Summary Cruise Report

Southwest Florida Shelf Ecosystems Study - Year 2

CRUISE II - HYDROGRAPHY AND PRIMARY PRODUCTIVITY

Prepared for

THE MINERALS MANAGEMENT SERVICE under CONTRACT NO. AA851-CT1-45

October 1982

Skidaway Institute of Oceanography

This report was prepared for the Minerals Management Service under Contract No. AA851-CT1-45. The report has not been reviewed by the Service, nor has it been approved for publication. Approval, when given, does not signify that the contents necessarily reflect the views and policies of the Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Southwest Florida Shelf Ecosystems Study - Year 2

CRUISE II - HYDROGRAPHY AND PRIMARY PRODUCTIVITY

Skidaway Institute of Oceanography

Prepared for

THE MINERALS MANAGEMENT SERVICE under CONTRACT NO. AA851-CT1-45

October 1982

TABLE OF CONTENTS

1.0	INTRODUCT	ION	1
2.0	CHIEF SCI	ENTIST'S REPORT	3
	2.1	Cruise II Plan	3
	2.2	Sampling Strategy	3
	2.3	Schedule and Participants	4
	2.4	Data Collected	5
	2.5	Problems	5

APPENDICES

Α.	CHI	EF SCIENTIST'S LOG	20
в.	STA	TION WEATHER DATA	27
с.	1.	SUMMARY OF HYDROGRAPHIC MEASUREMENTS	30
	2.	SUMMARY OF PRIMARY PRODUCTIVITY MEASUREMENTS AND	
		PHYTOPLANKTON CELL COUNT SAMPLES	32

TABLES

2.1	CRUISE II PARTICIPANTS	7
2.2	STATION POSITION DATA	8
2.3	STATIONS ASSIGNED TO TRANSECTS	10

FIGURES

2.1	STUDY ARE	EA DURING	SEPTEM	BER 1	1982	SOU	THWE	ST F	LORIDA	
	OUTER CON	NTINENTAL	SHELF	DATA	COL	LECT	ION	CRUI	SE	11
2.2	TRANSECT	A LOCATI	ONS OF	XBT	(X)	STAT	IONS			12
2.3	TRANSECT	B LOCATI	ONS OF	XBT	(X)	AND	CTD	(C)	STATIONS	13
2.4	TRANSECT	C LOCATI	ONS OF	XBT	(X)	AND	CTD	(C)	STATIONS	14
2.5	TRANSECT	D LOCATI	ONS OF	XBT	(X)	AND	CTD	(C)	STATIONS	15
2.6	TRANSECT	E LOCATI	ONS OF	XBT	(X)	AND	CTD	(C)	STATIONS	16
					<i>.</i>			(-)		
2.7	TRANSECT	F LOCATI	ONS OF	XBT	(X)	AND	CTD	(C)	STATIONS	17
					(**)			$\langle \alpha \rangle$	GRANTONG	10
2.8	TRANSECT	G LOCATI	ONS OF	XBT	(X)	AND	CTD	(U)	STATIONS	10
2 0	TT ANO DOT		ONC OF	VDT	(V)	ANTO	ርጥኩ	(\mathbf{C})	STATIONS	10
2.9	TRANSEUT	I LUCALI	OND OF	VDT	(4)	AND	OTD.	(0)	DIVITONO	13

Page

ii

1.0 INTRODUCTION

The primary goals of the Minerals Management Service's (MMS) Outer Continental Shelf (OCS) Environmental Studies Program are to obtain environmental data on the impacts of

- natural resource exploration and development activities on the outer continental shelf and
- 2) to provide relevant information to decision makers in the Service's OCS minerals management program.

The MMS is considering the offer of certain lease tracts on the southwest Florida shelf in the eastern Gulf of Mexico (Proposed Sale 79). At the present time, the hydrographic distributions and productivity characteristics of the shelf waters in this area are still not well understood.

Pursuant to these goals, the MMS has determined that a study should be conducted to describe the ecology of the southwest Florida shelf with emphasis on delineating the primary productivity mechanisms of the outer continental shelf and their relationship to the dominant hydrographic distributions present during different seasonal periods. This report documents the field activities associated with the second cruise of the third phase of this program. Earlier cruises, during the first two phases, collected data pertaining mainly to benthic distributions and geophysical characteristics.

The specific goals of this cruise were:

- To collect <u>in-situ</u> data pertaining to the hydrographic and primary productivity characteristics of the euphotic zone in the middle and outer continental shelf regions.
- 2) To develop a description of Loop Current intrusions under seasonal conditions different than those found during the previous April, 1982 cruise.

3) To augment the knowledge gained from the shelf (20 to 200-m) distributions developed during Years I and II of this study by investigation of shelf break processes and Loop Current interactions with resident shelf water.

2.0 CHIEF SCIENTIST'S REPORT

2.1 Cruise II Plan

On 10 September 1982, a pre-cruise meeting was held at the Florida Institute for Oceanography in St. Petersburg, Florida to finalize cruise plans. A tentative cruise plan was submitted to the MMS on 7 May; final pre-cruise revisions were submitted on 5 August 1982. All cruise personnel and Dr. J. Yoder were present at the meeting. The sampling objective of the cruise was to measure the effects of a subsurface Loop Current intrusion onto the shelf either by a time-series of transects across a single line on the shelf or by a survey along separated shelf transects.

Figure 2.1 illustrates the basic study area covered during the cruise. This area is basically the same longitudinal (83° to 85°W) region studied during the first (April) cruise but with a minor (approximately a half degree) shift of the latitudinal extent to the south.

2.2 Sampling Strategy

The sampling hypothesis is based on empirical evidence that during late spring and summer months, when shelf waters are stratified, intrusions of subsurface cold water are found even in the shallower regions of the shelf. The origin of the colder waters is generally associated with upwelled cores of relatively cold water brought on shore by intrusions of boundary currents such as the Gulf Stream System or Loop Current.

Because of the lack of thermal contrast on the sea surface, infrared imagery is generally not very useful during this season. To determine whether there was an intrusion of cooler water, an XBT transect along the 70 m isobath was occupied. The results of this transect were examined for areas of cooler bottom temperatures. No anomalously cooler temperatures were found so the first transect of the survey was occupied. This transect employed CTD and XBT sampling and covered the shelf from the 60 m to 2000 m

isobaths. At the end of this transect, it was noted that relatively cold water was present on the shelf and that the Loop Current was not at its expected location next to the shelf. A set of stations 30 km to the north showed that the Loop Current was in the expected position at that point. Based on these preliminary examinations of the bottom temperatures and relative Loop Current positions, the Chief Scientist decided to return to the initial section and run a time-series of transects. Thus, the next three transects occupied the same section line as the first and employed CTD, XBT and sea water sampling. The time-series was interrupted from 1900 on 15 September to 0400 on 17 September for repairs to ship and scientific gear in Fort Myers.

The coverage of the study area is summarized as:

- 1) An XBT transect (A) along the 70 m isobath (Figure 2.2)
- 2) An XBT-CTD transect (B) along the shelf near 25°30'N (Figure 2.3)
- 3) A 30 km XBT-CTD transect (C) north to 26°N (Figure 2.4)
- An XBT-CTD transect (F) across the shelf near 25°30'N (Figure 2.7)
- 5) Reoccupation of the above transect (Figure 2.8)
- 6) Reoccupation of the above transect (Figure 2.9)

Details are presented in the Chief Scientist's log in Appendix A.

2.3 Schedule and Participants

The Florida Institute for Oceanography's R/V SUNCOASTER departed St. Petersburg, Florida initially at 0200h on 12 September 1982. Final return to St. Petersburg occurred at 0700h on 19 September 1982. A number of problems were encountered both with the ship and onboard scientific sampling equipment. These problems are discussed in Section 2.5.

Cruise participants, their position and affiliation are listed in Table 2.1. Dr. J. Yoder (Skidaway Institute of Oceanography) planned and directed cruise activities through radio communication.

2.4 Data Collected

Station position information are presented in Table 2.2. A tabular division of the stations sampled along each section is presented in Table 2.3. Hydrographic measurements are summarized by section in Appendix C-1. Primary productivity and phytoplankton cell count samples are summarized in Appendix C-2. Measurements of surface temperature and chlorophyll fluorescence were taken every five nautical miles along all transects.

2.5 Problems

The Florida Institute for Oceanography's R/V SUNCOASTER departed St. Petersburg at 0200h on 12 September 1982 but had to return to St. Petersburg at 0945h on 12 September 1982 for ship repairs. The SUNCOASTER departed again at 1510h, 12 September for the beginning of the alongshore XBT section. Scientific sampling commenced at 0140h, 13 September and continued until 1918h, on 15 September. During this period, problems with the ship's radio, electrical system and the CTD winch developed. To expedite sampling, the Chief Scientist decided to go to Fort Myers for repairs to the CTD winch. Sampling commenced again at 0446h on 17 September and continued until 1803h on 18 September. The ship reached St. Petersburg at 0700h on 19 September.

Specific problems with ship's equipment and scientific sampling gear were as follows:

- The R/V SUNCOASTER experienced mechanical problems that necessitated an initial outward bound leg return to port and several hours of repair time. Return to port: 0500h, 12 September. Depart port: 1510h, 12 September.
- 2) There were not enough independent electrical circuits to handle the power requirements of the scientific gear. During the course

of operation, the circuit breakers tripped, causing a loss of power and, in several instances, a loss of data. The crew did their best to rectify this situation and are to be commended for both their diligence and helpfulness.

3) The CTD winch malfunctioned at 1935h, 13 September. During repairs to the winch, sampling was continued using bottle casts to determine salinity, nutrients, chlorophyll and oxygen at discrete depths. XBT casts were used to define vertical temperature structure.

At 0720h on 14 September the CTD was operational; however, the rosette was still non-functional. Bottle casts were used to obtain samples at discrete depths. At 1230h, 15 September, it became increasingly obvious that the connection to the SUNCOASTER winch was malfunctioning and would probably fail completely in the near future.

4) The crew was unable to maintain radio contact between 12 and 16 September due to radio malfunctions and believed that repairs were desirable.

It was therefore decided to go to Fort Myers for radio and winch repairs. All repairs were successful and no additional problems were encountered during the remainder of the cruise.

Table 2.1 CRUISE II PARTICIPANTS

Personnel	Position	Affiliation		
Scientific				
S. Stephen Bishop	Chief Scientist	The Skidaway Institute		
Joseph Saint	Field Operations Supervisor	Woodward-Clyde Consultants		
Theresa Paluszkiewicz	Hydrography	The Skidaway Institute		
Frank Flynn	Hydrography	The Skidaway Institute		
Bill Chandler	Hydrography	The Skidaway Institute		
Rachel Jankowitz	Hydrography	The Skidaway Institute		
Kurt Emmanuelle	Productivity	The Skidaway Institute		
Don Marr	Productivity	The Skidaway Institute		
Guy Foulkes	Productivity	The Skidaway Institute		

.

Table 2.2 STATION POSITION DATA

STATION SUMMARY FOR SUNCOASTER

CRUISE	STATION	LATITUDE	LONGITUDE	YR	MN	ŊΥ	HOUR	DEPTH	CONSEC
CRUISE 001 001 001 001 001 001 001 00	STATION 001222 000232 00020 000232 00020 000232 000232 000232 00020 00020 00020 00020 00020 00020 00020 00020 00020 00020 00020 00020 00020 00020 00020 00000 001123 00000 001123 0000000000	E NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	LONGITUDE 833133333333333333333333333344444444444		N 999999999999999999999999999999999999	¥ 3383388888888888888888888888888888888	R 7002133450874088451391783938931170455322176427550740	H D D D D D D D D D D D D D D D D D D D	CR NMB1234567890112345678901234567890123456789012 111111111111111122222345678901234567890123456789012 CN
001 001 001 001 001 001 001 001 001 001	0055534XX 0055534XX 00555567890XCX 0055567890XCX 006623C	12783210 12783210 142340 142440 142440 142440 142440 142440 142440 144400000000	03 41 80 83 436 80 83 31 80 83 31 90 83 24 90 83 24 90 83 10 90 83 10 90 83 10 90 83 10 90 83 10 90 83 10 90 83 10 90 83 10 90 83 10 90 83 10 90 83 10 90 83 10 90 83 10 90 83 10 90	00000000000000000000000000000000000000	00000000000000000000000000000000000000	155555557777777777777777777777777777777	11222222 111222222 11123	187074845815151 8776655566779	01234567890123

STATION SUMMARY [CONTINUED]

CRUISE	STATION	LATITUDE	LONGITUDE	YR	MN	DY		DEPTH	NUMBER
001 0	06456 06656 06656 06656 07123 07756 07756 07756 07757 07756 07757 07756 07757 07756 07757 07756 07757 07756 07757 07756 07757 07756 07757 07756 07757 07756 07757 07756 07757 07756 07757 07756 07757 07756 07757 07757 07756 07757 07756 07757 007757 007757 007757 007757 007757 007757 007757 007757 007777 007757 007757 007757 007757 007777 007757 00000000	NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	83 47.00 83 57.00 83 57.00 84 00 84 00 84 118.70 84 125.11 88 44 125.11 88 44 44 20 88 44 44 20 88 44 44 400 88 44 44 400 88 44 44 400 88 44 400 88 88 88 88 88 88 88 88 88 88 88 88 88		*************************************		G1111111222222 M4467890122423568890123456689901 1111111111111222222 11111111111111222222	M275532934000000549393079031317 113456293400000549393079031317	NUM 645 667 667 7777777777890123456789901234 8888888999999999999999999999999999999
ŎŎĨ	095C	25 50.0N	83 10.0W	82	09	18	21.8	55	95

Table 2.3 STATIONS ASSIGNED TO TRANSECTS

•

TRANSECT	STATIONS	DISTANCE OFFSHORE	DATE(Sept. 82)	ТҮРЕ
A	1X-9X	110(km)	13	XBT
B	10B-27C	137	13-14	BOT-CTD-XBT(BOT)
С	30C-27C	110	14	CTD-XBT
D	310,300,330	333	14	CTD
E	33C-36C	352	14	CTD
F	56C-36C	137	14-15	CTD(BOT)-XBT
G	57C-75C	137	17	CTD-XBT
H	77C-95C	137	18	CTD-XBT

.

XBT = expendable bathythermograph CTD = conductivity-temperature-depth cast; usually includes water sampling at discrete depths for nutrients, chlorophylls, oxygens, and calibration salinities BOT = bottle casts; used to obtain water samples at discrete depths when the CTD and CTD rosette were non-functional.

	Woody	vard-Clyde	Consultants 🖰
Figure 2 Study Arc Florida Collectio	.1 ea During Sep Duter Contine on Cruise	tember 198 ntal Shelf	2 Southwest Data
Proj 60834A	Date 10/20/82	Droft TMD	Appr HU

		Wo	odward	-Clyde Co	onsultan	ts 🕑
	Figure 2. Transect	.2 A Locat	ions of	XBT(X)	Stations	
Proj	60834A	Date 10/20/	/82 Dra1	TMD	Appr	R

			Woodv	vard-Clyde (Consult	ants 🕑
	Figure Transe CTD(C)	2.3 ct B Stat	Location ions	ns of XBT(X) and	
Proj	60834A	Dote	10/20/82	Draft TMD	Appr	HU

	Woodv	vard-Clyde	Consulta	nts 🔶
Figure Transe CTD(C)	e 2.4 ect C Locatic) Stations	ons of XBT(X) and	
Proj 60834A	Dote 10/20/82	Droft TMD	Appr	r

•

	Woodv	vard-Clyde (Consultants
Figuro Transo CTD(C	e 2.5 ect D Locatio) Stations	ons of XBT(X) and
Proj 60834A	Date 10/20/82	Draft TMD	Appr

.

•

	Woodward-Clyde Consultants							
	Figure Transe	2.6 ct E	Locatio	ns of CTD(C)) Stat	ions		
Proj	60834A	Date	10/20/82	Dreft TMD	Appr	KC		

		Woodw	vard-Clyde (Consult	ants 🔶
	Figure Transec CTD(C)	2.7 t F Locations Stations	of XBT(X)	and	
Proj	60834A	Date 10/20/82	Droft TMD	Appr	HU

	* 	Woodv	vard-Clyde	Consult	ants 🕐
	Figure Transe CTD(C)	2.8 ct G Location Stations	ns of XBT()	() and	
Proj	60834A	Date 10/20/82	Draft TMD	Appr	K

	Woodv	vard-Clyde	Consult	lants 🕐
Figure 2 Transect CTD(C) 9	2.9 H Locations Stations	of XBT(X)	and	
Proj 60834A	Dote 10/20/82	Dratt TMD	Appr	HC/

APPENDIX A

.

.

CHIEF SCIENTIST'S LOG

September 12-19,	1982
Code	Measurement
1	CTD Cast*
2	Net Tow
3	Productivity Measurements
4	Hydro Cast
5	Light Cast
6	Quick CTD Cast [†]

CHIEF SCIENTIST LOG, R.V. SUNCOASTER September 12-19, 1982

12 September

0200 - Depart St. Petersburg, Florida

0500 - Return to St. Petersburg for ship repairs

1510 - Depart St. Petersburg, Florida

13 September

0140 -	Stn.	1	XBT; Surface temperature and chlorophyll
0225 -			Surface temperature and chlorophyll
0304 -	Stn.	2	XBT; Surface temperature and chlorophyll
0332			Surface temperature and chlorophyll
0404	Stn.	3	XBT; Surface temperature and chlorophyll
0443			Surface temperature and chlorophyll
0512	Stn.	4	XBT; Surface temperature and chlorophyll
054 0			Surface temperature and chlorophyll
0606	Stn.	5	XBT; Surface temperature and chlorophyll
*Water ana	lyzed	for nut	rient, oxygen, salinity and chlorophyll content
tonly meas	uremer	nts of co	onductivity, temperature and depth; no water samples

taken with rosette

0644		Surface temperature and chlorophyll
0718	Stn. 6	XBT; Surface temperature and chlorophyll
0750		Surface temperature and chlorophyll
0819	Stn. 7	XBT; Surface temperature and chlorophyll
0854		Surface temperature and chlorophyll
0926	Stn. 8	XBT; Surface temperature and chlorophyll
1003		Surface temperature and chlorophyll
1036	Stn. 9	XBT; Surface temperature and chlorophyll
1220	Stn. 10	2, 3, 4, and 5
1543	Stn. 11	XBT; Surface temperature and chlorophyll
1644	Stn. 12	1
1727	Stn. 13	XBT; Surface temperature and chlorophyll
1805	Stn. 14	1
1929	Stn. 15	XBT; 4
2147	Stn. 16	XBT; Surface temperature and chlorophyll
2222	Stn. 17	XBT; 4
2335	Stn. 18	XBT; Surface temperature and chlorophyll
14 Septer	nber	
0013	Stn. 19	XBT; 4
0122	Stn. 20	XBT; Surface temperature and chlorophyll
0158	Stn. 21	XBT; 4
0310	Stn. 22	XBT; Surface temperature and chlorophyll
0342	Stn. 23	XBT; 3 and 4
0453	Stn. 24	XBT; Surface temperature and chlorophyll
0521	Stn. 25	XBT; 4
0650	Stn. 26	XBT; Surface temperature and chlorophyll

-

.

•

0720 Stn. 27 XBT; 1, 2 and 3

•

0948	Stn.	28	XBT;	Surface	temperature	and	chlorophyll
1055	Stn.	29	XBT;	Surface	temperature	and	chlorophy l l
1218	Stn.	30	5				

1	511	Stn.	31	6; Surface temperature and chlorophyll
1	609	Stn.	32	XBT; Surface temperature and chlorophyll
1	644	Stn.	33	6; Surface temperature and chlorophyll
1	800	Stn.	34	6; Surface temperature and chlorophyll
1	915	Stn.	35	6; Surface temperature and chlorophyll
2	2030	Stn.	36	4 and 6; Surface temperature and chlorophyll
2	230	Stn.	37	XBT; Surface temperature and chlorophyll
2	320	Stn.	38	3,4 and 6; Surface temperature and chlorophyll
<u>15 Se</u>	ptembe	r		
0	0117	Stn.	39	XBT; Surface temperature and chlorophyll
· 0	214	Stn.	40	6; Surface temperature and chlorophyll
0	408	Stn.	41	XBT; Surface temperature and chlorophyll
0	443	Stn.	42	2, 3, 4 and 6
0	640	Stn.	43	XBT; Surface temperature and chlorophyll
0	728	Stn.	44	4 and 6
0	914	Stn.	45	XBT; Surface temperature and chlorophyll
0	945	Stn.	46	4 and 6
1	135	Stn.	47	XBT; Surface temperature and chlorophyll
1	230	Stn.	48	2, 3, 4, 5 and 6
1	.330			Began run to Ft. Myers for numerous repairs

•'

1408	Stn. 49	XBT; Surface temperature and chlorophyll
1445	Stn. 50	XBT; Surface temperature and chlorophyll
1526	Stn. 51	XBT; Surface temperature and chlorophyll
1611	Stn. 52	XBT; Surface temperature and chlorophyll
1720	Stn. 53	XBT; Surface temperature and chlorophyll
1808	Stn. 54	XBT; Surface temperature and chlorophyll
1838	Stn. 55	XBT; Surface temperature and chlorophyll
1915	Stn. 56	XBT; Surface temperature and chlorophyll
<u>16</u> Septemb	ber	
0400		Arrive Ft. Myers, Florida
1030		Docked at Ft. Myers Beach, Florida and repairs begun on
		CTD winch and ship's radio
1930		Depart Ft. Myers Beach Dock and began run to the time
		series transect B
17 Septemb	ber	
0446	Stn. 57	1 and 3
0543	Stn. 58	XBT; Surface temperature and chlorophyll
0615	Stn. 59	1
0717	Stn. 60	XBT; Surface temperature and chlorophyll
0755	Stn. 61	1
0850	Stn. 62	XBT; Surface temperature and chlorophyll
0920	Stn. 63	1
1014	Stn. 64	XBT; Surface temperature and chlorophyll
1044	Stn. 65	1, 2, 3, and 5
1235	Stn. 66	XBT; Surface temperature and chlorophyll
1301	Stn. 67	1

-

1440	Stn.	6 8	XBT; S	urface	temperature	and	chlorophy ll
1508	Stn.	69	1				
1623	Stn.	70	XBT; S	urface	temperature	and	chlorophy11
1655	Stn.	71	1, 2 a	nd 3			
1814	Stn.	72	XBT; S	urface	temperature	and	chlorophyll
1844	Stn.	73	1				
2003	Stn.	74	XBT; S	urface	temperature	and	chlorophyll
2206	Stn.	75	1 and	3			
2341	Stn.	76	1				
18 Septembe	er						
0110	Stn.	77	1				
0300	Stn.	78	XBT; S	urface	temperature	and	chlorophyll
0341	Stn.	79	1				
0457	Stn.	80	XBT; S	urface	temperature	and	chlorophy11
0515	Stn.	81	1, 2 a	nd 3			
0653	Stn.	82	XBT; S	urface	temperature	and	chlorophyll
0730	Stn.	83	1				
0848	Stn.	84	XBT; S	urface	temperature	and	chlorophyll
0930	Stn.	85	1				
1040	Stn.	86	XBT; S	urface	temperature	and	chlorophy]]
1115	Stn.	87	1, 2 a	nd 3			
1223	Stn.	8 8	XBT; S	urface	temperature	and	chlorophy ll
1255	Stn.	89	1, 3 a	nd 5			
1408	Stn.	90	XBT; S	urface	temperature	and	chlorophy ll
1441	Stn.	91	1				
1543	Stn.	92	XBT; S	urface	temperature	and	chlorophyll

.

1628	Stn. 93	1
1717	Stn. 94	XBT; Surface temperature and chlorophyll
1750	Stn. 95	1
19 Septem	ber	
0700		Arrive St. Petersburg, Florida

.

•

-

•

.

APPENDIX B

STATION WEATHER DATA

.

.

.

-

WEATHER LOG

+	STA.	LAT	LONG	DATE	EST	Z(M)	MAD	SS WND	WS	₿.₽.	AT W	
12345	1 X X X X X X X X X X X X X X X X X X X	52.9 544.0 537.0 528.0 528.0	3 46.9 3 44.0 3 41.0 3 38.9 3 35.0	13/9/82 13/9/82 13/9/82 13/9/82 13/9/82 13/9/82	0143 0301 0404 0513 0606	67 71 68 65	180 180 180 160 140	3 180 3 180 3 160 3 140 3 140	1222	30.0 30.3 30.3 30.3 30.3	78 1 78 1 80 1 82 1 79 1	
6 7 8 9 10	6x 20 7x 22 8x 22 9x 22 10b 23	5 13.1 1 5 5.0 1 5 57.1 1 5 48.0 1 5 50.0 1	332.0 3330.0 326.0 324.0 3324.0 330.0	13/9/82 13/9/82 13/9/82 13/9/82 13/9/82	0718 0819 0926 1035 13 05	64 62 64 54	140 140 140 140 140	3 140 3 140 3 140 3 100 3 75	10 8 7 8 15	30.3 30.2 30.2 30.2 30.2 30.2	82 1 82 1 84 1 84 1 87 1	
11 12 13 14	11x 2 12c 2 13x 2 14c 2 15xb 2	48.8 47.1 46.0 45.0 42.1	3 15.4 3 20.0 3 26.0 3 32.2 3 41.9	13/9/82 13/9/82 13/9/82 13/9/82 13/9/82	1550 1644 1725 1805 2050	57 61 65 71 90	45 45 45 45	3 70 45 3 270 3 160 3 70	10 14 18 12	30.2 30.2 30.1 30.2	85 1 86 1 87 1 86 1 86 1	
16 17 18 19 20	16x 2 17xb 2 18x 2 19xb 2 20x 2	42.1 40.0 38.5 37.0 35.7	3 47.7 3 52.0 3 57.5 4 3.1 4 8.5	13/9/82 13/9/82 13/9/82 14/9/82 14/9/82	2150 2225 2335 0010 0122	106 115 135 144 153	45 45 90 140	3 270 3 270 3 40 3 90 3 90	10 15 205	2000 2000 2000 2000 2000 2000 2000 200	84 1 84 1 84 1 84 1 84 1	
21 223 245	21xb 2 22x 2 23xb 2 24x 2 25xb 2	33.3 (31.9 (29.3 (28.4 (27.2 (4 14.1 84 19.6 84 24.5 84 30.4 84 34.4	14/9/82 14/9/82 14/9/82 14/9/82 14/9/82	0158 0310 0342 0453 0521	164 164 217 437 999	140 140 140 140 140	3 90 3 90 3 90 3 90 3 90	8 20 5 5	30.2 30.2 30.3 30.3 30.3	84 1 84 1 84 5 84 2 84 2	
26 27 28 29 30	26x 2 27c 2 28x 2 29x 2 30c 2	24.8 24.9 31.8 39.4 47.6	4 41.4 4 45.1 4 47.5 4 49.7 4 52.8	14/9/82 14/9/82 14/9/82 14/9/82 14/9/82	0655 0720 0948 1055 1218	999 999 999 9 99 9 99	180 180 70 70 150	3 90 3 90 3 50 3 295	0 28 8 1	30.3 30.3 30.2 30.2 30.3	80 1 81 1 84 1 86 1 80 1	
31 32 33 34 35	31c 22 32x 22 33c 22 34c 22 35c 22	50.1 8 47.8 8 46.0 8 38.6 8 29.7 8	4 48.1 4 53.2 4 57.9 4 58.3 4 55.0	14/9/82 14/9/82 14/9/82 14/9/82 14/9/82	1511 1609 1644 1800 1925	999 9 99 9 99 9 99 9 99	999 999 999 999 999	3 90 3 115 3 135 3 135	4 13 15 18	30.1 30.1 30.1 30.1 30.1	85 0 85 0 84 0 84 1 84 1	
36 37 38 39 40	36c 29 37x 29 38c 29 39x 29 40c 29	20.5 21.0 24.1 23.4 25.2	4 53.1 4 48.7 4 45.0 4 38.0 4 33.5	14/9/82 14/9/82 14/9/82 15/9/82 15/9/82	2035 2230 2320 0117 0212	999 999 999 999 999	90 90 999 90 90	3 115 3 90 3 160 4 270 4 270	16 12 16 14 10	30.22 30.22 30.22 30.22 30.2	83 1 80 1 81 1 82 1	
 41. 42 43 44 45	41x 29 42c 29 43x 29 44c 29 45x 29	26.3 E 27.9 E 30.8 E 33.3 E 35.2 E	4 27.1 4 25.1 4 18.9 4 14.1 4 8.6	15/9/82 15/9/82 15/9/82 15/9/82 15/9/82	0408 0443 0640 0728 0914	999 163 163 152	- <u>90</u> 90 90 90	4 45 4 270 4 270 4 270 4 270 4 60	12 12 12 6 12	30.1 30.2 30.2 30.2 30.1	78 1 78 1 81 1 79 1 81 1	
46 47 48 50	460 20 47x 20 48c 20 49x 20 50x 20	36.2 38.5 40.0 41.4 42.3	3 57 57 57 57 57 57 57 57	15/9/82 15/9/82 15/9/82 15/9/82 15/9/82	0945 1135 1230 1405 1445	142 135 118 102 88	90 90 90 90	4 65 4 130 4 180 4 315 4 315	15 10 10 11	30.1 30.1 30.1 30.1 30.1 30.1	87 1 84 1 84 1 84 1 85 1	
51 523 54 55	51x 25 52x 25 53x 25 54x 25	43.5 8 44.8 8 50.3 8 46.9 8 48.1 8	3 36.5 3 31.8 3 24.9 3 30.3 3 15.1	15/9/82 15/9/82 15/9/82 15/9/82	1526 1605 1720 1800 1840	77 69 64 56	90 90 90 90	4 315 4 270 4 270 3 225 3 315	12 14 14 8 19	30.2 30.1 30.1 30.1 30.1	86 1 86 1 84 1 84 1 83 1	
56 57 58 59 60	56x 25 57c 25 58x 25 59c 25 60x 25	50.0 8 50.1 8 49.3 8 47.1 8 46.3 8	3 10.2 3 10.4 3 15.0 3 20.0 3 26.2	15/9/82 17/9/82 17/9/82 17/9/82 17/9/82	1915 0446 0543 0615 0717	52 58 61 65	45 305 305 180 180	3 300 2 320 2 320 2 350 2 350	22 10 10 3	30.1 30.1 30.1 30.1 30.1 30.1	82 1 79 0 80 0 83 0 79 0	
61 62 63 64 65	61c 29 62x 29 63c 29 64x 29	45.0 8 43.6 8 42.2 8 40.8 8 39.9 8	3 36,2 3 37,3 3 41,9 3 47,0 3 52,0	17/9/82 17/9/82 17/9/82 17/9/82 17/9/82	0755 0850 0920 1014 1043	69 73 88 102 117	180 190 180 180 180	2 350 2 350 2 350 2 350 2 350		30.1 30.1 30.1 30.1	81 0 87 0 88 0 88 0	

667 67 68 70	66x 25 37.1 67c 25 36.6 68x 25 34.6 69c 25 33.0 70x 25 32.5	83 59.4 17/9/82 84 3.6 17/9/82 84 10.0 17/9/82 84 14.7 17/9/82 84 20.2 17/9/82	1235 135 8 1301 145 8 1440 156 7 1508 162 7 1622 159 7	2 2 40 2 2 60 4 2 6 4 2 360 8 2 360	2 30.1 15 30.1 2 30.1 4 30.1 4 30.1	90 0 98 0 90 0 90 0 87 0
71 72 73 74 75	71c 25 28.6 72x 25 27.9 73c 25 27.1 74c 25 24.4 75c 25 25.0	84 25.1 17/9/82 84 30.2 17/9/82 84 34.4 17/9/82 84 40.2 17/9/82 84 46.0 17/9/82	1740 203 B 1814 484 8 1844 999 B 2003 999 B 2206 999 B	0 2 60 0 2 60 0 2 60 0 2 50	13 30.1 10 30.1 10 30.1 15 30 1 13 30.1	88 6 88 6 82 0 82 0 82 3
76 77 78 79 80	76c 25 32.0 77c 25 22.5 78x 25 23.8 79c 25 25.5 80x 25 26.7	84 48.0 17/9/82 84 44.3 18/9/82 84 38.2 18/9/82 84 33.6 18/9/82 84 28.8 18/9/82	2340 999 8 0155 999 18 0258 999 18 0421 999 18 0457 445 18	0 2 50 0 2 120 0 2 120 0 2 120 0 2 120 0 2 120	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	82 3 82 1 81 1 80 1 80 1
81 82 83 84 85	81c 25 29.0 82x 25 30.5 83c 25 33.0 84x 25 34.4 85c 25 37.0	84 24.9 18/9/82 84 18.9 18/9/82 84 13.9 18/9/82 84 8.1 18/9/82 84 3.0 18/9/82	0515 204 18 0653 159 8 0730 163 8 0848 149 99 0930 143 99	0 2 120 0 1 50 0 1 50 7 1 80 7 1 80	11 30.1 B 30.1 B 30.1 6 30.1 6 30.1 6 30.1	79 1 82 1 83 1 83 1 89 1
86 87 88 89 90	86x 25 38.6 87c 25 40.0 88x 25 41.1 89c 25 42.1 90x 25 43.4	83 57.0 18/9/82 83 51.9 18/9/82 83 44.6 18/9/82 83 42.0 18/9/82 83 36.7 18/9/82	1027 130 99 1115 116 99 1223 101 99 1254 90 99 1410 73 99	7 1 80 7 1 80 7 1 80 7 1 80 7 1 80 7 1 80 7 1 80	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84 1 85 1 87 1 87 1
91 92 93 94 95	91c 25 45.0 92x 25 46.2 93c 25 47.0 94x 25 48.8 95c 25 50.0	83 32.1 18/9/82 83 26.2 18/9/82 83 20.2 18/9/82 83 15.1 18/9/82 83 10.0 18/9/82	1504 71 99 1544 65 99 1625 61 99 1717 56 99 1750 55 99	7 0 89 7 0 85 7 1 85 7 1 85 7 1 85	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87 1 87 1 71 1 86 1 84 1

\$ = disc record \$
Station = assigned station number
Latitude and longitude
Date and time in eastern standard time
Z = water depth in meters
WUD = wave direction
SS = SEA STATE
WND = wind direction
WS = Wind Speed(knots)
B.P. = harometric pressure in millibars(tens, units and tenths onlu)
AT = air temp in F(not very nond \$)
W = WHO weather code

9997s indicate no data

APPENDIX C-1

-

.

.

•

SUMMARY OF HYDROGRAPHIC MEASUREMENTS

Appendix C-1. Summary of Hydrographic Measurements

Number	of Stati	ons		Number	of Sect	ions	
Transect	CTD	XBT	Bottle Cast	Nut	02	Ch1	Salinity
A	0	9	0	0	0	17	0
*B	3	14	7	76	76	86	59
C	1	2	0	0	0	2	1
D_	2	1	0	0	0	3	2
E	1	0	1	10	10	3	1
±≠F	7	14	7	56	56	72	7
G	12	8	0	9 0	9 0	85	11
н	10	9	0	82	82	9 8	9

.

.

A combination of XBT cast and bottle cast was used during repairs to the CTD
 ** Bottle casts were used to obtain water samples at discrete depths during the malfunction of the rosette

APPENDIX C-2

-

SUMMARY OF PRIMARY PRODUCTIVITY MEASUREMENTS AND PHYTOPLANKTON CELL COUNT SAMPLES

32

.

Appendix C-2. Summary of Primary Productivity Measurements and Phytoplankton Cell Count Samples

Station	Productivity (No. of Depths)	Cell Counts (No. of Depths)
10	6	4 + net tow
17	6	0
23	6	Û
27	6	5 + net tow
38	6	0
42	6	5 + net tow
48	6	5 + net tow
57	6	0
65	6	5 + net tow
71	6	5 + net tow
75	6	0
81	6	5 + net tow
87	6	5 + net tow
89	6	_0
	84 (14 stations)	39 (8 sta ti

The Department of the Interior Mission

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; preserving the environmental and cultural values of our national parks and historical places; and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people by encouraging stewardship and citizen participation in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

The Minerals Management Service Mission

As a bureau of the Department of the Interior, the Minerals Management Service's (MMS) primary responsibilities are to manage the mineral resources located on the Nation's Outer Continental Shelf (OCS), collect revenue from the Federal OCS and onshore Federal and Indian lands, and distribute those revenues.

Moreover, in working to meet its responsibilities, the **Offshore Minerals Management Program** administers the OCS competitive leasing program and oversees the safe and environmentally sound exploration and production of our Nation's offshore natural gas, oil and other mineral resources. The MMS **Minerals Revenue Management** meets its responsibilities by ensuring the efficient, timely and accurate collection and disbursement of revenue from mineral leasing and production due to Indian tribes and allottees, States and the U.S. Treasury.

The MMS strives to fulfill its responsibilities through the general guiding principles of: (1) being responsive to the public's concerns and interests by maintaining a dialogue with all potentially affected parties and (2) carrying out its programs with an emphasis on working to enhance the quality of life for all Americans by lending MMS assistance and expertise to economic development and environmental protection.