	0.0	$\sim \cdot 0$	\cdots	－0．	10.57	0.0	0.0	0.07	0.0	0.0	0.0
CHAFC．CPL．	6.0	0.0	voic	v．u	0.0	0.0	0.0	0.0	0.07	0.0	0.0	－． 7
CBLENSA SN．	0.0	0.0	$\checkmark 00$	vou	0.9	0.0	0.0	0.0	0.07	0.0	0.0	0.0
CEMESFRAFEAE	u．0	0.0	－ 0 －	v．u	u．u	U． 32	0.0	2.18	0.0	1.31	0．0	0.78
LCEFOCERE	u．v	0.0	U．ct	u．u	u．u	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CIEC．SEENGECISC	c．v	0.0	$\bigcirc 0$	0.0	1.44	0.35	0.0	1.09	0.0	0.0	0.75	0.79
ELLIP．SPENGOLISO	0．0	0.0	1.0	v．0	1，4．4	0.32	0.0	0.0	c．0	0.0	U．0	0.0
Hafarfunirun Al．	0.0	0.04	1.50	1．01	30.3	0.0 .4	2060	S． 57	0.0	0.0	2.20	0.78
Hofacfuncun jur	0.6	1．0．	$\therefore 3 \mathrm{c}$	\checkmark－${ }^{\text {c }}$	25.20	2.11	2.33	0.17	2.67	0.0	$\checkmark .0$	n．th
ACAITTAEIAM	0.0	0.94	\cdots	い．	－． 0	0.64	0.0	0.0	0.0	0.0	0.0	0.0
LoNiFITELIC HzLY	c．u	0.44	－ 0 er	u．v	2.17	0.0	0.0	v．u	0.0	N．0	0.0	0.0
E．FUOCATA	c．u	0.0	－． $2 t$	\cdots	0.0	0.0	0.0	1.0 .3	0.0	0.0	0.0	0.0
E．ELECPHC	c．l	0.0	．$\cdot 30$	u．u	4．33	0.0	0.0	3.41	0.67	0.0	0.0	0.0
Soteties icetus	U．し	U．0	$\checkmark .0$	$\cdots 0$	0.72	0.0	0.0	0.0	0.0	0.0	0.0	0.0
E．SPINLS	6.0	0.0	\checkmark	い．	0.78	0.0	0.0	$\cdots .0$	0.0	0.0	0.0	0.0
E．B．CSLLTCT．	0.6	0.0		vou	し．v	0.32	0.0	0.0	$0 \cdot 0$	0.0	0.0	3.0
BuInvaginata	0.0	0.0	u．u	u．v	$0 \cdot 0$	0.0	0.0	4． 16	0.0	U．0	0.0	0.0
D＿ELSG？	0.0	0.0	\cdots	0.6	0.0	0.0	0.0	0.0	0.0	0.0	1.51	n．0
S．GLAGIALICMS．	0．0	0.0	－． 3.0	u．${ }^{\text {a }}$	10.0	$0 \cdot 3 ?$	0.0	0.54	1．0u	0.0	0.0	0.0

S.glacialis juv	0.0	0.0	U.u	0.0	0.0	0.0	0.0	0.54	0.0	0.0	0.0	0.39
CrAOSPraroic ?	c.u	0.0	J. 26	0.0	0.0	0. 32	0.0	0.0	0.0	0.0	0.0	0.0
ACTInCNA,	0.0	10.11	1.20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
O.tETPATMALAMUS	c.0	0.0	U.53	0.0	2.17	0.0	0.0	0.0	0.0	0.0	0.0	0.39
Sostriftacentra	0.0	0.84	0.75	0.0	2.17	0.0	0.0	0.54	0.0	0.0	0.0	0.39
O.PCLYCCNAL:	0.0	0.0	-00	0.0	0.72	1.27	0.0	0.54	0.33	0.0	0.0	0.0
S.Bispiculum	0.0	0.0	0.20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C.CAUCATLM	c. 0	0.0	\cdots	0.0	0.0	0.64	0.0	0.0	0.0	0.0	0.0	0.0
C.SPHAFRUL:TES	c.o	0.0	3.53	U.0	4.0	0.0	0.0	$\cdots .0$	0.0	0.0	0.0	0.0
P. ZANCLEUS	: 0.57	0.0	$\checkmark .0$	0.0	0.0	0.0	0.0	1.09	0.0	J.0	0.0	0.99
L.VICHCWII	0.6	0.84	3.74	c.es	0.0	0.0	0.0	2.18	0.0	0.0	0.0	0.0
SFIECCMRTica	0.0	0.0	-0.0	$0 \cdot 0$	0.0	0.32	0.0	0.0	0.0	0.0	0.0	0.39
A.CINFFIA	0.0	0.0	. $.2 t$	U.u	0.0	0.54	0.0	0.0	0.0	0.0	0.0	0.0

DENSITIESINUS./CU.M.)-WINTEK-Iつ74

UEINSITIES(NUS./CU.M.)-SPRINGO 1975

$2-11$	$3-1$.
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0
0.0	6.0
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.30
0.0	0.0
0.0	0.0
0.0	0.0
0.0	0.0

1-111	2-111	3-111	1-iv	$2-1 v$	3-1v
0.0	0.0	0.0	0.0	0.0	c.0
0.0	0.0 -	0.0 -	--..e.0	$\cdots 0.0 \cdot$	$\cdots 0.0-$
0.0	c. 0	0.0	0.0	0.0	C.0
0.0	0.0	0.35	0.0	0.0	$0.3 E$
0.0	0.0	0.0	0.0	0.0	0.0
6.0	0.0	-0.0.	- $0.0-$	-0.0-	-0.3e- ---
0.0	c.j5	0.0	0.0	0.0	0.0
c. 0	0.0	0.33	c. 0	0.0	e.0
0.0	0.0	0.0	c. 0	0.0	0.0
6.0	0.0	-0.0	-1.44-	- -0.0...	O.0 . ---
0.0	0.0	0.0	c. 0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	-0.6	$\cdots \mathrm{E}$ - 0	$\cdots 0.0$ - ${ }^{-}$	- $0.777 \times$
0.0	0.0	0.33	0.0	0.0	0.9
0.0	c. 0	0.0	0.0	0.0	c. 38
0.0	0.0	0.33	0.0	0.0	c.0
0.0	$0 \cdot \theta$	- $0 \cdot 0$	0.0	- 0.0 .0	. 0.9

chelled zociplankiEn densitics－b．l．mestuuy
CENSITIFE（t．：S．／CU．M．）－SUMM：R－： 775

fadiolafian gpeciesmotacs

specife mame stiticn numeen and isansict

	1－1	$こ-1$	s－1	1－11	2－11	$3-11$	1－111	2－111	3－111	$1-1 \mathrm{~V}$	2－IV	$3-1 \mathrm{~V}$
L．MAE：TALIE GMy	0.0	（0．）	ง．5\％	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lovichcwli	c．u	U．E	$\checkmark .0$	\checkmark	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Soglarialie juv	0.0	0.0	ct	U．u	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
T．OCTALAATA：	c．u	0.0	－•2t	u．v	0.0	0.0	0.0	0.0	0.33	0.0	0.0	0.0
OLLCNSA CF．	0．0	$\checkmark .0$	」アと	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

srellev cucplanktca oensitites-d.l.n.study
LENSITIESINLS.ICU.M.)-MINTERG1,74

sfilled zulhlanation densitals-z.l.f.stuoy LENSITIES(NLS./CU.M.)-SNEING=1y7E

SMELLCL ZUCPLANKTUN DENSITIEJ-H.L. M.STUUY
DENSITIES(NOS./CU.M.)-SUMMER-1575
FCRAMINIFFRA SPECIEE-LIVES
SPFCILENMNE SMAICN RUMEEF AND IMANSFCT

	1-1	二-1	د-1	1-14	2-:	- 11	1-111	2-111	3-111	$1-1 v$	2-1v	s-rv
Gofalcciafacis	c.o	U.c	1.54	v.u	0.0	0.0	0.0	0.64	0.0	0.0	0.75	0.0
G. RUbice	0.6	4.21	${ }_{4}$	vou	$4 \cdot 37$	0.96	0.0	1.08	3.00	0.0	7.52	?.93
C.AFCuILATEGALIE	c.u	0.0	- . 0	0.0	0.6	0.0	0.0	0.0	0.66	0.0	0.0	0.0
G.l3)CLINOU1LCH2	0.0	1.08	-. 26	0.0	2.16	0.0	0.0	4.35	1.00	0.0	0.75	1.16
gotullitres	0.0	0.84	- 7	0.	19.44	3.5?	1.4:	2.72	3.33	0.0	5.27	2.79
C.UNIVEDSA	U.v	u.v	$\checkmark 0$	u.u	U.	0.3?	0.0	0.0	0.0	0.0	0.0	0.77
HeEELSCICA	c.0	0.0	1.75	u.u	0.0	0.96	0.0	0.54	1.33	0.0	0.0	0.0
H.SPINATA-TEANS	35.31	0.0	J.?	v.u	9.34	0.0	2.8 .3	0.0	0.0	1.31	4.51	0.77

FJRAMINIF:GA JHELIEJMEADS

UENSITIES(NUS./CU.M.)-SPRING-1G75													
foraminifefa shecleionotads													
SPECIES NAME.	StAIICN NLMEEEQ ano transect												
EeCSELINCSNFTA	0.0	0.0	c. 0	0.0	0.0	0.0	0.0	0.0	0.0	c.0	0.0	0.0	
G.FALCOVENSIS	0.0	0.0	0.6	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	c.0	
غ. RUAFn	0.0	0.0	0.0	0.0	c. 0	0.0	c. 0	0.0	0.0	0.0	0.0	0.0	
M.AEVUILATEFALIS	0.0	0.0	0.3	C. 0	c.c	0.30	c.c	0.0	0.6	0.0	0.0	0.0	
	0.0	0.6	c.ct	c.0	0.0	0.0	0.0	0.0	0.0	0.0	c. 0	0.0	
govullcices	0.2	0.0	0.0	0.0	6.0	0.0	c. 0	0.0	0.0	0.0	0.0	0.0	
G.SP.	0.0	0.0	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
C.CCNCENTRICUS	0.0	0.0	0.0	0.0	c. 0	0.0	0.0	0.0	0.0	c. 0	0.0	0.0	
URAUEERIANA	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
E.TUMIDULLS	0.0	0.0	0.0	0.0	c. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
FISSURIVA SP.	0.0	0.0	0.0	6.0	c. 0	0.0	0.0	0.0	0.0	c. 0	0.0	0.0	
DOLIVINA SE.	0.0	0.0	3.0	c. 0	0.6	0.0	0.0	0.0	0.0	c. 0	0.0	0.0	
Y.COMPTA	0.0	0.0	0.0	c. 0	c. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
甘.ACULEATA	0.0	2.0	$0 . \mathrm{c}$	$0 . \mathrm{c}$	c.o	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
- TECHIMIOCENILA	0.0	0.0	0.0	0.0	0.0	0.0	c.0	0.0	0.0	0.0	0.0	0.0	
PEPONIDES SE.	0.0	0.0	c.o	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
N. (T)EXPCNERS	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.33	0.0	0.0	0.0	
B. SUGAENAFIENS 1	0.0	0.0	0.0	0.0	c.0	0.0	0.0	0.0	0.0	0.0	0.0	0.7	
C.MOLLIS	0.0	$=0.0$	0.0	6.0	c. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1AGGIDULINA.SH.	0.0	0.0	0.0	0.0	$\stackrel{\text { r }}{ }$	0.0	c.0	0.0	0.0	$c . c$	0.0	0.0	\bullet
	- 0.0	-..e.e.--	$\cdots 0.0$	0.0	¢.し	0.0	0.0	0.0	0.0	0.0	0.0	$c \cdot 0$	-


```
WTHGPRO SPECICSOLIVFS
```

	1-1	2-:	د-1	: - - :	- 111	-11	1-111	2-111	3-111	1-1V	$2-1 v$	2ulv
C.ACICLAA	3.¢.3	3.37	U.7s	3.81	33.21	4.50	33.97	30.47	0.0	65.5 ?	12.04	1.5.5
L. INFLA-A	c.0	0.0	. 0.5	u.u	4.33	$\bigcirc .57$	1.41	5.98	1.00	0.0	1.50	0.39
PL. InTLETA ET	0.0	0.0	0.75	u.u	0.72	0.96	7.07	3.81	0.0	11.79	3.76	0.0
L.LESUEUPI	0.0	$4 . \bar{c}$	-.11	u.u	36. 10	4. 82	0.0	42.46	3.07	3.93	85.82	1.04
E.CAMPYLLDA	0.0	:.te	c.00	Uu	1.4.	5.00	0.0	1.53	0.0	0.0	0.0	0.0
3L.TECOHIFCEmis	¢.し	2.5\%	-. 0	usu	4.33	$0.3{ }^{3}$	0.0	0.0	0.0	2.62	0.0	0.0
2L-LEsuturini	三.C.s	2.5\%	u.?	J.v	2.15	1.36	0.0	:0.03	1.33	5.17	5.02	0.77
L.tpoctifremis	0.0	U.0	vov	\checkmark	0.0	0.35	0.0	0.0	0.33	$\cup .0$	0.75	0.0
L.HULLIMTICES WT	0.0	0.0	0.0	\cdots	0.0	0.0	0.0	7.52	0.0	0.0	0.0	0.0

Cotracon sbrules-l.ves

SPEC1: 1	0.0	-. 0	9.0
SPECIES \hat{E}	0.0	0.0	$\because .0$
SpCCIES 3	0.0	0.0	J.C

-0.11	-3011	$-1-14 t$
0.15	0.0	1.3ϵ
0.0	0.0	0.0
0.0	0.0	0.0

$=-111$	$3-111$
0.0	0.0
0.0	0.0
0.0	0.0

$1-i v$
1.41
0.0
6.0

- - IV	ご1
3.76	0.0
0.75	0.9
c. 0	c. 0

ojtracco sfeclais-livt:
species nam: gtaticin number ars translett

chellfi zorplankton densitiejouelom.stuor

aEnitralc FChams-livfs

noantillalum	0.0	0.0	12．16	u．u	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0
C．MCLLIS	0.0	0.0	2．0	U．0	0.0	0.0	0.0	0.0	1.30	4.0	0.0	6.30
C．umbratur	c．u	0.0	~ 0	U．0	0.0	0.0	0.0	0.0	16.70	0.0	0.0	0.0
F．FCNTC．	ec．su	4.00	\cdots	0.0	0.0	0.0	2.30	10.10	15.30	12．00	39.50	：3．30
Cosurgheprca	0.0	0.0	v．o	0.4	c． 0	0.0	0.0	0.0	1.00	c． 0	0.50	1.60
F．$A \leq T+1 C T A$	c． 0	0.0	u．u	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.50
F．atlantirue	こ．＜u	0.0	\checkmark－0	u．v	：6．00	0.0	1.30	0.0	0.80	0.00	7.40	0.0
F．grateltrupl	U．U	U． 0	v．u	1．0	0.0	0.0	0.0	0.0	2.60	0.0	0.50	1.50
Notasilima	15000	0.0	1.0	：7．uv	21.00	0.0	73.30	0.50	A． 30	37.00	30.00	3.0
E．stratrimil	0.6	c．co	v．o	0.0	U．u	0.0	0.0	22.60	6.10	3.00	4.20	14.10
M．EAFLETAAU	0.0	0.0	$\checkmark .0$	0.0	－ 0	0.0	0.0	0.0	0.0	0.0	0.0	2.70
L．SF．	0.0	0.0	1.0	E，io	0.0	0.0	U．20	U． 0	0.0	0.0	0.0	0.0
C．SF．	0.0	0.0	2－．？	ن．	0.0	0.0	0.0	0.0	0．0	U．O	0.50	0.0
B．Sfiriata	2.10	0.0	コ．し	0.0	U．0	0.0	0.80	19.40	6.10	2.30	1.60	11.70
E．ACVENA	0.0	0.80	v．0	v．u	0.0	0.0	0.0	0.0	0.	0.0	0.0	0.0
B．FDAGILIS	0.0	0.0	$\checkmark .0$	v．u	0.0	0.0	0.0	0.0	0.0	0.0	0.50	2.30
B．HASTATA	1.10	0.0	〕．0	\cdots	0.0	0.0	0.0	0.0	0.0	0.0	0.50	2.30
E．SURSFIMECREIS	0.6	0.0	0.0	v．v	6.0	0.0	0.0	3.20	4.40	0.0	0.0	0.0
S．SF．	0.0	0.0	0.0	c．1u	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
日．ELEGANTISSIMA	0.6	0.0	0.0	C． 10	5.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0
MomAFRENI	c．${ }^{\text {c }}$	0.0	v．l	u．u	c．u	0.0	0.0	0.0	0.0	0.0	0.0	0.40
E．lrzequlatis	0.0	1.50	J．O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
D．SP．	0.0	v．0	5.0	u．u	0.0	0.0	0.0	0.0	0.90	0.0	0.0	0.0
L．CALCAO	0.0	U．O	J．0	6	0.0	0.0	0.0	0.0	0.0	c． 0	0.0	0.80
L．nebuloga	0.0	0.0	0.0	v．u	0.0	33.20	0.0	0.0	0.0	0.0	0.0	0.0
F．EAREATA	c．0	v．0	1.0	0.0	0.0	0.0	0.0	0.0	0.90	0.0	0.0	0.0
B．CFDIMARIA	0.0	0.0	0.0	0.0	0.0	0.0	0.40	0.0	0.0	6.0	0.0	0.0
U．eELLULA	0.0	0.0	$2<.20$	0.0	0.0	0.0	0.0	0.0	9.70	0.0	0.0	1.60
O．CEMPTA	0.0	0.0	৩．u	u．u	U00	0.0	0.0	0.0	0.0	0.80	0.0	0.0
S．MINUTA	1.00	0.00	J．0	0.0	0.0	0.0	0.40	0.0	0.0	0.0	0.0	0.0
C．florioanus	u．u	0.0	0.0	0.0	u． 0	0.0	0.0	0.0	0.90	0.0	0.0	0.0
F．CCNFF－SPh	0.0	0.0	0.0	v．u	$0 \cdot 0$	0.13	0.0	0.0	2.00	0.0	0.0	0.0
1F．SPIMICRSTATA	0.0	0.80	1．0	v．u	0.0	0.0	0.0	u．u	0.0	0.0	0.0	0.0
Votegrlit	0.0	0.0	Jous	0.40	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
H．ELEGENS	0.0	0.0	~ 0	$v o v$	$0 \cdot 0$	32.30	0.0	0.0	0.0	0.0	0.0	0.0
L．ATLAA－ICA	0．6	u．u	0.0	－040	く． 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$\xrightarrow{\text { S．CEMELAMAFA }}$	c． 6	U．U	$\checkmark .0$	\cdots	0.0	0.0	0.0	0.0	0．${ }^{\text {d }}$	0.0	1.10	0.0
E．SUTAENAEITHEIE	U．6	0.0	u－u	\cdots	0.0	0.0	0.0	0.0	$0 . \rightarrow 0$	0.0	0.0	0.0

	$1-1$	－\cdots ：	,\rightarrow i	：－．：	2－11	3－1！	1－111	2．111	$=-111$	$1-1 \mathrm{~V}$	く－1V	ralv
Eecriniofm：	c．！u	い．し	\cdots	u．v	0.0	2．0	u．Ev	0.0	U．し	1.50	0.0	0.0
	$0 \cdot 0$	$\bigcirc \cdot 0$	J．s	\cdots	0.0	0.0	0.0	：．00	0.0	？．03	$\checkmark \cdot .1$	0.0
S．AFFIT，1\％	u．u	1．： 0	\cdots	3.6	$0 \cdot 0$	$0.1)$	0.0	$\therefore .0$	0.0	1.30	\cdots.	0.0
	J．	いし	\cdots	\cdots	u，	u．＂	0.0	U．0	0.0	1.00	0.0	0.0
T．farvel ：	$\because \checkmark$	－v	－－：	\cdots	u＊	$10 \cdot 0$	$0 \cdot 6$	0.0	0．v	$0 \cdot 0$	4．${ }^{\text {d }}$	c．）
Ecr．	\cdots	\cdots	$\bigcirc 0$	\cdots	u．u	$1 \cdot 0$	$\cdots .60$	0.0	u．u	7．40	U．0	0.0
Hetransw	7心．30	iv．iu	\cdots	$-10 \cdot 0$	U0	0.0	26．30	0.20	3.30	？ 1.30	ア5．70	2.60
detactigmerfici	－い	4.0	－．0	¢－ロー6	2.11	0.0		z．：0	0.0	c．su	0.0	0.0
F．C110：	u．u	$0 \cdot 0$	い．${ }^{\text {d }}$	v．	u．u	0.0	0.20	0.0	0.0	0.0	0.0	0.0
Hopcultara	vou	\checkmark－	$3 . .1$	い．	Jou	0.0	U． 20	0.0	0.0	0．0	4.0	0.0
Henaruinara	c．： 0	2.0	$\bigcirc 0$	－u	0.0	u．u	0.0	U．u	0.0	¿．co	u．v	0.0
Poftantict	い．し	ciol	$\checkmark \cdot 0$	い0．	0.30	0.5	0.0	1.00	0.0	0.0	U． 3	0.0
Sopulcricteray	U．し	U．C	$\checkmark \cdot \checkmark$	\cdots	0.00	0.0	0.0	0.0	0.0	4.0	0.0	0.0
T－MFLLA	\cdots	4.0	\cdots	－	く．30	0.0	0.0	\％ 40	$6.7 v$	0.0	0.0	0.0
U．PADVLLA	0.0	0.0	\checkmark	\cdots	$0 \cdot \pm 0$	0.0	0.0	2.10	3.30	0.0	0.6	？． 60
U．PSR－C－19．	c．c	1．：i	\cdots	vou	0.0	$0 \cdot 0$	0.0	$\checkmark \cdot 0$	c．s	v．©	1.00	0.0
E．maras：	－．	u．u	$3 . J$	\cdots	$0 \cdot 0$	0.0	0.0	－0	0.0	0.0	1.30	0.0
costent	cou	．co	$\bigcirc 0$	\cdots	3.16	0.0	c．0	v．u	0.0	1.00	1.00	0.0
E．vitis：	u－u	\cdots	\cdots	－＊＊	u．u	4.0	0.70	6.0	0.0		0.0	7.70
Socearyat．a	0.0	0.6	\cdots	vou	$0 \cdot 0$	6． 50	0.0	3.10	0.0	$\checkmark .0$	0.0	5.0
S．PULCriea	c．u	\cdots	Jou	uou	u．0	3.50	0.0	u．0	0.0	0.0	0.0	0.0
A．PFCCA－11	15．7	0.0	\cdots	1： 100	0.0	0.0	5.00	0.0	0.0	¢．so	J．0	0.0
A．faucil reishata	U．Jl	u．v	1.0	60	$0 \cdot 0$	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Eocurtizi	－ 0	cos	\checkmark	\cdots	0.0	0.0	$v .0$	0.0	0.0	$0 . \leq 0$	0.0	0.0
E．frtratun	0． 20	6.0	\cdots	u＊	cou	0.0	0.0	－ 0	0.0	u．so	0.0	0.0

E．FEHAF：－1，	いい	U．J	」．0	u．u	u．u	10.40	U．0	0.0	0.70	－． 0	2．0	0.0
N．AVTILLATEU	U．u	c．u	」•＂	u．v	$\because 0$	$\therefore .90$	$0 . J$	0.0	0．${ }^{\text {d }}$	ง．0	J． 0	0.0
C．NOL15		v．0	－．${ }^{\text {a }}$	U．u	c．0	13.00	0.0	こ．lv	：3．．	0.0	3.00	0.0
Counteratic	0.0	0.0	－${ }^{\prime}$	－ 0	0.0	10.30	0.0	ט．u	13.36	0.0	0.0	7.70
Fofrarm：	v．c	－．．＇0	\checkmark－u	． 40	$\div 7.60$	20.70	！．5U	：\because－¢ し	¢．7 7	14.40	2：．30	7.70
Cosurulrarea	－．	v．0	\bigcirc	ט．u	u．0	0.0	0.0	c．：u	T．30	u．u	1.00	0.0
	c．u	－${ }^{\prime \prime}$	\cdots	u．u	0.0	0.0	0.0	د．cu	0.0	0.0	1.30	0.0
F．ATAAT：Cut	$0 \cdot$.		」－	－．	0.0	0.0	0.0	0.0	3.30	？．u	？．00	0.0
F．geattiruei	\cdots	7.0	\cdots	U．v	－6．70	？．50	cose	$\therefore . i 0$	u．u	？．！u	10．00	0．0
N．EAC：1 $\because \%$	0．10	1．．70	\cdots	$4 \cdot 00$	19．90	0.0	3．3．30	7.30	0.0	13.30	$1<\cdot>0$	10．03
H．STCATTM	し．．	$\cup .6$	$\checkmark \cdot \checkmark$	u．v	？．1u	\checkmark－su	u．u	：0．40	C．TV	c．4i	子・くい	1．9．10
Motafletanic	いい	$\therefore \cdots$	\cdots	U．u	cou	0.10	$\cup .0$	0.0	v．u	0.0	\cdots	3.7
L．SF．	U．10	0.0	\cdots	－•＊	\cdots	0.0	1.00	U．J	v．u	$\checkmark 0$	0.0	0.0
C．SF．	0.0	0.0	5.0	し．u	u．u	f．$=0$	0.0	4.20	13.30	0.0	0.0	3.60
B．SPIMATE	0.0	r－io	0.0	u．u	：200	－． 00	0.20	13．50	10.70	E．00	3.90	15.40
E．ACVEAA	い．	U．u	\cdots	－ 0	vou	0.0	0.0	0.0	0．0	v．${ }^{\text {c }}$	1.00	0.0
G．ffagilic	c．u	\cdots	\cdots	－${ }^{\text {u }}$	$\checkmark 0$	1.00	u．l	U．J	0.0	0.0	0.0	7.70
Rotastati	0.6	6.0	\cdots	v．v	v．u	0.0	0.0	6.0	0.4	U． 0	0.0	2.50
	0.0	6．0	\bigcirc	v．u	$0 \cdot 0$	0.0	0.0	9.90	$0 \cdot 4$	0.0	0.0	0.0
S．SP．	0.6	0.10	\cdots	し．	vol	0.0	0.30	0.0	0.0	0.0	ט．$)$	0.0
P．FLFLANT：SCM：	＋oc	$\checkmark 0$	$\checkmark \cdot \checkmark$	$\because \cdot 0 \cup$	vov	0.0	$40!$	0.0	v．0	U．00	0．0）	0.0
	c．u	0.0	J．0	い．${ }^{\text {u }}$	\cdots	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C．FLli＝Tbanis	c．u	U． 0	\cdots	u．u	$v .6$	0.0	$0 \cdot 0$	vou	0.0	ט．0	0.0	0.0
Foccmiferes	U．u	vel	\checkmark u	U－	vou	0.0	0.0	0.0	u．u	U．0	0.0	0.0
SARACEMAESLi．st．	u．v	0.0	$\cdots 0$	\cdots	U．u	0.0	0.0	u．0	0.0	0.0	0.0	2.60
L．SFIFATA	c．0	c．e	\checkmark－	vou	u．u	10.0	0.0	0.0	3.30	6.0	J．0	2．00
Qucblorma	cou	0.0	\cdots	v．u	6.0	0.0	$0 . ? 0$	0.0	u．u	3.0	0.0	0.0
T．JAMA ICFASIS	0.0	u．u	－0	ט．u	U．0	0.0	0.0	$\cdots .0$	0．0	u．u	v．u	0.0
T．JAmalCfrsis	0.0	0.0	\bigcirc	v．u	0.0	3.50	0.3	0.3	0.0	3.0	0.0	0.0
G．AEQUA	0．0	0.0	~ 0	voi	0.0	0.0	0.0	1.00	0.0	0.0	0.0	0.0

DATA FROM NISKIN (DISCRETE DEPTH) SAMPLING

Explanation:

The Niskin samples are listed serially (1-135) down the left hand side of each page.

Numbers corresponding to the microplankton groups counted are listed serially, left to right, above each column of data entries for samples l-135. (The key to the microplankton groups is presented on the following page.) Example: Column 1 for samples 1-135 represents the counts of centric solitary diatoms present in each sample.

The data entries represent the percent abundance of a given group for a given sample ($0.12=12 \%$ of 100 organisms counted for that sample).

Next to each sample number is a sample label code. Interpretation of the label code is as follows:

Number 1 1/IVBCN12101115 =
$1 /$ IV - Station and Transect
BCN - Sample Code
12 - Month of Sample Collection
10 - Day of Sample Collection
1115 - Time of Sample Collection

In some cases, the last column has depth interval information: (p or $\mathrm{pz}=$ photic zone, 5 or $.5=1 / 2$ photic zone, $\mathrm{P}-\mathrm{B}=1 / 2$ between base of photic zone and bottom and $B=$ bottom).

* = denotes samples in which individual cell was counted as a single colonial centric diatom; in all others, the entire colony was counted as a single colonial centric diatom (to convert the individual cell count to the colonial count divide the cell count by 5).

KEY TO MICROPLANKTON GROUPS

number	\$ample name	1	2	3	4	5	-	1	0	9	19
1	1/1vacniz1011:5	0.75	0.01	0.05	0.0	0.02	0.0	0,04	0.01	0.01	0.9
2	1/1IAKMI2tos310	0.44	0.12	0.07	0.05	0.01	0.0	0.02	9.0	Q.9	0.9
3	1/11AK012051300.	0.41	0.09	0.04	0.02	0.0	0.9	9.0	0.02	0.10	0.9
4	2111amt12250945	0.14	0.30	0.03	0.14	0.0	0.02	9.0	0.9	0.0	0.0
5	1/111Arul291700.	0.15	0.05	0.0	0.01	0.05	0.03	Q.0	0.01	0.0	0.9
6	1)11ATSI2101700	0.42	0.00	0.01	0.04	0.0	0.0	0.0	0.0	0.0	0.0
7	3/111ARR12231145	0.06	0.40	0.03	0.17	0.01	0.0	0.0	0.02	0.0	0.0
-	3/11AOP12251200.	0.06	0.23	0.06	0.09	0.0	0.0	0.0	0.02	0.0	0.9
9	3/11AON12101295	0.09	0.14	0.04	0.16	0.01	0.0	0.0	0,02	0.0	0.0
10	3-11AEP12101115	0.10	0.32	0.05	0.31	0.0	0.0	0.0	0.0	0.0	0.0
11	2/111AWR12100945	0.07	0.35	0.03	0.36	0.01	0.0	0.0	0.01	0.0	0.0
12	1/tartal2100900	0.32	0.14	0.04	0.00	0.02	0.0	0.0	0.04	0.0	0.0
13	1/146212030900.5	0.33	0.19	0.02	0.05	0.0	0.02	0.03	0.04	0.04	0.01
14	2/1AEL12101730	0.10	0.05	0.11	0.15	0.0	0.0	0.0	0.0	0.0	0.9
15	2/1AEO12051045.5	0.09	0.25	0.07	0.12	0.0	0.0	0.01	0.01	0.04	0.0
16	3/1ABR12251500.5	0.08	0.00	0.09	0.12	0.0	0.0	0.0	0.0	0.0	0.0
17	3/1AEY12101500	0.09	0.42	0.03	0.11	0.01	0.0	0.0	0.0	0.9	0.0
18	3)ICIU4101930	0.19	0.0	0.01	0.02	0.02	0.02	0.0	0.06	0.0	0.04
19	3/1VFH694211508	0.00	0.0	0.35	0.02	0.0	0.0	0.9	0.01	0.0	0.0
20	3,IVFME9771040rm	0.07	0,0	0.16	0.13	0.0	0.0	0.0	0.03	0.0	0.0
21	3/1VFMA9311145.5	0.10	0.0	0.10	0.0	0.05	0.0	0.0	0.06	0.0	0.0
22	2/1vF1x9131723.5	0.29	0.02	0.11	0.01	0.0	0.02	D.0	0.03	0.0	0.0
23	I/IVrıvyi30930.5	0.34	0.0	0.08	0.08	0.01	0.01	0.0	0.04	0.0	0.0
24	1/11IEMQYO91543.	0.25	0.21	0.03	0.02	0.01	0.0	0.0	0.0	0.0	0.0
* 25	3/In*ECYO2114sP2	0.11	0.03	0.10	U.04	0.03	0.0	0.0	0.06	0.0	0.0
20	3/11ESL910510400	0,14	0.0	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0
+ 27	3ノIIESHOSEIO4002	0.20	0.03	0.02	0.0	0.03	0.0	0.0	0.06	0.0	0.02
24	3/IIESF9291040.5	0.03	0.0	0.05	0.0	0.0	0.0	0.0	0.00	0.0	0.0
29	2/11E8P9201435.	0.00	0.0	0.02	0.01	0.0	0.0	0.0	0.02	0.0	0.0
30	3/11ES.4011040PO	0.22	0.0	0.05	c.03	0.01	0.0	0.0	0.01	0.0	0.0

31	3／1LESD9101049	0.20	0.0	0.04	0.0	0.0	0.0	0.9	0.09	0.0	9.01
32	\＄111FCE0921052P	0.15	0.0	9．04	0.10	$0 \cdot 0$	0.9	0.0	9.04	0.0	0.0
＊ 33	3／115FCC9501052P	0.16	0.10	0.03	0.9	0.03	0.0	0.0	0.05	$0 \cdot 9$	0.02
34	3／115FCgyzics2a．	0.15	0.0	0.02	0.19	0.0	0.0	0.0	0.02	9.9	0.9
35	3／1IFFCA9291052．	0.10	0.02	0.03	0.0	0.0	0.0	0.9	0.09	9.0	0.9
36	3／1tifargiol052	0.00	0.0	0.14	0.0	0.0	0.04	0.02	0.24	0.0	0.0
47	2／1IEPHY\＆5140．5	0． 16	0.0	0.03	0.0	0.01	0.0	0.0	0.18	0.0	0.0
30	1／IIENC9111344．5	0.42	0.02	0.00	0.05	0.0	0.0	0.0	0.02	0.0	0.0
＊ 32	3／IEJNAS3417084	0.16	0.05	0.02	0.05	0.0	0.0	0.0	0.05	0.0	0.9
＊ 40	3／IEAH8521708PZ	0.05	0.06	0.01	0.0	0.04	0.05	0.0	0.07	0.0	0.01
41	3／1E1muく01708．5	0.09	0.0	0.0	0.04	0.0	0.0	0.0	0.06	0.0	0.0
42	3ノEIVEIO！	0.19	0.0	0.02	0.0	0.02	0.02	0.0	0.17	0.0	9.0
43	2／1EF38201820．5	0.0	0.0	0.02	0.0	0.0	0.0	0.0	0.07	0.9	0.0
44	1／IECOU181919．5	0.30	0.04	0.10	0.00	0.0	9.0	0.02	0.02	0.0	0.0
45	3／IESLE931708PM日	0.30	0.0	0.0	0.02	0.0	0.02	0.0	0.10	0.0	9.06
40	3／140CCs691200p	0.16	0.0	0.10	0.20	0.0	0.0	0.0	0.03	0.9	0.0
47	S／1110nts301200P	0.10	0.0	0.06	0.23	0.0	0.0	0.0	0.10	0.0	0.0
40	3／1116CAs181200．	0.10	0.0	0.05	0.16	0.02	0.02	0.0	0.19	0.0	0.0
49	3／1110urstos200	0.20	0.0	0.02	0.20	0.01	0.0	0.0	0.13	0.0	0.0
50	3／11Ci」S12017158	0.00	0.0	0.15	0.11	0.0	0.0	0.0	0.02	0.0	0.0
51	3／1ICSHE7t1715pa	0.13	0.0	0.03	0.34	0.0	0.01	0.0	0.03	0.0	0.01
52	3／itcsfsiairis． 5	0.11	0.27	0.03	0.0	0.01	0.0	0.0	0.15	0.0	0.0
53	3／Itcsusiotris	0.17	0.0	0.04	0.11	0.02	0.0	0.0	0.12	0.0	0.0
54	1／111crosoul700．	0.05	0.04	0.02	0.18	0.0	0.0	0.0	0.0	0.4	0.0
＊ 55	3／1110CES1001200	0.10	0.05	0.14	0.0	0.0	0.0	0.0	0.0	0.0	0.0
＊ 80	3／1volva931025	0.23	0.02	0.05	0.008	0.0	$0 \cdot 01$	0.0	0.01	0.0	0.0
57	3／IVDLt4310150－	0.19	0.0	0.02	0.04	0.0	0.0	0.0	0.04	0.0	0.0
50	3／IVDMT4ड5IOISPz	0.15	0.0	0.05	0.22	0.04	0.0	0.0	0.01	0.0	0.02
59	3／1vOLRA171015．8	0.10	0.02	0.17	0.06	0.02	0.06	0.01	0.14	0.0	0.0
＊ 00	3／1VOLP4t0：015	0.15	0.03	0.04	0.10	0.09	0.0	0.03	0.08	0.0	9.01

61	2／11CPG4151010．5	0，13	0.05	0.09	0.20	0.0	0.0	0.9	P，Q	$9 \cdot 9$	0.0
62	1／11CNC4051025．5	0.34	0.0	0.03	0.10	0.05	0.02	0.0	0.04	$p \cdot q$	0.9
＊ 03	3）ICJN413019308	0.44	0.02	0.05	0.04	0.0	0.0	0.0	$0 \cdot 0$	$p \cdot 0$	$\varphi \cdot Q$
＊ 64	3／ICSL4901930Pm	0.16	0.00	0.14	0.24	0.0	9.0	0.0	0.01	9.9	0.9
－ 08	3／1c1m4251930．5	0.20	0.0	0.12	0.07	0.0	Q．01	0.01	0.00	0.0	9.0
60	2／ICF $\$ 4201348.5$	0.07	0.02	0.16	0.02	0.0	0.0	0.9	0.9	0.9	P．0
67	1／ICCO40cit30．5	0.34	0.04	0.03	0.26	0.02	9.9	0.0	0.0	0.9	0.9
－60	2／1voINSA11025．8	0.23	0.22	0.01	0.10	0.01	0.04	0.01	0.03	0.0	0.0
$!69$	$3 / 1$ VARA361．120．5	0.30	0.16	0.00	0.01	0.0	0.01	0.0	0.07	0.0	0.0
170	2／1verp 1361310.5	0， 14	0.10	0.0	0.0	0.0	0.0	0.0	0.0	P． 0	0.0
： 71	1／1vacpiortoo0．5	9．56	0.0	0.0	0.0	0.02	0.0	0.02	0.11	0.9	0.0
72	3／11日KD14151045P	0.10	0.0	0.06	0.03	0.0	0.01	0.9	0.9	0.9	0.0
＊ 73	3／118KE1991045Pz	0.38	0.07	0.07	0.22	0.0	0.0	0.0	0.0	0.9	0.0
＊ 74	3／1tJJK1091330for	0.24	0.02	0.22	0.13	0.01	0.0	0.0	0.0	0.0	0.9
＊ 75	3／1日1pid41330pz	0.40	0.05	0.09	0.09	0.0	0.0	0.0	0.91	0.0	0.0
76	2／11ANNLIO1745．5	0.72	0.03	0.0	0.03	0.01	0.0	0.01	0.0	P．o	9．0
77	2／11ANLI101745	0.09	0.11	0.01	0.04	0.01	0.0	0.0	0.01	$p .0$	0.0
＋70	1／160FNS：41535．5	0.15	0.0	0.09	0.20	0.05	9.01	0.04	0.10	0.0	0.0
79	2／111c3ps231645．	0.15	0.0	0.12	0.09	0.02	0.01	0.01	0．17	0.0	9.0
80	3／1v日CPitosizo	0.37	0.0	0.0	0.01	0.01	0.0	0.02	0.06	0.0	0.0
＊ 81	1／11CMA4101025	0.14	0.04	0.12	0.82	0.01	0.0	0.0	0.0	0.0	0.9
＊ 82	1／IVOfLS101535	0.17	0.06	0.24	0.46	0.0	0.0	0.0	0.03	0.0	0.0
＊ 83	2／IVIAFNIt01310	0.22	0.02	0.07	0.0	0.0	0.0	0.0	0.05	0.0	0.0
84	2／11CPE4101010	0.17	0.0	0.0	0.76	0.0	0.0	0.0	0.0	0.0	0.0
85	2／IVDILS101025	0.10	0.0	0.03	0.63	0.0	0.0	0.0	0.03	0.03	0.0
86	3／IVFLYQ101145	0.13	0.0	0.00	0.02	0.0	0.0	0.02	0.05	0.0	0.04
07	1／ICCm＋101730	0.03	0.0	0.02	0.94	0.0	0.0	0.0	0.0	0.0	0.0
＊ 4	2／1cF94101349	0.07	0.02	0.14	0.07	0.0	0.0	0.0	0.04	0.0	0.0
＊ 08	1／IECMEIOL919	0.19	0.16	0.05	0.23	0.0	0.0	0.0	0.0	0.0	0.0
＊ 20	1／AIE凹Oめ101545	0.41	0.12	0.03	0.12	0.01	0.0	0.02	0.01	0.0	0.0
71	2／16FQ0101020	0.06	0.0	0.09	0.07	0.0	0.0	0.0	0.12	0.0	0.02
92	2／111EZN910103s	0.14	0.0	0.04	0.0	0.0	0.0	0.11	0.08	0.0	0.0
93	2／11EPF910：430：	9.04	0.0	0.00	0.0	0.0	0.0	0.02	0.12	9.0	0.0
94	1／IEEHAサIO1344	0，68	0.0	0.02	0.02	0.0	0.0	0.0	9.04	0.9	9.9
＊95	1／111cmosiot700	0.33	0.008	0.08	0.26	0.0	0.0	0.0	0.0	0.9	9.9
＊90	2／IVFIV9101723	0.30	0.04	0.03	0.27	0.0	0.0	0.02	0.08	0.0	0.0
97	1／8VFityl00930	0.23	0.0	0.07	0.02	0.0	0.0	$p \cdot 0$	0.0	0.0	0.0
96	2／11C2NS10：650	0.15	0.0	0.07	0.24	0.0	0.0	0.0	0.06	0.0	0.0

number	sample name	11	12	13	19	15	10	17	10	19	20
1	1/1vaCNI2801815	0.0	0.0	0.0	0.0	0.01	0.0	9.0	0.0	0.9	0.0
2	1/11AKMI2101310	0.01	0.0	0.0	0.0	0.0	0.0	0.01	0.0	0.01	0.0
3	1/11AK012051300.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0
4	2/H1AAMT12250945	0.01	0.0	0.24	0.0	0.0	0.0	0.01	0.0	0.0	0.0
5	H/11AAIU1241700.	0.0	0.0	0.0	0.0	0.0	0.0	0.01	0.0	0.01	0.01
6	1/111AISI2101700	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
7	3/111ALA1225115	0.02	0.0	0.0	0.0	0.0	0.9	0.05	0.0	0.9	0.02
8	3/11A0r12251200.	0.9	0.0	0.01	0.0	0.0	0.0	0.06	0.0	0.0	9.0!
-	3/11AUN12101245	0.01	0.0	0.0	0.0	0.0	0.0	0.03	0.0	0.04	0.9
10	3/11ALP1210115	0.0	0.0	0.0	0.0	0.0	0.0	0.01	0.0	0.0	0.0
11	2/111AツA12100945	0.0	0.0	0.02	0.0	0.0	0.0	0.04	0.0	0.01	0.0
12	1/IAAAI2100900	0.0	0.0	0.0	0.0	0.0	0.0	0.01	0.0	0.02	0.0
13	1/1AGII2030900.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
14	2/IAELI2101730	0.0	0.0	0.0	0.0	0.02	0.0	0.07	0.0	0.01	0.01
15	2/tAEOI2051045.5	0.0	0.0	0.01	0.0	0.0	0.0	0.07	0.0	0.01	0.0
10	1/1a8<1225isoo.s	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
17	Jf1ABYIz501500	0.0	0.0	0.01	0.0	0.0	0.0	0.02	0.0	0.0	0.0
18	3/1CiU4101930	0.0	0.0	0.10	0.0	0.0	0.0	0.0	0.0	0.0	0.04
19	3/IvFMG9921:50日	0.0	0.0	0.0	0.0	0.01	0.0	0.0	0.9	0.0	0.0
20	3/IVFME9771040P-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.01	0.0
21	3/IVFmag311145.5	0.0	0.0	0.0	0.0	0.02	0.0	0.04	0.0	0.0	0.0
22	2/1VFIX9831723.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0
23	1/1VFFV9130930.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0
24	1/IIIE*G9091545.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9
- 25	3/IVFHCS621145P2	0.0	0.0	0.03	0.0	0.01	0.0	0.07	0.0	0.0	0.0
26	3/1IESL910910400	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
* 27	3/IIESI1958104002	0.0	0.0	0.01	0.0	0.0	0.0	0.01	0.0	0.0	0.0
2 t	3/11ESF9<91040.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.01
29	2/115E209261635.	0.0	0.0	0.0	9.0	0.0	0.0	0.0	0.0	0.0	0.0
30	3/1IESSVOIS040Ho	0.0	0.0	0.04	0.0	0.01	0.0	0.01	0.9	0.0	0.0

31	3/IES\$9101040	0.0	0.0	0.01	0.0	0.0	0.9	0.0	0.0	0.0	0.01
32	3/111FCE9021052P	0.0	0.0	0.08	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$\times 33$	3/11ffcc9501052r	0.0	0.0	0.03	0.0	9.0	0.01	$0 \cdot 0$	0.0	P.9	0.01
34	3/111FCG99216520	0.02	0.0	9.0	0.0	0.01	0.0	0.0	0.0	Q P0	P. 0
35	3/11ffap2916E2.	0.0	0.0	0.0	0.0	0.02	0.0	0.0	0.0	0.0	0.01
36	3/11trur9tal652	0.9	0.0	0.05	0.0	0.0	0.0	0.01	0.0	0.0	0.01
37	2/1EP1192\$1430.5	$0 \cdot 0$	0.0	0.0	0.0	0.03	0.0	0.0	0.0	P.P	0.01
38	1/IIEMC9111344.5	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0
* 39	3/IEJNEI34170日B	0.01	0.0	0.02	0.0	0.0	0.0	0.0	0.0	0.0	$0 \cdot 0$
* 00	3/IEJHES23708PI	0.0	0.01	0.01	0.0	0.0	0.0	0.9	0.0	0.0	0.0
41	3/EEIwo261700.F	0.01	0.0	0.0	0.0	0.02	0.0	0.0	0.0	0.0	0.01
42	3/IEIUEIOI708	0.0	0.0	0.10	0.0	0.04	0.0	0.0	0.0	0.0	0.03
43	2/IEfSt201820.\$	0.0	0.0	0.0	0.0	0.02	0.0	0.0	0.0	0.01	0.01
4.	1/1ECOUA 81919.5	0.0	0.0	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.0
45	3/1ESLG931708P=	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.01
46	3/1110CC5091200p	0.0	$0 \cdot 0$	0.0	0.0	0.0	0.01	0.01	0.0	0,0	0.04
47	3/1110mRS301200p	0.0	0.0	0.05	0.0	0.0	0.0	0.03	0.0	0.0	0.04
48	3/1110CA5191200.	0.0	0.0	0.0	0.0	0.0	0.0	0.04	0.0	0.0	0.0
49	3/1110日Y5101200	0.0	0.0	0.12	0.0	0.0	0.0	0.0	0.0	9.0	0.02
50	3/1tcss512017158	0.0	0.0	0.03	0.0	0.91	0.0	0.0	0.0	0.0	0.0
51	3/IJCSH5717t5p-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
52	3/11CsFSi21715.5	0.0	0.0	0.0	0.0	0.0	0.0	0.04	0.0	0.01	0.0
53	3/1icsosioitis	0.0	0.0	0.15	0.0	0.0	0.0	0.0	0.0	0.0	0.01
54	1/11Cw45081700.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
* 55	3/1110CES1001200	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0
* 36	3/1VOLV49110158	0.0	0.0	0.01	0.0	0.0	0.0	0.04	0.0	9.0	0.0
57	3/IVOLIAS31015P-	0.0	0.0	0.10	0.0	0.0	0.0	0.11	0.0	0.0	0.01
58	3/IVUM14351015Pz	0.0	0.0	0.06	0.0	0.02	0.0	0.21	0.0	0.9	0.0
59	3/IVOLR4171015.5	0.0	0.0	0.0	0.0	0.0	0.0	0.04	0.0	0.0	0.0
* 00	$3 / 1 \mathrm{VDLP4} 101015$	0.01	0.0	0.01	0.0	0.03	0.0	0.0	0.0	0.0	0.0

	01	2111CPG4151019.5	0.0	0.0	0.0	0.0	0.9	0.0	9.02	0.0.	0.01	0.9
	02	$1 / 11 C N C 4051025.5$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.9
*	63	3/1CJI41301930日	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0	p.0	0.01
*	04	3/8CsL4901930P=0	0.9	0.0	0.02	0.0	0.0	0.0	0.05	0.0	0.9	0.01
	05	3/1C1w4251930.5	0.0	0.0	0.0	0.0	0.0	0.0	0.02	0.9	0.07	9.08
	60	2/ICFS4201145.5	0.0	0.9	p.o	0.0	0.0	0.0	0.0	0.0	0.0	0.9
	67	1/1ccos021730.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	00	2/1vDINS118025.0	0.0	0.0	0.0	0.0	0.0	0.0	9,01	0.0	0.04	0.0
	69	$3 / 1 \mathrm{VDOR1301120.5}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0
	70	2/1VGFH1301310.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.01
	71	1/1vace1071000.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9
	72	3/118K011151045P	0.0	0.0	0.03	0.0	0.01	0.0	0.0	0.0	0.19	0.03
*	73	3/18681991045P2	0.0	0.0	0.0	0.0	0.0	0.01	0.0	0.0	0.0	0.02
*	74	3/IEJK11091330Pa	0.0	0.0	0.02	0.0	0.0	0.0	0.11	0.0	0.01	P.01
*	75	3/101P1841330P2	0.0	0.0	0.0	0.0	0.0	0.0	0.16	0.0	0.0	0.0
	70	2/ItANH1104745.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.04	0.01
	77	2/16ANL101745	0.0	0.0	0.0	0.0	0.0	0.0	0.01	0.0	0.01	0.9
	70	1/IVUFNS141535.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0
	79	CfItceps231045.	0.0	0.0	0.0	0.0	0.02	0.0	0.01	0.0	0.02	0.02
	00	J/ivadpilotizo	0.0	0.0	0.05	0.0	0.0	0.0	0.0	0.0	0.0	0.0
*	81	1/1tCHas101025	0.0	0.01	0.0	0.0	0.0	0.0	0.02	0.0	P.0	0.0
*	02	1/1voflstot535	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
*	03	2/IVGFNIt01310	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	84	2/11CPE4101010	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	9.0	0.0
	05	2ر1VDILS10102s	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0
	00	3/IVFLY9101145	0.0	0.0	0.24	0.0	0.03	0.01	0.0	0.0	0.0	0.0
	07	1/1CCM4101730	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
*	08	2/1CFO+101345	0.0	0.0	0.0	0.0	0.0	9.0	0.0	0.0	0.0	0.0
*	09	1/EECHOLOIgly	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
*	90	1/111E009101545	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	91	2ノIEf08101820	0.01	0.0	$\therefore 0.01$	0.0	0.0	0.0	0.0	0.0	$0 \cdot 0$	0.08
	92	2/111EXN9101035	0.01	0.0	0.02	0.0	0.0	0.0	0.0	0.9	0.9	0.9
	93	2/11EPF9801430	0.0	0.0	0.12	0.0	0.0	0.0	0.02	0.0	$p \cdot p$	0.9
	94	1/11EMAD101344	0.0	0.0	9.0	0.0	0.0	0.0	0.9	0.0	P00	9.0
*	95	1/111cmos101700	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.9	9.0
*	90	2/IvFIV9101723	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	9.9
	or	HIVFFI9100930	0.0	0.0	0.0	0.0	0.0	$0 \cdot 0$	9.9	0.0	0.0	$0 \cdot 9$
	90	2/11C2NSIOL650	0.0	0.0	0.27	0.0	0.01	0.0	0.0	0.0	0.0	0.9

	31	3/1IESO9108040	0.04	0.0	0.01	0.0	0.0	0.0	0.0	0.0	Pe9t	0.01.
	32	3/1IIFCE9921652P	0.02	0.0	0.0	0.02	0.0	0.0	0.0	0.0	0.0	0.0
*	33	3/11ffccestios2P	0.01	0.0	0.01	0.9	0.0	0.0	0.0	0.0	D.P!	0.0.
	34	3/11IFCG99210920	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0,0
	35	3/14FCA9291032.	0.03	0.0	0.0	0.01	0.0	0.0	0.0	0.0	9.9	0.0
	36	3/111F6r9101652	0.09	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.01	0.0
	37	2/11EH19251430.5	0.09	0.0	0.0	0.0	0.0	0.9	0.0	0.0	$0 \cdot 0$	0.0
	36	I/IIENC9113it. 6	0.21	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0
*	39	3 CIEJNEI3417080	0.02	0.0	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0
*	40	3/EEJHES2170日PZ	0.0	0.0	0.0	0.03	0.0	0.0	0.0	0.0	0.01	0.0
	41	3/IEIEa201rot.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.01	0.0 :
	42	3/1EIUA101700	0.01	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.9	0.0
	43	2/IEFSA201020.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.01	$0 \cdot 0$
	44	1/IECOBto1919.5	0.04	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.9
	45	3/1EALH931704P-8	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	46	3/1110CC5691200P	0.04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0
	47	3/1110MRS381200P	0.07	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	48	3/1110CA5191200.	0.13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	49	3/11108rsiol200	0.25	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	50	3/11csssi2017150	0.04	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	51	3/11CSHS7117150-	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	52	3/IICSfsi21715.5	0.03	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.01	0.0
	53	3/licsosiot715	0.13	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	54	$1 / 111605001700$.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
*	55	3/1110CES100:200	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0
*	56	3/IVULVa911015	0.05	0.0	0.0	0.02	0.0	0.0	0.0	0.0	0.9	0.0
	57	3/1VULI4531015Pm	0.06	0.0	0.01	0.01	0.0	0.0	0.0	0.0	0.02	0.9
	58	3/16uta351015p2	0.03	0.0	0.02	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	59	3/IVOLRA17tot5es	0.06	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
*	60	3/IVDLP4101015	0.03	0.0	0.0	0.01	9.0	9.0	0.0	0.0	0.92	0.0

	01	2／11CPG4：510：0．5	0.0	0.0	0.0	0.01	0.0	0.0	0， 0	0.0	0.0	0.0
	62	$1 / 11 C M C 4051025.5$	0.0	0.0	0.0	0.05	0.0	0.9	9.0	0.0	0.0	0.0
$*$	63	3／ICJNal301930日	0.9	0.0	0.01	0.01	0.0	0.0	0.0	0.0	0.0	0.9
＊	64	3／ICNL4901930P0日	0.05	0.0	0.01	0.0	0.0	0.0	0.0	0.9	0.9	0.9
	65	3／IC1w4251930．5	0.03	0.0	0.0	0.01	0.0	9.9	0.0	0.0	0.91	0.9
	00	2／ICF\＄4201345．5	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.91	0.0
	61	1／1CCU4021730．5	0.0	0.0	0.0	0.05	0.0	0.0	0.0	0.0	0.0	0.0
	80	2／1v01N5111025．5	0.0	0.0	0.0	0.01	9.0	0.0	0.0	0.0	0.01	9.0
	69	3／1V日DH1301120．6	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9
	70	2／1V1FPt301310．5	0.05	0.0	0.0	0.01	0.0	0.0	0.0	0.9	0.0	0.0
	71	1／1vacploriooo．5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0
	72	3／11GKDIt151045P	0.05	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.0
＊	73	3／1s8kti991045P2	0.0	0.0	0.0	0.0	0.0	0.0	0.01	0.0	0.0	0.9
＊	74	3／1UJK11091330P0	0.06	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
＊	75	3／101P1041330P2	0.02	0.0	0.0	0.02	0.0	0.0	0.0	0.0	0.0	0.0
	70	2／IIANN1181743．5	0.02	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.01	0.0
	77	2／1AANL101745	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.03	0.01	0.0
	70	1／1VUFNSt41535．5	0.0	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.0
	79	2／111C2P523645．	0.15	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	80	3／1voditolito	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.01	0.0
＊	81	1／IICmatiotozs	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
＊	82	1／1vuflsiols35	0.0	0.0	0.0	0.0	0.0	0.0	0.02	0.0	0.0	0.0
＊	03	2／1vafritol310	0.06	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.02	0.0
	84	2／11CPE41010：0	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	85	2／IVDILS101025	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	06	3／1vFlryioli4s	0.04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9
	0%	1／1CCM4101730	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
＊	88	2／1crat101345	0.10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
＊	89	1／IECMuIOI919	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0，0
＊	90	1／118EwOYIOLS45	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.9
	91	2／IEF9tioltio	0.0	0.0	0.0	0.01	0.0	0.0	$0 \cdot 0$	9.0	0.04	0.0
	82	2／111E2NO101835	0.01	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.01	0.0
	93	2／11EPF9101430	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9
	94	1／1EMA9101344	0.09	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
＊	95	1／1itcrosiot700	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
＊	96	2ノ1viv9101723	0.02	0.0	0.0	0.0	0.0	0.0	$0.0{ }^{-}$	0.0	0.02	0.0
	97	1／1VFFT9100930	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	90	2／1ICINS101650	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Num	EfR	sample mame	31	32	33	34	35	36	$\$ 7$	30	37	40
	1	1/1VACN12101:19	0.0	0.0	0.02	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	2	1/11AKM12101710	0.01	0.9	0.0	0.0	0.0	$0 \cdot 0$	0.0	0.0	0.9	0.0
	\$	1/IIAKDI20sl300.	0.0	0.0	0.0	0.0	0.0	9.0	9.0	0.0	0.0	0.0
	4	द/11/Awr12250945	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.9	0.0
	5	1/1tiAluizti700.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	$0 \cdot 9$
	-	I/HHATSi2:01700	0.0	0.0	0.02	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	7	3/1IALAL25115	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0	H/11AQP12251200.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0
	9	3/11AONI2101245	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	10	3/11A2P12101215	0.0	0.0	0.0	0.0	$0 \cdot 0$	0.0	0.0	0.9	Q.0	0.0
	11	2/1119\#R12100045	0.0	0.0	0.02	0.0	0.0	0.0	0.0	0.0	0.9	0.0
	12	1/1ahal2t00900	0.0	0.0	0.02	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	13	1/1AG212030900.5	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	14	2fIAELI2101730	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	15	2/1AE012091045.5	0.0	0.0	0.03	0.0	0.0	0.0	0.0	0.0	0.0	9.0
	16	3/1AEl12251500.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	17	3/1atriziot500	0.02	0.0	0.02	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	18	3/1C1u4101930	0.02	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	19	3/1VFNG9921150日	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	20	3/IVFNE 9771040Pm	0.05	0.01	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	21	3/IVFMA9311145.5	0.9	0.0	0.02	0.0	0.0	0.0	0.0	0.0	0.9	0.0
	22	2f1vilx9131723.5	0.01	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.9
	23	1/IVFFV9130930.5	0.01	0.0	0.08	0.0	0.0	0.0	0.0	0.0	9.0	0.0
	24	1/1IIEwU9091595.	0.01	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0
*	28	3/IVFMC902114spz	0.02	0.0	0.02	0.0	0.0	0.0	0.0	0.0	0.0	$0 \cdot 9$
	26	3/IESLPIOSIO40日	0.0	0.02	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0
*	27	3/IIESH9541040P2	0.05	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	20	3/IESF9291040.5	0.01	0.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0	9.0
	29	2/111E2F4261835.	0.0	0.0	0.02	0.0	0.9	0.0	0.0	0.0	0.0	0.9
	30	3/ItESJ4aliotorm	0.02	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9

$0!$	2111CPG4151010.8	0.0	0.9	0.006	0.0	0.0	0.0	0.9.	-9.0	9.9	9,0
02	1/11CMC4051025.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	9.0
* 63	3/ICJN4I3019309	P. 0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.9	0.01
* 04	3/1CJL\&901930006	0.02	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0
05	3/ICim4251930.5	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
00	2/1CFS4201345.7	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.0
07	1/1CCO4021730.5	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	$0 \cdot 0$	0.0
60	2/IVOINSillots.5	0.02	0.0	0.06	0.0	0.0	0.0	0.0	0.0	0.9	0.0
69	3/1VEUR1361120.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
70	2/1vifpl361319.6	0.04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
71	1/IVECP1071000.5	0.0	0.0	0.0	0.0	0.0	$0 \cdot 0$	0.0	0.0	0.0	0.0
72	3/18K01151045P	0.04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0
* 73	3/118K日1991045PZ	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0
* 74	3/I日SK11091330pm	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
* 75	3/181ptetis30pz	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0
70	2/11AMNItel743.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
71	2/1AANL101795	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9
78	$1 /$ ivornotils3s.5	0.02	0.0	0.10	0.0	0.0	0.0	0.0	0.0	0.0	0.0
79	2f111cIPS231445.	0.02	0.0	0.0	0.0	0.0	0.01	0.0	0.0	0.0	0.0
00	3/1vadi 1101120	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9
* 01	1/ticmatiosezs	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
* 82	$1 / 1$ VUfi.stois3s	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.9	0.9
* 83	2/Ivarntio1310	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.9
04	2/11CPE401010	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
05	2/Ivollsiol02s	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.9
06	3/tvFLrgioli4s	0.02	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
87	1/16CH4101730	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
* 08	$2 / 10$ 04101395	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9
* 89	1/IECHEIOI919	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
* 90	1/131EwUY101545	0.03	0.01	0.02	0.0	0.0	0.0	0.0	0.0	0.0	0.0
91	z/IEFOU101820	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9
92	2f11182N9101835	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
93	2/11EPF9101430	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
94	1/11EMA9101394	0.03	0.0	0.02	0.0	0.0	0.0	0.0	0.0	0.0	0.0
95	1/111cm05101700	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
+ 90	2/IvFivelotrz3	0.03	0.0	0.01	0.0	0.0	0.0	0.0	0.9	0.0	0.0
97	1/IVFT9400930	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0
98	2/IICZNSt01650	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0

	31	3)itesogiot040	0.19	0.0	0.01	0.0	0.29	0.0	0.0	0.0	0.0	0.0
	32	3)111FCE9921052P	0.02	0.03	0.01	0.0	0.37	0.0	0.0	0.0	0.0	0.0
$*$	33	3/11ffCC9sel652P	0.08	0.0	0.01	0.0	0.38	0.9	0.0	0.9	0.0	9.0
	34	3/111FCG90216520	0.03	0.0	0.02	0.0	0.20	0.0	0.0	0.16	0.0	0.0
	35	3/111fcag2916s2.	0.05	0.0	0.0	0.0	0.42	0.0	0.0	0.0	0.0	0.9
	30	3/11furgiol052	0.00	0.0	0.0	0.0	0.20	0.9	0.0	0.0	Q.0	0.0
	37	2/11EPH9251430.5	0.0	0.0	0.0	0.0	0.34	0.0	0.0	0.0	0.9	0.9
	30	1/11ENC9111344.5	0.02	0.0	0.0	0.0	0.04	0.0	0.0	0.0	9.0	0.0
*	39	3/IEJNOI3417084	0.06	0.02	0.0	0.0	0.47	0.0	0.0	0.0	0.0	0.0
*	40	3/IEJHES21700pz	0.14	0.0	0.9	0.0	0.40	0.0	0.0	0.0	0.9	0.0
	-1	3/IEIWE20170日.s	0.05	0.0	0.0	0.0	0.21	0.0	0.0	0.0	0.9	0.0
	42	3رIEIUAIOL704	0.29	0.0	0.0	0.0	0.06	0.0	0.0	0.0	0.0	0.0
	43	2/IEFS0201020.s	0.19	0.0	0.0	0.0	0.47	0.0	0.0	0.0	0.0	0.0
	44	1/IECOA14989.5	0.0	0.0	0.0	0.0	0.21	0.0	0.0	0.01	0.0	0.0
	45	3/1ESLO931708PAB	0.10	0.0	0.0	0.0	0.28	0.0	0.0	0.0	0.0	0.0
	46	3/1110CC5691200p	0.02	0.0	0.0	0.0	0.10	0.0	0.0	0.01	0.0	0.0
	47	3/1110MAs301200p	0.01	0.0	0.07	0.0	0.14	0.0	0.0	0.0	0.0	9.0
	40	3/110CAS191200,	0.15	0.0	0.0	0.0	0.10	0.0	0.0	0.0	0.0	0.0
	49		0.0	0.0	0.0	0.0	0.05	0.0	0.0	0.0	0.0	0.0
	50	3/11cssot201715日	0.04	0.0	0.0	0.0	0.29	0.0	0.0	0.01	0.0	0.0
	51	3/ticsistilitime	0.05	0.01	0.0	0.0	0.12	0.0	0.0	0.0	0.0	0.0
	52	3-11CSF5121713.5	0.04	0.0	0.0	0.0	0.19	0.0	0.0	0.0	0.0	0.0
	53	3/1ICsostol7is	0.04	0.0	0.0	0.0	0.10	0.0	0.0	0.01	0.0	0.0
	54	1/111cwusobiroo.	0.04	0.0	0.0	0.0	0.06	0.0	0.0	0.04	0.0	0.0
*	55	3/1110CEE 1001200	0.10	0.01	0.01	0.0	0.10	0.0	0.0	0.02	0.0	0.0
*	56	$3 / 1 \mathrm{VOLv4911015}$	0.06	0.02	0.0	0.0	0.23	0.0	0.0	0.0	0.0	0.0
	57	3/IVDLT45310150m	0.09	0.0	0.01	0.0	0.16	0.0	0.0	0.0	0.0	0.0
	58	3/IVUMT4351015PI	0.04	0.01	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0
	59	$3 / 1$ VOLR4171015.5	0.07	0.0	0.0	0.0	0.17	0.0	0.0	0.0	0.0	0.0
*	00	3/1VULP40101\%	0.04	0.0	0.0	0.0	0.18	0.0	0.0	0.0	0.0	0.0

	04	2/11CPG4151010.5	0.09	0.0	0.0	0.0	0.14	0.0	0.0	0.0	0.9	9.9
	02	$1 / 11 C N C 4051025.5$	0.0	0.0	0.0	0.0	0.91	0.0	9.0	0.0	0.0	0.0
*	63	3/1CJN413019304	0.05	0.02	0.0	0.0	0.04	0.0	0.0	0.0	0.0	0.9
*	64	3f1CSL49019300-8	0.04	0.0	0.0	0.0	0.17	$0 \cdot 0$	0.0	0.9	0.0	0.9
	05	y/IClwa 251930.5	0.14	0.0	0.0	0.0	0.09	9.8	9.02	0.01	0.0	0.9
	66	2fICF54201345.5	0.0 .1	0.0	0.0	0.0	0.05	0.0	0.0	9.0	0.0	0.0
	67	1/1CC04021730.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	00	2/Ivoinolilo2s.s	0.01	. 0.0	0.0	0.0	0.94	0.0	0.0	0.9	. 0.0	0.9
	00	\$/Ivaidi361120.5	0.06	0.0	0.9	0.0	0.21	0.0	0.0	0.0	9.9	9.02
	70	2/IVEFPI301310.5	0.21	0.0	0.01	0.0	0.30	0.0	0.0	0.0	0.0	$0 \cdot 0$
	71	1/IYOCP1071000.5	0.04	0.0	0.0	0.0	0.15	$0 \cdot 0$	0.0	0.0	0.9	0.0
	72	3/110K011351045P	0.05	0.0	0.02	0.0	0.07	0.0	0.0	0.02	0.0	0.9
*	73	3/1tGke1991093pz	0.06	0.0	0.0	0.0	0.10	0.9	0.0	0.0	0.0	0.0
*	74	3/1日JK11098330pm	0.08	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
*	75	3/1u1pleti330PL	0.0	0.0	0.0	0.0	0.00	0.0	$0 \cdot 0$	9.0	0.0	0.0
	76	2/1IANNIT81745.5	0.05	0.0	0.01	0.0	0.06	0.0	0.0	0.0	0.0	0.0
	77	2/11ANLIt01795	0.01	0.0	0.9	0.0	0.01	0.0	0.0	0.0	0.0	0.0
	78	1/1varinstels35.5	0.05	0.0	0.0	0.0	0.07	0.0	0.0	0.0	p.o	0.9
	79	21114C2P331045.	0.02	0.0	0.01	0.0	0.12	0.0	0.0	0.0	0.0	0.0
	00	3/ivaditiost20	0.14	0.01	0.0	0.0	0.19	0.0	0.0	0.0	0.0	0.0
*	41	1/IICHA4101025	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
*	02	1/1MOFLS10153s	0.0	0.0	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.0
*	03	2/IVarnitol3io	0.11	0.0	0.0	0.0	0.19	0.0	0.0	0.0	0.0	0.0
	$0 \cdot$	2/11CPE401010	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	05	2رIvoslstoi02s	0.02	0.0	0.0	0.0	0.04	0.0	0.0	0.0	0.0	0.0
	06	3\%17FLrotoilss	0.06	0.0	0.0	0.0	0.25	0.0	0.0	0.01	0.0	0.0
	07	1/8CCH4101730	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
*	88	2/1CF04101345	0.05	0.04	0.0	0.0	0.14	0.0	0.0	0.0	0.0	0.0
$*$	89	1/8ECMA101919	0.07	0.0	0.0	0.0	0.03	0.0	0.0	0.0	0.0	0.0
*	90	+/11Em09101545	0.00	0.0	0.0	0.0	0.12	0.0	0.0	0.0	0.0	0.0
	91	2/1EFOE101820	0.05	0.0	0.0	0.0	0.37	0.0	0.0	0.0	0.0	0.0
	92	2/111EZN9101835	0.45	0.0	0.0	0.9	0.04	$0 \cdot 0$	9.0	0.0	0.0	0.0
	93	2-11EPF9101430	0.07	0.0 .3	0.0	0.0	0.34	0.0	0.0	0.0	0.0	0.0
	24	1/IIEAA910:344	0.08	0.0	0.9	0.0	0.12	0.0	0.0	0.0	$0 \cdot 0$	0.0
$*$	95	1/111cmosioiroo	0.05	0.0	0.0	0.0	0.02	0.0	0.0	0.0	0.0	0.0
*	96	2/IVFIV910:723	0.06	0.0	0.0	0.0	0.14	0.0	0.0	0.0	0.0	0.0
	97	1/1vFFr9100930	0.01	0.0	0.0	0.0	0.04	0.0	0.0	0.0	0.0	0.0
	98	2/11CRNS101050	0.05	0.0	0.0	0.0	0.08	0.0	0.0	0.0	0.9	0.0

	MUER	Sam－le name	51	82	53	54	F5	46	67	00		54	00
	1	1／1VUCNIFI011ts	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
	2	1／JJAKmizigi310	0.0	0.0	0.0	0.0	9.0	0.0	0.0	0.0		0.9	0.0
	3	1／B1Akuizosi300．	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
	4	2／111AmT12250945	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.02
	5	1／11IAruizatigo．	0.19	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.02
	6	1／11IATSI2：01700	0.02	0.0	0.02	0.0	0.0	0.0	0.0	0.01		0.9	0.01
	7	3／111ARR12251119	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.03
	0	3／11AOH12251200．	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.12
	y	3／18AON12101245	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0		0.9	0.03
	10	3／11A2P121011：5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
	11	2／111AצH12100y4s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0
	12	1／IArisiz100900	0.0	0.0	0.02	0.0	0.0	0.0	0.0	0.0		0.0	0.03
	13	$1 / 14 G \times 12030900.5$	0.0	0.0	0.0	0.0	0.0 －	0.0	0.0	0.0		0.0	0.03
	14	2／IAEL－12101730	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0		0.0	0.33
	15	2／IAEOL20S1045．5	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.9		0.0	0.13
	16	3／IA日＜12231500．5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.05
	17	3／IAGYi2101500	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	9.02
	18	3 1 ICluat 101930	0.0	0.0	0.02	0.0	0.0	0.0	0.02	0.0		0.0	9.03
	19	3／IVFMG9921150日	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.47
	20	J／IVFME 9771040 O－	0.0	0.0	0.02	0.0	0.0	0.0	0.0	0.0		0.0	0.25
	21	3／IVFMAy311845．5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.10
	22	2／IV51xy131723．5	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.0		0.0	0.07
	23	1／IvFFug130930．5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.00
	24	1／111Em09091545．	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.17
$*$	23	3／1vFMC902114522	0.02	0.0	0.01	0.0	0.0	0.0	0.01	0.0		0.0	0.03
	26	3／18ESLY1051040日	0.02	0.0	0.01	0.0	0.0	0.9	0.0	0.0		0.0	0.44
＊	27	3／1ESH193日104002	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.03
	20	3／11ESF9291040．5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.9
	29	2f1ItE2H9201835．	0.0	0.0	0.0	0.0	0.0	$0 \cdot 0$	0.0	0.0		0.0	0.04
	30	3／IIESJY81144090\％	0.0	0.0	0.02	0.0	0.0	0.0	0.01	0.9	－	0.0	0.25

	31	3／11ESO9104040	0.01	0.0	0.0	0.0	0.0	0.0	0.01	$0.0{ }^{\circ}$	$0 \cdot 0$	0.01
	32	3－181PCE9921052P	0.0	0.0	0.0	0.0	0.0	0.0	9.9	$0 \cdot 9$	0.9	0.17
＊	33	3／1118cc9501652P	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.9	0.94
	34	3／11FCG9y210520	0.0	0.0	0.09	0.0	0.0	0.0	0.0	0.0	0.0	0.13
	35	3／111FCA9291602．	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	9.04
	36	\＄111F8Y9108652	0.0	0.0	0.0	0.0	0.0	0,0	0.03	0.0	0.9	0.02
	37	2／11EPH9251430．5	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.11
	34	1／11EnC9141344．5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.06
＊	39	3／IEJNAI341708日	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.04
＊	40	3fIEJHAS21TOAPI	0.0	0.0	0.01	0.0	0.0	0.0	0.03	0.0	0.0	9.06
	41	3 JIEI凶E20170日．5	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.04
	42	3／IEIUEI0170女	0.02	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.03
	43	2／1EF48201820．5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.09
	44	1／IECOA101919．5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.11
	45	3／1E」CO317080－8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.07
	46	3／1110ccsselz00p	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.30
	41	3fIIIONRS3日I200p	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	40	3／11IDCA5191200．	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.01
	49	3／1110ursto1200	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	50	3／11CS」Si20171se	0.0	0.0	0.01	0.0	0.0	0.9	0.0	0.0	0.0	0.22
	51	3／iscshs711715p－	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.22
	52	3／11cst5121755．5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.02
	53	3／11csu5t01715	0.0	0.0	0.0	0.0	0.0	0.0	0.02	0.0	0.0	0.0
	54	1／111cuas0e1700．	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.04
＊	55	3／1110CES1001200	0.01	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.26
＊	56	3／IVULVa9110150	0.0	0.0	0.0	0.0	0.0	0.0	0.01	0.0	0.0	0.15
	57	3／8VOLT453101500	0.0	0.0	0.01	0.0	0.0	0.0	0.01	0.0	0.0	0.04
	50	3／1vUnt4351015P．Z	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.03
	59	3／IVULAal71015．5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
＊	60	3／1vDLPalotols	0.01	0.0	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.01

	61	2/11CPG9151019.5	0.0	0.0	0.9	0.0	0.0	0.0	0.0	9.0	9.9	0.23
	62	1/41CMC4051020.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0,31
*	63	3/1CJN4I3019300	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.72
*	64	3/1C」4901930pm	0.0	0.0	0.03	0.0	0.0	0.0	0.0	0.0	0.0	0.04
	65	3/1C1m+251930.5	0.0	0.0	0.01	0.0	0.0	0.0	9.0	0.0	0.9	0.89
	00	2f1CF54201345.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.67
	67	$1 / 16 C 04021730.5$	0.0	0.9	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.24
	68	2/IvUINS:11025.5	0.01	0.0	0.05	0.0	0.0	0.0	0.0	0.0	$0 \cdot 9$	0.02
	69	3/IVEOR1301120.5	0.0	0.0	0.0	0.0	0.0	0.01	0.9	0.0	0.9	0.05
	70	2/1vappl301310.8	0.0	0.0	0.0	0.9	0.0	0.0	0.9	0.0	0.0	0.00
	71		0.04	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.06
	72	3/11日KD11151045P	0.0	0.0	0.02	0.0	0.0	0.0	0.0	0.0	0.0	0.13
*	73	3/110xti991040PL	0.0	0.0	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.00
*	14	$3 / 10$ K11093330pm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.14
*	75	3/18IPIe41330Pz	0.0	0.0	0.02	0.0	0.0	0.9	0.0	0.9	0.0	0.00
	76	2/11ANHII8titis.s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.03
	77	2/11anL1101745	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	70	t/IVOFNSt41535.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	c.0	0.03
	79	2/111c2P3231645.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	00	3/inupliost20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.10
*	01	1/1ICMAP101025	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.04
*	62	1/1VOFLs101835	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$*$	63	2/IVafilio1310	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.25
	04	2/11CPEA101010	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.0	0.05
	as	2/1VDILS101025	0.0	0.0	0.02	0.0	0.0	0.0	0.01	0.0	0.0	0.0
	86	3/Ivfirglolits	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Q.01
	ar	1/ICCN4101730	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.01
*	88	2/1CF04101345	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.31
*	89	I/IECMUIO1919	0.0	0.0	0.01	0.0	0.0	0.0	0.0	0.0	0.0	0.27
*	90	1/IIIEMO910t545	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.01
	91	2/IEFautoibzo	0.01	0.0	0.0	0.0	0.0	0.0	0.01	0.0	0.0	0.10
	92	2filiezn910103s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.9	0.02
	93	2/IIEPF9101430	0.0	0.0	0.0	0.0	0.0	0.0	0.01	0.0	0.9	0.09
	94	1/11EMA9101344	0.0	0.0	0.0	0.0	0.9	0.0	0.4	0.0	0.0	0.01
$*$	95	1/111crosiot700	0.0	0.0	0.23	0.0	0.0	0.0	0.0	0.0	0.0	0.04
$*$	90	2/IvFIvgiot723	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.04
	97	1/IWFV9100930	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9.9	0.0
	98	2/11C2NSTO1650	0.0	0.0	0.01	0.0	0.0	0.0	0.01	0.0	0.0	9.0

The Department of the Interior Mission

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; preserving the environmental and cultural values of our national parks and historical places; and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people by encouraging stewardship and citizen participation in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

The Minerals Management Service Mission

As a bureau of the Department of the Interior, the Minerals Management Service's (MMS) primary responsibilities are to manage the mineral resources located on the Nation's Outer Continental Shelf (OCS), collect revenue from the Federal OCS and onshore Federal and Indian lands, and distribute those revenues.

Moreover, in working to meet its responsibilities, the Offshore Minerals Management Program administers the OCS competitive leasing program and oversees the safe and environmentally sound exploration and production of our Nation's offshore natural gas, oil and other mineral resources. The MMS Minerals Revenue Management meets its responsibilities by ensuring the efficient, timely and accurate collection and disbursement of revenue from mineral leasing and production due to Indian tribes and allottees, States and the U.S. Treasury.

The MMS strives to fulfill its responsibilities through the general guiding principles of: (1) being responsive to the public's concerns and interests by maintaining a dialogue with all potentially affected parties and (2) carrying out its programs with an emphasis on working to enhance the quality of life for all Americans by lending MMS assistance and expertise to economic development and environmental protection.

