
85-0057

TUSCALOOSA TREND REGIONAL DATA SEARCH AND SYNTHESIS STUDY

VOLUME II SUPPLEMENTAL REPORTS

Prepared By BARRY A. VITTOR & ASSOCIATES, INC. MOBILE, ALABAMA

Prepared For U.S. Department of the Interior Minerals Management Service Gulf of Mexico OCS Regional Office Metairie, Louisiana

TUSCALOOSA TREND REGIONAL DATA SEARCH AND SYNTHESIS STUDY

FINAL REPORT VOLUME II SUPPLEMENTAL REPORTS

Prepared under Contract No. 14-12-0001-30048

APPENDIX A

BENTHIC MACROINFAUNA FROM BRETON-CHANDELEUR SOUND AREA

APPENDIX B

DISTRIBUTION OF FISHES AND PENAEID SHRIMP OF COMMERCIAL AND RECREATIONAL IMPORTANCE ON THE CONTINENTAL SHELF OFF MISSISSIPPI AND ALABAMA

APPENDIX C

.

QUANTITATIVE CHARACTERIZATION OF DEMERSAL FINFISH AND SHELLFISH POPULATIONS AND COMMUNITIES IN THE TUSCALOOSA TREND REGION

TABLE OF CONTENTS

Page

-

LIST OF TABLES	ii
LIST OF FIGURES	iii
1.0 INTRODUCTION	1
2.0 METHODOLOGY	4
2.1 LABORATORY ANALYSIS	4
2.2 DATA ANALYSIS	4
3.0 RESULTS	6
3.1 BOTTOM HABITAT CHARACTERIZATION	6
3.2 MISSISSIPPI RIVER-GULF OUTLET (MR-GO)	8
3.2.1 FAUNAL COMPOSITION, ABUNDANCE, AND	0
COMMUNITY STRUCTURE	
	8
3.2.2 NUMERICAL CLASSIFICATION ANALYSIS	11
3.3 CHEVRON BENTHOS	19
3.3.1 FAUNA COMPOSITION, ABUNDANCE, AND	
COMMUNITY STRUCTURE	19
3.3.2 NUMERICAL CLASSIFICATION ANALYSIS	
	22
4.0 DISCUSSION	26
5.0 LITERATURE CITED	28
6. A MERACINENT T - TAVANANTO I TOTNO FOR MICOLOCIDAT DIVER-	
6.0 ATTACHMENT I - TAXONOMIC LISTING FOR MISSISSIPPI RIVER- GULF OUTLET SAMPLES (1980 AND 1981)	
7.0 ATTACHMENT II - TAXONOMIC LISTING FOR CHEVRON SAMPLES	

(1970 AND 1971)

LIST OF TABLES

.

Table		Page
1	Station depth and sediment grain size composition at Mississippi River-Gulf Outlet ODMDS survey.	7
2	Taxonomic listing of phyla and numerically dominant taxa from EPA MR-GO (741 GO) 1980 survey site.	9_
3	Taxonomic listing of phyla and numerically dominant taxa from EPA MR-GO (750 GO) 1980 survey site.	10.
4	General community structure parameters for EPA Missis- sippi River-Gulf Outlet survey sites, 1980-1981.	12
5	Percent composition of major taxa groups by station. MR-GO sites.	13
6	Taxonomic listing of phyla and numerically dominant taxa from Chevron 1970-71 survey sites.	20
7	General community structure parameters for Chevron sites, 1970-71.	21
8	Percent composition of major taxa groups by station at Chevron sites, 1970-71.	23
9	Mean community structure parameters for station groups resulting from classification of Chevron station data.	27

•

LIST OF FIGURES

Figure		Page
1	Breton-Chandeleur Sound study area within coastal southeast Louisiana.	2
2 .	Station locations of benthic macroinfauna collected during the 1970-71 Chevron and 1980-81 Mississippi River-Gulf Outlet surveys in coastal southeast Louisiana.	3
3	Number of macroinfauna taxa collected at each Missis- sippi River-Gulf Outlet station during 1980-81.	14
4	Density (number of individuals per m ²) of macroinfauna collected at each Mississippi River-Gulf Outlet station during 1980-81.	15.
5	Results of normal (station) and inverse (species) clas- sification analysis of Mississippi River-Gulf Outlet 1980-81 macroinfauna data.	17
6	Nodal analysis of groups based on results of numerical classification analysis of MR-GO 1980-81 macroinfauna data.	18
7	Results of normal (stations) and inverse (species) classification analysis of Chevron 1970-71 macroinfauna data.	24
8	Nodal analysis of groups based on results of numerical classification analysis of Chevron 1970-71 macroinfauna data.	25

TUSCALOOSA TREND REGIONAL DATA SEARCH AND SYNTHESIS STUDY

FINAL REPORT VOLUME II SUPPLEMENTAL REPORTS

APPENDIX A

BENTHIC MACROINFAUNA FROM BRETON-CHANDELEUR SOUND AREA

Prepared by

J. Kevin Shaw Environmental Management Services

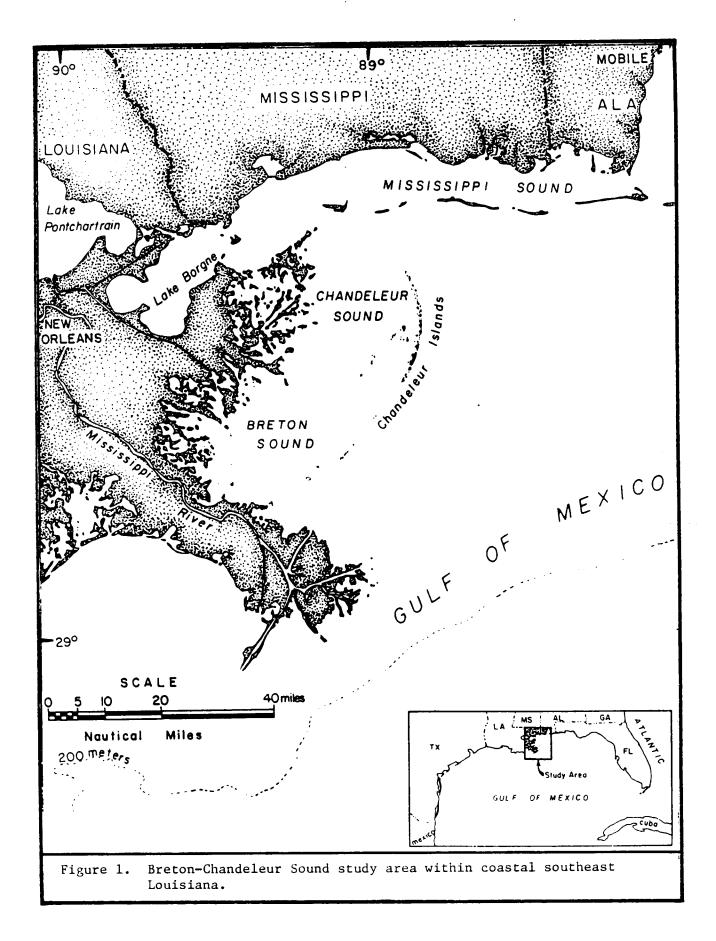
Barry A. Vittor & Associates, Inc. 8100 Cottage Hill Road Mobile, Alabama 36609

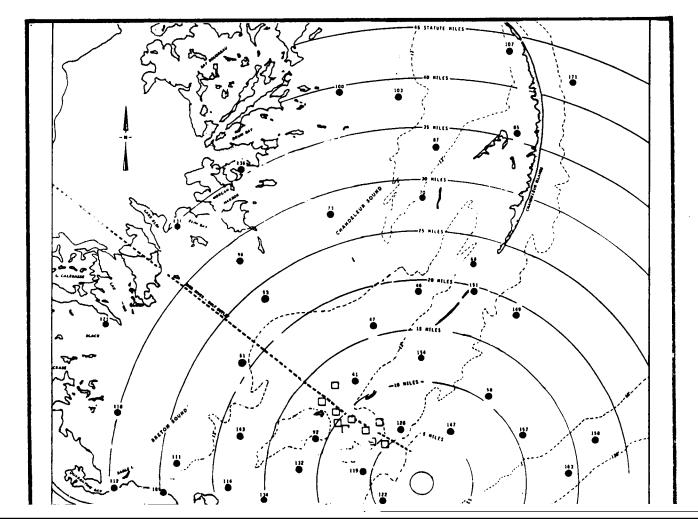
s.

.

.

BENTHIC MACROINFAUNA FROM BRETON-CHANDELEUR SOUND AREA


1.0 INTRODUCTION


During the literature and data search of biological resources within the Tuscaloosa Trend study area, several comprehensive studies were found which characterize benthic macroinfauna communities within Mississippi Sound, Mobile Bay, and the nearshore waters adjacent to the barrier islands of Mississippi and Alabama. Also, a previous study by the Bureau of Land Management (MAFLA) identified several benthic communities from six stations samples on the continental shelf (MAFLA Transect VI) within the Tuscaloosa Trend study area (Dames and Moore, 1979). However, a large data gap exists for the macroinfaunal communities of the Breton-Chandeleur Sound areas (Figure 1). highly productive areas off southeast Louisiana are major spawning, nursery, and harvest grounds for commercially important fish and shellfish species, many of which feed upon the benthic invertebrates during various life stages. Two sets of archived benthic macroinfauna samples that were collected from Breton-Chandeleur Sounds, but not completely analyzed, at Tulane University, Belle Chase Annex were release by Dr. Alfred Smalley (Biology Department) for analysis. Re-analysis of these samples should contribute substantially to the knowledge of benthic standing crop and productivity in this area. One set consists of macroinfauna samples collected in 1970-71 for impact analysis of an oil spill (see Figure 2). Another archive set consists of macroinfauna samples collected near an offshore dredged material disposal site (ODMDS) located along the Mississippi River-Gulf Outlet channel in Breton Sound in 1980-81.

Chevron Benthos

A sampling program was initiated in 1970 to determine the impact of an oil spill on the adjacent marine environment at Chevron Production Platform C, Main Pass Block 41, located 11 miles east of the Mississippi River Delta. Samples for sediment, water, and tissue hydrocarbons and macroinfauna analysis were collected at 165 stations. Macroinfaunal samples were collected at shallow depth stations using a 38 cm diameter diver-held suction sampler that sampled an area of 0.3 m^2 . Stations over 30 m deep were sampled using a Shipek sampler to obtain a 0.04 m^2 by 10 cm deep sample. All samples were washed through a 1.2 mm sieve. Fifty-one additional stations were re-sampled about a year later to assess continued impacts. With the exception of crustaceans, organisms within these samples were identified only to major taxon levels. A thorough investigation of the polychaetes, ophiuroids and miscellaneous phyla has never been completed. These samples have been archived at Tulane University under the custodial care of Dr. Alfred Smalley, Department of Biology.

Forty-nine samples were selected for re-examination of representative stations of the Chevron macroinfauna samples and results compared with the existing macroinfauna data for Mississippi Sound and adjacent continental shelf. Initially, samples were to include 37 Shipek stations collected on the shelf at depths greater than 30 m. However, upon examination of archived material, no polychaete fractions were present. Analysis of these samples would result in a bias of data; therefore, only suction core samples would be analyzed. The samples were selected based on their physical condition, i.e.,

1		
1		
1		
· · · · · · · · · · · · · · · · · · ·		
-		
	F	
· •		
• *		
	r	
1		
, C 1		
·		
	<u>k</u>	
2		
	- · · · ·	
	· · · · · · · · · · · · · · · · · · ·	
¥	۲ <i>و</i>	
—. F		
5- ¹		
V L		
-		
<u>. </u>		
* L		
`e		
	i	
	/ v	
<u>لي من الم الم الم الم الم الم الم الم الم الم</u>		
4		
	ii co	
final control of the second seco		

community structure parameters (e.g., species composition, species diversity indices, biomass measurements) during initial data reduction, followed by pattern and classification analysis for delineation of species assemblages. Since species are distributed along environmental gradients, there are generally no distinct boundaries between communities. However, the relationships between habitats and species assemblages reflect the interactions of physical and biological factors and express the major ecological trends.

Community Structure

Various types of numerical indices were chosen for analysis and interpretation of the macroinfaunal data base. Selection was based primarily on their ability to provide a meaningful summary of data, as well as their use in the characterization of benthic communities.

Infaunal abundance, often related to the productivity of the benthos, was reported as the total number of individuals per station and as the mean number and standard deviation of individuals per square meter. Species richness was reported as both the total number of taxa represented in a given station collection and by Margalef's Index, D (Margalef, 1958). This is estimated as $D = S-1/\log_e N$, where S is the number of taxa, and N is the number of individuals in the sample.

Species diversity, which is often related to the ecological stability and environmental "quality" of the benthos, was estimated by the Shannon-Weaver Index (Shannon and Weaver, 1963). The following formula has been applied, using log base e:

Species diversity within a given community is dependent on both the number of taxa present (species richness) and the distribution of all individuals among those species (equitability or evenness). In order to quantify and compare the equitability in the fauna to the species diversity for a given area, Pielou's Index J' (Pielou, 1966) was calculated as $J' = H'/log_e S$, where H' is the Shannon-Weaver Index of diversity (as calculated above), and S is the number of taxa (or species richness) in the sample.

Faunal Similarities

Numerical classification analysis (Boesch, 1977) was performed on the faunal data to examine within and between station differences by site and to compare faunal composition at each station. Classification analysis of both

station collections (normal analysis) and species (inverse analysis) were performed using the Czekanowski quantitative index of faunal similarity (Field and MacFarlane, 1968). This index considers both the number of species in common and the difference in number of individuals between stations. Although it is weighted towards the occurrence of dominant (i.e., abundant) species, preliminary selection of species based on their percent abundance by station and percent frequency of occurrence for the study area can reduce the weighted bias.

The value of the similarity index is 1.0 when the two samples are identical and 0 when no species are in common. Hierarchical clustering of similarity values is achieved using the group-average sorting strategy (Lance and Williams, 1967) and displayed in the form of dendrograms (cluster graphs).

Both similarity classification and cluster analysis were performed with the aid of a "Package of Computer Programs for Benthic Community Analysis" (Bloom et al., 1977) as modified for use in Vittor & Associates' benthic data management program. Species used in these analyses are selected according to their percent abundance (generally those taxa which composed 1-5% or greater of the individuals collected at any given station during any given sampling period) and percent frequency (those taxa which occurred in 50% or greater of the station collections for a given study area) in the sampling. Total densities for each of the selected species at a given station collection were log-transformed [x=ln(x+1)] for the analysis.

3.0 RESULTS

3.1 BOTTOM HABITAT CHARACTERIZATION

It is extremely unfortunate that samples for sediment composition were not taken during either 1970 or 1971 Chevron sampling program (Dr. Alfred Smalley, Biology Department, Tulane Univesity, personal communication). It becomes difficult to compare faunal assemblages associated with benthic habitats; therefore, general assumptions of habitat descriptions will come from previous works of Parker (1956, 1960), and comparisons with the results of the MR-GO survey and Mississippi Sound and adjacent areas study (Shaw et al., 1982).

The MR-GO survey does not cover as large a geographic area as the Chevron survey; however, several habitat types were depicted based on sediment composition and station depth (Table 1). These were composed of shallow depth (3-6 m) sandy stations, moderate depth (7-11 m) muddy sand stations, and intermediate depth (6-7 m) muddy station. Since mean percentages of sand, silt, and clay were available for each station, sediment descriptors were used based on the mean percent composition of sand:

Sand	>90% sand
Muddy Sand	50-90% sand
Sandy Mud	20-50% sand
Mud	<20% sand

Station	Depth (m)	Gravel (%)	Sand (X)	Silt (%)	Clay (%)	Fines (%)
			Nove	mber-December 1980	•	• · · · · · · · · · · · · · · · · · · ·
1	4	10.4 (5.5 - 19.1)	83.8 (74.2 - 87.7)	2.3 (0.8 - 3.2)	3.6 (1.8 - 4.6)	5.8 (2.5 - 6.8
2	3	5.8 (3.4 - 11.0)	87.6 (82.1 - 91.9)	2.6 (1.7 - 3.2)	4.0 (2.6 - 5.9)	6.6 (4.3 - 9.1
3	6	0.4 (0.2 - 0.7)	89.9 (78.3 - 97.2)	6.2 (0.5 - 15.6)	3.5 (1.7 - 5.5)	9.7 (2.6 - 21.1
4	4	0.5 (0.1 - 1.0)	96.7 (94.8 - 97.8)	0.5 (0.2 - 1.3)	2.4 (1.6 - 3.4)	2.8 (2.1 - 4.7
5	8	0.1 (0.0 - 0.1)	83.5 (78.1 - 88.0)	13.0 (9.8 - 17.2)	3.5 (2.0 - 4.6)	16.4 (11.9 - 21.8
6	6	0.2 (0.0 - 0.7)	93.8 (91.7 - 94.9)	3.6 (2.7 - 5.3)	2.4 (2.2 - 3.0)	6.0 (5.0 - 7.6
7	8	1.6 (0.8 - 3.7)	86.4 (80.5 - 93.9)	6.1 (1.2 - 10.5)	5.8 (3.4 - 7.7)	12.0 (5.3 - 18.2
8	6	0.0 (0.0 - 0.0)	97.8 (96.9 - 98.3)	1.1 (0.3 - 2.0)	1.1 (0.0 - 2.2)	2.2 (1.7 - 3.2
9	6	2.6 (0.2 - 5.0)	15.6 (11.1 - 19.4)	53.6 (50.3 - 58.2)	28.1 (25.9 - 29.7)	81.7 (76.8 - 87.0
10	5	0.4 (0.1 - 0.6)	96.9 (95.9 - 97.7)	0.6 (0.4 - 0.8)	2.1 (1.5 - 3.0)	2.7 (2.2 - 3.5
				May-June 1981	L	
1	6	11.0 (5.2 - 21.0)	78.9 (69.4 - 85.2)	3.4 (1.6 - 7.5)	6.7 (5.5 - 7.6)	10.1 (7.8 - 15.)
2	7	1.6 (0.3 - 2.4)	44.7 (33.1 - 51.7)	24.6 (17.2 - 30.4)	29.1 (21.5 - 35.3)	53.7 (46.5 - 65.3
3	7	1.8 (0.2 - 3.4)	84.9 (70.2 - 91.0)	4.7 (1.8 - 11.5)	8.7 (6.9 - 15.2)	13.3 (8.6 - 26.7
4	4	0.6 (0.1 - 1.4)	96.4 (95.3 - 97.0)	0.8 (0.4 - 2.0)	2.2 (0.0 - 3.8)	3.0 (2.0 - 4.0
5	11	0.0 (0.0 - 0.1)	72.8 (61.4 - 84.2)	18.0 (9.7 - 28.0)	9.2 (6.1 - 14.3)	27.2 (15.8 - 38.5
6	7	0.1 (0.0 - 0.4)	83.2 (78.6 - 86.7)	12.5 (10.1 - 15.9)	4.3 (2.8 - 5.4)	16.7 (12.9 - 21.3
7	7	1.6 (0.7 - 3.2)	74.7 (60.3 - 83.2)	10.9 (8.8 - 16.6)	12.8 (6.8 - 19.9)	23.7 (15.7 - 36.
8	6	1.5 (0.5 - 2.6)	94.9 (93.8 - 96.1)	1.0 (0.7 - 1.8)	2.7 (1.8 - 3.4)	3.7 (2.4 - 5.1
9	7	2.2 (0.2 - 6.8)	17.4 (12.0 - 26.6)	48.4 (32.6 - 56.0)	32.0 (23.7 - 38.2)	80.4 (69.7 - 87.6
10	6	1.0 (0.2 - 3.6)	96.0 (93.1 - 98.1)	1.0 (0.6 - 1.6)	2.0 (0.0 - 3.1)	3.0 (1.6 - 3.

Table l.	Station depth and sediment grain size composition at Mississippi River-Gulf Outlet ODMDS survey.
	(After EPA, 1982).

•

Notes: Values listed are mean (range) for seven replicate box cores or grabs at each station; fines = silt plus clay (<0.0625 mm)

7

.

3.2 MISSISSIPPI RIVER-GULF OUTLET (MR-GO)

3.2.1 FAUNAL COMPOSITION, ABUNDANCE, AND COMMUNITY STRUCTURE

A total of 12,067 individuals and 247 taxa were collected at the MR-GO (ODMDS) site during December 1980 (Table 2). Annelids were the most dominant major taxon, represented by 115 taxa and accounted for almost 65% of the macroinfaunal abundance. <u>Mediomastus spp., Poecilochaetus spp., Magelona sp</u>. H, <u>Polygordius spp., Travisia hobsonae</u>, <u>Carazziella hobsonae</u>, <u>Lumbrineris</u> spp., and <u>Cossura soyeri</u> accounted for 51% of the annelid fraction.

Arthropods ranked second in dominance at the study site, represented by 58 taxa and 17% of the macroinfaunal abundance. The amphipod <u>Eudevenopus</u> <u>honduranus</u> was the most abundant arthropod, but only one of five arthropods among the twenty most abundant species. The others include decapods <u>Pinnixa</u> <u>chaetopterana</u> and <u>Callianassa</u> <u>biformis</u> and amphipods <u>Corophium</u> <u>tuberculatum</u> and Protohaustorius sp. A.

The miscellaneous taxa represented by rhynchocoels, sipunculids, and cephalochordates ranked third in total abundance (10.3%), but fourth in total taxa (4.4%). The cephalochordate <u>Branchiostoma</u> sp. is the second most abundant taxon, while rhynchocoels contribute over 3% of the total number of individuals.

Molluscs ranked fourth in dominance (5.4%), but contributed 57 taxa--almost equalling the arthropods. The pelecypod <u>Mulinia lateralis</u> and gastropod <u>Nassarius</u> acutus accounted for 40% of the mollusc population in the study area.

Echinoderms contributed only six taxa and comprised 2.4% of the total macroinfaunal abundance and were represented by the ophiuroid <u>Hemipholis</u> elongata.

During June 1981, sampling at MR-GO (ODMDS) sites yielded a total of 18,438 individuals and 161 taxa (Table 3)—greater than 50% increase in number of individuals and 35% decrease in total taxa when compared to December 1980 collections. Annelids remained dominant with almost 67% of the total individuals and 47% of the total taxa. <u>Mediomastus</u> spp. still was most abundant, followed by <u>Spiophanes</u> <u>bombyx</u> and <u>Apoprionospio</u> <u>pygmaea</u>.

Molluscs increased to nearly 20% of the total individuals and were represented by 38 taxa, equal to the total number of arthropod taxa, but less than the 57 taxa reported for December. The fifteen-fold increase in <u>Mulinia</u> lateralis exemplifies the ephemeral nature of this pelecypod.

Arthropod populations during June 1981 were one-half the totals compared with December 1980 and contributed only 7.8% of the total individuals. They were represented dominantly by three amphipods <u>Acanthohaustorius</u> sp. A, <u>Protohaustorius</u> sp. A, and <u>Eudevenopsis honduranus</u>; one cumacean <u>Oxy-</u> <u>urostylis smithi</u>; and one decapod <u>Ogyrides alphaerostris</u>. Echinoderms and miscellaneous taxa were also represented by lower numbers of individuals and taxa during June 1981 when compared to December 1980.

8

Phylum	Phylum Total	% of <u>Grand Total</u>	No. Taxa in Phylum	% Total <u>No. of Taxa</u>
Annelida	7809	64.7	115	46.6
Mollusca	656	5.4	57	23.1
Arthropoda	2073	17.2	58	23.5
Echinodermata	286	2.4	6	2.4
Miscellaneous Total	$\frac{1243}{12067}$	10.3	$\frac{11}{247}$	4.4

Table 2.	Taxonomic listing of phyla and numerically dominant taxa from EPA
	Mississippi River-Gulf Outlet (741GO) 1980 survey sites.

NUMERICAL DOMINANTS

4

Taxon	No. Individuals	<u>% Total</u>	Cum. %	f
Mediomastus (LPIL) (P)	4419	36.62	36.62	9
Branchiostoma (LPIL) (C)	768	6.36	42.98	9
Eudevenopus honduranus (A)) 676	5.60	48.58	8
Poecilochaetus (LPIL) (P)	476	3.94	52.52	4
Rhynchocoela (LPIL)(R)	396	3.28	55.80	10
Magelona sp. H (P)	331	2.74	58.54	6
Polygordius (LPIL) (P)	248	2.06	60.60	3
Hemipholis elongata (E)	234	1.94	62.54	7
Travisia hobsonae (P)	223	1.85	64.39	4
Carazziella hobsonae (P)	202	1.67	66.06	2
Lumbrineris (LPIL) (P)	189	1.57	67.63	9
Pinnixa chaetopterana (A)	179	1.48	69.11	7
Mulinia lateralis (M)	156	1.29	70.40	2
Cossura soyeri (P)	143	1.19	71.59	3
Aglaophamus verrilli (P)	119	0.99	72.58	8
Callianassa biformis (A)	118	0.98	73.53	3
Prionospio (LPIL) (P)	114	0.94	74.50	4
Corphium tuberculatum (A)	113	0.94	75.44	5
Nassarius acutus (M)	110	0.91	76.35	8
Protohaustorius sp. A (A)	105	0.87	77.22	5

(A) = Arthropoda, (C) = Cephalochordata, (E) = Echinodermata,

(M) = Mollusca, (P) = Polychaeta, (R) = Rhynchocoela

```
* frequency of occurrence (maximum = 10)
```

Phylum Phylum Total		% of Grand Total	No. Taxa in Phylum	% Total No. of Taxa	
			75	46	.6
Annelida Mollusca	3645	68.8 19.8	38		.6
Arthropoda	1143	7.8	38	-	.6
Echinodermata	71	0.4	4		.5
Miscellaneous	587	3.2	6		.7
Total	18438	J•1	161	-	•
		NUMERICAL I	DOMINANTS		
Taxon	No.	Individuals	% Total	<u>Cum. %</u>	f
Mediomastus (LPI	L) (P)	8234	44.66	44.66	10
Mulinia laterali		2605	14.13	58.79	10
Spiophanes bomby		1603	8.69	67.49	9
Acanthohaustoriu		345	1.87	69.35	2
Rhynchocoela (LP		256	1.39	70.74	10
Apoprionospio py		242	1.31	72.05	5
Branchiostoma (L		238	1.29	73.34	5
Lumbrineris (LPI		235	1.27	74.61	5
Magelona sp. H (194	1.05	75.66	4
Eudevenopus hond		181	0.98	76.64	4
Ogyrides alphaer		167	0.90	77.54	4
Oxyurostylis smi	thi (A)	148	0.80	78.34	6
	omastus ambiseta (P) 130		0.70	79.04	2
Protohaustorius	sp. A (A)	126	0.68	79.72	2
Cossura soyeri ((P)	114	0.62	80.34	1
Tellina (LPIL) ((M)	114	0.62	80.96	3
Aglaophamus verr	<u>illi</u> (P)	101	0.55	81.51	5
Chaetozone sp. B		96	0.52	82.03	2
Travisia hobsona	e (P)	. 81	0.44	82.47	3
Paraprionospio p	innata (P) -	78	0.42	82.89	7

Table 3. Taxonomic listing of phyla and numerically dominant taxa from EPA Mississippi River-Gulf Outlet (750 GO) 1981 survey site.

(A) = Arthropoda, (C) = Cephalochordata, (M) = Mollusca,

(P) = Polychaeta, (R) = Rhynchocoela

* frequency of occurrence (maximum = 10)

The community structure parameters for the ten MR-GO site stations collected in December 1980 and June 1981 are summarized in Table 4. Table 5 depicts percent composition of major taxa groups by station for each survey. Seasonal values of macroinfauna density and taxa are graphically compared in Figures 3 and 4, respectively. The number of taxa per station ranged from 20 to 93 at stations 4 and 1, respectively, with a mean of 59 taxa for the site. The number of individuals (and density as number of individuals $\cdot m^{-2}$) per station ranged from 199 (663 individuals $\cdot m^{-2}$) to 2886 (9620 individuals $\cdot m^{-2}$) at stations 4 and 2, respectively, with a mean of 1207 individuals (3862 individuals $\cdot m^{-2}$) for the site.

Species diversity (H', base e) ranged from 1.63 to 2.83 at stations 4 and 8, respectively. Species evenness (J') ranged from 0.47 at station 1 to 0.79 at station 8, while species richness ranged from 3.59 to 11.63 at stations 4 and 1, respectively.

Annelids comprised the greatest mean percentage of individuals (53.6%) followed by arthropods (27.1%), miscellaneous taxa (10.6%), molluscs (6.9%) and echinoderms (1.8%) (see Table 5). Wet weight biomass measurements reflect large variability between stations, due primarily to the presence of large individuals of molluscs and their shell weights.

Comparison of community structure parameters computed for the macroinfauna collected during June 1981 (Table 4, Figures 3 and 4) reflects a general decrease in total taxa (mean of 40 taxa per station), but an increase in total individuals (mean of 1844 individuals per station). This results in lower species diversity, evenness, and richness values when compared with species indices values for December 1980. The increase of individuals and decrease of taxa for annelids and molluscs contributed to the shift in community structure (Table 5). Even though the mean number of individuals increased from December to June, mean wet weight biomass measurements decreased by nearly 50% over the same period, perhaps reflecting the small size of individuals from spring recruitment.

3.2.2 NUMERICAL CLASSIFICATION ANALYSIS

Both normal (station) and inverse (taxon) classification analysis using Czekanowski's index of similarity and group-average sorting were performed in the MR-GO data sets. Taxa included in the analysis were selected on the basis of those contributing at least 1% of the total abundance at any given station, and/or any taxa relating distinct spatial distribution. Count data for the 29 taxa selected for analysis (15 polychaetes, 6 amphipods, 3 decapods, 2 molluscs, 1 rhynchocoel, 1 echinoderm, and 1 cephalochordate) are included in a matrix of station and species groups adjoining the resultant dendrograms from classification analysis (Figure 5). Numerically, these taxa account for 75% of the fauna collected during both MR-GO surveys.

Numerical classification of the 20 stations was interpreted at a four group level. Group A contains stations 4 and 10 from both seasons; Group B contains stations 5, 7, and 9 from both seasons, station 6 (December) and outlier station 2 (June); Group C contains stations 1, 3, and 8 from both seasons and station 2 (December); and Group D is represented by outlier station 6 (June). Sediment composition of each station was used to characterize habitats by group: sand (Group A), mud to muddy sand (Group B), muddy sand to

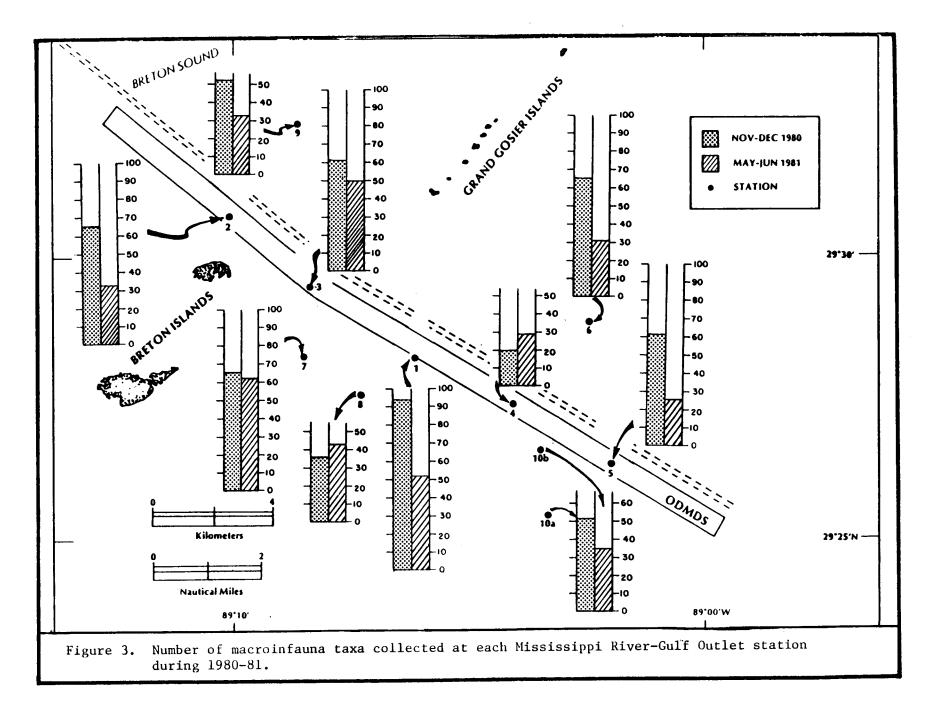

MR-GO 1980	(741)	Total Taxa	Total Indiv.	Mean Density (ind./m ²)	Species Diversity (H _e ') e	Species Evenness (J')	Species Richness (D)	Biomass (Wet Wt.) (gm ⁻²)
St.	1	93	2727	9090±4232	2.14	0.47	11.63	215.4790
	2	65	2886	9620±3724	2.36	0.56	8.03	251.1016
	3	62	715	2383± 716	2.54	0.62	9.28	21.228
	4	20	199	663± 210	1.63	0.55	3.59	1.3174
	5	62	1430	4767±1050	2.47	0.60	8.40	33.1724
	6	65	1060	1927± 830	2.83	0.68	9.19	21.1169
	7	65	717	2390±1247	2.57	0.62	9.73	147.1032
	8	36	318	1060± 300	2.82	0.79	6.07	37.2175
	9	66	1060	3533± 447	2.78	0.66	9.33	431.9496
	10	52	955	3183±1159	2.02	0.51	7.43	20.0342
Me	ean	59	1207	3862±1392	2.42	0.61	8.27	117.9615
MR-GO 1981	(750)							
St.	1	52	906	3624± 1355	2.18	0.55	7.49	196.7769
	2	33	2631	10524± 4374	1.13	0.32	4.06	44.8808
	3	50	3578	11927±12672	1.62	0.41	5.99	103.9778
	4	29	376	1504± 619	2.26	0.67	4.72	54.942
	5	26	1405	4683± 1288	1.97	0.60	3.45	19.7882
	6	31	626	2087± 591	2.31	0.67	4.66	52.6670
	7	63	4681	15603±15001	1.16	0.28	7.34	232.5949
	8	43	813	3252± 2713	2.60	0.69	6.27	27.462
	9	33	2651	8837± 4761	1.86	0.53	4.06	49.9082
	10	36	771	3084± 1463	2.36	0.66	5.26	2.1056
М	ean	40	1844	6513± 4484	1.95	0.54	5.33	78.5103

Table 4. General community structure parameters for EPA Mississippi River-Gulf Outlet survey sites, 1980-1981. Five replicates per station.

MR-GO (741 1980	Annelida	Arthropoda	Mollusca	Echinodermata	Miscellaneous
St. 1	75.4	3.2	3.6	3.0	14.8
2	78.6	4.1	2.6	4.9	9.8
3	46.5	18.7	3.2	0.4	31.2
4	3.0	85.0	3.0	5.0	4.0
5	67.0	27.3	4.0	0.2	1.5
6	55.8	32.6	7.0	0.5	4.1
7	69.6	11.4	14.8	1.3	2.9
8	47.8	17.0	14.5	0.3	20.4
9	67.4	4.1	12.6	2.7	13.2
10	. 24.4	68.0	3.8	0.1	3.7
Mean	53.6	27.1	6.9	1.8	10.6
MR-GO (750))				
1981 1	74.3	5.5	10.5	0.0	9.7
2	92.1	0.5	4.0	1.8	1.6
3	26.3	0.1	68.8	0.0	4.8
4	29.2	67.0	3.2	0.3	0.3
5	79.8	14.0	5.8	0.0	0.4
6	70.5	0.6	27.6	0.2	1.1
7	93.0	3.3	1.7	<0.1	1.9
	55.2	11.3	26.3	0.2	7.0
8		4.5	14.6	0.7	4.4
8 9	75.8				
	75.8 21.9	72.5	4.7	0.0	0.9

Table 5. Percent composition of major taxa groups by station. Percentages reflect mean values for each station at EPA Mississippi River-Gulf Outlet survey sites, 1980-1981.

.

sand (Group C), and muddy sand (Group D). This characterization is based on mean percentage of sand at each station where sand is presented in greater amounts than 90%, muddy sand is 50-90% sand, sandy mud is 20-40% sand, and mud is less than 20% sand.

Classification of 29 taxa at 20 stations is interpreted at a five group level (Figure 5), where grouping taxa is based on their overall distribution patterns. The relationship of taxa or taxa groups to habitats delineated by the classification of station groups is presented as a data matrix in a two-way contingency table. By further simplifying measures of frequency occurrence and degree of restriction of taxa to habitats (station groups) through the use of nodal analysis, species group constancy, fidelity, and abundance are assessed. Nodal diagrams are presented in Figure 6 and discussed below.

The spatial distribution of stations is determined primarily by the occurrence and abundance of several taxa groups, either as distinct spatial peaks, or relatively constant numbers (i.e., ubiquitous occurrence throughout the area). The division of major groups is shown at 25% similarity. Species Group 1 (Branchiostoma (LPIL) to Prionospio (LPIL) are best represented in Station Group C by the high fidelity and abundance values (Figure 6). These taxa are predominantly sand-dwelling animals found primarily in high-energy tidal inlet habitats.

Species Group 2 is further divided into Groups 2a and 2b at 45% similarity. Species Group 2a (<u>Callianassa</u> <u>biformis</u> to <u>Aglaophamus</u> <u>verrilli</u>) appears associated with mud and muddy sand habitats as reflected by moderate and high fidelity values for station Groups B and D, respectively. Species Group 2b (<u>Mulinia lateralis, Spiophanes bombyx, Mediomastus</u> spp., Rhyncho-coela) contains numerically dominant taxa that are well distributed throughout the study site as shown by high constancy for all station groups. These taxa appear less responsive to sediment composition than the Group 2a taxa. The irruptive seasonal occurrence of <u>Mulinia lateralis</u> in June reflects the spring and early summer recruitment period.

Species Group 3 is composed only of amphipods (<u>Eudevenopus hondu-</u> ranus, <u>Protohaustorius</u> sp. A, <u>Acanthohaustorius</u> sp. A, and <u>Corophium tubercu-</u> latum) found predominantly in the sand habitat of Station Group A. These taxa show the highest constancy, fidelity, and abundance for this habitat (Figure 6).

Species Group 4 contains the polychaetes <u>Ninoe</u> sp. B, <u>Cossura</u> <u>soyeri</u>, and <u>Mediomastus</u> <u>ambiseta</u>. These taxa have a high fidelity for Station Group 2; however, they appear restricted to the mud habitat found at station 9 (Figure 5).

Species Group 5 contains outlier taxa <u>Tellina</u>, <u>Chaetozone</u> sp. B, and <u>Acanthohaustorius</u> <u>intermedius</u>. The moderate and high fidelity values for Station Groups A and D, respectively, reflect the abundance of <u>Acanthohaus-</u> <u>torius</u> <u>intermedia</u> in sand habitats, while <u>Tellina</u> and <u>Chaetozone</u> sp. B are more abundant in muddy sand habitats (Figure 5).

16

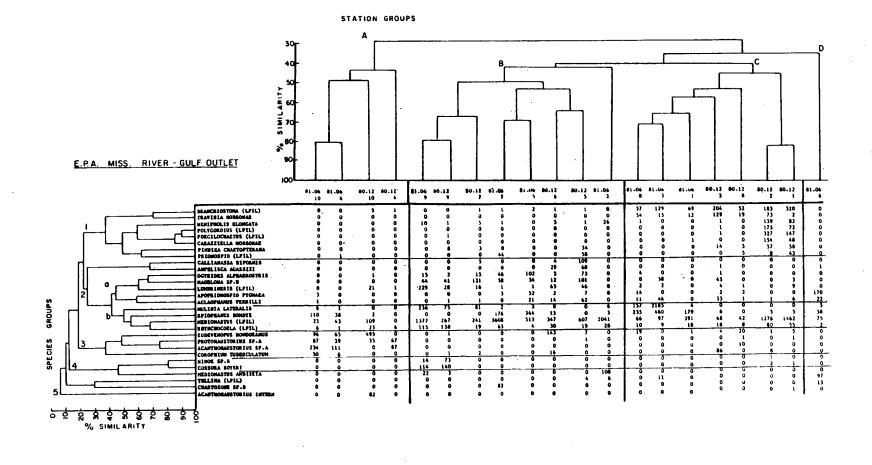
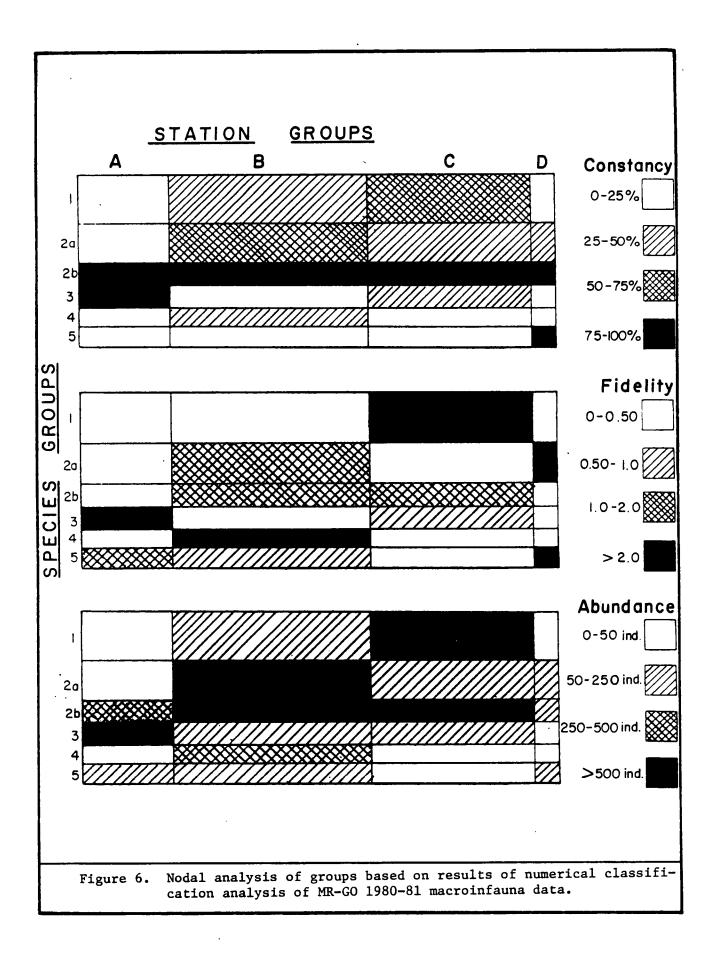



Figure 5. Results of normal (station) and inverse (species) classification analysis of Mississippi River- Gulf Outlet 1980-81 macroinfauna data.

17

3.3 CHEVRON BENTHOS

3.3.1 FAUNAL COMPOSITION, ABUNDANCE, AND COMMUNITY STRUCTURE

The total number of individuals and total number of taxa for each of the five major taxa groups collected during the Chevron 1970-1971 surveys are presented in Table 6. Molluscs comprised the greatest percentage of total individuals (60.7%), and were represented by 102 taxa. <u>Mulinia lateralis</u>, <u>Abra aequalis</u>, <u>Nassarius acutus</u>, and <u>Tellina versicolor accounted for 92% of the mollusc population; <u>M. lateralis</u> contributed to almost 45% of the total macroinfauna.</u>

Annelids ranked second in dominance with 26.8% of the total abundance, yet contributed 164 taxa. <u>Mediomastus</u> spp., <u>Myriochele</u> <u>oculata</u>, <u>Spio-</u> <u>phanes</u> <u>bombyx</u>, <u>Magelona</u> sp. H, and <u>Cirriformia</u> sp. C accounted for 67% of the polychaete population in the study area.

Arthropods ranked third in both number of taxa (97) and percent of total individuals (8.9%). The cumacean <u>Oxyurostylis smithi</u> was the most abundant arthropod and occurred in greater frequency (at most stations) than any other species. Amphipods <u>Melita nitida</u> and <u>Dulichiella appendiculata</u> occurred only once, but were second and third most abundant arthropods collected.

The miscellaneous taxa represented by sipunculids, rhynchocoels, phoronids, coelenterates, and cephalochordates ranked fourth in total abundance (2.2%) and total taxa (15). Rhynchocoela and Actiniaria were not identified to species, but comprised 58% of the miscellaneous taxa reported.

Echinoderms contributed 13 taxa and less than 2% of the total individuals. Most of the individuals were represented by ophiuroids <u>Micropholis</u> atra and <u>Amphiodia trychna</u>; both comprised 64% of total echinoderms.

The community structure parameters for the Chevron 1970 and 1971 surveys are presented in Table 7. The 37 samples collected in 1970 yielded an average of 42 taxa and 618 individuals per station with a mean density of 2059 individuals $^{m-2}$. By comparison, the 1971 collection of 12 samples (six of which were different from previously sampled stations) averaged 46 taxa, 2616 individuals with a mean density of 8718 individuals $^{m-2}$.

The number of taxa ranged from 12 at station 166 in 1970 to 71 at station 158 in 1971. Mean density (number of individuals m^{-2}) ranged from 203 at station 166 in 1970 to 49,102 at station 126 in 1971.

Species diversity indices (H', base e) were highly variable during both sampling periods. Diversity values ranged from 0.77 to 3.78 in 1970 and from 0.36 to 3.59 in 1971. Species evenness (J') ranged from 0.12 in 1971 to 0.96 in 1970, and species richness (D) ranged from 1.96 in 1971 to 12.73 in 1970. Means of measured indices are similar for stations evaluated each year; species diversity (H') = 2.48 (1970), 2.24 (1971); species evenness (J') = 0.67 (1970), 0.60 (1971); and species diversity (D) = 6.95 (1970), 6.87 (1971).

Extreme ranges of index values in Table 7 are explained by closer examination of the data from a couple of stations. Low species diversity, evenness, and richness values at station 167 in 1971 relate directly to the

				· · · · · · · · · · · · · · · · · · ·
Phylum	Phylum Total	% of <u>Grand Total</u>	No. Taxa in Phylum	% Total <u>No. of Taxa</u>
Annelida	14,546	26.8	164	41.9
Mollusca	32,949	60.7	102	26.1
Arthropoda	4,866	8.9	97	24.8
Echinodermata	761	1.4	13	3.3
Miscellaneous	1,183	2.2	15	3.9
Total	54,305		391	

NUMERICAL DOMINANTS

Table 6.	Taxonomic listing of phyla and numerically dominant taxa from
	Chevron-Mississippi Delta 1970-1971 survey sites.

.

Taxon	No. Individuals	<u>% Total</u>	<u>Cum. %</u>	f*
Mulinia lateralis (M)	24300	44.75	44.75	33
Mediomastus (LPIL) (P)	4439	8.17	52.92	24
Abra aequalis (M)	3577 .	6.58	59.50	27
Myriochele oculata (P)	2804	5.16	64.66	31
Oxyurostylis smithi (A)	1746	3.21	67.87	37
Spiophanes bombyx (P)	1383	2.54	70.41	26
Nassarius acutus (M)	1238	2.28	72.69	36
Tellina versicolor (M)	1071	1.97	74.66	35
Melita nitida (A)	704	1.29	75.95	1
Magelona sp. H (P)	654	1.20	77.15	21
Cirriformia sp. C (P)	566	1.04	78.19	1
Paraprionospio pinnata (P)	472	0.87	79.06	29
Mysidopsis bigelowi (A)	448	0.82	79.88	24
Dulichiella appendiculata (A)	380	0.70	80.67	1
Spiochaetopterus oculatus (P)	377	0.69	81.36	18
Owenia sp. A (P)	365	0.67	82.03	26
Rhynchocoela (LPIL) (R)	355	0.65	82.68	44
Solen viridis (M)	346	0.64	83.32	23
Actiniaria (LPIL) (C)	336	0.62	83.94	21
Lumbrineris verrilli (P)	302	0.55	84.49	23
Periploma (LPIL) (M)	284	0.52	85.01	4
Micropholis atra (E)	257	0.47	85.48	15
Amphiodia trychna (E)	229	0.42	85.90	8
Nuculana concentrica (M)	224	0.41	86.31	16

(A) = Arthropoda, (C) = Coelenterata, (E) = Echinodermata,

(M) = Mollusca, (P) = Polychaeta, (R) = Rhynchocoela
*
frequency of occurrence (maximum = 49)

.

HEVRON 1970	Total Taxa	Total Indiv.	Mean Density (ind./m ²)	Species Diversity (H _e ')	Species Evenness (J')	Species Richness (D)
St. 12	30	262	873	2.64	0.78	5.21
31	25	38	126	3.10	0.96	6.60
36	30	182	606	2.52	0.74	5.57
41	65	1625	5416	2.97	0.71	8.66
46	57	319	1063	3.25	0.81	9.71
47 51	29 58	960 339	3200 1130	1.22 3.18	0.36 0.78	4.08 9.78
53	54	738	2460	2.31	0.56	8.03
58	46	432	1410	2.73	0.71	7.44
68	20	74	247	2.47	0.82	4.42
70	33	154	513	2.71	0.78	6.35
87	46	390	1300	2.69	0.70	7.54
92	54	692	2306	2.57	0.64	8.10
96	38	221	737	2.90	0.80	6.85
100	51	841	2803	1.95	0.50	7.42
103 107	49	1813	6043 1407	1.03	0.27	6.40
109	57 48	422 300	1000	2.70 3.02	0.67 0.78	9.26
111	63	464	1547	3.42	0.83	8.24 10.10
114	37	415	1383	2.54	0.70	5.97
119	42	202	673	2.98	0.80	7.72
122	48	1482	4940	1.76	0.45	6.44
132	61	504	1680	3.13	0.76	9.64
134	18	170	567	2.10	0.73	3.31
· 136	43	2833	9442	0.80	0.21	5.28
143	52	1514	5046	2.25	0.57	6.97
149	52	791	2636	2.33	0.59	7.64
151	54	986	3286	2.59	0.65	7.69
154	24	102	340	2.70	0.85	4.97
157 158	48 71	166 244	553 813	3.28 3.78	0.85 0.89	9.20 12.73
161	27	1100	3666	0.77	0.23	3.71
163	35	88	293	3.34	0.94	7.60
164	20	78	260	2.40	0.80	4.36
166	12	61	203	1.80	0.72	2.68
167	22	1513	5043	1.05	0.34	2.87
171	51	340	1133	2.67	0.68	8.58
Mean	42	618	2059	2.48	0.67	6,95
CHEVRON 1971	Total Taxa	Total Indiv.	Mean Density (ind./m ²)	Species Diversity (He')	Species Evenness (J')	Species Richness (D)
St. 18	29	313	1043	1.98	0.58	4.87
21	46	1920	6399	1.73	0.45	5.95
36	46	542	1806	2.78	0.73	7.15
51	56	271	903	3.59	0.89	9.82
58	70	601	2003	2.94	0.69	10.78
73	68	1136	3786	1.69	0.40	9.52
85	68	466	1553	3.52	0.83	10.90
126	47	14732	49102	0.87	0.23	4.80
147	68	1405	4683	2.55	0.60	9.24
164	25	99 62	330	2.71	0.84	5.22 3.15
166 167	14 19	62 9862	207 32870	2.21 0.36	0.84 0.12	1.96
101	17	1002	8718	2.24	0.60	6.87

Table 7.	· General community structure parameters for Chevron sites, 19	.970-1971.
	One replicate $(0.3m^2)$ per station.	

.

occurrence of a large population of <u>Mulinia lateralis</u> (9032 individuals) with few other taxa or individuals present. Conversely, high species diversity, evenness, and richness values at station 158 in 1970 relate to a small number of individuals represented by a large number of taxa.

Annelids comprised the greatest mean percent composition of individuals by station (Table 8) during both 1970 and 1971 sampling periods, respectively (37.5%, 47.7%), followed by molluscs (33.4%, 34.6%), arthropods (19.2%, 12.3%), miscellaneous taxa (6.6%, 3.8%), and echinoderms (3.3%, 2.1%). These figures seem to contradict the percentages presented for the annelids and molluscs in Table 6. However, upon closer examination of individual station data the discrepancy is explained \cdot by the few occurrences of <u>Mulinia</u> <u>lateralis</u> in extremely large numbers, thereby contributing significantly to the molluscan numerical counts in the combined surveys. (Refer to stations 103, 122, 136, 161, and 167 in 1970 and stations 21, 126, and 167 in 1971 on Tables 7 and 8 as examples of dominant mollusc populations.)

3.3.2 NUMERICAL CLASSIFICATION ANALYSIS

Both normal (station) and inverse (taxon) classification analysis using Czekanowski's index of similarity and group-average sorting were performed on the Chevron 1970-1971 data sets. As presented for the MR-GO data sets, taxa included in the analysis were selected on the basis of those contributing at least 1% of the total abundance at any given station, and/or any taxa relating distinct spatial distribution. Count data for 30 taxa selected for analysis (ten molluscs, nine polychaetes, five amphipods, two echinoderms, one actiniarian, one cumacean, one mysid, and one sipunculid) are included in a matrix of station and species groups adjoining the resultant dendrograms from classification analysis (Figure 7). Numerically, these taxa account for 87% of the fauna collected.

Numerical classification of the 49 stations is interpreted at a six group level. Group A contains four samples from two stations west of the Mississippi River Delta, three stations in south Breton Sound (near Delta) and one station east of the Delta approximately 30m depth. Group B contains two stations, one east of the Delta and the other in Chandeleur/ Breton Sound. Group C contains twelve stations located in the proximity of south Chandeleur Islands and Breton Island at tidal inlets and adjacent offshore areas. Group D contains twenty-two stations located throughout Chandeleur and Breton Sounds; one station located outside the Sound is considered an outlier. Group E contains two stations located in an inlet and offshore of Chandeleur Sound, similar to Group C. Group F contains outlier stations 31, 163, and 164.

Classification of 30 taxa at 49 stations is interpreted at a seven group level (Figure 7). A nodal analysis conducted on this two-way contingency table assessed species group constancy, fidelity, and abundance with station groups. Nodal diagrams are presented in Figure 8 and discussed below with respect to species groups.

The division of major species groups is at a 25% similarity. Species Group 1 (<u>Amphiodia trychna to Anadara transerva</u>) shows high fidelity and abundance for Station Group D (Figure 7). Species Group 2 (<u>Micropholis atra</u> to <u>Spiochaetopterus oculatus</u>) also has high fidelity and abundance values for

CHEVRON 1970 St. 12 31 36 41 46 47	<u>Annelida</u> 80.9 28.9	Arthropoda	Mollusca	Echinodermata	Mi
31 36 41 46 47					<u>Miscellaneous</u>
36 41 46 47	28.9	6.9	12.2		
41 46 47		26.3	26.3	2.6	15.8
46 47	35.2	5.5	52.2	5.5	1.7
47	7.4	30.8	49.4	11.7	0.7
	48.9	12.9	32.6	1.6	4.1
	0.1	88.7	7.3	3.8	
51	48.9	19.2	20.1	1.5	10.3
53	56.7	8.9	17.1	12.2	4.2
58	52.9	22.7	14.9	1.9	7.6
68	59.5	17.6	13.5	8.1	1.4
70	55.8	7.8	31.7	2.0	2.6
87	46.4	6.4	34.7	11.0	1.3
92	32.6	20.5	20.9	1.3	24.6
96	39.4	13.1	21.7	24.4	1.4
100	68.4	8.6	20.3	0.1	2.6
103	9.5	3.9	86.1	0.1	0.3
107	64.4	8.5	21.8	0.2	5.0
109	51.3	10.3	19.7	1.3	17.3
111	23.5	19.0	41.6	13.4	3.0
114	39.5	37.8	20.2		2.4
119	43.1	20.3	20.8	7.4	8.4
122	17.3	4.0	74.6	0.3	3.8
132	35.5	9.5	39.7	5.2	10.1
134	61.2		31.8		7.1
136	3.9	1.9	88.8	0.1	5.2
143	58.8	2.6	35.4	0.4	1.8
149	31.5	55.0	12.9		1.3
151	29.7	51.1	17.8	0.3	1.0
154	7.8	52.9	32.4	1.0	5.9
157	57.2	20.5	9.6		12.6
158	58.2	13.5	9.4	0.8	18.0
161	4.6	2.4	92.5		0.4
163	39.8	21.6	22.7	4.5	11.4
164	37.2	7.7	29.5		25.6
166	18.0	16.4	49.2		16.4
167	21.7	0.6	77.1	0.1	0.5
171	11.8	53.5	26.5	0.9	7.4
Mean	37.5	19.2	33.4	3.3	6.6
CHEVRON 1971 A	nnelida	Arthropoda	Mollusca	Echinodermata	Miscellaneous
-					
St. 18	63.3	3.5	21.0	10.9	1.3
21	31.8	1.3	63.1	3.0	0.8
36	58.1	7.2	30.3	3.1	1.3
51	46.5	7.4	36.2	6.3	3.6
58	49.0	37.4	7.6	0.8	5.2
73	72.2	2.6	24.5		0.7
85	59.2	17.8	13.3	1.1	8.6
126	29.3	1.0	69.3	0.1	0.3
147	70.3	22.8	1.0	0.1	5.8
164	58.6	30.3	8.1		3.0
166	27.4	16.1	41.4		14.6
167	1.2	0.3	98.3	0.1	0.1
Mean	47.2	12.3	34.6	2.1	3.8

Table 8. Percent composition of major taxa groups by station at Chevron sites, 1970-1971.

...

-

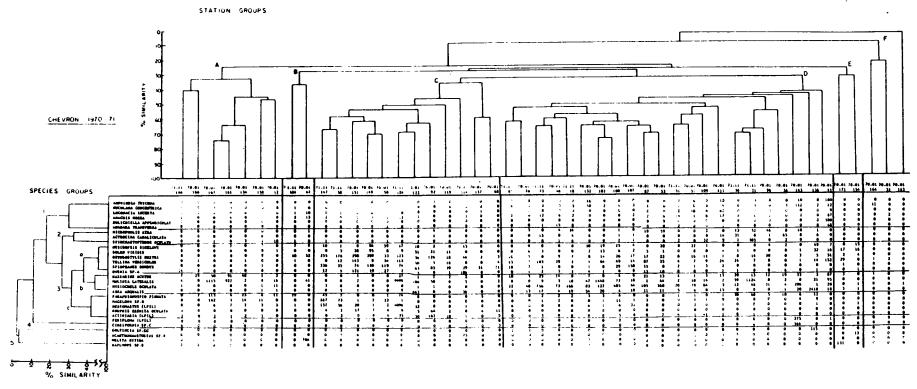
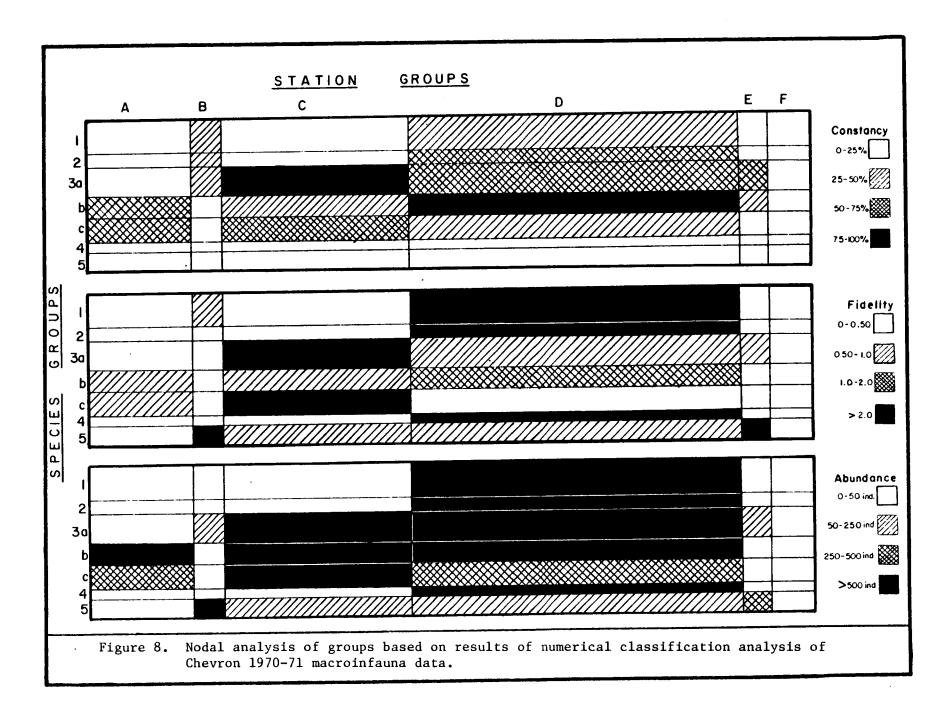



Figure 7. Results of normal (stations) and inverse (species) classification analysis of Chevron 1970-71 macroinfauna data.

.

Group D. These two species groups best represent the infauna in Breton and Chandeleur Sounds.

Species Group 3 is represented by the numerically dominant and ubiquitous taxa that are distributed throughout the study area. Group 3 also has a high fidelity for Group C stations--those located predominantly seaward of the tidal inlets into Breton and Chandeleur Sounds. Species Group 3 was further divided into Groups 3a, 3b, and 3c at 45% similarity to identify any trends in the ubiquitous fauna. Species Group 3a (<u>Mysidopsis bigelowi</u> to <u>Owenia</u> sp. A) represents taxa found in Station Groups C, D, and E. Species Group 3b (<u>Nassarius acutus, Mulinia lateralis, Myriochele oculata</u>, and <u>Abra</u> <u>aequalis</u>) are widely distributed throughout Station Groups A, C, and D, and are known to irrupt seasonally in their populations. Group 3c (<u>Paraprionospio</u> <u>pinnata, Magelona</u> sp. H, <u>Mediomastus</u> spp.) are generally distributed along the inner shelf areas, as depicted by their fidelity for Station Groups A and C (Figure 8).

Species Group 4 (<u>Periploma</u> and <u>Cirriformia</u> sp. C) was present only at station 143 (Group D), but represented extremely high numbers of individuals.

Species Group 5 is comprised of outlier species which were collected one time in large numbers at single stations, i.e., <u>Golfingia</u> sp. GG (115 individuals) at station 136, <u>Acanthohaustorius</u> sp. B (75 specimens) at station 114, <u>Melita</u> <u>nitida</u> (704 individuals) at station 47, and <u>Haploops</u> sp. B (131 individuals) at station 171.

By rearranging the stations listed in Table 7 into their respective classified groups, the composite mean community structure parameters become useful for characterization of the major communities (Table 9). The inner shelf station Group A is represented by the lowest species indices, but is the second most abundant with an average density of 5530 individuals m^{-2} . Both station Groups C (tidal inlet/inner shelf) and D (sound stations) contain a large number of taxa, with Group C having the greatest average density (6104 individuals m^{-2}). Stations Groups B, E, and F are considered outliers and merged for sake of simplicity. Groups B, E, and F have the highest mean species diversity value (2.59) which is reflected in high species evenness (0.77) and low density value (812 individuals m^{-2}).

Since neither sediment composition nor depth measurements are available for the Chevron study site, additional analyses, i.e., multidiscriminant, were not performed on the data. Comparisons with the MR-GO macroinfauna data provide a synoptic overview of the infaunal assemblages associated with proposed habitats within the Chevron survey site.

4.0 DISCUSSION

Upon initial review of MR-GO and Chevron benchic data, several features make comparing results difficult. First, differences in surface sample size $(0.06 \text{ m}^2 \text{ vs. } 0.3 \text{ m}^2)$ result in possible under- and/or over-estimates of population densities, although mean station densities are within one-half an order of magnitude between surveys and seasons. This may be due to replication at the MR-GO site, thus equalizing total areas sampled, i.e., 5 x 0.06 m².

STATION GROUPS	Total Taxa	Total Indiv.	Mean Density ₂ (ind./m ²)	Species Diversity (H _e ')	Species Evenness (J')	Species Richness (D)
Α	24	1659	5530	1.83	0.47	4.45
B,E,F	30	244	812	2.59	0.77	5.92
С	49	1832	6104	2.46	0.64	7.45
D	51	787	2571	2.55	0.64	7.91

.

. .

Table 9. Mean community structure parameters for station groups resulting from classification of Chevron station data.

Second, samples were collected with entirely different devices, a box corer and a diver-manned suction corer. Whereas, a box corer is considered a quantitative sampler with a known surface area and a computed volume, a suction corer can only provide semi-quantitative samples. The amount of surface area and depth of penetration is controlled by a diver where bias or inconsistency in sampling methodology is possible.

Third, differences in sieve size (0.5 mm vs. 1.2 mm) will definitely effect the "type" of faunal organisms collected, or not collected as the case may be. The larger, deeper burrowing bivalve molluscs and crustaceans collected with a suction corer and retained on a 1.2 mm sieve (Chevron data) may reflect a slightly different or incomplete assemblage when compared to the MR-GO fauna retained on a 0.5 mm sieve (i.e., predominately polychaetes).

Results of the 1980-1981 MR-GO survey depict the seasonal variability of macroinfauna populations found in the nearshore coastal waters of the northern Gulf of Mexico. The temporal pattern (i.e., significantly greater densities in June as compared to December) was not unexpected, as most of the numerically important taxa collected in the study are known to have late winter to late spring periods of recruitment (Johnson, 1980; Shaw et al., 1982).

When compared with benthic studies conducted in the area (TechCon, 1980; Shaw et al., 1982), the assemblage of taxa inhabiting tidal inlets are similar to those found for the MR-GO survey. These include the polychaetes <u>Polygordius</u> spp., <u>Poecilochaetus</u> sp., <u>Carazziella</u> <u>hobsonae</u>; cephalochordate <u>Branchiostoma</u> sp.; and amphipods <u>Eudevenopsis</u> <u>honduranus</u>, <u>Protohaustorius</u> sp. <u>A, Acanthohaustorius</u> sp. A at the predominantly sand habitats. Polychaetes <u>Ninoe</u> sp. B, <u>Cossura</u> <u>soyeri</u>, and <u>Mediomastus</u> <u>ambiseta</u> have been found to occur in a muddy substrate adjacent to a navigation channel at the mouth of Mobile Bay (TechCon, 1980). Taxa commonly found in areas similar to the MR-GO site include the ubiquitous bivalve <u>Mulinia</u> <u>lateralis</u>, ophiuroid <u>Hemipholis</u> <u>elongata</u>, polychaetes <u>Mediomastus</u> <u>californiensis</u>, <u>Spiophanes</u> <u>bombyx</u>, and predaceous rhynchocoels (TechCon, 1980; Shaw et al., 1982). The tidal inlet communities are composed of euryhaline species which are generally suspension and deposit feeders adapted to the physical stresses of currents (e.g., movement of sediment) and salinity fluctuations.

The MR-GO and Chevron surveys are represented by few comparable dominant taxa. These include the molluscs <u>Mulinia</u> <u>lateralis</u>, <u>Abra aequalis</u>, <u>Nuculana</u> <u>concentrica</u> and polychaetes <u>Mediomastus</u> sp., <u>Spiophanes</u> <u>bombyx</u>, <u>Paraprionospio</u> <u>pinnata</u>, <u>Magelona</u> sp. H. These species are generally found within open sounds, tidal inlets, and inner shelf (5-20 m) habitats of the Tuscaloosa Trend study area.

Results of the Chevron survey show similarities with macrofauna assemblages described by Parker (1956) for the Mississippi Delta and by Shaw et al. (1982) for Mississippi Sound and offshore coastal waters. Taxa from comparable inner shelf and tidal inlet assemblages include the polychaetes <u>Owenia</u> sp. A, <u>Spiophanes bombyx</u>, <u>Magelona</u> sp. H, <u>Paraprionospio pinnata</u>, <u>Mediomastus</u> spp.; molluscs <u>Mulinia lateralis</u>, <u>Tellina versicolor</u>; and cumacean <u>Oxyurostylis smithi</u>. Open Sound assemblages include comparable taxa such as the polychaetes <u>Myriochele oculata</u>, <u>Mediomastus</u> spp., and molluscs <u>Abra aequalis</u>, <u>Acteocina canaliculata</u>, <u>Nuculana concentrica</u>, <u>Anachis obesa</u>, and <u>Nassarius</u> acutus. The infauna assemblages evaluated for the MR-GO and Chevron sites were incorporated during the formulation of proposed assemblages presented in Tables 6.8 and 6.20 of the Tuscaloosa Trend study area report.

•

•

• •

5.0 LITERATURE CITED

- Bloom, S.A., S.L. Santos, and J.G. Field. 1977. A package of computer programs for benthic community analysis. Bull. Mar. Sci. 27:577-580.
- Boesch, D.F. 1977. Application of numerical classification in ecological investigations of water pollution. EPA Rept. 600/3-77-033. U.S. Environmental Protection Agency, Corvallis, Washington. 115 pp.
- Dames and Moore. 1979. The Mississippi, Alabama, Florida, Outer Continental Shelf Baseline Environmental Survey, Interior, Bureau of Land Management, New Orleans OCS Office. Contract No. AA550-CT7-34.
- Environmental Protection Agency. 1982. Draft environmental impact statement (EIS) for the Mississippi River-Gulf Outlet, Louisiana dredged material disposal site designation. Washington, D.C. Appendix A.
- Field, J.G. and G. McFarlane. 1968. Numerical methods in marine ecology. 1. A quantitative "similarity" analysis of rocky shore samples in False Bay, South Africa. Zool. Afr. 3:119-137.
- Johnson, P. G. 1980. Seasonal variation in benthic community structure in Mobile Bay, Alabama. M.S. Thesis. University of Alabama at Birmingham. Birmingham, Alabama. 112 pp.
- Lance, G.N. and W.T. Williams. 1967. A general theory of classifactory sorting strategies. I. Hierarchical systems. Comput. J. 9:373-380.

Margalef, R. 1958. Information theory in ecology. Gen. Sys. 3:36-71.

- Parker, R. H. 1956. Macroinvertebrate assemblages as indicators of sedimentary environments in east Mississippi Delta region. Bull. Amer. Assoc. Petrol. Geol. 40:295-376.
- Pielou, E.C. 1966. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13:131-144.
- Shannon, C.E. and W. Weaver. 1963. The mathematical theory of communication. Univ. of Illinois Press, Urbana. 117 pp.
- Shaw, J. K., P. G. Johnson, R. M. Ewing, C. E. Comiskey, C. C. Brandt and T. A. Farmer. 1982. Final Report: Benthic macroinfauna community characterizations in Mississippi Sound and adjacent waters. Contract No. DACW01-80-C-0427, Barry A. Vittor & Associates, Inc., Mobile, AL. Prepared for Mobile District, U.S. Army Corps of Engineers, Mobile, AL.
- TechCon, Inc. 1980. Environmental monitoring program of MOEPSI Well No. 1-76 (Mobile Bay State Lease 347 No. 1) in Mobile Bay, Alabama, vol. 1: Environmental effects. Final Report to Mobil Oil Exploration and Producing Southeast, Inc., New Orleans, Louisiana.

ATTACHMENT I - TAXONOMIC LISTING FOR MISSISSIPPI RIVER-GULF OUTLET SAMPLES TAXONOMIC LISTING 01/16/85 FOR IEC GULF OUTLET SAMPLES (1980 & 1981) ANNELIDA **DLIGOCHAETA** OLIGOCHAETA (LPIL) POLYCHAETA POLYCHAETA (LPIL) AMPHARETIDAE AMPHARETIDAE (LPIL) MELINNA MACULATA SABELLIDES SP.A AMPHINOMIDAE PARAMPHINOME SP.B ARABELLIDAE DRILONEREIS (LPIL)

CAPITELLIDAE CAPITELLIDAE (LPIL) MEDIOMASTUS (LPIL) MEDIOMASTUS AMBISETA MEDIOMASTUS CALIFORNIENSIS NOTOMASTUS (LPIL) NOTOMASTUS DAUERI NOTOMASTUS HEMIPODUS NOTOMASTUS LOBATUS CHRYSOPETALIDAE PALEANOTUS HETEROSETA CIRRATULIDAE CAULLERIELLA (LPIL) CHAETOZONE SP.B CHAETOZONE SP.D CIRRATULIDAE (LPIL) CIRRIFORMIA (LPIL) CIRRIFORMIA SP.C COSSURIDAE COSSURA (LPIL) COSSURA DELTA COSSURA SOYERI FLABELLIGERIDAE FLABELLIGERIDAE (LPIL) PIROMIS ROBERTI **GLYCERIDAE** GLYCERA (LPIL) **GLYCERA AMERICANA GLYCERA DIBRANCHIATA** GONIADIDAE **GLYCINDE SOLITARIA** GONIADA LITTOREA GONIADIDAE (LPIL) HESIONIDAE HESIONIDAE (LPIL) HESIONIDAE GENUS C

Page 1

ţ

01/16/85

FOR IEC GULF OUTLET SAMPLES (1980 & 1981)

PODARKE OBSCURA PODARKEOPSIS LEVIFUSCINA LUMBRINERIDAE LUMBRINERIDAE (LPIL) LUMBRINERIS (LPIL) LUMBRINERIS VERRILLI NINCE SP.B MAGELONIDAE MAGELONA (LPIL) MAGELONA CF. RIDJAI MAGELONA PETTIBONEAE MAGELONA SP.B MAGELONA SP.H MALDANIDAE ASYCHIS ELONGATUS CLYMENELLA TORQUATA MALDANIDAE (LPIL) NEPHTYIDAE AGLAOPHAMUS (LPIL) AGLAOPHAMUS VERRILLI NEPHTYIDAE (LPIL) NEPHTYS (LPIL) NEPHTYS PICTA NEPHTYS SIMONI NEPHTYS SP.D NEPHTYS SP.F NEREIDAE NEREIDAE (LPIL) NEREIS (LPIL) NEREIS FALSA NEREIS MICROMMA ONUPHIDAE DIOPATRA (LPIL) **DIOPATRA CUPREA** DIOPATRA TRIDENTATA MOOREONUPHIS NEBULOSA ONUPHIDAE (LPIL) OPHELIIDAE ARMANDIA AGILIS ARMANDIA MACULATA OPHELIIDAE (LPIL) TRAVISIA (LPIL) TRAVISIA HOBSONAE ORBINIIDAE LEITOSCOLOPLOS (LPIL) LEITOSCOLOPLOS FRAGILIS ORBINIIDAE (LPIL) SCOLOPLOS RUBRA

SCOLOPLOS SP.A

Page 2

01/16/85

FOR IEC GULF OUTLET SAMPLES (1980 & 1981)

SCOLOPLOS TEXANA OWENIIDAE MYRIOCHELE OCULATA OWENIA SP.A PARAONIDAE ARICIDEA SP.E CIRROPHORUS (LPIL) PARAONIDAE (LPIL) PHYLLODOCIDAE ETEONE (LPIL) ETEONE HETEROPODA ETEONE LACTEA PHYLLODOCIDAE (LPIL) PILARGIDAE ANCISTROSYLLIS (LPIL) ANCISTROSYLLIS HARTMANAE ANCISTROSYLLIS JONESI ANCISTROSYLLIS PAPILLOSA CABIRA INCERTA SIGAMBRA TENTACULATA POECILOCHAETIDAE POECILOCHAETUS (LPIL) POLYGORDIIDAE POLYGORDIUS (LPIL) POLYNDIDAE LEPIDASTHENIA VARIUS MALMGRENIELLA SP.A MALMGRENIELLA SP.B POLYNOIDAE (LPIL) POLYODONTIDAE POLYODONTES (LPIL) POLYODONTES LUPINUS SABELLIDAE SABELLIDAE (LPIL) SERPUL I DAE HYDROIDES (LPIL) HYDROIDES SP.B HYDROIDES UNCINATA SERPULIDAE (LPIL) SIGALIONIDAE SIGALION SP.A SIGALIONIDAE (LPIL) STHENELAIS (LPIL) STHENELAIS SP.A THALENESSA (LPIL) THALENESSA SP.A SPIONIDAE APOPRIONOSPID PYEMAEA

CARAZZIELLA HOBSONAE

DISPIO UNCINATA MALACOCEROS (LPIL) PARAPRIONOSPIO PINNATA POLYDORA LIGNI POLYDORA SOCIALIS POLYDORA SP.A PRIONOSPIO (LPIL) PRIONOSPIO CRISTATA PRIONOSPIO SP.E SCOLELEPIS TEXANA SPIONIDAE (LPIL) SPIOPHANES BOMBYX SPIOPHANES CF. MISSIONENSIS SYLLIDAE SYLLIDAE (LPIL) TYPOSYLLIS ARMILLARIS TYPOSYLLIS CF. LUTEA TEREBELLIDAE LOIMIA SP.A PISTA (LPIL) TEREBELLIDAE (LPIL) ARTHROPODA (CRUSTACEA) CRUSTACEA (LPIL) AMPHIPODA AMPELISCIDAE AMPELISCA (LPIL) AMPELISCA AGASSIZI AMPELISCA BICARINATA AMPELISCA CF. VERRILLI AMPELISCA SP.A AMPELISCA SP.C ARIGISSIDAE ARGISSA HAMATIPES CAPRELLIDAE CAPRELLIDAE (LPIL) COROPHIIDAE COROPHIUM LACUSTRE COROPHIUM TUBERCULATUM ERICHTHONIUS BRASILIENSIS HAUSTORIIDAE ACANTHOHAUSTORIUS INTERMEDIUS ACANTHOHAUSTORIUS SP.A HAUSTORIIDAE (LPIL) PROTOHAUSTORIUS SP.A ISCHYROCERIDAE CERAPUS SP.A LILJEBORGIIDAE LISTRIELLA (LPIL) LISTRIELLA BARNARDI

FOR IEC GULF OUTLET SAMPLES (1980 & 1981)

01/16/85

LISTRIELLA SP.A LISTRIELLA SP.B MELITIDAE MELITA (LPIL) **OEDICEROTIDAE** MONOCULODES NYEI MONOCULODES SP.A SYNCHELIDIUM AMERICANUM PHOTIDAE MICROPROTOPUS RANEYI PHOTIS MACROMANUS PHOXOCEPHALIDAE METHARPINA FLORIDANA RHEPOXYNIUS EPISTOMUS PLATYISCHNOPIDAE EUDEVENOPUS HONDURANUS PLATYISCHNOPIDAE (LPIL) CUMACEA BODOTRIIDAE CYCLASPIS SP.A DIASTYLIDAE OXYUROSTYLIS SMITHI DECAPODA (NATANTIA) DECAPODA NATANTIA (LPIL) ALPHEIDAE AUTOMATE EVERMANNI **OGYRIDAE OGYRIDES ALPHAEROSTRIS** OGYRIDES HAYI PENAEIDAE PENAEIDAE (LPIL) TRACHYPENAEUS (LPIL) TRACHYPENAEUS CONSTRICTUS TRACHYPENAEUS SIMILIS PROCESSIDAE PROCESSA HEMPHILLI DECAPODA (REPTANTIA) ANOMURA (LPIL) ALBUNEIDAE ALBUNEA PARETII BRACHYURA BRACHYURA (LPIL) CALAPPIDAE HEPATUS EPHELITICUS CALLIANASSIDAE CALLIANASSA (LPIL) CALLIANASSA BIFORMIS DIOGENIDAE DIOGENIDAE (LPIL)

LEUCOSIIDAE ILIACANTHA (LPIL) PAGURIDAE PAGURIDAE (LPIL) PINNOTHERIDAE PINNIXA (LPIL) PINNIXA CHAETOPTERANA PINNIXA PEARSEI PORCELLANIDAE EUCERAMUS PRAELONGUS PORTUNIDAE **OVALIPES FLORIDANUS** PORTUNUS (LPIL) UPOGEBIIDAE UPOGEBIA AFFINIS XANTHIDAE HEXAPANOPEUS (LPIL) HEXAPANOPEUS ANGUSTIFRONS MICROPANOPE (LPIL) XANTHIDAE (LPIL) ISOPODA IDDTEIDAE EDOTEA TRILOBA SPHAEROMIDAE ANCINUS DEPRESSUS MYSIDACEA MYSIDAE BOWMANIELLA (LPIL) BOWMANIELLA BRASILIENSIS BOWMANIELLA FLORIDANA MYSIDAE (LPIL) MYSIDOPSIS (LPIL) OSTRACODA OSTRACODA (LPIL) STOMATOPODA STOMATOPODA (LPIL) CEPHALOCHORDATA LEPTOCARDII BRANCHIOSTOMIDAE BRANCHIDSTOMA (LPIL) CNIDARIA ACTINIARIA ACTINIARIA (LPIL) ACTINIARIA (LPIL) ECHINODERMATA ASTERIODEA LUIDIIDAE LUIDIA CLATHRATA ECHINOIDEA ECHINOIDEA (LPIL)

01/16/85

FOR IEC GULF OUTLET SAMPLES (1980 & 1981)

OPHIUROIDEA

DPHIUROIDEA (LPIL) AMPHIURIDAE AMPHIOPLUS CONIORTODES MICROPHOLIS ATRA DPHIOPHRAGMUS (LPIL) OPHIACTIDAE HEMIPHOLIS ELONGATA ECHIURA (LPIL)

HEMICHORDATA

BALANOGLOSSUS AURANTIACUS

MOLLUSCA

ECHIURA

GASTROPODA GASTROPODA (LPIL) ACTEOCINIDAE ACTEOCINA CANALICULATA ACTEONIDAE RICTAXIS PUNCTOSTRIATUS BUCCINIDAE BUCCINIDAE (LPIL) CANTHARUS CANCELLARIUS CAECIDAE CAECIDAE (LPIL) COLUMBELLIDAE ANACHIS OBESA MITRELLA LUNATA CREPIDULIDAE CREPIDULA (LPIL) EPITONIIDAE EPITONIUM CF. HUMPHREYSI MELANELLIDAE MELANELLIDAE (LPIL) MELONGENIDAE BUSYCON CONTRARIUM MURICIDAE THAIS HAEMASTOMA NASSARIIDAE NASSARIUS (LPIL) NASSARIUS ACUTUS NATICIDAE NATICA PUSILLA POLINICES DUPLICATUS SINUM PERSPECTIVUM OLIVIDAE OLIVA SAYANA OLIVELLA (LPIL) **DLIVELLA DEALBATA** PYRAMIDELLIDAE TURBONILLA (LPIL) Page 7

FOR IEC GULF DUTLET SAMPLES (1980 & 1981)

01/16/85

TURRIDAE KURTZIELLA (LPIL) KURTZIELLA CF. CERINA VITRINELLIDAE VITRINELLIDAE (LPIL) PELECYPODA PELECYPODA (LPIL) ARCIDAE ANADARA (LPIL) ANADARA TRANSVERSA ARCIDAE (LPIL) BARBATIA CANDIDA CARDIIDAE CARDIIDAE (LPIL) TRACHYCARDIUM (LPIL) CORBULIDAE CORBULA (LPIL) CORBULA BARRATTIANA CORBULA CONTRACTA CORBULA DIETZIANA CRASSATELLIDAE CRASSINELLA (LPIL) CRASSINELLA MARTINICENSIS CUSPIDARIIDAE CUSPIDARIIDAE (LPIL) GASTROCHAENIDAE GASTROCHAENA (LPIL) **GASTROCHAENA HIANS** LASAEIDAE LASAEIDAE (LPIL) LUCINIDAE LINGA AMIANTUS LUCINIDAE (LPIL) LYONSIIDAE LYONSIA HYALINA MACTRIDAE MULINIA (LPIL) MULINIA LATERALIS PANDORIDAE PANDORA TRILINEATA PERIPLOMATIDAE PERIPLOMA FRAGILE PERIPLOMA MARGARITACEUM SEMELIDAE ABRA AEQUALIS SEMELIDAE (LPIL) SOLECURTIDAE TAGELUS DIVISUS SOLENIDAE ENSIS MINDR Page 8

01/16/85

FOR IEC GULF OUTLET SAMPLES (1980 & 1981)

TELLINIDAE MACOMA (LPIL) TELLINA (LPIL) TELLINA AEQUISTRIATA TELLINA ALTERNATA TELLINA IRIS TELLINA VERSICOLOR TELLINIDAE (LPIL) UNGULINIDAE DIPLODONTA PUNCTATA VENERIDAE CHIONE (LPIL) CHIONE CANCELLATA CYCLINELLA TENUIS DOSINIA (LPIL) GEMMA GEMMA MERCENARIA CAMPECHIENSIS VENERIDAE (LPIL) PHORONIS (LPIL) PLATYHELMINTHES TURBELLARIA TURBELLARIA (LPIL) RHYNCHOCOELA RHYNCHOCOELA (LPIL) ASPIDOSIPHONIDAE

PHORONIDA

SIPUNCULA

ASPIDOSIPHON (LPIL) ASPIDOSIPHON ALBUS GOLFINGIIDAE **GOLFINGIA TRICHOCEPHALA** PHASCOLION STROMBI

TAXONOMIC LISTING 01/08/85 FOR CHEVRON SAMPLES COLLECTED 1970 & 1971 ANNELIDA OLIGOCHAETA OLIGOCHAETA (LPIL) POLYCHAETA AMPHARETIDAE AMPHARETE SP.A AMPHARETIDAE (LPIL) MELINNA MACULATA SABELLIDES SP.A AMPHINOMIDAE PARAMPHINOME SP.B ARABELLIDAE ARABELLIDAE (LPIL) DRILONEREIS LONGA DRILONEREIS SP.6 CAPITELLIDAE CAPITELLA CAPITATA CAPITELLIDAE (LPIL) MEDIOMASTUS (LPIL) MEDIDMASTUS AMBISETA NOTOMASTUS (LPIL) NOTOMASTUS LOBATUS NOTOMASTUS SP.E CHAETOPTERIDAE CHAETOPTERUS VARIOPEDATUS SPIOCHAETOPTERUS OCULATUS CHRYSOPETALIDAE PALEANOTUS HETEROSETA CIRRATULIDAE CHAETOZONE (LPIL) CHAETOZONE SP.D CIRRATULIDAE (LPIL) CIRRIFORMIA SP.A CIRRIFORMIA SP.C THARYX CF. ANNULOSUS COSSURIDAE COSSURA DELTA COSSURA SOYERI COSSURIDAE (LPIL) DORVILLEIDAE SCHISTOMERINGOS CF. RUDOLPHI EULEPETHIDAE GRUBEULEPIS SP.C EUNICIDAE MARPHYSA SANGUINEA MARPHYSA SP.B FLABELLIGERIDAE FLABELLIGERIDAE (LPIL) PIROMIS ROBERTI

FOR CHEVRON SAMPLES COLLECTED 1970 & 1971

01/08/85

÷

GLYCERIDAE GLYCERA (LPIL) **GLYCERA AMERICANA GLYCERA SP.E GLYCERA SP.K** GONIADIDAE **GLYCINDE SOLITARIA** GONIADA (LPIL) **GONIADA LITTOREA** GONIADIDAE (LPIL) OPHIOGLYCERA SP.A HESIONIDAE HESIONIDAE (LPIL) PODARKEOPSIS LEVIFUSCINA LUMBRINERIDAE LUMBRINERIDAE (LPIL) LUMBRINERIS (LPIL) LUMBRINERIS ERNESTI LUMBRINERIS JANUARII LUMBRINERIS SP.B LUMBRINERIS SP.D LUMBRINERIS SP.E LUMBRINERIS VERRILLI NINOE SP.B MAGELONIDAE MAGELONA (LPIL) MAGELONA CF. RIDJAI MAGELONA SP.6 MAGELONA SP.H MAGELONA SP.I MAGELONA SP.L MALDANIDAE ASYCHIS ELONGATUS CLYMENELLA TORQUATA MALDANE SP.A MALDANIDAE (LPIL) NEPHTYIDAE AGLAOPHAMUS VERRILLI NEPHTYIDAE (LPIL) NEPHTYS (LPIL) NEPHTYS INCISA **NEPHTYS PICTA** NEPHTYS SIMONI NEPHTYS SP.D NEREIDAE CERATOCEPHALE OCULATA NEREIDAE (LPIL) NEREIS (LPIL)

NEREIS LAMELLOSA

TAXONOMIC LISTING FOR CHEVRON SAMPLES COLLECTED 1970 & 1971

01/08/85

NEREIS MICROMMA NEREIS SUCCINEA ONUPHIDAE DIOPATRA (LPIL) DIOPATRA CUPREA **DIOPATRA NEOTRIDENS** DIOPATRA TRIDENTATA KINBERGONUPHIS SP.A MOOREONUPHIS CF. NEBULOSA MOOREONUPHIS SP.A MOOREONUPHIS SP.B ONUPHIDAE (LPIL) ONUPHIS EREMITA OCULATA OPHELIIDAE ARMANDIA AGILIS ARMANDIA MACULATA ORBINIIDAE LEITOSCOLOPLOS (LPIL) LEITOSCOLOPLOS FRAGILIS NAINEREIS SP.A ORBINIIDAE (LPIL) SCOLOPLOS (LPIL) SCOLOPLOS RUBRA SCOLOPLOS SP.B OWENIIDAE MYRIOCHELE OCULATA MYRIOWENIA SP.A **DWENIA SP.A** PARADNIDAE ARICIDEA (LPIL) -ARICIDEA FRAGILIS ARICIDEA SP.C ARICIDEA SP.K CIRROPHORUS (LPIL) PARAONIDAE (LPIL) PECTINARIIDAE PECTINARIA (LPIL) PECTINARIA GOULDII PECTINARIIDAE (LPIL) PHYLLODOCIDAE PARANAITIS GARDINERI PHYLLODOCE ARENAE PHYLLODOCIDAE (LPIL) PILARGIDAE ANCISTROSYLLIS JONESI ANCISTROSYLLIS SP.B CABIRA INCERTA PILARGIS SP.B

SIGAMBRA (LPIL)

Page 3

01/08/85

FOR CHEVRON SAMPLES COLLECTED 1970 & 1971

SIGAMBRA BASSI SIGAMBRA TENTACULATA SIGAMBRA WASSI POECILOCHAETIDAE POECILOCHAETUS (LPIL) POLYNOIDAE HALDSYDNELLA SP.A LEPIDASTHENIA VARIUS LEPIDONOTUS SUBLEVIS MALMGRENIELLA SP.A POLYNOIDAE (LPIL) POLYODONTIDAE EUPANTHALIS SP.A POLYODONTES SP.A SABELLIDAE CHONE (LPIL) MEGALOMMA PIGMENTUM SABELLIDAE (LPIL) SERPULIDAE HYDROIDES SP.D HYDROIDES UNCINATA POMATOCEROS AMERICANUS SERPULIDAE (LPIL) SIGALIONIDAE FIMBRIOSTHENELAIS (LPIL) FIMBRIDSTHENELAIS SP.A SIGALIONIDAE (LPIL) STHENELAIS SP.A THALENESSA SP.A SPIONIDAE APOPRIONOSPIO PYEMAEA CARAZZIELLA HOBSONAE CARAZZIELLA SP.A DISPIO UNCINATA MALACOCEROS VANDERHORSTI MICROSPIO PIGMENTATA PARAPRIONOSPIO (LPIL) PARAPRIONOSPIO PINNATA POLYDORA LIENI POLYDORA SOCIALIS PRIONOSPIO (LPIL) PRIONOSPIO CRISTATA SCOLELEPIS TEXANA SPIONIDAE (LPIL) SPIOPHANES BOMBYX SPIOPHANES CF. MISSIONENSIS STERNASPIDAE STERNASPIS SCUTATA SYLLIDAE AUTOLYTUS SP.A Page 4

01/08/85

FOR CHEVRON SAMPLES COLLECTED 1970 & 1971

BRANCHIOSYLLIS EXILIS TEREBELLIDAE AMAEANA (LPIL) HAUCHIELLA SP.A LOIMIA SP.A TEREBELLIDAE (LPIL) TRICHOBRANCHIDAE TEREBELLIDES STROEMI ARTHROPODA (CRUSTACEA) AMPHIPODA AMPHIPODA (LPIL) AMPELISCIADE HAPLOOPS SP.B AMPELISCIDAE AMPELISCA (LPIL) AMPELISCA AGASSIZI AMPELISCA BICARINATA AMPELISCA SP.A AMPELISCA SP.C AORIDAE LEMBOS BRUNNEOMACULATUS LEPTOCHEIRUS SP.A UNCIOLA SERRATA ATYLIDAE ATYLUS UROCARINATUS BATEIDAE BATEA CATHERINENSIS CAPRELLIDAE CAPRELLA CF. EQUILIBRA LUCONACIA INCERTA COROPHIIDAE CERAPUS (LPIL) CERAPUS SP.C COROPHIUM (LPIL) COROPHIUM TUBERCULATUM ERICHTHONIUS (LPIL) ERICHTHONIUS BRASILIENSIS GAMMARIDAE GAMMARIDAE (LPIL) HAUSTORIIDAE ACANTHOHAUSTORIUS SP.B HAUSTORIIDAE (LPIL) PSEUDOHAUSTORIUS AMERICANUS PSEUDOHAUSTORIUS CAROLINENSIS MELITIDAE DULICHIELLA APPENDICULATA MELITA FRESNELLI MELITA NITIDA **OEDICEROTIDAE** MONOCULODES (LPIL) Page 5

01/08/85

FOR CHEVRON SAMPLES COLLECTED 1970 & 1971

MONOCULODES INTERMEDIUS PHOTIDAE PHOTIS MACROMANUS PLATYISCHNOPIDAE EUDEVENOPUS HONDURANUS CUNACEA CUMACEA (LPIL) DIASTYLIDAE OXYUROSTYLIS SMITHI LEUCONIDAE EUDORELLA MONODON DECAPODA (NATANTIA) DECAPODA NATANTIA (LPIL) ALPHEIDAE ALPHEIDAE (LPIL) ALPHEOPSIS (LPIL) ALPHEUS (LPIL) ALPHEUS HETEROCHAELIS AUTOMATE EVERMANNI HIPPOLYTIDAE LATREUTES PARVULUS LAUTRETES PARVULUS OGYRIDAE **OGYRIDES ALPHAEROSTRIS** PALAEMONIDAE PERICLIMENES LONGICAUDATUS PASIPHAEIDAE LEPTOCHELA SERRATORBITA PENAEIDAE PENAEIDAE (LPIL) TRACHYPENAEUS CONSTRICTUS TRACHYPENAEUS SIMILIS PROCESSIDAE PROCESSA (LPIL) PROCESSA HEMPHILLI DECAPODA (REPTANTIA) ALBUNEIDAE ALBUNEA PARETII BRACHYURA BRACHYURA (LPIL) CALAPPIDAE HEPATUS PUNDIBUNDUS CALLIANASSIDAE CALLIANASSA (LPIL) CALLIANASSA BIFORMIS CALLIANASSIDAE (LPIL) DIOGENIDAE **ISOCHELES WURDEMANNI** GONEPLACIDAE CHASMOCARCINUS MISSISSIPPIENSI Page 6

01/08/85

FOR CHEVRON SAMPLES COLLECTED 1970 & 1971

SPEDCARCINUS LOBATUS MAJIDAE METOPORHAPHIS CALCARATA PAGURIDAE PAGURIDAE (LPIL) PAGURUS ANNULIPES PAGURUS LONGICARPUS PAGURUS POLLICARIS PARTHENOPIDAE HETEROCRYPTA GRANULATA PINNOTHERIDAE PINNIXA (LPIL) PINNIXA CHAETOPTERANA PINNIXA SAYANA PORCELLANIDAE EUCERAMUS PRAELONGUS POLYONYX SIBBESI PORTUNIDAE CALLINECTES (LPIL) CALLINECTES SAPIDUS CALLINECTES SIMILIS **DVALIPES (LPIL)** OVALIPES FLORIDANUS **DVALIPES STEPHENSONI** PORTUNIDAE (LPIL) UPOGEBIIDAE UPOGEBIA AFFINIS XANTHIDAE HEXAPANOPEUS ANGUSTIFRONS MENIPPE MERCENARIA RHITHROPANOPEUS HARRISII XANTHIDAE (LPIL) ISOPODA ISOPODA (LPIL) IDDTEIDAE EDOTEA TRILOBA SYNIDOTEA SP.B SPHAEROMIDAE ANCINUS DEPRESSUS MYSIDACEA MYSIDACEA (LPIL) MYSIDAE BOWMANIELLA PORTORICENSIS MYSIDOPSIS (LPIL) MYSIDOPSIS BAHIA MYSIDOPSIS BIGELOWI STOMATOPODA LYSIOSQUILLIDAE LYSIOSQUILLA SP.A

FOR CHEVRON SAMPLES COLLECTED 1970 & 1971

01/08/85

SQUILLIDAE SQUILLA EMPUSA TANAIDACEA TANAIDACEA (LPIL) APSEUDIDAE APSEUDES SP.B KALLIAPSEUDIDAE KALLIAPSEUDES SP.A KALLIAPSEUDES SP.B CEPHALOCHORDATA LEPTOCARDII BRANCHIOSTOMIDAE BRANCHIDSTOMA (LPIL) BRANCHIOSTOMA FLORIDAE CNIDARIA ACTINIARIA ACTINIARIA (LPIL) ACTINIARIA (LPIL) ANTHOZOA (PENNATULACEA) RENILLIDAE RENILLA MULLERI **ECHINODERMATA** ASTERIODEA LUIDIIDAE LUIDIA CLATHRATA ASTEROIDEA ASTEROIDEA (LPIL) ECHINOIDEA MELLITIDAE MELLITA QUINQUIESPERFORATA HOLOTHUROIDEA CAUDINIDAE PARACAUDINIDA CHILENSIS OBESAC PHYLLOPHORIDAE THYONE PAWSONI OPHIUROIDEA OPHIUROIDEA (LPIL) AMPHIURIDAE AMPHIODIA SP.A AMPHIODIA TRYCHNA AMPHIOPLUS (LPIL) AMPHIPHOLIS (LPIL) MICROPHOLIS ATRA MICROPHOLIS GRACILLIMA OPHIACTIDAE HEMIPHOLIS ELONGATA HEMICHORDATA BALANOGLOSSUS AURANTIACUS

MOLLUSCA

GASTROPODA

GASTROPODA (LPIL)

01/08/85

• .

FOR CHEVRON SAMPLES COLLECTED 1970 & 1971

ACTEOCINIDAE ACTEOCINA CANALICULATA ACTEONIDAE ACTEON PUNCTOSTRIATUS ATYIDAE HAMINDEA (LPIL) BUCCINIDAE CANTHARUS CANCELLARIUS CAECIDAE CAECUM JOHNSONI COLUMBELLIDAE ANACHIS OBESA COLUMBELLIDAE (LPIL) MITRELLA LUNATA CREPIDULA CREPIDULA (LPIL) CREPIDULA PLANA CYLICHNIDAE CYLICHNA ALBA CYLICHNELLA BIDENTATA EPITONIIDAE EPITONIUM ALBIDUM MELONGENIDAE BUSYCON CONTRARIUM MURICIDAE THAIS HAEMASTOMA FLORIDANA THAIS HAEMOSTOMA NASSARIIDAE NASSARIUS ACUTUS NATICIDAE NATICA PUSILLA POLINICES (LPIL) POLINICES DUPLICATUS SINUM PERSPECTIVUM OLIVIDAE **OLIVA SAYANA** OLIVELLA MUTICA PYRAMIDELLIDAE ODOSTOMIA GIBBOSA ODOSTONIA TERES TURBONILLA (LPIL) TURBONILLA HEMPHILLI TURBONILLA PORTORICANA TURBONILLA SP.C TURBONILLA SP.6 TEREBRIDAE TEREBRA DISLOCATA TURRIDAE

KURTZIELLA CF. CERINA

01/08/85

FOR CHEVRON SAMPLES COLLECTED 1970 & 1971 KURTZIELLA LIMONITELLA VITRINELLIDAE CYCLOSTREMISCUS (LPIL) CYCLOSTREMISCUS PENTAGONUS CYCLOSTREMISCUS SP.A EPISCYNIA INORNATA SOLARIORBIS INFRACARINATA NUDIBRANCHIA NUDIBRANCHIA (LPIL) PELECYPODA PELECYPODA (LPIL) ARCIDAE ANADARA (LPIL) ANADARA FLORIDANA ANADARA OVALIS ANADARA TRANSVERSA NOETIA PONDEROSA CARDIIDAE CARDIUM (LPIL) CORBULIDAE CORBULA (LPIL) CORBULA CONTRACTA CORBULA DIETZIANA CORBULA OPERCULATA VARICORBULA OPERCULATA CRASSATELLIDAE CRASSINELLA LUNULATA CUSPIDARIIDAE CARDIOMYA ORNATISSINA LASAEIDAE ERYCINA (LPIL) ERYCINA SP.B LASAEIDAE (LPIL) LUCINIDAE LINGA AMIANTUS LUCINA AMIANTUS PARVILUCINA MULTILINEATA LYONSIIDAE LYONSIA (LPIL) LYDNSIA HYALINA FLORIDANA MACTRIDAE MACTRA FRAGILIS MULINIA LATERALIS MYTILIDAE **BRANCHIDONTES EXUSTUS** MUSCULUS LATERALIS NUCULANIDAE NUCULANA ACUTA NUCULANA CONCENTRICA Page 10

FOR CHEVRON SAMPLES COLLECTED 1970 & 1971

01/08/85

NUCULIDAE NUCULA PROXIMA OSTREIDAE CRASSOSTREA VIRGINICA OSTREA EQUESTRIS PANDORIDAE PANDORA TRILINEATA PECTINIDAE CHLAMYS BENEDICTI PERIPLOMATIDAE PERIPLOMA (LPIL) PERIPLOMA MARGARITACEUM PETRICOLIDAE PETRICOLA PHOLADIFORMES PHOLADIDAE DIPLOTHYRA SMITHII SEMELIDAE ABRA AEQUALIS ABRA LIDICA SOLECURTIDAE TAGELUS DIVISUS SOLENIDAE ENSIS MINOR SOLEN VIRIDIS TELLINIDAE MACOMA MITCHELLI MACOMA PULLEYI MACOMA TENTA STRIGILLA MIRABILIS TELLIDORA CRISTATA TELLINA (LPIL) TELLINA AEQUISTRIATA TELLINA ALTERNATA TELLINA IRIS TELLINA TEXANA TELLINA VERSICOLOR TELLINIDAE (LPIL) UNGULINIDAE DIPLODONTA (LPIL) DIPLODONTA SP.A VENERIDAE AGRIOPOMA TEXASIANA CHIONE CANCELLATA DOSINIA DISCUS MERCENARIA CAMPECHIENSIS VENERIDAE (LPIL)

SCAPHOPODA

DENTALIIDAE

DENTALIUM TEXASIANUM

01/08/85

FOR CHEVRON SAMPLES COLLECTED 1970 & 1971

PHORONIDA

.

PHORONIS (LPIL)

PLATYHELMINTHES TURBELLARIA TURBELLARIA (LPIL) RHYNCHOCOELA SIPUNCULA

. 5

SIPUNCULA (LPIL) ASPIDOSIPHONIDAE ASPIDOSIPHON ALBUS ASPIDOSIPHON MUELLERI GOLFINGIIDAE GOLFINGIA SP.66 GOLFINGIA TRICHOCEPHALA PHASCOLION STROMBI

÷

TUSCALOOSA TREND REGIONAL DATA SEARCH AND SYNTHESIS STUDY

FINAL REPORT VOLUME II SUPPLEMENTAL REPORTS

APPENDIX B

DISTRIBUTION OF FISHES AND PENAEID SHRIMP OF COMMERCIAL AND RECREATIONAL IMPORTANCE ON THE CONTINENTAL SHELF OFF MISSISSIPPI AND ALABAMA

Prepared by

Rezneat M. Darnell Department of Oceanography Texas A&M University College Station, TX

LIST OF TABLES	Page 111
LIST OF FIGURES	iv 1
INTRODUCTION	
FISHES	1
TOTAL FISH CATCH	2
SHARKS	18
Clupeidae-HERRINGS	19_
Ariidae-SEA CATFISHES	19
Serranidae-SEA BASSES	21
Malacanthidae-TILEFISHES	21
Pomatomidae-BLUEFISHES	23
Rachycentridae-COBIAS	23
Carangidae-JACKS	23
Coryphaenidae-DOLPHINS	23
Lut janidae-SNAPPERS	23
Lobotidae-TRIPLETAILS	27 27
Sparidae-PORGIES Sciaenidae-DRUMS	29
Mugilidae-MULLETS	39
Scombridae-MACKERELS	42
Istiophoridae-BILLFISHES	43
Stromateidae-BUTTERFISHES	43
Bothidae-LEFTEYE FLOUNDER	45
SHRIMP	47
Penaeidae-EDIBLE SHRIMP	48
	53
SUMMARY AND SYNTHESIS	53
Estuarine dependent species Non-estuarine dependent species which are	
resident on the shelf	55
Non-estuarine dependent species which are	22
basically summer residents	55
Ecosystems considerations	59
Management recommendations	59
REFERENCES CITED	60

REFERENCES CITED

LIST OF TABLES

Page Table 1 Listing of the fish taxa in the comprehensive fish data base by family, giving both the scientific and common names and providing the number of individuals for each 3 taxon in the total catch. 2 Listing of the fish taxa in the comprehensive fish data base in order of numerical abundance and giving both the number of individuals and percent of the total 12 catch. 3 Estuarine dependent species of commercial and recreational importance collected on the continental shelf, giving numerical abundance by season, and by spawning 54 season. 4 Non-estuarine dependent species of commercial and recreational importance which are resident on the shelf, giving numerical abundance in the fish data base, percent abundance by season, and spawning season (where known). 56 5 Non-estuarine dependent species of commercial and recreational importance which are basically summer residents only, giving numerical abundance in the fish data base, spawning season (where known), and portion of the

shelf primarily used.

57

Figure		Page
1	Seasonal abundance of the combined catch for all spe- cies considered in the synthesis of fish and shrimp collection data.	17
2	Seasonal distribution patterns of <u>Arius felis</u> on the outer continental shelf of the Tuscaloosa Trend study area.	2.0.
3	Seasonal distribution patterns of the family Serranidae on the outer continental shelf of the Tuscaloosa Trend study area.	22
4	Seasonal distribution patterns of the family Lutjanidae on the outer continental shelf of the Tuscaloosa Trend study area.	25
5	Seasonal distribution patterns of <u>Lutjanus campechanus</u> on the outer continental shelf of the Tuscaloosa Trend study area.	26.
6	Seasonal distribution patterns of <u>Archosargus probato-</u> <u>cephalus</u> on the outer continental shelf of the Tusca- loosa Trend study area.	28
7	Seasonal distribution patterns of the family Sciaenidae on the outer continental shelf of the Tuscaloosa Trend study area.	30
8	Seasonal distribution patterns of <u>Cynoscion arenarius</u> on the outer continental shelf of the Tuscaloosa Trend study area.	31
9	Seasonal distribution patterns of <u>Cynoscion nothus</u> on the outer continental shelf of the Tuscaloosa Trend study area.	33
10	Seasonal distribution patterns of <u>Leiostomus xanthurus</u> on the outer continental shelf of the Tuscaloosa Trend study area.	35
11	Seasonal distribution patterns of <u>Menticirrhus</u> <u>ameri-</u> <u>canus</u> on the outer continental shelf of the Tuscaloosa Trend study area.	36
12	Seasonal distribution patterns of <u>Micropogonias undu-</u> latus on the outer continental shelf of the Tuscaloosa Trend study area.	38
13	Seasonal distribution patterns of <u>Pogonias cromis</u> on the outer continental shelf of the Tuscaloosa Trend study area.	40

14	Seasonal distribution patterns of <u>Sciaenops ocellata</u> on the outer continental shelf of the Tuscaloosa Trend study area.	41
15	Numbers of billfishes raised per hour trolling in the north central Gulf of Mexico in 1982.	44
16	Seasonal distribution patterns of <u>Peprilus burti</u> on the outer continental shelf of the Tuscaloosa Trend study area.	46
17	Seasonal distribution patterns of <u>Penaeus aztecus</u> on the outer continental shelf of the Tuscaloosa Trend study area.	49
18	Seasonal distribution patterns of <u>Penaeus duorarum</u> on the outer continental shelf of the Tuscaloosa Trend study area.	51
19	Seasonal distribution patterns of <u>Penaeus setiferus</u> on the outer continental shelf of the Tuscaloosa Trend study area.	52

.

v

INTRODUCTION

The Tuscaloosa Trend study area includes the continental shelf seaward of the barrier islands, and the study would not be complete without addressing the biology of this shelf region, giving particular attention to those species of commercial and recreational importance. During the past four decades many trawl studies have been carried out in this area, most of which are unpublished. However, the basic collecting data are available and can be used to provide a reasonably detailed account of the seasonal compositions and densities and, by implication, the seasonal dynamics of the various species. It is the purpose of the present study to bring together and analyze the most reliable trawl data available for the continental shelf from the Mississippi River Delta tothe Alabama-Florida border and to supplement this with information from other sources in order to provide state-of-the-art insight into the seasonal dynamics of key shrimp and fish species.

Doubt has been cast upon the validity of taxonomic identifications in many of the earlier collections for two reasons. During the early years new species were being described and older ones redefined. In addition, on some of the cruises identifications were made on shipboard by unknown and possibly incompetent personnel. In order to circumvent these problems it has been necessary to utilize only the most recent data and to avoid, wherever possible, identifications not known to have been made by competent taxonomists. A further safeguard is to base the analyses upon those species which are most readily recognized and least subject to taxonomic confusion. These are the procedures followed in the present study. Whereas, there may be occasional taxonomic errors in the total species list, high reliance may be placed upon the identifications of species employed in the actual analyses.

FISHES

A large data base was assembled to provide information concerning species composition and seasonal density patterns of the fishes of the continental shelf seaward of the barrier islands from the Mississippi River Delta to the Alabama-Florida border. This comprehensive data base was constructed from six separate data sets which are listed below.

- 1. GCRL Monthly transects across the shelf by personnel of the Gulf Coast Research Laboratory of Ocean Springs, MS.
- MBT Monthly transects across the shelf by personnel of the National Marine Fisheries Service laboratory in Galveston, TX and referred to in the published paper by Moore, Brusher and Trent (1970).
- 3. DD Collections made throughout the area during the spring season by personnel of the Oceanography Department of Texas A&M University under the supervision of Darnell and Defenbaugh (see Defenbaugh, 1976).
- 4. MAFLA Seasonal collections made at scattered localities during the BLMsponsored MAFLA study.
- 5. McCAFFREY Random collections made during all seasons by McCaffrey for a Ph.D dissertation at Florida State University (see McCaffrey, 1981).

6. PASCAGOULA - Random collections made throughout the area during all seasons by personnel of the National Marine Fisheries Service laboratory in Pascagoula, MS. The data are from cruises of the FRS OREGON II during the years 1975-1982.

For all data sets the taxonomy was updated, and equations were applied so that each trawl collection is expressed as 60 minutes of trawling effort by a standard trawl of 45 foot headrope length and trawl doors of dimensions 84 inches by 40 inches towed at a rate of 3 knots. Station representation throughout the area is considered adequate for all seasons except for two problems. Stations tend to be scarce east of Perdido Bay in the area less than 40 m deep and along the entire shelf edge at depths greater than 120 m. Thus, the distribution patterns and limits in the east and in deeper waters have had to be defined in a less objective way than elsewhere. Despite these limitations, the information presented herein is considered to be by far the most critical inspection of the composition and distribution of the shelf ichthyofauna of this section of the continental shelf ever presented.

TOTAL FISH CATCH

Although the primary focus will be upon species and groups of commercial and recreational importance, preliminary attention will be given to the composition and distribution of the entire trawlable ichthyofauna. The combined data base includes 201,585 fishes representing 250 taxa. In Table 1 these are listed in phylogenetic order with the number of individuals given for each taxon. Since several field collections were often combined as a single station, rare species may appear as a fraction of a single individual.

In Table 2 the fish taxa are listed in order of numerical abundance together with their percentage of the total catch. The two most abundant species (<u>Stenotomus caprinus</u> and <u>Micropogonias undulatus</u>) made up about 36 percent of the total catch, and these were also the two most abundant species encountered on the northwestern Gulf shelf (Darnell et al., 1983). The four most abundant species made up over 50 percent of the entire catch.

In Figure 1 the seasonal abundance of the combined catch is displayed. In the winter two general areas of abundance are noted where the catch rate exceeded 1,000 fishes per hour of trawling effort. The first is a broad area, basically between 20 and 40 m from Perdido Bay to the Chandeleur Islands. This appears to be the wintering grounds for fishes from the nursery grounds of Mobile Bay, Mississippi Sound, and the Biloxi marshes of Louisiana. The second area lies in waters of all depths just east of the Mississippi River Delta outlets. This appears to be the wintering grounds for the fishes whose nursery is the delta marshes. In spring the patterns are broken into a series of high density areas with no clear-cut definition. This probably relates to the fact that many species spawn in late winter and spring and the catch of juveniles plus adults confounds the analysis. During summer high densities stretched southward from Mobile Bay and eastward from Breton Sound, converging in an area of extremely high density in an area south of Pascagoula, MS in the depth range of 30-50 m. Here, catch density exceeded 10,000 fishes per hour of trawling. This pattern appears to represent the swarms of young which are migrating from the nurseries added to the older individuals which have re-These migrations likely stem from Mobile Bay and the mained on the shelf. Pascagoula marshes to the north and the Louisiana marshes via the Gulf Outlet

2

Table 1.	Listing of the fish taxa in the comprehensive fish data base by
	family, giving both the scientific and common names and providing
	the number of individuals of each taxon in the total catch.

Taxon		Abundance
Scientific name	Common name	(Number)
Carcharhinidae	REQUIEM SHARKS	
Carcharhinus acronotus Mustelus canis Mustelus sp.	blacknose shark smooth dogfish	3.1 6.2 3.1
Rhizoprionodon terraenovae	Atlantic sharpnose shark	14.5
Sphyrnidae	HAMMERHEAD SHARKS	
Sphyrna tiburo	bonnethead	5.9
Squatinidae	ANGEL SHARKS	
Squatina dumerili	Atlantic angel shark	16.0
Rhinobatidae	GUITARFISHES	
Rhinobatos lentiginosus	Atlantic guitarfish	.1
Torpedinidae	ELECTRIC RAYS	
Narcine brasiliensis	lesser electric ray	89.3
Rajidae	SKATES	
Breviraja sp. Raja eglanteria Raja garmani Raja texana	clearnose skate rosette skate roundel skate	15.5 29.3 38.8 247.1
Dasyatidae	STINGRAYS	
Dasyatis americana Dasyatis sabina Dasyatis sayi	southern stingray Atlantic stingray bluntnose stingray	19.6 22.6 7.5
Myliobatidae	EAGLE RAYS	
Rhinoptera bonasus	cownose ray	8.2
Anguillidae	FRESHWATER EELS	
Anguilla rostrata	American eel	.8

Moringuidae	SPAGHETTI EELS	
Moringua sp.		12.9
Muraenidae	MORAYS	
Gymnothorax nigromarginatus	blackedge moray	226.5
Nettastomidae	DUCKBILL EELS	
Hoplunnis diomedianus Hoplunnis macrurus Hoplunnis tenuis	blacktail pike-conger freckled pike-conger spotted pike-conger	64.6 18.4 124.7
Congridae	CONGER EELS	
Ariosoma balearicum Hildebrandia flava Paraconger caudilimbatus Uroconger syringinus	bandtooth conger yellow conger margintail conger threadtail conger	42.7 163.5 25.8 6.1
Ophichthidae	SNAKE EELS	
Ophichthus gomesi Ophichthus ocellatus	shrimp eel palespotted eel	1.4 7.4
Clupeidae	HERRINGS	
Alosa chrysochloris Brevoortia patronus Etrumeus teres Harengula jaguana Opisthonema oglinum Sardinella aurita	skipjack herring gulf menhaden round herring scaled sardine Atlantic thread herring Spanish sardine	1.0 92.9 105.8 1,039.0 25.3 17.4
Engraulidae	ANCHOVIES	
Anchoa hepsetus Anchoa lyolepis Anchoa mitchilli	striped anchovy dusky anchovy bay anchovy	3,974.9 231.1 675.0
Argentinidae	ARGENTINES	
Argentina striata Glossanodon pygmaeus	striated argentine pygmy argentine	28.4 6.1
Synodontidae	LIZARDFISHES	
Saurida brasiliensis Saurida normani Synodus foetens Synodus intermedius Synodus poeyi Trachinocephalus myops	largescale lizardfish shortjaw lizardfish inshore lizardfish sand diver offshore lizardfish snakefish	18,216.0 65.8 3,948.6 92.8 481.8 649.8

.

Chlorophthalmidae	GREENEYES	
Chlorophthalmus agassizi	shortnose greeneye	25.8
Myctophidae	LANTERNFISHES	
Myctophidae (undet.) Diaphus dumerili		2.8 9.2
Ariidae	SEA CATFISHES	
Arius felis Bagre marinus	h ardhea d catfish gafftopsail catfish	4,519.8 139.9
Batrachoididae	TOADFISHES	
Porichthys plectrodon	Atlantic midshipman	588.1
Lophiidae	GOOSEFISHES	
Lophiidae (undet.) Lophius americanus	goosefish	.2 12.1
Antennariidae	FROGFISHES	
Antennarius radiosus	singlespot frogfish	548.9
Ogcocephalidae	BATFISHES	
Dibranchus atlanticus Halieutichthys aculeatus Ogcocephalus corniger Ogcocephalus parvus Ogcocephalus radiatus Ogcocephalus sp.	offshore batfish pancake batfish roughback batfish polka-dot batfish	39.6 2,460.4 25.8 220.5 24.3 96.6
Zalieutes mcgintyi	tricorn batfish	1,551.4
Bregmacerotidae	CODLETS	
Bregmaceros atlanticus	antenna codlet	27.2
Gadidae	CODFISHES	
Merluccius albidus Physiculus fulvus Steindachneria argentea Urophycis cirrata Urophycis earlli Urophycis floridana Urophycis regia	luminous hake gulf hake Carolina hake southern hake spotted hake	25.8 242.9 2,069.4 263.2 144.7 766.6 293.3
Macrouridae	GRENADIERS	
Hymenocephalus cavernosus		39.6

.

•

• •

CUSK-EELS Ophidiidae 3.1 Ophidiidae (undet.) 136.9 bearded brotula Brotula barbata 29.8 Brotula sp. blackedge cusk-eel 335.6 Lepophidium graellsi mottled cusk-eel 15.7 Lepophidium jeannae 73.0 Lepophidium profundorum offshore cusk-eel 79.4 Lepophidium sp. 385.9 Neobythites gilli 9.4 Ophidion grayi blotched cusk-eel 37.6 Ophidion holbrooki bank cusk-eel Ophidion marginatum 103.5 striped cusk-eel 28.6 crested cusk-eel Ophidion welshi 8.9 Ophidion sp. 2.8 polka-dot cusk-eel Otophidium omostigmum FLYINGFISHES Exocoetidae 3.0 Hemirhamphus brasiliensis ballyhoo SQUIRRELFISHES Holocentridae 3.7 bigeye soldierfish Ostichthys trachypoma BOARFISHES Caproidae 1.9 deepbody boarfish Antigonia capros **SNIPEFISHES** Centriscidae 90.5 Macrorhamphosus scolopax longspine snipefish PIPEFISHES Syngnathidae 35.1 lined seahorse Hippocampus erectus dwarf seahorse .4 Hippocampus zosterae TEMPERATE BASSES Percichthyidae 168.9 blackmouth bass Synagrops bellus 55.5 Synagrops spinosa SEA BASSES Serranidae 1,031.2 bank sea bass Centropristis ocyurus 5,882.0 rock sea bass Centropristis philadelphica 3,424.9 dwarf sand perch Diplectrum bivittatum 150.7 Diplectrum formosum sand perch yellowedge grouper 3.1 Epinephelus flavolimbatus 21.6 Epinephelus niveatus snowy grouper 36.4 Gonioplectrus hispanus Spanish flag .2 Hemanthias leptus longtail bass 51.7 Hemanthias vivanus red barbier

Liopropoma sp.

Serranidae (continued)

Serraniculus pumilio Serranus atrobranchus Serranus notospilus	pygmy sea bass blackear bass saddle bass	36.4 2,543.2 1,756.0
Grammistidae	SOAPFISHES	
Rypticus bistrispinus	freckled soapfish	40.0
Priacanthidae	BIGEYES	
Priacanthus arenatus Pristigenys alta	bigeye short bigeye	13.0 27.9
Apogonidae	CARDINALFISHES	
Apogon aurolineatus Apogon pseudomaculatus	bridle cardinalfish twospot cardinalfish	285.4 6.1
Malacanthidae	TILEFISHES	
Caulolatilus intermedius Caulolatilus microps	anchor tilefish blueline tilefish	90.4 38.4
Pomatomidae	BLUEFISHES	
Pomatomus saltatrix	bluefish	.5
Rachycentridae	COBIAS	
Rachycentron canadum	cobia	9.4
Echeneidae	REMORAS	
Echeneis naucrates	sharksucker	11.2
Carangidae	JACKS	
Caranx crysos Chloroscombrus chrysurus Decapterus punctatus Hemicaranx amblyrhynchus Oligoplites saurus Selar crumenophthalmus Selene setapinnis Selene vomer Seriola dumerili Trachurus lathami Lutjanidae	blue runner Atlantic bumper round scad bluntnose jack leatherjacket bigeye scad Atlantic moonfish lookdown greater amberjack rough scad SNAPPERS	86.4 1,140.7 120.2 40.0 76.6 32.9 74.6 35.4 19.9 1,064.3
Lutjanus campechanus	red snapper	1,131.8
Lutjanus synagris Pristipomoides aquilonaris Rhomboplites aurorubens	lane snapper wenchman vermilion snapper	37.6 923.0 9.2

Gerreidae	MOJARRAS	
Diapterus plumieri Eucinostomus argenteus Eucinostomus gula Eucinostomus sp.	striped mojarra spotfin mojarra silver jenny	15.5 3.9 1,106.9 22.3
Haemulidae	GRUNTS	
Orthopristis chrysoptera	pigfish	131.8
Sparidae	PORGIES	
Archosargus probatocephalus Calamus leucosteus Lagodon rhomboides Pagrus pagrus Stenotomus caprinus	sheepshead whitebone porgy pinfish red porgy longspine porgy	12.6 3,342.3 1,296.2 7.9 39,533.3
Sciaenidae	DRUMS	
Bairdiella chrysoura Cynoscion arenarius Cynoscion nothus Cynoscion sp. Equetus acuminatus Equetus lanceolatus Equetus umbrosus	silver perch sand seatrout silver seatrout high-hat jackknife-fish cubbyu	2.6 3,005.0 523.8 98.6 41.8 52.9 33.5
Equetus sp. Larimus fasciatus Leiostomus xanthurus Menticirrhus americanus Micropogonias undulatus Pogonias cromis Sciaenops ocellatus Stellifer lanceolatus	banded drum spot southern kingfish Atlantic croaker black drum red drum star drum	1.4 515.5 5,994.3 549.5 32,102.5 17.8 21.6 347.4
Mullidae	GOATFISHES	
Mullus auratus Upeneus parvus	red goatfish dwarf goatfish	38.8 17.3
Ephippidae	SPADEFISHES	
Chaetodipterus faber	Atlantic spadefish	299.6
Labridae	WRASSES	
Decodon puellaris Hemipteronotus novacula	red hogfish pearly razorfish	1.8 222.1
Mugilidae	MULLETS	
Mugil cephalus	striped mullet	.2

.

•

Sphyraenidae	BARRACUDAS
Sphyraena guachancho	guaguanche 22.7
Polynemidae	THREADFINS
Polydactylus octonemus	Atlantic threadfin .2
Opistognathidae	JAWFISHES
Opistognathidae (undet.)	5.5
Percophidae	FLATHEADS
Bembrops anatirostris	duckbill flathead 866.5
Uranoscopidae	STARGAZERS
Astroscopus y-graecum Gnathagnus egregius Kathetostoma albigutta Uranoscopus sp.	southern stargazer.1freckled stargazer12.9lancer stargazer43.7.1
Callionymidae	DRAGONETS
Callionymus agassizi	spotfin dragonet 57.2
Gobiidae	GOBIES
Bollmannia communis Gobiosoma sp.	ragged goby 924.6 51.7
Trichiuridae	CUTLASSFISHES
Trichiurus lepturus	Atlantic cutlassfish 511.0
Scombridae	MACKERELS
Scomber japonicus Scomberomorus maculatus	chub mackerel9.0Spanish mackerel4.3
Stromateidae	BUTTERFISHES
Hyperoglyphe perciformis Peprilus alepidotus Peprilus burti Peprilus sp.	barrelfish25.8harvestfish144.8gulf butterfish12,931.3140.1
Scorpaenidae	SCORPIONFISHES
Neomerinthe hemingwayi Pontinus castor Pontinus longispinis Pontinus rathbuni	spinycheek scorpionfish53.6longsnout scorpionfish.1longspine scorpionfish2,395.0highfin scorpionfish1.8

. . .

Scorpaenidae (continued)

Scorpaena agassizi	longfin scorpionfish	100.5
Scorpaena brasiliensis	barbfish	21.9
Scorpaena calcarata	smoothhead scorpionfish	642.3
Scorpaena dispar	hunchback scorpionfish	3.7

Triglidae

SEAROBINS

Triglidae (undet.) Bellator egretta Bellator militaris Peristedion gracile Peristedion miniatum Prionotus alatus Prionotus martis Prionotus ophryas Prionotus paralatus Prionotus roseus Prionotus rubio Prionotus salmonicolor Prionotus scitulus Prionotus stearnsi Prionotus tribulus Prionotus sp.	streamer searobin horned searobin slender searobin armored searobin barred searobin bandtail searobin Mexican searobin bluespotted searobin blackfin searobin blackwing searobin leopard searobin shortwing searobin bighead searobin	33.9 29.6 297.8 259.6 25.8 147.3 47.0 492.9 749.0 406.1 4,961.3 1,347.6 167.0 437.3 493.8 240.4
Bothidae	LEFTEYE FLOUNDERS	
Bothidae (undet.) Ancylopsetta dilecta Ancylopsetta quadrocellata Bothus sp. Citharichthys cornutus Citharichthys dinoceros Citharichthys gymnorhinus Citharichthys macrops Citharichthys spilopterus Citharichthys sp. Cyclopsetta chittendeni Cyclopsetta fimbriata Engyophrys senta Etropus crossotus Etropus microstomus Etropus rimosus	three-eye flounder ocellated flounder horned whiff anglefin whiff spotted whiff bay whiff Mexican flounder spotfin flounder fringed flounder smallmouth flounder gray flounder	37.0 38.0 109.9 3.1 504.3 6.1 2.3 98.9 282.5 18.9 362.2 4.6 33.9 1,535.0 1,719.0 397.0
Monolene sessilicauda Monolene sp. Paralichthys albigutta Paralichthys lethostigma Paralichthys squamilentus Syacium gunteri Syacium micrurum Syacium papillosum Syacium sp. Trichopsetta ventralis	deepwater flounder gulf flounder southern flounder broad flounder shoal flounder channel flounder dusky flounder sash flounder	1,211.3 2.4 .1 58.9 49.5 1,809.1 575.9 2,490.9 206.9 422.0

Pleuronectidae	RIGHTEYE FLOUNDERS	
Poecilopsetta beanii		168.0
Soleidae	SOLES	·
Gymnachirus melas Gymnachirus texae Gymnachirus sp.	naked sole fringed sole	17.5 98.8 33.4
Trinectes maculatus	hogchoker	18.5
Cynoglossidae	TONGUEFISHES	
Symphurus civitatus Symphurus diomedianus Symphurus plagiusa Symphurus pusillus Symphurus sp.	offshore tonguefish spottedfin tonguefish blackcheek tonguefish northern tonguefish	336.1 102.1 217.4 13.3 33.4
Triacanthodidae	SPIKEFISHES	
Parahollardia lineata	jambeau	24.0
Balistidae	LEATHERJACKETS	
Aluterus schoepfi Aluterus scriptus Balistes capriscus Monacanthus hispidus	orange filefish scrawled filefish gray triggerfish planehead filefish	58.9 8.4 379.1 279.8
Ostraciidae	BOXFISHES	
Lactophrys quadricornis	scrawled cowfish	6.0
Tetraodontidae	PUFFERS	
Lagocephalus laevigatus Sphoeroides dorsalis Sphoeroides nephelus Sphoeroides parvus Sphoeroides sp.	smooth puffer marbled puffer southern puffer least puffer	26.2 16.2 45.5 723.3 18.5
Diodontidae	PORCUPINEFISHES	
Chilomycterus schoepfi	striped burrfish	10.2

.

.

•

Rank Taxon	Taxon	Abund	iance
	Number	Percent	
1.	Stenotomus caprinus	39,533.3	19.76
2.	Micropogonias undulatus	.32,102.5	16.05
3.	Saurida brasiliensis	18,216.0	9.11
4.	Peprilus burti	12,931.3	6.46
5.	Leiostomus xanthurus	5,994.3	3.00
6.	Centropristis philadelphica	5,882.0	2.94
7.	Prionotus rubio	4,961.3	2.48
8.	Arius felis	4,519.8	2.26
9.	Anchoa hepsetus	3,974.9	1.99
10.	Synodus foetens	3,948.6	1.97
11.	Diplectrum bivittatum	3,424.9	1.71
12.	Calamus leucosteus	3,342.3	1.67
13.	Cynoscion arenarius	3,005.0	1.50
14.	Serranus atrobranchus	2,543.2	1.27
15.	Syacium papillosum	2,490.9	1.25
16.	Halieutichthys aculeatus	2,460.4	1.23
17.	Pontinus longispinis	2,395.0	1.20
18.	Steindachneria argentea	2,069.4	1.03
19.	Syacium gunteri	1,809.1	0.90
20.	Serranus notospilus	1,756.0	0.88 0.86
21.	Etropus microstomus	1,719.0 1.551.5	0.78
22.	Zalieutes mcgintyi	1.535.0	0.77
23. 24.	Etropus crossotus	1.347.6	0.67
24.	Prionotus salmonicolor	1.296.2	0.65
26.	Lagodon rhomboides Monolene sessilicauda	1,211.3	0.61
27.	Chloroscombrus chrysurus	1,140.7	0.57
28.	Lutjanus campechanus	1,131.8	0.57
29.	Eucinostomus gula	1,106.9	0.55
30.	Trachurus lathami	1,064.3	0.53
31.	Harengula jaguana	1,039.0	0.52
32.	Centropristis ocyurus	1,031.2	0.52
33.	Bollmannia communis	924.6	0.46
34.	Pristipomoides aquilonaris	923.0	0.46
35.	Bembrops anatirostris	866.5	0.43
36.	Urophycis floridana	766.6	0.38
37.	Prionotus paralatus	749.0	0.37
38.	Sphoeroides parvus	723.2	0.36
39.	Anchoa mitchilli	675.0	0.34
40.	Trachinocephalus myops	649.8	0.32
41.	Scorpaena calcarata	642.3	0.32
42.	Porichthys plectrodon	588.1	0,29
43.	Syacium micrurum	575.9	0.29
44.	Menticirrhus americanus	549.5	0.27
45.	Antennarius radiosus	548.9	0.27

Table 2.	Listing of the fish taxa in the comprehensive fish data base in order of numerical abundance and giving both the number of
	individuals and percent of the total catch.

.

46.	Cynoscion nothus	523.8	0.26
47.	Larimus fasciatus	515.5	0.26
48.	Trichiurus lepturus	511.0	0.26
49.	Citharichthys cornutus	504.3	0.25
50.	Prionotus tribulus	493.8	0.25
51.	Prionotus ophryas	492.9	0.25
52.		481.8	0.24
	Synodus poeyi		
53.	Prionotus stearnsi	437.3	0.22
54.	Trichopsetta ventralis	422.0	0.21
55.	Prionotus roseus	406.1	0.20
56.	Etropus rimosus	397.0	0.20
57.	Neobythites gillii	385.9	0.19
58.	Balistes capriscus	379.1	0.19
59.	Cyclopsetta chittendeni	362.2	0.18
60.	Stellifer lanceolatus	347.4	0.17
61.	Symphurus civitatus	336.1	0.17
62.	Lepophidium graellsi	335.6	0.17
63.		299.6	0.15
64.	Chaetodipterus faber		
	Bellator militaris	297.8	0.15
65.	Urophycis regia	293.3	0.15
66.	Apogon aurolineatus	285.4	0.14
67.	Citharichthys spilopterus	282.5	0.14
68.	Monacanthus hispidus	279.8	0.14
69.	Urophycis cirrata	263.2	0.13
70.	Peristedion gracile	259.6	0.13
71.	Raja texana	247.1	0.12
72.	Physiculus fulvus	242.9	0.12
73:	Prionotus sp.	240.4	0.12
74.	Anchoa lyolepis	231.1	0.12
75.	Gymnothorax nigromarginatus	226.5	0.11
76.	Hemipteronotus novacula	222.1	0.11
77.	Ogcocephalus parvus	220.5	0.11
78.	Symphurus plagiusa	217.4	0.11
79.	Syacium sp.	206.9	0.10
80.	Synagrops bellus	168.9	0.08
81.	Poecilopsetta beanii	168.0	0.08
82.	Prionotus scitulus	167.0	0.08
83.	Hildebrandia flava	163.5	0.08
84.			
	Diplectrum formosum	150.7	0.08
85.	Prionotus alatus	147.3	0.07
86.	Peprilus alepidotus	144.8	0.07
87.	Urophycis earlli	144.7	0.07
88.	Peprilus sp.	140.1	0.07
89.	Bagre marinus	139.9	0.07
90.	Brotula barbata	136.9	0.07
91.	Orthopristis chrysoptera	131.8	0.07
92.	Hoplunnis tenuis	124.7	0.06
93.	Decapterus punctatus	120.2	0.06
94.	Ancylopsetta quadrocellata	109.9	0.05
95.	Etrumeus teres	105.8	0.05
96.	Liopropoma sp.	104.2	0.05
97.	Ophidion marginatum	103.5	0.05
98,	Symphurus diomedianus	102.1	0.05
99.	Scorpaena agassizi	100.5	0.05

100.	Citharichthys macrops	98.9	0.05
101.	Gymnachirus texae	98.8	0.05
101.	Cynoscion sp.	98.6	0.05
102.	Ogcocephalus sp.	96.6	0.05
104.	Brevoortia patronus	92.9	0.05
105.	Synodus intermedius	92.8	0.05
106.	Macrorhamphosus scolopax	90,5	0.05
107.	Caulolatilus intermedius	90.4	0.05
108.	Narcine brasiliensis	89.3	0.04
109.	Caranx crysos	86.4	0.04
110.	Lepophidium sp.	79.4	0.04
111.	Oligoplites saurus	76.6	0.04
112.	Selene setapinnis	74.6	0.04
113.	Lepophidium profundorum	73.0	0.04
114.	Saurida normani	65.8	0.03
115.	Hoplunnis diomedianus	64.6	0.03
116.	Paralichthys lethostigma	58.9	0.03
117.	Aluterus schoepfi	58.9	0.03
118.	Callionymus agassizi	57.2	0.03
119.	Synagrops spinosa	55.5	0.03
120.	Neomerinthe hemingwayi	53.6	0.03
121.	Equetus lanceolatus	52.9	0.03
122.	Gobiosoma sp.	51.7	0.03
123.	Hemanthias vivanus	51.7	0.03
124.	Paralichthys squamilentus	49.5	0.02
125.	Prionotus martis	47.0	0.02
126.	Sphoeroides nephelus	45.5	0.02
127.	Kathetostoma albigutta	43.7	0.02
128.	Ariosoma balearicum	42.7	0.02 0.02
129.	Equetus acuminatus	41.8 40.0	0.02
130.	Hemicaranx amblyrhynchus	40.0	0.02
131.	Rypticus bistrispinus	39.6	0.02
132.	Dibranchus atlanticus	39.6	0.02
133. 134.	Hymenocephalus cavernosus Mullus auratus	38.8	0.02
134.		38.8	0.02
135.	Raja garmani Caulolatilus microps	38.4	0.02
137.	Ancylopsetta dilecta	38.0	0.02
138.	Lutjanus synagris	37.6	0.02
139.	Ophidion holbrooki	37.6	0.02
140.	Bothidae (undet.)	37.0	0.02
141.	Gonioplectrus hispanus	36.4	0.02
142.	Serraniculus pumilio	36.4	0.02
143.	Selene vomer	35.4	0.02
144.	Hippocampus erectus	35.1	0.02
145.	Triglidae (undet.)	33.9	0.02
146.	Engyophrys senta	33.9	0.02
147.	Equetus umbrosus	33.5	0.02
148.	Symphurus sp.	33.4	0.02
149.	Selar crumenophthalmus	32.9	0.02
150.	Brotula sp.	29.8	0.01
151.	Bellator egretta	29.6	0.01
152.	Raja eglanteria	29.3	0.01
153.	Ophidion welshi	28.6	0.01

154. 155.	Argentina striata	28.4 27.9	0.01 0.01
155.	Pristigenys alta Bregmaceros atlanticus	27.3	0.01
157.	Lagocephalus laevigatus	26.2	0.01
158.	Hyperoglyphe perciformes	25.8	0.01
159.	Merluccius albidus	25.8	0.01
160.	Ogcocephalus corniger	25.8	0.01
161.	Paraconger caudilimbatus	25.8	0.01
162.	Peristedion miniatum	25.8	0.01
163.	Chlorophthalmus agassizi	25.8	0.01
164.	Opisthonema oglinum	25.3	0.01
165.	Ogcocephalus radiatus	24.3	0.01
166.	Parahollardia lineata	24.0	0.01
167.	Sphyraena guachancho	22.7	0.01
168.	Dasyatis sabina	22.6	0.01
169.	Eucinostomus sp.	22.3	0.01
170.	Scorpaena brasiliensis	21.9	0.01
171.	Epinephelus niveatus	21.6	0.01
172.	Sciaenops ocellatus	21.6	0.01
173.	Gymnachirus sp.	20.0	0.01
174.	Seriola dumerili	19.9	0.01
175.	Dasyatis americana	19.6	0.01
176.	Citharichthys sp.	18.9	0.009
177.	Sphoeroides sp.	18.5	0.009
178.	Trinectes maculatus	18.5	0:009
179.	Hoplunnis macrurus	18.4	0.009
180.	Pogonias cromis	17.8	0.009
181.	Gymnachirus melas	17.5	0.009
182.	Sardinella aurita	17.4	0.009
183.	Upeneus parvus	17.3	0.009
184.	Sphoeroides dorsalis	16.2	0.008
185. 186.	Squatina dumerili	16.0 15.7	0.008 0.008
187.	Lepophidium jeannae	15.7	0.008
188.	Breviraja sp. Diapterus plumieri	15.5	0.008
189.	Rhizoprionodon terraenovae	14.5	0.007
190.	Symphurus pusillus	13.4	0.007
191.	Priacanthus arenatus	13.0	0.007
192.	Gnathagnus egregius	12.9	0.006
193.	Moringua sp.	12.9	0.006
194.	Archosargus probatocephalus	12.6	0.006
195.	Lophius americanus	12.1	0.006
196.	Echeneis naucrates	11.2	0.006
197.	Chilomycterus schoepfi	10.2	0.005
198.	Ophidion grayi	9.4	0.005
199.	Rachycentron canadum	9.4	0.005
200.	Rhomboplites aurorubens	9.2	0.005
201.	Diaphus dumerili	9.2	0.005
202.	Scomber japonicus	9.0 8.9	0.004
203. 204.	Ophidion sp.	8.9	0.004 0.004
204.	Aluterus scriptus Rhinoptera bonasus	8.2	0.004
205.	Pagrus pagrus	7.9	0.004
207.	Dasyatis sayi	7.5	0.004

.

.

208. 209. 210. 211. 212. 213. 214. 215. 216. 217. 218. 219. 220. 221. 222. 223. 224. 225. 226. 227. 228. 229. 230. 231. 232. 234. 235. 236. 237. 238. 239. 235. 236. 237. 238. 239. 234. 235. 236. 237. 238. 239. 234. 235. 236. 237. 238. 237. 238. 239. 240. 241. 242. 244. 245. 246. 245. 246. 246. 246. 246. 246. 246. 246. 246	Ophichthus ocellatus Mustelus canis Apogon pseudomaculatus Citharichthys dinoceros Glossanodon pygmaeus Uroconger syringinus Lactophrys quadricornis Sphyrna tiburo Opistognathidae (undet.) Cyclopsetta fimbriata Scomberomorus maculatus Eucinostomus argenteus Ostichthys trachypoma Scorpaena dispar Bothus sp. Carcharhinus acronotus Mustelus sp. Ophidiidae (undet.) Epinephelus flavolimbatus Hemiramphus brasiliensis Citharichthys gymnorhinus Otophidium omostigmum Myctophidae (undet.) Bairdiella chrysoura Monolene sp. Antigonia capros Decodon puellaris Pontinus rathbuni Ophichthus gomesi Equetus sp. Alosa chrysochloris Anguilla rostrata Pomatomus saltatrix Hippocampus zosterae Mugil cephalus Hemanthias leptus Lophiomus sp. Polydactylus octonemus Rhinobatos lentiginosus	7.4 6.2 6.1 6.1 6.1 6.1 6.0 5.8 5.5 4.6 4.3 3.9 3.7 3.1	0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002 0.000 0.000 0.000 0.0009 0.0009 0.0009 0.0009 0.0000 0.0000 0.0000 0.0009 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000000
244.	Lophiomus sp.	0.2	
246.	Rhinobatos lentiginosus	0.2	0.0001
247. 248.	Uranoscopus sp. Pontinus castor	0.1	0.0001
249. 250.	Paralichthys albigutta Astroscopus y-graecum	0.1 0.1	0.0001 0.0001

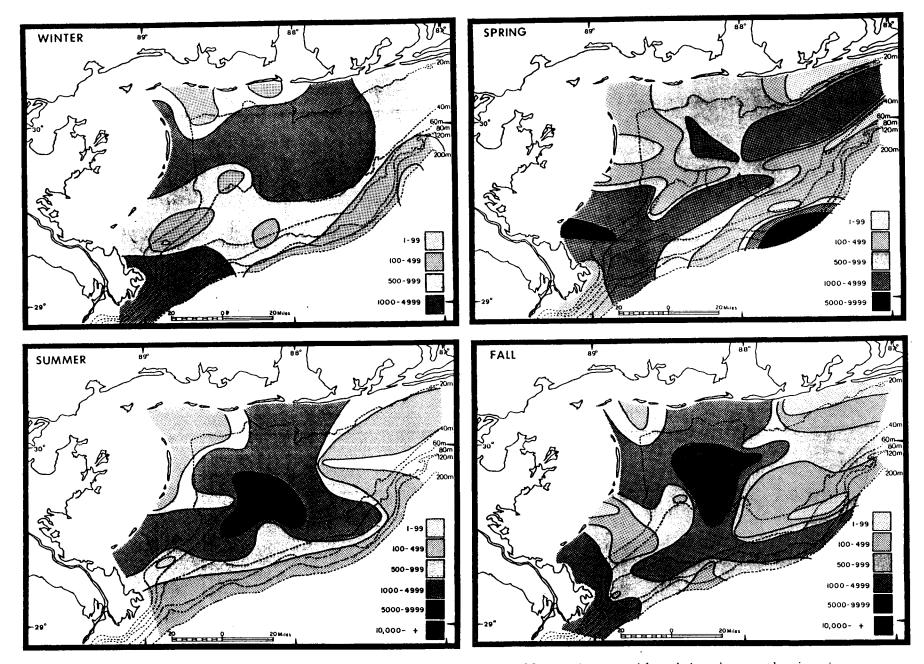


Figure 1. Seasonal abundance of the combined catch for all species considered in the synthesis of fish and shrimp collection data. Number of individuals captured per hour trawling.

Canal to the west. During fall the pattern has shifted slightly. The high density area still extends southward from Mobile Bay with some flow from Cat Island Channel and around the Chandeleur Islands. The flow from Breton Sound appears to remain close to the delta marshes. The area of very high density is still observed south of Pascagoula in the 30-50 m depth range. However, during the fall there appears to be an expansion of the high density area in the depth ranges beyond 50 m. These seasonal patterns for the combined catch will be examined in terms of the individual component species and groups of commercial and recreational importance.

SHARKS

At least 26 species of sharks are known from the northern Gulf of Mexico (Hoese, et al., 1977). Some are basically offshore species which may occasionally stray onto the continental shelf, and others are quite rare or poorly known. Fifteen species are considered to be fairly common in shelf waters of the north central Gulf, and these include the following:

Odontaspididae Odontaspis taurus	SAND TIGERS sand tiger
Carcharhinidae	REQUIEM SHARKS
Carcharhinus acronotus	blacknose shark
Carcharhinus brevipinna	spinner shark
Carcharhinus falciformis	silky shark
Carcharhinus isodon	finetooth shark
Carcharhinus leucas	bull shark
Carcharhinus limbatus	blacktip shark
Galeocerdo cuvieri	tiger shark
Mustelus canis	smooth dogfish
Negaprion brevirostris	lemon shark
Rhizoprionodon terraenovae	Atlantic sharpnose shark
Sphyrnidae	HAMMERHEAD SHARKS
Sphyrna lewini	scalloped hammerhead
Sphyrna mokarran	great hammerhead
Sphyrna tiburo	bonnethead
Squatinidae	ANGEL SHARKS
<u>Squatina</u> <u>dumerili</u>	Atlantic angel shark

The life histories of most shark species are not well documented, but some appear to move into shallower waters during the spring and summer and to retreat into deeper waters of the shelf during the cooler months. The bull shark enters rivers and fresher estuaries during the summer, and the bonnethead may be found in saltier bays and sounds. During the summer the young of several species appear inshore in such habitats as marsh channels (lemon shark) and surf zone (finetooth shark and Atlantic sharpnose shark). All of the sharks on the above list may be expected to occur throughout much of the continental shelf beyond the barrier islands. They may be taken by anglers fishing from piers and jetties or from around oil rigs and snapper banks in deeper water. Some are excellent game fish, and properly prepared, the flesh is quite edible. Sharks are rarely taken in trawls, and most trawl fishermen consider sharks to be nuisances. In the present data base only 49 specimens were recorded representing six taxa. Together they constituted only 0.024 percent of the total fish catch. Included were the following:

Carcharhinidae	REQUIEM SHARKS	_
Carcharhinus acronotus	blacknose shark	3
Mustelus canis	smooth dogfish	6
Mustelus sp.	9	3
Rhizoprionodon terraenovae	Atlantic sharpnose shark	15
Sphyrnidae	HAMMERHEAD SHARKS	
Sphyrna tiburo	bonnethead	6
Squatinidae	ANGEL SHARKS	
Squatina dumerili	Atlantic angel shark	16

Of the 21 station occurrences of these sharks, nine were in the winter, one in the spring, three in the summer, and eight in the fall. As a group, they were more than four times as abundant in the fall and winter than in the spring and summer. All but one of the occurrences was east of Mobile Bay. Most appeared in the shallower portion of the shelf (9-91 m), but the Atlantic angel shark appeared only in the depth range of 73 to 186 m.

Clupeidae - HERRINGS

Of the herrings, only the menhaden (Brevoortia spp.) are of commercial interest in the area. Three species are potentially present, the finescale menhaden (B. gunteri), gulf menhaden (B. patronus), and yellowfin menhaden (B. smithi). In the trawl collections only the gulf menhaden was taken, and this was relatively rare (93 specimens or 0.05 percent of the total fish catch). This species appeared at seven stations, five in the winter and two in the fall. All were taken in very shallow waters (9-16 m). These occurred along the coast and barrier islands from off Perdido Bay to Ship Island, with a single occurrence just east of the Mississippi River delta in the winter. Even though large populations of menhaden inhabit the area seasonally, they are pelagic and rarely appear in trawl collections.

Ariidae - SEA CATFISHES

The sea catfishes are represented on the north central Gulf shelf by two species, the hardhead catfish (Arius felis) and the gafftopsail catfish (Bagre marinus). The hardhead catfish is of some recreational and commercial interest and will be addressed here. A total of 4,520 specimens of this species was taken, representing 2.26 percent of the total catch. This was the eighth most abundant species taken. Only 4.2 percent of the specimens were collected during the summer, but between 31.6 and 32.5 percent of the individuals appeared at each of the other seasons.

The seasonal distribution patterns of the hardhead catfish are shown in Figure 2. At no season did the species appear in waters deeper than 37 m, and it was never abundant deeper than about 20 m. No specimens were actually

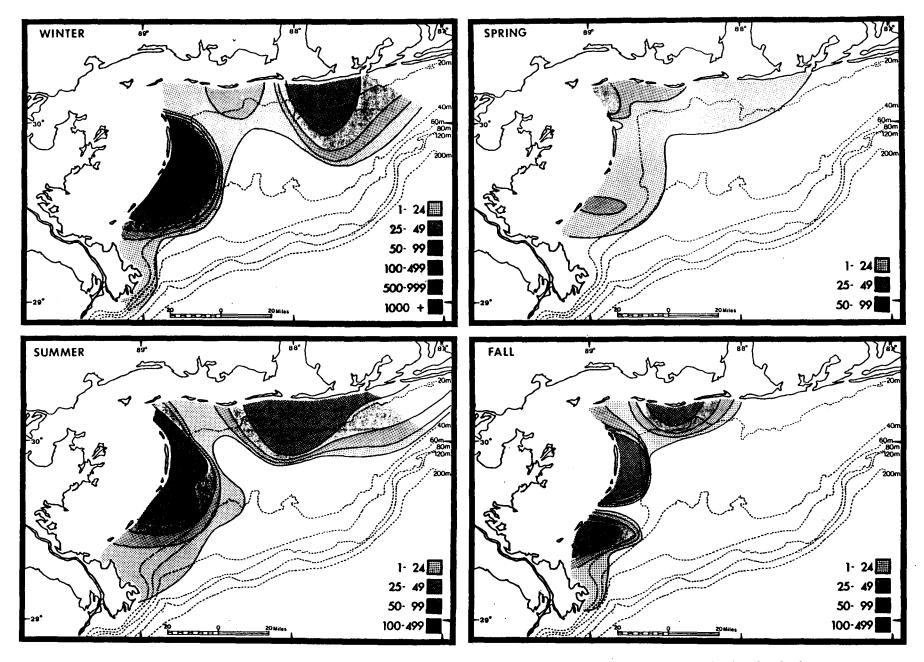


Figure 2. Seasonal distribution patterns of <u>Arius felis</u> on the outer continental shelf of the Tuscaloosa Trend study area. Number of individuals captured per hour trawling.

collected east of Perdido Bay, but few stations were made in shallow water of this area, and the distribution of the species in this portion of the shelf is not known.

The life history of the hardhead catfish in Mississippi Sound and adjacent areas has recently been discussed in detail by Benson (1982). He noted that during the period May-August the adults move into rivers and bays to spawn, and this apparently accounts for the relative scarcity of the species on the shelf during the summer months. Adults move out in the fall and overwinter on the shelf. Here they tend to concentrate around the passes and barrier islands.

Serranidae - SEA BASSES

Thirteen taxa of sea basses appeared in the fish data base, and together they included 15,041.6 specimens or 7.46 percent of the total catch. Four species were among the twenty most abundant, and these included the rock sea bass (<u>Centropristis philadelphica</u>), dwarf sand perch (<u>Diplectrum bivittatum</u>), blackear bass (Serranus atrobranchus), and saddle bass (Serranus notospilus).

The seasonal patterns of distribution for the sea bass family (all taxa combined) are presented in Figure 3. The family was present throughout the shelf at all seasons. During the winter there was a major area of concentration south of Mobile Bay in the depth range of 30-40 m where concentrations exceeded 2,500 fishes per hour of trawling. During the spring no areas of heavy concentration appeared, but the densest areas (i.e., with greater than 100 fishes per hour) tended to occur in waters deeper than 30 m. The summer was marked by the reappearance of the very dense area off Mobile Bay at a depth of 30-40 m, and densities exceeding 100 fish per hour were noted in the area west of Perdido Bay to the Chandeleur Islands in the depth range of 25-70 The fall pattern was almost the mirror image of that observed during the ш. summer. An area of very high density was observed in very deep water (60-200 m) south of Perdido Bay, and fairly dense areas occurred across the mid-shelf east of Pascagoula and in deeper water west of Pascagoula. These strange and complex seasonal patterns result from the fact that several species are included, each with its own specific time and area of concentration.

Among the serranids the species of greatest commercial importance are the groupers. Only two species appeared in the collections, the yellowedge grouper (Epinephelus flavolimbatus) and the snowy grouper (E. niveatus). The former was represented by 3.1 individuals (0.002 percent of the total catch), and the latter included 21.6 individuals (0.01 percent of the catch). The yellowedge grouper occurred at a single station in winter at a depth of 77 m south of Horn Island, and the snowy grouper appeared at two stations in the spring and fall at 51 and 62 m south of Petit Bois and Horn Islands. The jewfish (E. itajara) and the red grouper (E. morio) which also occur in the area did not appear in the trawl collections.

Malacanthidae - TILEFISHES

Four species of tilefish likely occur on outer portions of the continental shelf in the north central Gulf of Mexico. These included the anchor

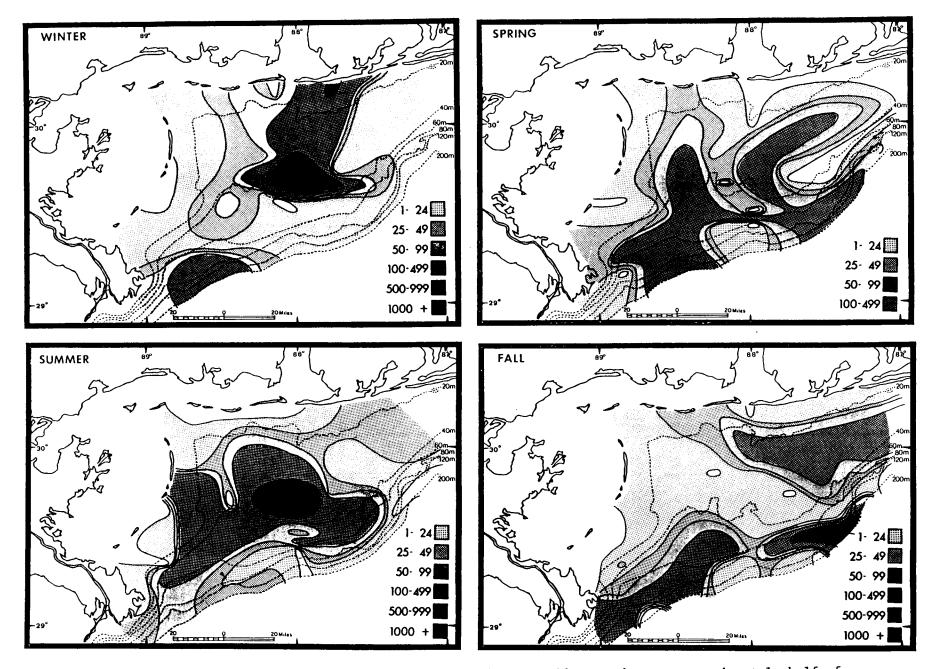


Figure 3. Seasonal distribution patterns of the family Serranidae on the outer continental shelf of the Tuscaloosa Trend study area. Number of individuals captured per hour trawling.

tilefish (<u>Caulolatilus intermedius</u>), blueline tilefish (<u>C. microps</u>), tilefish (<u>Lopholatilus chamaeleonticeps</u>), and sand tilefish (<u>Malacanthus plumieri</u>). Only two of these species appeared in the present data base, the anchor tilefish and the blueline tilefish. The anchor tilefish appeared at five stations, one each in the winter and summer and three in the fall. A total of 90.4 fish was taken in the depth range of 40-113 m. All occurred west of Mobile Bay, and most were taken near the Mississippi River Delta. The blueline tilefish occurred at seven stations, four in the spring and one each at the other seasons. A total of 38.4 fish was included in collections in the depth range of 55-183 m. Most were taken from the outer shelf below Horn Island and Mobile Bay, but six individuals appeared in a single sample from the estern edge of the DeSoto Canyon at a depth of 183 m. In no case did the two species co-occur in a given sample.

Pomatomidae - BLUEFISHES

The bluefish (<u>Pomatomus saltatrix</u>) breeds on the outer shelf, and young often use bays and sounds as nursery areas. This is a prized game fish and its flesh is considered excellent. This fast-swimming nektonic species seldom appears in trawl collections, and in the present data base it was represented by 0.5 specimens. It occurred at three stations, one in the winter and two in the summer. In the winter it occurred at the west end of Horn Island at a depth of nine meters, and in the summer it occurred on the mid-shelf below Petit Bois Island at depths of 55 and 73 m.

Rachycentridae - COBIAS

The life history of the cobia (<u>Rachycentron canadum</u>) is similar to that of the bluefish. It breeds on the outer shelf and uses the sounds as nursery areas. As in the case of the bluefish, the cobia appeared at one winter and two summer stations. The winter occurrence was at a depth of 55 m south of Petit Bois Island, and the summer specimens were taken at 11 m off the Chandeleur Islands at at 37 m below Dauphin Island. A total of 9.3 fish was taken.

Carangidae - JACKS

Most carangids are rather fast-swimming nektonic species which are seldom abundant in trawl collections. Several species are excellent game fishes, and they are also fine food fishes. Most breed on the outer continental shelf, and the young move inshore during the warmer months. Ten species appeared in the present data base, and together they included 2,691 individuals constituting 1.3 percent of the total fish catch. The species of greatest interest to the fishermen are the blue runner (<u>Caranx crysos</u>), crevalle jack (<u>C</u>. <u>hippos</u>), horse-eye jack (<u>C</u>. <u>latus</u>), bluntnose jack (<u>Hemicaranx amblyrhynchus</u>), greater amberjack (<u>Seriola dumerili</u>), lesser amberjack (<u>S</u>. <u>fasciata</u>), and Florida pompano (<u>Trachinotus carolinus</u>). Of these species only the blue runner, bluntnose jack, and greater amberjack appeared in the fish data base. A total of 86.4 specimens of the blue runner was taken at two stations. In the spring it appeared at 18 m off the Chandeleur Islands, and in the fall it occurred at 15 m just east of the Mississippi Delta. In the fall 40 specimens of the bluntnose jack were taken at a single station at 29 m off Horn Island. The greater amberjack appeared at two summer stations at 37 and 38 m south of Petit Bois Island and Mobile Bay.

Coryphaenidae - DOLPHINS

Dolphins are highly prized pelagic game and food fishes which inhabit waters of the outer shelf, although young have been reported in inshore waters. In the northern Gulf they appear during the warmer months, but the life history is not well known. Two species are likely present in the north central Gulf, the pompano dolphin (<u>Coryphaena equisetis</u>) which seldom exceeds a length of 75 cm, and the common dolphin (<u>Coryphaena hippurus</u>) which may exceed 1.5 m in length. Neither species appeared in the fish data base.

Lutjanidae - SNAPPERS

The snappers are carnivorous fishes which are common around rocks, reefs, wrecks, and oil rigs on the outer half of the continental shelf. Larger individuals are prized game and commercial fishes, and the red snapper, in particular, is highly sought after. They are bottom fishes and are sometimes encountered away from rocks and other structures. Hoese et al. (1977) recorded ten species from the northern Gulf shelf. Some of these are small and others are quite rare. Four species appeared in the present data base and these included the red snapper (Lutjanus campechanus), lane snapper (L. synagris), wenchman (Pristipomoides aquilonaris), and vermilion snapper (Rhomboplites Together they included 2,101.6 fishes or 1.0 percent of the aurorubens). The seasonal distribution patterns for all species of the family total catch. are given in Figure 4. During the winter the family occupied most of the High density water between 20 and 120 m in the area west of Perdido Bay. appeared between 30 and 40 m south of Mobile Bay. In the spring the pattern was broken up into smaller areas, all of low density. Much the same pattern occurred during the summer. In the fall two areas of moderately high density were noted, one between 40 and 60 m below Petit Bois Island, and the other on the outer shelf beyond 100 m south of Perdido Bay. These patterns reflect primarily the combined distribution of the red snapper and wenchman which constituted most of the snapper catch.

The seasonal distribution of the red snapper is given in Figure 5. The species varied dramatically in seasonal abundance with 80.7 percent being taken during the winter, 1.9 percent in the spring, 6.7 percent in the summer, and 10.7 percent in the fall. During the winter this species was taken from 20 to 60 m in the shelf area west of Perdido Bay, and it was concentrated in an area 30-50 m deep south of Mobile Bay. In the spring only a few red snappers were taken in the area west of Mobile Bay at depths of 9-91 m, and no areas of concentration were observed. During the summer there were a few individuals taken from Mobile Bay westward in depths of 7-91 m, and one small area of moderate concentration was noted off the Chandeleur Islands. In the fall the species were quite widespread from Mobile Bay, westward, and there were no areas of concentration.

The life history of the red snapper has recently been reviewed by Benson (1982). During the winter months adults are found in deeper waters of the outer shelf where they school around wrecks and reefs. During the warmer months they move to the mid-shelf where they spawn at depths of 16-37 m during

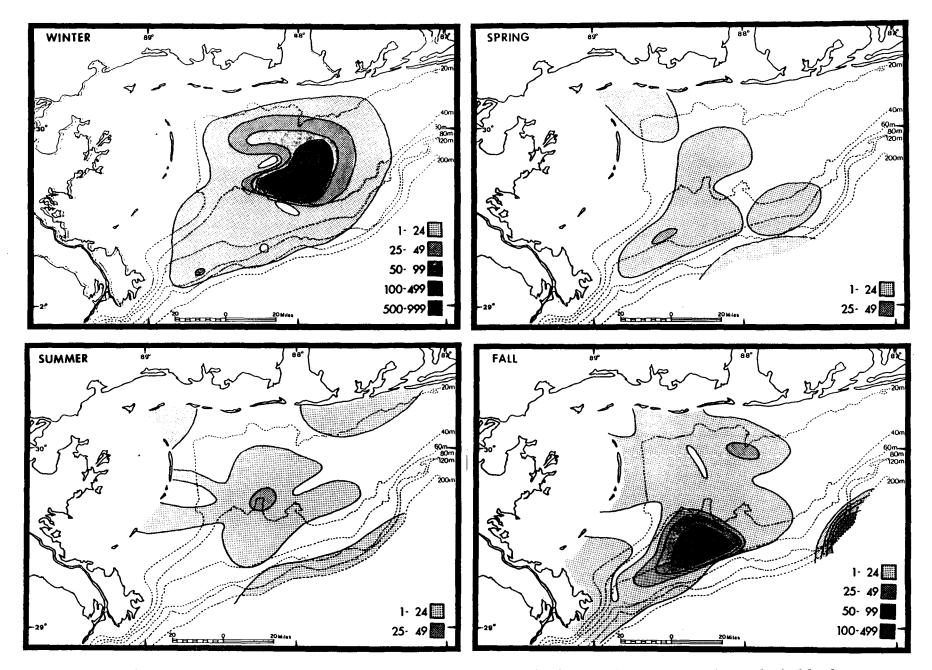


Figure 4. Seasonal distribution patterns of the family Lutjanidae on the outer continental shelf of the Tuscaloosa Trend study area. Number of individuals captured per hour trawling.

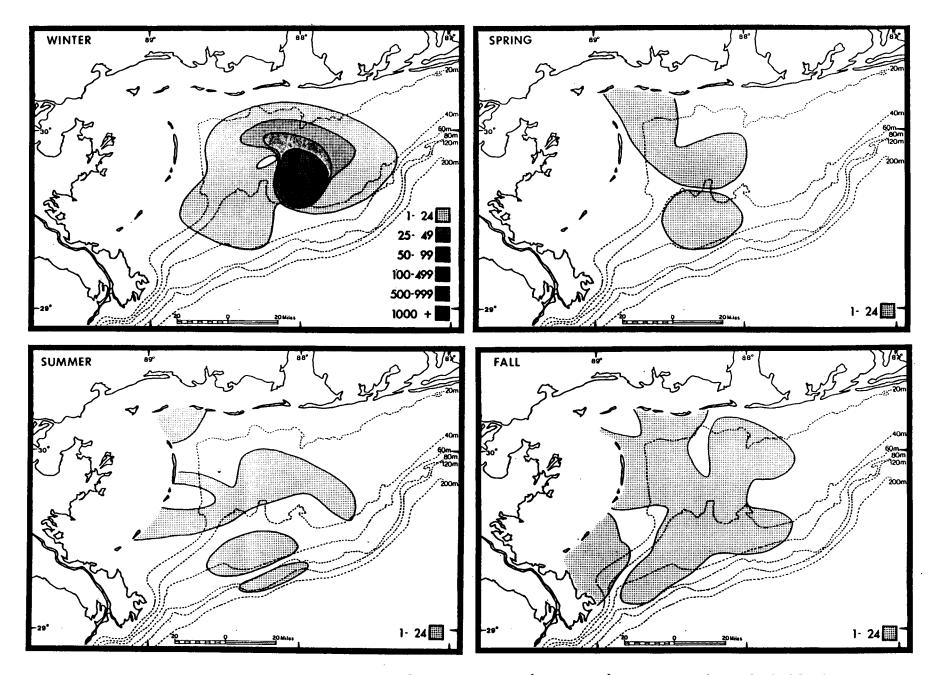


Figure 5. Seasonal distribution patterns of <u>Lutjanus</u> campechanus on the outer continental shelf of the Tuscaloosa Trend study area. Number of individuals captured per hour trawling.

the period of June to October. Young disperse from the spawning grounds into shallower waters, including bays and sounds, and move back onto the shelf during cooler months. Most of the individuals captured in the present study were probably young individuals in their first year of life. However, the literature does not provide an explanation for the very dense concentrations observed on the mid-shelf during the winter months. This phenomenon should be investigated.

The lane snapper occurred at two stations in the winter, one in the summer, and two in the fall, all within the depth range of 13-62 m and all west of Perdido Bay. The wenchman occurred at 18 stations (five in winter, three in spring, three in summer, and seven in fall). Although it was taken in the depth range of 18-183 m, it was most abundant in the range 50-91 m. Most specimens appeared in the area from south of Mobile Bay to the Mississippi River Delta, but the species did occur at two deepwater stations (over 90 m) directly south of Perdido Bay. The vermilion snapper was taken at a single station during the winter at a depth of 36 m south of the eastern edge of Mobile Bay.

Lobotidae - TRIPLETAILS

The tripletail (Lobotes surinamensis) is occasionally caught by anglers and commercial fishermen, and it is an edible fish. Cooler months are spent in shelf waters. During the warmer season they move into the shallows where spawning takes place May through August. The young are estuarine dependent. No specimens appeared in the present fish data base.

Sparidae - PORGIES

Five sparids appeared in the fish data base including the sheepshead (Archosargus probatocephalus), whitebone porgy (Calamus leucosteus), pinfish (Lagodon rhomboides), red porgy (Pagrus pagrus), and longspine porgy (Stenotomus caprinus). A total of 44,192.3 specimens was taken, and this constituted 21.9 percent of the catch in the fish data base. The longspine porgy alone was represented by 39,533.3 specimens or 19.8 percent of the catch, and this was the most abundant single species in the data base. The whitebone porgy was represented by 3,342.3 specimens or 1.67 percent of the total catch, and this was the twelfth most abundant species.

The only sparid considered to be of commercial or recreational importance which appeared in the data base was the sheepshead, of which only 12.6 specimens were taken. This species appeared at five winter stations and one spring station within the depth range of 9-37 m. As noted in Figure 6, the collection localities tended to be off the mouths of passes.

The life history of the sheepshead has been summarized by Benson (1982). Most of the life is spent in bays, sounds, and estuaries, where spawning takes place in the late winter, spring, and early summer. Overwintering takes place on the continental shelf which accounts for the greater frequency of winter captures in the fish data base.

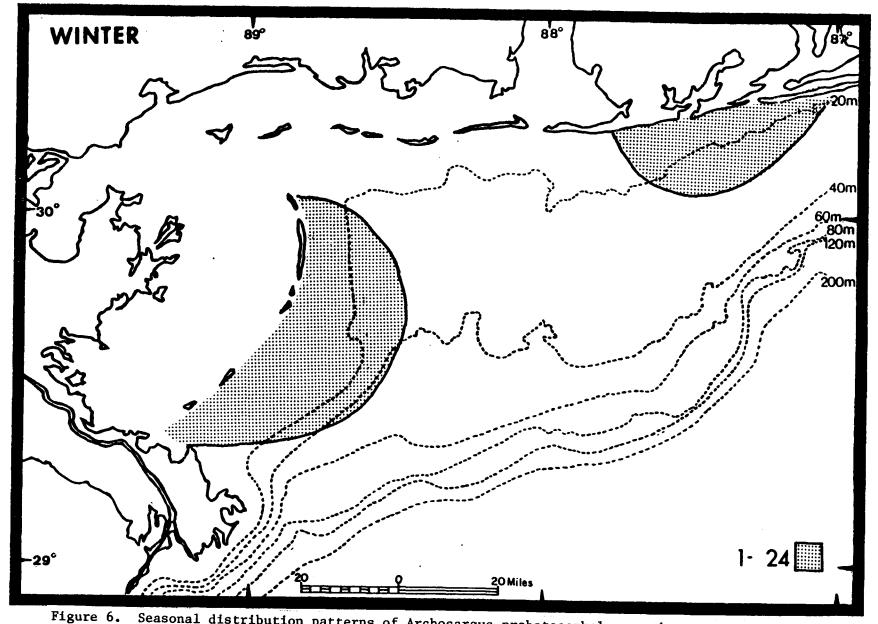


Figure 6. Seasonal distribution patterns of <u>Archosargus probatocephalus</u> on the outer continental shelf of the Tuscaloosa Trend study area (winter only). Number of individuals captured per hour trawling.

Sciaenidae - DRUMS

The drum family was represented in the collections by 43,308.2 specimens or 21.48 percent of the total catch. In abundance it was second only to the porgy family. Included were 15 taxa, the silver perch (<u>Bairdiella chrysoura</u>, sand seatrout (<u>C. arenarius</u>), silver seatrout (<u>C. nothus</u>), unidentified seatrout (<u>Cynoscion sp.</u>), high-hat (<u>Equetus acuminatus</u>), jackknife-fish (<u>E. lanceolatus</u>) cubbyu (<u>E. umbrosus</u>), unidentified equetids (<u>Equetus sp.</u>), banded drum (<u>Larimus fasciatus</u>), spot (<u>Leiostomus xanthurus</u>), southern kingfish (<u>Menticirrhus americanus</u>), Atlantic croaker (<u>Micropogonias undulatus</u>), black drum (<u>Pogonias cromis</u>), red drum (<u>Sciaenops ocellatus</u>), and star drum (<u>Stellifer lanceolatus</u>). Three of the species were quite abundant; the Atlantic croaker, spot, and sand seatrout which together made up 94.9 percent of the drum catch and 20.6 percent of the total fish catch.

Seasonal distribution patterns for the sciaenids (all species combined) are given in Figure 7. During the winter drums are common over most of the shelf area, although they are absent from the middle and outer shelf east of Mobile Bay. Two areas of very high concentration were evident, south of Pascagoula in the depth range 25-35 m, and just east of the outer reaches of the Mississippi River Delta (Southeast Pass) in depths to about 80 m. Densities of over 100 fishes per hour were common in waters of less than 30 m east of Mobile Bay, and west of the Bay they extended out to beyond 120 m for much of this area. In the spring drums were not taken east of Mobile Bay in waters shallower than 40 m, and they extended only to the level of Perdido Bay in deeper water. The only area of very high density occurred in waters beyond 60 m just east of the Mississippi River Delta. Areas of density greater than 100 fish per hour appeared at all depths, but such areas were disjunct and iso-During the summer few specimens appeared at any depth east of Perdido lated. However, an area of high density extended southward and slightly west-Bay. The two ward from the mouth of Mobile Bay out to a depth of about 100 m. highest density spots of this area were directly off the mouth of Mobile Bay and in the depth range of about 40-60 m. Another area of very high density appeared east of the Mississippi River Delta, especially in waters shallower than 20 m. The fall pattern was quite similar to that of the summer except that the dense area off Mobile Bay was greatly expanded, and in one collection at about 30 m a catch density of over 14,000 fishes per hour was recorded. The high densities off Mobile Bay and east of the Mississippi River Delta observed in the summer and fall seasons clearly represent the mass migrations of sciaenids from the nursery areas at these seasons. The relative scarcity of sciaenids east of Mobile Bay must reflect the relative scarcity of suitable inshore nursery grounds in this area.

The seatrouts were represented in the collections by the sand seatrout (<u>Cynoscion areanarius</u>), silver seatrout (<u>C. nothus</u>), and undetermined seatrouts (<u>Cynoscion sp.</u>). No specimens of the spotted seatrout (<u>C. nebulosus</u>) were taken. The sand seatrout was represented by 3,005.0 individuals or 1.50 percent of the total fish catch, and the seasonal changes in abundance of this species were marked. During the winter 48.2 percent of the total sand seatrout catch was made; 18.2 percent occurred in the spring, 11.9 percent in the summer, and 21.7 percent in the fall. The depth distribution of the species was 9-113 m. Seasonal distribution patterns of the sand seatrout are given in Figure 8. At no season did the species appear in shelf collections made east of Mobile Bay. During the winter sand seatrout was taken in low to moderate abundance in most of the shelf area west of Mobile Bay. Three areas of

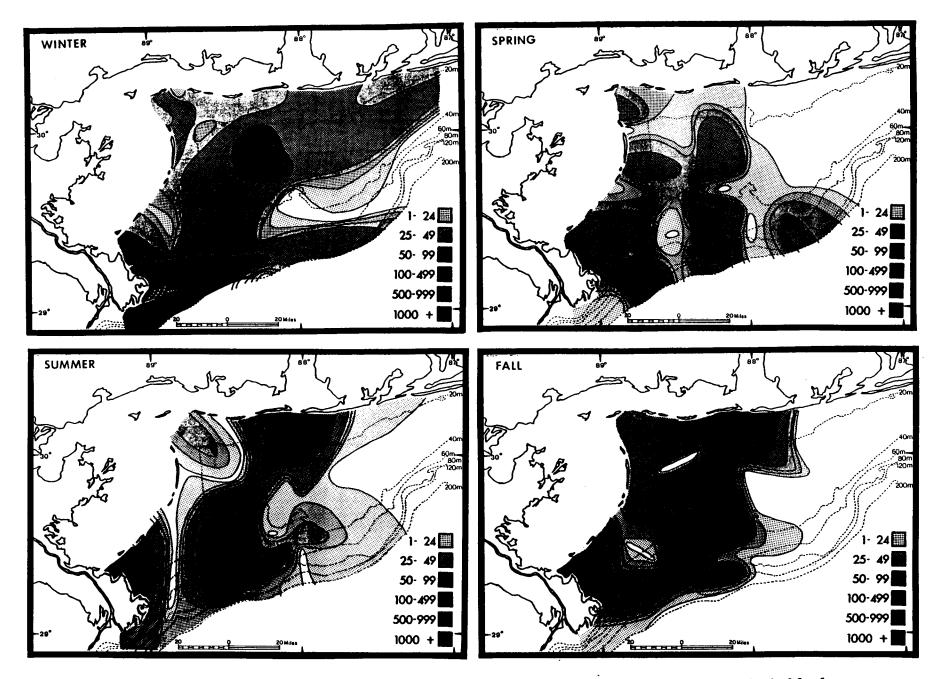


Figure 7. Seasonal distribution patterns of the family Sciaenidae on the outer continental shelf of the Tuscaloosa Trend study area. Number of individuals captured per hour trawling.

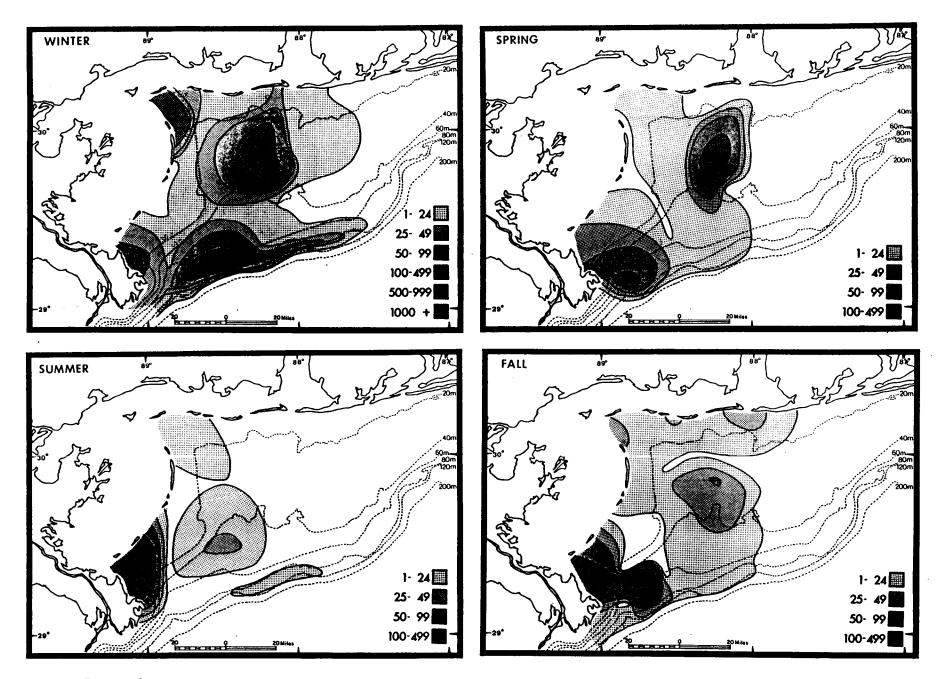


Figure 8. Seasonal distribution patterns of <u>Cynoscion</u> <u>arenarius</u> on the outer continental shelf of the Tuscaloosa Trend study area. Number of individuals captured per hour trawling.

moderate abundance were evident, in waters less than 20 m deep off Ship and Chandeleur Islands, between 20 and 40 m south of Pascagoula, and between 80 and 120 m east of the Mississippi River Delta. These are likely the overwintering grounds for populations using the nursery grounds Biloxi marshes, Pascagoula marshes and Mobile Bay, and the terminal Mississippi Delta marshes, respectively. In the spring no individuals were taken east of 88° west .pa longitude (middle of Mobile Bay). Two small areas of moderate density appeared south of Pascagoula and east of the Mississippi Delta, and these probably represent older individuals, remnants of two of the moderate density concentrations observed during the winter. During the summer the distribution on the western half of the shelf had contracted considerably, and the only area of moderate density appeared between Breton Island and the Delta marshes. The fall season was marked by a great expansion of the species onto the shelf. Areas of intermediate density appeared at the mouths of passes (Mobile Bay, Petit Bois-Horn Island, Ship-Chandeleur Island, and Breton Island-Delta marsh-These denser areas clearly mark the passes through which young-of-thees. year fishes were moving from the nursery areas to the over-wintering grounds on the shelf. An area of moderate density appeared in 30-40 m south of Pascagoula, and an area of somewhat higher concentration extended from Breton Sound and the Delta marshes southeastward toward deeper water.

Benson (1982) noted that spawning of the sand seatrout takes place offshore near passes and near inlets to estuaries from March to September with peak spawning in March-April or in August-September. Young move into bays and estuaries and seek deeper waters as they mature. Adults may also move into estuaries following spawning. In the fall most adults and juveniles move out onto the shelf. These facts are in good accord with the seasonal distribution patterns presented above.

As noted previously, the spotted seatrout (<u>C. nebulosus</u>) did not appear in the present shelf data base, nor was it present in the larger shelf data base for the northwestern Gulf Bio-Atlas (Darnell, et al., 1983). As noted by Benson (1982), all of the life history stages are passed in bays and estuaries, and even when temperatures drop in the winter they never stray onto the open shelf.

In the fish data base, 523.8 specimens of the silver seatrout (Cynoscion nothus) were taken representing 0.26 percent of the total fish catch. It was about one sixth as abundant as the sand seatrout. Its depth range extended from 9 to 113 m, although it was never abundant at depths beyond 20 m. The pattern of seasonal abundance was quite strange: winter - 64.9 percent; spring - 2.4 percent; summer - 25.9 percent; and fall - 6.8 percent. Seasonal distribution patterns are presented in Figure 9. During the winter specimens were taken off the mouths of passes (Perdido Bay, Mobile Bay, Chandeleur Island-Horn Island, and Breton Island-Mississippi Delta marshes). In the latter area it appeared in moderate density. An area of low density was also observed east of the Delta marshes and extended to a depth of over 100 m. In the spring the silver seatrout appeared only in an area between 20 and 40 m south of Pascagoula. In summer it was moderately abundant on the shallows east of the Mississippi River Delta, and it was also taken from mid-shelf south of the Ocean Springs-Pascagoula area. By fall it was beginning to reappear off the passes (Mobile Bay, Petit Bois-Horn Island), and it was also taken at one locality on the mid-shelf.

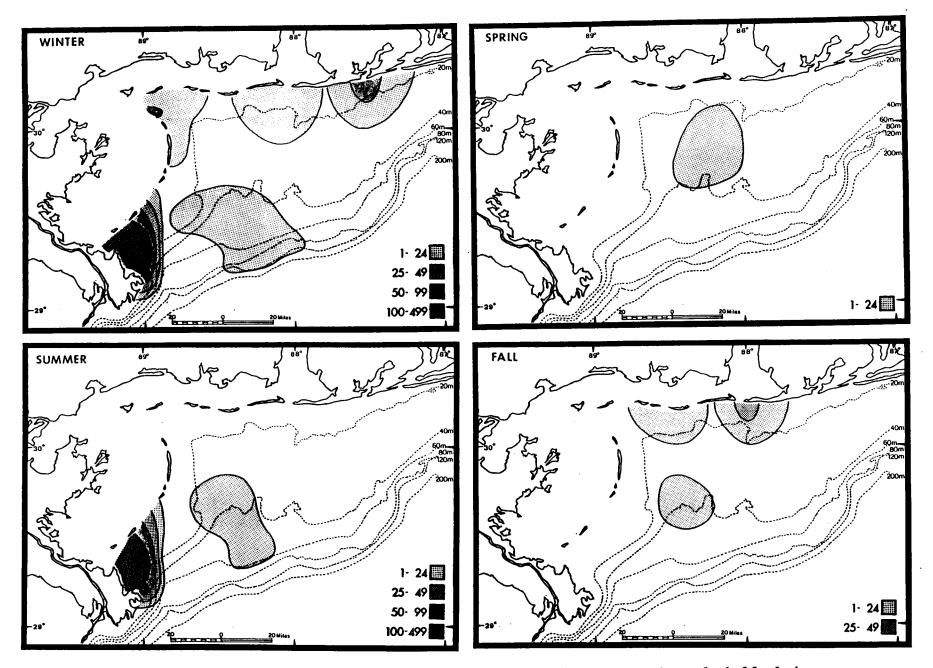


Figure 9. Seasonal distribution patterns of <u>Cynoscion nothus</u> on the outer continental shelf of the Tuscaloosa Trend study area. Number of individuals captured per hour trawling.

Ginsburg (1931) suggested that the silver seatrout tends to be found in deeper waters than the sand seatrout, a myth that has persisted in the literature. For example, Hoese et al. (1977) stated, ". . .between eight and twelve fathoms it gradually replaces <u>C</u>. <u>arenarius</u>, and it is the only <u>Cynoscion</u> normally found outside of twelve fathoms." This does not accord with the facts of the present study or with data presented for the northwestern Gulf by Darnell et al. (1982) and by Chittenden and Moore (1977). The life history of the silver seatrout is not well-known. It apparently spawns in the fall. The literature suggests that it moves into the nearshore waters during the colder months, but the present data suggest just the opposite. It seems to move onto the shelf in the fall and winter, and with the exception of a few, probably older individuals, it seems to spend the colder weather near the mouths of passes.

The spot (Leiostomus xanthurus) was the fifth most abundant species taken and was represented by 5,994.3 specimens or 3.0 percent of the total fish Its seasonal abundance on the shelf was as follows: winter - 33.9 catch. percent; spring - 11.6 percent; summer - 8.5 percent; and fall - 46.0 percent. Seasonal distribution patterns are presented in Figure 10. During the winter the spot was widespread over the shelf west of Perdido Bay, and an area of very dense concentration (greater than 1,000 fish per hour) appeared southwest of Mobile Bay in the 30-40 m depth range. Small areas of moderate concentration were seen at the north end of the Chandeleur Islands and in deeper water (beyond 60 m) east of the Mississippi River Delta. In the spring no specimens were taken east of Mobile Bay, and two small areas of moderate density appeared south of Pascagoula at around 30 m and 50 m. During the summer a moderately dense area appeared south of Mobile Bay extending to a depth of 30-40 m, and this probably represented young individuals migrating out onto the shelf. In the fall this area had developed very high density between 20 and 40 m, and moderate density extended out beyond 80 m.

According to Benson (1982), spawning takes place offshore during the winter (probably from late December through March on the north central Gulf shelf). Young move into the estuarine nursery areas, and some may remain there through the first winter of life. Sexual maturity appears during the second year, and these individuals move onto the shelf in late summer and fall prior to the winter spawning. These facts accord well with data presented in the present study.

Three species of kingfish are known from the northern Gulf coast, the southern kingfish (Menticirrhus americanus), gulf kingfish (M. littoralis), and northern kingfish (M. saxatilis). The latter two species are found close inshore, and only the southern kingfish appeared in the present data base. In the present study 549.5 specimens of the southern kingfish were taken, representing 0.27 percent of the total fish catch. The seasonal distribution of winter - 42.8 percent; spring - 23.2 percent; the species was as follows: summer - 13.6 percent; and fall - 20.3 percent. It was taken from the depth range of 4-37 m, and it was never abundant at depths greater than 15 m. The seasonal distribution patterns of the southern kingfish are given in Figure At all seasons this species was taken primarily just off passes. The 11. highest densities and most widespread distribution were observed during the winter months. Three areas of distribution at this time included the Mobile Bay-Perdido Bay, Chandeleur Island-Horn Island, and Mississippi Delta-Breton Island areas. In the spring the only specimens were taken from the Chandeleur In the summer they occurred off Horn Island and Island-Horn Island area.

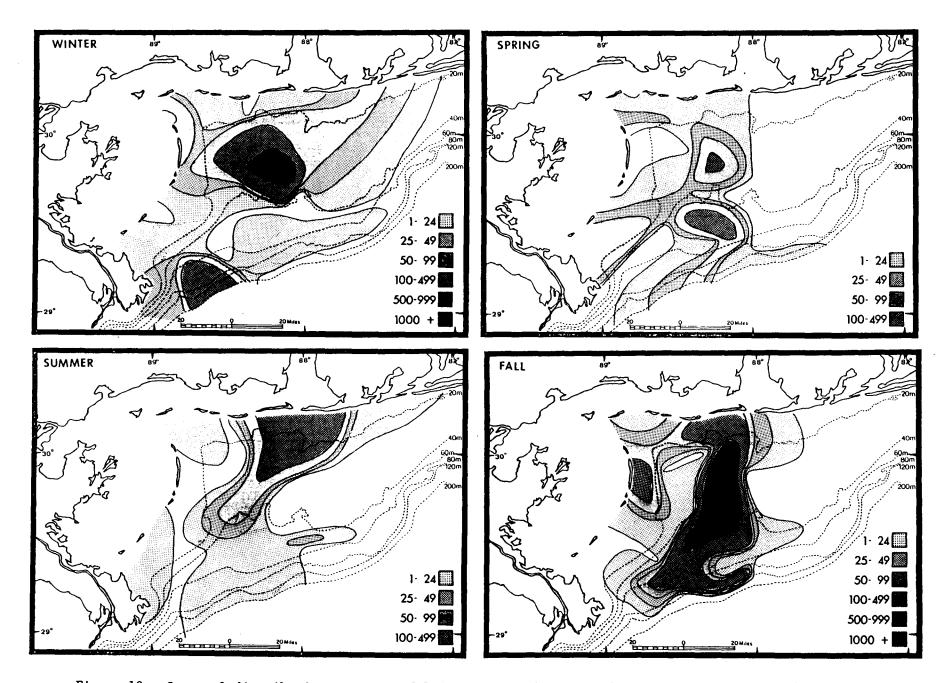


Figure 10. Seasonal distribution patterns of <u>Leiostomus xanthurus</u> on the outer continental shelf of the Tuscaloosa Trend study area. Number of individuals captured per hour trawling.

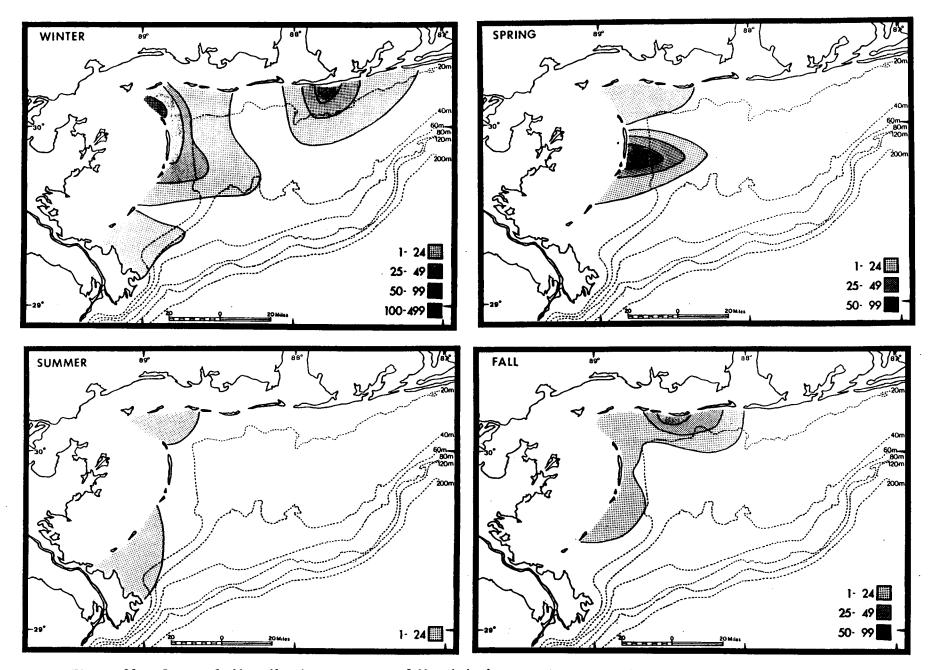


Figure 11. Seasonal distribution patterns of <u>Menticirrhus</u> <u>americanus</u> on the outer continental shelf of the Tuscaloosa Trend study <u>area</u>. Number of individuals captured per hour trawling.

Breton Island. In the fall the distribution was continuous from Mobile Bay to Breton Island, primarily at depths of less than 20 m, and one area of concentration was noted just off the Horn Island-Dauphin Island area.

Most of the life history of the southern kingfish is passed in the bays and sounds, but the adults may appear outside the barrier islands, especially during the colder months. Spawning on the northern Gulf coast apparently occurs from April to October.

The Atlantic croaker (Micropogonias undulatus) was represented by 32,102.5 specimens or 16.05 percent of the fish data base. It was the second most abundant species taken. Its seasonal distribution pattern was as follows: winter - 15.4 percent; spring - 13.0 percent, summer - 12.8 percent; and fall - 58.9 percent. The fall figure is inflated due to the fact that a single collection on the shelf during this season yielded over 12,000 individuals per hour, over five times larger than any other collection, and over a third of the entire year's catch. This point will be discussed below. The seasonal distribution patterns of the Atlantic croaker are presented in Figure 12. During the winter the Atlantic croaker was present over most of the shelf area except in the deeper water east of Mobile Bay. One area of very high concentration appeared at depths greater than 60 m off the Mississippi River Delta. However, areas of moderately high density extended south of Perdido Bay and south of Petit Bois and Horn Islands, the latter area extending from about 20 m to the outer edge of the shelf. By spring the pattern had changed dramatically. Virtually no individuals were collected east of Horn Island in less than 40 m of water, although the species did appear in one small area at depths greater than 40 m. One area of very dense concentration was observed at depths beyond 60 m off the Mississippi River Delta, and areas of moderate density appeared at 40-100 m south of Horn Island and in shallow ater off Breton and the Chandeleur Islands. The summer pattern was marked by the appearance of individuals in shallow waters as far east as Perdido Bay and very heavy concentrations off the mouth of Mobile Bay and betwen 40 and 60 m south of Horn Island. An area of moderate density included both these concentrations and extended from Mobile Bay and Horn Island on the north to a depth Another area of moderate density appeared in less than 20 m off of 80 m. The fall pattern was much like that of the summer. The very Breton Island. dense area off Mobile Bay now extended out to a depth of 40 m, and another very dense area appeared in shallow water between Breton Island and the Delta marshes.

The life history of the Atlantic croaker in the north central Gulf has recently been summarized by Benson (1982). Spawning takes place on the continental shelf in the fall and winter with peak spawning in the month of November. Spawning may occur between 15 and 81 m, but most individuals appear to spawn at about 20 m. Young move into the bays and estuaries and remain in the inside waters throughout the first year of life. During the late summer and fall of their second year they move out onto the shelf to spawn. Older juveniles and adults tend to school, especially just before spawning. Adults tend to remain on the shelf but their distribution and movements are poorly known.

In the present study Atlantic croakers were taken on the shelf at depths from 7 to 92 m but they likely extend deeper, especially off the Mississippi River Delta. The density patterns observed in the summer and fall clearly reflect the exodus of young fishes from the nursery areas, and they point up the importance of Mobile Bay and the Pascagoula marshes in this connection.

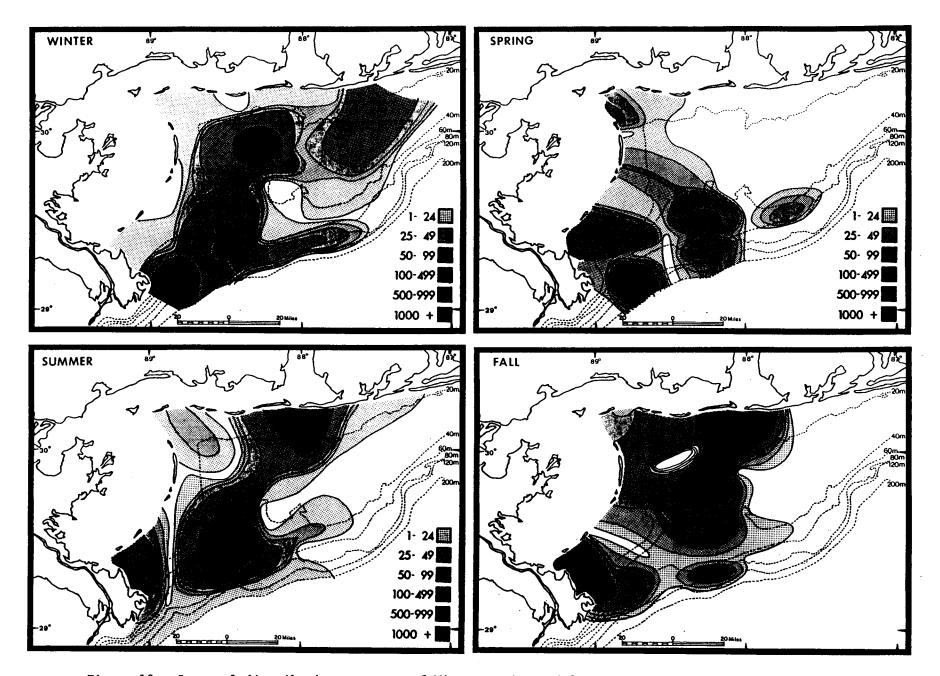


Figure 12. Seasonal distribution patterns of <u>Micropogonias undulatus</u> on the outer continental shelf of the Tuscaloosa Trend study area. Number of individuals captured per hour trawling.

The very dense collection of croakers (over 12,000 per hour) in the fall at a depth of 35 m southwest of Mobile Bay must represent a prespawning aggregation. This collection was made in mid-October. The winter and spring patterns must represent the post-spawning adults, and it would appear that these tend to move eastward and seaward between winter and spring. By summer they may have reversed this movement, and the heavy concentrations observed between 40 and 60 m at this season may represent the over-wintering adults moving back toward the spawning grounds.

The black drum (Pogonias cromis) was taken at only seven stations and only 17.8 individuals were represented. Six of the occurrences were in the winter and one in the fall. The collection sites of the black drum (all seasons combined) are presented in Figure 13. Most specimens were taken near the shore or off the barrier islands at less than 20 m depth, but the species did appear in a single collection in the winter at a depth of 73 m.

The black drum is primarily a bay species and Benson (1982) noted that adult migration is restricted largely to spring and fall movement through the passes between the estuarine and nearshore marine environments. Spawning occurs from February to April. These facts accord well with the essentially winter observance of a few black drums in the nearshore shelf environment. The one deepwater record is clearly an anomaly.

The red drum (<u>Sciaenops ocellata</u>) appeared in the collections at only three stations and a total of 21.6 individuals was taken. As shown in Figure 14, these were all just outside the barrier islands at depths of 11-18 m. All occurred during the winter months. Benson (1982) noted that spawning occurs in fall and winter with a peak during September-November. Most red drum reside in the inside waters during the summer but move into the Gulf in late fall. Post-spawning individuals tend to spend much time on the shelf and some inhabit the surf zone. On the shelf they tend to form schools, and Hoese and Moore (1977) pointed out that larger individuals may remain far offshore. The present data do not suggest that the red drum is present on the shelf at any season except winter, and they do not suggest that the species is found at depths greater than 20 m. In the much larger data base for the northwestern Gulf shelf the red drum was not even represented. It is, of course, possible that large red drum are present on the shelf but are too mobile to be captured by trawls.

Mugilidae - MULLETS

Although several species of mullets have been reported from the north central Gulf area, only the striped mullet (<u>Mugil cephalus</u>) is of commercial interest. In the fish data base this species was represented by 0.2 specimens taken at a single station in the fall at a depth of 37 m south of Petit Bois Island. On the continental shelf this fish is rarely taken in bottom trawls.

The striped mullet spawns from October to May in surface waters near the outer edge of the continental shelf. Young gradually enter the bays and estuaries where they spend most of the first two years of life. In the fall of their second year they move in large schools to the continental shelf. Apparently some of the post-spawning individuals reenter the estuaries with the onset of warm weather in the spring and summer.

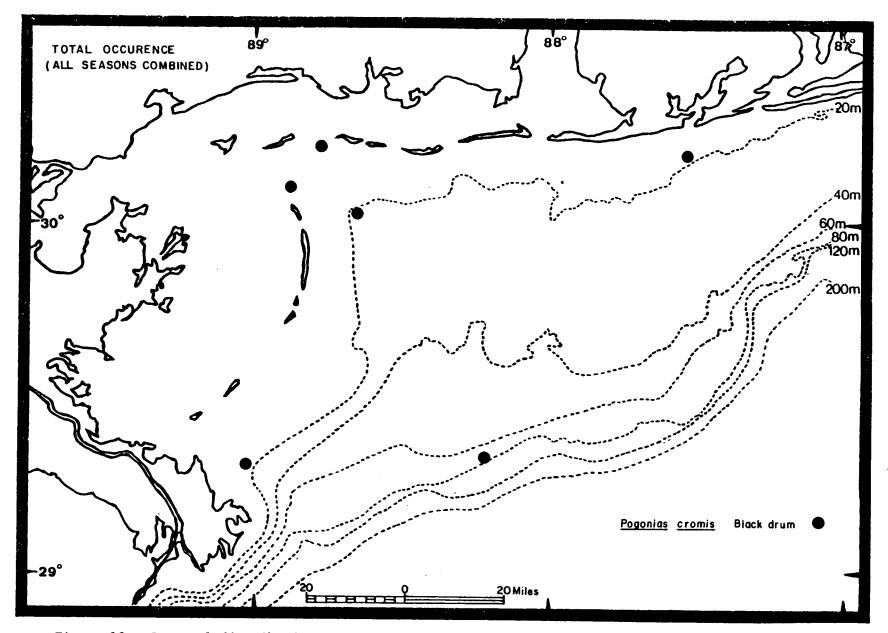


Figure 13. Seasonal distribution patterns of <u>Pogonias</u> cromis on the outer continental shelf of the Tuscaloosa Trend study area. Number of individuals captured per hour trawling.

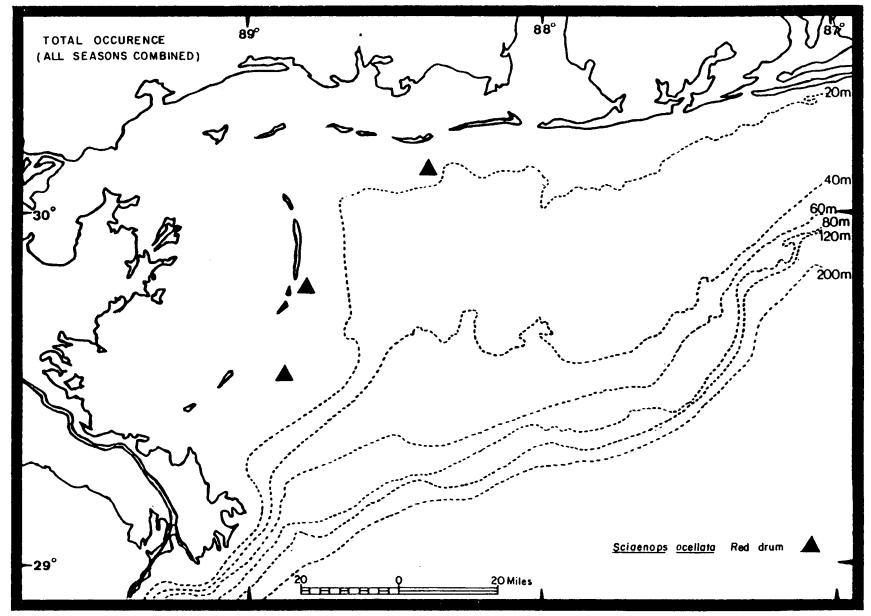


Figure 14. Seasonal distribution patterns of <u>Sciaenops ocellata</u> on the outer continental shelf of the Tuscaloosa Trend study area. Number of individuals captured per hour trawling.

Scombridae - MACKERELS

The family Scombridae includes the mackerels, tunas, and their relatives. The following list gives those species known or presumed to occur on or near the continental shelf of the north central Gulf of Mexico.

Mackerels

Auxis thazard	frigate mackerel
Scomber japonicus	chub mackerel
Scomberomorus cavalla	king mackerel
Scomberomorus maculatus	Spanish mackerel
Scomberomorus regalis	cero

Tunas

Euthynnus alletteratus	little tunny
Euthynnus pelamis	skipjack tuna
Thunnus albacares	yellowfin tuna
Thunnus atlanticus	blackfin tuna
Thunnus thynnus	bluefin tuna

Mackerels inhabit the continental shelf primarily during the warmer months, and the Spanish mackerel is more widespread over the shallow shelf than the other species. In the present study two species of mackerels were taken, the chub mackerel and the Spanish mackerel. Nine specimens of chub mackerel occurred at three stations in the winter, spring, and fall. These were widely distributed in the depth range of 18-99 m. All occurrences of this species were west of Mobile Bay. The Spanish mackerel appeared at five stations, one in the spring, two in the summer, and two in the fall. A total of 4.3 specimens was taken in the depth range of 9-24 m. All specimens were captured near Horn and the Chandeleur Islands.

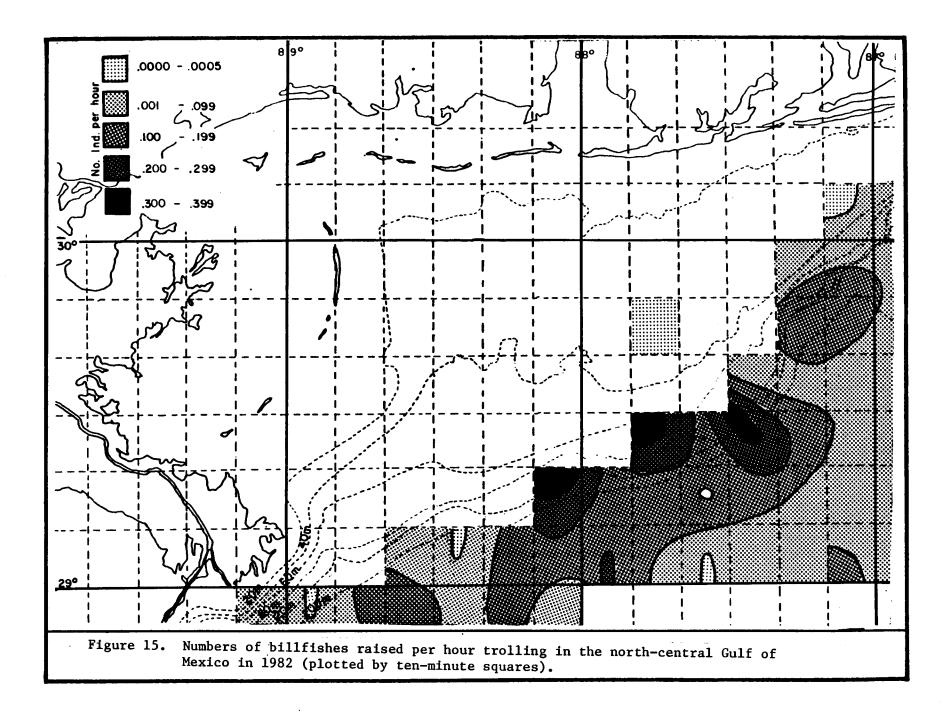
The Spanish mackerel is a highly migratory species which is abundant in the north central Gulf primarily during the summer, although some individuals appear to remain in the area throughout the year. Spawning takes place May through September at depths of 12 to possibly 200 m. Young may be found on the shelf or in sounds and bays, but the species is not estuarine dependent.

Tuna fishes are not normally considered shelf species, but the little tunny (<u>Euthynnus alletteratus</u>) is widespread on the northern Gulf shelf in the warmer months. It is sometimes called the bonito or false albacore. It is a good game fish and is taken frequently by anglers. No specimens of this or any other tuna species appeared in the fish data base.

A few words will be said concerning the larger tunas of the area. According to Iwamoto (1965), commercially exploitable stocks of tunas are found in the northern Gulf of Mexico. These include the skipjack tuna (<u>Euthynnus</u> <u>pelamis</u>), yellowfin tuna (<u>Thunnus albacares</u>), blackfin tuna (<u>Thunnus atlanticus</u>), and bluefin tuna (<u>Thunnus thynnus</u>). The area of principal sightings by personnel of the exploratory vessel M/V OREGON and longline catches lies in the water above the 183 to 1,830 m depth contours. Although tuna schools were encountered in the northern Gulf at all seasons, they appeared to be more abundant during the summer and fall months. Tuna schools were located most frequently east and southeast of the mouth of the Mississippi River, but this may simply reflect the fact that more observations have been made in this area.

Istiophoridae - BILLFISHES

The three primary billfishes of the northern Gulf coast are the sailfish (Istiophorus platypterus), blue marlin (Makaira nigricans), and white marlin (Tetrapterus albidus), although two additional species may be present. A11 these species are highly migratory and appear on the northern Gulf coast only during the warmer months (primarily June through September). The life histories of all species are poorly known. Although no specimens of billfish appeared in the fish data base, information concerning the local distribution of these three species has been obtained from the National Marine Fisheries Service (Lopez and Pristas, 1982). This information is plotted in Figure 15. Although not as extensive as one might desire, the data are revealing. These three species appear to be concentrated over the outer portion of the continental shelf (beyond a depth of 60 m) and the upper slope. From this figure and other data (on hand, but not presented here), it appears that the billfishes concentrate along the lateral edges of DeSoto Canyon (avoiding waters directly over the canyon itself) and that they are relatively less dense around the mouth of the Mississppi River where the waters tend to be more turbid and offer less visibility for these highly predatory sight-feeders. The data also suggest that the sailfish occupies waters somewhat shallower than do the two species of marlin.


Stromateidae - BUTTERFISHES

The stromateids were represented in the fish data base by 13,242.0 specimens or 6.57 percent of the total fish catch. Four taxa were present: Barrelfish (Hyperoglyphe perciformis), harvestfish (Peprilus alepidotus), gulf butterfish (P. burti), and unidentified peprilids (Peprilus sp.). Only the harvestfish and Gulf butterfish are of commercial interest.

The harvestfish (Peprilus alepidotus) was represented by 144.8 individuals or 0.07 percent of the total fish catch. It occurred at 16 stations, ten of which were in the winter, two in spring, one in summer, and three in fall. Seasonally, the catch was as follows: winter - 30.4 percent; spring - 0.5 percent; summer - 0.01 percent; and fall - 69.0 percent. No individuals appeared at any season east of the center of Mobile Bay, but west of this point they were widespread and occurred in the depth range 9-91 m. However, most of the stations of occurrence and most of the individuals appeared in depths of less than 30 m. These occurred primarily south of Mobile Bay and around Horn Island and the Chandeleur Islands.

According to Horn (1970), in the northern Gulf of Mexico the harvestfish spawns in the spring, probably a few miles offshore. After hatching, the young probably move inshore. Juveniles occur in the bays and estuaries during the summer, and subadults pass back to the shelf in the fall. Since these are primarily pelagic, they seldom appear in abundance in trawl collections.

The Gulf butterfish (Peprilus burti) was represented in the fish data base by 12,931.3 individuals representing 6.46 percent of the entire fish catch. This was the fourth most abundant species taken. Its pattern of seasonal abundance was the reverse of most estuarine dependent species and is given as follows: winter - 3.3 percent; spring - 66.3 percent; summer - 27.4 percent; and fall - 3.0 percent. This species was taken in the depth range of 7-99 m. Seasonal distribution patterns of the Gulf butterfish are presented

in Figure 16. This fish was rare east of Mobile Bay, but it was widespread on the western portion of the shelf. In the winter few individuals were taken at depths greater than 60 m. Three areas of moderate density were noted: below Horn Island and below Mobile Bay in the depth range of 15-30 m and further south off Mobile Bay in the depth range of 35-55 m. In the spring a large area of heavy density (greater than 1,000 fish per hour) extended from the Breton Sound area to a depth of about 60 m, and an area of intermediate density extended from Ship and Horn Islands to a depth of about 30 m. In the summer a very dense area appeared at depths of 20-40 m south of the barrier islands from Horn Island to the western edge of Mobile Bay. An area of moderate density extended eastward from the Mississippi River Delta marshes to a depth of greater than 60 m. In the fall an area of moderate to heavy density appeared south of Mobile Bay in the 20-40 m range, and a small moderately dense area appeared south of this at a depth of greater than 80 m.

Murphy (1981) found that off Texas the Gulf butterfish exhibits two spawning periods. One spawning takes place in the spring (February to early May), and the second spawning occurs in the fall (September through November). Adults spawn in the water column over the outer continental shelf and thereafter remain pelagic and disappear from the demersal catch of the shelf. Young move to the inshore portion of the shelf, and as they mature they gradually move offshore toward the outer shelf. Thus, there appears to be two seasonal cohorts which sequentially occupy the various benthic habitats from onshore to offshore. The species is not estuarine dependent.

To what extent these considerations apply to populations east of the Mississippi River is not clear. As in the case on the northwestern Gulf shelf (Darnell, et al., 1983), the density distribution patterns shift remarkably from one season to the next, and without further information they defy rational interpretation.

Bothidae - LEFTEYE FLOUNDERS

Flounders of the genus <u>Paralichthys</u> are of commercial interest, and three species are found in the area: the Gulf flounder (<u>Paralichthys albigutta</u>); southern flounder (<u>P. lethostigma</u>); and broad flounder (<u>P. squamilentus</u>). All three species appeared in the fish data base and together they included 108.5 individuals, comprising 0.05 percent of the total fish catch.

The Gulf flounder (<u>Paralichthys albigutta</u>) occurred at a single station in the spring at the west end of Horn Island at a depth of 9 m. Hoese et al. (1977) noted that in Texas the young are found in bays during the spring and summer and migrate to the Gulf with the onset of colder weather. Benson (1982) stated that in the northern Gulf of Mexico this flounder is relatively common on the continental shelf out to a depth of 50 m, but this was not borne out by the trawl-catch data of the present study. The species was also somewhat rare on the northwestern Gulf shelf (Darnell et al., 1983).

The southern flounder (<u>Paralichthys lethostigma</u>) was not abundant in the collections. It was represented by 58.9 individuals or 0.03 percent of the total fish catch. It was captured at depths of 7-99 m at stations west of Mobile Bay. The seasonal distribution of the catch was as follows: winter - 27.0 percent; spring - 17.7 percent; summer - 22.7 percent; and fall - 32.6 percent. This flounder appeared at 24 stations whose depth distribution was

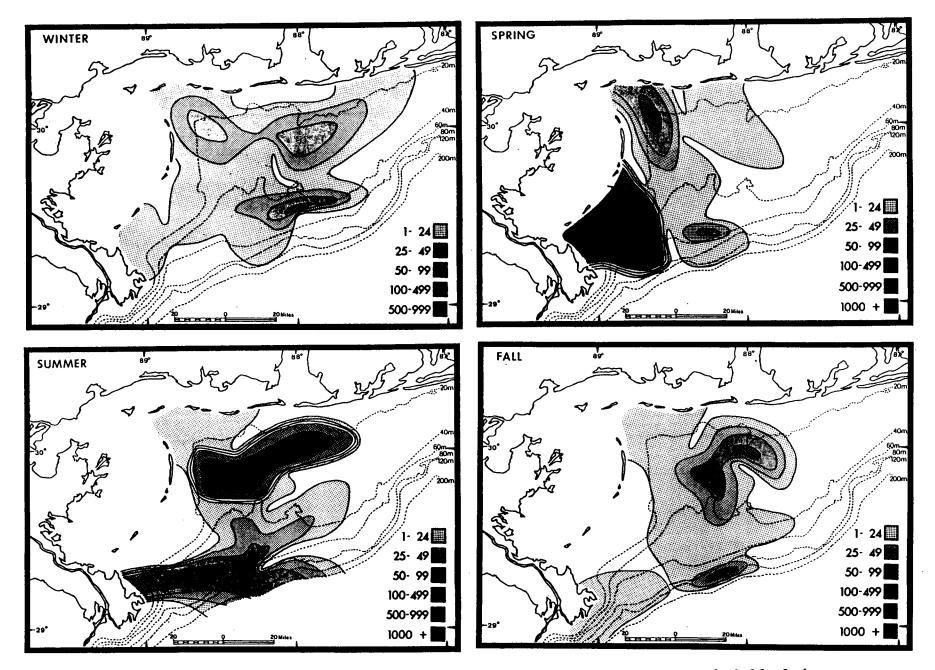


Figure 16. Seasonal distribution patterns of <u>Peprilus burti</u> on the outer continental shelf of the Tuscaloosa Trend study area. Number of individuals captured per hour trawling.

as follows: 0-19 m - 9 stations; 20-39 m - 8 stations; 40-59 m - 3 stations; 60-79 m - 1 station; 80-99 m - 3 stations. The species was more widespread and it was also more abundant in the nearshore shelf waters, but it did occur toward the outer shelf.

Benson (1982) stated that on the northern Gulf coast the southern flounder spawns on the inner and central continental shelf from September to April with peak spawning from November to January. The young then make their way to the bays and estuaries. In October-November there is a heavy migration of adults and older juveniles from the estuaries to the offshore waters where they overwinter. Most individuals achieve sexual maturity in their fourth or fifth year of life, and some attain the age of ten years. There probably is a resident shelf population of older individuals.

The broad flounder (<u>Paralichthys</u> <u>squamilentus</u>) was represented in the data base by 49.5 individuals or 0.02 percent of the total catch. This is a deeper water species which was taken at ten stations in the depth range of 55-205 m. A total of 84.5 percent of the specimens was taken in the fall and 12.5 percent occurred in the spring. Most of the captures were made in deep water directly south of Pascagoula and Mobile Bay, but the species did occur at a depth of 205 m on the eastern edge of the DeSoto Canyon.

On the northwestern Gulf shelf the broad flounder appeared at a single deepwater station off Louisiana (Darnell et al., 1983). Hoese et al. (1977) noted that this is a deepwater species occurring at depths of 60-120 fathoms but that the young occur inshore during the warmer months. Little is known of the life history.

SHRIMP

The shrimp catch was included in most, but not all, of the data sets employed in the fish study. No shrimp were recorded in the McCaffrey data set and these stations had to be made up, as possible, from various collections made by vessels in the service of the National Marine Fisheries Service operating out of Pascagoula, MS. In addition, the Moore, Brusher, and Trent data set included only fishes, but the Lyons and Baxter data set contained the shrimp data for the same stations and these were substituted. Thus, the comprehensive shrimp data base was constructed from the five data sets listed below.

- 1. GCRL Monthly transects across the shelf by personnel of the Gulf Coast Research Laboratory of Ocean Springs, MS.
- 2. LB Monthly transects across the shelf by personnel of the National Marine Fisheries Service laboratory in Galveston, TX and referred to in the published paper by Lyon and Baxter (1974.
- 3. DD Collections made throughout the area by personnel of the Oceanography Department of Texas A&M University under the supervision of Darnell and Defenbaugh (see Defenbaugh, 1976).
- MAFLA Seasonal collections made at scattered localities during the BLMsponsored MAFLA study.

5. PASCAGOULA - Random collections made throughout the area during all seasons by personnel of the National Marine Fisheries Service laboratory in Pascagoula, MS. The data are primarily from cruises of the FRS OREGON II during the years 1974-1982. However, four stations were included from a cruise of the old M/V OREGON made in January, 1957 since more recent stations could not be found for the particular localities. All three species of the genus <u>Penaeus</u> were clearly recognizable and their importance understood at that time.

The data for all the shrimp data sets were standardized in exactly the same manner as the fish data sets, and in the combined shrimp data base all the catch data are expressed as catch-per-hour-of-effort of the standard trawl.

Penaeidae - EDIBLE SHRIMP

In the present context the shrimp catch includes the three species of commercial importance: the brown shrimp (<u>Penaeus aztecus</u>); pink shrimp (<u>P</u>. <u>duorarum</u>); and white shrimp (<u>P</u>. <u>setiferus</u>). The combined shrimp data base includes a total of 3,509.87 shrimp. The composition and distribution of each of the three species is discussed below.

The brown shrimp (Penaeus aztecus) was represented in the catch by 2.607.68 individuals or 74.30 percent of the total shrimp catch. Its depth range extended from 3 to 110 m. Seasonally, the brown shrimp appeared as follows: winter - 8.1 percent; spring - 26.9 percent; summer - 32.9 percent; and fall - 32.2 percent. The seasonal distribution patterns of this shrimp are presented in Figure 17. During the winter the brown shrimp was distributed throughout most of the shelf west of Mobile Bay except in very deep water. No areas of significant concentration were apparent. In the spring the overall distribution pattern was much the same except that areas of intermediate density (greater than 100 individuals per hour) were evident in less than 20 m of water off Petit Bois Island and off the eastern flank of the Mississippi These nearshore density areas appear to mark the movement of River Delta. maturing shrimp from the nursery areas to the shelf in late spring. In the summer, areas of intermediate density appeared at 20-30 m off Dauphin Island and Mobile Bay in the north and at 40-50 m east of Breton Island further These appear to be the remnants of the two emigrating groups observed south. in the spring. In the fall the brown shrimp appeared to be more widespread, even east of Mobile Bay. A single area of moderate density appeared east of the Mississippi River Delta at 20-70 m, and this could represent a concentration of brown shrimp which move onto the shelf at that season. South of Petit Bois Island an area of low-intermediate density (greater than 50 shrimp per hour) appears to be the remnant of the two areas of intermediate density observed during the summer.

The life history of the brown shrimp in the north central Gulf has recently been summarized by Benson (1982). He pointed out that adults spawn on the shelf at 30-120 m from about November to April. The young then move into the estuaries where they grow rapidly. A major migration back out to the shelf takes place during the period of May to July. Although not mentioned by Benson (ibid.), movement of young from the estuaries probably takes place until at least November with a peak in the fall months. It is also clear that some larger individuals overwinter in the bays and sounds and participate in the spring emigration to the shelf. All these facts accord fairly well with

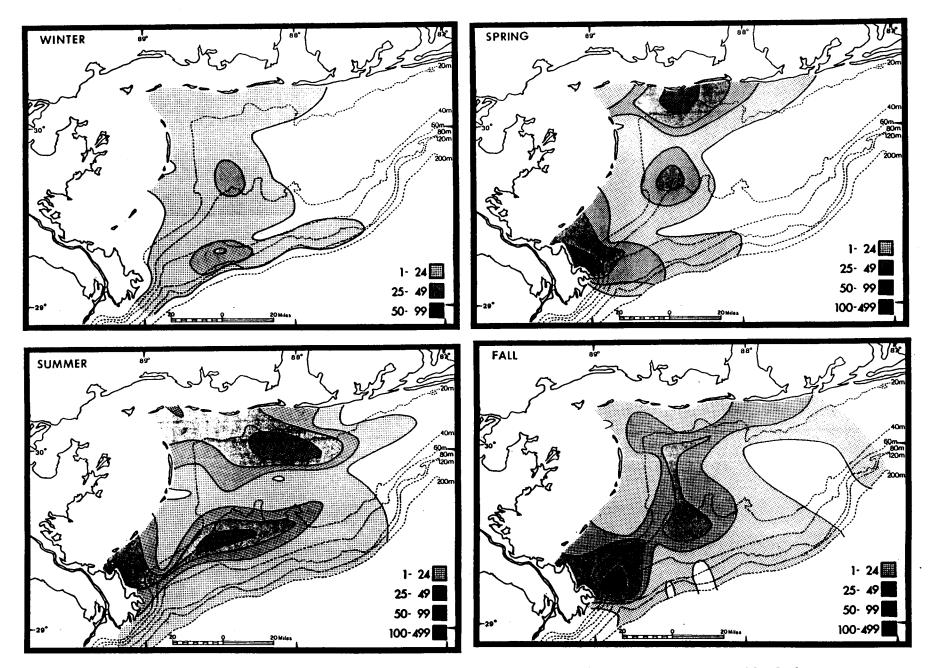


Figure 17. Seasonal distribution patterns of <u>Penaeus aztecus</u> on the outer continental shelf of the Tuscaloosa Trend study area. Number of individuals captured per hour trawling.

the seasonal patterns observed in the present study except that the winter populations on the shelf are much lower than might be anticipated. No winter breeding aggregations were observed. The distribution patterns would be more in accord with the assumption of late summer and fall spawning by this species.

The pink shrimp (Penaeus duorarum) was represented in the collections by 622.09 specimens or 17.72 percent of the total shrimp catch. The depth range of capture was 7-51 m. The species appeared at 34 stations; nine each in winter, spring, and summer, and seven in the fall. The seasonal distribution of abundance was as follows: winter - 12.7 percent; spring - 44.6 percent; summer - 38.1 percent; and fall - 4.6 percent. Seasonal distribution patterns are presented in Figure 18. In general, the pink shrimp was rare to absent east of Perdido Bay, and west of that point it was widely distributed across the inner half of the shelf during most seasons. At no season was the density greater than 80 individuals per hour of trawling effort, and densities greater than 50 per hour occurred only during spring and summer. In the spring they appeared off the mouth of Mobile Bay and the pass between the Chandeleur Islands and Breton Island. In the summer they appeared at nearly the same During fall and winter the densities were lower and the distribution spots. patterns were more restricted.

On the north central Gulf shelf the pink shrimp spawns in the depth range of 8-34 m from March to October. Young enter the bays and estuaries where they remain and grow until the following spring. Darnell and Williams (1956) reported that during a year of high salinity they were taken in Lake Pontchartrain in one-fourth of all trawl collections from November through May. The migration to the continental shelf takes place between June and November. Since the species is primarily nocturnal, daytime trawl collections often do not reveal its true abundance in an area.

The data presented in the present study substantiates the movement of pink shrimp onto the shelf in the spring and summer months. They further indicate that this species utilizes only the inner half of the shelf, and they suggest that this population (west of Perdido Bay) is isolated from other pink shrimp populations of the Florida shelf.

The white shrimp (Penaeus setiferus) was surprisingly rare in the collections. Only 280.10 individuals were taken, representing 8.0 percent of the total shrimp catch. It occurred at depths of 9-54 m. Seasonally, it occurred as follows: winter - 46.6 percent; spring - 8.0 percent; summer - 6.3 percent; and fall - 39.1 percent. The seasonal distribution of the white shrimp is presented in Figure 19. No specimens were taken east of Perdido Bay and few appeared east of Mobile Bay. During the winter this shrimp appeared in low density in relatively shallow water from Perdido Bay to the Mississippi River Delta. The only area of density greater than 50 per hour occurred near the Delta. Spring and summer were characterized by low density and restricted distribution patterns. In the fall the distribution was much like that of the winter. The species was continuously distributed in shallow water from Mobile Bay to the Mississippi Delta, and the only areas of slightly increased density were off the mouths of passes (in this case, between Horn and Petit Bois Islands and off the Chandeleur Islands).

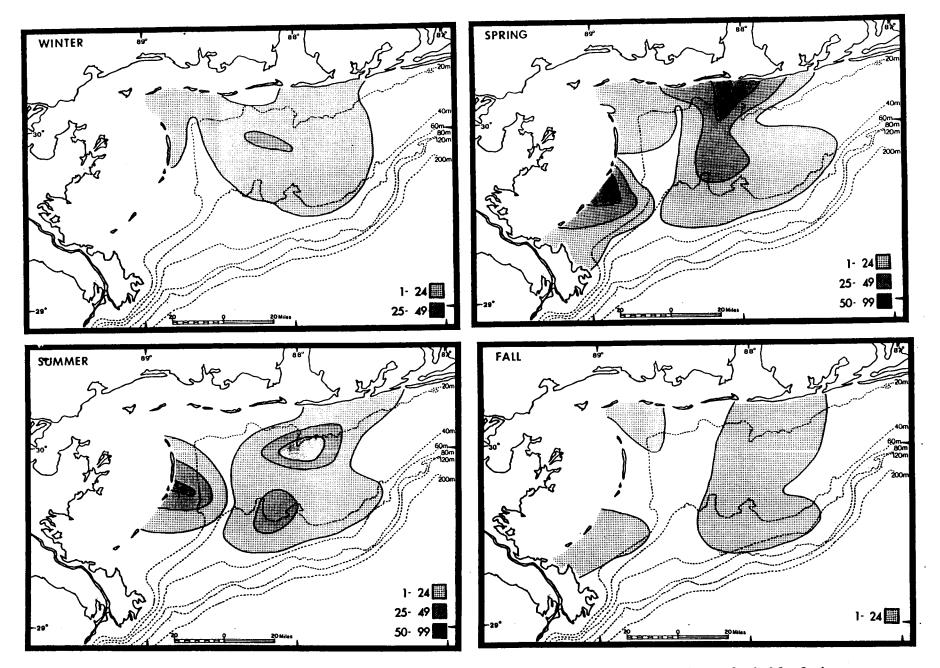


Figure 18. Seasonal distribution patterns of <u>Penaeus</u> <u>duorarum</u> on the outer continental shelf of the Tuscaloosa Trend study area. Number of individuals captured per hour trawling.

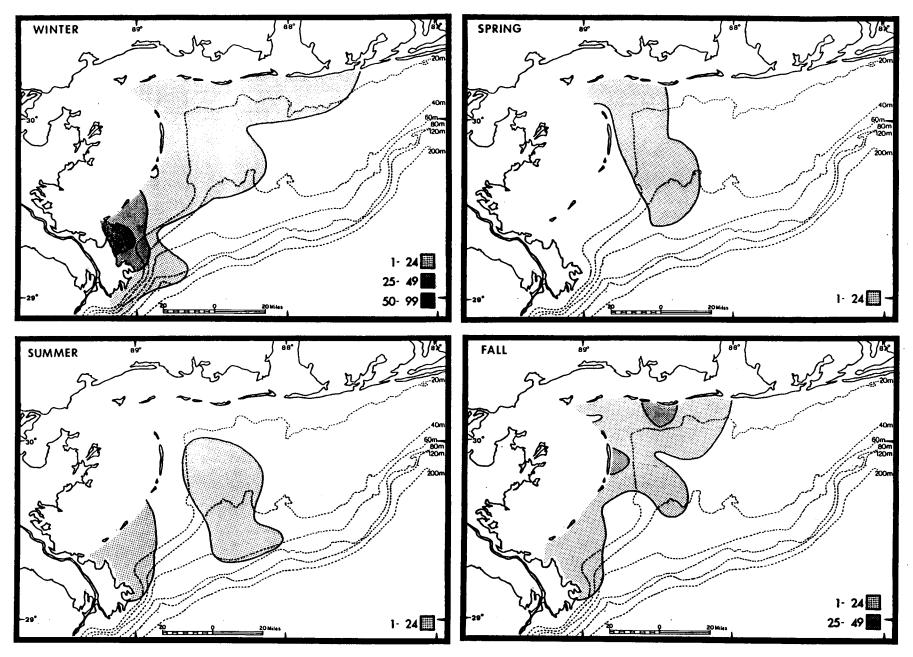


Figure 19. Seasonal distribution patterns of <u>Penaeus</u> <u>setiferus</u> on the outer continental shelf of the Tuscaloosa Trend study area. Number of individuals captured per hour trawling.

Benson (1982) noted that adult white shrimp spawn on the shelf at depths from 8 to 34 m from March to October. Postlarvae enter the bays and estuaries where they remain and grow until they are ready to migrate. The migration to the shelf takes place between June and November. In the writer's experience most of this migration occurs during the fall months.

Data in the present study support the conclusions that the white shrimp utilizes the shelf primarily during the fall and winter months, that its greatest populations are found off the mouths of passes, and that the species are most abundant at depths of less than 20 m. Over 85 percent of the white shrimp catch on the shelf occurred during the fall and winter months. Most of the individuals were taken west of Mobile Bay.

Another penaeid shrimp of commercial interest in the northern Gulf is the royal red shrimp (<u>Pleoticus robustus</u>). This species did not appear in the shrimp data base, but Bullis (1956) summarized information about its distribution in the area. It is an upper slope species with a maximum depth range of 274-732 m and is concentrated on trawlable bottoms southeast of the mouth of the Mississippi River, extending essentially to DeSoto Canyon. Three-hour trawl drags in this area produced catches of 90-120 pounds. This deepwater species is not known from the continental shelf of the area at depths of less than 200 m.

SUMMARY AND SYNTHESIS

The fish and shrimp species of commercial and recreational importance represent a very diverse assemblage in terms of life history and habitat relations. Each has developed its own particular formula for success in a very dynamic ecological system. For all the species more knowledge would be useful, but it is already possible to sketch out, in broad outline, how the system works and how the various species fit into the picture.

Estuarine dependent species

A portion of the species which utilize the continental shelf habitats is estuarine dependent, and summary data for this group is presented in Table 3. Two groups of estuarine dependent species are recognized--cold weather and warm weather spawners. Except for <u>Penaeus aztecus</u>, all the cold weather spawners are most abundant on the shelf during the fall and winter months (i.e., during their spawning seasons). Why <u>P. aztecus</u> deviates is not clear, but this species could be, in part at least, a fall spawner. Three of the warm weather spawners (<u>Arius felis</u>, <u>Cynoscion arenarius</u>, and <u>Penaeus setiferus</u>) are most abundant on the shelf during the fall and winter (i.e., during the non-spawning season). One species (<u>Menticirrhus americanus</u>) is most abundant on the shelf in the winter and about the same during the spring and fall. The pink shrimp (<u>Penaeus duorarum</u>) is most abundant on the shelf during the spring and summer months (i.e., during much of its spawning season).

The seasonal distribution maps clearly point to the fact that in order to enter the shelf the estuarine dependent species utilize the various passes and that different passes appear to be more important for different species. Two areas seem to stand out in this connection: the mouth of Mobile Bay and the Petit Bois-Dauphin Island channel, on the one hand; and the passes between the Chandeleur Islands and the Mississippi Delta marshes, on the other. Once on Table 3. Estuarine dependent species of commercial and recreational importance collected on the continental shelf, giving numerical abundance in the fish or shrimp data base, percent abundance by season, and spawning season. For species with less than 50 individuals, seasonal percentage is not given.

Species	Number of	on the shelf			e	Spawning season
	individs.	W	Sp	Su	F	
Cold weather spawners	· · · · · · · · · · · · · · · · · · ·					
Brevoortia patronus	92.9	96.9	0.0	0.0	3.1	October-March
Archosargus probatocephalus	12.6					February-June
Leiostomus xanthurus	5,994.3	33.9	11.6	8.5	46.0	December-March
Micropogonias undulatus	32,102.5	15.4	13.0	12.8	58.9	October-April
Pogonias cromis	17.8					February-April
Sciaenops ocellatus	21.6					September-November
Mugil cephalus	0.2					October-May
Paralichthys albigutta	0.1					November-February
Paralichthys lethostigma	58.9	27.0	17.7	22.7	32.6	September-April
Penaeus aztecus	2,607.7	8.1	26.9	32.9	32.2	November-April
Warm weather spawners						
Arius felis	4,519.8	31.6	4.2	31.7	32.5	May-August
Cynoscion arenarius	3,005.0	48.2	18.2	11.9	21.7	March-September
Menticirrhus americanus	549.5	42.8	23.2	13.6	20.3	April-October
Penaeus duorarum	622.1	12.7	44.6	38.1	4.6	May-November
Penaeus setiferus	280.1	46.6	8.0	6.3	39.1	March-October

the continental shelf, many of the estuarine dependent species appear to remain, or at least display, highest densities near the passes and in less than This group includes the following species: 20 m of water. Arius felis; Archosargus probatocephalus; Menticirrhus americanus; Pogonias cromis; Sciaenops ocellatus; and Penaeus setiferus. Two species (Brevoortia patronus and Mugil cephalus) become pelagic and disappear from the bottom fishery almost as soon as they arrive at the shelf. Of the remaining estuarinedependent species, Leiostomus xanthurus, Micropogonias undulatus, and to some extent, Penaeus aztecus and Cynoscion arenarius, develop dense populations beyond the 20 m depth. There appears to be a major area of cold weather concentration of most of these species at a depth of 20-40 m southeast of Mobile Bay. Some of the species which travel seaward near the eastern flank of the Mississippi Delta marshes appear to concentrate in cold weather in waters deeper than 60 m.

Non-estuarine dependent species which are resident on the shelf

The second group of species resides on the continental shelf, and although some species may make use of bays, sounds, and estuaries, such areas are not critical to the life history. Summary data for this group is given in Table 4. Those species which occur only on the outer half of the shelf are of potential commercial and recreational importance, but they are under-utilized at present. Of those which occur on the inner half of the shelf, only four species appeared in any abundance in the fish data base (Lutjanus campechanus, Cynoscion nothus, Peprilus alepidotus, and Peprilus burti). Most sharks, as well as Pomatomus saltatrix and Rachycentron canadum, are generally too mobile to be caught by trawls and are obviously much more abundant on the shelf than present data would indicate. Groupers (Epinephelus itajara and E. morio) and one of the snappers (Lutjanus synagris) tend to remain around wrecks and reef structures of the middle and outer shelf where they are less vulnerable to capture by trawls. In the winter months Lutjanus campechanus shows a remarkable concentration at a depth of 30-40 m off Mobile Bay. Since spawning in this species occurs in the warmer months, it is suggested that the winter concentration is a reflection of the concentration in the same area by the demersal fishes and shrimp which make up its food supply. On the continental shelf the distribution of Cynoscion nothus appears to differ in no significant way from that of C. arenarius except that the latter species is more abundant and extends to waters of greater depth. The two stromateids (Peprilus alepidotus and P. burti) are, in part, pelagic. The life histories must be seasonally quite different. P. alepidotus was most abundant in the fall and winter, whereas P. burti was most abundant in spring and summer.

Non-estuarine dependent species which are basically summer residents

A group of highly carnivorous species moves into the shelf area during the warmer months (Table 5). These include the carangids, coryphaenids, scombrids, tunas, and billfishes. Some move in from deeper Gulf waters, and others are along-shelf migrators. Some appear to remain around the outer edge of the shelf, whereas others range broadly over the inner shelf and may even penetrate Mississippi Sound and larger bays. Most appear to be spring or summer spawners and the young must make extensive use of the shelf and related coastal waters. These species are excellent swimmers and are only rarely taken in trawl collections. Most are of interest to sport fishermen. Table 4. Non-estuarine dependent species of commercial and recreational importance which are resident on the shelf, giving numerical abundance in the fish data base, percent abundance by season, and spawning season (where known). For species with less than 50 individuals, seasonal percentage is not given.

.

•

.

Species	Number of			e	Spawning season	
	individs.	W	Sp	Su	F	
Species which occur on the inner	half of the she	elf			<u> </u>	
Carcharhinus acronotus	3.1					
Mustelus canis	6.2					
Rhizoprionodon terraenovae	14.5					July-August
Sphyrna tiburo	5.9					
Other shark species						
Epinephelus itajara						
Epinephelus morio						
Pomatomus saltatrix	. 0.5					August-April
Rachycentron canadum	9.4					April-August
Lutjanus campechanus	1,131.8	80.7	1.9	6.7	10.7	June-October
Lutjanus synagris						March-September
Cynoscion nothus	523.8	64.9	2.4	25.9	6.8	"Fa11"
Peprilus alepidotus	144.8	30.4	0.5	0.0	69.0 ·	"Spring"
Peprilus burti	12,931.3	3.3	66.3	27.4	3.0	FebMay, SeptNov
Species which occur only on the o	uter shelf					
Squatina dumerili	16.0					
Caulolatilus intermedius	90.4	71.6	0.0	3.4	25.0	
Caulolatilus microps	38.4					
Lopholatilus chamaeleonticeps						
Malacanthus plumieri						
Paralichthys squamilentus	49.5	1.3	12.5	1.6	84.5	

,

.

Table 5. Non-estuarine dependent species of commercial and recreational importance which are basically summer residents only, giving numerical abundance in the fish data base, spawning season (where known), and portion of the shelf primarily used.

Species	Number of	Spawning season		of shelf ed	Comments
· · · · · · · · · · · · · · · · · · ·	individs.		Inner	Outer	
Carangids					
Caranx crysos	86.4	Spring	x	x	
Caranx hippos		Spring-Summer	x	X	
Caranx latus		Summer	x	x	
Hemicaranx amblyrhynchus	40.0			x	
Seriola dumerili	19.9	Summer		X	
Seriola fasciata				X	
Trachinotus carolinus		Summer-Fall	X	X	
Coryphaenids					
Coryphaena equisetus				x	Shelf edge, rare
Coryphaena hippurus		Spring		X	
Scombrids					
Auxis thazard				x	Rare
Scomber japonicus	9.0			X	
Scomberomorus cavalla		Summer		X	
Scomberomorus maculatus	4.3	Summer	x	X	
Scomberomorus regalis				x	Rare
<u>Funas</u>					
Euthynnus alletteratus		Summer	x	x	
Euthynnus pelamis		Summer	~	x	Shelf edge, rare

••

Table	5	(continued).	

.

Species	Number of	Spawning season	Portion us		Comments
	individs.		Inner	Outer	
Tunas (continued)				-	
Thunnus albacares				x	shelf edge
Thunnus atlanticus				x	shelf edge
Thunnus thynnus				x	shelf edge
Billfishes					
Istiophorus platypterus		Summer		x	
Makaira nigricans		Summer		x	shelf edge
Tetrapterus albidus		Summer		x	shelf edge

.

· •

Ecosystem considerations

The migration of estuarine dependent fishes and shrimp from the estuaries, bays, and sound primarily during late summer and fall represents a major flow of biologically bound energy to the continental shelf area. The times and places of this flow have been documented above. Once on the shelf, this energy is divided among the pelagic and demersal species where they represent two somewhat interrelated food webs. However, it is probably no accident that the greatest utilization of the shelf by estuarine dependent species is during the colder months (when the bulk of the predators is absent) and that most estuarine dependent species spawn during the colder months. There is a reverse movement of energy back into the estuary and related waters when the larvae and juveniles migrate to the nursery areas, and considering the organic matter which accompanies the young in the bottom waters, this shoreward movement of energy cannot be negligible. This interrelatedness of the inside and outside waters strongly argues that any serious modeling effort should include both inside and outside waters in the same model or in two interconnected models. By the same token, both demersal and pelagic food webs should be integrated into the models.

Management recommendations

To provide for the continuance of spawning stocks of the estuarine dependent species, special protection should be afforded the migratory routes, particularly the passes. Protection should also be afforded the major aggregation areas off the passes. Protection should also be afforded the major aggregation areas off the passes, in waters of less than 20 m depth, in the winter aggregation area between 20 and 40 m southwest of Mobile Bay, and east and south of the Mississippi River Delta.

Research should be carried out to provide the basis for understanding of the dynamics of the system in a more quantitative way. This would involve numerical estimates of abundance of the various species in relation to time, elucidation of migratory pathways in greater detail, food web studies (building upon the works of Rogers, 1977, and including the pelagic portions and larval life), and casting this information in the framework of descriptive mathematical models. Since the life histories of the estuarine dependent species is intimately controlled by hydrographic conditions (associated with larval transport), the hydrography of the passes and nearshore waters cannot be ignored.

REFERENCES CITED

- Benson, N.G. (ed.). 1982. Life history requirements of selected finfish and shellfish in Mississippi Sound and adjacent areas. U.S. Fish & Wildl. Serv., OBS, Washington, D.C. FSW/OBS-81/51. 97.p.
- Bullis, H.R., Jr. 1956. Preliminary results of deep-water exploration for shrimp in the Gulf of Mexico by the M/V OREGON (1950-1956). Comm. Fish. Rev. 18(12):1-12.
- Chittenden, M.E., Jr. and D. Moore. 1977. Composition of the ichthyofauna inhabiting the 110-m bathymetric contour of the Gulf of Mexico, Mississippi River to the Rio Grande. Northeast Gulf Sci. 1(2):106-114.
- Darnell, R.M., R.E. Defenbaugh, and D. Moore. 1983. Northwestern Gulf Shelf Bio-Atlas: A Study of the Distribution of Demersal Fishes and Penaeid Shrimp from the Rio Grande to the Mississippi River Delta. Minerals Management Service, U.S. Dept. Interior, Metairie, LA., Open File Report 82-04. xii + 438 p., 145 Plates.
- Darnell, R.M. and A.B. Williams. 1956. A note on the occurrence of the pink shrimp, Penaeus duorarum, in Louisiana waters. Ecol. 37(4):844-846.
- Defenbaugh, R.E. 1976. A Study of the Benthic Macroinvertebrates of the Continental Shelf of the Northern Gulf of Mexico. Ph.D. dissertation, Texas A&M University, College Station. 476 p.
- Ginsburg, I. 1931. On the differences in habitat and size of <u>Cynoscion</u> arenarius and Cynoscion nothus. Copeia 1931(3):144.
- Hoese, H.D. and R.H. Moore. 1977. <u>Fishes of the Gulf of Mexico: Texas,</u> Louisiana, and Adjacent Waters. Texas A&M University Press. xv + 327 p.
- Horn, M.H. 1970. Systematics and biology of the stromateid fishes of the genus Peprilus. Bull. Mus. Comp. Zool. 140(5):165-261.
- Iwamoto, T. 1965. Summary of tuna observations in the Gulf of Mexico on cruises of the exploratory fishing vessel <u>Oregon</u>, 1950-63. Comm. Fish. Rev. 27(1):7-14.
- Lopez, A.M. and P.J. Pristas. 1983. Oceanic gamefish investigations, 1982. Recreational Billfish Survey Newsletter. NMFS, Southest Fish. Center, Miami, FL. 24 p.
- Lyon, J.M. and K.N. Baxter. 1974. Sample catches of penaeid shrimp taken by trawling in the northwestern Gulf of Mexico, 1961-65. U.S. Dept. of Comm., NMFS Data Report. 83:1-51.
- McCaffrey, P.M. 1981. Studies on the Composition and Organization of the Demersal Ichthyofauna of the Continental Shelf Zone in the Northeastern Gulf of Mexico. Florida Dept. of Env. Regulation. Tech. Ser. VI, No. 1. xii + 576 p.

- Moore, D., H.A. Brusher, and L. Trent. 1970. Relative abundance, seasonal distribution, and species composition of demersal fishes off Louisiana and Texas, 1962-1964. Contr. Mar. Sci. 15:45-70.
- Murphy, M.D. 1981. Aspects of the Life History of the Gulf Butterfish, <u>Peprilus burti</u>. M.S. thesis, Texas A&M University, College Station. 77 P.
- Rogers, R.M., Jr. 1977. Trophic Interrelationships of Selected Fishes on the Continental Shelf of the Northern Gulf of Mexico. Ph.D. dissertation, Texas A&M University. College Station. xv + 229 p.

TUSCALOOSA TREND REGIONAL DATA SEARCH AND SYNTHESIS STUDY

FINAL REPORT VOLUME II SUPPLEMENTAL REPORTS

APPENDIX C

QUANTITATIVE CHARACTERIZATION OF DEMERSAL FINFISH AND SHELLFISH POPULATIONS AND COMMUNITIES IN THE TUSCALOOSA TREND REGION

Prepared by:

Charles Comiskey Terry Farmer Craig Brandt Yetta Jager Ernie Burress

Science Applications International Corp. 800 Oak Ridge Turnpike Oak Ridge, Tennessee 37830

TABLE OF CONTENTS

					Page
1.0	SITMM		27 11122		1
1.0	1.1				1
				· · · · · · · · · · · · · · · · · · ·	1
	••=			п	2
	1.3			1983 Southeastern Area Monitoring	Ľ
		1.3.1		sment Program (SEAMAP) Survey Data	2
			and Asses	sment Program (SLAMAP) Survey Data	9
		1.3.2	NMFS Fish	ery Independent Survey Seasonal Data	9
		1.3.3		ery Independent Survey Fall Data,	20
			1979-1983		29
		1.3.4		t Shrimp Data (GCSD)	43
				Introduction	43
				Comparison of Trends Among Species	43
			1.3.4.3	Brown Shrimp	45
			1.3.4.4	White Shrimp	45
			1.3.4.5	Pink Shrimp	46
				Seabobs	46
	1.4	CONCLUS			46
2.0				S AND RESULTS	48
2.0	2.1				48
					48
	2.3				50
	2.5				50
				1983 SEAMAP Survey Data	50
					52
				nery Independent Survey Data	56
		2.3.4			50
				Introduction	
				GCSD Reporting System and Grid	56
				Data Processing and Reduction	60
		2.3.5		cuarine Surveys	
				Overview	64
			2.3.5.2	Louisiana Demersal Fisheries and	
				Environmental Data	65
			2.3.5.3	Mississippi Demersal Fisheries and	
				Environmental Data	65
			2.3.5.4	Alabama Demersal Fisheries and	
		7	-,	Environmental Data	65
		236	Federal	Environmental Data	66
	2.4	—			66
	2.5	RESULT			68
	2.5	2.5.1		urvey Data, Spring 1982	68
		2.2.1		Relative Composition and Abundance	68
			2.5.1.1	Two-Way Indicator Species Analysis	68
			2.5.1.2	• •	90
		2.5.2		urvey Data, Spring 1983	
			2.5.2.1	Relative Composition and Abundance	90
			2.5.2.2	Two-Way Indicator Species Analysis	103
		2.5.3		nery Independent Survey Seasonal Data	110
			2.5.3.1	Introduction	110
			2.5.3.2		111
			2.5.3.3	Two-Way Indicator Species Analysis	111

TABLE OF CONTENTS (CONTINUED)

2.5.4 NMFS Fishery Independent Survey Fall Data, 1973-1983 132 132 2.5.4.2 Relative Composition and Abundance . . . 133 2.5.4.3 Two-Way Indicator Species Analysis 133 158 166 166 175 232

.

.

LIST OF TABLES

1.	Summary statistics of environmental and community parameters for five station groups identified from a synthesis of analyses of samples collected in and around the Tuscaloosa Trend study area during the spring 1982 and 1983 SEAMAP groundfish surveys	•	•	•	5
2.	Eight taxa groups resulting from a synthesis of community analyses of samples collected in and around the Tuscaloosa Trend study area during the spring 1982 and 1983 SEAMAP groundfish surveys	•	•	•	6
3.	A coincidence table displaying the relationship of the eight taxa groups to the five station groups resulting from a synthesis of community analyses of samples collected in and around the Tuscaloosa Trend study are during the spring 1982 and 1983 SEAMAP groundfish surveys	•	•	•	7
4.	Summary statistics of environmental and community parameters for six station groups identified from a synthesis of analyses of three replicate samples collected at 154 stations in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys	•	•	•	11
5.	Relative composition of demersal nekton taxa at Station Group 1 stations based on the results of analysis of samples collected in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys	•	•	•	12
6.	Relative composition of demersal nekton taxa at Station Group 2 stations based on the results of analysis of samples collected in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys	•	•	•	14
7.	Relative composition of demersal nekton taxa at Station Group 3 stations based on the results of analysis of samples collected in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys	•	•	•	16
8.	Relative composition of demersal nekton taxa at Station Group 4 stations based on the results of analysis of samples collected in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys		•	•	18

				_	
9.	Relative composition of demersal nekton taxa at Station Group 5 stations based on the results of analysis of samples collected in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys	•	•	•	20
10.	Relative composition of demersal nekton taxa at Station Group 6 stations based on the results of analysis of samples collected in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys	•	•	•	23
11.	Six taxa groups resulting from a synthesis of community analyses of three replicate samples collected at 154 stations in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys	•	•	•	25
12.	A coincidence table displaying the relationship of the six taxa groups to the six station groups resulting from a synthesis of community analyses of three replicate samples collected at 154 stations in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys	•	•	•	26
13.	Distribution of stations (by region and depth) in each of eight TWINSPAN groups resulting from analyses of 90 selected demersal nekton collected in three replicate samples at 150 stations in three regions of the Tuscaloosa Trend study area during fall NMFS Fishery Independent surveys from 1973 to 1983	•	•	•	30
14.	Summary statistics of environmental and community parameters for eight station groups identified from a synthesis of analyses of three replicate samples collected at 150 stations in three regions of the Tuscaloosa Trend study area during fall NMFS Fishery Independent surveys from 1973 to 1983	•	•	•	31
15.	Eight taxa groups resulting from a synthesis of community analyses of three replicate samples collected at 150 stations in three regions of the Tuscaloosa Trend study area during fall NMFS Fishery Independent surveys from 1973 to 1983	•	•	•	32
16.	A coincidence table displaying the relationship of the eight taxa groups to the eight station groups resulting from a synthesis of community analyses of three replicate samples collected at 150 stations in three regions of the Tuscaloosa Trend study area during fall NMFS Fishery Independent				
	surveys from 1973 to 1983	•	•	•	33

.

.

.

17.	Total annual catch (kg, heads on) and relative proportion of total catch of brown, white, pink and seabob shrimp in NMFS statistical subareas 9-13, which encompass the Tuscaloosa Trend study area, based on Gulf Coast Shrimp Data for the period 1960 to 1982	42
18.	Data included in the Tuscaloosa Trend fisheries analysis database and their sources	51
19.	Summary of Fishery Independent groundfish survey cruises in the northern Gulf of Mexico, 1972-1981	55
20.	Water surface areas (ha) included in each five fathom depth cell in GCSD statistical subareas 9-13, which encompass the Tuscaloosa Trend study area	59
21.	Water surface areas (ha) included in each region by depth zone cell used in the shrimp analysis	63
22.	Overall relative composition of demersal nekton taxa collected in single replicate samples at 128 stations in and around the Tuscaloosa Trend study area during the spring 1982 SEAMAP groundfish survey	69
23.	Hierarchical list of demersal nekton taxa collected in single replicate samples at 128 stations in and around the Tuscaloosa Trend study area during the spring 1982 SEAMAP groundfish survey	73
24.	Ordered table of environmental and community parameters for single replicate samples collected at 128 stations in and around the Tuscaloosa Trend study area during the spring 1982 SEAMAP groundfish survey	86
25.	Ordered matrix of simple bivariate Pearson product moment correlation coefficients of densities of 84 selected demersal nekton taxa and community parameters with environmental variables collected at 128 stations in and around the Tuscaloosa Trend study area during the spring 1982 SEAMAP groundfish survey	87
26.	Overall relative composition of demersal nekton taxa in single replicate samples collected at 156 stations in and around the Tuscaloosa Trend study area during the spring 1983 SEAMAP groundfish survey	91
27.	Hierarchical list of demersal nekton taxa collected in single replicate samples at 156 stations in and around the Tuscaloosa Trend study area during the spring 1983 SEAMAP groundfish survey	95
	Gramman and the state st	

. .

28.	Ordered table of environmental and community parameters for single replicate samples collected at 156 stations in and around the Tuscaloosa Trend study area during the spring 1983 SEAMAP groundfish survey	104
29.	Ordered matrix of simple bivariate Pearson product moment correlation coefficients of densities of 90 selected demersal nekton taxa and community parameters with environmental variables collected at 156 stations in and around the Tuscaloosa Trend study area during the spring 1983 SEAMAP groundfish survey	105
30.	Overall relative composition of demersal nekton taxa collected in three replicate samples at 154 stations in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys	112
31.	Hierarchical list of demersal nekton taxa collected in three replicate samples at 154 stations in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys	1 17
32.	Ordered table of means for environmental and community parameters in three replicate samples collected at 154 stations in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys	129
33.	Overall relative composition of demersal nekton taxa collected in three replicate samples at 150 stations in three regions of the Tuscaloosa Trend study area during fall NMFS Fishery Independent surveys from 1973 to 1983	134
34.	Hierarchical list of demersal nekton taxa collected in three replicate samples at 150 stations in three regions of the Tuscaloosa Trend study area during fall NMFS Fishery Independent surveys from 1973 to 1983	140
35.	Ordered table of means for environmental and community parameters in three replicate samples collected at 150 stations in three regions of the Tuscaloosa Trend study area during fall NMFS Fishery Independent surveys from 1973 to 1983	151
36.	Distribution of stations (by region and depth) in each of the eight TWINSPAN groups resulting from analyses of 90 selected demersal nekton collected in three replicate samples at 150 stations in three regions of the Tuscaloosa Trend study area during fall NMFS Fishery Independent surveys from 1973 to	
	1983	152

37.	Factor pattern matrix resulting from R-mode factor analysis of 90 selected demersal nekton taxa collected in three replicate samples at 150 stations in three regions of the Tuscaloosa Trend study area during fall NMFS Fishery Independent surveys from 1973 to 1983
38.	Results of correlation analysis of environmental variables with factor scores resulting from analysis of 90 selected demersal nekton taxa collected in three replicate samples at 150 stations in three regions of the Tuscaloosa Trend study area during fall NMFS Fishery Independent surveys from 1973 to 1983
39.	Region by depth by size means of brown shrimp catch/unit water surface area (kg, heads on, per ha)for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982
40.	Month by depth by size means of brown shrimp catch/unit water surface area (kg, heads on, per ha)for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982
41.	Year by region by size means of brown shrimp catch/unit water surface area (kg, heads on, per ha)for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982
42.	Region by depth by size means of white shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982
43.	Month by depth by size means of white shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982
44.	Year by region by size means of white shrimp catch/unit water surface area (kg, heads on per ha)for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982 20
45.	Region by depth by size means of pink shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982 21

<u>Page</u>

46.	Month by depth by size means of pink shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend
	study area based on Gulf Coast Shrimp Data for the period 1960 to 1982
47.	Year by region by size means of pink shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period
	1960 to 1982
48.	Region by depth means of seabob catch (kg, heads on) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982 226
49.	Month by region by depth means of seabob catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982
50.	Year by region by depth means of seabob catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period
	1960 to 1982

.

э

LIST OF FIGURES

1.	Map of the SEAMAP groundfish study area showing the membership of the stations to the five groups resulting from a synthesis of the community analyses of the spring 1982 and spring 1983 SEAMAP groundfish surveys	3
2.	Map of the NMFS Fishery Independent groundfish survey area showing the membership of the stations to the six station groups resulting from a synthesis of the community analyses of the fall 1974 to summer 1975 NMFS Fishery Independent groundfish survey data	10
3.	Total annual catch (kg, heads on) of a) white and brown shrimp and b) pink shrimp and seabobs in NMFS statistical subareas 9-13, which encompass the Tuscaloosa Trend study area	39
4.	Mean annual inshore and offshore catch/unit water surface area (kg, heads on, per ha) of brown and white shrimp by region for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960-1982	40
5.	Mean annual inshore and offshore catch/unit water surface area (kg, heads on, per ha) of pink and seabob shrimp by region for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960-1982	41
6.	Map of the Tuscaloosa Trend study area	49
7.	Map showing the locations of the SEAMAP sampling stations for a) 1982 and b) 1983	53
8.	Sampling area for Fishery Independent Surveys for groundfish in the northern Gulf of Mexico	54
9.	Map of Gulf of Mexico showing NMFS statistical subareas used to report Gulf Coast Shrimp Data	57
10.	Map of the Tuscaloosa Trend study area showing the regions and depth strata used in the shrimp analysis	62
11.	Ordered two-way display resulting from TWINSPAN analysis of relative abundances of 84 selected demersal nekton taxa collected in single replicate samples at 128 stations in and around the Tuscaloosa Trend study area during the spring 1982 SEAMAP groundfish survey	84
12.	Map of the SEAMAP groundfish study area showing the membership of the samples to the six most meaningful groups resulting from TWINSPAN analysis of relative abundance of 84 selected demersal nekton taxa collected in single replicate samples at 128 stations in and around the Tuscaloosa Trend	
	study area during the spring 1982 SEAMAP groundfish survey	85

LIST OF FIGURES (CONTINUED)

13.	Ordered two-way display resulting from TWINSPAN analysis of relative abundances of 90 selected demersal nekton taxa collected in single replicate samples at 156 stations in and around the Tuscaloosa Trend study area during the spring 1983 SEAMAP groundfish survey	106
14.	Map of the SEAMAP groundfish study area showing the membership of the samples to the six most meaningful groups resulting from TWINSPAN analysis of relative abundance of 90 selected demersal nekton taxa collected in single replicate samples at 156 stations in and around the Tuscaloosa Trend study area during the spring 1983 SEAMAP groundfish survey	107
15.	Map of the Tuscaloosa Trend study area showing the locations of the NMFS Fishery Independent groundfish survey stations for fall 1974 to summer 1975	127
16.	Ordered two-way display resulting from TWINSPAN analysis of mean relative abundances of 100 selected demersal nekton taxa collected in three replicate samples at 154 stations in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish	
17.	surveys	128
18.	Region by depth by size means of brown shrimp catch (kg, heads on) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982	176
19.	Region by depth by size means of brown shrimp catch/unit water surface area (kg, heads on, per ha)for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982	177
20.	Month by depth by size means of brown shrimp catch/unit water surface area (kg, heads on, per ha)for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982	183
21.	Year by region by size means of brown shrimp catch/unit water surface area (kg, heads on, per ha)for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982	185
22.	Year by depth by size means of brown shrimp catch/unit water surface area (kg, heads on, per ha)for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period	201
	1960 to 1982	192

LIST OF FIGURES (CONTINUED)

		Page
23.	Region by depth by size means of white shrimp catch (kg, heads on) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982	193
24.	Region by depth by size means of white shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982	194
25.	Month by depth by size means of white shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982	197
26.	Year by region by size means of white shrimp catch/unit water surface area (kg, heads on per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982	201
27.	Year by depth by size means of white shrimp catch/unit water surface area (kg, heads on per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982	202
28.	Region by depth by size means of pink shrimp catch (kg, heads on) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982	209
29.	Region by depth by size means of pink shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982	210
30.	Month by depth by size means of pink shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982	212
31.	Year by region by size means of pink shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982	217
32.	Year by depth by size means of pink shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982	223
33.	Region by depth means of seabob catch (kg, heads on) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982	224

LIST OF FIGURES (CONTINUED)

34.	Month by region by depth means of seabob catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982	225		
35. Year by region by depth means of seabob catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982				

5

APPENDIX C

QUANTITATIVE CHARACTERIZATION OF DEMERSAL FINFISH AND SHELLFISH POPULATIONS AND COMMUNITIES IN THE TUSCALOOSA TREND REGION

1.0 <u>SUMMARY OF RESULTS</u>

1.1 INTRODUCTION

Section 1.0 presents a synthesis and summary of the results of the fisheries data analysis conducted as part of the Tuscaloosa Trend Regional Data Search and Synthesis Study. The analyses upon which this synthesis is based are discussed in detail in Section 2.0 of this appendix. Results of the analysis of the SEAMAP groundfish survey data from the spring seasons of 1982 and 1983 are first summarized in Section 1.3.1. The detailed analyses upon which this synthesis is based are presented in Sections 2.5.1 and 2.5.2. The SEAMAP surveys provided data for characterization of demersal nekton communities over much of the Tuscaloosa Trend study area, including the eastern region where data from the larger Fishery Independent survey database were generally lacking. The SEAMAP surveys also included stations from major estuarine habitats lying adjacent to the Tuscaloosa Trend study area that were outside the range of the Fishery Independent surveys.

The drawbacks to the SEAMAP survey database were its lack of seasonal and long term temporal coverage. To address seasonal and long term trends in community structure in the Tuscaloosa Trend study area, subsets of the large NMFS Fishery Independent groundfish survey database were analyzed. Data for four seasons from fall of 1974 to spring 1975 were used to assess seasonal trends, while data for the fall seasons for the period 1973 to 1983 were analyzed to assess long term trends in demersal nekton stocks. Summaries of the results of these seasonal and long term analyses are presented in Sections 1.3.2 and 1.3.3, respectively, while detailed presentations of the analysis results are presented in Sections 2.5.3 and 2.5.4, respectively.

Once this context was established, an analysis of NMFS Gulf Coast Shrimp Data (GCSD) for the period 1960 to 1982 was conducted for brown, white, pink and seabob shrimp, and the results are summarized in Section 1.3.4. A detailed discussion of these analysis results is presented in Section 2.5.5.

1.2 ANALYTIC APPROACH

The first step in the quantitative analysis of the finfish and shellfish populations and communities in the Tuscaloosa Trend region was the identification, acquisition and computerization of the relevant biological and environmental data sets. Long-term time series data for finfish and shellfish taxonomic counts and associated environmental variables, Ekman transport, river discharge, tides, winds, and precipitation were acquired for the estuarine and OCS areas from state and federal sources (see Section 2.3). These data were integrated into the project database in analytically compatible formats to allow the development of quantitative relationships between population levels, community structure and environmental processes.

The quantitative approach to defining the relationships of population and community distributions to environmental processes employed an overall analytic framework which utilized both univariate and multivariate statistical techniques. In this approach, population, community and habitat-level analysis and synthesis activities provided the context within which major biotic and habitat gradients in the study area and homogeneous subregions of the study area were identified and major processes influencing populations and communities were elucidated. The approach to this analysis is presented in greater detail in Section 2.4.

For each of the three major community analyses, habitats (station groups) and assemblages (taxa groups) are defined and the relationship of each assemblage to each habitat is identified. Nekton communities are composed of the several assemblages represented in each habitat type.

1.3 RESULTS

1.3.1 <u>1982 and 1983 Southeastern Area Monitoring and Assessment Program</u> (SEAMAP) Survey Data

The results of the pattern analyses conducted separately for the 1982 and 1983 SEAMAP trawl data revealed very similar trends in the distributions of finfish and shellfish taxa over much of the Tuscaloosa Trend ecosystem during fall in 1982 and 1983. The similarity of the separate analyses indicates that recurring trends in community structure were occurring over the study area. Differences in community structure during the two years was at least partly due to the different geographic distribution of stations (Figure 1). During 1983, the SEAMAP study area extended further east on the Florida shelf. Although the easternmost of these stations were located outside the defined borders of the Tuscaloosa Trend ecosystem, data from these stations were included to show the transitional nature of the study area and to better describe the communities from the eastern region of the study area itself. Other year to year differences could be attributable to differences in hydrographic conditions, either prior to or at the time of sampling. Other potential sources of variability included changes in taxa distributions during the sampling period, which was approximately 1 month during each year. Manv nekton taxa are migratory, either along coast or normal to the coast, with the late spring-early summer being one of especially intensive activity. Year to year differences would be exaggerated if the cruise tracks (i.e., order of sampling of stations in different geographical areas) differed during the two years. Finally, there is the random variability within a sampling station due to a myriad of factors.

Trends in community structure were primarily related to the distributions of hydrographic conditions, depth, and, as inferred from sediment maps of the area, seafloor composition. Diversity indices were positively correlated with depth and salinity and negatively correlated with temperature, indicating that the deeper, more hydrographically stable offshore habitats supported a more diverse demersal nekton community. However, on the shelf itself, trends in community parameters were much less distinct. Regardless, there were distinct and recurring trends in

2

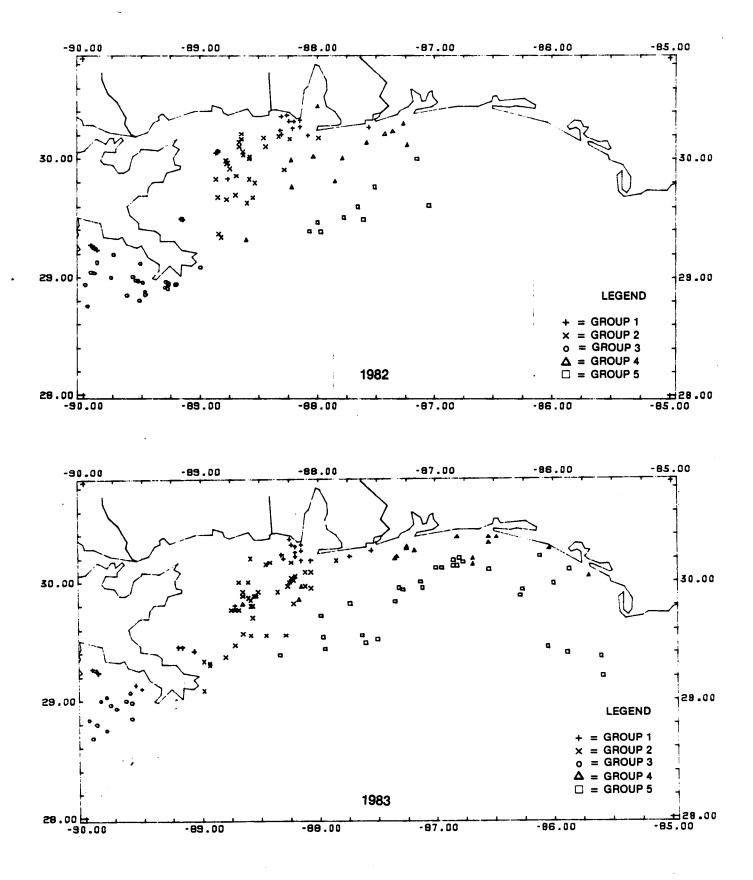


Figure 1. Map of the SEAMAP groundfish study area showing the membership of the stations to the five groups resulting from a synthesis of the community analyses of the spring 1982 and spring 1983 SEAMAP groundfish surveys.

community composition revealed in the pattern analyses of these data, which are summarized and discussed below.

The integration and synthesis of the results from the pattern analyses of the 1982 and 1983 SEAMAP data, which are discussed in detail in Sections 2.5.1 and 2.5.2, respectively, yielded five sample or station groups (habitats) and eight taxa groups (communities). Figure 1 depicts the geographical distribution of the five station groups (habitats) across the study area during 1982 and 1983, while summary statistics for each are presented in Table 1. The eight taxa groups are presented in Table 2, and the distributions of these taxa groups across the five station groups are presented in Table 3.

The five station groups included one widespread shallow water group (Group 1), two intermediate depth groups located east of the delta (Groups 2 and 4), one group encompassing stations at all but the shallowest depths west of the delta (Group 3), and one middepth to deep water group located east of the delta.

Sample Group 1 encompassed the shallow water, low salinity habitat located near the confluence of Mississippi Sound and Mobile Bay, and near the Mississippi River Delta (Figure 1 and Table 1). It included all of the very shallow water stations (less than 9 m depth) located both east and west of the Mississippi River outfall. This was the only one of the five groups found on both sides of the Mississippi River delta. The samples from this habitat were characterized by lowest means for total number of taxa and all community parameters (Table 1). However, mean numbers of individuals were intermediate among the five groups.

A habitat characterized by high salinity waters overlying muddy sediments in the central portion of the study area east of the Mississippi River Delta was represented by Sample Group 2. Stations in Group 2 were generally intermediate in depth, but the range was large (Table 1). They were generally located offshore of those in Group 1 and inshore of those in Group 5 (Figure 1). Group 2 stations had the second highest mean number of individuals and the highest mean number of taxa (Table 1). They also had the highest means for diversity and evenness, but these means were only marginally higher than those of Group 5.

Sample Group 3 encompassed a somewhat similar habitat west of the Mississippi River Delta. However, with the exception of the very shallow depths (less than 9 m (meters)), Group 3 stations were distributed across the entire extent of the SEAMAP study area (out to 90 m) west of the Station Groups 1 and 3 were the only ones Mississippi River outfall. represented west of the Mississippi River delta, and no station in Group 3 was found east of the delta (Figure 1). Therefore, many of the taxa characteristic of Group 3 showed similarly restricted geographical distributions. The fact that Group 3 stations included some out to 90 m depths may indicate that finer textured sediments may extend to deeper waters west of the outfall (as compared to those east of the delta). Samples from Group 3 stations had the highest mean number of individuals, and, next to the samples in Group 1, the lowest taxa richness (Table 1). Evenness and diversity were very similar to those of Groups 2, 4, and 5.

Sample Groups 4 and 5 more or less delineated middepth and deep water habitats, respectively, located mainly in the eastern portion of the study

4

Table 1. Summary statistics of environmental and community parameters for five station groups identified from a synthesis of analyses of samples collected in and around the Tuscaloosa Trend study area during the spring 1982 and 1983 SEAMAP groundfish surveys.

.

Parameter	Mean	Standard Deviation	Minimum	Maximum	
	GROUPal				
Depth (m)	6.841	3.534	2.000	16.000	
Bottom Dissolved Oxygen (ppm)	5.587	1.573	1.400	8,900	
Bottom Salinity (ppt)	23.723	8.485	5.300	35.500	
Bottom Temperature (oC)	27.500	2,421	21.500	31.700	
Total Taxa	9.621	6.604	1.000	28.000	
Total Count	510.195	841.161	1.000	4611.000	
Diversity (J*)	0.912	0.651	0.000	2.332	
Evenness (H1)	0.505	0.237	0.078	1.000	
Richness (D)	1.700	0.985	0.000	4.904	
	GROUP=2				
Depth (m)	22.690	9.643	9.000	60.000	
Bottom Dissolved Oxygen (ppm)	4.841	1.123	2.700	7.900	
Bottom Salinity (ppt)	34.821	1.370	31.000	38.000	
Bottom Temperature (oC)	22.255	2.345	18.810	27.800	
Total Taxa	25.407	6.985	5.000	40.000	
Total Count	957.512	1092.215	47.000	5845.000	
Diversity (J*)	1.980	0.456	0.879	2.845	
Evenness (H')	0.626	0.142	0.293	0.916	
Richness (D)	3.802	0.951	1.022	5.960	
	GROUP=3				
Depth (m)	42.750	18.744	10.000	90.000	
Bottom Dissolved Oxygen (ppm)	5.053	1.239	1.800	7.400	
Bottom Salinity (ppt)	35.912	0.820	33.000	37.724	
Bottom Temperature (oC)	20.700	2.176	16.660	25.600	
Total Taxa	19.892	6.463	1.000	33.000	
Total Count	1238.811	1544.324	3.000	8673.000	
Diversity (J ¹)	1.822	0.548 0.117	0.000 0.373	2.699 0.808	
Evenness (H ⁺) Richness (D)	0.627 2.841	0.982	0.000	5.059	
Alchdess (D)	GROUPs4		0.000	2.025	
Depth (m)	22.286	8.944	9.000	42.000	
Bottom Dissolved Oxygen (ppm)	6.804 35.351	1.530 0.721	4.400 33.006	9.300 37.000	
Bottom Salinity (ppt) Bottom Temperature (oC)	22.040	1.336	20.580	25.690	
Total Taxa	18.276	7.309	7.000	30.000	
Total Count	400.414	533.148	21.000	2085.000	
Diversity (J')	1.798	0.533	0.551	2.729	
Evenness (8')	0.645	0.186	0.194	0.884	
Richness (D)	3.218	1.046	1.255	5.059	
Depth (m)	49.667	17.409	22.000	90.000	
Bottom Dissolved Oxygen (ppm)	6.582	1.516	4.500	9.200	
Bottom Salinity (ppt)	36.042	0.579	35.000	38.000	
Bottom Temperature (oC)	20.392	1.086	17.610	23.000	
Total Taxa	20.718	9.179	4.000	45.000	
Total Count	267.282	215.299	5.000	1005.000	
Diversity (J')	1.931	0.589	0.723	3.023	
Evenness (H')	0.661	0.168	0.246	0.961	
Richness (D)	3.720	1.457	1.864	7.616	

Table 2. Eight taxa groups resulting from a synthesis of community analyses of samples collected in and around the Tuscaloosa Trend study area during the spring 1982 and 1983 SEAMAP groundfish surveys.

Group 1. Taxa Most Characteristic of the Shallow Water, Low Salinity Habitat

Scientific Name Anchoa mitchilli Anchoa masuta Arius falis Chioroscombrus chrysurus Larimus fasciatus Menticirrhus americanus Micronogenias undulatus Stallifar lanceolatus Polydactylus octonemus Trinectas maculatus

.

.

Common Name bay anchovy longnose anchovy hardhead catfish Atlantic bumper banded drum southern kingfish croaker star drum Atlantic threadfin hogchoker

Group 2. Taxa Represented in Low Salinity Waters and in High Salinity Waters Overlying Muddy Sediments

Scientific Name Lolliguncula brevis Panaeus satigrus Panaeus satigrus Callinectes sapidus Callinectes similis Anchoa hepsetus Oynoscion arenarius Laiostomus xanthurus Citharichthys soilootarus Irichiurus legturus Peprilus burti Symphiurus plagiusa Common Name squid white shrimp brown shrimp blue crab crab striped anchovy sand seatrout spot bay wiff Atlantic cutlassfish gulf butterfish blackcheek tonguefish

Group 3. Taxa Widespread in High Salinity Waters Overlying Muddy Sediments Scientific Name Common Name

 Scientific Name
 Common Name

 Sicyonia dorsalis
 rock shrimp

 Souilla LPIL
 mentis shrimp

 Irachypenaeus LPIL
 hardback shrimp

 Calappa sulcata
 crab

 Porichtbys plectrodon
 Atlantic midshipman

 Brotuis barbata
 bearded brotula

 Lepophidium graellai
 blackedge cusk-eel

 Ophidiop xmlshi
 crested cusk-eel

 Ophiotis rubio
 blackfin searboth

 Prionotus rubio
 blackfin searboth

Group 4. Taxa Most Characteristic of High Salinity Waters Overlying Muddy Sediments East of the Mississippi River Outfall

 Scientific Name
 Common Name

 Portunus gibbesii
 portunid crab

 Saurida brasilispsis
 largescale lizardfish

 Urophycis filoridanus
 gulf hake

 Urophycis filoridanus
 southern hake

 Satranus atrobranchus
 blackear bass

 Prionotus tribulus
 blgead searobin

 Satharus
 least puffer

6

Group 5. Taxa Most Characteristic of High Salinity Waters Overlying Muddy Sediments West of the Hississippi River Outfall

Scientific Name Parapanasus Hopluonis macrurus Antennarius radiosus Staindacheris argentes Guntarichthys longipenis Nezumis bairdi Bollmanis comeunis Common Name shrimp silver conger singlespot frogfish luminous hake gold brotula gremadier ragged goby

Group 6. Taxa Represented in High Salinity Waters Overlying Muddy and Sandy Sediments

Scientific Name Panagus duorarum Solanocera Ovalioes guadulpensis Portunus spinicarpus Etrumaus teres Synodus teres Halisutichthys aculeatus Leoophidium jeannas Ophidion gravi Cantropristis philadelphicus Diplectrum hivittatum Lutianus camechanus Prionotus rompus Syncium guntari Stenotomus carrinus Common Name pink shrimp shrimp portunid crab portunid crab round herring inshore lizardfish pancake batfish mottled cusk-eel rock sea bass dwarf sand perch red snapper bluespotted searobin shoal flounder longspine porgy

Group 7. Taxa Most Characteristic of Nearshore High Salinity Waters Overlying Sandy Sediments

Scientific Name Dorytauthis blait Loligo malaij Sicyonia hereirostris Raia solantaris Cantropristis ocyurus Hamulon aurolinoatum Orthopristis chrysoptara Prionotus martis Prionotus martis Prionotus scitulus Sphoaroides spenolari Common Name squid squid rock shrimp cleannose skate bank sea bass tomtate pigfish northern searobin barred searobin leopard searobin bandtail puffer

Group 8. Taxa Most Characteristic of Offshore High Salinity Waters Overlying Sandy Sediments Scientific Name Common Name

Synodus intermedius Synodus poevi Irachinocephalus myops Urophycis regius Ophidisch holbrocki Lagodon rhomboides Neomerinthe hemingesyi Scorpaene calcarata Bellator militaris Prionotus salmonicolor Syacius papillosum Honacasthus hispidus

sand diver offshore lizardfish smakefish spotted hake bank cusk-eel pinfish spinycheek scorpionfish smoothhead scorpionfish horned searobin blackwing searobin dusky flounder planehead filefish Table 3. A coincidence table displaying the relationship of the eight taxa groups to the five station groups resulting from a synthesis of community analyses of samples collected in and around the Tuscaloosa Trend study are during the spring 1982 and 1983 SEAMAP groundfish surveys.

	Group 1 Low salinity	Group 2 Muddy sediments east of delta	Group 3 Muddy sediments west of delta	Group 4 Nearshore high salinity	Group 5 Offshore high salinity
TAXA GROUPS	Muddy sediments	offshore	offshore	sandy sediments	sandy sediments
Group 1	P				
Group 2	P	P	P		
Group 3		P	P .		
Group 4		P			
Group 5			P		
Group 6		S	S	P	P
Group 7				P	
Group 8					P

STATION GROUPS

P = PRIMARY ASSOCIATION

.

S = SECONDARY ASSOCIATION

7

area, and characterized by high salinity waters overlying sandy sediments (Figure 1 and Table 1). The Group 5 stations extended across the deepest portions of the SEAMAP study area east of the delta (Figure 1), lying offshore of stations in both Group 2 (central region at middepths) and Group 4 (eastern region at middepths). Group 4 stations were much more restricted to the eastern portion of the study area. The distribution of Group 5 stations (Figure 1) may be another indication that coarser textured sediments extend to greater depths east of the Mississippi River delta. Based on total numbers of taxa and community parameters (Table 1) there was little difference in Group 4 and Group 5 samples. Means for all these parameters were marginally higher for Group 5, which had the lowest mean number of individuals of any of the five groups. Compared to those in Group 2, which encompassed a somewhat similar depth range further east, the Group 4 samples yielded lower values for numbers of individuals, numbers of taxa, diversity and richness (Table 1). Going west to east offshore (Groups 2-5), there was a consistent increase in mean numbers of individuals.

The eight taxa groups identified in the SEAMAP data (Table 2) showed very well defined distributions across the five stations groups (Table 3). As is evident in Table 3, the two offshore station groups located on muddy sediments in the western and central regions of the study area (Groups 2 and 3), were each characterized by five taxa groups, while the two offshore station groups, located mainly in the eastern and central portions of the study area overlying sandy sediments (Groups 4 and 5), and the inshore station group (Group 1) were each characterized by only two taxa groups.

Taxa Group 1 included those taxa most characteristic of, and generally restricted to, the shallow water, low salinity habitat during the spring represented by Sample Group 1. <u>Anchoa mitchilli</u>, <u>Arius felis, Micropogonias undulatus</u>, and <u>Polydactylus octonemus</u> were among the taxa most representative of this group. Several of these taxa (e.g., <u>Anchoa mitchilli</u>) are more or less restricted to estuaries, while several others (e.g., <u>Micropogonias undulatus</u>) are estuarine dependent, and migrate offshore later in the summer. Along with the taxa in Taxa Group 2 (Table 2), they characterized estuarine and very shallow offshore waters during the SEAMAP spring cruises (Table 3).

The taxa in Group 2 were also well represented in the shallow water, low salinity habitat of Sample Group 1, but were also prominent in the habitat characterized by high salinity waters overlying muddy sediments (Sample Groups 2 and 3), located both east and west of the Mississippi River delta. Some of the taxa most characteristic of this group included Cynoscion arenarius, Trichiurus lepturus, Symphurus plagiusa, Callinectes sapidus, <u>Callinectes</u> <u>similis</u> and <u>Penaeus</u> <u>aztecus</u>. This group included a number of taxa that are estuarine dependent, but migrate offshore as adults. Based on their distributions in the spring SEAMAP data (Table 3), it appears that substantial offshore stocks remained from the previous fall or migration from the estuaries occurred earlier in the spring (i.e., prior to the SEAMAP cruises). Along with the taxa in Groups 3 and 6, those in Group 2 (Table 2) were common to both Station Groups 2 (east of delta) and Station Group 3 (west of delta).

The taxa in Group 3 were widespread in high salinity waters overlying muddy sediments both east and west of the delta (Station Groups 2 and 3

in Figure 1). Group 3 included the only taxa that were both widespread over, and restricted to, these muddy bottom offshore habitats (Table 3). <u>Porichthys plectrodon</u>, <u>Prionotus rubio</u>, <u>Squilla LPIL</u>, and <u>Trachypenaeus</u> LPIL were among the taxa most representative of this group.

Group 4 taxa were most characteristic of the high salinity waters overlying muddy sediments east of the Mississippi River Delta (Sample Group 2), and were more or less restricted to this habitat (Table 3). <u>Sphoeroides parvus</u> and <u>Portunus gibbesii</u> were most characteristic of this group. Along with the taxa in Group 5, the Group 4 taxa differentiated the communities at stations overlying muddy sediment located east and west of the Mississippi River delta.

The taxa most characteristic of, and more or less restricted to, high salinity waters overlying muddy sediments west of the Mississippi River Delta comprised Group 5 (Tables 2 and 3). Some of the taxa most characteristic of this group included <u>Hoplunnis macrurus</u>, <u>Gunterichthys</u> <u>longipenis</u> and <u>Bollmania communis</u>. The Group 5 taxa contributed strongly to the differentiation of the stations in Station Group 3 from all other station groups identified (Table 3).

Group 6 taxa were widespread in high salinity waters overlying muddy and sandy sediments (Sample Groups 2, 3, 4, and 5). As such they characterized most of the study area at depths of between 10 and 90 m. <u>CentroDristis philadelphicus</u>, <u>Stenotomus caprinus</u>, <u>Penaeus duorarum</u> and <u>Solenocera LPIL</u> were among the taxa most representative of this group (Table 2).

The taxa in Group 7 were most characteristic of, and restricted to, nearshore high salinity waters overlying sandy sediments (Sample Group 4). Along with the widely distributed taxa in Group 6, these taxa characterized the Station Group 4 habitat (Table 3). Some of the taxa most characteristic of this group included <u>Orthopristis chrysoptera</u>, <u>Prionotus</u> <u>martis</u>, <u>Prionotus scitulus</u>, <u>Sicyonia brevirostris</u> and <u>Loligo pealeii</u> (Table 2).

Taxa Group 8 included those taxa most characteristic of, and restricted to, offshore high salinity waters overlying sandy sediments (Sample Group 5). Along with the widely distributed taxa in Group 6, these taxa characterized the Station Group 5 habitat (Table 3). Some of the taxa most characteristic of this group included <u>Synodus intermedius</u>, <u>Trachinocephalus myops</u>, <u>Bellator militaris</u> and <u>Syacium papillosum</u> (Table 2).

1.3.2 <u>NMFS Fishery Independent Survey Seasonal Data</u>

Results of the pattern analyses conducted on the NMFS Fishery Independent survey seasonal data for fall 1974 through summer 1975 revealed trends in the distributions of finfish and shellfish taxa that were primarily related to geography depth, hydrographic conditions and sediment composition, with seasonal trends for the most part being secondary to these other responses. Some taxa groups showed specific habitat responses, and contributed strongly to defining station groups. For several groups, relatively distinct seasonal changes in distributions over the study area were observed, indicating migration during the life histories of these

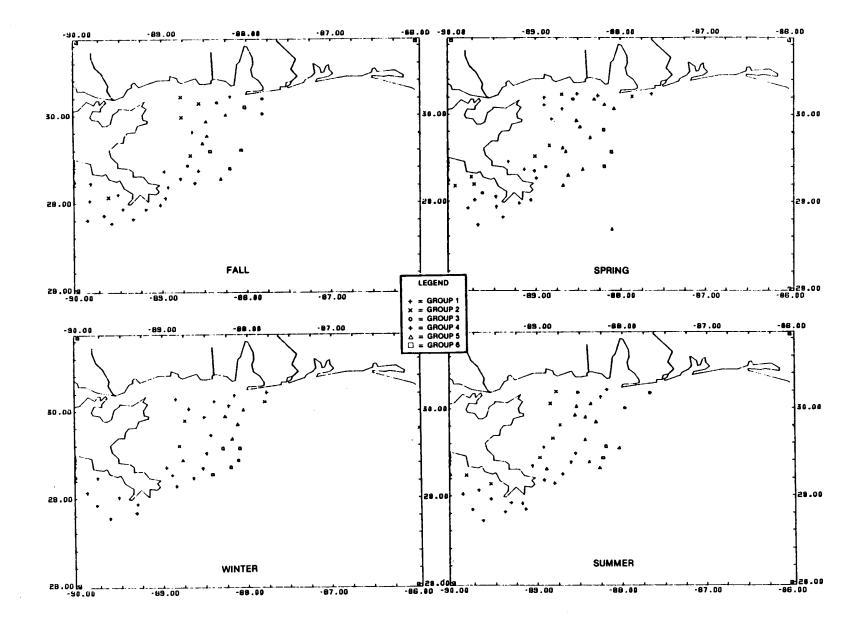


Figure 2. Map of the NMFS Fishery Independent groundfish survey area showing the membership of the stations to the six station groups resulting from a synthesis of the community analyses of the fall 1974 to summer 1975 NMFS Fishery Independent groundfish survey data.

Table 4. Summary statistics of environmental and community parameters for six station groups identified from a synthesis of analyses of three replicate samples collected at 154 stations in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys.

N		Standard	M4 4	
Parameter	Mean	Deviation	Minimum	Maximum
	GROUI	7 31		
Depth (fm)	10.217	5.767	3.000	29.000
Bottom Temperature (°F)	71.483	5.252	61.000	81.000
Total Taxa	13.108	5.256	4.000	24.000
Total Count	897.133	988.098	67.000	4349.000
Diversity (J ¹)	1.452	0.523	0.379	2.627
Evenness (H ⁺)	0.573	0.148	0.259	0.838
Richness (D)	1.991	0.946	0.585	4.571
*****	GROUI	2		
Depth (fm)	7.227	1.878	3.667	11.000
Bottom Temperature (°F)	75.667	5.723	64.000	81.000
Total Taxa	10.030	4.662	2.333	17.333
Total Count	435.500	699.341	3.667	3300.333
Diversity (J ¹)	1.242	0.487	0.466	2.089
Evenness (H')	0.591	0.183	0.271	0.946
Richness (D)	1.734	0.651	0.541	2.902
	GROUI			
Depth (fm)	9.967	3.680	6.667	18.000
Bottom Temperature (°F)	72.979	3.416	67.000	79.000
Total Taxa	10.433	4.478	5,333	19.667
Total Count	138.433	109.467	21.333	323.667
Diversity (J')	1.342	0.344	0.574	1.654
Evenness (H')	0.612	0.128	0.409	0.792
Richness (D)	2.100	0.600	1.402	3.444
	GROUI	~4		
Depth (fm)	31.852	10.796	5.333	48.000
Bottom Temperature (°F)	67.857	2.869	64.000	77.000
Total Taxa	11.764	3.502	3.333	19.333
Total Count	559.870	277.299	219.333	1446.333
Diversity (J')	1.332	0.484	0.117	2.271
Evenness (H')	0.539	0.160	0.083	0.769
Richness (D)	1.787	0.639	0.414	3.324
	GROUI			
Depth (fm)	21.042	10.881	8.000	50.000
Bottom Temperature (^O F)	71.913	3.266	64.333	76.000
Total Taxa	17.927	4.414	8.333	25.333
Total Count	681.417	641.768	135.333	3426.667
Diversity (J)	1.834	0.380	0.858	2.550
Evenness (H ¹)	0.641	0.096	0.405	0.837
Richness (D)	2.804	0.696	1.362	4.103
	GROUI			
Depth (fm)	25.622	7.355	12.000	41.667
Bottom Temperature (^O F)	71.417	2.173	68.000	74.000
Total Taxa	17.678	5.249	8.667	24.667
Total Count	439.344	523.555	89.667	2245.333
Diversity (J')	1.892	0.369	1.218	2.401
Evenness (H')	0.683	0.084	0.535	0.791
Richness (D)	2.930	0.739	1.858	4.247
		V+133		7+671

Table 5. Relative composition of demersal nekton taxa at Station Group 1 stations based on the results of analysis of samples collected in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys.

.

-

TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT CONFOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	MEAN Density (# / HA)	INDEX OF DISPERSION
Micropogonias undulatus	37.232	37.232	51.129	0.917	55043.	646.76	1573.97
Cynoscion arenarius	5.042	42.273	6.380	0.658	61911.	80.70	1601.88
Trichiurus lepturus	6.696	48.969	5.980	0.608	68349.	75.65	569.67
Cynoscion nothus	2.882	51.851	5.507	0.525	74278.	69.67	805.37
Penseus astegus	4.871 1.246	56.722 57.968	3.798 3.645	0.567 0.267	78367. 82291.	48.05 46.11	356.00 2046.14
Anchon hepsetus Leiostomus xanthurus	2.093	60.062	3.011	0.483	85533.	38.09	228.79
Prionotus rubio	2.425	62.487	2.004	0.442	87690.	25.34	112.71
Arius felis	4.620	67.107	1.772	0.475	89598.	22.42	102.61
Penseus setiferus	2.681	69.788	1.461	0.667	91171.	18.48	49.44
Trachypenaous	3.418	73.205	1.195	0.292	92458.	15.12	65.96
Polychaeta	0.618 2.138	73.824 75.962	0.929 0.864	0.008 0.158	93458. 94388.	11.75 10.93	1000.00 88.76
Anchos sitchilli Larinus fasciatus	0.839	76.801	0.845	0.358	95298.	10.69	75.93
Stellifer lanceolatus	1.592	78.393	0.844	0.167	96207.	10.68	97.95
Cynoscion	1.880	80.273	0.746	0.150	97010.	9.44	78.51
Lolliguncula brevis	1.613	81.886	0.649	0.292	97709.	8.21	42.53
Luidia	1.687	83.573	0.623	0.067	98380.	7.88	130.49
Harengula jaguana	0.918 1.005	84.491 85.496	0.606 0.587	0.208 0.350	99032. 99664.	7.66 7.43	77.37 36.30
Callinectes similis Asteroidea	1.428	86.923	0.504	0.042	100207.	6.38	170.17
Peprilus burti	0.332	87.255	0.418	0.233	100657.	5.29	135.66
Prionotus tribulus	0.815	88.070	0.379	0.217	101065.	4.79	30.16
Callinectes sapidus	0.617	88.688	0.357	0.158	101449.	4.51	65.31
Renilla mulleri	0.693	89.381	0.340	0.092	101815.	4.30	47.70
Loligo	0.387 0.835	89.768 · 90.602	0.319 0.306	0.083 0.183	102158. 102487.	4.03 3.87	177.88 38.70
Chloroscombrus chrysurus Cyclopsetta chittendeni	0.128	90.730	0.297	0.185	102807.	3.76	240.25
Menticirrhus americanus	0.609	91.339	0.296	0.250	103126.	3.75	25.67
Polydaotylus octonemus	0.162	91.501	0.272	0.117	103419.	3.44	52.48
Lagodon rhomboides	0.319	91.820	0.266	0.192	103705.	3.36	19.08
Squilla	0.637	92.457	0.255	0.167	103980.	3.23	24.87
Stenotomus caprinus Syncium papillosum	0.265 0.582	92.723 93.305	0.254 0.223	0.067 0.150	104253. 104493.	3.21 2.82	69.86 54.03
Etropus crossotus	0.595	93.900	0.217	0.258	104727.	2.75	16.50
Porichthys porosissimus	0.321	94.221	0.178	0.133	104919.	2.26	27.78
Centropristis philadelphicus	0.567	94.788	0.177	0.042	105110.	2.24	167.93
Prionotus	0.462	95.249	0.157	0.042	105279.	1.99	53.67
Synodus foetens	0.284	95.533 95.962	0.143 0.138	0.233	105433. 105582.	1.81 1.75	11.63 13.03
Sphoeroides parvus Prionotus salmonicolor	0.430 0.087	96.049	0.138	0.042	105703.	1.42	96.93
Citharichthys spilopterus	0.249	96.298	0.111	0.167	105823.	1.41	9.85
Trinectes maculatus -	0.035	96.333	0.097	0.033	105927.	1.22	44.62
Trachurus lathami	0.070	96.403	0.095	0.017	106029.	1.20	96.13
Cephalopoda	0.218	96.621	0.082	0.008	106117.	1.03	88.00
Polinices duplicatus	0.101 0.202	96.722 96.924	0.081 0.078	0.025 0.058	106204. 106288.	1.02 0.99	65.33 20.35
Sicyonia brevirostris Diplectrum bivittatum	0.204	97.128	0.077	0.092	106371.	0.98	10.98
Opisthonema oglinum	0.168	97.296	0.073	0.075	106450.	0.93	19.19
Brevoortia patronus	0.183	97.478	0.072	0.067	106527.	0.90	26.24
Chaetodipterus faber	0.138	97.617	0.072	0.117	106604.	0.90	6.52
Selene setapinnis.	0.181	97.798	0.059	0.108	106668.	0.75 0.58	10.14 5.37
Lepophidium	0.113 0.074	97.911 97.985	0.046 0.043	0.108 0.033	106717. 106763.	0.54	24.82
Archosargus probatocephalus Urophycis floridanus	0.108	98.093	0.035	0.075	106801.	0.45	5.73
Orthopristis chrysoptera	0.079	98.173	0.031	0.017	106834.	0.39	31.04
Paralichthys lethostigma	0.038	98.211	0.030	0.142	106866.	0.38	3.32
Hydrozoa	0.037	98.248	0.027	0.033	106895.	0.34	11.61
Lutjamus campechanus	0.066	98.314	0.027	0.067	106924.	0.34	6.33 20.65
Portunus Gorgoniidae	0.019 0.320	98.334 98.654	0.927 0.927	0.017 0.017	106953. 106982.	0.34	14.53
Brotula	0.092	98.745	0.026	0.025	107010.	0.33	12.80
Penaeus duorarum	0.071	98.816	0.026	0.108	107038.	0.33	2.57
Sphoeroides	0.080	98.896	0.025	0.042	107065.	0.32	8.55
Portunus gibbesii	0.059	98.955	0.025	0.050	107092.	0.32	5.71
Etropus	0.096	99.051	0.025	0.042	107119.	0.32 0.31	11.91 7.93
Parapenaeus Bothidae	0.031	99.082 99.098	0.024 0.023	C.033 0.008	107145. 107170.	0.29	25.00
Eucinostomus gula	0.019	99.117	0.023	0.025	107195.	0.29	9.51
Symphurus plagiusa	0.042	99.158	0.020	0.042	107217.	0.26	7.15

Table 5. Continued.

	MEAN	CUMULATIVE	POOLED			MRAN	
TAXON HANS	PERCENT COMPOSITION	PERCENT COMPOSITION	PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	DENSITY (# / HA)	INDEX OF DISPERSION
Lepophidium brevibarbe	0.017	99.175	0.020	0.017	107239.	0.26	18.33
Steindachneria argentea	0.007 0.037	99.182 99.219	0.020 0.020	0.017 0.042	107261.	0.26	15.40
Peprilus paru Holothuroides	0.004	99.223	0.020	0.008	107303.	0.25	4.77 . 21.00
Bagre marinus	0.037	99.260	0.018	0.050	107322.	0.22	4.46
Ophidion welshi	0.051	99.311	0.017	0.042	107340	0.21	4.78
Halieutichthys aculeatus	0.042	99.352	0.017	0.050	107358.	0.21	4.78
Lolligunoula	0.018	99.371	0.016	0.025	107375.	0.20	11.78
Chilomysterus schoepfi Squilla empusa	0.036 0.029	99.407 99.436	0.015	0.050	107391. 107407.	0.19 0.19	3.90 5.79
Loligo pealeii	0.036	99.473	0.014	0.050	107422.	0.18	3.57
Bairdiella chrysura	0.017	99.490	0.014	0.025	107437.	0.18	6.66
Balistes caprisous	0.004	99.495	0.011	0.017	107449.	0.14	10.15
Rhinoptera bonasus	0.062	99.557	0.010	0.050	107460.	0.13	2.57
Libinia emarginata Narcine brasiliensis	0.010 0.017	99.567 99.584	0.010 0.009	0.033 0.050	107471. 107481.	0.13	7.52 3.95
Anthonoa	0.018	99.602	0.009	0.017	107491.	0.12	5.76
Carenz fusus	0.011	99.614	0.008	0.025	107500.	0.11	3.85
Sicyonia dorsalis	0.016	99.630	0.007	0.025	107508.	0.09	2.96
Pogonias chromis	0.016	99.645	0.007	0.033	107515.	0.08	2.10
Paguridae	0.020	99.665	0.006	0.017	107521.	0.07	2.97
Brotula barbata Scomberomorus magulatus	0.007	99.672 99.683	0.006	0.008	107527. 107533.	0.07 0.07	6.00 2.30
Prionotus ophryss	0.004	99.687	0.006	0.008	107539.	0.07	6.00
Diplectrum radiale	0.004	99.691	0.006	0.008	107545.	0.07	6.00
Gorgonocephalus	0.016	99.707	0.006	0.008	107551.	0.07	6.00
Gobionellus hastatus	0.001	99.708	0.005	0.008	107556.	0.06	5.00
Citharichthys macrops Ancylopsetta quadrocellata	0.012 0.009	99.720 99.729	0.005 0.005	0.017	107561. 107566.	0.06	3.39 5.00
Ogcocephalus	0.003	99.732	0.005	0.008	107571.	0.06	5.00
Caranx hippos	0.008	99.740	0.005	0.017	107576.	0.06	3.39
Congrine flave	0.005	99.745	0.004	0.008	107580.	0.05	4.00
Scorpaena calcarata	0.025	99.770	0.004	0.025	107584.	0.05	1.48
Hoplunnis Calappa sulcata	0.005	99.775 99.782	0.004 0.004	0.008 0.008	107588. 107592.	0.05	4.00 4.00
Prionotus scitulus	0.026	99.808	0.004	0.008	107592.	0.05	4.00
Gyanura aicrura	0.001	99.809	0.004	0.008	107600.	0.05	4.00
Etrumeus teres	0.006	99.815	0.003	0.017	107603.	0.04	1.66
Sphyraena guachancho	0.012	99.828	0.003	0.017	107606.	0.04	1.66
Syacium Bolimannia	0.044	99.871 99.873	0.003	0.017 0.008	107609.	0.04	1.66
Ovaliges	0.005	99.878	0.003	0.008	107612. 107615.	0.04	3.00 3.00
Antennarius radiosus	0.010	99.887	0.003	0.017	107618.	0.04	1.66
Sciaenops ocellata	0.007	99.895	0.003	0.017	107621.	0.04	1.66
Rhizoprionodon terraenovae	0.015	99.910	0.003	0.025	107624.	0.04	0.98
Libinia Etropus microstomus	0.008	99.918	0.003	0.008 0.008	107627.	0.04	3.00
Dasyatis sayi	0.005	99.923 99.927	0.002	0.008	107629. 107631.	0.02	2.00
Sphyrna tiburo	0.003	99.930	0.002	0.008	107633.	0.02	2.00
Buaycon	0.009	99.939	0.002	0.017	107635.	0.02	0.99
Echinoidea	0.007	99.946	0.002	0.008	107637.	0.02	2.00
Syacium gunteri Ophichthus	0.004 0.005	99.951 99.956	0.002	0.008 0.017	107639. 107641.	0.02	2.00 0.99
. Dasyatus americana	0.005	99.962	0.002	0.017	107643.	0.02	0.99
Mugil curema	0.003	99.965	0.001	0.008	107644.	0.01	1.00
Ogcocephalus parvus	0.003	99.968	0.001	0.008	107645.	0.01	1.00
Decapterus punctatus	0.007	99.975	0.001	0.008	107646.	0.01	1.00
Congridae Desurtie schine	0.000	99.975	0.001	0.008	107647.	0.01	1.00
Dasyatis sabina Majidae	0.001 0.005	99.976 99.981	0.001 0.001	0.008 0.008	107648. 107649.	0.01 0.01	1.00
Raja texana	0.002	99.983	0.001	0.008	107650.	0.01	1.00
Monacanthus hispidus	0.005	99.988	0.001	0.008	107651.	0.01	1.00
Raja eglanteria	0.001	99.989	0.001	0.008	107652.	0.01	1.00
Leucosiidae	0.005	99.993	0.001	0.008	107653.	0.01	1.00
Trachinotus carolinus Ophidion holbrooki	0.000 0.002	99.993	0.001	0.008	107654.	0.01	1.00
Callinectes	0.002	99.995 100.000	0.001 0.001	0.008	107655. 107656.	0.01 0.01	1.00
Ophiuroidea	0.000	100.000	0.000	0.008	107656.	0.00	****
SAMPLE SUMMART: SAMPLES = 120	TOTAL TAXA =		L DENSITY =	1264.96	-	-	

- - - - - - - -

Table 6. Relative composition of demersal nekton taxa at Station Group 2 stations based on the results of analysis of samples collected in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys.

.

TAXON NAME	MEAN PERCENT Composition	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	MEAN Density (# / HA)	INDEX OF DISPERSION
Micropogonias undulatus	9.886	9.886	19.720	0.379	5668.	121.09	967.86
Selene setapinnis	2.026	11.915	14.417	0.136	9812.	88.53	4113.61
Cynoscion nothus	1.789	13.704	14.160	0.182	13882.	86.95	3741.29
Arius felis	25.038 6.439	38.742 45.180	13.715 5.448	0.864 0.182	17824. 19390.	84.22 33.46	157.86 314.99
Luidia	9.949	55.129	4.338	0.530	20637.	26.64	93.11
Chloroscombrus chrysurus Anchos hepsetus	4.855	59.984	4.290	0.333	21870.	26.34	181.98
Astropecten	2.634	62.618	3.316	0.045	22823.	20.36	467.47
Asteroides	5.914	68.532	2.519	0.227	23547.	15.47	227.50
Harengula jaguana	1.830	70.362	1.124	0.288	23870.	6.90	70.19
Penseus aztecus	1.755	72.117	1.079	0.364	24180.	6.62	32.88
Cynoscion arenarius	0.501	72.618	1.058 1.033	0.212 0.152	24484. 24781.	6.49 6.34	134.34 44.33
Loligo	1.688 0.889	74.305 75.194	0.978	0.227	25062	6.00	52.04
Menticirrhus americanus Anchos mitchilli	1.023	76.217	0.950	0.061	25335.	5.83	125.71
Squilla	1.264	77.481	0.912	0.121	25597 .	5.60	67.45
Opisthonema oglinum	2.961	80.442	0.751	0.288	25813.	4.61	38.35
Etropus crossotus	0.666	81.108	0.703	0.227	26015.	4.32	34.45
Leiostomus xanthurus	0.654	81.762	0.661	0.212	26205.	4.06	35.90
Lolliguncula	1.764	83.526 84.268	0.574 0.546	0.197 0.061	26370. 26527.	3.52 3.35	18.67 45.35
Decapoda	0.742 0.596	84.864	0.546	0.061	26684.	3.35	60.40
Priozotus Lagodon rhomboides	0.617	85.481	0.470	0.091	26819.	2.88	49.12
Lolliguncula brevis	0.771	86.252	0.438	0.136	26 945.	2.69	28.39
Cynoscion	0.381	86.633	0.431	0.076	27069.	2.65	57.62
Anchos	0.456	87.090	0.411	0.061	27187.	2.52	38.44
Archosargus probatocephalus	2.127	89.217	0.379	0.152	27296.	2.33	17.56
Priomotus rubio	1.181	90.398	0.313 0.299	0.227 0.152	27386. 27472.	1.92	11.30 18.77
Peprilus burti	0.366 0.156	90.764 90.920	0.299	0.192	27551.	1.69	19.29
Penaeus setiferus Decapterus punctatus	0.294	91.214	0.264	0.076	27627.	1.62	43.16
Renilia mulleri	0.577	91.791	0.264	0.091	27703.	1.62	17.32
Trachypenaeus	0.293	92.084	0.250	0.106	27775.	1.54	15.34
Loligo pealeii	0.285	92.369	0.177	0.091	27826.	1.09	15.08
Lutjanus caspechanus	0.543	92.913	0.164	0.045	27873.	1.00	22.03
Portunus	0.058	92.971	0.160	0.015	27919. 27961.	0.98 0.90	46.00 4.04
Callinectes sapidus	0.684	93.654 93.829	0.146 0.139	0.227 0.121	28001.	0.85	10.81
Diplectrum bivittatum Etropus	0.175 0.110	93.939	0.139	0.045	28040.	0.83	19.84
Trichiurus lepturus	0.241	94.180	0.136	0.106	28079.	0.83	12.91
Synodus foetens	0.175	94.355	0.136	0.152	28118.	0.83	7.91
Polydactylus octonesus	0.228	94.583	0.118	0.030	28152.	0.73	16.80
Squilla empusa	0.215	94.798	0.115	0.061	28185.	0.70	13.62
Aurelia	0.318	95.116	0.104	0.015	28215.	0.64 0.58	30.00 5.56
Syacium papillosum	0.081	95.197 95.404	0.094 0.094	0.106 0.091	28242. 28269.	0.58	7.75
Scyphozoa Balistos consistent	0.206 0.473	95.877	0.094	0.045	28296.	0.58	23.16
Balistes capriscus Penaeus duorarum	0.078	95.955	0.087	0.076	28321.	0.53	8.19
Sphyraena guachancho	0.087	96.042	0.083	0.061	28345.	0.51	7.33
Narcine brasiliensis	0.096	96.138	0.077	0.106	28367.	0.47	4.18
Stenotomus caprinus	0.076	96.214	0.077	0.061	28389.	0.47	7.14
Prionotus tribulus	0.078	96.293	0.073	0.106	28410.	0.45	4.56 3.88
Sphoeroides parvus	0.118	96.411	0.073 0.063	0.106 0.091	28431. 28449.	0.45 0.38	4.24
Callinectes similis	0.082 0.322	96.493 96.815	0.063	0.091	28467.	0.38	4.24
Centropristis philadelphicus Lutjanus synagris	0.064	96.879	0.059	0.045	28484.	0.36	13.30
Eucinostomus gula	0.095	96.974	0.056	0.091	28500.	0.34	3.56
Scomberomorus cavalla	0.039	97.014	0.052	0.030	28515.	0.32	8.23
Chilomycterus schoepfi	0.070	97.083	0.052	0.091	26530.	0.32	2.95
Syacium gunteri	0.030	97.113	0.052	0.030	28545.	0.32 0.30	8.23 5.15
Portunus gibbesii	0.073	97.186	0.049	0.076	28559. 28572.	0.28	5.19
Hydrozoa Paralichthya lethostigma	0.093 0.061	97.278 97.339	0.045 0.042	0.045	28584.	0.26	4.55
Paralichthys lethostigma Renilla	0.083	97.422	0.038	0.045	28595.	0.23	7.49
Symphurus plagiuse	0.044	97.466	0.031	0.076	28604.	0.19	2.23
Brotula	0.049	97.515	0.031	0.015	28513.	0.19	9.00
Rhizoprionodon terraenovae	0.085	97.600	0.031	0.091	28622.	0.19	1.55
Prionotus salmonicolor	0.223	97.823	0.031	0.061	28631.	0.19	3.36
Rhinoptera bonasus	1.593	99.416	0.024	0.091	28638. 28545.	0.15	1.20 7.00
Calappa	0.009	99.425	0.024 0.024	0.015 0.015	28652.	0.15	7.00
Larimus fasciatus Citharichthys spilopterus	0.034 0.027	99.459 99.486	0.024	0.045	28658.	0.13	2.28
aronge for soll a charakede ras							

Table 6. Continued.

TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	MEAN DENSITY (# / HA)	Index of Dispersion
Caranx fusus	0.029	99.515	0.021	0.061	28664.	0.13	1.94
Orthopristis chrysopters	0.033	99.548	0.021	0.030	28670.	0.13	4.31
Dasyatus americana	0.019	99.567	0.021	0.045	28676.	0.13	2.28
Sardinella aurita	0.057	99.624	0.021	0.030	28682.	0.13	2.95
Rhinobatos lentiginosus	0.019	99.643	0.021	0.061	28688.	0.13	1.94
Bothidae	0.015	99.658	0.017	0.015	286 93 .	0.11	5.00
Portunus spinicarpus	0.010	99.668	0.010	0.015	28696.	0.06	3.00
Etruneus teres	0.013	99.681	0.010	0.015	286 99.	0.06	3.00
Ophidiidae	800.0	99.689	0.010	0.015	28702.	0.06	3.00
Monacanthus hispidus	0.007	99.696	0.010	0.015	28705.	0.06	3.00
Halieutichthys aculeatus	0.015	99.711	0.010	0.015	28708.	0.06	3.00
Calappe sulcata	0.008	99.719	0.010	0.015	28711.	0.06	3.00
Sphoeroides	0.007	99.726	0.010	0.015	28714.	0.06	3.00
Porighthys porosissimus	0.019	99.745	0.007	0.030	28716.	0.04	0.98
Mugil cephalus	0.014	99.759	0.007	0.030	28718.	0.04	0.98
Prionotus roseus	0.010	99.769	0.007	0.015	28720.	0.04	2.00
Calappe flammes	0.005	99.774	0.007	0.015	28722.	0.04	2.00
Callinectes	0.022	99.796	0.007	0.015	28724.	0.04	2.00
Citharichthys macrops	0.002	99.798	0.003	0.015	28725.	0.02	1.00
Ovalipes	0.005	99.803	0.003	0.015	28726.	0.02	1.00
Cyclopsetta chittendeni	0.016	99.819	0.003	0.015	28727.	0.02	1.00
Bagre marinum	0.007	99.826	0.003	0.015	28728.	0.02	1.00
Lagocephalus laevigatus	0.015	99.841	0.003	0.015	28729.	0.02	1.00
Acanthostracion quadricornis	0.010	99.851	0.003	0.015	28730.	0.02	1.00
Sicyonia brevirostris	0.002	99.854	0.003	0.015	28731.	0.02	1.00
Antennarius radiosus	0.005	99.859	0.003	0.015	28732.	0.02	1.00
Chaetodipterus faber	0.009	99.868	0.003	0.030	28733.	0.02	1.00
Mycteroperca phenax	0.015	99.883	0.003	0.015	28734.	0.02	1.00
Raja eglanteria	0.005	99.888	0.003	0.015	28735.	0.02	1.00
Pomatomus saltatrix	0.004	99.892	0.003	0.015	28736.	0.02	1.00
Carcharhinus maculipinnis	0.069	99.961	0.003	0.015	28737.	0.02	1.00
Rachycentron canadum	0.005	99.967	0.003	0.015	28738.	0.02	1.00
Ogeocephalus nasutus	0.009	99.975	0.003	0.015	28739.	0.02	1.00
Pogonias chromis	0.002	99.977	0.003	0.015	28740.	0.02	1.00
Echeneis naugrates	0.008	99.985	0.003	0.015	28741.	0.02	1.00
Diplectrum formosum	0.011	99.995	0.003	0.015	28742.	0.02	1.00
Majidae	0.005	100.000	0.003	0.015	28743.	0.02	1.00
Sargassum	0.000	100.000	0.000	0.045	28743.	0.00	*****
Portunus spinisanus	0.000	100.000	0.000	0.015	28743.	0.00	
SAMPLE SUMMARY: SAMPLES = 66	TOTAL TAXA =	111 TOT	AL DENSITY =	614.05			

.

Table 7. Relative composition of demersal nekton taxa at Station Group 3 stations based on the results of analysis of samples collected in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys.

TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	MEAN Density (# / HA)	INDEX OF DISPERSION
Chloroscombrus chrysurus	15.200	15.200	17.457	0.567	725.	34.07	128.71
Stenotomus caprinus	5.124	20.323	13.629	0.300	1291.	26.60	428.35
Anchos hepsetus	3.744	24.067	11.052	0.167	1750.	21.57	309.58
Loligo pealeii	8.569	32.635	7.272	0.267	2052.	14.19	66.21
Loligo	4.163	36.798	6.236	0.200	2311.	12.17	46.18
Scyphoson	5.191	41.989	6.212	0.067	2569.	12.13	219.83
Arius felis	4.488	46.478	4.093	0.433	2739.	7.99	28.46
Decapoda	3.192	49.670	3.684	0.067	2892.	7.19	92.88
Syncium papillosum	7.666	57.335	3.299	0.667	3029.	6.44	7.52
Harengula jaguana	1.722	59.057 63.533	3.227 3.034	0.200 0.767	3163. 3 289.	6.30 5.92	80.86 10.70
Synodus foetens Lolliguncula	2.608	66.141	2.649	0.167	3399.	5.17	64.43
Trachinocephalus ayops	2.227	68.368	1.397	0.133	3457.	2.73	26.15
Anchos	1.323	69.692	1.397	0.100	3515.	2.73	18.58
Asteroidea	1.960	71.651	1.228	0.133	3566.	2.40	19.03
Lolliguncula brevis	1.070	72.721	1.108	0.200	3612.	2.16	21.58
Etropus crossotus	1.052	73.773	0.915	0.400	3650.	1.79	4.73
Ophiuroidea	4.201	77.974	0.891	0.067	3687.	1.74	21.90
Diplectrum bivittatum	1.307	79.281	0.819	0.267	3721.	1.60	8.81
Cynoscion	0.546	79.827	0.722	0.033	3751.	1.41	30.00
Callinectes sapidus	2.077	81.905	0.698	0.400	3780.	1.36	2.32
Trachurus lathami	0.444	82.349	0.530	0.133	3802.	1.03	7.24
Penseus aztecus	0.580	82.928 83.245	0.482	0.133	3822. 3840.	0.94	8.93
Prionotus rubio	0.316 0.459	83.703	0.433 0.433	0.233 0.133	3858.	0.85	3.06 7.54
Peprilus burti Calappa	1.870	85.574	0.409	0.133	3875.	0.80	6.05
Sphoeroides parvus	0.416	85.989	0.361	0.167	3890.	0.70	3.28
Micropogonias undulatus	0.180	86.169	0.361	0.167	3905.	0.70	4,93
Nellitidae	0.668	86.837	0.337	0.067	3919.	0.66	9.12
Trichiurus lepturus	0.143	86,980	0.313	0.033	3932.	0.61	13.00
Prionotus tribulus	0.301	87.282	0.265	0.133	3943.	0.52	3.66
Scomberomorus cavalla	0.066	87.348	0.241	0.033	3953.	0.47	10.00
Aluterus schoepfi	0.358	87.706	0.241	0.133	3963.	0.47	3.38
Sphyraena guachancho	0.155	87.861	0.241	0.100	3 973.	0.47	4.41
Diplectrum radiale	0.409	88.271	0.193	0.133	3981.	0.38	3.34
Rhizoprionodon terraenovae	0.136	88.406	0.169	0.100	3988.	0.33	2.57
Sardinella aurita	0.104	88.510	0.169	0.067	3995.	0.33	5.23
Opisthonema oglimum	0.097	88.607	0.169	0.100	4002.	0.33	2.86
Portunus	0.175 0.157	88.782 88.939	0.169 0.169	0.067 0.067	4009. 4016.	0.33 0.33	5.23 5.23
Centropristis philadelphicus Eucinostomus gula	1.241	90.181	0.169	0.100	4023.	0.33	2.86
Cynoscion arenarius	0.183	90.364	0.144	0.067	4029.	0.28	4.28
Portunus gibbesii	0.242	90.606	0.144	0.067	4035.	0.28	4.28
Chaetodipterus faber	0.040	90.646	0.144	0.033	4041.	0.28	6.00
Squilla	0.227	90.872	0.120	0.100	4046.	0.23	2.10
Diplectrum formosum	0.605	91.477	0.120	0.133	4051.	0.23	1.28
Prionotus soitulus	0.115	91.592	0.120	0.100	4056.	0.23	2.10
Lutjanus campechanus	0.213	91.805	0.120	0.100	4061.	0.23	1.69
Prionotus salmonicolor	0.109	91.914	0.120	0.100	4066.	0.23	1.69
Sphoeroides	0.096	92.010	0.096	0.067	4070.	0.19	1.93
Citharichthys spilopterus	0.603	92.614	0.096	0.133	4074.	0.19	0.90
Penseus duorarus	0.082	92.695	0.096	0.067	4078. 4062.	0.19	2.45 4.00
Selene setapinnis Aurelia	0.053	92.748 93.165	0.096 0.072	0.033 0.033	4085.	0.19 0.14	3.00
Caranx fusus	0.101	93.265	0.072	0.067	4088.	0.14	1.62
Citharichthys macrops	0.494	93.759	0.072	0.067	4091.	0.14	1.62
Sphyrna tiburo	0.135	93.895	0.072	0.067	4094	0.14	1.62
Paralichthys lethostigma	0.226	94.120	0.072	0.100	4097.	0.14	0.93
Portunus spinimenus	0.056	94.176	0.072	0.100	4100.	0.14	0.93
Sphyrna lewini	0.033	94.209	0.072	0.033	4103.	0.14	3.00
Echeneis naucrates	0.061	94.270	0.072	0.067	4106.	0.14	1.62
Ovalipes guadulpensis	0.069	94.340	0.072	0.067	4109.	0.14	1.62
Callinectes similis	0.174	94.514	0.072	0.100	4112.	0.14	0.93
Citharichthys cornutus	0.278	94.792	0.048	0.033	4114.	0.09	2.00
Luidia Notice brothings	0.333	95.125	0.048	0.067	4116.	0.09	2.00
Narcine brasiliensis	0.050 0.046	95.175	0.048	0.067 0.067	4118. 4120.	0.09 0.09	0.97 0.97
Ancylopsetta quadrocellata Persephona aquilonaris	0.039	95.221 95.260	0.048 0.048	0.033	4122.	0.09	2.00
fersephona aquilonaris Etrumeus teres	0.011	95.271	0.048	0.033	4124.	0.09	2.00
Sicyonia dorsalis	0.061	95.332	0.048	0.033	4126.	0.09	2.00
Ovalipes	0.011	95.343	0.048	0.067	4128.	0.09	2.00
Prionotus	0.075	95.418	0.048	0.033	4130.	0.09	2.00
	0.015	33.410	0.040		-130.	0.09	£.00

-

Table 7. Continued.

.

TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	MEAN DENSITY (# / HA)	INDEX OF DISPERSION
Penaous setiferus	0.013	95.431	0.048	0.033	4132.	0.09	2.00
Monscanthus hispidus	0.110	95.540	0.048	0.067	4134.	0.09	0.97
Lutjamus synagris	0.021	95.562	0.024	0.033	4135.	0.05	1.00
Ophidion holbrooki	0.005	95.567	0.024	0.033	4136.	0.05	1.00
Hepatus ephelitious	0.031	95.598	0.024	0.033	4137.	0.05	1.00
Anthosos	0.025	95.623	0.024	0.033	4138.	0.05	1.00
Dasyatus americana	0.012	95.635	0.024	0.033	4139.	0.05	1.00
Rachycentron canadum	0.025	95.660	0.024	0.033	4140.	0.05	1.00
Anchon lyolepis	0.101	95.761	0.024	0.033	4141.	0.05	1.00
Mugil cephalus	3.333	99.094	0.024	0.033	4142.	0.05	1.00
Calappa flammen	0.025	99.119	0.024	0.033	4143.	0.05	1.00
Halieutichthys aculeatus	0.167	99.286	0.024	0.033	4144.	0.05	1.00
Arenaeus gribrarius	0.005	99.291	0.024	0.033	4145.	0.05	1.00
Caranx hippos	0.025	99.316	0.024	0.033	4146.	0.05	1.00
Chilomyoterus schoepfi	0.020	99.336	0.024	0.033	4147.	0.05	1.00
Sicyonia previrostris	0.417	99.753	0.024	0.033	4148.	0.05	1.00
Encope	0.139	99.892	0.024	0.033	4149.	0.05	1.00
Etropus microstomus	0.044	99.936	0.024	0.033	4150.	0.05	1.00
Symphurus	0.025	99.961	0.024	0.033	4151.	0.05	1.00
Raja eglanteria	0.013	99.975	0.024	0.033	4152.	0.05	1.00
Orthopristis chrysopters	0.025	100.000	0.024	0.033	4153.	0.05	1.00
Sargassum	0.000	100.000	0.000	0.033	4153.	0.00	20000
SAMPLE SUMMARY: SAMPLES = 30	TOTAL TAXA =	94 TOTA	L DEWSITT =	195.19			

•

.

.

Table 8. Relative composition of demersal nekton taxa at Station Group 4 stations based on the results of analysis of samples collected in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys.

TAXON HAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	MEAN DENSITY (# / HA)	INDEX OF DISPERSION
Micropogonias undulatus	43.758	43.758	48.484	0.916	29081.	383.22	372.61
Trichiurus lepturus	8.821	52.580	8.551	0.589	34210.	67.59	363.69
Steindachneria argentea	4.998	57.578	8.159	0.308	39104.	64.49	455.87
Cynosoion arenarius Penaeus agtecus	7.223	64.800	6.224	0.776	42837.	49.19	107.50
leiostomus xanthurus	5.983 4.223	70.784 75.006	4.641 4.160	0.860	45621.	36.69	57.78
Trachypenaeus	3.183	78.189	2.694	0.364 0.421	48116. 49732.	32.88 21.29	291.45
Parapenaeus	2.575	80.764	1.861	0.150	50848.	14.71	78.44 114.12
Seyphozoa	1.830	82.595	1.621	0.065	51820	12.81	467.53
Cynoscion nothus	1.794	84.388	1.464	0.449	52698.	11.57	26.27
Prionotus rubio Portunus spinicarpus	1.882	86.271	1.412	0.570	53545.	11.16	27.98
Solenocera	1.502	87.773 88.758	1.124	0.168	54219.	8.88	127.96
Tiphopensus	0.837	89.595	0.820	0.299 0.075	54771. 55263.	7.27 6.48	48.46 95.70
Centropristis philadelphicus	0.868	90.463	0.734	0.542	55703.	5.80	8.97
Halieutichthys aculeatus	0.702	91.164	0.717	0.187	56133.	5.67	41.79
Serranus atrobranchus	0.963	92.127	0.660	0.327	56529.	5.22	22.78
Callinectes similis Lepophidium	0.632	92.759	0.477	0.234	56815.	3.77	37.84
Lepophidium brevibarbe	0.575 0.429	93.334 93.763	0.452 0.333	0.336	57086.	3.57	9.80
Porichthys perosisaimus	0.437	94.201	0.330	0.047 0.262	57286. 57484.	2.64 2.61	60.41
Stenotomus caprimus	0.340	94.540	0.298	0.187	57663.	2.01	9.37 13.27
Synodus foetens	0.380	94.921	0.257	0.234	57817.	2.03	10.87
Peprilus burti	0.386	95.307	0.252	0.178	57968.	1.99	19.40
Loligo pealeii Cuoleonatta abittandani	0.279	95.586	0.242	0.047	58113.	1.91	95.22
Cyclopsetta chittendeni Squilla	0.341 0.248	95.927 96.174	0.213	0.215	58241.	1.69	9.91
Decapterus punctatus	0.142	96.316	0.192	0.103 0.047	58356. 58449.	1.52	32.58
Xiphopeneus kroyeri	0.064	96.380	0.135	0.019	58530.	1.23	50.76 43.41
Congrina flava	0.133	96.513	0.130	0.112	58608.	1.03	7.29
Cynoscion	0.376	96.890	0.128	0.019	58685.	1.01	38.30
Lagodon rhomboides	0.235	97.125	0.127	0.093	58761.	1.00	14.58
Syacium papillosum Larimus fasciatus	0.192 0.133	97.317	0.122	0.140	58834.	0.96	7.04
Paralichthys lethostigma	0.091	97.450 97.541	0.107 0.085	0.065 0.262	58898.	0.84	13.09
Diplectrum bivittatum	0.052	97.593	0.085	0.019	58949. 59000.	0.67 0.67	2.23 45.30
Citharichthys spilopterus	0.099	97.693	0.080	0.075	59048.	0.63	5.94
Rhizoprionodon terraenovae	0.113	97.806	0.077	0.112	59094	0.61	14.53
Lutjanus caspechanus	0.063	97.869	0.068	0.131	59135.	0.54	3.68
Penacus setiferus Selene setapinnis	0.111 0.080	97.980	0.067	0.103	59175.	0.53	4.72
Renilla	0.099	98.061 98.160	0.060 0.058	0.103	59211.	0.47	4.82
Prionotus stearnsi	0.059	98.219	0.055	0.037 0.019	59246. 59279.	0.46 0.43	11.07 29.21
Anasimus latus	0.054	98.273	0.055	0.056	59312.	0.43	7.67
Lolliguncula	0.071	98.343	0.053	0.084	59344.	0.42	5.44
Conger oceanicus	0.082	98.426	0.053	0.065	59376.	0.42	6.01
Plesionika Chaetodipterus faber	0.044 0.051	98.470 98.521	0.050	0.009	59406.	0.40	30.00
Trachurus lathami	0.065	98.586	0.050 0.047	0.056 0.075	59436. 59464.	0.40	5.10
Hoplunnis	0.068	98.654	0.045	0.056	59491.	0.37 0.36	5.00 5.32
Brotula barbata	0.037	98.691	0.043	0.075	59517.	0.34	3.71
Portunus gibbesii	0.058	98.749	0.043	0.028	59543	0.34	11.95
Loligo Brotula	0.055	98.804	0.038	0.056	59566.	0.30	4.74
Urophycis floridanus	0.047 0.040	98.851 98.890	0.038	0.065	59589.	0.30	4.57
Raminoides louisianensia	0.076	98.967	0.038 0.037	0.028 0.047	59612. 59634.	0.30	7.54
Etrumeus teres	0.281	99.248	0.037	0.037	59656.	0.29 0.29	5.48 7.78
Arius felis	0.034	99.282	0.032	0.019	59675.	0.25	9.65
Diplectrum radiale	0.016	99.298	0.032	0.019	59694.	0.25	11.56
Hoplunnis macrurus Callinectes sapidus	0.014	99.312	0.032	0.028	59713.	0.25	15.28
Calappa sulcata	0.055	99.367 99.398	0.032	0.037	59732.	0.25	5.40
Sicyonia dorsalis	0.030	99.428	0.027 0.025	0.037 0.019	59748. 59763.	0.21	5.02 10.15
Anadara	0.103	99.531	0.023	0.009	59777.	0.20	14.00
Pristipomoides aquilonaris	0.014	99.544	0.018	0.028	59788.	0.14	3.66
Peprilus paru	0.020	99.564	0.018	0.028	59799.	0.14	4.76
Antennarius radiosus Gymnachirus texae	0.024	99.588	0.017	0.028	59809.	0.13	4.15
Congrina	0.023 0.021	99.611 99.632	0.017	0.037	59819.	0.13	3.54
Renilla mulleri	0.021	99.647	0.015 0.015	0.056 0.019	59828. 50827	0.12	1.82
Synodus	0.008	99.655	0.015	0.009	59837. 59846.	0.12 0.12	4.96 9.00
Anchoa hepsetus	0.014	99.669	0.013	0.009	59854.	0.12	8.00
				-			

.

Table 8. Continued.

•

TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	MEAN DENSITY (# / HA)	INDEX OF DISPERSION
Chloroscoebrus chrysurus	0.008	99.677	0.013	0.019	59862.	0.11	3.96
Bollmannia communia	0.020	99.696	0.012	0.037	59869.	0.09	2.10
Sicyonia brevirostris	0.041	99.738	0.012	0.009	59876.	0.09	7.00
Asteroidea	0.007	99.745	0.012	0.009	59883.	0.09	7.00
Sphoeroides	0.010	99.755	0.010	0.019	59889.	0.08	2.97
Portunus	0.010	99.765	0.008	0.009	59894.	0.07	5.00
Symphurus diomedianus	0.017	99.781	0.008	0.009	59899.	0.07	5.00
Symphurus	0.009	99.790	0.008	0.009	59904.	0.07	5.00
Eucinostomus gula	0.007	99.798	0.007	0.009	59908.	0.05	4.00
Lolligunquia brevis	0.007	99.805	0.007	0.009	59912.	0.05	4.00
Squilla empusa	0.008	99.814	0.007	0.009	59916.	0.05	4.00
Lagocephalus laevigatus	0.010	99.824	0.007	0.009	59920.	0.05	4,00
Saurida brasiliensis	0.009	99.832	0.007	0.019	59924.	0.05	2.49
Portunus sayi	0.010	99.842	0.007	0.009	59928.	0.05	4.00
Conger	0.006	99.848	0.005	0.009	59931.	0.04	3.00
Congridae	0.009	99.856	0.005	0.009	59934.	0.04	3.00
Prionotus roseus	0.006	99.863	0.005	0.009	59937.	0.04	3.00
Laegonesa	0.005	99.868	0.005	0.009	59940.	0.04	3.00
Anchos	0.002	99.870	0.005	0.009	59943.	0.04	3.00
Rangia	0.022	99.892	0.005	0.009	59946.	0.04	3.00
Gobiidae	0.003	99.895	0.003	0.009	59948.	0.03	2.00
Anthosos	0.007	99.902	0.003	0.009	59950.	0.03	2.00
Natantia	0.005	99.907	0.003	0.009	59952.	0.03	2.00
Prionotus ophryss	0.005	99.913	0.003	0.009	59954.	0.03	2.00
Astropecten	0.007	99.919	0.003	0.009	59956.	0.03	2.00
Parapandalus longicauda	0.005	99.925	0.003	0.009	59958.	0.03	2.00
Tonna gales	0.008	99.933	0.003	0.009	59960.	0.03	2.00
Calappa	0.007	99.939	0.003	0.009	59962.	0.03	2.00
Lopholatilis chamaeleonticeps	0.006	99.946	0.003	0.009	59964.	0.03	2.00
Penseus duorarum	0.004	99.950	0.002	0.009	59965.	0.01	1.00
Caranz fusus	0.005	99.956	0.002	0.009	59966.	0.01	1.00
Luidia	0.003	99.958	0.002	0.009	59 96 7.	0.01	1.00
Openeus parvus	0.002	99.960	0.002	0.009	59968.	0.01	1.00
Calappa springeri	0.004	99.965	0.002	0.009	59969.	0.01	1.00
Prionotus tribulus	0.003	99.967	0.002	0.009	59970.	0.01	1.00
Prionotus salmonicolor	0.003	9 9. 970	0.002	0.009	59 971.	0.01	1.00
Triglidae	0.002	99.972	0.002	0.009	59972.	0.01	1.00
Syacium	0.002	99.974	0.002	0.009	59 973.	0.01	1.00
Caroherhinus falciformis	0.001	99.975	0.002	0.009	59 974.	0.01	1.00
Caulolatilus cyanops	0.003	99.979	0.002	0.009	59975.	0.01	1.00
Symphurus plagiuse	0.003	99.981	0.002	0.009	59976.	0.01	1.00
Hepatus epheliticus	0.002	99.983	0.002	0.009	59977.	0.01	1.00
Anchos mitchilli	0.004	99.987	0.002	0.009	59978.	0.01	1.00
Etropus crossotus	0.004	99.991	0.002	0.009	59979.	0.01	1.00
Ogeocephalus	0.003	99.9 94	0.002	0.009	59980.	0.01	1.00
Neobythites gillii	0.006	100.000	0.002	0.009	59981.	0.01	1.00
SAMPLE SUMMARY: SAMPLES = 107	TOTAL TAXA =	118 TOTA	L DENSITY =	790.40			

•

.....

Table 9. Relative composition of demersal nekton taxa at Station Group 5 stations based on the results of analysis of samples collected in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys.

TAXON NAME	MEAN PERCENT CONFOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	MEAN DENSITY (# / HA)	INDEX OF DISPERSION
Micropogonias undulatus	10.862	10.862	21.903	0.604	14328.	210.44	3169.21
Stenotomus caprinus	17.769	28.631	18.226 6.676	0.833 0.490	26251. 30618.	175.12 64.14	355.93 605.00
Peprilus burti	5.418 6.035	34.049 40.084	4.690	0.448	33686.	45.06	292.59
Trechurus lathemi Ophiuroides	0.952	41.036	2.944	0.031	35612.	28.29	1827.38
Prionotus rubio	2.243	43.279	2.207	0.625	37056.	21.21	57.83
Leiostomus xanthurus	1.484	44.763	2.081	0.406	38417. 39765.	19.99 19.80	128.06 104.17
Synodus foetens	2.832 3.229	47.595 50.824	2.061 1.977	0.823 0.292	41058.	18.99	160.83
Anchos hepsetus Loligo	5.094	55.918	1.934	0.323	42323.	18.58	45.38
Syncium papillosum	2.471	58.389	1.851	0.625	43534.	17.79	48.13
Penseus astecus	3.220	61.609	1.851	0.719	44745. 45807.	17.79	45.55 129.05
Trichiurus lepturus	2.304	63.913 65.305	1.623 1.599	0.313 0.240	46853.	15.60 15.36	167.68
Serranus atrobranchus Centropristis philadelphicus	1.830	67.136	1.599	0.573	47899.	15.36	74.23
Cynosoion arenarius	0.661	67.797	1.578	0.417	48931.	15.16	428.25
Portunus spinicarpus	1.074	68.871	1.367	0.167	49825.	13.13	143.71
Trachypenaeus	2.131	71.002	1.348 1.281	0.313 0.323	50707. 51545.	12.95 12.31	64.64 68.62
Lagodon rhomboides	1.608 1.659	72.610 74.269	1.085	0.156	52255.	10.43	118.12
Chloroscombrus chrysurus Harengula jaguana	1.298	75.567	1.064	0.198	52951.	10.22	117.49
Etropus crossotus	1.254	76.821	1.050	0.510	53638.	10.09	50.22
Diplectrum bivittatum	0.855	77.676	1.003	0.146	54294.	9.64 9.59	88.92 522.41
Larimus fasciatus	0.143 0.886	77.819 78.705	0.998 0.945	0.083 0.292	54947. 55565.	9.08	94.67
Halieutichthys aculeatus Luidia	1.399	80.103	0.887	0.083	56 145.	8.52	309.81
Mellitidae	0.531	80.634	0.781	0.052	56656.	7.51	130.96
Anchos	1.091	81.725	0.780	0.052	57166.	7.49	117.82
Decapterus punctatus	0.634	82.360	0.708	0.115 0.240	57629. 58003.	6.80 5.49	205.35 36.37
Penaeus duorarus	0.694 0.425	83.053 83.478	0.572 0.567	0.156	58374.	5.45	75.15
Scorpaena calcarata Callinectes similis	1.467	84.946	0.566	0.292	58744.	5.43	40.48
Sicyonia brevirostris	0.523	85.469	0.552	0.240	59105.	5.30	76.46
Etrumeus teres	1.520	86.989	0.534	0.219	59454.	5.13	79.33
Squilla	0.540	87.529	0.530	0.333 0.198	59801. 60136.	5.10 4.92	22.33 34.50
Sphoeroides parvus	0.546 0.689	88.075 88.764	0.512 0.511	0.313	60470.	4.91	23.22
Diplectrum radiale Echinoides	0.679	89.443	0.474	0.115	60780.	4.55	55.43
Lutjanus campechanus	0.382	89.825	0.399	0.323	61041.	3.83	34.06
Opisthonema oglinum	0.349	90.175	0.326	0.042	61254.	3.13 3.06	128.29 24.34
Dicinostomus gula	0.738 0.216	90.913 91.129	0.318 0.307	0.229 0.042	61462. 61663.	2.95	68.22
Prionotus Clypeaster	0.586	91.715	0.295	0.083	61856.	2.83	47.82
Pristipomoides aquilonaris	0.177	91.892	0.281	0.104	62040.	2.70	111.42
Sicyonia dorsalis	0.254	92.146	0.278	0.156	62222.	2.67	28.21 42.83
Anchon Lyclepis	0.831	92.977 93.348	0.277 0.252	0.083 0.240	62403. 62568.	2.66	42.03
Lepophidium Cynoscion nothus	0.371 0.203	93.550	0.231	0.115	62719.	2.22	42.45
Loligo pealeii	0.444	93.995	0,222	0.073	62864.	2.13	36.55
Syacium gunteri	0.241	94.236	0.217	0.125	63006.	2.09	34.07
Cyclopsetta chittendeni	0.308	94.544	0.211	0.250 0.073	63144. 63268.	2.03 1.82	9.68 41.69
Bellator militaris	0.178 0.452	94.723 95.175	0.190 0.182	0.104	63387.	1.75	84.20
Asteroidea Cynoscion	0.368	95.543	0.174	0.052	63501.	1.67	32.75
Prionotus tribulus	0.142	95.685	0.173	0.146	63614.	1.66	29.67
Sphyraena guachancho	0.251	95.937	0.156	0.094	63716.	1.50	18.80
Citharichthys spilopterus	0.254	96.191	0.138 0.136	0.115 0.052	63806. 63895.	1.32 1.31	13.65 37.59
Trichopsetta ventralis	0.088 0.103	96.279 96.382	0.135	0.073	63983.	1.29	32.74
Portunus gibbesii Prionotus salmonicolor	0.192	96.574	0.115	0.135	64058.	1.10	10.41
Encope michelini	0.220	96.794	0.110	0.031	64130.	1.06	28.29
Arius felis	0.237	97.031	0.104	0.094	64198.	1.00 0.88	18.04 21.16
Lolliguncula brevis	0.291	97.322 97.438	0.092 0.090	0.052 0.167	64258. 64317.	0.87	7.21
Callinectes sepidus Porichthys porosissimus	0.115 0.159	97.597	0.089	0.135	64375.	0.85	5.66
Prionotus paralatus	0.056	97.652	0.083	0.063	64429.	0.79	
Prionotus roseus	0.056	97.708	0.081	0.031	64482.	0.78	
Syacium	0.070	97.778	0.076	0.021	64532. 64582.	0.73 0.73	
Saurida brasiliensis	0.265 0.025	98.043 98.068	0.076 0.075	0.115 0.052	64631.	0.73	
Chaetodipterus faber Symphurus plagiuse	0.025	98.096	0.073	0.052	64679.	0.70	27.71
Calappa	0.129	98.225	0.064	0.167	64721.	0.62	3.22
·• • •							

.....

Table 9. Continued.

.

TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	MEAN DENSITY (\$ / HA)	INDEX OF DISPERSION
Calappa sulcata	0.078	98.303	0.054	0.083	64756.	0.51	6.42
Upeneus parvus	. 0.073	98.376	0.047	0.063	64787.	0.46	10.14
Polydactylus octonemus	0.033	98.409	0.043	0.063	64815.	0.41	6.85
Selar grunenophthalmus	0.066 0.034	98.474 98.509	0.043 0.041	0.073 0.021	64843. 64870.	0.41	5.84 14.87
Calappa springeri Lolliguncula	0.052	98.561	0.037	0.042	64894.	0.35	6.23
Trichopsetta	0.017	98.578	0.037	0.010	64918.	0.35	24.00
Eucinostomus argenteus	0.046	98.623	0.037	0.031	64942.	0.35	10.95
Lutjamus synagris	0.093	98.717	0.035	0.073	64965.	0.34	8.24
Polynemus virginicus	0.012 0.063	98.728 98.791	0.032 0.032	0.010 0.083	64986. 65007.	0.31 0.31	21.00 3.77
Selene setapinnis Renila muleri	0.033	98.824	0.029	0.010	65026	0.28	19.00
Menticirrhus americanus	0.024	98.848	0.026	0.042	65043.	0.25	6.18
Spatangoida	0.094	98.942	0.023	0.031	65058.	0.22	5.30
Soorpaena brasiliensis	0.032	98.974	0.021	0.021	65072.	0.21	12.12
Prionotus opbryas Ogeocephalus	0.023	98.997 99.007	0.021 0.021	0.073 0.021	65086. 65100.	0.21	3.17 7.07
Paralichthys lethostigma	0.050	99.056	0.020	0.115	65113.	0.19	1.34
Lopholatilis chamaeleosticeps	0.009	99.066	0.018	0.010	65125.	0.18	12.00
Penneus setiferus	0.025	99.091	0.018	0.052	65137.	0.18	3.24
Raninoides louisianensis	0.015	99.106	0.017	0.021	65148.	0.16	6.59
Prionotus stearnsi Zalieutes mogintyi	0.031 0.032	99.138 99.170	0.017 0.017	0.052 0.010	65159. 65170.	0.16 0.16	2.73 11.00
Sardinella aurita	0.013	99.183	0.017	0.042	65181.	0.16	4.94
Brotula	0.011	99.194	0.015	0.052	65191.	0.15	3.13
Lepophidium brevibarbe	0.036	99.230	0.015	0.031	65201.	0.15	5.35
Sphoeroides	0.024	99.254	0.015	0.031 0.042	65211. 65219.	0.15	4.54 3.45
Raja texana Gymnachirus	0.009	99.263 99.269	0.012 0.012	0.010	65227.	0.12	8.00
Anthozos	0.006	99.276	0.012	0.010	65235.	0.12	8.00
Ananimus	0.006	99.282	0.012	0.010	65243.	0.12	8.00
Gymnachirus texae	0.018	99.300	0.012	0.031	65251.	0.12	3.71
Ophidiidae	0.019	99.319	0.012	0.021	65259.	0.12	4.21
Renilla	0.172 0.007	99.491 99.498	0.011 0.009	0.021 0.010	65266. 65272.	0.10	4.11 6.00
Urophycis regius Solenocers	0.030	99.528	0.009	0.021	65278.	0.09	3.31
Balistes caprisous	0.034	99.562	0.009	0.031	65284.	0.09	2.97
Hoplunnis macrurus	0.007	99.569	0.008	0.021	65289.	0.07	2.57
Rhomboplites aurorubens	0.003	99.572	0.008	0.010	65294.	0.07	5.00 5.00
Holothurcides Portunus spinimenus	0.019 0.013	99.592 99.605	800.0 800.0	0.010 0.031	65299. 65304.	0.07 0.07	2.17
Lagocephalus laevigatus	0.022	99.627	0.008	0.042	65309.	0.07	1.36
Goniaster americanus	0.002	99.629	800.0	0.010	65314.	0.07	5.00
Orthopristis chrysoptera	0.005	99.634	0.006	0.010	65318.	0.06	4.00
Ophidion welshi	0.004	99.638	0.006	0.010 0.010	65322. 65326.	0.06	4.00 4.00
Symphurus dicmedianus Rhizoprionodon terraenovae	0.004 0.036	99.642 99.677	0.006 0.006	0.021	65330.	0.06	1.98
Ovalipes guadulpensis	0.005	99.682	0.006	0.021	65334.	0.06	2.48
Natantia	0.004	99.686	0.006	0.010	65338.	0.06	4.00
Anasimus latus	0.004	99.690	0.006	0.010	65342.	0.06	4.00
Hepatus epheliticus	0.004	99.693	0.006	0.010 0.010	653 46. 65350.	0.06 0.06	4.00 4.00
Squilla empusa Aluterus schoepfi	0.019	99.707 99.726	0.006	0.021	65354.	0.06	1.98
Gymnothorax nigromarginatus	0.017	99.743	0.005	0.031	65357.	0.04	0.98
Ogoocephalus vespertilio	0.007	99.750	0.005	0.010	65360.	0.04	3.00
Synodus poeyi	0.012	99.761	0.005	0.010	65363.	0.04	3.00
Prionaster Bollmannia communis	0.002 0.006	99.763 99.769	0.005 0.005	0.010 0.021	65366. 65369.	0.04	3.00 1.65
Seurida	0.021	99. 790	0.005	0.010	65372.	0.04	3.00
Lopholatilis	0.007	99.797	0.005	0.010	65375.	0.04	3.00
Engyophrys senta	0.006	99.802	0.005	0.010	65378.	0.04	3.00
Peprilus paru	0.008	99.811	0.005	0.010	65381.	0.04	3.00
Paralichthys squamilentus Sphyrna tiburo	0.027 0.018	99.838 99.856	0.003 0.003	0.010 0.021	65383. 65385.	0.03 0.03	2.00 0.99
Synodus	0.013	99.869	0.003	0.021	65387.	0.03	2.00
Soomber japonicus	0.007	99.876	0.003	0.021	65389.	0.03	0.99
Carcharhinus porosus	0.002	99.878	0.003	0.021	65391.	0.03	0.99
Haemulon aurolineatum	0.007	99.885	0.003	0.010	65393.	0.03	2.00
Calamus pennatula Raja eglanteria	0.010 0.003	99.895 99.898	0.003 0.003	0.010 0.010	6539 5. 65397.	0.03 0.03	2.00
kaja egianteria Parapenaeus	0.003	99.898	0.003	0.010	65398.	0.03	2.00 1.00
Libinia	0.006	99.907	0.002	0.010	65399.	0.01	1.00
						••••	

.

Table 9. Continued.

TAION NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	MEAN DENSITY (# / HA)	INDEX OF DISPERSION
Astropecten	0.003	99.910	0.002	0.010	65400.	0.01	1.00
Caranz fusus	0.002	99.912	0.002	0.010	65401.	0.01	1.00
Scyllaridae	0.005	99.917	0.002	0.010	65402.	0.01	1.00
Equetus	0.005	99.922	0.002	0.010	65403.	0.01	1.00
Scomberomorus maculatus	0.014	99.936	0.002	0.010	65404.	0.01	1.00
Carcharhinus acronotus	0.001	99.937	0.002	0.010	65405.	0.01	1.00
Sphyrna lewini	0.003	99.939	0.002	0.010	65406.	0.01	1.00
Hoplunnis	0.006	99.945	0.002	0.010	65407.	0.01	1.00
Mellita	0.005	99.950	0.002	0.010	65408.	0.01	1.00
	0.003	99.953	0.002	0.010	65409.	0.01	1.00
Serranus	0.005	99.958	0.002	0.010	65410.	0.01	1.00
Paguridae	0.006	99.964	0.002	0.010	65411.	0.01	1.00
Cyclopsetta fimbriata	0.008	99.972	0.002	0.010	65412.	0.01	1.00
Urophycis	0.005	99.977	0.002	0.010	65413.	0.01	1.00
Ogeocephalus parvus		99.985	0.002	0.010	65414.	0.01	1.00
Congridae	0.008			0.010	65415.	0.01	1.00
Monacanthus hispidus	0.010	99.995	0.002				1.00
Grammistidae	0.005	100.000	0.002	0.010	65416.	0.01	******
Balistes	0.000	100.000	0.000	0.010	65416.	0.00	
Bellator	0.000	100.000	0.000	0.010	65416.	0.00	
SAMPLE SUMMARY: SAMPLES = 96	TOTAL TAXA =	163 TOT	L DENSITY =	960.80			

-

Table 10. Relative composition of demersal nekton taxa at Station Group 6 stations based on the results of analysis of samples collected in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys.

TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	HEAN DENSITY (# / HA)	INDEX OF DISPERSION
Stenotomus caprimus	22.133	22.133	19.735	0.841	3880.	124.34	99.42 2725.82
Asteroidea	2.946 8.150	25.079 33.229	19.501 5.666	0.205 0.909	7714. 8828.	122.86 35.70	52.35
Syacium papillosum Bucinostomus gula	6.311	39.540	4.720	0.682	9756 .	29.74	52.50
Prionotus selecticolor	4.535	44.074	3.688	0.523	10481.	23.23	40.91
Prionotus rubio	3.381	47.455	3.459	0.500	11161.	21.79	51.07
Scorpaena calcarata	3.257	50.712	3.418	0.614 0.477	11833. 12459.	21.53 20.06	46.28 127.16
Sicyonia brevirostria	2.348 6.124	53.060 59.184	3.184 · 2.981	0.932	13045.	18.78	24.11
Synodus foetens Diplectrum bivittatum	2.260	61.444	2.579	0.273	13552.	16.25	83.57
Anchos hepsetus	2.008	63.453	2.538	0.045	14051.	15.99	492.90
Trichiurus lepturus	2.775	66.228	2.452	0.114	14533°. 15002.	15.45 15.03	174.88 53.98
Micropogonias undulatus	2.310 1.969	68.538 70.507	2.385 2.116	0.477 0.318	15418.	13.33	182.05
Trachurus lathami Ophiuroidea	2.039	72.546	2.096	0.091	15830.	13.20	387.95
Bellator militaris	1.229	73.775	1.368	0.477	16099.	8.62	31.53
Loligo	3.132	76.907	1.287	0.250	16352.	8.11	34.81
Penaeus astecus	1.034	77.940	1.185	0.432	165 85. 16782.	7.47 6.31	48.83 42.97
Loligo pealeli	1.986 0.987	79.926 80.913	1.002	0.227	16960.	5.70	40.01
Decapterus punctatus Leiostomus xanthurus	0.806	81.719	0.860	0.159	17129.	5.42	36.72
Lagodon rhomboides	1.122	82.840	0.844	0.432	17295.	5.32	12.28
Peprilus burti	0.781	83.621	0.763	0.318	17445.	4.81	31.62
Portunus spinicarpus	0.744	84.365 84.983	0.651 0.636	0.409 0.2 95	17573. 17698.	4.10 4.01	8.68 15.81
Sphoeroides parvus Centropristis philadelphicus	0.618 0.772	85.755	0.621	0.295	17820.	3.91	17.34
Syncium gunteri	0.580	86.336	0.615	0.136	17941.	3.88	30.84
Prionotus roseus	0.454	86.789	0.590	0.250	18057 .	3.72	17.41
Penseus duorarum	0.493	87.282	0.570	0.386	18169.	3.59	10.88 14.46
Lepophidius	0.337 0.566	87.619. 88.185	0.488 0.443	0.273 0.091	18265. 18352.	3.08 2.79	35.91
Solenocera Calappa sulcata	0.075	88.260	0.336	0.114	18418.	2.12	16.20
Mallitidae	0.883	89.143	0.310	0.114	18479.	1.95	32.38
Liphopeneus kroyeri	0.377	89.520	0.310	0.023	18540.	1.95	61.00
Echinoidea	1.553	91.073	0.310	0.159 0.205	18601. 18662.	1.95	15.98 11.11
Lutjanus caspechanus	0.402 0.864	91.475 92.339	0.310 0.280	0.341	18717.	1.76	4.28
Halieutichthys aculeatus Saurida brasiliensis	0.576	92.915	0.280	0.295	18772.	1.76	4.69
Centropristis ocyurus	0.213	93.128	0.249	0.091	18821.	1.57	26.15
Soorpaena	0.484	93.612	0.239	0.068	18868.	1.51	29.97
Bellator	0.179	93.791	0.198	0.091 0.182	18907. 18944.	1.25	17.64 5.47
Selar grumenophthalsus	0.360 0.414	94.152 94.565	0.188 0.168	0.205	18977.	1.06	4.41
Trachinocephalus myops Lutjanus synagris	0.106	94.672	0.158	0.114	19008.	0.99	16.54
Harengula jaguana	0.157	94.828	0.158	0.114	19039.	0.99	20.31
Serramus atrobranchus	0.231	95.059	0.158	0.114	19070.	0.99	8.88
Luidia	0.015	95.074	0.142 0.132	0.023	19098. 19124.	0.90	28.00 8.68
Squille empuse	0.168 0.160	95.243 95.403	0.127	0.068	19149.	0.80	11.74
Selene setapinnis Prionotus	0.157	95.560	0.127	0.068	19174.	0.80	9.69
Calappa springeri	0.143	95.703	0.127	0.091	19199.	0.80	6.50
Rissola sarginata	0.111	95.813	0.117	0.068 0.091	19222. 19244.	0.74 0.70	8.85 12.05
Priopotus paralatus	0.139 0.090	95.952 96.042	0.112	0.091	19265.	0.67	3.56
Porichthys porosissimus Prionotus ophryss	0.170	96.212	0.102	0.182	19285.	0.64	3.12
Cyclopsetta chittendeni	0.133	96.345	0.102	0.205	19305.	0.64	3.42
Equetus acuminatus	0.083	96.428	0.092	0.068	19323.	0.58	
Cynoscion	0.122	96.550	0.086 0.081	0.068 0.114	19340. 19356.	0.54 0.51	7.97 3.59
Calappa Scorpaena braziliensis	0.082 0.197	96.632 96.829	0.081	0.023	19372.	0.51	16.00
Scorpaene presiliensis Scyllarides nodifer	0.186	97.015	0.061	0.136	19384.	0.38	3.47
Etrumeus teres	0.198	97.213	0.061	0.114	19396.	0.38	3.81
Balistes caprisous	0.106	97.319	0.056	0.091	19407.	0.35	4.12
Sphoeroides	0.085	97.404	0.051	0.091 0.068	19417. 19427.	0.32 0.32	
Pristipomoides aquilonaris Etropus crossotus	0.066 0.046	97.470 97.516	0.051 0.051	0.068	19437.	0.32	
Chaetodipterus faber	0.057	97.573	0.051	0.114	19447.	0.32	2.22
Squilla	0.021	97.594	0.051	0.045	19457 .	0.32	
Clypeaster	0.065	97.660	0.046	0.068	19466.	0.29	
Sphyraena guachancho	0.048	97.708	0.046	0.068 0.068	19475. 19484.	0.29 0.29	
Anasimus latus Callinectes similis	0.123 0.091	97.831 97.922	0.046 0.046	0.068	19493.	0.29	
vir live v v v v v v v v v v v v v v v v v v							

23

Table 10. Continued.

.

TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	MEAN DENSITY (# / HA)	INDEX OF DISPERSION
Balistidae	0.092	98.014	0.041	0.045	19501.	0.26	4.93
Ophiopholus	0.641	98.655	0.041	0.045	19509.	0.26	4.93
Callinectes sapidus	0.020	98.675	0.036	0.045	19516.	0.22	3.49
Cyclopsetta fimbriata	0.019	98.694	0.031	0.023	19522.	0.19	6.00
Rhizoprionodon terraenovae	0.055	98.749	0.031	0.068	19528	0.19	2,93
Chilomysterus schoepfi	0.055	98.805	0.031	0.091	19534.	0.19	1.91
Anchoviella eurystole	0.036	98.841	0.031	0.045	19540.	0.19	2.93
Cynoscion arenarius	0.034	98.875	0.031	0.023	19546.	0.19	6.00
Paralichthys lethostigma	0.034	98.909	0.031	0.091	19552.	0.19	1.57
Portunus gibbesii	0.053	98.962	0.031	0.023	19558.	0.19	6.00
Symphurus plagiusa	0.018	98.980	0.025	0.023	19563.	0.16	5.00
Monacanthus hispidus	0.018	98.998	0.025	0.023	19568.	0.16	5.00
Rhomboplites aurorubens	0.031	99.030	0.025	0.045	19573	0.16	2.54
Sardinella surita	0.024	99.054	0.020	0.045	19577.	0.13	1.95
Parthenope serrata	0.029	99.083	0.020	0.045	19581.	0.13	2.47
Gymnothorax nigromerginatus	0.025	99.108	0.020	0.045	19585.	0.13	2.47
Peprilus paru	0.024	99.132	0.020	0.023	19589.	0.13	4.00
Openeus parvus Diplectrum radiale	0.022	99.154	0.020	0.045	19593.	0.13	2.47
Lagocephalus laevigatus	0.031 0.034	99.185	0.015	0.045	19596.	0.10	1.64
Congrine flave	0.011	99.219	0.015	0.068	19599.	0.10	0.95
Urophycia floridanus	0.017	99.230 99.246	0.015	0.023	19602.	0.10	3.00
Sicyonia dorsalis	0.007	99.253	0.015	0.023	19605.	0.10	3.00
Gympothorax	0.025	99.278	0.015	0.023	19608.	0.10	3.00
Anchos lyclepis	0.009	99.287	0.015	0.023	19611.	0.10	0.95
Aluterus schoepfi	0.043	99.330	0.015	0.023	19614.	0.10	3.00
Cyposaion nothus	0.017	99.347	0.015	0.045	19617. 19620.	0.10	1.64
Stellifer langeolatus	0.017	99.363	0.015	0.023	19623	0.10	3.00
Pagurus	0.033	99.397	0.015	0.023	19626	0.10	3.00
Astropecten	0.042	99.439	0.010	0.023	19628.	0.10	3.00
Acanthostracion quadricornis	0.012	99.451	0.010	0.023	19630.	0.06	2.00
Raja terana	0.019	99.470	0.010	0.045	19632.	0.06	2.00
Ogoocephalus nasutus	0.095	99.565	0.010	0.045	19634.	0.06	0.98
Ogcocephalus	0.084	99.649	0.010	0.045	19636.	0.06	0.98
Soyllaridae	0.037	99.686	0.010	0.045	19638	0.06	0.98
Ophidiidae	0.018	99.704	0.010	0.023	19640	0.06	2.00
Soyllarus	0.021	99.725	0.010	0.023	19642.	0.06	2.00
Remora remora	0.027	99.752	0.010	0.045	19644.	0.06	0.98
Engyophrys senta	0.003	99.755	0.005	0.023	19645.	0.03	1.00
Trachypenaeus	0.010	99.766	0.005	0.023	19646.	0.03	1.00
<u>Anthozoa</u>	0.008	99.774	0.005	0.023	19647.	0.03	1.00
Drophycis	0.014	99.788	0.005	0.023	19648.	0.03	1.00
Gymnothorax moringa	0.012	99.800	0.005	0.023	19649.	0.03	1.00
Urophycis regius	0.009	99.809	0.005	0.023	19650.	0.03	1.00
Carobarhinus aoronotus	0.016	99.825	0.005	0.023	19651.	0.03	1.00
Portunus spinimenus	0.014	99.840	0.005	0.023	19652.	0.03	1.00
Kathetostoma albigutta	0.012	99.851	0.005	0.023	19653.	0.03	1.00
Synodus poeyi	0.028	99.879	0.005	0.023	19654.	0.03	1.00
Rachycentron canadum	0.016	99.895	0.005	0.023	19655.	0.03	1.00
Diplectrum formosum	0.058	99.953	0.005	0.023	19656.	0.03	1.00
Echeneis naucrates	0.012	99.966	0.005	0.023	19657.	0.03	1.00
Mustelus canis	0.005	99.971	0.005	0.023	19658.	0.03	1.00
Porifera	0.008	99.979	0.005	0.023	19659.	0.03	1.00
Priscanthus arenatus	0.009	99.988	0.005	0.023	19660.	0.03	1.00
Prionotus stearnsi	0.012	100.000	0.005	0.023	19661.	0.03	1.00
SAMPLE SUMMARY: SAMPLES = 44	TOTAL TAKA =	127 TOTAL	. DENSITY =	630.05			

ł

Table 11. Six taxa groups resulting from a synthesis of community analyses of three replicate samples collected at 154 stations in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys.

Group 1.	Taxa	Most	Characteristic	of	the	Shallow	Water	Habitat

Scientific Name

Lolliguncula brevia Penseus setiferus Narcine brasiliensis Brevoortia patronus Opisthonema oglinum Anchos hepsetus Anchoa mitchelli Arius felia Bagre marinus Chloroscombrus chryaurus Archosargus probatocephalus Larimus fasciatus Merticirrhus americanus Stellifer lanceolatus Chastodipterus faber Polydactylus octonemus Symphurus plagiusa

Common Name short souid white shrimp lesser electric ray gulf menhaden Atlantic thread herring striped anchovy bay anchovy hardhead catfish gafftopsail catfish Atlantic bumper aheepahead banded drum southern kingfish star drum Atlantic spadefish Atlantic threadfin blackcheek tonguefish

Group 2. Taxa Host Characteristic of Deep Waters Overlying Huddy Sediments in the Western Portion of the Study Area and in the Vicinity of the Mississippi River Delta

Scientific Name	Common Name
Parapanaeus	shrimp
Solenocera	shrimp
Trachypenaeus	shrimp
Xiphopeneus	seabob
Congrina flava	yellow conger
Steindachneria argentes	luminous hake

Group 3. Taxa Widespread Across the Study Area, but Most Numerically

Prominent in Waters Overlying Muddy Sediments

Penasus aziecus Callinectes aimilis Rhisoprionodon terraenovas Porichthys porosissimus Selens astapinnis Cynoscion arenarius Cynoscion achus Leiostomus xanthurus Hicropogonias undulatus Trichiurus lepturus Prionotus rubic Citharichthys apilopterus Paralichthys lethostigma

Scientific Name

brown shrimp lesser blue orab Atlantic sharpnose shark Atlantic midshipman Atlantic moonfish sand seatrout silver seatrout spot croaker Atlantic cutlassfish blackfin searobin bay whiff southern flounder

Common Name

Group 4. Taxa Widespread Across the Study Area, but Most Numerically Prominent in Waters Overlying Sandy Sediments

Scientific Name

Harengula jaguana Synodus foetans Halieutichthys aculeatus Centropristis philadelphicus Logodon rhomboidas Peprilus burti Cyclopsetta chittendeni Etropus crossotus Syacium papillosum

Common Name

scaled sardine inshore lizardfish pancake batfish rock sea bass pigfish gulf butterfish Mexican flounder fringed flounder dusky flounder

Common Name

Group 5. Taxa Widespread in Waters Overlying Sandy Sediments

Scientific Name Loligo pealii Penaeua duorarus Sicvonia dorsalia Etrumeus teres Saurida brasiliensia Diplectrum bivittatum Diplectrum radiale Decapterus punctatua Trachurus lathami Lut lanus campechanus Lutianus avnagris Pristipomoides acuilonaria Eucinostanus gula Stenotomus caprinus Sphyraena guachancho Syacium gunteri Lagocephalus laevigatus Sphoeroides parvus

squid pink shrimp rock shrimp round herring largescale lizardfish dwarf sand perch sand perch round acad rough scad red snapper lane snapper wenchman silver jerry longapine porgy guaguanche shoal flounder amooth puffer least puffer

Group 6. Taxa Most Characteristic off Mid-Depth to Deep

Waters Overlying Sandy Sediments

Scientific Name Scyllarides nodifer Portunus apinicarpus Trachinocephalus myopa Scorpaena calcarata Bellator millitaris Prionotus ophyrus Prionotus roseus

lobster portunid orab snakefish smoothhead scorpionfish horned searobin bandtail searobin bluespotted searobin

Common Name

Table 12. A coincidence table displaying the relationship of the six taxa groups to the six station groups resulting from a synthesis of community analyses of three replicate samples collected at 154 stations in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys.

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6
	Nearshore waters primarily collected in winter and spring	Nearshore waters primarily collected in spring and summer	Nearshore waters overlying Sandy sediments	Deep waters overlying muddy sediments	Mid-depth to deep waters overlying sandy sediments collected in spring and summer	Mid-depth to deep waters overlying sandy sediments collected in fall and winter
TAXA GROUPS						
Group 1	P	S	S			
Group 2				P		
Group 3	P	P	3	P	S	S
Group 4	\$	3	S	S	P	₽
Group 5			S		P	P
Group 6					S	P
-						

STATION GROUPS

P = PRIMARY ASSOCIATION

S = SECONDARY ASSOCIATION

demersal nekton taxa. The taxa groups that exhibited seasonal trends also exhibited clear cut spatial distributions.

The integration and synthesis of the analysis results yielded six station groups (habitats) and six taxa groups (communities). The stations in these six groups are shown, by season, in Figure 2. Table 4 presents summary statistics for the six station groups while Tables 5-10 show the relative composition over all stations in each of the six station groups. The six taxa groups are presented in Table 11, and the distributions of these taxa groups across the six station groups are presented in Table 12.

The six station groups (Figure 2 and Tables 4 and 12) included three shallow water to middepth groups (Groups 1-3) and three middepth to deep water groups (Groups 4-6). All groups except the shallowest (Group 2) encompassed a wide range of depths. Inspection of Table 12 reveals that seasonal trends primarily differentiate stations in Group 1 from those in Group 2 and, similarly, those in Group 5 from those in Group 6. For each pair of groups, the same taxa groups characterized both members. Groups 1 and 2 were differentiated on the basis of seasonal trends of Taxa Group 1 taxa, and Group 5 and 6 differed mainly on the basis of seasonal trends of the Taxa Group 6 taxa. This suggests that it may be appropriate to consider combining Groups 1 and 2 and Groups 5 and 6 and characterize the seasonal data on the basis of four groups. The results at least point out the secondary role of season as a factor in the distribution of demersal nekton communities on the Tuscaloosa Trend Shelf OCS.

Station Group 1 was largely comprised of nearshore and some middepth stations (range of 3-29 fm (fathoms)) located across the study area (Figure 2 and Table 4). The majority of the stations in this group were collected in winter and spring, but this group also included some fall and summer collections, indicating that the seasonal trends were secondary to other sources of variation. Of the three nearshore station groups, (Groups 1-3), this group supported the most diverse community, and also had the highest mean number of individuals (Table 4). Compared to the stations from deeper waters in Groups 5 and 6, Group 1 stations had substantially lower numbers of taxa, lower diversity and richness, and higher numbers of individuals (Table 4).

Station Group 2 defined a nearshore habitat comprised of stations located in shallow waters across the study area; with many of the stations being located near Chandeleur and Breton Sounds (Figure 2). The stations in this group tended to harbor lower total numbers of taxa and individuals compared to the Group 1 stations (Table 4). This group included five fall, 3 winter, six spring and six summer collections.

The nearshore habitat located in shallow waters overlying sandy sediments in the eastern and central portion of the study area formed Station Group 3 (Figure 2). These stations were characterized by relatively low total numbers of taxa and the lowest mean number of individuals, and were collected during fall, spring, and summer (Table 4).

Station Group 4 defined a habitat characterized by deep waters overlying muddy sediments in the western portion of the study area and in the vicinity of the Mississippi River Delta (Figure 2). This group was well represented during all four seasons. Of the three middepth to deep water groups (Groups 4-6), Group 4 has lowest mean values for total number of taxa and community parameters (Table 4). These values were more similar to those of the three more nearshore groups (Groups 1-3).

Station Group 5 defined a habitat characterized by middepth to deep waters overlying sandy sediments in the eastern portion of the study area (Figure 2). It was well represented during all seasons, but more so during spring and summer. Values for total numbers of taxa and community parameters were the highest of all groups and very similar to each other (Table 4). Station Group 6 defined a habitat similar to Station Group 5, but included more collections from the fall and winter and fewer from the spring and summer. As mentioned above, mean numbers of taxa and means for community parameters were similar to those of Group 5 and higher than those for any of the other groups (Table 4).

Taxa Group 1 included those taxa most characteristic of the nearshore waters across the study area in winter and spring stations (Station Groups 1-3 and especially Group 1 in Table 12). However, as seen in Table 12, they were also characteristic, to a lesser degree, of the other two groups of shallow water stations (Groups 1 and 2). The lower relative importance of these taxa in the collections from the Group 2 stations, which represented a seasonal trend in the distributions of these taxa, was primarily responsible for the differentiation of the Station Group 1 and Group 2 stations. Some of the taxa most representative of this group were Penaeus setiferus, Menticirrhus americanus, Larimus fasciatus, and Arius felis (Table 11). These trends are consistent with the life history of white shrimp, which migrates to the shelf from the estuaries in fall and winter, and is predominantly found over muddy sediments. Many of the other taxa in Taxa Group 1 have similar estuarine-dependent life histories.

The taxa in Group 2 were virtually restricted to the middepth to deep water stations overlying muddy sediments in the western portion of the study area, and in the vicinity of the Mississippi River Delta (Table 12), with <u>Parapenaeus</u> LPIL, <u>Solenocera</u> LPIL, <u>Trachypenaeus</u> LPIL, and <u>Steindachneria argentea</u> most characteristic of this group (Table 11). Of all the taxa groups identified, this one had the most restricted habitat preferences, and was primarily responsible for the unique character of the community at the Group 4 stations (Figure 2).

The taxa comprising Group 3 were widespread across the study area, but were relatively most abundant in shallow to deep waters overlying muddy sediments (Station Groups 1, 2 and 4 and especially Station Group 1 in Table 12). Some of the taxa most representative of this group include <u>Penaeus aztecus, Cynoscion arenarius, Cynoscion nothus, Micropogonias</u> <u>undulatus and Trichiurus lepturus</u> (Table 11). Many of these Group 3 taxa are estuarine dependent, and their preferences for muddy substrates is well known. Young brown shrimp (<u>Penaeus aztecus</u>) migrate from Gulf Coast estuaries in late spring and early summer, moving to deeper waters as the year progresses (see Section 2.5.5). In winter they were found as deep as the deepest Fishery Independent survey stations (50-60 fm or about 100 m) These migration patterns explain their widespread distributions.

Group 4 taxa were also widespread across the study area, but were relatively most abundant in waters overlying sandy sediments. They were especially well represented at the middepth to deep water stations overlying study sediments in the eastern portion of the study area during all seasons (Groups 5 and 6 in Table 12). <u>Synodus foetens</u>, <u>Centropristis philadelphicus</u>, <u>Peprilus burti</u> and <u>Syacium papillosum</u> were most characteristic of this group (Table 11).

Taxa Groups 5 and 6 essentially defined the unique character of Station Groups 5 and 6 (Table 12). The taxa in Group 5 were widespread in waters overlying sandy sediments (Station Groups 3, 5 and 6 in Table 12), with <u>Penaeus duorarum</u>, <u>Lutjanus campechanus</u>, <u>Eucinostomus gula</u>, <u>Stenotomus caprinus</u> and <u>Trachurus lathami</u> most representative of the group (Table 11). As was the case with the Group 4 taxa, those in Group 5 were especially well represented at the middepth to deep water stations overlying sandy sediments in the eastern portion of the study area during all seasons (Groups 5 and 6 in Table 12).

The Group 6 taxa were more or less restricted to middepth to deep water stations overlying sandy sediments (Station Groups 5 and 6), and were best represented during fall and winter (i.e., in Station Group 6). The distributions of those taxa differ from those of the Group 5 taxa mainly by their absence from the shallow water, sandy habitat (Station Group 3) and their lesser relative importance at the middepth to deep water stations The lower relative importance of these on sandy bottoms in spring and summer (Group 5). taxa in the collections from the Group 5 stations, which represented a seasonal trend in their distributions, was primarily responsible for the differentiation of the Group 5 and Group 6 stations (Table 12). Some of the taxa most characteristic of this group were <u>Bellator militaris</u>, <u>Prionotus roseus</u>, and <u>Scorpaena calcarata</u> (Table 11).

1.3.3 <u>NMFS Fishery Independent Survey Fall Data, 1973-1983</u>

The results of the analysis of the subset of fall Fishery Independent data over the period 1973-1983 indicated that recurring trends in the distributions of taxa groups in the Tuscaloosa Trend study area did occur. Major patterns in the 10 year data set were primarily related to depth and geographical location, both probably being strongly related to trends in hydrography and sediment texture. Temporal trends were of secondary importance, but were still evident for several taxa and station groups.

Since this analysis included data collected over a number of years, defining habitats (i.e., station groups) on a geographic basis is not as meaningful as in the seasonal analysis. Therefore, the station groups discussed herein are those eight groups defined in the TWINSPAN analysis (see Figure 17 of Section 2.5.4.3), and are shown in Table 13 (as well as Table 36 of Section 2.5.4.3). For consistency with the other summary sections, the roman numeral identification of the TWINSPAN station groups (in Table 13) have been changed to arabic numerals (e.g., Group IA1 = Group 1, Group IIB2 = Group 8, etc.). Summary statistics for these eight groups are shown in Table 14. Table 15 shows the eight taxa groups defined on the basis of the community analyses, while Table 16 shows the relationship of the taxa groups to the station groups.

The dominant trend in the distribution of demersal nekton communities over the Tuscaloosa Trend study area as revealed by TWINSPAN station groupings (Table 13) was spatial, and involved segregation of the majority of the stations in the west and central regions (Groups 1-4) from the Table 13. Distribution of stations (by region and depth) in each of eight TWINSPAN groups resulting from analyses of 90 selected demersal nekton collected in three replicate samples at 150 stations in three regions of the Tuscaloosa Trend study area during fall NMFS Fishery Independent surveys from 1973 to 1983.

					matm	4 68011	1								87.47 3	ia daga									STATE:	-									STAT	100 GBC	6 2 4			
					1	IKAR									1										1											TEAP				
	13	74	75	76	Π	78	79		12	13	73	79	15	76	11	76	79	80	12	83	73	74	15	76	77	78	79	80	#2	63	13	74	75	76	1 77	78	7	9 1		2 83
0-10			۳	W	E/V	C/W				•	C/N	C/N	£	c			C/N .	C/W	E/C/1	E/N																				
10-20					۷						W	¥	¥	W	c	C/W		v	C/W	v							¢			c										
D E 20-30											¥	c/¥	v	C/W	U.	w	C/W	v		v			c		c	c			ç/w	с										
*																													* ***	•										
T 30-40														¥			¥				C/N	c		c	C/W			C/W	C/W	C/W		¥	C			C		c	c	
40-50														W							E/C/N	v	v				¥	W	v	\$/¥		E/C		с	C/W	v			с в/	c c
>50																			·														¥							 v v
																									*****	-	•						-							•••
							25										6										•									100 GAQ	UP 8			
					1	IIIAR									1	TAR					_															TEAD				
	73	74	75	76	11	78	79	80	82	83	73	74	75	76	Π	78	19		82	83	73	74	75	76	Π	TØ.	79		42	63	73	74	75	76	11	78	75		• *	2 83
0-10																							c	8	¢	E		8		c	8									:
10-20													8								c	c	c	E/C	E	E		#/C	E											
₽ # 20−30			E													E					c																			
R 20-30			•								-	-		-	•	-			-	-	•						-	•												
T 30-40				E		E	E	E			8	E			E					8																				
H 40-50				E		с	c	E																																
>50																																								
230																																								

30

.

(-

.

Table 14. Summary statistics of environmental and community parameters for eight station groups identified from a synthesis of analyses of three replicate samples collected at 150 stations in three regions of the Tuscaloosa Trend study area during fall NMFS Fishery Independent surveys from 1973 to 1983.

 $\overline{\gamma}$

		Standard		
Parameter	Mean	Deviation	Minimum	Maximum
	GROUP			
Depth (fm)	7.905	2.052	6.000	12.333
Bottom Temperature (°F)	73.250	7.676	62.000	79.000
Total Taxa	9.238	5.269	4.000	17.667
Total Count	1181.333	1898.943	196.333	5464.333
Diversity (J')	0.954	0.792	0.126	1.906
Evenness (H)	0.403 1.316	0.270 0.832	0.083 0.469	0.691 2.669
Richness (D)		-	-	2.009
	GROUP	*2	*************	***********
Depth (fm)	17.070	9.447	7.000	44.000
Bottom Temperature (°F)	73.649	3.200	65.000	79.000
Total Taxa Total Count	16.217 751.798	5.084 1289.116	5.000 119.667	28.333 8682.333
Diversity (J')			0.315	2.701
Evenness (H')	0.633	0.143	0.196	0.841
Richness (D)	1.754 0.633 2.540	0.942	0.446	4.624
****	GROUP			
Depth (fm)	34.780	8.717	15.000	46.000
Bottom Temperature (°F)	73.214	4.117	65.000	77.000
Total Taxa	19.661	4.442	13.000	29.667
Total Count	577.565	431.569	122.333	1954.333
Diversity (J') Evenness (H')	2.095	0.347	1.320 ·0.505	2.719 0.828
Richness (D)	0.710 3.104	0.090 0.866	1.788	4.781
				41101
	GROUP			+
Depth (fm)	43.772	6.479	33.000	55.333
Bottom Temperature (^O F) Total Taxa	67.111 16.930	4.343 4.608	63.000 9.000	75.000 26.667
Total Count	440.158	235.369	99.333	886.000
Total Count Diversity (J')	1,802	0.324	1.146	2.344
Evenness (H')	0.653	0.103	0.363	0.842
Richness (D)	2.777	0.660	1.559	4.081
***********	GROUP			
Depth (fm)	38.556	6.491	25.000	48.000
Bottom Temperature (°F)	68.143	4.180	64.000	75.000
Total Tara	13.278	3.905	7.000	19.000
Total Count Diversity (J)	1159.208 1.450	1256.050 0.595	234.333 0.488	3978.333 2.149
Evenness (H')	0.559	0.191	0.255	0.744
Richness (D)	2,110	0.666	1.043	2.988
	GROUP			
Depth (fm)	24.556	6.309	17.000	36.000
Bottom Temperature (°F)	74.167	1.772	71.000	76.000
Total Taxa	74.167 16.467	6.857	5.667	26.000
Total Count	308.778	1.772 6.857 298.056	21.333	802.000
Diversity (J')	1.998	0.478	0.917	2.546
Evenness (H') Richness (D)	0.751 · 3.019	0.104	0.521	0.874 4.686
Aldiness (D)		1.086	1.337	4.000
	GROUP			
Depth (fm)	13.857	6.376	6.667	270667
Bottom Temperature (^O F) Total Taxa	72.909	4.036	66.000	81.000
Total Count	14.571 245.921	5.436 273.955	7.000 16.667	30.000 1107.667
Diversity (J')	1.744	0.407	1.225	2.782
Evenness (H ⁺)	0.673	0.122	0.430	0.865
Richness (D)	2.737	0.863	1.237	5.282
	GROUP	8		**********
Depth (fm)	11.500	6.835	6.667	16.333
Bottom Temperature (°F)	75.000	2.828	73.000	77.000
Total Taxa	6.333	3.300	4.000	8.667
Total Count Diversity (J ⁺)	32.167 1.146	19.092	18.667 0.613	45.667 1.680
Evenness (H ⁺)	0.639	0.754 0.277	0.442	0.835
Richness (D)	1.677	1.181	0.842	2.512
		•		

Table 15. Eight taxa groups resulting from a synthesis of community analyses of three replicate samples collected at 150 stations in three regions of the Tuscaloosa Trend study area during fall NMFS Fishery Independent surveys from 1973 to 1983.

Group 1. Taxa Most Characteristic of the Shallow Water Habitat

in the Western Region

Scientific Name	Common Name
Penaeua setiferua	white shrimp
Brevoortia patronus	gulf menhaden
Harengula jaguana	soaled sardine
Opisthonema oglinum	Atlantic thread herring
Arius felia	hardhead catfish
Bagre marinum	gafftopsail catfish
Chloroscombrus chrysurum	Atlantic bumper
Selene setapinnia	Atlantic moonfish
Larimua fasciatus	banded drum
Menticirrhua americanus	southern kingfish
Stellifer lanceolatus	star drum
Polydactylus octonemus	Atlantic threadfin

Group 2. Taxa Most Characteristic of Mid Depth to Deep Waters Overlying Muddy Sediments in the Western Portion of the Study Area and in the Vicinity of the Mississippi River Delta

Scientific Name	Common Name
Parapenaeua	shrimp
Solenocera	shrimp
Trachypenaeus	shrimp
Congrina flava	yellow conger
Steindachneria argentea	luminous hake
Antennariua radiosus	singlespot frogfish
Lepophidium graellsi	blackedge cusk-eel
Serranus atrobranchus	blackear bass
Bollmannia communis	ragged goby

Group 3. Taxa Widespread Across the Study Area, but Most Numerically Prominent in Waters Overlying Muddy Sediments

Scientific Name	Common Name
Penaeus aztecua	brown shrimp
Sauilla	mantis shrimp
Callinectes similis	lesser blue crab
Porichthys porosissimus	Atlantic midshipman
Cynoscion arenarius	sand seatrout
Cynoscion nothus	silver seatrout
Leiostonus xanthurus	spot
Micropogonias undulatus	croaker
Chaetodipterus faber	Atlantic spadefish
Trichiurus lepturus	Atlantic cutlassfish
Peprilus paru	harvestfish
Citharichthya spilopterus	bay whiff
Paralichthys lethostigma	southern flounder

Group 4. Taxa Widespread Across the Study Area, but Most

Numerically Prominent in Waters Overlying Sandy Sediments

Scientific Name

Loliguncula brevis Loligo pesteii Synodus foetens Diplectrum bivittatum Stenotomus caprinus Svacium papillosum

Common Name

short squid sauid inshore lizardfish dwarf sand perch longspine porgy dusky flounder

Group 5. Taxa Most Characteristic of the Shallow Water Habita in the Eastern and to Some Extent Central Region

Scientific Name

Penaeus duorarum Callinectes sabidus Portunus gibbesii Anchoa hepsetus Diplectrum formosum Lutianus campechanus Eucinostomus gula Etropus crossotus Aluterus schoepfi Ballistes caprisous Sphoeroides parvus

pink shrimp blue crab portunid crab striped anchovy sand perch red snapper silver jenny fringed flounder orange filefish gray triggerfish least puffer

Common Name

Group 6. Taxa Most Characteristic of Mid-Depth Waters Overlying Sandy Sediments

Scientific Name

Sicvonia brevirostris Trachinocephalus myops Ophidion holbroki Centropristis ocyurus Scorpaena calcarata Bellator millitaris Prionotua ophyrus Prionotus roseus Prionotus salmonicolor Monacanthus hispidus

Common Name

rock shrimp snakefish bank cusk-eel bank sea bass smoothhead scorpionfisi horned searobin bandtail searobin bluespotted searobin blackwing searobin planehead filefish

Group 7. Taxa Favoring the Deepest Stations in the Study Area

Scientific Name

Portunus spinicarpus Saurida brasiliensis Urophycia floridanua Centropristis philadephicus Serranua atrobranchua Pristipomoides aquilonaris Stenotomus caprinus Peprilus burti Prionotus paralatus Prionotua stearnai Cyclopsetta chittendeni

Common Name

portunid crah largescale lizardfish southern hake rock sea bass blackear bass wenchman longspine porgy gulf butterfish Mexican searobin shortwing searobin Mexican flounder

Group 8. Taxa with Widespread Distributions Showing No. Strong Preferences

Scientific Name

Calappa sulcata Rhizoprionodon terraenovae Halieutichthys aculeatus Lagodon rhomboides Sphyraena guachancho Trachurus lathami Paralichthys lethostigma

Common Name

crab Atlantic sharpnose shar pancake batfish Dinfish guaguanche rough scad southern flounder

Table 16. A coincidence table displaying the relationship of the eight taxa groups to the eight station groups resulting from a synthesis of community analyses of three replicate samples collected at 150 stations in three regions of the Tuscaloosa Trend study area during fall NMFS Fishery Independent surveys from 1973 to 1983.

STATION GROUPS

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7	Group 8
	Nearshore mainly Vestern 1975-1978	Nearshore to Middepth Western and Central most years	Hiddepth to Deep Western and Central most years	Deep Western and Central most years	Deep Eastern and some Central mid years	Middepth Rastern distinct periodicity	Nearsbore Eastern most years	Nearmhore Eastern 1973 only
TAXA GROUPS								
Group 1	3	2						
Group 2			,	3				
Group 3	3	2	P	3	3	3	5	
Group 4		\$	\$	2	2	2	,	3
Group 5		3					P	S
Group 6					â	2	3	
Group 7		3	3	*	8	\$	S	
Group 8		5	3	S .	8	S	8	

P . PRIMARY ASSOCIATION

S = SECONDARY ASSOCIATION

.

majority of those in the eastern region (Groups 5-8). Within these two major groups, the stations were ordered with the shallowest stations (Groups 1 and 8) at the ends of the TWINSPAN display and the deepest stations (Groups 4 and 5) near the center of the display. Thus, even though they were located at opposite ends of Table 13, Group 4 and 5 stations were somewhat similar to each other.

Groups 1 and 2 (Table 13) comprised the majority of the shallow to middepth stations from the western and central regions of the study area, along with a few deep water stations from the western region and a few shallow depth stations from the eastern region. Collectively these stations represented the white shrimp ground habitat in the Tuscaloosa Trend study area. Group 1 and 2 stations were characterized mainly by taxa in Taxa Groups 1, 3 and 5, with occasional representation by taxa in Taxa Groups 4 and 8 (Tables 15 and 16).

Station Group 1 consisted of seven shallow stations collected during the period 1975-1978, with the 0-10 fm zone in the western region being represented during all four years. These stations were taxonomically similar to those of Group 2 except they were more depauperate and had higher mean number of individuals (Table 14). This indicates that during these four years, inshore stocks of many taxa in the western region of the Tuscaloosa Trend study area may have been abnormally low. Group 1 stations had the second lowest mean number of taxa and the lowest means for community parameters (Table 14). Only Taxa Groups 1 and 3 were represented at these depauperate Group 1 stations (Table 16).

Although dominated by stations from the western region, Station Group 2 included a number of stations from the central and eastern regions (Table 13). Many of these stations were characterized by taxa in Taxa Group 5 (which were most prominently represented at the shallow and sandy Group 5 stations in Tables 13 and 16) as well as taxa characteristic mainly of the western portion of the study area (Taxa Groups 1 and 3 in Tables 15 and 16). These stations generally showed higher numbers of taxa than the other Group 2 stations (Table 14) since they included taxa characteristic of both sandy and muddy bottoms. Their presence at Station Group 2 stations indicated that during some years, taxa which were characteristic of the shallow shelf in the western region also occupy the shallow shelf in the Several other taxa groups which were more central and eastern regions. characteristic of other station groups (i.e., Groups 4, 7, and 8 in Table 15) were also represented at the Station Group 1 stations (Table 16). Station Group 2 stations had mean numbers of taxa and means for community parameters that were higher than those of Group 1 but lower than those of Groups 3 and 4, which were generally found offshore of the Group 2 stations (Table 13).

Station Groups 3 and 4 included the vast majority of the stations collected in the central and western regions at depths greater than 30 fm as well as the majority of stations in the 40-50 fm depth range from the eastern region (Table 13). The major spatial difference in Station Groups 3 and 4 was the presence of a number of stations, mainly from the central region at depths of less than 30 fm, in Group 3. Taxonomically, the two groups were very similar, with the same taxa groups being represented in each (Table 16). The two groups differed by the lower relative importance of taxa from Taxa Groups 2 and 3 at Group 4 stations, as well as the lower

relative importance of some of the Group 7 taxa at Group 3 stations (Tables 15 and 16). The stronger affinity of the Group 3 taxa to the stations in Station Group 3 (as compared to those in Station Group 4) was probably due to the inclusion of a number of stations of less than 30 fm depth and more stations in the 30 to 40 fm depth range in Station Group 3.

In addition to Taxa Groups 2, 3 and 7, Taxa Groups 4 and 8 made minor contributions to Station Group 3 stations (Tables 15 and 16). Means for number of taxa and community parameters were very high for stations in Station Groups 3 and 4, with those for Group 3 being the highest of any of the eight station groups (Table 14). Mean numbers of individuals were intermediate for both station groups.

Ecologically, these trends may represent subtle sediment responses in the central and western regions or they may involve changes in depth distributions of taxa in response to changes in hydrographic conditions from year to year. Group 4 taxa (Table 15), which were relatively more important at stations in Station Group 4, generally preferred sandier substrates. Since the same stations were not sampled each year, and the same strata were not sampled at the same time each year, trends over time could be attributable to differences in sampling location and time within the fall season. Alternately or coincidentally, these trends could be attributable to year to year hydrographic variability that influences the depth distribution of demersal nekton on the Tuscaloosa Trend shelf.

In this regard, it is interesting to note that all of the stations of greater than 50 fm depths are located in Group 4, while Group 3 includes the majority of stations from 40-50 fm depths in the western region. Since the taxa most representative of the deepest stations in the study area (Taxa Group 6) were relatively less important at the stations in Station Group 3, the trends in Table 13 could represent onshore-offshore migration patterns of this group. Thus, for years represented in Station Group 4, the deep water taxa attained maximum shelf intrusion, while during those years represented in Group 3, there was maximum offshore excursions by the widespread taxa in Taxa Group 3 (Table 15).

Station Groups 5 and 6 included most of the stations collected in the eastern region at depths greater than 20 fm, while Groups 7 and 8 included the majority of the stations collected in the eastern region at depths less than 20 fm, along with several stations located at similar depths from the central region (Table 13). The major difference in Station Groups 5 and 6 was depth. Only one station located in less than 30 fm of water was included in this group, while only four stations greater than 30 fm depth were included in Group 6 (Table 13). Temporal and spatial trends embodied in these two station groups were primarily due to the general absence of Group 6 taxa (including Scorpaena calcarata, Bellator militaris, Prionotus salmonicolor and Trachinocephalus myops) at Group 5 stations, and the lower relative importance of Group 7 taxa (including Serranus atrobranchus, <u>Centropristis</u> philadelphicus and <u>Stenotomus</u> caprinus) at stations in Station Group 6 (Tables 15 and 16). Note that taxa in Taxa Group 7 were also important in differentiating Station Groups 3 and 4 (Table 16), and it appears that the migrations of this deep water taxa group were responsible for changes in community structure in the deep waters of all regions of the study area. Note also that the stations from the eastern region from depths greater than 40 fm that were not

35

included in Station Group 5 were included in Station Groups 3 and 4, which included stations from mainly the western and central regions. Since Group 5 stations included those from only the middle of the study period, indications are that Group 7 taxa were less well represented at 30-50 fm depths in the study area during the early and later years.

The patterns of distribution of the Group 6 taxa are extremely interesting, especially since the stations in Station Group 6 were the preferred habitat of these taxa (Tables 15 and 16). The distinct periodicity of the occurrence of stations in Group 6 (Table 13) may indicate migration of Group 6 taxa into and out of the Tuscaloosa Trend study area over time. Station Group 5 had one of the highest mean number of individuals, over three times as high as that for Group 6 (Table 14). Mean numbers of taxa and means for all community parameters were, on the other hand, lower for Station Group 5, and were only marginally higher than those for the relatively depauperate Station Groups 1 and 8. Means for Station Group 6 were, on the other hand, among the highest, being exceeded only by those for Station Group 3 (Table 14).

The final two groups of stations (Groups 7 and 8) represented mainly shallow to middepth stations from the eastern and, to a lesser degree, central regions of the study area. In general, stations in these two groups were characterized by relatively few taxa and individuals compared to stations at similar depths from the western region. Those from Group 8 were the most depauperate, and also had the lowest mean number of individuals of any station group (Table 14). Taxa Groups 4 and 5 were best represented at these stations, with the Group 5 taxa being most Taxa Groups 6 and 8 were also represented characteristic (Table 16). at stations in Station Group 7 (Table 16). Station Group 8 included two very depauperate stations collected from 1973, a year of atypical hydrographic conditions along the northern Gulf coast. Because taxa in Taxa Group 4 (Table 15) were widespread in distribution, they probably contributed little to the segregation of the Group 7 and 8 stations from those of Groups 3-6 (Table 16). In contrast, Taxa Group 5 taxa (Table 15) were major components of the community at only the Station Group 7 stations (Table 16), indicating that trends in these Group 5 taxa were mainly responsible for the spatial and temporal patterns exhibited by the Group 7 stations (Table 13). The majority of the stations from the central region included in this group were from the years 1973-1976, with the eastern region being poorly represented during these years. Most of the stations from the eastern region in Group 7 were from the period 1976-1981. Therefore, it appears that the taxa most representative of Group 7 exhibited changes in distributions within the study area from year to year.

Eight taxa groups were identified from the community analyses of the annual Fishery Independent data set (Table 15). Most groups were identified as distinct ecological entities in both the TWINSPAN and factor analyses (see Figure 17 and Table 37 in Sections 2.5.4.3 and 2.5.4.4, respectively), and the majority were also defined in the seasonal analysis (see Table 11).

Taxa Group 1 represents one major component of the white shrimp grounds fauna, and includes the white shrimp itself as well as many other muddy bottom, shallow depth restricted taxa (Table 15). The majority of these taxa are estuarine dependent. These taxa were only occasionally found beyond 30 fm depths. They showed a distinct preference for the muddy bottoms of the western region and, to a lesser extent, the central region of the study area. They characterized Station Group 2 and were also represented at Station Group 1 (Table 16). They were included in Taxa Group IA2 and Factor 5 of the TWINSPAN and factor analyses, respectively (see Figure 17 and Table 37 in Sections 2.5.4.3 and 2.5.4.4). This group was essentially equivalent to Group 1 of the seasonal analysis (see Table 11).

Complimenting this shallow water, muddy bottom group are those taxa in Taxa Group 2 that were more or less restricted to middepth and deep muddy bottom stations in the western region of the study area (Groups 3 and 4 in Table 16). They defined Taxa Group IA1 and Factor 6 of the corresponding community analyses (see Figure 17 and Table 37 in Sections 2.5.4.3 and 2.5.4.4, respectively), and most were included in Group 2 of the seasonal analysis (see Table 11). Notable in its absence from Taxa Group 2 in the annual analysis was the seabob. While other analyses conducted in this study confirmed the seabob's preference for the shelf west of the Mississippi River Delta, the seabob was rare in the subset of samples selected for the annual analyses, probably because few of the Fishery Independent survey stations were located in waters of less than 5 fm depths. These middepth to deep water taxa in Group 2 included three other species of shrimp (Table 15) which uniquely characterized the brown shrimp ground habitat.

Taxa Group 3 (Table 15) was essentially the same as Group 3 in the seasonal analysis (see Table 11). Group 3 taxa were distributed over muddy bottoms in the western and central regions of the study area at all depths, and were also represented at most stations on sandy bottoms (Station Groups 5-7 in Table 16). This group included a number of taxa of commercial importance (Table 15), many of which are estuarine dependent. They form the second major component of both the nearshore and offshore muddy bottom habitats. Some of the more widespread taxa (including the brown shrimp and croaker) were also found in relatively lower numbers at middepth and deep sandy bottom stations. They characterized TWINSPAN Group IA2 and Factor 2 in the corresponding community analyses (see Figure 17 and Table 37 of Sections 2.5.4.3 and 2.5.4.4, respectively).

As Taxa Groups 1 to 3 characterized the muddy bottom habitats in the western and central regions of the study area, Taxa Groups 4 to 6 characterized the several sandy bottom habitats (Table 16). The taxa groups defined in this annual analysis for sandy bottom habitats were somewhat different from those defined in the seasonal analysis (see Table 11). In general, taxa in Taxa Groups 1 to 3 did not show as much habitat fidelity as those defining the muddy bottom communities, and many fewer taxa characterized these sandy bottom communities.

Group 4 taxa were generally widespread across the study area, but were most numerically prominent in waters overlying sandy sediments. Group 4 of the seasonal analyses (see Table 11) showed the same trends, but the taxa were somewhat different, with the inshore lizardfish and the dusky flounder common to both groups. The group was not particularly well defined in either the TWINSPAN or factor analyses due to the widespread distributions of its members (see Figure 17 and Table 37 in Sections 2.5.4.3 and 2.5.4.4, respectively).

Group 5 taxa were most characteristic of the shallow water habitat in the eastern region and parts of the central region of the study area (Table 16). A similar group was not defined in the seasonal analyses (see Table 11). Instead, one group characteristic of the shallow water environment in the entire study area was identified (equivalent to Group 1 in Table 15). Group 5 taxa were best represented at stations in Station Group 7, but were also represented at stations in Station Groups 2 and 8 (Table 16). The taxa in Taxa Group 5 characterized Factor 4 and TWINSPAN Groups IB2 and IIA1 in the corresponding community analyses (see Figure 17 and Table 37 in Sections 2.5.4.3 and 2.5.4.4, respectively). The pink shrimp and the portunid crab most characterized Group 5 (Table 15), which also included several other taxa known to prefer sandy bottoms.

Group 6 taxa were most characteristic of the middepth stations on sandy bottoms in the eastern region of the study area. They were of greatest relative importance at the Group 6 stations (Table 16) and the dynamics of these taxa may be responsible for the temporal trends exhibited by the Group 6 stations. Taxa Group 6 taxa were also represented at stations in Station Groups 5 and 7 (Table 16). Of all the sandy bottom taxa, those in Group 6 showed the most restricted distributions. These taxa characterized TWINSPAN Group IIB2 and Factor 1 in the corresponding community analyses (see Figure 17 and Table 37 in Sections 2.5.4.3 and 2.5.4.4, respectively). Most of these same taxa were included in Group 6 in the seasonal analysis (see Table 11), among them the snakefish, the bank cusk-eel, the bank sea bass, the smoothhead scorpionfish and a number of searobins. They apparently appeared in the study area at several fairly well defined time periods (Table 13), indicating migration in and out of the Tuscaloosa Trend ecosystem. They were found almost exclusively in the eastern region of the study area, and were not generally found outside the 10 to 40 fm depth range.

Taxa Group 7 (Table 15) was not defined in the seasonal analysis (see Table 11), but in the annual analysis these taxa clearly characterized the deepest stations across the study area (Station Groups 4 and 5 in Table 16). However, they were not restricted to these stations and were generally represented in all station groups except Groups 1 and 8 (Table 16). In the seasonal analyses, many of these taxa were characterized as occurring widely over the study area but preferring sandy bottoms, while others were characterized as being widespread over sandy bottoms (see Table These taxa most characterized Factor 3 and TWINSPAN Taxa Group IB1 11). of the community analyses (see Figure 17 and Table 37 in Sections 2.5.4.3 and 2.5.4.4, respectively). Results indicated that the dynamics of the Group 7 taxa contributed strongly to the differentiation of the Group 3 and 4 stations, as well as the Group 5 and 6 stations (Tables 13 and 16).

The final taxa group (Group 8 in Table 15) included taxa that were widespread over the study area and showed no strong preference for any particular habitat. This group was not well defined in the TWINSPAN or factor analyses since they did not show distinct trends. Taxa in Group 8 included the Atlantic sharpnose shark, the pancake batfish, the pinfish, the rough scad and the southern flounder.

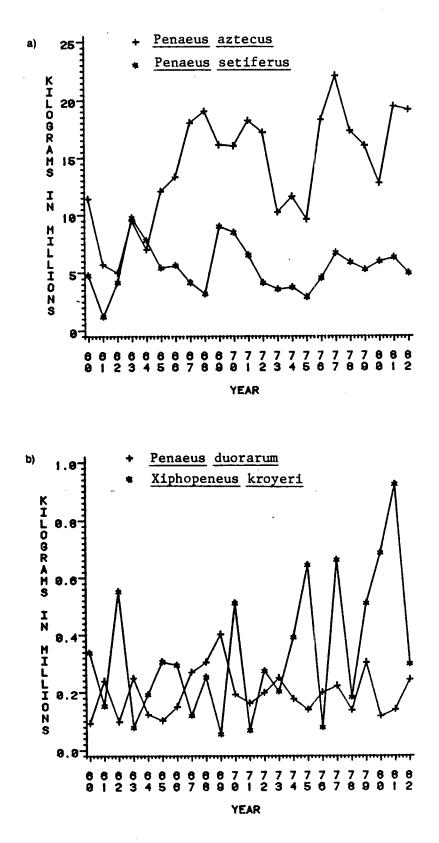


Figure 3. Total annual catch (kg, heads on) of a) white and brown shrimp and b) pink shrimp and seabobs in NMFS statistical subareas 9-13, which encompass the Tuscaloosa Trend study area.

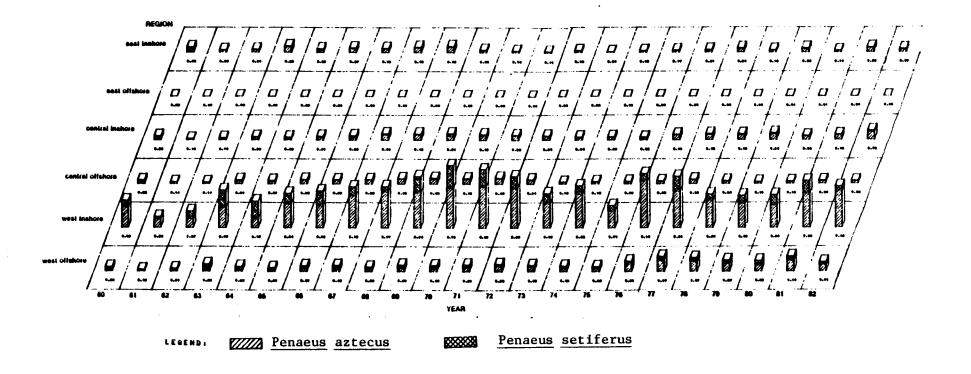


Figure 4. Mean annual inshore and offshore catch/unit water surface area (kg, heads on, per ha) of brown and white shrimp by region for the Tuscalcosa Trend study area based on Gulf Coast Shrimp Data for the period 1960-1982.

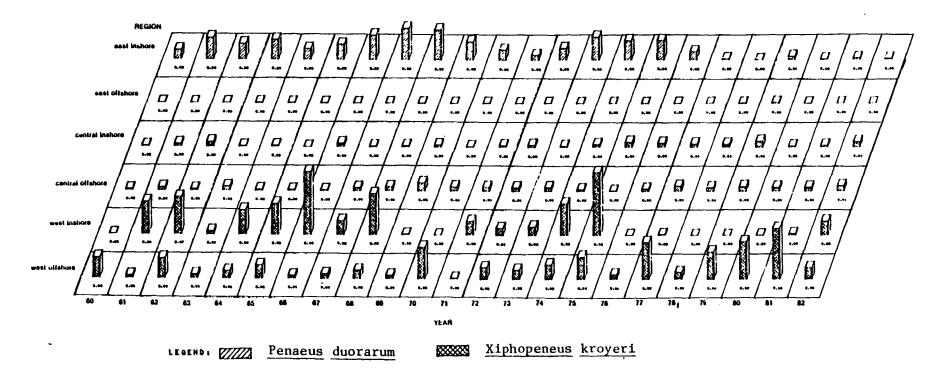


Figure 5. Mean annual inshore and offshore catch/unit water surface area (kg, heads on, per ha) of pink and seabob shrimp by region for the Tuscalcosa Trend study area based on Gulf Coast Shrimp Data for the period 1960-1982.

•

41

Table 17. Total annual catch (kg, heads on) and relative proportion of total catch of brown, white, pink and seabob shrimp in NMFS statistical subareas 9-13, which encompass the Tuscaloosa Trend study area, based on Gulf Coast Shrimp Data for the period 1960 to 1982.

	P.AZTEC	US	P. DUORAI	RUM	P.SETIFI	ERUS	X. KROYEI	RI	
YEAR	KILOGRAMS	PCT	KILOGRAMS	PCT	KILOGRAMS	PCT	KILOGRAMS	PCT	TOTAL
1960	11414868	0.69	93284	0.01	4758754	0.29	333307	0.02	16600213
1961	5716102	0.78	238787	0.03	1208024	0.17	151195	0.02	7314108
1962	4964745	0.51	97468	0.01	4173296	0.43	544443	0.06	9779953
1963	9512967	0.49	248701	0.01	9761667	0.50	77801	0.00	19601136
1964	6976258	0.46	122376	0.01	7791164	0.52	189486	0.01	15079284
1965	12052935	0.67	101519	0.01	5405583	0.30	301987	0.02	17862024
1966	13314715	0.69	150331	0.01	5634860	0.29	290140	0.01	19390045
1967	17990102	0.80	269617	0.01	4142907	0.18	117352	0.01	22519978
1968	19013203	0.84	304395	0.01	3172221	0.14	248600	0.01	22738419
1969	16066630	0.63	401266	0.02	8982801	0.35	54742	0.00	25505439
1970	15972307	0.64	191961	0.01	8465348	0.34	503549	0.02	25133164
1971	18176707	0.73	160775	0.01	6503217	0.26	67989	0.00	24908688
1972	17130178	0.79	198211	0.01	4115652	0.19	270179	0.01	21714220
1973	10208575	0.72	248605	0.02	3555463	0.25	199052	0.01	14211695
1974	11584577	0.73	175188	0.01	3727489	0.23	385362	0.02	15872615
1975	9585173	0.72	139443	0.01	2873608	0.22	634052	0.05	13232276
1976	18236378	0.79	199423	0.01	4531385	0.20	77434	0.00	23044620
1977	22042462	0.74	222054	0.01	6674103	0.23	651267	0.02	29589885
1978	17253247	0.74	137179	0.01	5854189	0.25	179097	0.01	23423712
1979	15991575	0.73	302886	0.01	5230002	0.24	502352	0.02	22026815
1980	12719736	0.65	116095	0.01	5964252	0.31	675455	0.03	19475538
1981	19414822	0.73	139798	0.01	6281149	0.23	910831	0.03	26746600
1982	19098684	0.78	242842	0.01	4924067	0.20	294172	0.01	24559765
OTALS	324436945	0.70	4502204	0.01	123731200	0.27	7659844	0.01	460330193

In summary, eight taxa groups were identified in the annual analysis. Groups 1-3 showed well-defined depth preferences within the muddy bottoms of the western region and, to some extent, central region of the study Groups 4-6 favored portions of the eastern region, Group 7 characterized area. the deep water stations over the entire study area, and Group 8 showed no particular trends. The dynamics of these taxa groups indicated that trends over time were occurring in the study area.

1.3.4 Gulf Coast Shrimp Data (GCSD)

1.3.4.1 Introduction

GCSD for four penaeid shrimp, brown (<u>Penaeus</u> <u>aztecus)</u>, white (<u>P</u>. setiferus) pink (P. duorarum) and seabob (Xiphopeneus kroveri), in NMFS GCSD statistical subareas 8-13 (which encompass the Tuscaloosa Trend study area) were analyzed for the period 1960-1982. Two variables, catch (C) and catch/unit water surface area (C/A), were analyzed. Results of preliminary analysis of GCSD, along with results of the analyses of the scientific trawl survey data, indicated that these data would best suit the needs of the Tuscaloosa Trend ecosystem study if the five GCSD statistical subareas were aggregated to three regions, representing a western region (statistical subarea 13), a central region (statistical subareas 11 and 12 combined) and an eastern region (statistical subareas 9 and 10). NMFS statistical subareas are shown in Figure 9 in Section 2.3.4.2. The western region lies adjacent to the west side of the Mississippi River delta, while the eastern region lies off Alabama and Florida. The central region extends from the birdfoot delta on the west to Mobile Bay on the east, and includes Mississippi Sound and Chandeleur Sounds. The eastern region differs from the other two by having sediments of coarser grained material (fine grained sand). Other manipulations made to the original data received from NMFS TIMS involved consolidation of the 5 fm GCSD depth zones into one inshore and four offshore zones, and aggregation of the eight size classes of shrimp into three size classes. A map showing the regions and depth strata used in the shrimp analysis is presented in Figure 10 of Section 2.3.4.3.

Analysis results are presented as main effect and two and three way interaction means for year, month, region, zone and size. Figure 3 and Table 17 show the trends in total C (in kilograms (kg), heads on) for the four species of penaeid shrimp over the 23 year period 1960-1982. Figures 4 and 5 show the distribution of C/A over the same period by region broken down into inshore and offshore zones. Section 2.5.5.2 contains a more detailed discussion and display of these results.

1.3.4.2 Comparison of Trends Among Species

Over the entire 23 year period (1960-1982), C in the three regions totalled approximately 285 million kg (heads off), or approximately 12 million kg per year. Of this total, about 70% was brown shrimp, and 28% white shrimp, with seabobs and pink shrimp making up the remaining two percent. <u>Penaeus aztecus</u> dominated C in all years except for the period 1962-1964, when C of brown and white shrimp were similar (Figure 3 and Table 17).

There were both similarities and differences in the trends for white and brown shrimp. Both species showed relatively high C during the period 1969-1970, while during the period 1973-1975, C of both species was relatively low. In 1967, 1968 and 1977, brown shrimp C was high while that for white shrimp was relatively low.

C of pink and seabob shrimp were consistently lower than those for brown and white shrimp. Seabob C was highly variable through time, with peak C occurring in 1981 (almost 1 million kg). Pink shrimp C was less variable, and appears to have declined in recent years relative to that of seabobs.

Offshore, C/A for all four species decreased with depth, but the decline was less steep for brown shrimp (Figures 4 and 5). Most white and pink shrimp were caught in waters of less than 40 m depth, while brown shrimp C/A was more evenly distributed out to 100 m depths. Seabobs showed the most restricted depth distribution, with few being caught at depths greater than 20 m.

Three of the penaeid species (all except pink shrimp) generally showed similar spatial trends over the study area, with highest densities (as measured by C/A), in the western region and lowest densities in the eastern region (Figures 4 and 5). The seabob demonstrated the weakest affinity for the two regions located east of the Mississippi River, and (therefore) showed the most restricted geographic distribution. It was caught in appreciable numbers only in the western region, where the vast majority of the C was made in inshore waters and especially in nearshore waters of less than 10 fm depths (Figure 5). Going west to east, the contribution of inshore areas to total seabob C increased. A lower relative amount of seabob C was reported from inshore waters compared to the three species of the genus <u>Penaeus</u>. This is consistent with the general feeling that seabobs are not estuarine dependent (Juneau 1977).

White and brown shrimp C/A showed spatial trends similar to those of the seabob (i.e., highest densities in the west and lowest densities in the east), but were generally more widely distributed over the study area (Figure 4). While white shrimp C/A was by far the highest on the shelf in the western region, C/A for brown shrimp was more similar in the western and central regions. For both species, inshore areas of the western region were very productive, with C/A in the inshore zones of the central and especially eastern regions being much lower. Even so, the vast majority of the white shrimp C in the eastern region occurred in the estuaries, with virtually no offshore C reported. This probably indicates that white shrimp migrate westward upon leaving the estuaries of the eastern region, taking up residence on the shallow shelf in the central region (Lindner and Anderson 1956). The data clearly indicated that brown shrimp C in the estuaries and shallow Gulf were dominated by the size class of smallest shrimp, while a substantial fraction of the white shrimp C in these zones consisted of larger shrimp. This is consistent with the general understanding that white shrimp remain in the estuaries longer than brown shrimp, and grow to larger sizes there (Burkenroad 1934, Gunter 1950).

1.3.4.3 Brown Shrimp

The brown shrimp life cycle was well represented in the GCSD. C/A in the estuaries increased dramatically in May and June as juvenile shrimp moved out of the nurseries and into open bay staging areas and the shallow There was a clear trend as the year progressed for higher Gulf shelf. C of larger brown shrimp further offshore. The data clearly indicated that the size class of smallest shrimp showed very sharp decreases in C/A with depth, a trend just the opposite of the trends observed for the two larger size classes (which were caught in greatest numbers at depths of 40-100 Regionally, peak C of brown shrimp occurred first in the west and **m**). one month later in the central and eastern regions. C/A also appeared to be substantially more evenly distributed over the year at greater depths, with inshore waters showing both highest and lowest monthly C/A over the This indicates that the nearshore zone (out to 10 fm) was not the year. preferred habitat, and was primarily an area through which brown shrimp must migrate to reach the more offshore brown shrimp grounds.

1.3.4.4 White Shrimp

Although the life cycle of the white shrimp was not quite as well defined as was that for brown shrimp, the salient features were still evident in the GCSD, including the characteristic bimodal seasonal Across the entire study area, white shrimp showed distribution of C. a major increase during fall and early winter (August to December) and a second smaller peak in late spring (May to June). This bimodal distribution is consistent with the general understanding that some white shrimp postlarvae may enter estuaries too late in the fall to reach sufficient size to join the offshore adult stocks the same fall or winter. These shrimp probably overwinter in the estuaries, or, during colder winters, in the shallow Gulf, reentering the estuaries in the spring to However, C in spring was dominated by larger complete their growth. shrimp, indicating they may have migrated as adults from the estuaries The extended period over which white shrimp of the the previous fall. smallest size class were caught in elevated numbers (August to January) may indicate that the period of postlarval recruitment of white shrimp is extensive, and that shrimp were migrating out of the estuaries over the entire fall period (Baxter and Renfro 1967, Moffett 1970, Gaidry and White 1973, Christmas et al. 1966). This was very different from the trends for brown shrimp, where one major cohort resulting from a winter to early spring postlarval recruitment determines the success of the population for the year. Seasonal patterns were much more well defined and predictable for brown shrimp.

Size-related trends with depth and season were much more poorly defined for white as compared to brown shrimp, consistent with existing knowledge of the autecology of the two species. Offshore, C/A of the several size classes of white shrimp showed little change with depth. Seasonal trends in C/A were similar across all depths, although there was indication that peak C in the 20-40 m zone lagged by several months that in the inshore and shallow (0-20 m) offshore zones.

As was the case for white shrimp, pink shrimp C exhibited a bimodal distribution through the year. The major peak in C generally occurs in

May (inshore) and June (0 - 20 m depths, offshore), with C declining to low values by midsummer. A second, modest increase in C occurs both inshore and offshore in the midfall to early winter period. The fall C was dominated by shrimp of the smallest size class, indicating an extended period of pink shrimp spawning. The fall cohort may be the result of spawning of young of the year shrimp (i.e., those entering the estuaries the previous winter and early spring).

From year to year, there did not appear to be much correspondence between inshore and offshore C. The major pattern over time was the decreasing importance of the eastern estuaries during the last five or six years, and the increasing importance of the central region (both inshore and offshore) during the 1970s.

1.3.4.5 Pink Shrimp

Pink shrimp also exhibited very low C/A in the eastern region offshore, but inshore C/A in this region was the highest of the three regions (Figure 5). Pink shrimp C was even lower offshore in the western region, with the central region being the only one yielding substantial offshore C of pink shrimp. However, very few pink shrimp were caught inshore in the central region. Therefore, it appears that pink shrimp maturing in the estuaries of western Florida and Alabama migrate into the area of siltier sediments in the central region upon leaving the estuaries. A similar trend was noted above for white shrimp. The apparent low abundances of pink shrimp on the sandy sediments of the eastern region may be due to the fact that they are composed of relatively fine-grained sands, quite unlike the coarse textured sands on the west Florida shelf, where pink shrimp dominate the penaeid C. While shrimp of the smallest size class dominated the estuarine C and decreased in relative importance with distance offshore, the two size classes of larger shrimp exhibited no changes in C/A with depth offshore.

1.3.4.6 Seabobs

Seasonal trends for seabob C were similar in the central and western regions, with first increases observed in late summer and peaks found during fall and early winter. Catch then declines throughout the remainder of winter and spring, being lowest in late spring to early summer. This basic seasonal pattern was exhibited in all depth zones in which seabobs were caught in relatively high numbers, while at 20-40 m depths, increases in C began later and elevated C extended into the spring, possibly indicating offshore migration with age. Over the years, seabob inshore C has declined relative to offshore C, especially during years of high offshore C (Figure 5).

1.4 CONCLUSIONS

Results of the community analyses reflected the complex ecological patterns in the Tuscaloosa Trend ecosystem. All analyses revealed the presence of taxa characteristic of the shallow water, muddy bottom, variable hydrography habitat in the estuaries and shallow shelf in the western and central regions of the study area (the white shrimp grounds). Most of the characteristic taxa, which included the white shrimp, the Gulf menhaden, the bay anchovy, the hardhead catfish, the Atlantic bumper, the southern kingfish, and the star drum are estuarine dependent. The white shrimp grounds were also characterized by taxa that were widely distributed over the study area, but were most prominent in waters overlying muddy sediments. Most of these taxa, including the brown shrimp, the sand and silver seatrouts, the spot, the croaker, and the Atlantic cutlassfish. are estuarine dependent and are the characteristic taxa of the brown shrimp grounds, located offshore of the white shrimp grounds. In the immediate vicinity of the birdfoot delta and westward, a third muddy bottom assemblage was evident in all three analyses. However, these taxa were not found in shallow waters or on muddy bottoms east of the delta. They include several penaeid shrimp including Parapenaeus LPIL and the seabob, as well as the yellow conger, the luminous hake, and the singlespot In addition to these three taxa groups, the SEAMAP analysis frogfish. identified taxa that were widespread in high salinity waters overlying muddy bottoms both east and west of the delta during spring (including the shrimp, Trachypenaeus LPIL and Squilla LPIL, the bearded brotula, and the blackedge cusk-eel). There was great similarity in taxa at the stations from all but the shallowest depths in the western region, due perhaps to the large volume of freshwater discharged into this area from the Mississippi River.

The shallow water, sandy bottom habitat of the central and eastern regions off Alabama and westernmost Florida was not characterized by a distinct inshore community comparable to that of the white shrimp grounds. This habitat was characterized by widespread taxa and taxa characteristic of more offshore habitats that migrated inshore seasonally. A number of taxa found in the SEAMAP survey, including the cleannose skate, the tomtate and several species of searobins, may be representative of the higher salinity, inshore habitat of the Florida shelf east of the study The middepth and deep water habitats in the eastern region were area. characterized by three groups of taxa. Taxa in the first group were widely distributed over the study area, but preferred sandy sediments (the scaled sardine, the inshore lizardfish, the rock sea bass, and the Gulf butterfish). Taxa in the second group were widespread over sandy bottoms, and included the squid, Loligo pealii, the rock shrimp, the dwarf sand perch, the largescale lizardfish, the red snapper, the wenchman, the longspine porgy, and the least puffer. Taxa in the third group of taxa were restricted to middepth and deep water habitats on sandy bottoms. This group was best characterized by the horned, bandtail, bluespotted and blackwing searobins, the smoothhead scorpionfish, the snakefish and the bank cusk-eel. Nekton community structure was very similar at all deep water stations located east of the delta, due to the widespread distributions of many of these sandy bottom taxa.

2.0 DETAILED ANALYSIS METHODOLOGIES AND RESULTS

2.1 INTRODUCTION

The Gulf of Mexico supports the largest single commercial fishery in the U.S., accounting for 36% of the total volume and 26% of the total value (SEAMAP 1984). Within the Gulf, the Tuscaloosa Trend region (Figure 6) is among the most biologically productive areas (Gunter 1967). Many of the ecologically and commercially important finfish and shellfish species are estuarine dependent (Roithmeyer 1965). Populations of these species are strongly related to processes acting on the larval and juvenile life stages, especially those processes related to the transport to the estuaries and subsequent growth and survival in the estuaries. These demersal finfish and shellfish species exemplify the ecologic interrelationships of the outer continental shelf (OCS) and the adjacent coastal areas. The offshore distributions of many of these species are related to hydrographic conditions and sediment type.

Beyond approximately 50 to 100 m depths, the demersal communities are considerably different, with a higher proportion of species that are offshore residents during their entire life cycle. Much less is known about the relationships of these deep water species to environmental processes.

The ecological and commercial importance of many of the demersal finfish and shellfish species has fostered the development of long-term data bases by both state and federal agencies which generally encompass taxonomic count, biomass and environmental data for both estuarine and adjacent OCS areas. The analysis and synthesis of these data provides valuable information to fishery scientists and managers, and aids the development of the Tuscaloosa Trend ecosystem conceptual model by identifying the dominant ecological processes and higher-level taxonomic and trophic groupings for model compartmentalization.

2.2 OBJECTIVES

The objectives of the quantitative characterization of demersal finfish and shellfish communities in the Tuscaloosa Trend OCS region are:

- (1) to create an integrated database that incorporates biotic and environmental data from federal and state sources;
- (2) to characterize the spatial and temporal patterns in the structure of demersal finfish and shellfish assemblages;
- (3) to identify homogeneous habitats of the study area for model discretization;
- (4) to define the relationships of habitats to communities;
- (5) to utilize this community context to identify functional taxa or trophic groupings for model compartmentalization;

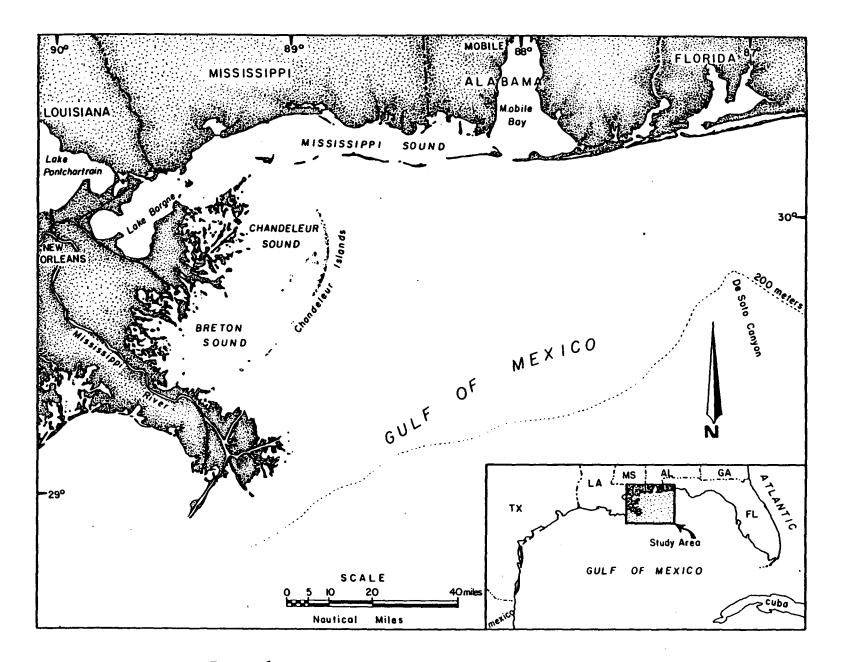


Figure 6. Map of the Tuscaloosa Trend study area.

- (6) to define the relationships of communities and key taxa to physical and biological processes;
- (7) to determine the degree of variability in those model compartments attributable to temporal, spatial and random variation; and
- (8) to establish correlations between model compartments to identify important causal relationships.

2.3 DATABASE

2.3.1 Overview

The first step in the quantitative analysis of the finfish and shellfish communities in the Tuscaloosa Trend region was the identification, acquisition and computerization of the relevant biological and environmental data sets. Table 18 summarizes the federal and state databases utilized in the quantitative characterization of the demersal finfish and shellfish communities.

Because the ecological and economic importance of the commercial fishery in the northern Gulf valuable long-term time series of taxonomic count data for demersal nekton species has been archived by state agencies for estuarine and nearshore waters and by federal agencies for the adjacent OCS areas. Because of the importance of estuarine processes to the life cycles of many of the commercially important finfish and shellfish, longterm time series of data for Ekman transport, river discharge, tides, winds, and precipitation, was also acquired from federal sources for the same time periods encompassed by the taxonomic count data. The integration of these data into the project database allowed the development of quantitative relationships of community and population structure to environmental processes.

2.3.2 1982 and 1983 SEAMAP Survey Data

The SEAMAP program is a cooperative state/federal/university effort that was implemented in 1981 under the overall direction of the Gulf States Marine Fisheries Commission (GSMFC) to provide for the cost-effective collection, management, and dissemination of fishery-independent biological and environmental data in the Gulf of Mexico (SEAMAP, 1984). Participants in the SEAMAP program include the five Gulf states, GSMFC, NMFS-SEFC, the Gulf of Mexico Fishery Management Council, Sea Grant programs, universities and the Gulf and South Atlantic Fisheries Development Foundation. The SEAMAP program provides a framework for coordinating estuarine and offshore sampling times, vessels and methodologies and for cooperative regional planning for fishery research activities.

In the quantitative characterization of the finfish and shellfish communities in the Tuscaloosa Trend region, the SEAMAP shrimp and bottomfish trawl survey data and the associated environmental data were utilized (Table 18). The SEAMAP ichthyoplankton survey data were not available in time to permit analysis. Offshore trawl survey collections were made at night at randomly selected stations located inside 45 fm

Table 18. Data included in the Tuscaloosa Trend fisheries analysis database and their sources.

.

DATA SET	SOURCE	VARIABLES"	NUMBER OF STATIONS	TEMPORAL SPAN	FREQUENCY	PHYSICAL FORM
ederal Sources						
urveys for Groundfish	Dr. Walter R. Nelson/ Mr. Ken Savastano National Marine Fisheries Service	TC, B, LF, T, S, DO, TU, C XBT4	variable, 5-50 fathom depths	197 2-1983	annually during fall, some sea- sonal coverage	magnetic tape
outheastern Area Monitor- ng and Assessment Program SEAMAP) 1. Shrimp and Bottom Fish Survey 2. Ichthyoplankton Survey 2. Environmental Survey	Ms. Nikki Bane SEAMAP Coordinator Gulf States Marine Fisheries Commission	TC, B, LF, T, S, DO, TU, C XBT	variable, 1-50 fathom depths	1982-1983	annually during spring-su mmer	magnetic tape
ulf Coast Shrimp Data	Mr. Darrell Tidwell National Marine Fisheries Service	TC, B, NT, DF	statistical area by 5- fathom depth ZORES	1960-1983	monthly	magnetic tape
liver Discharge	U.S. Geological Survey Office of Water Data Coordination		12	1960-1983	monthly	magnetic tape
Precipitation and Winds	Mr. Warren Hatch National Climatic Data Center		4	1960-1983	monthly	magnetic tape
î i des	Ms. Janet Colt National Ocean Survey		1			magnetic tape
ikman Transport	Dr. Andy Backun National Marine Fisheries Service Pacific Environmental Group		3 ⁰ gr1ds	1960-1983	monthly	magnetic tape
State Sources						
ouisiana Demorsal Fisheries and Environmental Data	Mr. Harry E. Schafer, Jr. Dept. of Wildlife and Fisheries/Dr. Joan Browder National Marine Fisheries Service	TC, B, LF, T, S, DO, TU, NU	variable	1965-1983	monthly or sem1-monthly	magnetic tape some hard cop
Hississippi Dermsal Fish- eries and Environmental Data	Dr. Thomas McIlwain Gulf Coast Research Laboratory	TC, B, T, S, DO	11	1973-1983	monthly or semi-monthly	hard copy
Alabama Domorsal Fish- eries and Environmental Data	Mr. Walter Tatum/ Mr. Steve Heath Department of Conservation and Natural Resources	TC, B, T, S, D0	15-30	1977-1983	monthly or semi-monthly	hard copy

...

B = biomass LF = length/frequency NT = number of trips DF = days fished T = temperature

•

D0 = dissolved oxygen TU = turbidity NU = nutrients C = chlorophyll XBT = expendable bathythermograph

depths with a 40 ft shrimp trawl. Trawl stations (Figure 7) encompassed a 1 fm depth stratum with a maximum tow time of 30 minutes and a minimum tow time of 10 minutes. All tows were made perpendicular to the depth contours. Inshore waters were sampled by smaller state vessels employing a 16 foot trawl. In conjunction with the shrimp and bottomfish trawl survey, salinity, oxygen, and chlorophyll values and expendable bathythermograph temperature profiles were recorded at each station (SEAMAP, 1982).

2.3.3 <u>NMFS Fishery Independent Survey Data</u>

Kemmerer et al. (1982) have provided a summary of the Fishery Independent surveys for the period 1972 to 1981. These studies were initiated by the NMFS Pascagoula Laboratory in response to concerns expressed by the groundfish industry about declining stocks of commercially important demersal species in the northern Gulf of Mexico.

Since the inception of the Fishery Independent survey program in 1972, the Oregon II research vessel has served as the sampling platform for the surveys. A 12.2 m headrope length, four seam shrimp trawl, with 5 cm stretch nylon mesh in the wings and body and 3.8 cm stretch nylon mesh in the cod end is used as the standard sampling trawl. Three replicate 10 minute trawl tows are made at each sampling site at a speed of 2.5 knots, with the catch from each tow processed separately. The bottom area covered by the open net is 0.71 ha. The entire catch is always weighed, and when catches are small, the entire catch is processed. When catches are prohibitively large, a random subsample of each is processed, and extrapolations are made to the total catch based on ratios of weight of subsample to total weight. Each species of finfish and shellfish is counted and weighed as a group to the nearest 45 gm. Length-frequency data are usually taken for only the numerically dominant and/or commercially important taxa. Environmental data generally collected on these surveys include surface and bottom temperature and salinity, but more recently, surface and bottom dissolved oxygen and chlorophyll have been added.

Figure 8 (from Kemmerer et al. 1982) shows the Fishery Independent survey study area. The northern and southern boundaries of the survey area are the 5 and 50 fm depth contours, respectively. Therefore, all data were collected within the depth range of the Tuscaloosa Trend study area. One primary and two secondary areas have been identified. The primary area coincides with the region of maximum groundfish concentrations, and is sampled most intensively. A large portion of the Tuscaloosa Trend study area is located within this primary area. NMFS has subdivided the survey area into a series of 30 minute longitudinal sampling units, which are, in turn, each divided into five depth strata (5-10 fm, 11-20 fm, 21-30 fm, 31-40 fm, and 41-50 fm). Each of the longitude x depth strata is further divided into 10 minute square sampling blocks, and each block is subdivided into 16 two minute latitude x 2.5 minute longitude sampling sites. Within each longitude x depth stratum, sampling sites are randomly selected for each cruise. Table 19 (from Kemmerer et al. 1982) summarizes the 20 Oregon II Fishery Independent survey seasonal cruises conducted during the period 1972 to 1981; data for 1982 and 1983 were also available. Most of the effort has been concentrated in the autumn when population densities are generally greatest. We used these fall data for our analysis of long term trends. In the last several years, efforts have centered on spring and

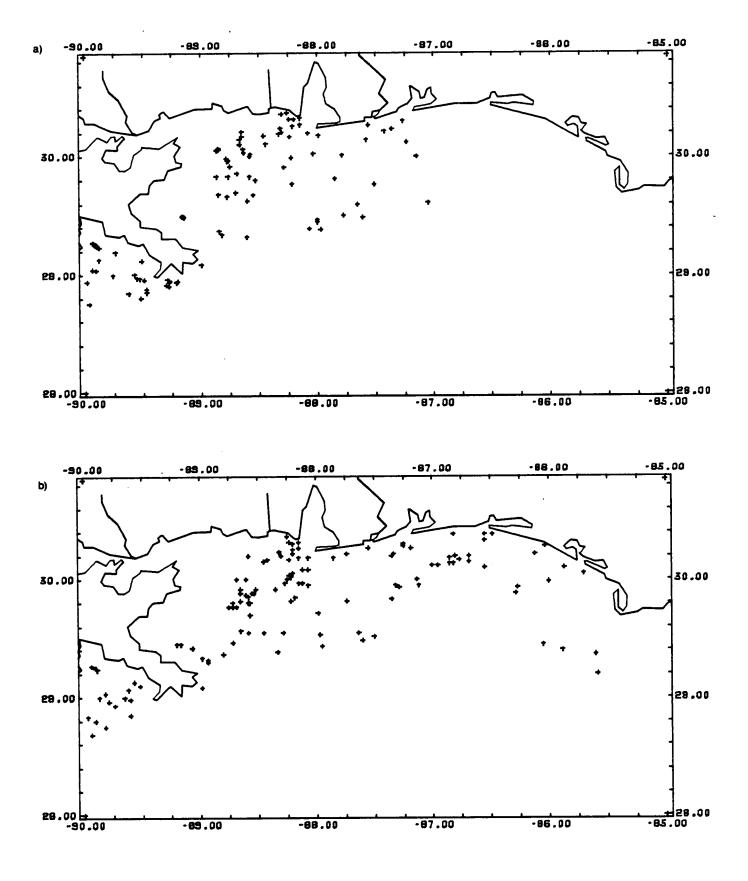


Figure 7. Map showing the locations of the SEAMAP sampling stations for a) 1982 and b) 1983.

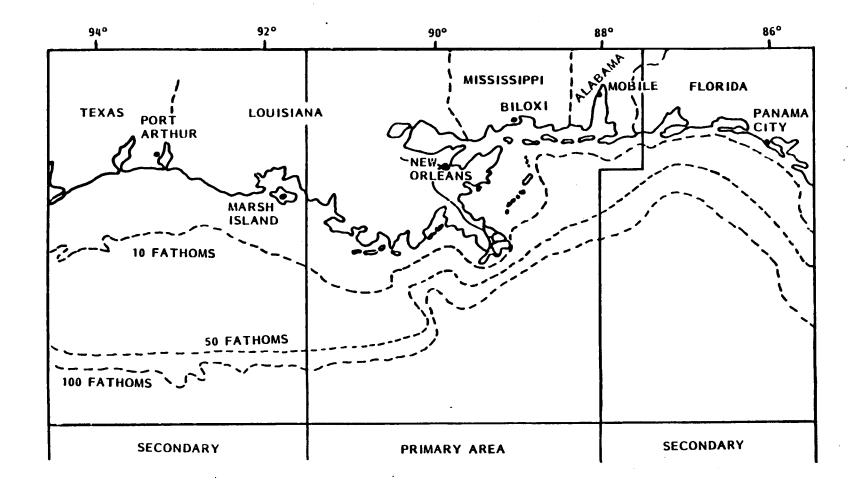


Figure 8. Sampling area for Fishery Independent Surveys for groundfish in the northern Gulf of Mexico.

54

FAL: 2 1
2 1 1
1
1
T
1
1
1
1
1
1
1

Table 19. Summary of Fishery Independent groundfish survey cruises in the northern Gulf of Mexico, 1972-1981.

.

fall sampling. Only during 1974 and 1975 did cruises with enough spatial scope occur over 4 continuous seasons for use in our analyses.

2.3.4 <u>GCSD</u>

2.3.4.1 Introduction

Analysis of historical trends in commercial catch (C) and catch per area (C/A) of penaeid shrimp in the Tuscaloosa Trend study was based on GCSD, which is maintained by NMFS, Technical and Information Management Services (TIMS), Miami, Florida. GCSD are composed of two different files, the Shrimp Dealer Data and the Shrimp Trip Interview Data. Until several years ago, monthly and annual summaries of both the Dealer and Interview Data were published in NOAA/NMFS Current Fisheries Statistics. These published summaries, which were used in our analyses, are no longer issued. Data for the most recent years are available only from TIMS. GCSD monthly summaries are not equivalent to those published in Shrimp Landings, which include quantities landed within a reporting period regardless of when trips were completed or where fishing took place.

The Shrimp Dealer Data are obtained from records kept by shrimp dealers, and represent the best estimates of total C entering the commercial market. These data were the subject of the analyses herein reported. They include port of landing, type and identification of fishing craft, month of landing, number of trips, species and size composition and market value by species and marketing size. Shrimp size is expressed in number of shrimp (heads off) per pound or count. Eight sizes, ranging from 68 and over per pound (the category of smallest sized shrimp) to under 15 per pound (the category of largest sized shrimp), are reported. Damaged shrimp are reported as pieces.

GCSD include fishery information for brown shrimp (P. aztecus), pink shrimp (<u>P. duorarum)</u>, white shrimp (<u>P. setiferus)</u>, seabobs (<u>Xiphopeneus</u> kroveri), royal reds (Hymenopenaeus robustus), rock shrimp (Sicyonia brevirostris) and P. brasiliensis. Of these seven taxa, the royal red is a deep water species, seldom being caught shallower than 200 m. Since it occurred in the Tuscaloosa Trend study area only rarely, it was not treated quantitatively in this analysis. Also, data for rock shrimp and P. brasiliensis were sporadic, and were also not addresses quantitatively. Data for the three Penaeus species and the seabob were analyzed in this study. Unlike the other three taxa, data for seabobs were not reported by size. In our study we converted the reported (heads off) weight to total (heads on weight) by multiplying the reported weight by the following conversion factors: brown, 1.61; pink, 1.60; white, 1.54; and, seabobs 1.53 (NOAA 1976).

2.3.4.2 GCSD Reporting System and Grid

NMFS has established a grid system for reporting penaeid shrimp C in the Gulf of Mexico. Within the U.S., twenty-one statistical subareas have been established (Figure 9). Statistical subareas 9-13 collectively encompass the entire Tuscaloosa Trend study area and its adjacent inland waters. Each statistical subarea is further subdivided into 5 fm depth zones for reporting purposes. Data are reported separately for inshore

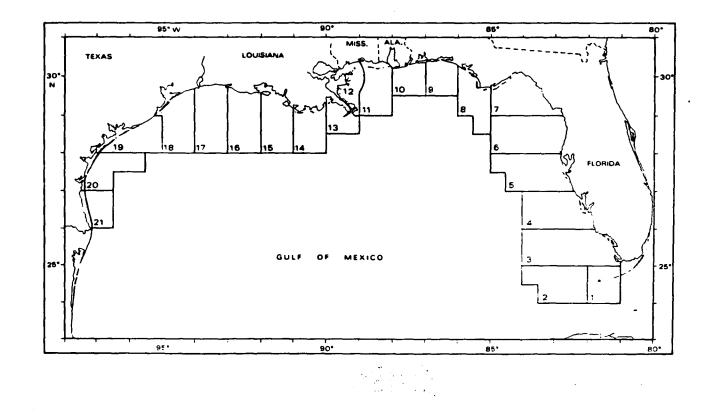


Figure 9. Map of Gulf of Mexico showing NMFS statistical subareas used to report Gulf Coast Shrimp Data.

and offshore waters. NMFS has established a code system for inland waters in each statistical subarea so C can be reported for individual estuarine systems. In the Tuscaloosa Trend Study area, waters for which C is reported include Pensacola Bay, Mobile Bay, Mississippi Sound, Lakes Borgne and Pontchartrain, Breton and Chandeleur Sounds, and inside waters from the Mississippi River to Bayou La Fourche. A major change occurred in the inland code system in 1976, involving some consolidation and switching of subarea affiliations for some inland waters. These changes, which involved subareas 9 and 10 as well as subareas 11 and 12, obviously complicate intepretation of C trends in inshore waters for the individual subareas over time.

Table 20 (modified from Patella 1975) shows the water surface area associated with each statistical subarea x 5 fm depth zone. Overall, the data indicate that the Tuscaloosa Trend study area is bathymetrically more complex than the more typical shelves bordering Texas and the west coast of the Florida peninsula.

Of the 21 statistical subareas in the Gulf of Mexico, subarea 9, which includes the eastern most portion of the Tuscaloosa Trend study area, encompasses the smallest offshore water surface area. Along with subareas 10 and 12, they constitute the three subareas with the smallest offshore water surface areas in the entire Gulf of Mexico. The small water surface areas occupied by 0-20 m depths of subareas 9 and 10 are attributable to the relatively narrow shallow shelf in the vicinity of DeSoto Canyon. This shallow zone decreases in width going east across subarea 10, being narrowest in subarea 9. Going east from the eastern boundary of subarea 9 (86 degrees W longitude), the shallow zone widens appreciably. Note that even though this zone occupies small water surface areas in subareas 9 and 10, the water surface area occupied by waters 20-40 m in depth is fairly expansive in each subarea. Water surface areas for depths greater than 40 m in subareas 9 and 10 are also strongly influenced by the slope of DeSoto Canyon.

Statistical subarea 11 includes the largest total water surface area and largest area 20-40 m deep of any of the five statistical subareas in the Tuscaloosa Trend study area (Table 20). Subarea 11 occupies the geographic center of the Tuscaloosa Trend OCS, and also includes most of Mississippi Sound. It lies along the eastern (and offshore) boundaries of subarea 12, which consists primarily of estuarine waters. Therefore the fishery dynamics of subarea 11 should be closely tied to those of the major estuaries located to the immediate east of the Mississippi River delta. The eastern boundary of subarea 11 (with subarea 10) lies in the vicinity of the transition from silty to sandy sediments on the OCS. Therefore, the fishery dynamics of subarea 11 might be expected to differ considerably from those of subareas 9 and 10 (located further east).

The most unique statistical subarea in the entire Gulf of Mexico is subarea 12 (Figure 9). Subarea 12 includes, for the most part, inshore areas such as Breton and Chandeleur Sounds and Lakes Borgne and Pontchartrain, and very little of the OCS itself. Subareas 11 and 13, which bound subarea 12 on the east and south, respectively, encompass the majority of the OCS waters adjacent to subarea 12. This is reflected in the small offshore area included in subarea 12 (Table 20, Figure 9), and especially in zones representing depths greater than 20 m. Subarea

58

DEPTH (FATHOMS)												
AREA	0-5	5-10	10-15	15-20	20-25	25-30	30-35	35-40	40-45	45-50	GT 50	TOTAL
9	4241	14895	155323	110036	94916	54867	34733	36902	40646	20137	354059	92075
10	18937	91696	164679	187285	113404	33235	33909	22831	21632	9057	134962	83162
11	59380	234504	169095	150633	137673	88465	75883	42500	24867	20646	318449	132209
12	79271	16806	2561	1056	1130	301	113	45	0	0	0	10128
13	65661	74039	37173	37859	39688	37403	32835	22168	21711	30167	300852	69955
TOTAL	227490	431940	528832	486868	386811	214271	177473	124447	108855	80007	1108322	387531

۰.

Table 20. Water surface areas (ha) included in each five fathom depth cell in GCSD statistical subareas 9-13, which encompass the Tuscaloosa Trend study area.

. .

•

12 contains no water surface area at depths greater than 100 m. While the surface area of subarea 12 occupied by waters 0-20 m deep is low, it is similar to that of subarea 10 and considerably greater than that of subarea 9.

Statistical subarea 13 is the only one lying west of the Mississippi River delta (Figure 9). For this reason alone, the fishery dynamics of subarea 13 might be expected to be different from that of the subareas located east of the delta. Inland waters in subarea 13 include Barataria and Caminada Bays, Lake Salvador, Little Lake, and East Bay between Southwest and South Passes. Sediments in subarea 13 are predominantly silty, being more similar to those of subarea 11 than to subareas 9 and 10, located further east. As is evident from Figure 9, subarea 13 represents a transitional region. To the west of subarea 13, the OCS assumes the more typical bathymetry of much of the Louisiana and Texas OCS, while to the east, immediately adjacent to the birdfoot delta, the shelf is steeper and narrower than anywhere else in the Gulf. This is reflected in the relatively small water surface areas of 20-100 m depths in the study area compared to subareas outside the Tuscaloosa Trend study region.

The spatial and temporal resolution and boundaries of the GCSD are well suited to model conceptualization and quantification. The GCSD grid covers the entire Tuscaloosa Trend study area. The basic spatial reporting unit provides considerable detail on longshore and onshore/offshore trends. The monthly reporting intervals provide a reasonable time step for fishery geology modeling purposes. Because GCSD have been consistently reported since 1960, an extensive time series of this important component of the Gulf continental shelf ecosystem is available for analysis.

2.3.4.3 Data Processing and Reduction

Monthly summaries of the GCSD Dealer Data Files for the years 1960-1982 were obtained from NMFS/TIMS on magnetic tape. These summaries contained information equivalent to those presented in the previously published GCSD monthly summaries with several exceptions. First number of trips were not included. Number of trips on a year by area basis were subsequently acquired in hard copy form and were computerized. Second, inshore C was identified only to the level of statistical subarea, disallowing C in the individual inland water bodies, to be differentiated. Finally, the data received on tape included corrections to the Dealer Data File made subsequent to the publication of the summaries.

Inclusion of a large number of (5 fm) depth intervals and all 8 size classes of shrimp in the analysis would inevitably lead to excessive numbers of empty years x month x area x depth x size cells in the data matrix and considerable variability in values for individual spatial x size cells over time. As such, the original depth zones were consolidated into one inshore zone (all depths combined) and four offshore zones (0-20 m, 20-40 m, 40-100 m, and 100-200 m); similarly, the original eight size classes were consolidated into three size categories (0-20, 21-40 and 41 and more shrimp per pound heads off). These same depth and size consolidations were used in a similar analysis of GCSD along the Texas coast (Comiskey et al. 1982).

For the purposes of this fisheries analysis, an attempt was made to render the GCSD analysis consistent with those for the SEAMAP and Fisheries Independent Data. Analyses of these scientific trawl data revealed three more or less distinct regions in the Tuscaloosa Trend study These were (1) a western region located west of the Mississippi area. River delta, encompassing statistical subarea 13; (2) a central region, including statistical subareas 11 and 12, and encompassing the entire estuarine system from the Mississippi River delta to (but not including) Mobile Bay; and (3) an eastern region, including statistical subareas 9 and 10, and encompassing the inshore and offshore waters of western Florida and eastern Alabama. In addition to these geographical differences, several dominant depth trends recurred through the several analyses. These trends were accomodated by the depth zones used in the analysis.

Based on these facts and preliminary analyses using all five statistical subareas, it appeared beneficial to combine the five original subareas into three "homogeneous" subregions (i.e., eastern, central and This aggregation accomodated several other "problems" as well. western). First, some statistical subarea x depth zone cells were represented by very small water surface areas, even after the consolidation of depth zones. This was particularly true for the offshore zones in subarea 12 (which consist predominantly of estuaries). Catch reported for these spatially small cells was variable and obviously incorporated considerable spurious error. Also, while there was no water surface area given by Patella (1975) for depths greater than 100 m in subarea 12, there were a number of instances of reported C in these cells in the data received from TIMS. By combining subareas 11 and 12, these problems were resolved. Consolidation of subareas 11 and 12 into one central region appeared to be further justified on an ecological basis since subarea 12 constituted a very large portion of the estuaries adjacent to subarea 11 (those bordering the western portion of subarea 11). The preliminary analyses indicated that little information was lost in the aggregation to three regions, while interpretability of trends was greatly enhanced. Combining subareas 9 and 10 resulted in loss of some interesting longshore gradients, since subarea 10 was somewhat transitional between the very sandy area off westernmost Florida (subarea 9) and the silty bottoms off the Mississippi River delta and Mississippi Sound (subarea 11). These trends are noted in the text where appropriate. A final consideration pointing toward spatial aggregation involved the data for inland waters. Since the monthly summaries received from TIMS did not include codes for individual estuaries (i.e., they were reported at only the statistical subarea level), there was no way to accomodate the changes in reporting of inland C that occurred in Since these changes involved subareas 9 and 10 as well as subareas 1976. 11 and 12, aggregating both pairs of subareas was required to render the C data for inland waters interpretable.

Water surface areas in each region by consolidated depth zone cell are presented in Table 21 (in hectares) and are shown in Figure 10. Data for offshore areas were taken from Patella (1975), while those for inland waters were taken from the Cooperative Estuarine Inventories for Louisiana (Perret et al. 1971), Mississippi (Christmas 1973), Alabama (Crance 1971), and Florida (McNulty et al. 1972). In no two regions are the trends for water surface area with depth consistent, attesting to the complexity of the Tuscaloosa Trend Study area. This complexity is attributable to

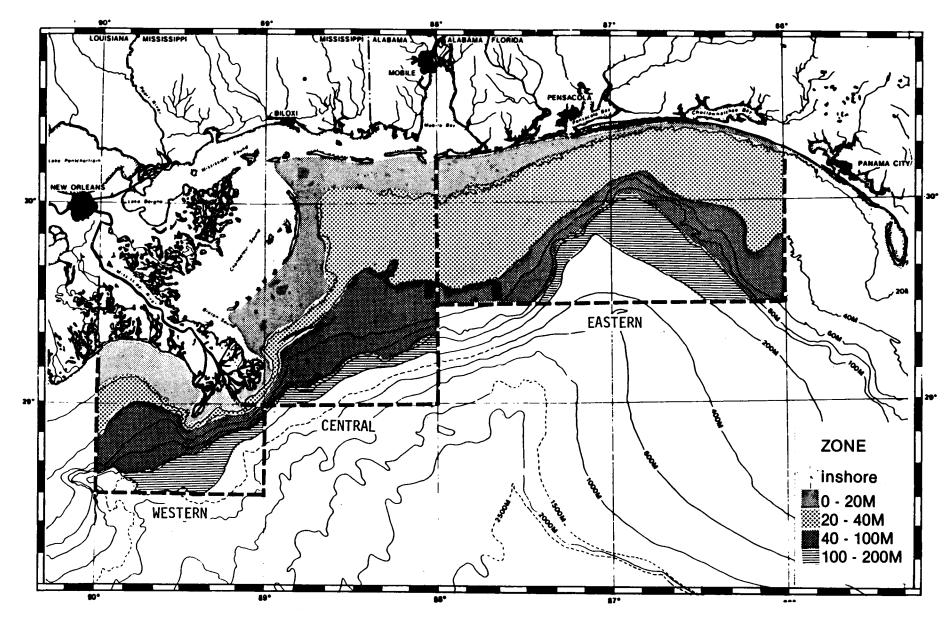


Figure 10. Map of the Tuscaloosa Trend study area showing the regions and depth strata used in the shrimp analysis.

Table 21. Water surface areas (ha) included in each region by depth zone cell used in the shrimp analysis.

REGION	INSHORE	0 - 20 M	20 - 40 M	40 - 100 M	100 - 200 M	TOTAL
WEST	121992	139700	75033	216805	300852	854382
CENTRAL	954053	389961	323345	467619	318449	2453427
EAST	219449	129679	617323	584912	489021	2040384
		·			** * * * * * * *	
TOTAL	1295494	659340	1015701	1269336	1108322	5348193

.

•

..

the presence of the prograding Mississippi River delta in the study area. The central region contained the largest overall area but the eastern region contained the largest offshore area (Table 21). The central region contained by far the largest inshore area, being four times greater than that for the eastern region and almost eight times greater than for the Most of the inland waters in the central region were western region. included in GCSD statistical subarea 12, which is mainly composed of inland waters (Figure 9). The western region contained the smallest inshore and offshore areas. However, considering the entire study area (i.e., all three regions combined), the water surface areas for the three most offshore zones are very similar. While being the largest, the inland water surface area is only about 20% larger than that for the zones deeper than 20 m. On the other hand, the shallowest offshore zone (0-20 m) is only approximately 60% of the area of any of the other offshore zones, and about 50% of that for the inland zone. Total water surface area in the eastern and central regions were relatively more similar to each other than to the western region, which consisted of only one GCSD statistical subarea (subarea 13).

Results of the analyses of C and C/A for brown, white and pink shrimp as well as seabobs are presented as tables, graphs and bar charts displaying the most important main effects (i.e., year, month, region, depth and size) and two and three way interaction means. For the three species of <u>Penaeus</u>, these graphic displays included region x depth x size, month x depth x size, year by depth by size and year x region (including inshore and offshore x size. Size was not reported for seabobs and size was not included in any of the analyses. Graphic displays for seabobs included area x month x depth and year x area x depth. For those analyses involving region and/or depth zone as class variables, the trends for C and C/A would be different, depending on the water surface area included in each spatial cell (the values in Table 21).

The lack of consistency in water surface areas for the 15 region x depth zone cells in the Tuscaloosa Trend Study area indicates that relationships of C and C/A are not simple. The reader should note that all analyses which do not include statistical area or depth as class variables will result in identical trends for C and C/A, and the two variables are used interchangeably in those discussions.

2.3.5 State Estuarine Surveys

2.3.5.1 Overview

The states of Louisiana, Mississippi and Alabama have conducted spatially and temporally extensive biological and environmental sampling programs. These programs have primarily been designed to assess the stocks of commercially important finfish and shellfish species; however, many programs incorporate data on all species collected. The analysis of these valuable data provides the information needed to make management decisions such as the dates for the opening and closing of commercial fishing seasons in state waters.

Because of the importance of estuarine processes to the life cycles of many of the commercially important finfish and shellfish species on the OCS, these state estuarine data are essential for establishing quantitative relationships between community and population structure on the OCS and estuarine processes.

2.3.5.2 Louisiana Demersal Fisheries and Environmental Data

The Louisiana estuarine data integrated into the project database included taxonomic count, wet-weight biomass, length-frequency, turbidity, nutrients and near-bottom temperature, salinity, and dissolved oxygen measurements collected monthly or semi-monthly at a variable number of stations from 1965 to 1983 (Table 18). Trawl samples were collected with a 16 ft trawl where possible, with a 6 ft trawl utilized in very shallow waters. The program was primarily designed to assess penaeid shrimp populations, and only they were enumerated in the 6 ft trawl samples. However, all organisms were identified and enumerated in many of the 16 ft trawl samples.

:

The Louisiana estuarine data was recently computerized in analytically compatible formats by NMFS/SEFC (Savell et al. 1983) and the resulting integrated database is available on magnetic tape. The contacts for these data were Mr. Harry Schafer, Louisiana Department of Wildlife and Fisheries, Baton Rouge, Louisiana and Dr. Joan Browder, NMFS/SEFC, Miami, Florida. Because the data for 1981 to 1983 were not available, the Louisiana data were not integrated into the project database.

2.3.5.3 Mississippi Demersal Fisheries and Environmental Data

The estuarine data from Mississippi integrated into the project database included taxonomic count, wet weight biomass, and near-bottom temperature, salinity and dissolved oxygen measurements collected monthly or semi-monthly at a total of 11 selected stations for the period 1973 to 1983 (Table 18). Of the six trawl stations, the four most inshore stations were sampled with a 16 ft otter trawl 0.75 inch wing mesh, 0.25 inch cod end mesh) towed for 10 minutes. The two most offshore stations were sampled with a 36 ft otter trawl with the same mesh dimensions towed for 30 minutes. A beam plankton trawl was towed in a 50 m radius to sample larvae and postlarvae at three stations, and the remaining two stations were sampled with a 50 ft bag seine (0.25 inch bar mesh). All organisms were enumerated in the otter trawl and seine samples and larval and postlarval crabs, shrimp and finfish were enumerated in the beam plankton trawl samples (McIlwain, 1982; Mr. James Warren, Gulf Coast Research Laboratory, pers. comm.). The Mississippi data were obtained in hard copy form by contacting Dr. Thomas McIlwain, Gulf Coast Research Laboratory, Ocean Springs, MS.

2.3.5.4 Alabama Demersal Fisheries and Environmental Data

The Alabama estuarine data integrated into the project database included taxonomic count, wet-weight biomass, and near-bottom temperature, salinity and dissolved oxygen measurements collected monthly or semimonthly at approximately 15 stations during the period 1977-1983 (Table 18). Trawl samples were collected with a 16 ft otter trawl (0.75 inch wing mesh, 0.25 inch cod end mesh) towed at approximately 3 knots for 10 minutes (Swingle, 1971). For the period 1977 to 1980, only the penaeid species were enumerated, thereafter, all organisms captured in the trawl samples were enumerated (Mr. Steve Heath, Alabama Department of Conservation and Natural Resources, pers. comm.). The Alabama data were obtained in hard copy form from Mr. Walter Tatum and Mr. Steve Heath, Alabama Department of Natural Resources, Dauphin Island, Alabama. These data have not yet been integrated into the project database.

2.3.6 Federal Environmental Data

Due to the importance of oceanographic and estuarine processes and environmental conditions the life cycles and survival of the estuarine dependent and commercially important species, time series of data for river discharge, precipitation and winds, tides, and Ekman transport were acquired for representative stations in the Tuscaloosa Trend study area for the time period 1960-1983 (Table 18).

River discharge data collected monthly at 12 stations located on the major sources of freshwater input in the study were acquired on magnetic tape from the U.S. Geologic Survey, Office of Water Data Coordination and from the U.S. Army Corps of Engineers, New Orleans and Vicksburg Districts. Precipitation and winds data were obtained for four coastal weather stations from Mr. Warren Hatch of the National Climatic Data Center, Asheville, North Carolina. Tide data for the period 1966 to 1983 collected at Dauphin Island, AL was obtained from Ms. Janet Colt and Mr. Steve Lyles at the National Ocean Survey, Rockville, Maryland. Ekman transport data for the study area was obtained from Dr. Andy Backun, NMFS, Pacific Environmental Group, Monterey, California.

2.4 ANALYTIC APPROACH

The overall approach to the analysis of the fishery data for the Tuscaloosa Trend study area centered on the use of multivariate pattern analysis techniques to provide the context within which major trends and sources of variation within and among suites of community and habitat variables could be quantified and mapped, and homogeneous subregions of the Tuscaloosa Trend study area could be identified. Within this context, taxa showing the most clear cut, consistent and ecologically meaningful trends were identified, resulting in a culling of those taxa that were either too rare or too sporadic in distribution to provide much information. The ultimate goal of the pattern analysis was to define communities, habitats (i.e., station groups) and the relationship of communities to station groups.

One of the most important data products in the initial stages of community analysis is the relative composition table. Both mean percent composition and pooled percent composition values are given in these tables. Taxa which have highly clumped distributions generally have higher pooled than mean percent composition values. The mean percent composition, by scaling each sample to a 0-100 (percent) basis before calculating an overall mean percent composition, reduces the influence of outliers (i.e., very high values) in one or several of the samples. Cumulative percent composition (based on mean percent composition), frequency of occurrence, cumulutive abundance, mean abundance (per ha), and an index of dispersion are also presented for each taxa. Relative composition tables were calculated for each of the initial community data sets used in this study, and the results were used to describe overall community composition and to eliminate rare taxa from subsequent multivariate community analysis.

The principal multivariate technique used in this study was Two-Way Indicator Species Analysis (TWINSPAN). TWINSPAN is an efficient way to display all taxonomic data in one reduced data matrix, with the samples and taxa oriented along gradients of community structure (Hill 1979). In a TWINSPAN display, the samples are ordered across the top, and the taxa are ordered down the side. The numbers 1 through 5 in the display represent categories of increasing relative percent composition of each taxon at each sample (i.e., 1 = 0-2%, 2 = 2-5%, 3 = 5-10%, 4 = 10-20% and 5 = >20%). No numerical entry (a dash) indicates that the taxon was not found in the sample. The groupings of samples and taxa result from hierarchical dichotomizations of the samples and taxa, and represent a progressive refinement of the relationships of sample groups (i.e., habitat types) to taxa groups (i.e., communities).

Within this context, taxa selection was conducted, and final TWINSPAN displays were generated for the selected taxa. These final displays are presented in this report. Tables of environmental variables and/or community parameters and tables of correlations of taxa with environmental variables were produced wherever possible, with stations and taxa ordered in the same way as in the corresponding TWINSPAN analyses. The algorithm used to calculate species diversity was the Shannon-Weiner H', while Pielou's Index J' was used to calculate evenness and Margalef's Richness Index D was used to calculate species richness. Maps depicting the distributions of station groups were also produced where appropriate. These data products substantially enhance the interpretation of the results of the analysis.

In addition to TWINSPAN, factor analysis was used in the analysis of the Fishery Independent groundfish survey annual data. Factor analysis identifies independent trends in community structure (i.e., the factors), with the loading of each taxon on each factor indicating the importance of the taxon to the community trend embodied in the factor. Factor analysis produces scores for each factor in each sample, indicating the importance of the community trend embodied in the factor to the community structure of the sample. These scores were then used as dependent variables and were correlated with important environmental variables thought to influence nekton community dynamics in the Tuscaloosa Trend study area.

The results of these pattern analyses were used, in concert, to identify nekton communities (taxa groups) and habitats (sample or station groups) and the relationship of taxa groups to station groups (i.e., communities to habitats). These relationships were expressed as taxa group by station group coincidence tables. This information was then used to discretize the study area into (internally) homogeneous subregions. Once the subregions were defined, community, population and habitat variables were statistically characterized within each subregion. A detailed analysis of population dynamics of commercially important penaeid shrimp was then conducted within this spatial context.

2.5 RESULTS

2.5.1 SEAMAP Survey Data, Spring 1982

2.5.1.1 Relative Composition and Abundance

The community composition over all samples combined from the fall 1982 SEAMAP survey is summarized in Table 22. A total of 81,429 individuals representing 225 taxa were identified from 128 trawl samples. A hierarchical master taxonomic list for these 84 taxa is shown in Table 23.

In general, the overall community tended to be numerically dominated . by a relatively small number of taxa, with the vast majority of the taxa represented by only a few individuals each (Table 22). The nine most abundant taxa represented over 50% of the pooled percent composition, and the 32 most abundant taxa accounted for almost 80% of the cumulative mean percent composition. An examination of the frequency of occurrence values reveals that none of the taxa were widely distributed, with only <u>Penaeus</u> <u>aztecus</u> being collected in greater than 50% of the samples (frequency of occurrence = 0.578 in Table 22).

<u>Trachypenaeus</u> LPIL, <u>Squilla</u> LPIL, and <u>Stenotomus caprinus</u> each accounted for greater than 10% of the pooled percent composition. They had very clumped distributions (index of dispersion values of 725 to 1331), occurring on 48, 40 and 46% of the samples, respectively. Anchoa mitchilli accounted for 9.5% of the pooled percent composition, but occurred in only 26% of the samples (frequency of occurrence = 0.27). <u>Callinectes similis</u> and <u>Prionotus</u> rubio each accounted for greater than 3% of the pooled percent composition, and both occurred in 44% of the samples. Penaeus aztecus, Sicvonia brevirostris, Anchoa nasuta and Anchoa hepsetus each accounted for greater than 2% of the pooled percent composition. Anchoa nasuta had an especially clumped distribution, being found in only 6.3% Other numerically prominent taxa include Parapenaeus of the samples. LPIL, Micropogonias undulatus, Leiostomus xanthurus, Sicvonia dorsalis, Solenocera LPIL, Penaeus duorarum and Lolliguncula brevis, each accounting for greater than 1% of the pooled percent composition. Of these, Micropogonias undulatus and Lolliguncula brevis were found in greater than 40% of the samples, while Parapenaeus LPIL was found in only 6.3% of the samples. Other less numerically prominent taxa that occurred in greater than 30% of the samples included Sphoeroides parvus, Centropristis philadelphicus, Etropus crossotus, Cynoscion arenarius, Synodus foetens and Trichiurus lepturus.

2.5.1.2 Two-Way Indicator Species Analysis

An important application of the relative composition and abundance tables and other exploratory analysis techniques is in the selection of the taxa to be included in subsequent community analyses. Based on the results shown in Table 22, all taxa which occurred in two or fewer samples were removed from further consideration. This resulted in the removal of 75 taxa from the original list of 225 taxa, with the remaining 150 taxa subjected to further analysis. Two-Way Indicator Species Analyses (TWINSPAN) was then used to further reduce this suite of 150 taxa to a more workable level. The resulting ordered data matrix (whose values are one Table 22. Overall relative composition of demersal nekton taxa collected in single replicate samples at 128 stations in and around the Tuscaloosa Trend study area during the spring 1982 SEAMAP groundfish survey.

TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	INDEX OF DISPERSION
Trachypenaous	9.963	9.963	20.538	0.477	16724.	1331.72
Squille	5.772	15.735	15.244	0.398	29137.	1184.15
Stenotomus caprimus	9.446	25.181	11.417	0.461	38434 • 46170 •	724.59 506.55
Anchon mitchilli	12.109	37.290	9.500 4.516	0.266 0.438	49847.	205.86
Callinectes similis	3.950 1.668	41.240 42.908	3.581	/ 0.438	52763.	334.85
Prionotus rubio	3.296	46.204	2.809	0.578	55050.	124.75
Penaeus astecus Sicyonia brevirostris	2.256	48.460	2.212	0.320	56851.	249.30
Anchoa nasuta	2.290	50.750	2.198	0.063	58641.	940.36
Anchos hepsetus	5.792	56.541	2.039	0.445	60301.	89.78 209.89
Parapenaeus	1.677	58.218	1.598 1.487	0.063 0.430	61602. 62813.	235.21
Micropogon undulatus	2.152 2.476	60.371 62.847	1.287	0.305	63861.	141.86
Leiostomus xanthurus	0.910	63.757	1.259	0.234	64886.	86.15
Sicyonia dorsalis Solenocera	1.123	64.879	1.118	0.234	65796.	104.41
Penaeus duorarus	1.028	65.907	1.066	0.352	66664.	40.58
Lolliguncula brevis	4.243	70.150	1.038	0.445	67509.	29.62
Portunus gibbesii	0.607	70.757	0.939	0.242 0.359	68274. 68829.	82.21 38.32
Sphoeroides parvus	0.835 0.405	71.592 71.998	0.682 0.672	0.156	69376.	45.15
Bollmannia communia	0.894	72.891	0.651	0.336	69906.	20.19
Centropristis philadelphicus	2.026	74.918	0.619	0.219	70410.	46.87
Loligo pealeii Etropus crossotus	0.540	75.458	0.601	0.352	70899.	22.64
Lepophidium graellsi	0.471	75.929	0.553	0.273	71349.	35.57
Syscium gunteri	0.581	76.509	0.491	0.227	71749.	75.06 125.18
Doryteuthis pleii	0.702	77.211	0.484	0.047 0.102	72143. 72522.	99.43
Prionotus salmonicolor	0.534 0.963	77.745 78.708	0.465 0.452	0.375	72890.	28.64
Cynoscion arenarius	0.470	79.179	0.404	0.125	73219.	104.08
Syacium papillosum Diplectrum bivittatum	0.515	79.694	0.399	0.234	73544.	18.12
Syacium	0.092	79.786	0.386	0.063	73858.	196.08
Ovalipes	0.103	79.889	0.370	0.016	74159.	298.99
Asteroidea	0.926	80.815	0.368	0.141	7 4459. 74720.	83.56 59.80
Portunus spinicarpus	0.402	81.217	0.321 0.321	0.109 0.070	74981.	127.80
Squilla empusa	0.258 0.426	81.475 81.901	0.306	0.336	75230.	11.60
Synodus foetens	0.353	82.254	0.302	0.203	75476.	25.39
Prionotus tribulus Trichiurus lepturus	0.706	82.960	0.282	0.313	75706.	17.07
Steindachperia argentes	0.292	83.251	0.268	0.078	75924.	30.09
Luidia	0.666	83.917	0.264	0.055	76139.	73.18
Symphurus plagiusa	0.491	84.408	0.263	0.297 0.039	76353. 76566.	18.44 165.92
Aplysia	0.096	84.504 86.458	0.262 0.237	0.023	76759.	181.23
Mellita quinquiesperforata	1.953 0.956	87.413	0.228	0.133	76945.	45.62
Peprilus burti Prionotus roseus	0.263	87.677	0.211	0.039	77117.	66.70
Anchos	0.230	87.907	0.208	0.031	77286.	80.25
Lagodon rhomboides	0.227	88.133	0.199	0.070	77448.	49.59
Hoplunnis macrurus	0.188	88.321	0.195	0.164	77607. 77757.	10.95 28.11
Bellator militaria	0.185	88.505	0.184 0.177	0.070 0.219	77901.	49.48
Porichthys porosissimus	0.124 0.145	88.629 88.775	0.174	0.094	78043.	30.41
Scorpaena calcarata	0.145	88.938	0.174	0.078	78185.	70.87
Serranus atrobranchus <u>Halieutichthys aculeatus</u>	0.185	89.123	0.169	0.133	78323.	33.34
Menticirrhus americanus	0.350	89.473	0.168	0.133	78460.	25.02
Callinectes sapidus	1.865	91.338	0.152	0.203	78584.	13.80
Centropristis ocyurus	0.219	91.558	0.138	0.070	78696. 78799.	40.31 39.06
Scyphozoe	0.199	91.756	0.126 0.120	0.039 0.203	78897.	9.49
Chloroscombrus chrysurus	1.880 0.123	93.637 93.759	0.120	0.039	78993.	74.06
Stellifer lanceolatus	0.142	93.901	0.115	0.023	79087.	51.09
Portunus Saurida brasiliensis	0.123	94.024	0.115	0.133	79181.	33.33
Eucinostomus gula	0.043	94.068	0.114	0.039	79274.	36.28
Pristipomoides aquilonaria	0.089	94.157	0.096	0.078	79352.	14.87
Penaeus setiferus	0.128	94.285	0.093	0.188	79428. 79502.	7.01 12.17
Citherichthys spilopterus	0.124	94.409	0.091 0.087	0.164 0.016	79573.	63.39
Acestes americanus	0.091 0.061	94.500 94.561	0.080	0.070	79638.	16.50
Ophichthus gomesii Manaamula isguana	0.138	94.698	0.076	0.102	79700.	12.65
Harengula jaguana						

Table 22. Continued.

· ·

TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	INDEX OF
Arius felis	1.835	96.534	0.075	0.164	79761.	5.29
Macona constricta	0.117	96.650	0.075	0.031	79822.	21.68
Brevoortia patronus	0.033	96.684	0.074	0.039	79882.	37.89
Lutjanus campechanus	0.183	96.867	0.074	0.070	79942.	12.50
Cynoscion nothus	0.138	97.005	0.064	0.070	79994.	20.79
Larinus fasciatus Prionotus carolinus	0.103 0.100	97.108 97.207	0.056 0.054	0.109	80040. 80084.	5.16
Prionotus scitulus	0.067	97.275	0.054	0.047 0.039	80128.	18.02 19.54
Cyclopsetta chittendeni	0.047	97.322	0.053	0.094	80171	4.79
Prionotus	0.029	97.351	0.053	0.016	80214.	23.31
Prionotus paralatus	0.083	97.434	0.050	0.039	80255.	16.76
Synodus poey1	0.054	97.488	0.048	0.031	80294.	15.53
Cynosoion	0.044	97.531	0.045	0.039	80331.	10.09
Lepophidium Trachinocephalus myops	0.037 0.056	97.569 97.625	0.044 0.044	0.078 0.047	80367. 80403.	4.70 17.75
Pagrus pagrus	0.049	97.673	0.044	0.031	80439	20.49
Leguipecten	0.060	97.733	0.039	0.031	80471.	12.60
Antennarius radiosus	0.031	97.764	0.038	0.086	80502.	4.60
Peprilus paru	0.096	97.860	0.037	0.086	80532.	4.80
Hellitidae	0.091	97.951	0.036	0.055	80561.	7.04
Orthopristis chrysopters	0.119	98.070	0.033	0.047	80588.	6.02
Urophycis regius Calappa sulcata	0.044 0.025	98.114 98.140	0.032 0.031	0.016 0.094	80614. 80639.	12.90 3.23
Monacanthus hispidus	0.048	98.188	0.029	0.078	80663.	3.25
Ascidiaces	0.050	98.237	0.028	0.016	80686	16.34
Luidia clathrata	0.041	98.278	0.028	0.016	80709.	11.61
Metapenaeopsis goodei	0.056	98.334	0.028	0.008	80732.	23.00
Serraniculus pumilio	0.031	98.365	0.026	0.031	80753.	5.74
Brotula barbata	0.009	98.374	0.026	0.047	80774.	7.56
Dipleatrum formosum Porifera	0.021 0.048	98.394 98.443	0.026 0.025	0.016 0.008	80795. 80815.	19.08 20.00
Hepatus epheliticus	0.028	98.471	0.025	0.078	80835.	20.00
Ogcocephalus	0.041	98.511	0.023	0.016	80854.	12.63
Scorpaena brasiliensis	0.037	98.548	0.020	0.016	80870.	9.07
Prionotus stearnai	0.032	98.580	0.020	0.055	80886.	2.90
Urophycis floridanus	0.025	98.604	0.018	0.047	80901.	2.91
Caulolatilus intermedius Sphoeroides dorsalis	0.004 0.021	98.608 98.630	0.018 0.017	0.016 0.031	. 80916.	10.16
Gymnachirus texae	0.021	98.650	0.017	0.031	80930. 80944.	5.79 4.07
Synodus intermedius	0.022	98.672	0.016	0.023	80957.	4.32
Anasiaus latus	0.020	98.692	0.016	0.031	80970.	3.70
Lepophidium jeannae	0.029	98.720	0.016	0.031	80 983 .	3.54
Ophidion welshi	0.020	98.740	0.015	0.063	80995.	1.75
Scyllarus	0.019	98.759	0.015	0.016	81007.	6.62
Ophidion gravi Ophidion holbrooki	0.016 0.017	98.775 98.792	0.015 0.015	0.008 0.016	81019. 81031.	12.00
Decepterus punctatus	0.077	98.869	0.015	0.039	81043.	2.59
Raja eglanteria	0.022	98.892	0.015	0.055	81055.	2.09
Anchoviella	0.012	98.903	0.015	0.023	81067.	4.10
Ficus papyratia	0.017	98.920	0.015	0.008	81079.	12.00
Urophycis cirratus	0.018	98.939	0.014	0.016	81090.	5.87
Congrina flava Portugus spinimenus	0.009 0.015	98.947 98.963	0.014 0.014	0.039	81101. 81112.	2.75
Polydactylus octoneaus	0.123	99.086	0.014	0.031 0.031	81123.	6.05 3.85
Trachurus lathami	0.023	99.109	0.012	0.031	81133.	2.94
Ophiuroidea	0.024	99.133	0.012	0.008	81143.	10.00
Scyllarides	0.023	99.156	0.012	0.023	81153.	6.57
Kathetostoma albigutta	0.022	99.178	0.011	0.023	81162.	3.85
Trinectes maculatus Scomberomorus maculatus	0.090 0.056	99.268 99.324	0.011	0.023	81171.	5.64
Bairdiella chrysura	0.056	99.324	0.010 0.010	0.055 0.031	81179. 81187.	1.20 3.46
Sardinella anchovia	0.016	99.355	0.010	0.023	81195.	3.21
Dorosoma petenense	0.004	99.360	0.010	0.008	81203.	8.00
Upeneus parvus	0.010	99.370	0.010	0.023	81211.	2.71
Hullus auratus	0.009	99.378	0.009	0.016	81218.	5.27
Chilomycterus schoepfi Rohinoiden	0.141	99.520	0.009	0.039	81225.	1.82
Echinoidea Sphyraena borealis	0.017 0.004	99.537 99.540	0.009 0.009	0.008 0.008	81232. 81239.	7.00 7.00
Rhinoptera bonasus	0.031	99.572	0.009	0.023	81245.	2.98
Chaetodipterus faber	0.025	99.597	0.007	0.008	81251.	6.00
•						

Table 22. Continued.

TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	INDEX OF DISPERSION
Gymnothorex	0.015	99.611	0.007	0.008	81257.	6.00
Liphopeneus kroyeri	0.002	99.613	0.006	0.008	81262.	5.00
Selene setapinnis	0.014	99.627	0.006	0.031	81267.	1.37
Bregnaceros atlanticus	0.006	99.632	0.006	0.031	81272.	1.37 2.18
Raninoides louisianensis	0.008 0.004	99.641 99.645	0.006 0.005	0.023 0.016	81277. 81281.	2.49
Prionotus ophryss .	0.004	99.651	0.005	0.023	81285.	1.48
Caranx hippos Anchoa lyolepis	0.006	99.657	0.005	0.016	81289.	2.49
Cantherus cancellarius	0.008	99.665	0.005	0.008	81293.	4.00
Anchoviella perfasciata	0.003	99.669	0.005	0.016	81297.	2.49
Otophidium omostigmum	0.012	99.680	0.005	0.016	81301.	2.49
Loligo pleii	0.021	99.701	0.005	0.008 0.016	81305. 81308.	4.00 1.66
Priacanthus arenatus	0.011 0.001	99.713 99.713	0.004	0.008	81311.	3.00
Ogeocephalus radiatus Archosargus probatocephalus	0.007	99.720	0.004	0.023	81314.	0.98
Caridea	0.004	99.724	0.004	0.008	81317.	3.00
Balistes caprisous	0.004	99.729	0.004	0.016	81320.	1.66
Symphurus diomedianus	0.004	99.733	0.004	0.008	81323.	3.00
Caranx fusus	0.003	99.735	0.004	800.0	81326.	3.00 3.00
Gymnothorax saxicola	0.001	99.736 99.738	0.004 0.004	0.008	81329. 81332.	3.00
Rhomboplites aurorubens	0.002 0.004	99.730 99.742	0.004	0.016	81335.	1.66
Citherichthys macrops Symphurus civitatus	0.006	99.747	0.004	800.0	81338.	3.00
Squilla chydaea	0.002	99.749	0.004	0.008	81341.	3.00
Monacanthus ciliatus	0.007	99.756	0.004	0.008	81344.	3.00
Equetus umbrosus	0.002	99.758	0.004	0.008	81347.	3.00
Clibanarius	0.001	99.759	0.002	0.008	81349.	2.00 0.99
Calappa flammen	0.004	99.764 99.766	0.002	0.016 0.008	81351. 81353.	2.00
Clypester Muricidae	0.002	99.768	0.002	0.016	81355.	0.99
Berbetia candida	0.004	99.772	0.002	0.008	81357.	2.00
Bellator	0.004	99.776	0.002	0.008-	81359.	2.00
Haemulon aurolineatum	0.002	99.777	0.002	0.008	81361.	2.00
Sphyrna lewini	0.009	99.787	0.002	0.016	81363. 81365.	0.99
Ogcocephalus nasutus	0.003	99.790 99.795	0.002	0.008 0.008	81367.	2.00
Scorpa ena Ancylopsetta quadrocellata	0.005	99.796	0.002	0.016	81369.	0.99
Parthenope	0.006	99.802	0.002	0.016	81371.	0.99
Gymnothorax coellatus	0.006	99.808	0.002	0.008	81373.	2.00
Stenorhynchus seticornis	0.005	99.813	0.002	0.008	81375.	2.00
Podochela	0.003	99.816	0.002	0.008	81377. 81379.	2.00 0.99
Lagocephalus laevigatus	0.007 0.002	99.822 99.824	0.002	0.008	81381.	2.00
Aluterus heudeloti	0.002	99.825	0.002	0.016	81383.	0.99
Paralichthys lethostigms. Pagurus	0.003	99.828	0.002	0.016	81385.	0.99
Opisthoness oglinum	0.006	99.835	0.002	0.016	81387.	0.99
Rypticus maculatus	0.005	99.840	0.002	0.008	81389.	2.00
Fistularia tabacaria	0.001	99.841	0.001	0.008 0.008	81390. 81391.	1.00
Panulirus argus	0.002 0.001	99.843 99.843	0.001 0.001	0.008	81392.	1.00
Monacanthus Busycon canaliculatus	0.002	99.845	0.001	0.008	81393.	1.00
Rachycentron canadum	0.001	99.846	0.001	0.008	81394.	1.00
Cyclopsetta fimbriata	0.002	99.848	0.001	0.008	81395.	1.00
Ogoocephalidae	0.002	99.851	0.001	0.008	81396.	1.00
Metoporhaphis calcarata	0.029	99.879	0.001 0.001	0.008	81397. 81398.	1.00
Gymnura miorura	0.011 0.002	99.890 99.892	0.001	0.008	81399.	1.00
Busycon spiratum Pristigenys alta	0.002	99.895	0.001	0.008	81400.	1.00
Clibanarius vittatus	0.030	99.925	0.001	0.008	81401.	1.00
Scombridae	0.002	99.927	0.001	0.008	81402.	1.00
Persephona aquilonaria	0.002	99.929	0.001	0.008	81403. 81404	1.00
Pitar cordatus	0.002	99.931	0.001 0.001	0.008 0.008	81404. 81405.	1.00
Cypselurus heterurus	0.002 0.007	99.934 99.941	0.001	0.008	81406.	1.00
Octopus vulgaris Hemipteronotus novacula	0.002	99.943	0.001	0.008	81407.	1.00
Hippocampus	0.001	99.944	0.001	0.008	81408.	1.00
Selene vomer	0.012	99.956	0.001	800.0	81409.	1.00
Rhithropanopeus harrisii	0.003	99.959	0.001	0.008	81410.	1.00
Persephona mediterranea	0.002	99.962	0.001	800.0 800.0	81411. 81412.	1.00 1.00
Macrocoaloma	0.002	99.964	0.001	v.vva	U1416.	1.00

Table 22. Continued.

TAXON NAME	MEAN Percent Confosition	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	INDEX OF DISPERSION
Behiophis	0.002	99.966	0.001	0.008	81413.	1.00
Acanthostracion quadricornis	0.002	99.969	0.001	0.008	81414.	1.00
Ovalipes floridanus	0.003	99.972	0.001	0.008	81415.	1.00
Ovalipes guadulpensis	0.001	99.973	0.001	0.008	81416.	1.00
Scyllarides modifer	0.001	99.974	0.001	0.008	81417.	1.00
Parthenope serrata	0.001	99.975	0.001	0.008	81418.	1.00
Libinia	0.001	99.976	0.001	0.008	81419.	1.00
Lutjanidae	0.011	99.987	0.001	0.008	81420.	1.00
Hoplunnis	0.001	99.988	0.001	0.008	81421.	1.00
Leiolambrus mitidus	0.002	99.990	0.001	0.008	81422.	1.00
Gastropetta frontalis	0.002	99.993	0.001	0.008	81423.	1.00
Paguridae	0.001	99.994	0.001	0.008	81424.	1.00
Mustelus canis	0.002	99.995	0.001	0.008	81425.	1.00
Chondrichthyes	0.000	99.996	0.001	0.008	81426.	1.00
Cassis	0.002	99.998	0.001	0.008	81427.	1.00
Gorgonildae	0.001	99.999	0.001	0.008	81428.	1.00
Dasyatis sabina	0.001	100.000	0.001	0.008	81429.	1.00
SAMPLE SUMMARY: SAMPLES = 128	TOTAL TAXA :=	225				

1

Table 23. Hierarchical list of demersal nekton taxa collected in single replicate samples at 128 stations in and around the Tuscaloosa Trend study area during the spring 1982 SEAMAP groundfish survey.

	Arthropoda	58
	Crustacea	61
	Decapoda	6175
	Penaeidae	617701
	Metapenaeopsis goodei	6177010301
	Parapenaeus	61770105
	Penaeus aztecus	6177010101
	Penaeus duorarum	6177010102
*	Penaeus setiferus	6177010103
#	Sicyonia	61770104
	Sicyonia brevirostris	6177010401
	Sicyonia dorsalis	6177010402
	Sicyonia stimpsoni	6177010406
	Solenocera	61770106
*	Solenocera vioscai	6177010602
#	Trachypenaeus	61770102
	Xiphopeneus kroyeri	6177010701
	Sergestidae	617702
	Acestes americanus	6177020101
	Albuneidae	618313
	Albunea paretii	6183130201
# 1	Scyllaridae	618202
	Scyllarides	61820202
#	Scyllarides nodifer	6182020202
#	Scyllarus	61820201
	Paguridae	618306
#	Clibanarius	61830607
	Clibanarius vittatus	6183060701
	Pagurus	61830602
#	Goneplacidae	618905
	Portunidae	618901
#	Arenaeus cribrarius	6189010101
	Callinectes danae	6189010303
	Callinectes sapidus	6189010301
#	Callinectes similis	6189010302
#	Ovalipes	61890105
*	Ovalipes floridanus	6189010501
*	Ovalipes guadulpensis	61890105??
#	Ovalipes ocellatus	6189010502
Ħ	Portunus	61890106
	Portunus gibbesii	6189010601
	Portunus sayi	6189010602
	Portunus spinicarpus	6189010603
-	Portunus spinimanus	6189010604
	Xanthidae	618902
	Menippe mercenaria	6189021301
	Pilumnus dasypodus	6189021405
	Rhithropanopeus harrisii	6189020901
	Dromiidae	618502
*	Dromidia antillensis	6185020301

	Majidae	618701
-	Anasimus latus	6187012001
-	Libinia	61870109
-	Libinia emarginata	6187010902
- #	Macrocoeloma	61870121
	Metoporhaphis calcarata	6187011801
	Podochela	61870119
	Stenocionops spinosissima	6187012403
-	Stenocionops spinosissima Stenochynchus seticornis	6187011701
	Parthenopidae	618702
	Leiolambrus nitidus	6187020201
	Parthenope	61870201
	Parthenope serrata	6187020104
	Calappidae	618602
	Calappa flammea	6186020101
	Calappa sulcata	6186020102
	Hepatus epheliticus	6186020201
	Leucosiidae	618603
	Persephona aquilonaris	6186030103
#	Persephona mediterranea	6186030104
	Persephona punctata	6186030101
	Raninidae	618604
	Raninoides louisianensis	6186040201
	Caridea	6179
	Palaemonidae	617911
	Macrobrachium ohione	6179110201
	Stomatopoda	6191
	Squillidae	619101
	Squilla	61910101
	Squilla chydaea	6191010102
	Squilla empusa	6191010101
	Palinura	6182
	Palinuridae	618201
	Panulirus argus	6182010101
	Mollusca	5085
	Bivalvia	55
	Arcoida	5506
	Arcidae	550601
	Barbatia candida	5506010502
	Mytiloida	5507
	Pinnidae	550702
	Atrina serrata	5507020102
	Pterioida	5508
	Pectinidae	550905
#	Aequipecten	55090508
*	Aequipecten gibbus	55090508??
	Amusium papyraceum	5509051101
	Veneroida	5515
	Tellinidae	551531
*	Macoma constricta	5515310121
	Veneridae	551547
	Chione latilirata	5515471506
*	Pitar cordatus	5515471202

. _ ---

Table	e 23.	Continued.			
	Cepha	lopoda			57
		uthidida		5	5705
		opsida		5	5706
	-	oliginidae		1	570601
*		Doryteuthis pl	leii	5	5706010301
#		Loligo pealei:		5	5706010102
#		Loligo pleii		-	5706010103
#		Lolliguncula h	previs	5	5706010201
	Octor	odida		5	5708
	C)etopodidae	•	-	570801
÷		Octopus vulgar	ris	5	5708010202
	Gastr	opoda		-	51
	Anasr	oidea			5124
	1	lplysiidae			512402
*		Aplysia		-	51240202
	Mes	sogastropoda			5103
	C	Cassididae			510377
*		Cassis		!	51037702
	(Cymatiidae			510378
		Distorsio ela	thrata	1	5103780301
	E	licidae		!	510381
#		Ficus papyrat:	La	ļ	51038101??
	I	amellariidae			510366
#		Lamellaria			51036601
	1	Naticidae			510376
#		Polinices dup	Licatus		5103760407
#		Sinum			51037605
	1	Fonnidae			510380
#		Tonna galea			5103800101
		ogastropoda			5104
	1	Buccinidae			510504
#		Cantharus can	cellarius		5105040401
#	1	luricidae			510501
#		Thais haemast	oma		5105010801
#	Opt	lsthobranchia			5181
#		libranchia			5127
		enoglossa			5105
	1	Melongenidae			510507
#		Busycon canal			5105070102
*		Busycon spira	tum		5105070106
E	Ichinoo	iermata			81
	Arba	cioida			8147
	1	Arbaciidae			814701
		Arbacia punct	ulata		8147010101
	Aste	roidea			8104
	Pa	rillosida			8106
		Astropectinidae			810601
#		Astropecten			81060105
	Sp:	inulosida			8112
	ĺ ĺ	Clypeasteridae			815301
		Clypeaster			81530101

z

* * *	Echinoidea Clypeasteroida Mellitidae Mellita quinquiesperforata Holothuroidea Ophiuroidea Stelleroidea Platyasterida Luidiidae Luidiia Luidia clathrata	8136 8152 815504 8155040101 8170 8120 8101 8105 810501 81050101 810501012
#	Porifera	36
	Cnidaria	37
#	Anthozoa	3740
	Pennatulacea	3752
	Renillidae	375303
	Renilla mulleri	3753030101
#	Pennatulidae	375402
Ħ	Scyphozoa	3730
	Semaeostomeae	3734
	Pelagiidae	373401
	Chrysaora quinquecirrha	. 3734010203
	Ulmaridae	373403
*	Aurelia	37340302
•	Ectoprocta	78
	Chordata	8388
	Antennarioidei	8787
	Antennariidae	878702
	Antennarius radiosus	8787020203
	Ogcocephalidae	878704
	Halieutichthys aculeatus	8787040301
	Ogcocephalus	87870401
	Ogcocephalus nasutus	8787040103
	Ogcocephalus parvus	8787040105
	Ogcocephalus radiatus	8787040106
#	Zalieutes mcgintyi	8787040401
	Aulostomoidei	8819
	Fistulariidae	881902
	Fistularia tabacaria	8819020101

		2262
	Balistoidei	8860
	Balistidae	886002 8860020102
*	Aluterus heudeloti	8860020102
	Aluterus schoepfi Aluterus scriptus	8860020104
	Balistes capriscus	8860020201
-	Canthidermis sufflamen	8860020502
-	Monacanthus	88600207
	Monacanthus ciliatus	8860020701
	Monacanthus hispidus	8860020703
	Monacanthus setifer	8860020704
	Ostraciontidae	886003
*	Acanthostracion quadricornis	8860030201
	Batrachoidiformes	8783
	Batrachoididae	878301
	Porichthys porosissimus	8783010106
#	Chondrichthyes	8701
	Exocoetoidei	8803
	Exocoetidae	880301
	Cypselurus heterurus	8803010101
	Hirundichthys rondeleti	8803010903
	Parexocoetus brachypterus	8803011101
#	Prognichthys gibbifrons	8803011201
	Labroidei	8839
	Labridae	883 90 1
Ħ	Hemipteronotus novacula	883 90 1080 2
	Lophiodei	8786
	Lophiidae	878601
	Lophius	87860101
	Myctophoidei	8762
	Synodontidae	876202
#	Saurida brasiliensis	8762020301
#	Synodus foetens	8762020101
#	Synodus intermedius	8762020102
ŧ	Synodus poeyi	8762020104
#	Trachinocephalus	87620204
#	Trachinocephalus myops	8762020401
	Osteichthyes	87 17
	Anguilliformes	8740
	Congridae	874112
#	Congrina flava	8741120302
*	Ophichthus gomesii	8741131001
Ħ	Ophichthus ocellatus	8741131003
	Muraenesocidae	874108
#	Hoplunnis	87410801
	Hoplunnis macrurus	8741080102
-	Muraenidae	874105
	Gymnothorax	87410504
	Gymnothorax ocellatus	8741050405
•	Gymnothorax saxicola	8741050407
	Ophichthidae	874113
	Echiophis	874113??
*	Myrophis punctatus	8741130802

Table 23. Continued.

	Clupeiformes		
	Clupeidae		
*	Brevoortia patronus		
-	Dorosoma petenense Etrumeus teres		
-			
-	Harengula jaguana		
-	Opisthonema oglinum Sardinella anchovia		
-			
*	Engraulidae Anchoa		
*	Anchoa hepsetus		
-	Anchoa lyolepis		
-	Anchoa mitchilli		
-	Anchoa nasuta		
*	Anchoviella		
*	Anchoviella perfasciata		
-	Gadiformes		
	Bregmacerotidae Bregmaceros atlanticus		
-	Gadidae		
*	Urophycis cirratus		
	Urophycis floridanus		
#	Urophycis regius		
*	Merlucciidae		
*	Steindachneria argentea		
	Moridae		
#	Physiculus fulvus		
	Ophidiidae		
	Brotula barbata		
*	Lepophidium		
*	Lepophidium brevibarbe		
*	Lepophidium graellsi		
+	Lepophidium jeannae		
	Neobythites gillii		
*	Ophidion grayi		
*	Ophidion holbrooki		
*	Ophidion welshi		
#	Otophidium omostigmum		
	Perciformes		
	Callionymidae		
¥	Callionymus agassizi		
	Carangidae		
#	Caranx		
*	Caranx fusus		
*	Caranx hippos		
#	Caranx latus		
#	Chloroscombrus		
*	Chloroscombrus chrysurus		
*	Decapterus punctatus		
	Selar crumenophthalmus		
*	Selene setapinnis		
	Selene vomer		
-	Trachurus lathami		

Table 23. Continued.

.

		994701
Ħ	Gobildae	884701 8847011601
Ħ	Bollmannia communis	8847010501
Ħ	Gobionellus boleosoma	8847010502
#	Gobionellus hastatus	883518
	Apogonidae	8835180107
	Apogon maculatus	883522
	Branchiostegidae	
	Caulolatilus intermedius	8835220103
	Chaetodonidae	883555
	Chaetodon ocellatus	8835550101
	Coryphaenidae	883529
*	Coryphaena	88352901
	Echeneidae	883527
#	Echeneis naucrates	8835270201
	Ephippidae	883552
	Chaetodipterus faber	8835520101
	Gerridae	883539
#	Eucinostomus argenteus	8835390101
#	Eucinostomus gula	8835390102
	Grammistidae	883503
#	Rypticus maculatus	8835030204
#	Lutjanidae	883536
*	Lutjanus campechanus	8835360107
*	Lutjanus synagris	8835360112
*	Pristipomoides aquilonaris	8835360701
	Rhomboplites aurorubens	8835360501
	Mullidae	883545 883545
	Upeneus parvus	8835450402 883540
-	Pomadasyidae	883540 8835400101
	Haemulon aurolineatum	8835400201
	Orthopristis chrysoptera	883517
_	Priacanthidae	8835170101
	Priacanthus arenatus	8835170201
	Pristigenys alta	883526
	Rachycentridae	8835260101
•	Rachycentron canadum	883544
-	Sciaenidae	8835440301
	Bairdiella chrysura	88354401
	Cynoscion	8835440106
*	Cynoscion arenarius	8835440103
#	Cynoscion nothus	8835441202
#	Equetus lanceolatus	8835441202
	Equetus umbrosus	8835440501
	Larimus fasciatus	8835440401
	Leiostomus xanthurus	8835440601
	Menticirrhus americanus	8835440602
	Menticirrhus littoralis	8835440002
	Micropogonias undulatus	8835440701
-	Stellifer lanceolatus	0055441001

--

÷

•	Serranidae Centropristis ocyurus	883502 8835020304
	Centropristis philadelphicus	8835020305
*	Diplectrum bivittatum	8835021005
*	Diplectrum formosum	8835021002
*	Epinephelus flavolimbatus	8835020405
*	Hemanthias leptus	8835021201
	Serraniculus pumilio	8835022201
*	Serranus atrobranchus	8835022302
*	Serranus phoebe	8835022308
#	Serranus subligarius	8835022309
	Sparidae	883543
#	Archosargus probatocephalus	8835430301
#	Calamus leucosteus	8835430505
#	Calamus nodosus	8835430506
	Lagodon rhomboides	8835430201
#	Pagrus pagrus	8835430601
#	Stenotomus caprinus	8835430102
#	Scombridae	885003
¥	Scomberomorus maculatus	8850030502
#	Cynoglossidae	885802
	Symphurus civitatus	8858020102
ŧ.	Symphurus diomedianus	8858020103
#	Symphurus plagiusa	8858020101
	Soleidae	885801
#	Achirus lineatus	8858010202
#	Gymnachirus texae	8858010303
	Trinectes maculatus	8858010101
	Pleuronectoidei	8857
-	Bothidae	885703
*	Ancylopsetta dilecta	8857030503
*	Ancylopsetta quadrocellata	8857030506
*	Bothus	88570306
*	Bothus ocellatus	8857030603
	Citharichthys cornutus	8857030106 8857030109
	Citharichthys macrops	8857030110
	Citharichthys spilopterus	8857030801
	Cyclopsetta chittendeni Cyclopsetta fimbriata	8857030802
-	Etropus crossotus	8857030201
-	Gastropsetta frontalis	8857031001
-	Monolene sessilicauda	8857031204
-	Paralichthys lethostigma	8857030304
-	Syacium	88570313
-	Syacium gunteri	8857031301
	Syacium micrurum	8857031302
	Syacium papillosum	8857031303
	Trichopsetta ventralis	8857031404
	Polynemoidei	8838
	Polydactylus octonemus	8838010101

Table	23. Continued.	
	Rajiformes	8713
	Dasyatidae	87 1305
*	Dasyatis sabina	87 13050 105
#	Gymnura micrura	87 13 05 02 02
	Myliobatidae	87 1307
#	Rhinoptera bonasus	87 1307 030 1
	Rajidae	87 1304
	Raja eglanteria	87 13040 1 13
	Raja texana	87 13040 133
	Torpedinidae	87 13 03
	Narcine brasiliensis	87 1303040 1
	Scombroidei	8850
	Trichiuridae	885002
*	Trichiurus lepturus	8850020201
	Scorpaenoidei	8826
	Scorpaenidae	882601
	Neomerinthe hemingwayi	8826010402
	Pontinus longispinis	8826010503
	Scorpaena	88260106
	Scorpaena brasiliensis	8826010605
	Scorpaena calcarata	8826010606
*	Scorpaena plumieri	8826010614
*	Triglidae	882602
	Bellator	88260202
	Bellator militaris	8826020203
	Peristedion	88260203
	Peristedion miniatum	8826020307
	Prionotus	88260201
*	Prionotus carolinus	8826020101
*	Prionotus martis	8826020111
	Prionotus ophryas	8826020113
	Prionotus paralatus	8826020114
	Prionotus roseus	8826020117
	Prionotus rubio	8826020118
	Prionotus salmonicolor	8826020120
	Prionotus scitulus	8826020103
	Prionotus stearnsi	8826020121
	Prionotus tribulus	8826020104
	Scyliorhinoidei	8708
	Carcharhinidae	870802
	Mullus auratus	8835450201
*	Mustelus canis	8708020401
*	Rhizoprionodon terraenovae	8708020301
	Sphyrnidae	870803
*	Sphyrna lewini	8708030103
	Siluriformes	8777
	Ariidae	877718
	Arius felis	8777180202
*	Bagre marinus	8777180101
	Sphyraenoidei	8837
	Sphyraenidae	883701
*	Sphyraena borealis	8837010102

=

•

	Stromateoidei	8851
	Stromateidae	885103
*	Peprilus burti	8851030104
#	Peprilus paru	8851030102
	Syngnathoidei	8820
	Syngnathidae	882002
	Hippocampus	88200202
	Syngnathus scovelli	8820020113
	Tetradontoidei	8861
	Diodontidae	886 103
	Chilomycterus schoepfi	8861030101
	Tetraodontidae	886101
	Lagocephalus laevigatus	8861010101
	Sphoeroides dorsalis	8861010205
	Sphoeroides nephelus	8861010208
-		8861010210
	Sphoeroides parvus	8861010211
W	Sphoeroides spengleri	8840
	Trachinoidei	
	Opistognathidae	884002
#	Lonchopisthus lindneri	8840020102
	Uranoscopidae	884014
#	Astroscopus y-graecum	8840140102
*	Ascidiacea	8401
	Miscellaneous taxa	
	Gorgoniidae	375105
·		FRANCA

Gorgoniidae	
Sepiolidae	
Rossia	

•

•

· .

 of the five categories of relative percent composition of each taxa counts in each sample) provided the context for assessing the ecological trends of these taxa, and the identification and exclusion of taxa that did not show meaningful trends. This initial TWINSPAN display is not presented in this report. Of the 150 numerically abundant taxa selected from the relative composition analysis, 84 taxa were ultimately selected for inclusion in the detailed community analysis.

After the suite of 84 taxa were selected, a final TWINSPAN analysis was conducted, resulting in the ordered two-way display shown as Figure 11. Table 24 presents values for environmental variables and community parameters in each sample, with the samples ordered and grouped in the same manner as in the corresponding TWINSPAN display (Figure 11). Table 25 presents the Pearson product-moment correlation coefficients of the density of each taxon and the values for the community indices in each sample with each environmental variable, with the taxa ordered and grouped in the same manner as in the corresponding TWINSPAN display. Figure 12 presents a map showing the affinities of the 128 samples to the most meaningful TWINSPAN sample groups in Figure 11. Examination of Figures 11 and 12 and Tables 24 and 25 in concert helps identify environmental trends most related to the ordering and grouping of the samples and taxa.

These results indicated that the ordering of samples across the top of the TWINSPAN display (Figure 11) were related to depth, hydrographic conditions and geography. The samples on the far right of the TWINSPAN display (Sample Group II in Figures 11 and 12 and Table 24) were generally collected at the shallowest depth stations (2 to 14 m), and were generally characterized by the lowest salinities (range from 6.4 to 35.5 ppt) and the highest temperatures (range from 23.0 to 31.7° C). Within Group II, there did not appear to be much difference in the depth, hydrographic conditions or geographical location of the samples in Groups IIA1 and IIB2 (Figure 12 and Table 24).

In general, the samples in Station Group II had lower total numbers of taxa and lower values for community parameters compared to those in Station Group I (Table 24). Most of those in Station Group IIB were very depauperate. Numbers of individuals were more variable than were values for community parameters within both Groups I and II, but Group II included a much larger number of samples with very few individuals (Table 24).

The samples in Sample Group I were, for the most part, collected in deeper waters (depth ranged from 9 to 90 m), and were generally characterized by higher salinities (salinity ranged from 31.0 to 37.7 ppt) and lower temperatures (temperature ranged from 17.6 to 27.8° C). Within Group I, samples in the two outside groups (Groups IA1 and IB2) included the majority of the samples from the deep water stations while those in Groups IA2 and IB1 were mainly collected from middepth stations. Of the deep water stations, those in Group IA1 were mainly collected east of the Mississippi River outfall, while those in Group IB2 were collected mainly west of the delta. Similarly, those in Group IA2 were collected mainly from the eastern and central regions of the study area, while those in Group IB1 were mainly collected from the western and central regions (Figures 11 and 12 and Table 24). Therefore, within Group I, the major trend (separating Group IA from Group IB) appear to be geographical, and within Groups IA and IB, the differences were most related to depth.

SAMPLE GROUPS

...

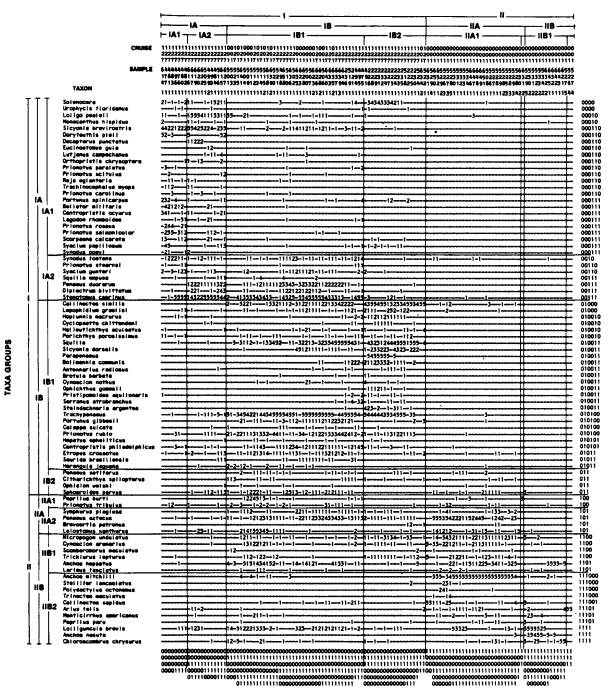


Figure 11. Ordered two-way display resulting from TWINSPAN analysis of relative abundances of 84 selected demersal mekton taxa collected in single replicate samples at 128 stations in and around the Tuscaloosa Trend study area during the spring 1982 SEAMAP groundfish survey.

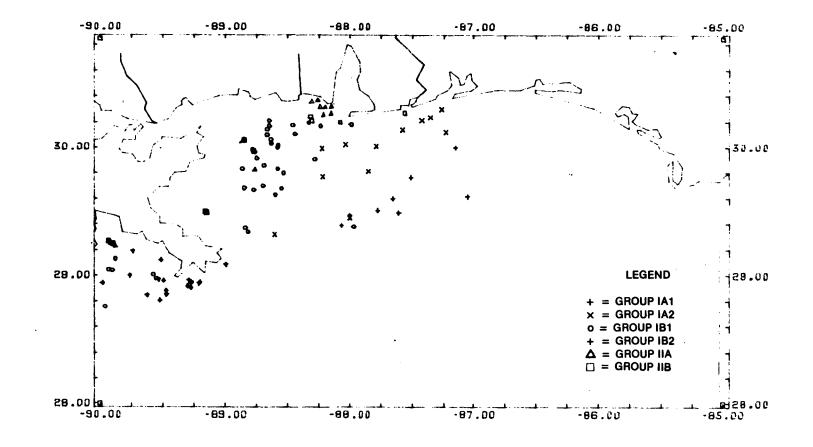


Figure 12. Map of the SEAMAP groundfish study area showing the membership of the samples to the six most meaningful groups resulting from TWINSPAN analysis of relative abundance of 84 selected demersal nekton taxa collected in single replicate samples at 128 stations in and around the Tuscaloosa Trend study area during the spring 1982 SEAMAP groundfish survey.

Table 24. Ordered table of environmental and community parameters for single replicate samples collected at 128 stations in and around the Tuscaloosa Trend study area during the spring 1982 SEAMAP groundfish survey.

									Bottom Dissolved	Bottan	Bottom	Total	Total			
		-	127	618 1	Date of.combs	Latitude (D000083) 30 00 00	(D000053) 87 09 00	Depth (m) 37	Catyges (pps) 7.0	Salinity (ppt) 35.77	Tesperature (oC) 19.78	Taxa 45	Count	Diversity (J*)	Evennes (H') 0.794	Lichoess (D) 7.616
			127	477 1 481 1	07 JUNE2 07 JUNE2	29 29 24 29 36 06	87 36 30 87 39 10	64 46	6.4	36.06	19.00 20.56	29 21	323 392 550	3.023 2.691 2.103	0.799	4.689
		IÅ1	127 127 127	483 1 496 1 476 1	06JU382 04JU382 05JU382	29 46 06 29 23 24 29 28 06	87 30 36 88 04 06 87 59 59	34 73 50	6.5 4.6 4.6	35.19 36.33 36.22	21,11 18,78 20,00	18 20 15	547 592 526	2.140 1.715 1.119	0.740 0.572 0.413	2.697 2.976 2.235
			127 127	480 1 482 1	05JUNB2 05JUNB2	29 30 30 29 36 54	87 46 24 87 02 54	55 40	5.8	35.88	20.00	16 21	313 428	1.605	0.555 0.381	2.958 3.301
	L IA		127 127 127	616 1 617 1 619 1	06JUHR2 07JUHR2 07JUHR2	30 07 12 30 08 24 30 12 48	87 14 06 87 34 48 87 25 30	26 20 16	6.8 6.9 6.8	35.34 34.96 35.28	22.06 21.67 22.78	30 20 12	859 296 106	1.304 1.846 1.523	0.383 0.616 0.613	4.293 3.339 2.359
		ĺ	127	620 1 622 1	07 JUNE2 07 JUNE2	30 14 06 30 18 00	87 21 30 87 16 00	16 11	6.8 7.4	35.17 35.10	23.89 25.56	18 14	71	1.846 2.115	0.639 0.801	3.988
		142	127 127 127	505 1 499 2 493 1	03JUM62 04JUM62 04JUM62	29 46 18 29 27 00 29 19 12	88 13 06 88 00 00 88 36 30	37	5.9 5.2	36.29 36.19	22.33 22.22	17 19 30	1437 2085 1868	0.551 1.013 1.330	0.194 0.344 0.393	2.201 2.355 3.850
			127 127 127	484 1 516 1 615 1	0830082 0230082 0830082	29 49 00 29 59 28 30 00 42	87 50 54 88 13 30 87 47 12 88 02 06	35 27 28	7.1	35.32 35.36 35.20	21.67 20.99 21.17	16 17 25	730 424 167	1.551 1.790 2.400	0.559 0.632 0.746	2.275 2.645 4.689
			127	627 1 501 1	20111202	30 01 24	88 02 06 88 46 30 88 51 00	24	6.5 5.0	35.60	21.44	25	534	2.087	0.648	3.621
			001 127 001	503 1 523 1 515 1	07 JUNE2 18 JUNE2 07 JUNE2	29 41 00 29 67 42 29 59 00 30 11 24	88 51 00 89 52 48 88 47 00	- 11 - 46 - 11	5.1	31.00 36.05 33.00	26.50 23.28 26.90	11 6 7	99 38 54	1.343 0.763 1.382	0.560 0.426 0.710	2.176 1.375 1.594
			127 001	641 T	03.70002	29 42 00	88 19 57 88 42 00	11	3.1 6.8 3.6	33.75 34.00	22.22	27	480 554	2.361 2.151	0.716	4.211 4.116
			001 001 127	509 1 511 1 512 1	0610362	29 51 30 29 55 00 29 57 92	88 41 30 88 45 00 88 46 30	16 13 11	5.2 4.8 4.5	34.00 34.00 33.37	25.30 24.00 22.17	24 22 19	251 301 577	2.233 1.832 1.857	0.703 0.593 0.631	4.163 3.680 2.631
			001 127 001	513 1 514 1 515 2	09JUN62	29 58 00	88 46 00 88 46 54	13 11 11	4.6 3.8 5.8	32.00 33.88 34.00	25.80 22.17 25.00	26 29 17	285 364	2.213 2.845 2.547	0.679 0.845 0.899	4.423 4.748 3.342
			127	618 1 639 2	09JUNB2 09JUNB2 10JUNB2 19JUNB2	29 59 00 30 10 42 30 10 00 29 02 18	87 59 18 88 39 00 89 54 12 89 54 00	13 13	4.2 6.6	35.01	22.22 24.50	32 15	120 508 181	2.392	0.690 0.635 0.543	4.976 2.693 1.984
			127 127 127	520 1 521 1 498 1	19,10002	29 02 18 29 02 48 29 29 00 30 10 00	88 52 00	30 28	3.5	36.34 36.31	22.77 23.61	15 21 28	1160 1824 2318	1.578 1.528 1.406	0.502	2.664 3.485
			127 127 127	638 1 510 1 636 1	02JUN02 03JUN02 03JUN02	30 10 00 29 54 30 30 06 12	88 14 18 88 17 06 88 26 36	16 33 16	3.2 5.4 4.8	34.67 36.03 34.73	21.56 21.56 21.67	35 19 30	1233 1150 350	2.133 1.308 2.262	0.600 0.444 0.671	4.777 2.554 4.951
		10 10 11	127	502 1 635 1	04.103822	29 40 48 30 06 00	84 33 00 84 40 00	31 16	6.5	36.16	21.67 24.80	24 14	527 250	1.062	0.586	3.670 2.354
			001 001 901	623 1 628 1 500 1 507 1	07 JUNE2 07 JUNE2 04 JUNE2	30 00 00 30 02 00 29 38 00 29 50 00	84 33 00 84 40 00 84 35 00 84 36 00 84 36 00 84 36 00	24 20 22	5.4 5.4 4.8	32.00 34.00 35.00	23.90 24.20 25.00	19 22 27	307 691 151	1.990 2.054 2.738	0.676 0.665 0.831	3.143 3.212 5.142
			001 001 127	507 1 623 2 636 1	0910382	29 50 00 30 00 00 30 01 00	10 10 00	24 24 24	5.0 6.2 5.6	36.00 34.00 35.78	25.20 25.50 21.50	877	510 412 596	1.830 1.917 1.789	0.568 0.582 0.571	3.850 4.318 3.441
			001	626 2 506 1	SBRULDI SBRULBO	30 02 00 29 48 00	88 34 36 88 38 00 88 32 00 88 27 36	22	6.4 4.8	35.00 34.00	25.00 24.00	22 21	519 418	1.949 2.095	0.631 0.636	3.359 4,308
			127 127 001	640 1 633 1 635 2	09JUNE2 10JUNE2 10JUNE2	30 10 30 30 03 36 30 06 00	60 38 12 68 40 00	9 20 15	4.7 5.8 6.0	34.49 35.45 34.00	22.22 21.11 25.00	31 29 21	719 1528 487	2.394 1.998 2.414	0.697 0.593 0.793	4.561 3.819 3.232
			127 127 127	637 1 639 3 644 1	10J8102 10J8102 10J8102	30 08 24 30 10 00 30 12 36	68 40 00 88 39 00 88 39 00	15 13	5.5 5.3	32.73 35.00	21.11 21.67	27 19 27	1744 1081 934	2.030 2.184 2.327	0.616 0.742 0.706	3.483 2.577 3.801
			127	236 1 519 1	17 JUNE2 18 JUNE2 19 JUNE2	28 58 30 29 00 18	89 33 06 89 34 30	24	3.4	36.31 34.32	19.97	26 26	2402 8673	1.628	0.500	3.212 2.757
z			127 127 127	221 1 496 1 495 1	02JUND2 02JUND2	28 45 18 29 20 18 29 22 12	89 57 48 68 49 18 84 50 36 87 58 12	51 44 29	6.1 5.5 5.8	36.29 36.30 36.47	21.08 23.33 24,44	33 20 26 23	733 352 616	2.513 2.570 2.144	0.719 0.771 0.658	4.851 4.605 3.892
anow		\vdash	127	475 1	04JU2022 14JU2022 15JU2022	29 23 12	48 59 54	82	¥.7 5.5	36.33	17.61	21	202 262	2.378	0.759	4,144
ITATION			127 127 127	226 1 228 1 229 1	15,10082	28 54 24 28 56 18 28 56 30	89 16 42 89 12 48 89 16 30 89 12 18	40 a 8	5.3 4.8 5.4	36.24 36.24 36.22	18.19 19.20 18.00	22 22 21	601 383 541	2.011 2.268 2.158	0.651 0.740 0.709	3.282 3.531 3.178
ATA .			127 127 127	231 1 232 1 234 1	15JUN62 15JUN62 15JUN62	28 56 18 28 56 30 28 56 54 28 57 66 28 57 68	89 12 18 89 16 30 89 17 36	34 32	5.5 5.5 4.5	36.31 36.30	18.30 19.70 21.11	24 19 22	595 787 314	2.317 1.733 2.279	0.729	3.602
		182	127	227 1 223 1	16JU262 17JU262	28 50 42	89 18 12 89 37 30	26 44 10	5.9	36.27 37.72 36.25	20.55	27	859 376	2.026	0.737 0.615 0.786	3.653 3.849 5.059
			127 127 127	224 1 203 1 205 1	17 J UNE 2 17 JUNE2 17 JUNE2	28 51 06 28 57 36 28 58 06	89 28 18 89 29 30 89 31 48	50 33 46	4.8 3.3 3.1	36.30 36.39 36.30	19.94 19.44 19.17	26 18 22	450 2911 3329	2.398 1.464 1.477	0.736 0.555 0.478	4.092 1.630 2.589
			127 127 127	516 1 222 1 225 1	18JUH82 17JUH82 17JUH82	29 00 00 28 48 24 28 52 48 28 52 48	89 45 42 89 31 12 89 28 24 89 58 54	46 90	4.3 4.5 4.7	36.39 36.09 35.61	18.38 16.66 22.77	23 14 22	1381 796 1997	1.657 1.255 1.891	0.528 0.476 0.612	3.043 1.946 2.763
			127 127 001	230 1 524 1 634 2	19J0082 18J0082 03J0082	28 56 30 29 11 30 30 04 00	89 58 54 89 44 18 88 51 00	34 22	7.8	36.33	21.72 25.00	16	3561	1.566 1.231 0.000	0.565	1.834
	+	+-	127	522 i 631 i	18,30082	29 07 18	89 30 42	10	4.6	35.08 27.60 23.60	23.88	10	360	1.909	0.723	2.209
			001 001 001	529 4 650 1 652 1	03JUU62 03JUE62	29 16 18 30 19 30 30 22 18	88 51 24 89 55 58 88 09 00 88 15 42	2	6.9	23.80	31.70	13	- 122	0,000	0.452	0.000
			001 001	652 1 529 2	03JU NG2 23JU NG2	30 22 18 29 16 18	88 15 42 89 55 58	2	7.2	15.10	31.30	12	642 208	1.688	0.679	1.702
	ļ		001	526 3 527 3 528 5	29JUU82 29JUU82 13JUL82	29 18 42 29 15 02 29 15 32	89 53 52 89 54 12 89 54 54	5	4.6 4.1 5.8	29.50 29.70 23.40	29.80 29.20 30.60	6 14 16	32 125 66	0.995 1.992 2.305	0.556 0.755 0.831	1.443 2.692 3.500
			001 001 001	530 1 531 1 532 1	01JU 382 01JU 382 01JU 38 2	29 29 24 29 29 45 29 29 45	89 08 54 89 09 12 89 09 27	;	5.8 5.4 4.4	32.50 32.90 33.30	25.40 25.40 25.10	11	77 334 459	1.571 0.760 1.014	0.655 0.317 0.395	2.302 1.721 1.958
			001 001 001	533 1 534 1 646 1	01JUM62 01JUM62 03JUM62	29 29 48 29 29 54 30 15 30 30 16 12	89 09 36 89 09 54 88 12 48	2	5.7	32.40 28.40	25.40 27.30	10 21	404 672	0.489	0.212 0.337	1.500
	- 14	iņi.	001 001	647 1 648 1	0310865	30 18 54	68 09 00 A8 12 12					6 14 9	8 14 85 391	1.733 1.074 0.791	0.967 0.407 0.360	2.404 1.780 1.340
			001 001 001	649 1 651 1 508 1	03101185 03101185 03101185	30 19 00 30 21 36 29 50 00	60 18 30 60 18 30 60 46 00 69 53 52	13	4.2	34.00	23.00	10 10 19	422 523 210	0.776 1.290 2.203	0.337 0.560 0.748	1.489 1.438 3.366
			001 001 001 001	508 1 526 1 527 1 528 1	16JUN62 16JUN62 16JUN62	29 50 00 29 18 82 29 15 02 28 15 32	89 53 52 89 54 12 88 58 58	75	5.6 4.4 8.5	30.70 21.60 6.40	28.30 30.30 30.20	10 10 17	224 1191 428	0.688 0.354	0.299 0.154 0.482	1.663 1.271 2.641
, i	١ł		001	529 1	16JUN62 29JUN62	29 15 02 29 15 32 29 16 18 29 15 32	89 54 12 89 54 54 89 55 58 89 54 54	2	8.6 9.5	6.80	30.10 31.10	19	727 350	1.365 1.065 0.470	0.362 0.189	2.732 1,878
			001 001 001	528 3 529 3	29JUNE2 29JUNE2 29JUNE2	29 13 55 29 15 32 29 16 18	89 52 42 89 54 54 89 55 58	* *	4.0 4.8 5.2	29.80 30.30 30.20	29.10 29.30 29.80	5 6 8	522 13 192	0.169 1.411 0.408	0.105 0.787 0.196	0.639 1.949 1.331
		L	001 001	528 4 630 2	07 JULŠ2 03 JUNŠ2	29 15 32 30 03 00	89 54 54 88 52 00	<u>.</u>	5.0	27.30	31.00	16 3	189 6	1.904	0.687	2.862
	ľ	142	001 001 001	631 2 529 5 530 2	08JU882 13JUL82 08JU882	30 03 18 29 16 18 29 29 24	88 51 24 89 55 58 89 08 54	5	6.2 6.8 5.0	30.20 23.00 27.90	26.20 30.80 29.40	2	2 12 79	0.693 1.350 0.638	1.000 0.753 0.396	1.443 2.012 0.915
			001	531 2 532 2	08.10082	29 16 18 29 29 24 29 29 45 29 29 45 29 29 45	89 09 12 89 09 27	7 5	5.1	27.90 27.80 27.50	29.20 29.50		247 26	1.022	0,492	1.271
	ļ	1	001 001 001	533 2 534 2 632 2	08JUM82 08JUM82 08JUM82	29 29 48 29 29 54 30 03 30 30 14 24	89 09 36 89 09 54 88 51 00	27	5.7 5.1 5.6	26.90 25.30 34.50	30.00 29.90 24.10	5	27 350	1.312 0.567 0.693	0.815 0.317 1.000	1.214 0.854 0.721
	NO 	4	001	645 1 632 1 642 1	03JUM02 03JUM02 03JUM02	30 14 24 30 03 30 30 11 54	88 19 00 88 51 00 88 04 54	7	5.1	28.50	28.60	10	1489	0.588	0.255	1.232
			001 001 001	643 1 621 1	0830085	30 12 24 30 16 06	88 18 24 87 33 42	8	6.6 6.4	25.00 30.00	28.00 28.00	1	325	0.000		0.000
	1	1 82	001 001	527 5	13JUL82	29 15 02	89 54 12 89 53 52 89 54 12		5.2 6.7 1.4	28.50	30.30		- 6	0.000	0.921	1.116
Ţ	. <u>т</u>	±-	001	527 4	07 JULAS	29 15 02	47 24 14	,		23.79	20.70	'	'	0.000		

STATION GROUPS

...

Table 25. Ordered matrix of simple bivariate Pearson product moment correlation coefficients of densities of 84 selected demersal nekton taxa and community parameters with environmental variables collected at 128 stations in and around the Tuscaloosa Trend study area during the spring 1982 SEAMAP groundfish survey.

			Bottom Dissolved	Bottom	Bottom
	Taxa	Depth	Oxygen	Salinity	Temperature
	Solencera	0.24403	0.11194	0.15897	-0.26707
	Urophycis floridanus	0.55334	-0.07691	0.14050	-0.30750
	Loligo pealeii	-0.02554 0.07799	0.18741 0.25268	0.09685	-0.04369 -0.18354
	Monacanthus hispidus Sicyonia brevirostris	0.12097	0.12390	0.13178	-0.15781
	Doryteuthis pleii	0.07414	0.17056	0.08622	-0.12997
	Decapterus punctatus	-0.05027 0.10121	0.26889 -0.01454	0.09551 0.07472	-0.05959 -0.06060
	Eucinostomus gula Lutjanus campechanus	0.06924	0.02126	0.10486	-0.09724
	Orthopristis chrysopters	0.01595	0.14510	0.09715	-0.08343
	Prionotus paralatus	0.32352	0.07528 0.12034	0.09491 0.07641	-0.19367 -0.11478
IÅ1	Prionotus scitulus Raja eglanteria	0.13043	0.18450	0.10520	-0.15725
	Trachinocephalus myops	0.12109	0.12574	0.06626	-0.11391 -0.09762
	Prionotus carolinus Portunus spinicarpus	0.06973 0.45968	0.12861 -0.03223	0.06726	-0.27980
1A	Bellator militaria	0.38446	0.08738	0.12994	-0.23684
	Centropristis ocyurus	0.24375	0.14779	0.09248 0.08714	-0.17990 -0.13304
	Lagodon rhomboides Prionotus roseus	0.21672 0.18276	0.03302 0.13546	0.08100	-0.14285
	Prionotus salsonicolor	0.19330	0.14415	0.09375	-0.15865
	Scorpagna calcarata	0.28863	0.06815	0.13540 0.09928	-0.21681 -0.17629
	Syacium papillosum Synodus poeyi	0.21498	0.10185 0.15750	0.08251	-0.13405
	Synodus fostens	0.45300	0.05746	0.22037	-0.31716
	Prionotus stearnsi	0.28958 0.13215	0.06443 0.14669	0.12729 0.10268	-0.15615 -0.13453
	Syacium gunteri Squilla empusa	-0.02999	-0.18866	0.05086	-0.09351
	Penneus duorarum	-0.00375	-0.06793	0.17311	-0.22296
i	Diplectrum bivittatum	0.09621	-0.06214 0.04642	0.20822	-0.24698 -0.20010
┝┿━	Stenotomus caprinus Callinectes similis	0.20688	-0.15931	0.22362	-0.32499
	Lepophidium graellai	0.47106	-0.15520	0.20997	-0.36780 -0.42393
	Hoplunnis sacrurus Cyclopsetta chittendeni	0.41163 0.21857	-0.25309 0.11157	0.24301 0.18930	-0.24347
	Halieutichthys aculeatus	0.01803	-0.08497	0.10572	-0.08506
	Porichthys porosissimus	0.04279	-0.06479 -0.17684	0.08831 0.18195	-0.08883 -0.25083
	Squilla Sicyonia dorsalis	0.15465 0.20853	-0.17632	0.19251	-0.30175
	Parapesaeus	0.23587	0.01520	0.16800	-0.29995
	Bollmannia communia	0.24129	-0.07081 -0.14140	0.22692	-0.31047 -0.30798
	Antennarius radiosus Brotula barbata	0.34242 0.05404	-0.08540	0.08733	-0.11119
IB1	Cynoscion nothus	0.04057	-0.01332	0.09510	-0.07265
B	Ophichthus gomesii	0.11065 0.34668	-0.05763 -0.13925	0.12586 0.14539	-0.20923 -0.25494
ΙĪΙ	Pristipomoides aquilonaris Serranus atrobranchus	0.17955	0.05593	0.08947	-0.09853
	Steindachneria argentea	0.25132	-0.13760	0.17592	-0.28694 -0.20859
	Trachypenaeus Portunus gibbesii	0.13269 0.00206	-0.12748 -0.08460	0.19416 0.13486	-0.13401
	Calappa sulcata	0.08472	-0.04643	0.13766	-0.14761
	Prionotus rubio	0.07594	-0.08250 -0.15660	0.15107 0.09095	-0.15605 -0.16527
111	Hepatus epheliticus Centropristis philadelphicus	-0.07610 0.37900	-0.01809	0.25102	-0.31909
	Etropus crossotus	-0.05080	-0.00981	0.16458	-0.22766
	Saurida brasiliensis Harengula jaguana	0.14672 -0.05937	0.06249 -0.20096	0.08992 0.06835	-0.09511 -0.00902
	Penagus setiferus	-0.13665	-0.11841	0.08729	-0.11589
	Citharichthys spilopterus	0.04450	-0.17746	0.07190	-0.06102 -0.08344
182	Ophidion welshi Sphoeroides parvus	-0.08620 0.00009	-0.07773 -0.00965	0.05637 0.10062	-0.15552
	Peprilus burti	-0.08140	-0.10266	0.02194	-0.00648
	Prionotus tribulus	-0.09682	-0.11286	-0.57205	-0.14047 0.19907
IIA	Symphurus plagiuse Penseus artecus	-0.09533	0.12736	-0.12775	-0.05931
IIA2	Brevoortia patronus	0.02655	-0.03762	0.02442	-0.05498
	Leiostosus xanthurus	-0.09603	-0.11766	0.03684	-0.20987
	Micropogon undulatus Cynoscion arenarius	-0.00189	-0.13789	0.05695	-0.05439
	Scomberomorus maculatus	-0.05316	-0.20448	-0.00302	0.12153
IIB1	Trichiurus lepturus	0.00686 -0.15721	0.09198	0.05062	-0.02821 0.09211
0	Anchoa hepsetus Larigus fasciatus	-0.21312	-0.08947	-0.10196	0.07416
	Anchos sitchilli	-0.27750	0.03179	-0.49500	0.33308
liB	Stellifer lanceolatus	-0.03288 -0.14993	-0.05849 0.05323	0.04440	-0.02081 0.25537
	Polydactylus octonemus Trinectes maculatus	-0.10178	0.02413	-0.16391	0.16975
	Callinectes sapidus	-0.06809	0.04939	-0.17938	0.20554
1182	Árius felis Menticirrhus americanus	-0.26042 -0.18324	-0.01972 -0.01092	-0.04614 -0.23598	0.16056 0.16095
	Peprilus peru	-0.03847	0.08096	-0.14063	0.02624
	Lolliguncula brevia	-0.21304	-0.10875	-0.03296	0.13742 0.17658
	Anchos nasuta Chloroscombrus chrysurus	-0.13578 -0.17933	-0.04658 0.03199	-0.15278 -0.39291	0.21908
		0.46749	0.02185	0.41103	-0.65216
	Total Taxa Total Individuals	0.21687	-0.12788	0.20744	-0.31522
	Diversity	0.39233	0.00888	0.43412	-0.57345
	Richness Evenness	0.36913 0.05451	0.04529 0.04821	0.38278 0.26635	-0.52788 -0.16435

TAXA GROUPS

87

The taxa were ordered such that those most characteristic of the shallower depth, lower salinity and higher temperature stations (Sample Group II) were located along the bottom portion of the TWINSPAN display and ordered correlation table (Taxa Group II in Figure 11 and Table 25). Conversely, those taxa that were most characteristic of the deeper waters with higher salinities and lower temperatures (Sample Group I) were located along the middle to upper portions of the TWINSPAN display (Taxa Group I in Figure 11 and Table 25).

Total number of taxa, species diversity and species richness tended to show moderately strong positive relationships with depth and salinity, and moderately strong negative relationships with temperature (Table 25), indicating that the offshore communities tended to be more diverse than those inshore.

Although depth, hydrography and geography were obviously related to the ordering and grouping of samples (and therefore related to community composition), these factors alone did not adequately account for all of the trends evident in the TWINSPAN display, especially those in Sample Group I. The distributions of many demersal nekton species are also strongly related to the characteristics of the sea floor. Because no sediment data were collected during the SEAMAP program, sediment texture was inferred by overlaying a map of the SEAMAP station locations on a recent map of sediment texture in the study area.

The taxa in Taxa Group IA (<u>Solenocera</u> LPIL through <u>Stenotomus caprinus</u> in Figure 11 and Table 25) were virtually restricted to the moderate to deep water stations (Sample Groups IA and IB1). The taxa in Group IA1 were most characteristic of Sample Group IA, with occasional scattered occurrences in Sample Group IB. Some of the taxa most representative of this trend include <u>Loligo pealeii</u> and <u>Sicyonia brevirostris</u>. The taxa in Group IA2 tended to be more widely distributed than those in Group IA1, with many being well represented across Station Groups IA and IB1. <u>Synodus</u> <u>foetens</u>, <u>Penaeus duorarum</u> and <u>Stenotomus caprinus</u> were most indicative of this trend.

As a group, the taxa in Group IA tended to exhibit positive correlations with depth, dissolved oxygen, and salinity and negative correlations with temperature (Table 25). However, in many cases these correlations tended to be weak. <u>Solenocera LPIL</u>, <u>Urophycis floridanus</u>, <u>Portunus spinicarpus</u>, <u>Bellator militaris</u>, <u>Scorpaena calcarata</u> and <u>Synodus</u> <u>foetens</u> exhibited moderately strong positive relationships with depth, and moderate negative relationships with temperature.

The taxa in Group IB were virtually restricted to the stations in Sample Groups IB1 and IB2 (Figures 11 and 12). Some of the taxa most representative of this trend included <u>Callinectes similis</u>, <u>Squilla LPIL</u>, <u>Trachypenaeus LPIL</u>, and <u>Prionotus rubio</u>. <u>Parapenaeus LPIL</u>, <u>Bollmania communis</u> and <u>Steindachneria argentea</u> tended to be restricted in distribution to the moderately deep to deep water stations included in sample Group IB2, whereas <u>Portunus gibbesii</u>, <u>Etropus crossotus</u>, <u>Saurida</u> <u>brasiliensis</u>, <u>Harengula jaguana</u> and <u>Sphoeroides parvus</u> tended to be restricted to the shallow to moderately deep stations represented in Sample Group IB1 (Figure 11 and Table 24). <u>Callinectes similis</u>, <u>Porichthys</u> <u>porosissimus</u>, <u>Squilla</u> LPIL, <u>Trachypenaeus</u> and <u>Prionotus</u> <u>rubio</u> were widely distributed across Group IB stations (Figure 11).

The correlations of the densities of Group IB taxa with environmental variables were greatly similar to those for the Group IA taxa. Most taxa in both groups exhibited positive relationships with depth and salinity, and negative relationships with temperature (Table 25). However, the Group IB taxa generally exhibited stronger negative correlations with temperature and slightly stronger positive correlations with salinity, and also showed consistent but weak negative correlations with dissolved These differences reflect the greater depths, lower dissolved oxygen. oxygen concentrations, higher salinities, and lower temperatures of many of the stations represented by samples in Sample Group IB2 (Table 24). Callinectes similis, Lepophidium graellsi, Hoplunnis macrurus, and <u>Centropristis</u> philadelphicus exhibited moderately strong positive correlations with depth and salinity and moderately strong negative correlations with temperature. Antennarius radiosus and Pristipomoides acuilonaris showed moderately strong positive relationships with depth and negative relationships with temperature. The distributions of the four taxa in Taxa Group IB2 differed from those of the Group IB1 taxa by virtue of their presence at the shallow stations in Group IIA1 (Figures The distributions of the taxa in Taxa Group IB1 seem to be 11 and 12). transitional between those taxa most characteristic of the higher salinity, deep water habitat of Sample Group I and those taxa most characteristic of the lower salinity, shallow water habitat of Sample Group II (Figures 11 and 12). This transition was also evident in the correlations of these taxa with environmental variables, as three of the four taxa showed weak but negative correlations with depth (Table 25).

The taxa in Group IIA tended to be widespread across Sample Groups IB and IIA, but were virtually absent from Sample Groups IA and IIB (Figure 11). In addition, these taxa tended to be less well represented in samples from the deep water, high salinity habitat represented by Sample Group IB2. <u>Peprilus burti</u>, <u>Penaeus aztecus</u> and <u>Leiostomus xanthurus</u> were most representative of the trends in Taxa Group IIA. As with the taxa in Group IB2, the Group IIA taxa mark a transition from those taxa most characteristic of Sample Group I to those taxa most characteristic of Sample Group II. This trend was reflected in the correlations of the Group IIA taxa with environmental variables, with five of the six taxa exhibiting weak negative correlations with depth (Table 25). <u>Symphurus Dlagiusa</u> exhibited a strong negative correlation with salinity, and moderate positive correlations with dissolved oxygen and temperature.

Many of the taxa in Group IIB tended to be relatively widespread across the study area. However, they were most characteristic of the low salinity, shallow water stations represented by Sample Group II and were generally absent at the high salinity, moderately deep to deep water stations represented by Sample Group IA and (to some extent) Sample Group IB2 (Figures 11 and 12 and Table 24).

The taxa in Group IIB1 tended to be more widespread across the study area than those in Taxa Group IIB2. The Group IIB1 taxa were generally widespread across Sample Groups IB and IIA, but were virtually absent from the stations represented in Sample Groups IA and IIB. Some of the taxa most representative of this trend included <u>Micropogonias</u> <u>undulatus</u>, <u>Cynoscion arenarius</u>, and <u>Anchoa hepsetus</u>. <u>Micropogonias undulatus</u> was the only taxon in Group IIB that was well represented in the high salinity, moderately deep to deep water stations included in Sample Group IB2. Four of the six taxa in Taxa Group IIB1 were negatively correlated with depth, three taxa were negatively correlated with salinity, and three taxa were positively correlated with bottom temperature (Table 25). <u>Micropogonias</u> <u>undulatus</u> exhibited a moderately strong positive correlation with depth and a negative correlation with temperature, reflecting the occurrence of this taxon in the high salinity, deep water habitats of Sample Group IB2.

With the exception of <u>Lolliguncula brevis</u>, the taxa in Group IIB2 were virtually restricted to the shallow water, low salinity, high temperature habitats represented by Sample Group II (Figures 11 and 12 and Table 24). <u>Anchoa mitchilli</u> numerically dominated the community composition at all but five of the stations in Sample Group IIA, but was virtually absent from the stations represented in Sample Group IIB. <u>Anchoa mitchilli</u> (the bay anchovy) is a schooling pelagic species that is usually not collected by bottom trawl gear, except in shallow waters. <u>Callinectes sapidus</u> was well represented in Sample Group IIA, but occurred in only two samples in Group IIB.

Lolliguncula brevis was well represented at many of the samples in Groups IIA, IIB, and IB1. <u>Anchoa nasuta</u> (the longnose anchovy), which was shown to have a very clumped distribution in the relative composition analysis (see Table 22), was virtually restricted to the depauperate samples in Sample Group IIB (Figure 11). As was the case with the bay anchovy, this pelagic species is usually not collected by trawl gear in deeper waters. <u>Chloroscombrus chrysurus</u> was also well represented in the samples in Group IIB, and occurred intermittently across the study area. Along with <u>Anchoa hepsetus</u> (in Taxa Group IIB1, Figure 6) these three Group IIB2 taxa dominated the composition of the community at stations represented in Sample Group IIB1 (Figure 11).

The correlations of the taxa in Group IIB2 with environmental variables (Table 25) confirmed the shallow water association, with all of the taxa being negatively correlated with depth and all but one being negatively correlated with salinity and positively correlated with temperature.

2.5.2 <u>SEAMAP Survey Data, Spring 1983</u>

2.5.2.1 Relative Composition and Abundance

The community composition over all samples combined is summarized in Table 26. A total of 113,389 individuals representing 262 taxa were identified from 156 trawl samples. A hierarchical master taxonomic list for these 262 taxa is shown in Table 27.

As in the 1982 analysis (see Table 22), the community was numerically dominated by a relatively small number of taxa, and the vast majority of the taxa were represented by only a few individuals each (Table 26). Based on pooled percent composition, the top three taxa accounted for greater than 50% of all individuals collected. Based on mean percent composition, the 10 most abundant taxa accounted for greater than 50% of the total cumulative percent composition, and the 44 most abundant taxa accounted Table 26. Overall relative composition of demersal nekton taxa in single replicate samples collected at 156 stations in and around the Tuscaloosa Trend study area during the spring 1983 SEAMAP groundfish survey.

> . -

TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	INDEX OF DISPERSION
Trachypenseus	12.578	12.578	30.462	0.385	34540.	2058.31
Anohoa mitchilli	10.602	23,181	16.374	0.282	53106.	2179.35
Stenotomus caprinus	6.521	29.702	5.479	0.468	59319.	325.18
Callinectes similis	2.219	31.922	4.011	0.295	63867.	1964.33
Micropogonias undulatus	3.242	35.163	3.322	0.378	67634. 70268	487.63
Sicyonia brevirostris Penseus astecus	3.773 2.900	38.936 41.835	2.166	0.455 0.532	70368. 72824.	124.51 111.44
Sauilla	1.455	43.290	1.972	0.359	75060.	88.32
Loligo pealeii	5.426	48.716	1.860	0.462	77169.	76.15
Pensous duorarus	2.405	51.121	1.813	0.391	79225.	72.82
Centropristis philadelphicus	2.661	53.783	1.376	0.551	80785.	86.28
Prionotus rubio	0.599	54.382	1.342	0.167	82307.	485.99
Halieutichthys aculeatus	0.866	55.248 56.639	1.226 1.223	0.301 0.231	83697. 85084.	131.59 353.73
Callinectes sapidus Cynoscion arenarius	1.064	57.704	1.141	0.397	86378.	143.64
Portunidae	0.507	58.210	1.082	0.038	87605.	457.32
Anchos hepsetus	3.335	61.545	1.066	0.288	88814.	118.61
Prionotus tribulus	1.305	62.850	0.934	0.340	89873.	88.58
Polydactylus octonemus	2.191	65.041	0.930	0.192	90928.	126.84
Etropus arossotus	1.039	66.080	0.916	0.506	91967.	33.01
Trichiurus lepturus Anchos	1.139	67.219 67 .545	0.867 0.845	0.288 0.006	92950. 93908.	156.46 958.00
Lepophidium graellai	0.586	68.131	0.817	0.269	94834.	117.67
Trachurus lathami	0.757	68.888	0.799	0.173	95740.	386.51
Sicyonia dorsalis	0.393	69.281	0.768	0.122	96611.	118.77
Symphurus plagiusa	0.410	69.691	0.728	0.346	97437.	236.68
Sphoeroides parvus	0.946	70.637	0.686	0.417	98215.	35.91
Diplectrum bivittatum	0.461	71.097	0.624	0.263	98923. 99625.	33.84
Syncium papillosum Prionotus roseus	1.479 0.522	72.576	0.619	0.321 0.160	100282	37.33 135.55
Prionotus salmonicolor	0.873	73.971	0.494	0.237	100842.	81.79
Urophysis floridanus	0.272	74.243	0.431	0.256	101331.	34.62
Strumeus teres	1.078	75.321	0.421	0.128	101808.	125.05
Anchos nasuta	0.685	76.006	0.414	0.058	102277.	110.58
Squilla empuse	0.234	76.239	0.413	0.064	102745.	71.95
Bollmennia communis	0.262 0.263	76.502 76.765	0.400 0.392	0.103 0.109	103199. 103643.	90.07 107.68
Intennerius radiosus Lolliguncula brevis	0.456	77.221	0.374	0.115	104067.	41.76
Portunus spinicarpus	0.539	77.761	0.356	0.192	104471.	42.28
Syacium gunteri	0.168	77.929	0.327	0.128	104842.	58.71
Prionotus scitulus	1.541	79.470	0.326	0.192	105212.	35.25
Negumia bairdii	0.250	79.720	0.315	0.032	105569.	98.59
Gunterichthys longipenis	0.181 0.399	79.901 80.300	0.307 0.281	0.051 0.224	105917. 106236.	132.53 19.65
Portunus gibbesii Penzeus setiferus	0.311	80.611	0.262	0.282	106533.	13.71
Arius felis	1,198	81.809	0.231	0.128	106795.	43.25
Leiostomus xanthurus	0.455	82.264	0.225	0.224	107050.	24.58
Lagodon rhomboides	0.606	82.870	0.208	0.160	107286.	48.06
Solenooera	0.390	83.260	0.201	0.141	107514.	23.78
Harengula jaguana	1.313	84.573	0.195	0.179	107735.	44.85
Ophidion holbrooki Decapterus punctatus	1.191 0.090	85.764 85.853	0.190 0.177	0.231 0.064	107950. 108151.	12.24 161.41
Hoplunnis macrurus	0.103	85.956	0.148	0.083	108319.	56.09
Haemulon aurolineatum	0.728	86.684	0.133	0.045	108470.	48.10
Synodus foetens	0.340	87.024	0.133	0.327	108621.	4.72
Steindachneria argentea	0.042	87.066	0.132	0.006	108771.	150.00
Ophidion welshi	0.119	87.185	0.124	0.173	108912.	13.97
Menticirrhus americanus Dinlectrum formosum	0.102 0.384	87.287 87.671	0.117 0.116	0.096 0.135	109045. 109176.	28.50 18.92
Scieractinia	0.224	87.895	0.109	0.019	109300.	84.33
Peprilus burti	0.245	88.140	0.105	0.173	109419.	9.59
Porifera	0.209	88.349	0.105	0.051	109538.	84.41
Bellator militaria	0.341	88.690	0.104	0.083	109656.	19.25
Lepophidium jeannae	0.192	88.882	0.104	0.071	109774.	19.11
Trachinocephalus myops	0.426	89.308 89.466	0.091	0.147	109877. 109980.	12.34 10.95
Citharichthys spilopterus Prionotus martis	0.158 0.311	89.777	0.091 0.090	0.154 0.032	110082.	27.86
Necessinthe hemingyayi	0.379	90.156	0.087	0.103	110181.	14.07
Peprilus paru	0.104	90.260	0.087	0.026	110280.	56.38
Orthopristis chrysoptera	0.258	90.518	0.086	0.096	110378.	16.76
-						

Table 26. Continued.

TAXON HAME	MRAN PERCENT CONFOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	INDEX OF DISPERSION
Ovalipes floridamus	0.150	90.668	0.083	0.058	110472.	16.89
Scorpaena calcarata	0.224	90.892	0.080	0.141	110563.	9.67
Porichthys porosissimus	0.194	91.086	0.077	0.179	110650.	10.93
Yanthidae	0.175	91.261	0.074	0.032	110734.	72.50
Urophycis regius Sauille abries	0.268	91.529	0.072	0.109	110816.	8.14
Squilla chydaea Urophycia cirratus	0.074 0.056	91.603 91.658	0.072 0.069	0.032	110898.	33.54
Parapenaeus	0.058	91.717	0.068	0.083 0.019	110976. 111053.	9.20 48.79
Synodus intermedius	0.301	92.018	0.063	0.071	111124.	9.45
Hepatus epheliticus	0.025	92.043	0.061	0.051	111193.	47.44
Syacium	0.051	92.095	0.060	0.038	111261.	30.91
Lutjanus campechanus	0.102	92.197	0.056	0.103	111324.	9.77
Serranus atrobranchus Cyclopsetta chittendeni	0.061	92.258	0.054	0.109	111385.	5.36
Chloroscombrus chrysurus	0.051 0.175	92.309 92.484	0.054 0.052	0.071	111446.	28.96
Portunus spinimenus	0.066	92.550	0.052	0.058 0.077	111505. 111563.	22.05 15.07
Hoplunnis	0.029	92.579	0.051	0.019	111621.	43.88
Rhomboplites aurorubens	0.127	92.706	0.050	0.032	111678.	30.02
Ophidion gravi	0.113	92.819	0.050	0.103	111735.	5.26
Saurida brasiliensis	0.085	92.904	0.049	0.147	111791.	4.35
Ogcocephalus	0.169	93.073	0.044	0.096	111841.	17.55
Soleracia	0.218	93.291	0.044	0.006	111891.	50.00
Haemulon plumieri Prionotus stearnai	0.218 0.084	93.509	0.044	0.006	111941.	50.00
Eucinostomus gula	0.047	93.593 93.640	0.042 0.041	0.083	111989.	5.06
Citherichthys	0.194	93.834	0.037	0.038 0.045	112035. 112077.	11.47 8.36
Larimus fasciatus	0.051	93.885	0.037	0.071	112119.	10.56
Ovalipes guadulpensia	0.121	94.006	0.035	0.109	112159.	2.91
Lepophidium	0.051	94.057	0.033	0.019	112196.	17.31
Ovalipes	0.078	94.134	0.033	0.038	112233.	12.85
Gymnothorax nigromarginatus	0.017	94.151	0.032	0.026	112269.	14.47
Calappa sulcata	0.014	94.165	0.029	0.090	112302.	4.94
Pagrus sedecim Tagelus	0.128	94.293	0.027	0.026	112333.	13.66
Monacanthus hispidus	0.081	94.302 94.383	0.027 0.026	0.006	112364. 112394.	31.00 2.69
Lepophidium brevibarbe	0.004	94.387	0.026	0.006	112423.	29.00
Pristipomoides aquilonaria	0.035	94.423	0.024	0.045	112450.	6.35
Acquipecten	0.121	94.544	0.023	0.019	112476.	22.21
Prionotus carolinus	0.026	94.570	0.023	0.013	112502.	22.28
Asteroidea Dasyatis sabina	0.116	94.686	0.022	0.051	112527.	7.53
Scorpaena brasiliensis	0.650 0.098	95.336 95.434	0.022	0.019 0.032	112552.	14.37
Hellitidae	0.057	95.491	0.022	0.032	112577. 112602.	9.14 10.19
Prionotus paralatus	0.048	95.539	0.020	0.051	112625.	5.50
Ophichthus gomesii	0.010	95.548	0.020	0.026	112648.	9.61
Lagocephalus laevigatus	0.012	95.561	0.019	0.026	112670.	9.10
Stallifer lanceolatus	0.060	95.620	0.019	0.038	112692.	4.80
Centropristis ocyurus Phaeoptyx conklini	0.094 0.009	95.715	0.019	0.006	112713.	21.00
Scomberomorus magulatus	0.026	95.724 95.749	0.019 0.019	0.013 0.032	112734.	19.08
Holothuroidea	0.084	95.833	0.018	0.032	112755. 112775.	10.17 14.67
Apogonidae	0.029	95.862	0.017	0.006	112794.	19.00
Sphoeroides spengleri	0.169	96.031	0.016	0.045	112812.	4.58
Brevoortia patronus	1.925	97.956	0.016	0.032	112830.	6.59
Paralichthys lethostigma	0.034	97.990	0.016	0.032	112848.	6.71
Kathetostoma albigutta Brotula barbata	0.054	98.044	0.015	0.071	112865.	1.61
Raja eglanteria	0.009 0.074	98.053 98.127	0.015 0.014	0.058	112882.	3.74
Ogoocephalus nasutus	0.003	98.130	0.014	0.077 0.026	112898. 112914.	1.53 7.32
Gymnachirus terne	0.017	98.148	0.012	0.019	112928.	7.82
Microspathodon chrysurus	0.037	98.185	0.012	0.019	112942.	5.23
Serranus phoebe	0.025	98.209	0.012	0.019	112956.	8.97
Archosargus probatocephalus	0.036	98.245	0.011	0.013	112969.	11.14
Citharichthys amorops	0.013	98.259	0.011	0.051	112982.	3.25
Synodus poeyi Luidia	0.047	98.305	0.011	0.038	112994.	2.94
Nettastomatidae	0.047 0.031	98.352 98.383	0.011 0.011	0.019	113006.	6.13
Gymnothorax	0.033	98.417	0.010	0.026 0.058	113018. 113029.	4.12 1.67
Scyllarides modifer	0.023	98.439	0.008	0.032	113038.	2.29
Equetus umbrosus	0.027	98.466	0.008	0.032	113047.	2.07
Metapenaeopsis goodei	0.020	98.486	0.008	0.019	113056.	3.18
Selene setapinnis	0.025	98.511	0.008	0.045	113065.	1.40

Table 26. Continued.

TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POCLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	INDEX OF DISPERSION
Otophidium omostigmum	0.040	98.550	0.007	0.032	113073.	1.71
Gobionellus hastatus	0.008	98.558	0.006	0.026	113080.	2.69
Apogon pseudomsculatus	0.016	98.574	0.006	0.013	113087.	3.55
Sphoeroides dorsalis	0.041	98.616	0.006	0.032	113094.	1.54
Strumous Bernel Legidee	0.003 0.011	98.619 98.629	0.006	0.013 0.006	.113101.	5.27
Porcellanidae Acanthostracion quadricornis	0.016	98.646	0.006	0.038	113108. 113115.	7.00 1.25
Bairdiells chrysurs	0.005	98.651	0.006	0.038	113122.	1.25
Libinia dubia	0.006	98.657	0.006	0.032	113129.	1.54
Paguridae	0.025	98.682	0.006	0.032	113136.	1.82
Aurelia	0.034	98.716	0.005	0.026	113142.	1.64
Selar orumenophthalmus	0.015	98.731	0.005	0.006	113148.	6.00
Dromidia antillensia	0.011	98.742	0.005	0.013	113154.	4.32
Aplysia	0.025	98.766	0.005	0.026	113160.	1.97
Pagrus pagrus Gymnachirus melas	0.019 0.024	98.786 98.810	0.005 0.005	0.013 0.038	113166. 113172.	2.98 0.97
Ancylopsetta quadrocellata	0.024	98.834	0.005	0.038	113178.	0.97
Tripectes maculatus	0.002	98.836	0.004	0.019	113183.	2.18
Serraniculus pumilio	0.004	98.840	0.004	0.019	113188.	2.18
Speneus parvus	0.015	98.855	0.004	0.019	113193.	2.18
Aluterus heudeloti	0.017	98.872	0.004	0.026	113198.	1.38
Eucloostomus argenteus	0.003	98.875	0.004	0.013	113202.	2.49
Calappa	0.007	98.883	0.004	0.019	113206.	1.48
Pectinidae	0.015	98.897	0.004	0.013	113210.	2.49
Bregnaceros stlanticus	0.004	98.901 98.908	0.004 0.004	0.026 0.013	113214. 113218.	0.98
Bregnaceroa Clypeaster	0.003	98.911	0.004	0.006	113222.	1.99 4.00
Prionotus ophryss	0.006	98.916	0.004	0.013	113226.	2.49
Narcine brasiliensis	0.011	98.927	0.004	0.026	113230.	0.98
Hemanthias vivanus	0.013	98.940	0.004	0.006	113234.	4.00
Rhinoptera bozasus	0.658	99.598	0.004	0.026	113238.	0.98
Calappa flammea	0.009	99.607	0.004	0.026	113242.	0,98
Chaetodon ocellatus	0.009	99.616	0.004	0.013	113246.	2.49
Hepatus	0.004	99.620	0.004	0.013	113250.	2.49
Symphurus dicmedianus	0.007	99.628	0.004	0.026	113254.	0.98
Symphurus civitatus Scorpaena dispar	0.001 0.007	99.628 99.636	0.003	0.013 0.006	113257. 113260.	1.66 3.00
Chaetodon sedentarius	0.005	99.640	0.003	0.006	113263.	3.00
Podochela sidneyi	0.022	99.662	0.003	0.006	113266.	3.00
Calamus bajonado	0.006	99.668	0.003	0.013	113269.	1.66
Cyclopsetta fimbriata	0.006	99.674	0.003	0.013	113272.	1.66
Chaetodipterus faber	0.015	99.690	0.003	0.019	113275.	0.99
Scyllarides	0.032	99.722	0.003	0.013	113278.	1.66
Syngnathus louisianae Metoporhaphis calcarata	0.006 0.002	99.728 99.730	0.003 0.003	0.019 0.019	113281. 113284.	0.99 0.99
Gobiesoz struncaus	0.002	99.731	0.003	0.006	113267.	3.00
Etropus	0.003	99.734	0.003	0.006	113290.	3.00
Liphopeneus kroyeri	0.003	99.737	0.003	0.013	113293.	1.66
Caranx hippos	0.002	99.739	0.003	0.019	113296.	0.99
Astroscopus y-graecum	0.004	99.744	0.002	0.013	113298.	0.99
Ovalipes ocellatus	0.003	99.746	0.002	0.006	113300.	2.00
Dasyatis sayi	0.002	99.748	0.002	0.006	113302.	2.00
Cynoscion nothus Reja texana	0.007 0.006	99.755 99.761	0.002	0.013 0.013	113304. 113306.	0.99 0.99
Prionotus	0.001	99.761	0.002	0.013	113308.	0.99
Soyllaridae	0.005	99.766	0.002	0.006	113310.	2.00
Congrina flava	0.003	99.769	0.002	0.013	113312.	0.99
Echinoidea	0.006	99.775	0.002	0.013	113314.	0.99
Caulolatilus intermedius	0.003	99.778	0.002	0.013	113316.	0.99
Lyropecten nodosus	0.006	99.784	0.002	0.013	113318.	0.99
Aluterus schoepfi	0.006	99.790	0.002	0.013	113320.	0.99
Opbiuroidea Ostopus	0.006 0.012	99.796 99.807	0.002	0.013 0.013	113322. 113324.	0.99 0.99
Canthigaster rostrata	0.003	99.807 99.811	0.002	0.013	113326.	2.00
Hypsoblennius hentzi	0.007	99.818	0.002	0.006	113328.	2.00
Gastropaetta frontalis	0.007	99.825	0.002	0.013	113330.	0.99
Sardinella anchovia	0.010	99.835	0.002	0.013	113332.	0.99
Porichthys pauciradiatus	0.000	99.836	0.002	0.006	113334.	2.00
Achirus lineatus	0.002	99.837	0.002	0.013	113336.	0.99
Rhizoprionodon terraenovae	0.003	99.840	0.002	0.013	113338.	0.99
Equetus lanceolatus	0.007	99.847	0.002	0.013	113340.	0.99
Soyllarus	0.013	99.861	0.002	0.013	113342.	0.99

=

Table 26. Continued.

TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE Abundance	INDEX OF DISPERSION
Ogoocephalus radiatus	0.000	99.861	0.001	0.006	113343.	1.00
Persephona punctata	0.001	99.862	0.001	0.006	113344.	1.00
Echiophis	0.006	99.868	0.001	0.006	113345.	1.00
Polinices duplicatus	0.001	99.869	0.001	0.006	113346.	1.00
Balistes caprisous	0.004	99.873	0.001	0.006	113347 .	1.00
Carany fusue	0.000	99.874	0.001	0,006	113348.	1.00
Chilomycterus schoepfi	0.003	99.877	0.001	0.006	113349.	1.00
Carapus bermudensis	.0.004	99.881	0.001	0.006	113350.	1.00
Fasciolaria	0.004	99.885	0.001	0.006	113351.	1.00
Epinephelus flavolimbatus	0.005	99.890	0.001	0.006	113352	1.00
Lutjamus griseus	0.002	99.891	0.001	0.006	113353.	1.00
Paralighthys squamilentum	0.001	99.892	0.001	0.006	113354.	1.00
Apogon aurolineatus	0.003	99.895	0.001	0.006	113355.	1.00
Anchos lyolepis	0.001	99.896	0.001	0.006	113356.	1.00
Bothus robinsi	0.004	99,900	0.001	0.006	113357 .	1.00
Dorosoma petenense	0.002	99.902	0.001	0.006	113358.	1.00
Mellita quinquiesperforata	0.001	99.904	0.001	0.006	113359.	1.00
Paralionthys albigutta	0.001	99.905	0.001	0.006	113360.	1.00
Ophichthus	0.003	99.908	0.001	0.006	113361.	1.00
Holacanthus bermudensis	0.003	99.911	0.001	0.006	113362.	1.00
Sphyraena guachancho	0.005	99.915	0.001	0.006	113363.	1.00
Microgobius thalassinus	0.008	99.923	0.001	0.006	113364.	1.00
Sphyrna lewini	0.000	99.923	0.001	0.006	113365.	1.00
Seriola zonata	0.006	99.929	0.001	0.006	113366.	1.00
Myctophum affine	0.001	99.930	0.001	0.006	113367.	1.00
Anchoviella perfasciata	0.003	99.933	0.001	0.006	113368.	1.00
Pecten	0.004	99.937	0.001	0.006	113369.	1.00
Equetus punctatus	0.000	99.937	0.001	0.006	113370.	1.00
Anthozoa	0.001	99.938	0.001	0.006	113371.	1.00
Calamum nodosus	0.004	99.942	0.001	0.006	113372.	1.00
Rypticus maculatus	0.004	99.947	0.001	0.006	113373.	1.00
Gobionellus oceanicus	0.001	99.948	0.001	0.006	113374.	1.00
Parezocoetus brachypterus	0.019	99.966	0.001	0.006	113375.	1.00
Dormitator moulatus	0.000	9 9.96 7	0.001	0.006	113376.	1.00
Stenorhynchus	0.001	99.968	0.001	0.006	113377.	1.00
Petrochirus diogenes	0.001	99.968	0.001	0.006	113378.	1.00
Octopus vulgaris	0.001	99.969	0.001	0.006	113379.	1.00
Ophichthus coellatus	0.001	99.970	0.001	0.006	1133 80.	1.00
Alpheidae	0.003	99.974	0.001	0.006	113381.	1.00
Busyoon contrarium	0.001	99.975	0.001	0.006	113382.	1.00
Aulostomus maculatus	0.005	99.980	0.001	0.006	113383.	1.00
Bothus	0.003	99.982	0.001	0.006	113384.	1.00
Calappa angusta	0.000	99.983	0.001	0.006	113385.	1.00
Xiphopeneus	0.001	99.984	0.001	0.006	113386.	1.00
Luidia olathrata	0.003	99.987	0.001	0.006	113387.	1.00
Pasciolaria tulipa	0.009	99.996	0.001	0.006	113388.	1.00
Priscanthus arenatus	0.004	100.000	0.001	0.006	113389.	1.00
Ectoprocta	0.000	100.000	0.000	0.006	113389.	
SAMPLE SUMMARY: SAMPLES = 156	TOTAL TAXA =	262				

Table 27. Hierarchical list of demersal mekton taxa collected in single replicate samples at 156 stations in and around the Tuscaloosa Trend study area during the spring 1983 SEAMAP groundfish survey.

z

	Arthropoda	58
	Crustacea	61
	Decapoda	6175
	Penaeidae	617701
Ħ	Metapenaeopsis goodei	6177010301
Ħ	Parapenaeus	61770105
¥	Penaeus aztecus	6177010101
	Penaeus duorarum	6177010102
	Penaeus setiferus	6177010103
	Sicyomia brevirostris	6177010401
#	Sicyonia dorsalis	6177010402
	Solenocera	61770106
#	Trachypenaeus	61770102
	Xiphopeneus	61770107
	Xiphopeneus kroyeri	6177010701
	Scyllaridae	618202
#	Scyllarides	61820202
Ħ	Scyllarides nodifer	6182020202
	Scyllarus	61820201
	Paguridae	618306
	Petrochirus diogenes	6183061201
	Porcellanidae	618312
	Portunidae	618901
	Callinectes sapidus	6189010301
	Callinectes similis	6189010302
	Ovalipes	61890105
ŧ	Ovalipes floridanus	6189010501
	Ovalipes guadulpensis	61890105??
Ħ	Ovalipes ocellatus	6189010502
	Portunus gibbesii	6189010601
۲	Portunus spinicarpus	6189010603
#	Portunus spinimanus	6189010604
	Xanthidae	618902 ·
	Dromiidae	618502
	Dromidia antillensis	6185020301
	Majidae	618701
	Libinia dubia	6187010901
Ħ	Metoporhaphis calcarata	6187011801
	Podochela sidneyi	6187011902
	Stenorhynchus	61870117
	Calappidae	618602
	Calappa	61860201
	ograppa angusta	6186020105
#	Calappa flammea	6186020101
*	Calappa sulcata	6186020102
ŧ	Hepatus	61860202
Ħ	Hepatus epheliticus	6186020201
	Leucosiidae	618603
*	Persephona punctata	6186030101
*	Alpheidae	617914
	Palaemonidae	617911
*	Macrobrachium ohione	6179110201

Tabl	e 27. Continued.	
*	Stomatopoda Squillidae Squilla	6191 619101 61910101
-	Squilla chydaea Squilla empusa	6191010102 6191010101
	Squilla empusa	6191010101
	Mollusca	
	Bivalvia	5085
	Pterioida	55 5508
	Pectinidae	550905
	Aequipecten	55090508
	Lyropecten nodosus	5509051301
*	Pecten	55090504
	Veneroida	5515
	Sanguinolariidae	551533
#	Tagelus	55153302
	Cephalopoda	57
	Theuthidida	5705
	Myopsida	5706
-	Loliginidae	570601
*	Loligo pealeii	5706010102
-	Lolliguncula brevis	5706010201
	Octopodida	5708
	Octopodidae	570801
	Octopus vulgaris	5708010202
	Gastropoda	51
	Anaspidea Aplysiidae	5124
	Aplysia	512402
	Mesogastropoda	51240202 5103
	Naticidae	510376
· 🙀	Polinices duplicatus	5103760407
	Stenoglossa	5105/80407
	Fasciolariidae	510509
	Fasciolaria	51050902
	Fasciolaria tulipa	5105090202
	Melongenidae	510507
	Busycon contrarium	5105070104
#	Volutidae	510513
*	Scaphella junonia	5105130201
	Echinodermata	81
#	Asteroidea	8104
	Spinulosida	8112
	Clypeasteridae	815301
	Clypeaster	81530101
#	Echinoidea	8136
-	Clypeasteroida	8152
	Mellitidae	815504
	Mellita quinquiesperforata	8155040101

•

Table	27. Continued.	
*	Holothuroidea	8170
	Ophiuroidea	8120
	Stelleroidea	8101
	Platyasterida	8105
	Luidiidae	810501
	Luidia	81050101
*	Luidia clathrata	8105010102
	Porifera	36
-	FOFILEFA	50
	Cnidaria	37
	Anthozoa	3740
#	Scleractinia	3764
	Scyphozoa	3730
	Semaeostomeae	3734
	Ulmaridae	373403
	Aurelia	37340302
¥	Ectoprocta	78
	Chordata	8388
	Antennarioidei	8787
	Antennariidae	878702
*	Antennarius radiosus	8787020203
	Ogcocephalidae	878704
	Halieutichthys aculeatus	8787040301
	Ogcocephalus	87870401
	Ogcocephalus nasutus	8787040103
*	Ogcocephalus radiatus	8787040106
	Aulostomoidei	8819
	Fistulariidae	881902
-	Aulostomidae	881901 8819010101
•	Aulostomus maculatus	8860
	Balistoidei Balistidae	886002
	Aluterus heudeloti	8860020102
-	Aluterus schoepfi	8860020101
-	Balistes capriscus	8860020201
	Monacanthus hispidus	8860020703
-	Ostraciontidae	886003
	Acanthostracion quadricornis	8860030201
	Batrachoidiformes	8783
	Batrachoididae	878301
	Porichthys pauciradiatus	8783010105
	Porichthys porosissimus	8783010106

•

=

Table 27. Continued.

	Exocoetoidei	8803
	Exocoetidae	880301
#	Parexocoetus brachypterus	8803011101
	Myctophoidei	8762
	Myctophidae	876214
#	Myctophum affine	8762141501
	Synodontidae	876202
#	Saurida brasiliensis	8762020301
#	Synodus foetens	8762020101
*	Synodus intermedius	8762020102
#	Synodus poeyi	8762020104
*	Trachinocephalus myops	8762020401
	Osteichthyes	87 17
	Anguilliformes	8740
	Congridae	874112
	Congrina flava	8741120302
#	Ophichthus	87411310
*	Ophichthus gomesii	8741131001
#	Ophichthus ocellatus	8741131003
	Muraenesocidae	874108
	Hoplunnis	87410801
*	Hoplunnis macrurus	8741080102
_	Muraenidae	874105
	Gymnothorax	87410504
	Gymnothorax nigromarginatus	8741050404
•	Nettastomatidae	874110
	Ophichthidae	874113
	Echiophis	874113??
	Clupeiformes	8745
_	Clupeidae	874701
	Brevoortia patronus	8747010403
*	Dorosoma cepedianum	8747010501
	Dorosoma petenense	8747010502
	Etrumeus	87470106
*	Etrumeus teres	8747010601
	Harengula jaguana	8747010803
#	Sardinella anchovia	8747011003
	Engraulidae	874702
-	Anchoa	87470202 8747020201
-	Anchoa hepsetus	8747020205
	Anchoa lyolepis Anchoa mitchilli	8747020202
· · ·	Anchoa masuta	8747020202
-	Anchoviella perfasciata	8747020304
-	Gadiformes	8789
	Bregmacerotidae	879102
	Bregnaceros	87910201
*	Bregmaceros atlanticus	8791020101
-	Carapidae	879202
	Carapus bermudensis	8792020101
-	Gadidae	879103
*	Urophycis cirratus	8791031005
#	Urophycis floridanus	87 91 03 1007
*	Urophycis regius	8791031002
	a chalara sabran	0, 9,00,000

Table 27. Continued.

	Macrouridae	87 940 1
	Nezumia bairdii	8794010802
-	Merlucciidae	879104
	Steindachneria argentea	8791040201
-	Ophidiidae	879201
	Brotula barbata	87 920 1040 1
	Gunterichthys longipenis	8792012301
	Lepophidium	87920105
	Lepophidium brevibarbe	87 920 1050 2
	Lepophidium graellsi	87 920 1050 4
	Lepophidium jeannae	87 920 10505
	Ophidion grayi	8792010602
-	Ophidion holbrooki	87 920 10603
	Ophidion welshi	8792010605
-	Otophidium omostigmum	8792010701
-	Gobiesociformes	8784
	Gobiesocidae	878401
	Gobiesox strumosus	8784010102
	Perciformes	8834
	Blenniidae	884201
	Hypsoblennius hentzi	8842010201
	Carangidae	883528
	Caranx fusus	8835280302
*	Caranx hippos	8835280303
	Chloroscombrus chrysurus	8835280401
	Decapterus punctatus	8835281202
	Selar crumenophthalmus	8835280601
	Selene setapinnis	88352807??
	Seriola zonata	8835280804
	Trachurus lathami	8835280102
	Gobildae	884701
	Bollmannia communis	8847011601
	Dormitator maculatus	8847013302
	Gobionellus hastatus	8847010502
*	Gobionellus oceanicus	8847010503
	Microgobius thalassinus	8847010702
	Apogonidae	883518
#	Apogon aurolineatus	8835180104
	Apogon pseudomaculatus	8835180110
	Phaeoptyx conklini	8835180501
	Branchiostegidae	883522
•	Caulolatilus intermedius	8835220103
	Chaetodonidae	883555 8835550101
#	Chaetodon ocellatus	8835550107
*	Chaetodon sedentarius	8835550304
•	Holacanthus bermudensis	883552
_	Ephippidae	8835520101
	Chaetodipterus faber	883539
-	Gerridae	8835390101
•	Eucinostomus argenteus	8835390102
	Eucinostomus gula	883503
	Grammistidae	8835030204
-	Rypticus maculatus	

÷

	Lutjanidae	883536
*	Lutjanus campechanus	8835360107
#	Lutjanus griseus	8835360102
#	Pristipomoides aquilonaris	8835360701
*	Rhomboplites aurorubens	8835360501 883545
	Mullidae	8835450402
-	Upeneus parvus	883562
	Pomacentridae	8835620401
-	Microspathodon chrysurus	883540
	Pomadasyidae Haemulon aurolineatum	8835400101
*		8835400102
*	Haemulon plumieri	8835400201
	Orthopristis chrysoptera Priacanthidae	883517
		8835170101
-	Priacanthus arenatus Sciaenidae	883544
	Bairdiella chrysura	8835440301
	Cynoscion arenarius	8835440106
-	Cynoscion nothus	8835440103
-	Equetus lanceolatus	8835441202
	Equetus punctatus	8835441205
-	Equetus umbrosus	8835441206
	Larimus fasciatus	8835440501
	Leiostomus xanthurus	8835440401
	Menticirrhus americanus	8835440601
	Micropogonias undulatus	8835440701
	Stellifer lanceolatus	8835441001
	Serranidae	883502
	Centropristis ocyurus	8835020304
*	Centropristis philadelphicus	8835020305
	Diplectrum bivittatum	8835021005
#	Diplectrum formosum	8835021002
	Epinephelus flavolimbatus	8835020405
	Hemanthias vivanus	8835021202
	Serraniculus pumilio	8835022201
	Serranus atrobranchus	8835022302
*	Serranus phoebe	8835022308
	Sparidae	883543
	Archosargus probatocephalus	8835430301
*	Calamus bajonado	8835430502
	Calamus nodosus	8835430506
*	Lagodon rhomboides	8835430201
	Pagrus pagrus	8835430601
*	Pagrus sedecim	8835430602
	Stenotomus caprinus	8835430102
	Scombridae	885003
#	Scomberomorus maculatus	8850030502
	Cynoglossidae	885802
	Symphurus civitatus	8858020102
#	Symphurus diomedianus	8858020103
*	Symphurus plagiusa	8858020101
	Soleidae	885801
	Achirus lineatus	8858010202
#	Gymnachirus melas	8858010301
#	Gymnachirus texae	8858010303
Ħ	Trinectes maculatus	8858010101

Pleuronectoidei 8857 Bothidae 885703 ø Ancylopsetta quadrocellata 8857030506 * Bothus 88570306 ÷ Bothus robinsi 8857030604 . Citharichthys 88570301 * Citharichthys macrops 8857030109 ÷ Citharichthys spilopterus 8857030110 . Cyclopsetta chittendeni 8857030801 # Cyclopsetta fimbriata 8857030802 . Etropus 88570302 . Etropus crossotus 8857030201 . Gastropsetta frontalis 8857031001 . Paralichthys albigutta 8857030302 ÷ Paralichthys lethostigma 8857030304 # Paralichthys squamilentus 8857030306 # Syacium 88570313 * Syacium gunteri 8857031301 . 8857031303 Syacium papillosum Polynemoidei 8838 4 Polydactylus octonemus 8838010101 Rajiformes 8713 Dasyatidae 871305 * Dasyatis sabina 8713050105 . Dasyatis sayi 8713050106 Myliobatidae 871307 . Rhinoptera bonasus 8713070301 Rajidae 871304 # Raja eglanteria 8713040113 4 Raja texana 8713040133 Torpedinidae 871303 Narcine brasiliensis 8713030401 Scombroidei 8850 Trichiuridae 885002 Trichiurus lepturus 8850020201 8 Scorpaenoidei 8826 Scorpaenidae 882601 . Neomerinthe hemingwayi 8826010402 . Scorpaena brasiliensis 8826010605 . Scorpaena calcarata 8826010606 ÷ Scorpaena dispar 8826010607 Triglidae 882602 . Bellator militaris 8826020203 * Prionotus 88260201 ŧ Prionotus carolinus 8826020101 ŧ Prionotus martis 8826020111 . Prionotus ophryas 8826020113 . Prionotus paralatus 8826020114 . Prionotus roseus 8826020117 . Prionotus rubio 8826020118 . Prionotus salmonicolor 8826020120 . Prionotus scitulus 8826020103 * Prionotus stearnsi 8826020121 Prionotus tribulus 8826020104

Table 27. Continued.

Scyliorhinoidei	8708
Carcharhinidae	870802
Rhizoprionodon terraenovae	8708020301
Sphyrnidae	870803
Sphyrna lewini	8708030103
Siluriformes	8777
Ariidae	877718
Arius felis	8777180202
Sphyraenoidei	8837
Sphyraenidae	883701
Sphyraena guachancho	8837010103
Stromateoidei	8851
Stromateidae	885103
Peprilus burti	8851030104
Peprilus paru	8851030102
Syngnathoidei	8820
Syngnathidae	882002
Syngnathus louisianae	8820020104
Tetradontoidei	8861
Diodontidae	886103
Chilomycterus schoepfi	8861030101
Tetraodontidae	886101
Canthigaster rostrata	8861010401
Lagocephalus laevigatus	8861010101
Sphoeroides dorsalis	8861010205
Sphoeroides nephelus	886 10 10 20 8
Sphoeroides parvus	8861010210
Sphoeroides spengleri	8861010211
Trachinoidei	8840
Uranoscopidae	884014
Astroscopus y-graecum	8840140102
Kathetostoma albigutta	8840140301

Miscellaneous taxa

.

Paramuriceidae
* Scleracis

375103 37510304

for 80% of the cumulative percent composition. None of the taxa in the community were widely distributed, as only <u>Penaeus aztecus</u>, <u>Centropristis</u> <u>philadelphicus</u>, and <u>Etropus crossotus</u> were collected in more than 50% of the samples. <u>Trachypenaeus LPIL</u>, <u>Anchoa mitchilli</u>, and <u>Callinectes similis</u> had very clumped distributions (indices of dispersion of 2058, 2179, and 1964, respectively).

As in the 1982 data, <u>Trachypenaeus</u> LPIL was the most abundant taxon, accounting for 30% of the pooled percent composition, followed by Anchoa mitchilli, which accounted for 16% of the pooled percent composition. Stenotomus caprinus, Callinectes similis, Micropogonias undulatus, Sicvonia brevirostris, Penaeus aztecus, and Squilla LPIL each accounted for 2% or greater of the pooled percent composition. Taxa found in greater than 40% but less than 50% of the samples included Callinectes similis, Sicvonia brevirostris, Loligo pealeii, and Sphoeroides parvus, while those collected in greater than 30% but less than 40% of the samples included Trachypenaeus LPIL, Micropogonias undulatus, Squilla LPIL, Penaeus duorarum, Halieutichthys aculeatus, Cynoscion arenarius, Prionotus tribulus, Symphurus plagiusa, Syacium papillosum and Synodus foetens. For the most part, the communities were very similar over the two fall seasons (Tables 22 and 26).

2.5.2.2 Two-Way Indicator Species Analysis

As in the 1982 SEAMAP analysis, the relative percent composition and abundance table and other exploratory techniques were utilized in the selection of the taxa to be included in subsequent community analyses. Based on the results shown in Table 26, all taxa which occurred in two or fewer samples were removed from further consideration. This resulted in the removal of 106 taxa from the original list of 262, with the remaining 156 taxa being subjected to further analysis. This suite of 156 taxa was reduced to a more workable level by utilizing the results of a preliminary TWINSPAN analysis (not presented) to exclude the taxa that were not showing ecologically meaningful trends. Of the 156 numerically abundant taxa selected from the relative composition analysis, 90 taxa were ultimately selected for inclusion in the detailed community analysis.

After the suite of 90 taxa were selected, a final TWINSPAN analysis was run (Figure 13). A map showing the affinities of the 156 samples to the six most meaningful TWINSPAN sample groups (in Figure 13) is presented in Figure 14. Table 28 presents values for environmental variables and community parameters in each sample, with the samples ordered and grouped in the same manner as in the corresponding TWINSPAN display (Figure 13). Table 29 presents the Pearson product-moment correlation coefficients of the density of each taxa and the values for community indices in each sample with environmental variables, with the taxa ordered and grouped in the same manner as in the corresponding TWINSPAN display (Figure 13). Examination of Figures 13 and 14 and Tables 28 and 29 in concert helps identify environmental trends most related to the ordering and grouping of the samples and taxa.

As in the analysis of the 1982 SEAMAP data discussed above (Figure 11), the ordering and grouping of the samples and taxa in the TWINSPAN display (Figure 13) appears to be most related to hydrography, depth and

Table 28. Ordered table of environmental and community parameters for single replicate samples collected at 156 stations in and around the Tuscaloosa Trend study area during the spring 1983 SEAMAP groundfish survey.

	Crutar	3110	Date	Latitude (DDHDHB3)	Longitude (DDMMLA)	Deptà (a)	Not Lon Disect ved Dicyget	Botton Saiinity	Jettas Tesperature	Total Total Tana Count	Diversity	Freemen	Pickness
TTT	135 135 001	108 1 111 1 115 1	04.JUN63 09.JUN63 30.JUN63	29 53 00 29 26 00 29 43 00	86 17 00 87 57 00 87 59 00	64 64 47	(ppm) 4,9 8,5 7,4	(ppt) 36.28 36.18 36.00	(oC) 19.83 19.20 22.50	23 279 20 139 14 544	(J*) 1.858 1.219 0.723	(H1) 0.532 0.620 0.462	(D) 3.907 3.850 2.964
	001 001 135	114 1 115 1 117 1 129 1 109 1	30,0103 30,0103 30,0103 09,0103 00,0103 00,0103 00,0103 00,0103 00,0103 00,0103 00,0103 00,0103 00,0103 00,0103 00,0103 00,0103 00,0103 00,0103 00,0103 00,0103 00,0000 00,0000 00,0000000000	29 32 00 29 33 00 29 49 00 29 23 00 29 54 00	87 58 00 87 38 00 87 44 00 88 20 00 86 16 00	44 55 34 55 55	6.4 7.4 6.8 7.2 4.9	36.00 35.00 36.95 36.95	21.00 21.00 21.90 19.00 19.00	19 1005 27 645 17 326 15 111	0.723 1.621 1.579 1.097 1.827	0.532 0.620 0.462 0.246 0.492 0.555 0.405	2.604 4.000 2.765 2.973 4.934 1.864
	135 135 135 135 135 001 001	100 1	29JUN03 03JUN03 05JUN03 29JUN03	29 31 00 29 24 00 29 59 00	87 84 00 88 20 00 84 16 00 87 30 00 85 53 00 84 00 00 87 36 00	70 96 31	7.1 5.3 5.1	36.00 36.32 35.71	20.50 20.79 20.93	30 357 6 5 84 622 38 216	1.332	0.961	7.113
	001 001 001 001	112 1 118 1 119 1 120 1 121 1	29,70103 20,70103 29,70103 29,70103 29,70103	29 50 00	87 21 00 87 17 00	** 57 3 8 2	7.4 7.0 7.2 7.1	35.00 35.00 35.00	21.00 21.80 22.00 23.00	9 19 12 87 25 160 11 192	2.903 1.906 1.203 2.215 0.869 2.505 2.199	0.904 0.484 0.688 0.362 0.769	6.863 2.717 2.463 4.729 1.902 4.484 4.765 2.782
JA1 ;	135 135 135 135	176 1 179 1 180 1	05JU005 06JU005 03JU005 03JU005 03JU005 03JU005 03JU005	30 06 00	87 07 00 86 33 00 86 57 00 87 00 00	22.5 2 2 2	5.2 8.6 5.0 5.3	35.00 35.00 38.00 35.86 36.18 36.29 36.44	20.00 20.41 20.26 19.48 20.80	25 180 11 192 26 269 26 190 18 107 18 160 11 70	2.032	0.702	4.765 2.782 3.350 2.354
	135 135 135	182 1 183 1 185 1 186 1 187 1	07 JUNES 07 JUNES 07 JUNES 07 JUNES	30 07 00 30 06 00 30 06 00 30 10 00 30 11 00	84 49 00	51 44 37 29	9.1 9.1 9.0 9.2	36.23 36.23 16.21	20.19	27 225 16 91	1.555 2.377 2.473 1.748	0.721 0.892 0.840	2.354 4.601 3.325 1.969 2.478 2.552
	135 135 135	189 7	07JU003 07JU003 07JU003 05JU003 05JU003 05JU003 05JU003 04JU003 04JU003	30 12 00	54 46 00 54 51 00 56 48 00 56 07 00 87 08 00	27 28 38	8.8 9.1 5.2 4.5	34.22 34.31 34.28 34.39 34.39	21,08 21,21 20,09 19,34 19,40	10 34 26 147 32 143	1.648 1.608 2.032 2.866 2.469 2.182	0.716 0.697 0.624 0.827	2.552 5.010 6.246 3.967 4.392
	135 135 001 001	195 1 96 1 99 1 104 1 84 1		30 00 00 29 12 00 29 22 00 29 27 09 29 50 00 29 49 00		75	5.0 4.7 5.5	36.33	20.16 19.15	22 199 21 95 23 226 9 49		0.799 0.819 0.824 0.846	2.054
	135	144 190 1	03JUL 3 02JUL 3 06JUH 3 05JUH 3 05JUH 3 06JUH 3 06JUH 3 06JUH 3	30 00 00	84 11 00 88 19 00 86 41 00 86 41 00 86 42 00 87 20 00 86 33 00 86 29 00 86 49 00 86 33 00 86 33 00 86 33 00 86 33 00	24 33 24 20 22	4.4 4.7 9.3 4.4	36.00 35.96 35.97 33.01	22.50 20.95 21.34 25.47	10 296 4 34 13 46 7 119 28 495	0.845 1.458 2.235 0.806 1.877	0.367 0.701 0.872 0.415	1.542 1.905 3.134 1.255
IAZ	135	191 1 192 1 193 1 194 1 197 2	06JU003 06JU003 06JU003 06JU003 06JU003	10 17 00 10 15 00 10 23 00 10 23 00 30 23 00 30 23 00	B6 41 00 B6 02 06 B7 20 00 B6 33 00 B6 29 00 B6 49 00 B6 33 00	20 14 9 11	9.1 9.3 9.2 9.1	14.99 15.43 15.17 15.10 15.03	21.34 25.49 20.43 20.83 21.23 21,14 22.30	28 495 23 276 28 348 23 326 21 109	2.340 2.293 1.633	0.563 0.759 0.688 0.521 0.742 0.737	4.352 3.914 4.614 3.802
	135	197 2 199 1 201 1 202 1	0210003	30 12 00 30 16 00 30 17 00 30 18 00 30 18 00	87 11 00 87 15 00 87 15 00	22 20 15	6.8 5.3 5.6 5.8	34.93 35.70 35.32	20.63 20.58 21.41 22.16	23 267 8 26 10 48 8 21	2.260 2.310 1.039 2.027 1.790	0.737 0.889 0.880 0.880 0.880 0.880 0.820	4.674 3.802 4.263 3.938 2.203 2.325 2.299
	135 001 135 001	202 1 158 1 175 1	01J0003 02J003 03J003 03J003	29 58 00	M 09 00	34 18 30	5.9 6.4 5.5 6.9	34.39 35.00 35.88 34.00	22.46 24.00 21.96 25.70	28 208 19 87 21 197	2.729 2.415 2.017 2.058	0.002	5.059 4.031 3.786 2.841
	001 001 155 135	196 209 1 134 1	03/0L83 05/0L83 06/0L83 10/0883 10/0883	29 58 00 30 11 00 30 02 00 29 37 00 29 59 00	84 07 00 87 51 00 88 14 00 88 14 00 88 17 00 88 13 00 88 21 00 88 64 00 88 15 00 88 15 00 88 15 00	10 28 44 55	5.7 4.7 7.9 4.2 4.6	33.00 38.00 34.35 36.42	25.00 23.50 20.48 14.96 20.10	38 258 28 146 30 556	2.715	0.699 0.770 0.609 0.483 0.651	5.960 4.615 4.588
	135 001 135 135 001	155 1 157 1 159 1 204 1 206 1	10JUNS 10JUNS 01JUNS 01JUNS 01JUNS 01JUNS 01JUNS	29 37 00 29 49 00 29 55 00 29 57 00 29 57 00 29 58 00 30 00 00	84 21 00 86 04 00 88 16 00 86 15 00	17 14 19 28	4.6 5.0 4.4 4.6	14.00 15.00 16.00 15.00 15.00 15.00	20.10 22.00 20.50 21.00	40 2183 37 643 31 4151 34 2838 26 547	2.255 1.644 2.255 1.769 2.627 1.353 1.355	0.100	5.07] 5.567 3.601
	001 135 001 001 135	206 1 206 1 211 1 214 1 215 1	0430L8) 0730889 0430L8) 0530L83 0730889	10 01 00	88 15 00 88 13 00 86 12 00 88 04 00 88 07 00	12	4,4 4,0 4,8	38.00 35.00 35.00	23.99 28.00 22.00 21.00 20.70	37 1631 30 534 30 1020	1.353 1.355 2.374 1.786 2.557 1.359 2.137 2.463	0.710 0.495 0.752 0.400	3.965 4.667 4.618 4.186 4.946
	135 001 001 001 001	217 1 126 1 127 1	04/0(2) 01/0(2) 01/0(2)	10 05 00 10 05 00 10 05 00 10 10 00 20 10 00 20 20 00 20 20 00 20 31 00	64 54 00 64 59 00	20	4.3 5,7 5,6 4,2	35.00 35.00 32.00	26.00 22.00 28.90	22 2260	2,102	0.506	4.549 4.213 2.715
	001	136 1	02JUL83 01JUL83 02JUL83 08JUL83		66 63 00 66 27 00 66 14 00	122242	5.9 6.0 5.7 4.0	34.00 35.00 36.00 35.79	28,50 21,00 28,00 19,10	22 429 26 559 24 110 17 114	1.829	0.592 0.617 0.787 0.567	3,865 3,952 8,009 2,783
181	001 001 001 001	154 265 267	03JULA3 02JULA3 03JULA3 03JULA3 03JULA3	29 19 00 29 55 00 30 00 00	88 31 00 88 19 00 88 61 00 88 36 00	10 22 18 22 12	3.9 2.7 6.1	35.00 38.00 39.00	21.00 22.50 24.50	23 122 19 133 19 446 24 129 11 749 25 643	2,459 2,412 1,911 2,268 2,273 1,567	0.744	1.810 3.683 2.949 3.968
	115	220	04/063 06/083 06/083 06/083 06/083 04/083	30 04 00 30 10 00 30 12 00 24 46 00	84 27 00 84 25 00 84 35 00 86 95 00		1.6 3.3 2.9 3.6	34.00 32.00 32.00	21.50 25.00 23.00 23.00	22 MA1 10 MB	1,996	0.462 0.487 0.626 0.791	4,538 3,562 3,110 1,963
	115	139 2 142 1 124 1 140 2 141 1	00.10100	29 46 00 29 46 00 29 56 00 29 56 00 29 56 00	50 43 00 50 31 00 53 19 00 54 51 00 54 51 00 54 25 00 54 25 00 54 55 00 55 45 00 55 55	13 50 18	3.4 3.2 5.0 4.0 1.6	15.00 11.16 17.00 15.79 15.00	22,00 21,04 20,50 19,10 21,00	12 17 5 50 32 2310 17 190 23 1025	1.881 1.270 2.295 2.202 2.120 1.476	G.757 G.769 G.663 G.777 G.679	2.857 1.022 4.003 1.037
	195	151 1 152 1 174 1 135 1 135 1	09.19883 09.19883 10.19883 07.19883 07.19883	29 44 00 29 53 00 29 53 00 30 12 00 29 33 00 29 34 00 29 48 00 29 48 00 29 48 00 29 51 00 29 52 00 29 52 00	40 19 00 80 40 00 84 15 00	20 11	3.7 3.8 3.3	15.00 35.01 12.00	20.10 18.92 22.00 19.00	20 031 25 330 29 27 92	1,476 2,198 2,153 2,011	0.683 0.683 0.690	4.016
	195 195 195	197 1 189 1 186 1 188 2 188 1		29 34 00 29 48 50 29 48 00 29 48 00	88 19 00		9.5 4.0 4.1	35.88 35.00 36.02 36.02	19,11 20,20 18,85	20 576	1.628 1.006 1.698 1.325 0.917 1.575	0.487	4.248 2.767 5.172 2.781
	135 135 135 135	148 1 149 2 150 1 151 2		29 51 00 29 52 00 29 52 00 29 53 00 29 51 00	64 15 00 64 15 00 64 15 00 64 16 00 64 16 00 64 12 00 64 12 00	****	6,1 3,7 3,7	36.48 36.48 36.90 35.00	26.06 18.81 18.81 20.10 20.10	37 1054 24 1795 21 2724 35 1202 34 1499 20 5408 28 774	0.917 1.375 1.269 0.879 1.615	0,301 0,445 0.360 0.293 0.485	2.528 4.796 4.513 2.210
	135	153 1 153 2 163 2 125 1 126 1	04.2483 04.2483 04.2483	29 55 00 29 55 00 29 53 00 29 53 00 29 55 00 29 18 00 29 22 00	14 31 00 14 31 00 14 31 00 14 54 00 24 10 00		1.7 4.5 4.5 7.6 7.6	36.18 36.18 36.39 36.52	18,84 18,84 19,88 20,61	20 774 21 1251 26 2056 24 1099 33 462	1.015 1.372 1.297 2.351 2.682	0.393 0.398 0.667 0.767	4.059 4.497 3.277 4.713 5.180
	041 041 041 041	91 1 161 1 164 1 96 1	222/00055 232/0005 232/0005 222/0005	26 50 00 29 00 00 29 04 00 26 58 00	89 58 00 89 39 40 89 37 00 89 47 00	****	6.4 9.8 9.8 5.8	36.00 35.00 34.90 34.00	20.20 25.60 23.19 20.70	20 540	2.000	0.438	3.497 2.894 2.912 2.744
102	001		22JUMB 5 22JUMB 5 21JUMB 5 22JUMB 1	29 00 00 29 02 00 28 45 00 28 46 00	89 52 00 89 89 00 89 68 00	10.5.7.9.0	6.0 6.6	14.00 35.00 36.20	21.20 21.30 18.80	20 1016 22 587 26 487 19 596 18 871	2.620 2.340 2.221 2.036	0.005	3.331 4.040 2.817 2.511
	001 001 001 001	911 191 191	2520885 2220885 2120885 2120885	28 51 08 28 54 08 28 41 08 28 59 98	89 16 00 89 84 00 89 56 00 89 56 00	12.7.5	5.0 5.8 7.3 5.4	35.00 36.10 36.00	20.00 19.60 18.60 22.60	16 521 19 2158 18 1337 21 987	1.530 1.599 2.002 1.078 2.340	0.692 0.529 0.606 0.600 0.373 0.766	2.345 2.367 2.901
	001 003 001	145 1 170 2 219 1	C2JUL83 22JUUR3 04JUL83	29 48 00	86 43 00 89 04 00	18	8,1 3,9 5,2 5,9 5,8	12.00	7.10	28 246	2.312 1.843 1.572 1.741	0.100 0.610 0.615 0.430	4.404 3.210 3.627 2.416 1.623
	001 001 001	167 2	23 2010 3 23 2010 3 22 2010 3 0 50 0 10 5	29 25 00 10 11 00 29 14 00 29 16 00 29 15 00 29 27 00 30 17 00	48 09 00 48 53 00 89 53 30 89 53 30 89 58 00 88 34 00 88 34 00 88 32 00	•	5.8 5.7 2.0	15.50 21.40 11.70 15.00	28.100 27.60 27.60 27.60 27.60 23.00 23.00 21.50 27.60 26.10 30.10	15 415	1,761 1,030 1,542 1,966 0,796 1,960 0,000	0.540	2.322 3.781 2.558
	135 003 003 135	223 1 148 1 170 1 173 7	10JUM5 23JUM5 22JUM5 22JUM5 01JUL5	30 13 00	8 10 00 8 10 00		5.7 3.9 8.8 8.4 4.6	20.00	21,50 27,60 26,10 30,10	19 997	0.000	0.672	2.697 6.000 0.000
	5002	170 2	01JULAS 14JD103 23JU103 09JU103 10JU103	29 15 00 29 25 00 30 11 00 29 27 00 30 11 00 29 25 00 29 27 00 30 13 00 30 12 00 30 12 00	A4 64 60 89 54 00 89 12 00 87 44 00	2 4 2 9	4.4 4.4	28,00 24,10 5,30	26.00 76.20 10.10	3 62 2 6 21 3551 8 520 26 777	0.451 0.874 0.756	0.287 0.363 0.363	0.558
	135 135 135 135	198 1 222 1 222 1 222 1 223 1 167 1	0210183	30 12 00 30 13 00 30 13 00 29 14 00 29 15 00	68 18 00 68 18 00 68 12 00 69 53 00		5.4 3.4 5.8 8.7	23.00	22.00 23.50 26.50 25.50 27.40	17 3995 18 1843 12 106 1 122	0.140	0.363 0.479 0.169 0.849 0.568	1.929
	003	168 1 169 2 169 1 173 2 173 1	2320003 1020003 1020003 2320003 1020003 1020003 1020003	29 14 00 29 15 00 29 16 00 29 27 00 29 27 00 30 16 00 30 15 00	89 54 00 89 54 00 89 54 00 89 10 00		8,7 7,8 7,0 5,6 6,9	27.00 21.40 10.20 7.40 8.00 19.30	27.60 27.90 27.70 28.90 26.90	10 85 12 327 12 958 12 1530 11 1807	0.000 0.975 1.269 0.766 0.195 0.491	0.423 0.511 0.300 0.078 0.205	2.026
	902 135 135 135	173 1 224 1 225 1 226 1 226 1 227 1	09./0003	29 16 00 29 16 00 29 27 00 30 16 00 30 16 00 30 16 00 30 18 00 30 19 00 30 19 00 30 19 00 30 19 00 30 19 00 30 19 00 30 22 00	44 19 00 44 19 00 44 12 00	2	6.9	7.60	26.80	14 281 9 70	1.670	0.633 0.683 0.710	1.333 2.306 1.663 2.136 1.185
	135 135 135	227 1 226 1 229 1 230 1 231 1		30 18 00 30 16 00 30 19 00 30 19 00 30 19 00	44 05 00 64 14 00 64 05 00					1177	1.703 0.223 1.740 0.372 0.483	0.093 0.792 0.169 0.220 0.686	1.546
	135 001 001 003	231 1 165 1 166 1 172 1	23JU103 23JU103 23JU103 22JU103	30 19 00 30 22 06 29 06 00 29 06 00 29 06 00	85 09 00 68 15 00 89 31 00 89 34 00	12	5.5 4.6 2.0	16.00 32.00	25.10 25.30 27.99	9 2204 11 206 11 226 9 828 1 2	1.650 1.567 0.676 0.006	0.654 0.217	1.039 1.877 1.042 1.191 0.000
HB1	135	200 1 200 1	04JUMB3 26JUMB3	30 16 00 30 16 00	87 33 00 87 33 00 69 54 00	;	4.0 8.7	12.08	21.50 27.50 27.60	12 242	1.017 0.967 0.000	0.609	2,004
1 1 1 1 1	135	178 t 196 t	1420003 2620483	29 15 00 29 25 00 30 13 00	89 C4 00 87 84 00	;	4.4 4.4	24.10 27.00	26.29 27.50	2 3	0.000	0.916	0.000

bivariate Pearson product moment Table 29. Ordered matrix of simple correlation coefficients of densities of 90 selected demersal nekton taxa and community parameters with environmental variables collected at 156 stations in and around the Tuscaloosa Trend study area during the spring 1983 SEAMAP groundfish survey.

				Bottom		
		Taxa	Depth	Dissolved Oxygen	Bottom Salinity	Bottom Temperature
ΓΤΤ	•	Lagodon rhomboides	0.05755	0.17068	0.09789	-0.10329
		Prionotus salmonicolor Synodus fostens	0.14009 0.25290	0.11319 0.00427	0.08461 0.21944	-0.05537 -0.20282
		Bellator militaria	0.41102	-0.05650	0.12506	-0.19365
		Monacanthus hispidus Neomerinthe.hemingwayi	0.18251 0.12944	0.15645 0.07387	0.13918 0.12812	-0.10665 -0.14684
		Pristipomoides aquilonaria	0.28442	0.02897	0.09963	-0.15740
		Syacium papillosum Synodus intermedius	0.21314 0.29424	-0.05117 0.13553	0.19379 C.14039	-0.22582 -0.14977
		Synodus poeyi	0.33998	-0.02060	0.10100	-0.14565
		Trachinocephalus myopa	0.36547	0.19612 0.02002	0.14752	-0.14223 -0.21089
Í	1	Urophycis regius Haemulon aurolinestum	-0.00283	0.05574	0.08112	-0.09140
		Ophidion holbrooki	0.18117	0.25091	0.16063	-0.13047
		Sphoeroides spengleri Sicyonia brevirostris	0.09652 0.05861	0.21727 -0.08402	0.09708	-0.10440 -0.17948
		Loligo pealeii	0.08071	0.10516	0.20504	-0.11784
iA		Scorpsena calcarata Diplectrum formosum	0.26606	0.06229 0.27553	0.14262	-0.12334 -0.08864
I TI		Orthopristis chrysoptera	-0.06072	0.17589	0.09429	-0.10898
		Prionotus martis Prionotus scitulus	-0.04295 -0.00142	0.29146 0.09277	0.07945 0.13718	-0.06939 -0.12267
		Raja eglanteria	0.08177	0.15789	0.14582	-0.14618
[Portunus spinicarpus	0.37564 0.13744	-0.13609 0.02147	0.14924 0.15162	-0.27473 -0.22261
1 1		Solenocera Centropristis philadelphicus		-0.11601	0.15408	-0.05077
		Lepophidium jeannae	0.20770	0.00507	0.11650 0.03690	-0.14776
		Decapterus punctatus Prionotus stearnsi	-0.00111 0.28951	0.00043 -0.09583	0.14111	0.01837 -0.19222
	2	Stenotomus caprinus	0.19121	0.03212	0.18791	-0.14672
!		Ophidion grayi Etrumeus teres	-0.06560 -0.02237	0.02596 -0.00335	0.12541 0.08661	-0.12323
		Trachurus lathami	0.13464	0.01832	3.07884	-0.06576
		Ovalipes guadulpensis Lutjanus campechanus	-0.06575 0.12092	-0.09248 -0.05970	D. 15640 0. 12039	-0.17739 -0.08747
		Porichthys porosissimus	0.11905	-0.05267	0.10233	-0.01142
╏┝┼		Prionotus roseus Penseus duorarum	0.06471	-0.00754	0.08144	-0.01193
		Portunus apinimanus	0.03051	-0.09849	0.08042	-0.05674
		Cyclopsetta chittendeni	0.12252 0.03728	0.01554	0.06972 0.14402	-0.02151 -0.23442
}		Halieutichthys aculeatus Trachypenseus	0.03134	-0.27363	0.17763	-0.27031
		Portunus gibbesii	-0.03748 0.02199	-0.27761 -0.14383	0.16258 0.12452	-0.24046 -0.23956
1		Squilla empusa Ovalipes floridanus	-0.07285	-0.20695	0.08625	-0.09171
		Sicyonia dorsalis	0.01595	-0.08314	0.12594	-0.19724 -0.08628
		Parapenaeus Calappa sulcata	0.02736 0.01946	0.09903 -0.17879	0.06436 0.10201	-0.16047
		Brotula barbata	-0.03521	-0.15341	0.05333	0.05746
18	11	Prionotus rubio Saurida brasiliensis	-0.07486 0.13206	-0.18393 -0.08991	0.04478 0.14343	-0.06814 -0.12300
		Serranus atrobranchus	0.19973	-0.05954	0.15500	-0.23110
18		Syacium gunteri Urophycis cirratus	0.00445	-0.16297 -0.06428	0.11812 0.14486	-0.21813 -0.23514
		Urophycis floridanus	0.00899	-0.23373	0.17613	-0.31355
		Antennarius radiosus Lepophidium graellsi	0.22273 0.18272	-0.01175 -0.06574	0.09449 0.12776	-0.11497 -0.12675
		Gunterichthys longipenis	0.17012	-0.02400	0.07689	-0.12414
		Nesumia bairdii Hoplupnis macrurus	0.28589 0.17557	-0.03341 -0.00268	0.08896 0.07859	-0.16651 -0.10562
		Squille	0.09872	-0.22010	0.18389	-0.17025
		Bollmannia communis Diplectrum bivittatum	0.18362 0.01244	-0.00710	0.10484	-0.15531 -0.14760
		Sphoeroides parvus	-0.02044	-0.14645	0.16650	-0.09840
		Lolliguncula brevia	-0.12188 0.04749	-0.17534 -0.21858	0.05872 0.19619	-0.08271 -0.17294
IB	2	Etropus crossotus Ophidion welshi	-0.05156	-0.12146	0.01855	-0.03698
\square		Prionotus tribulus	-0.13235	-0.24494	0.07324	-0.01872
		Symphurus plagiusa	-0.05108	-0.10152	-0.04100	-0.00594
		Penneus setiferus	-0.12835	-0.19046	0.09544	0.09942
		Penaeus astecus Cynoscion arenarius	-0.08313 0.00131	-0.30370 -0.04541	0.05531 0.04244	-0.02985 -0.00807
"jîi/	1	Trichiurus lepturus	0.04238	-0.05016	-0.01777	0.07241
		Anchos hepsetus Citharichthys spilopterus	-0.14307 0.16679	-0.05198 -0.12123	-0.06484 0.01204	0.10651 -0.04058
1 11	12	Callinectes sapidus	-0.07126	-0.12366	0.02910	0.10775
	31	Arius felis Harengula jaguana	-0.16995	-0.10819	-0.11758 0.03717	0.10387 0.07289
Ϊļļ		Stellifer lanceolatus	-0.15565	0.02267	-0.10331	0.11000
		Chloroscombrus chrysurus Peprilus burti	-0.07737 -0.05529	-0.09770 -0.10109	-0.01683 -0.04382	0.12540 0.04830
118		Anchoa mitchilli	-0.17357	0.07929	-0.21664	0.14031
118	32	Anchoa nasuta Larimus fasciatus	-0.16196 -0.11550	0.03547	-0.14012 -0.05484	0.17354 0.02410
		Leiostomus xanthurus	0.05188	-0.00923	0.00731	0.03185
		Nenticirrhus americanus Ophichthus gomesii	-0.15778 -0.10357	0.05559 -0.01981	-0.28112 -0.06406	0.17426
		Polydactylus octonemus	-0.16210	0.00096	-0.20291	0.23702
┶┶┶	-	Micropogonias undulatus	0.16490	-0.01844	-0.00022	-0.00121
		Total Taxa	0.29418	-0.27022	0.56658	-0.56609
		Total Individuals Diversity	-0.00959 0.42098	-0.29451 -0.10588	0.10425 0.65141	-0.18138 -0.55118
		Richness	0.33798	-0.12569	0.60598	-0.57451
		Evenness	0.25407	0.07678	0.35885	-0.20329

TAXA GROUPS

					······································			—	118
				IA2	······································	182	IIA1	HAZ	1451
				1]		
			330000330330000033333333333333333	00333333333333333333	000111011010010000001000010111101111111	1000600000000	0000000110001001111000000111111	11000 33000	100
			55111155155111115555555555555555	1 15555555555555	1 1 1 5 5 1 5 5 1 5 1 1 5 1 1 1 1 1 5 1 1 1 1 5 1 5		1312333553335235555322322555555	551 8	Ξ
			011111201001112277666686689999	111111111112221 8488999999999990051	11211111222222211111111222222111111111	11111	1121111221112111222111111222222	221 11	22111
			816457 993012890 1690 123567 95894	4648071234791228	12111112222221111111222221111111111111	14423 90238	097782038030038223789913456789	11562	1000
				111111111111211111	111111111111111111111111111111111111111		1212222111112212111111	1114	1111
T	T	Lagodoù rbobboides Priostius selsonionior	112222211				······	-1-++	
		Synodus footens	22111121-1218	2131111	1:1-1+2-+2+21-2	1-1111-1	- 2 13 1	-#	÷
1		Belister militaris Homesanthus hispidus	3++ 11++3++ 18+++ 1-+++ 314	1					+
		Hosporisthe hesingwayi Pristiponeides squiicenris	1	3					+
1		Syncium papilloous	-112341-53353114235144-2343.	211231	111-12112211-1-1-1	1			±-
		Synodus intermedius Synodus peeyi	111 12-213 22234						+-
	141	Trachinocophalus ayope Urophysis regius		21111					Ŧ
		Manualos surolissetus							+
		Ophidion helbrooki Spheeroides spengieri	1211 43-252-33 1353324		- ! !- !- ! !- !		1-1		+-
		Sicyonia brevirestris Leiigo penieii	1	-543525244343344		k			Ŧ
		Scorpsone calcarate		22121333222-5	1 11 - 2 - 1 - 1		8-1	-#	-
1Å		Diplectrum formesum Orthopristis skrysopters		22121333222-3 2-223-241			1	++	1
		Priomotus martis Priomotus esituius	164.54 3 171			1-		-#	Ŧ
	_	Raja uglantoria	warmen langes to these langes to					<u></u> 1	+
		Portugue spinieerpus Solessoers			- 1- 11 1 1		1	-#	+-
	1	Contropristis philodolphisus Lopophidium joonnas	33	-1-2-1221	1-111211111211324125212223131-211411111-1-11111-1	214-1-1-112	P	-#	Ŧ
ļ		Deceptorus substatus		1 1	- 1	- 13 - 11		=#	+
	142	Priometus stoernal Steestomus caprimus	12 1 2- 1	82-2-111-2-242	11-1-11-1		- 1	++	+-
	1	Ophidion grapi Etraneus teres			13355532251351534-441424411-111231211111121-2 - 121131111				+
		Treeburus lathami	+15						1
		Ovalipes gundulpensis Lutjamus campechanus	-?	12-3	= 1 1 1 1 1	1		-++	+-
		Poriokikys poresiesimus Priomotus resous	···· 1 ···· 19 1 ···· 19 1 ···· 1 ···· 19	1		-111	- 1 1		+
٢		Penneus duorarun Portugue apinismene			5251213113252323-43-21-421555-433431112321321-1	214334-11-12		#	ŧ
		Cyclopeette ohittendeni	1-1	11	- 12 1-2- 1 1 1 1			#	±
		Malieutishthys aculostum Trachypedsous	- 1 1 151 - 3 1 12-2 3 1	-1		12-		-++-	
		Portugue gibbonii Squille empuse			-1!+1!+1+1!!!!			=#	+
		Ovalipes floridames						<u>-</u> #	±-
		Sicronia doraniis Parapagana							
	1	Calappa suloata Brotula barbata	1			1-		#	+
		Priosotus rubio	+1						<u>+-</u>
i.	T	Saurida branilionsis Serranus atrobranobus	1-11		- - 1 -				+
ī		Syseium gusteri Grosbycis cirratus	1		11 1 1 1 1				1
		Urophysis floridama	1 1	1 1 1					+
		Antennarius rediceus Lesesbidius graellai	2-1		1-1-12-12-2112221				+
		Gunterichthys longiponis Neumis bairdii	*****			41 121 13		#	1-
		Hopiumals measurus	1					<u>, 11</u>	+
	1	Squille Bollgeonie example			11 1-1221223 12224233 12322123-2-11-2432-22-2-3-	11445232312	I-2		+
1	-	Diplostrum bivittatum Spheereldes parvus			313111311223222 1-2-1 1 11-1111111111	13		-16	=
1.		Lolligumenia brovis Elfonne presente				-21		#	E
1	2	Ophidios veishi		243	₩₩11737#####11117-#11112111-++++ 11111112111111111 +1+++#211-11111-+1-1++++++++++++++++++++	1232411-12	121	-#	+
+	+	Priometus tribulus Calizantes similis		-1-2212113	122		5-335554	#	F
	1	Symphurus plagiums Pensous soliforus	t- 1 t	1-		1-22211-1-1	-12121431-11	#	F
	A1	Pensous Attoeus			111 1-11-24413512541-155534434421111111121112	1112111-111		<u>-+</u>	t
HA	1	Cymposion aromanius Trichiurus iopturum			· 1	15-53-1-1 61282-1-1		n II.	F
	1	Anches Reportus Citharichthys spiloptorus	2	· · · · · · · · · · · · · · · · · · ·	•4=== 1 === 1 1 15=== 3 3 = 1 1 1 = +== 2 === 1 1 1 1 = 1 == 1 1 == 1 1 ==			- 1-65	\$55
1	A2-	Callimectos sapidus				21115121118	-11-121		ŧ
1	i 81 -	Arius follo Herosgula jeguana		2353	\$		-1		-
		Hereegule jeguene Stellifer lanceeletus Chiereseesbrus abryourus		12			2	#	=
	1	Peprilus burti		- 1	• 1	1 1 1	3	:#	E
iin.		Annhos mitobill Annhos merute		+		{	121-21-55554555555-55555555555555	-#-	
1	182	Lorisus facelatus			1			Щ ?	F
	1	Manticirrans americana			2	112-		"#-	F
		Ophichthus genemii Polydectylus ectonomia			.			-#-	F
T	T	Hioropogoales undulatus	1 1			5-5-5%		#	=
				000000000000000000000000000000000000000					
							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00011	n 1 1

Figure 13. Ordered two-way display resulting from TWINSPAN analysis of relative abundances of 90 selected demersal nekton taxa collected in single replicate samples at 156 stations in and around the Tuscaloosa Trend study area during the spring 1983 SEAMAP groundfish survey.

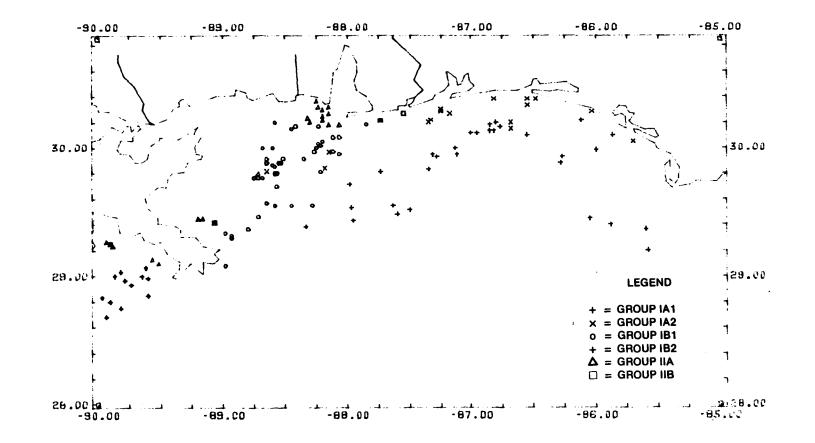



Figure 14. Map of the SEAMAP groundfish study area showing the membership of the samples to the six most meaningful groups resulting from TWINSPAN analysis of relative abundance of 90 selected demersal nekton taxa collected in single replicate samples at 156 stations in and around the Tuscaloosa Trend study area during the spring 1983 SEAMAP groundfish survey.

geography. Although not measured, it appears that sediment composition was important in determining the trends within areas that were otherwise similar. For interpretive purposes, sediment composition at the SEAMAP trawl stations was inferred in the same manner as for the 1982 collections (i.e., by overlaying a map of the station locations on a recent map of the sediment composition in the study area).

The overall ordering and grouping of the 1983 samples in Figure 13 was almost identical to that seen in Figure 11 for the 1982 samples. The samples on the far right of the TWINSPAN display (Sample Group II in Figure 13 and Table 28) were, for the most part, collected in the shallowest, most nearshore areas in the vicinity of the Mississippi Delta and near the confluence of Mississippi Sound and Mobile Bay (depth ranged from 2 to 16 m). They were generally characterized by lowest salinities (range of 5.3 ppt to 32 ppt) and highest temperatures (range of 21.5 to 30.1 There did not appear to be any strong geographical differences in C). the stations represented in Groups IIB1 and IIB2. The samples in Group I were collected in deeper waters (range of 9 to 90 m) or from the nearshore areas off the Florida coast in the western portion of the study area, and were characterized by the highest salinities (range of 32 to 38 ppt) and lowest temperatures (range of 18.8 to 26.0° C).

Sample Group IA encompassed the stations located on very sandy sediments in the eastern portion of the study area off the Alabama and Florida coasts (Figure 14), with the deep water, more offshore stations included in Station Group IA1 and the shallow water, more nearshore included in Group IA2 (Table 28). Sample Group IB included the stations located on the finer textured (muddler) sediments in moderate depth to deep waters in the western and central portions of the study area, with those stations located east of the Mississippi River outfall included in Group IB1 and those located west of the outfall in Group IB2. For the most part, those in Group IB2 were collected from stations in deeper waters than those in Group IB1. As in the results of the 1982 analysis, the main factor responsible for separating Group IA stations from those of Group IB appears to be geographical (east vs west), and within Groups IA or IB, the major differences appear to be depth related. Within each of the four groups in Sample Group I (Figure 13), there was considerable variability in numbers of taxa and community parameters, and no clear cut trends among Groups IA1-IB2 were apparent based on these parameters (Table 28).

Total number of taxa, species diversity and species richness were positively correlated with depth and salinity, and negatively correlated with temperature, again indicating that the offshore communities tended to be more diverse than those inshore (Table 29).

The taxa were ordered in Figure 13 such that those most characteristic of the shallower depth, lower salinity and higher temperature waters (Sample Group II) were located along the bottom portion of the TWINSPAN display and corresponding ordered correlation table (Taxa Group II in Figure 13 and Table 29). Conversely, those taxa (in Taxa Group I) that were most characteristic of middepth and deep waters with higher salinities and lower temperatures (Sample Group I) were located along the middle and upper portions of the TWINSPAN display and correlation table (Figure 13 and Table 29).

The majority of the taxa in Taxa Group IA1 (Lagodon rhomboides through Raia eglanteria in Figure 13 and Table 29) were most characteristic of the deeper water, high salinity, sandy habitat in the eastern portion of the study area (Sample Group IA1 in Figure 14). Some of the taxa in Group IA1 which were most characteristic of this trend include Prionotus salmonicolor, Bellator militaris, Syacium papillosum, Synodus intermedius, Trachinocephalus myops, and Urophycis regius. Sicyonia brevirostris and Loligo pealeii were widespread across all depths in this sandy habitat, and were also well represented in several of the samples from the moderate depth to deeper water, high salinity, muddy sediment habitat east of the Mississippi River Delta (Station Group IB1). Diplectrum formosum, Orthopristis chrysoptera, Prionotus martis and Prionotus scitulus were most characteristic of the shallow water, nearshore, sandy habitat encompassed The correlations of the Group IA1 taxa with in Sample Group IA2. environmental variables supported the deeper water association for these taxa, with the majority of these taxa exhibiting positive correlations with depth, dissolved oxygen, and salinity and negative correlations with temperature (Table 29).

The taxa in Group IA2 tended to be more widespread in distribution compared to those in Group IA1, with many of the taxa well represented in the high salinity, sandy and generally middepth habitat of Sample Group IA2, and in the high salinity, muddy sediment and generally middepth habitat east of the Mississippi River Delta (Sample Group IB1). Some of the taxa most characteristic of this trend included <u>Ophidion gravi</u>, <u>Etrumeus teres</u>, <u>Trachurus lathami</u>, and <u>Ovalipes guadulpensis</u>. <u>Centropristis philadelphicus</u>, <u>Stenotomus caprinus</u>, and <u>Prionotus roseus</u> showed these same trends, but were also represented in similar deep water habitats located both east and west of the Mississippi River outfall (Sample Groups IA1 and IB2). The correlations of the Group IA2 taxa with environmental variables were generally similar to, but somewhat weaker than those exhibited by the taxa in Group IA1 (Table 29).

The Group IB1 taxa were, for the most part, restricted to the high salinity, muddy sediment habitat located at middepths to deep waters the central and western portions of the study area (Sample Group IB). Many of the taxa in Group IB1 were restricted to the central portion of the study area (Sample Group IB1), with Penaeus duorarum, Halieutichthys aculeatus, Portunus gibbesii, Sicvonia dorsalis, Prionotus rubio, Urophycis floridanus and Diplectrum bivittatum most characteristic of this trend. Trachypenaeus LPIL, Lepophidium graellsi, and Squilla LPIL were well represented in the areas both east and west of the outfall, whereas Gunterichthys longipenis, Nezumia bairdi, Hoplunnis macrurus, and Bollmania communis were virtually restricted to the area west of the outfall (Sample Group IB2). The correlations of the Group IB1 taxa with environmental variables were generally weak, with the majority of the taxa exhibiting positive relationships with depth and salinity, and negative relationships with dissolved oxygen and temperature (Table 29).

The five taxa that comprised Taxa Group IB2 (<u>Sphoeroides parvus</u>, <u>Lolliguncula brevis</u>, <u>Etropus crossotus</u>, <u>Ophidion welshi</u>, and <u>Prionotus</u> <u>tribulus</u>) were the most widespread taxa in the study area, but were most relatively more abundant in the high salinity, muddy sediment middepth habitat east of the Mississippi River outfall (Sample Group IB1 in Figures 13 and 14 and Table 28). <u>Lolliguncula brevis</u> and <u>Prionotus tribulus</u> were not collected in the high salinity, muddy sediment habitat west of the Delta (Sample Group IB2). The correlations of Group IB2 taxa with environmental variables were generally very weak (Table 29), a reflection of their widespread distributions.

The taxa in Group IIA (Callinectes similis through Callinectes sapidus in Figure 13 and Table 29) were widespread across the muddy sediment habitats east and west of the Mississippi River outfall (Sample Group IB) and in the shallow water, low salinity habitats near the confluence of Mobile Bay and Mississippi Sound and near the Mississippi River Delta (Sample Group IIA). These taxa were virtually absent from the high salinity, sandy habitats in the central to eastern portions of the study area (Sample Group IA in Figures 13 and 14 and Table 28). Some of the taxa most representative of this trend include <u>Callinectes</u> <u>similis</u>, <u>Penaeus</u> aztecus, and Cynoscion arenarius. Callinectes similis was not collected in the fine-textured habitat west of the Mississippi River Delta (Sample Group IB2), whereas <u>Callinectes</u> <u>sapidus</u> occurred in all of these samples. The correlations of the Group IIA taxa with environmental variables were generally weak, due in large part to their widespread distributions (Table 29). However, the occurrence of these taxa in shallow depth, low salinity habitats was evident in the signs of the correlation coefficients, with most of the taxa exhibiting negative correlations with depth.

The Group IIB taxa (<u>Arius felis</u> through <u>Micropogonias undulatus</u> in Figure 13 and Table 29) were virtually restricted to the shallow depth, low salinity habitats located near the confluence of Mobile Bay and Mississippi Sound, and immediately east and west of the Mississippi River Delta. Some of the taxa most representative of this trend include <u>Anchoa mitchilli</u>, <u>Leiostomus xanthurus</u>, <u>Polydactylus octonemus</u>, and <u>Micropogonias undulatus</u>. The correlations of these taxa with environmental variables confirmed the shallow water, low salinity association, with virtually all of the taxa exhibiting negative correlations with depth and salinity and positive correlations with temperature (Table 29).

#### 2.5.3 <u>NMFS Fishery Independent Survey Seasonal Data</u>

#### 2.5.3.1 Introduction

The main purpose of this analysis was to evaluate seasonal trends in nekton community structure in the Tuscaloosa Trend study area. The Fishery Independent surveys included few samples from areas of the west Florida shelf that were included in the spatially extensive 1983 SEAMAP survey. in the As such, taxa characteristic of the sandy sediments of the eastern part of the study area (see Groups 4 and 5 in Tables 2 and 3) were not well represented in the Fishery Independent survey data. On the other hand, the seasonal data provided another dimension not seen in the analysis of the spring SEAMAP data or fall Fishery Independent survey Distributions of taxa in this seasonal analysis would be expected data. to be somewhat different from those seen in the spring and fall analyses, and the results should more closely define the life histories of the taxa in the Tuscaloosa Trend study area.

#### 2.5.3.2 Relative Composition and Abundance

The community composition over all samples combined is summarized in Table 30. A total of 421,435 individuals representing 300 taxa were identified and enumerated in 763 seasonal trawl samples from 256 station selected for preliminary analysis. The community was numerically dominated by <u>Micropogonias undulatus</u>, which was collected in 69% of the samples (frequency of occurrence = 0.69) and accounted for 34% of the pooled percent composition; <u>Stenotomus caprinus</u> and <u>Leiostomus xanthurus</u> each accounted for greater than 5% of the pooled percent composition, with <u>Leiostomus xanthurus</u> exhibiting a very clumped distribution (index of dispersion = 5144.20). These two taxa were each found in about 1/3 of the samples. Based on mean percent composition (Table 30), the top eight most abundant taxa accounted for over 50% of the cumulative percent composition.

<u>Trichiurus lepturus</u> and <u>Cynoscion arenarius</u> were the next most abundant taxa, each accounting for greater than 4% of the pooled percent composition (Table 30). These two species were relatively widespread in distribution, with each occurring in greater than 40% of the samples. <u>Penaeus aztecus</u> and <u>Cynoscion nothus</u> each accounted for greater than 3% of the pooled percent composition. <u>Penaeus aztecus</u> was the second most widespread taxon, occurring in almost 60% of the samples collected. <u>Arius felis, Anchoa hepsetus, Trachypenaeus LPIL</u>, and <u>Prionotus rubio</u> each accounted for approximately 2% of the pooled percent composition, with <u>Prionotus rubio</u> occurring in 49% of the samples collected. Other taxa that were relatively widely distributed (frequency of occurrence >0.30) included <u>Arius felis, Synodus foetens, Syacium papillosum</u> and <u>Centropristis</u> <u>philadelphicus</u>.

There were substantial differences in community composition when these results were compared to those from the SEAMAP 1982 and 1983 fall analyses (compare Tables 22 and 26 with Table 30). Micropogonias undulatus was approximately an order of magnitude more abundant and Trachypenaeus LPIL about an order of magnitude less abundant in the Fishery Independent survey data. These differences may be attributable both to differences in the locations of sampling stations in the two studies and to seasonal effects. In the spring SEAMAP analysis, Micropogonias was more or less restricted to the inshore zone (Figures 11 and 13), while in this seasonal analysis, it was the most widely distributed taxa (Table 30). Another major difference in the results of the two studies derives from the inclusion of estuarine stations in the SEAMAP surveys. Taxa that spend the majority of their existence in or near the estuaries (e.g., Anchoa mitchilli) were less well represented in the Fishery Independent survey database which included few samples from stations located in less than 5 fm depths.

#### 2.5.3.3 Two-Way Indicator Species Analysis

As part of the initial community characterization, various community indices were calculated and are discussed below in the context of the multivariate analysis of the community data. A hierarchical list of taxa found in the seasonal data set is presented as Table 31.

Based on the results of the relative composition analysis (Table 30), all taxa which did not occur in at least three samples were excluded

### Table 30. Overall relative composition of demersal nekton taxa collected in three replicate samples at 154 stations in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys.

Relative Composition Table for the Seasonal FID Data

Merative composition india for the Ser	BOUNT FID Data						
TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE Abundance	MEAN Density (# / HA)	INDEX OF
Micropogonias undulatua	23,195	23.195	33,969	0.689	143159.	264.55	1230.63
Stenotomua caprinus	6.104	29.299	5.805	0.328	167624.	45.21	320.64
Leiostomus xanthurus	2.222	31.521	5.040	0.336	188866.	39.25	5144.20
Trichiurus lepturus	4.863	36.384	4.833	0.402	209234.	37.64	372.51
Cynoscion arenarius	3.413	39.796	4.272	0.474	227 238.	33.27	781.31
Penaeus aztecus	3.945	43.742	3.679	0.598	242741.	28.65	235.19
Cynoscion nothus	1.488	45.230	3.106	0.311	255829.	24.19	1549.27
Arius felis	5.129	50.359	2.393	0.308	265916.	18.64	148.04
Anchoa hepsetus	1.753	52.112	2.070	0.170	274639.	16.12	1036.04
Trachypenaeus	2.654	54.765	1.996	0.286	283051.	15.55	95.04
Prionotua rubio	2.068	56.833	1.979	0.491	291390.	15.41	82.38
Steindachneria argentea	1.160	57.993	1.656	0.089	298371.	12.90	437.81
Asteroidea	1.752	59.745	1.514	0.092	304753.	11.79	1710.53
Luidia	1.825	61.570	1.369	0.068	310522.	10.66	328.94
Peprilus burti	1.110	62.680	. 1.365	0.248	316273.	10.63	497.93
Trachurus lathami	1-495	64.174	1.297	0.160	321738.	10.10	295.71
Selene setapinnis	0.470	64.645	1.205	0.110	326817.	9.39	3366.51
Loligo	2.295	66.939	1.047	0.151	331231.	8.16	119.35
Chloroscombrus chrysurus	2.465 1.897	69.404	0.966	0.183	335300.	7.52	103.26
Syacium papillosum	0.968	71.301 72.269	0.948 0.824	0.338	339296	7.38 6.42	46.25
Harengula jaguana Synodus foetens	1.864	74.133	0.809	0.435	342770. 346178.	6.30	214.58 54.15
Synodua Toetens Serranus atrobranchus	0.719	74.851	0.711	0.159	349173.	5.53	151.26
Cynoscion	0.721	75.572	0.692	0.063	352091.	5.39	330.59
Centropristis philadelphicus	0.926	76.498	0.653	0.328	354841.	5.08	49.03
Ophiuroidea	0.483	76.981	0.651	0.017	357586.	5.07	1368.07
Penseus setiferus	0.743	77.724	0.588	0.218	360064.	4.58	48.06
Diplectrum bivittatum	0.606	78.330	0.504	0.123	362190.	3.93	65.32
Portunus spinicarpus	0.512	78.842	0.502	0.104	364307.	3.91	110.80
Callinectes similis	0.687	79.529	0.497	0.231	366401.	3.87	36.15
Lerimus fasciatus	0.273	79.802	0.475	0.115	368401.	3.70	211.78
Lagodon rhomboides	0.567	80.370	0.472	0.181	370389.	3.67	51.22
Sicyonia brevirostria	0.537	80.907	0.454	0.130	372303.	3.54	86.04
Parapenaeus	0.580	81.487	0.437	0.042	374145.	3.40	124.20
Etropus crossotus	0.640	82.127	0.427	0.235	375946.	3.33	33.81
Eucinostomus gula	0.848	82.974	0.407	0.143	377663.	3.17	54.52
Xiphopeneus	0.455	83.429	0.384	0.038	379280.	2.99	128.45
Squilla	0.547	83.976	0.379	0.194	380879.	2.95	29.14
Halieutichthys aculeatus	0.441	84.418	0.376	0.156	382465.	2.93	58.30
Anchon mitchilli	0.586	85.004	0.366	0.058	384006.	2.85	85.95
Lolliguncula brevis	0.684	85.688	0.349	0.127	385477.	2.72	33.13
Prionotus salmonicolor	0.552	86.240	0.320	0.122	386827.	2.49	45.00
Scyphozoa	0.511	86.751	0.313	0.041	388148.	2.44	390.18
Lepophidium	0.392	87.142	0.296	0.193	389397.	2.31	14.84
Scorpaena calcarata	0.309	87.452	0.294	0.077	390638.	2.29	63.17
Stellifer lanceolatus	0.305	87.757	0.278	0.042	391811.	2.17	93.75
Loligo pealeii	0.796	88.552	0.263	0.094	392918.	2.05	51.06
Echinoidea	0.451	89.004	0.261	0.056	394019.	2.03	115.83
Solenocera	0.338	89.342	0.253	0.083	395087.	1.97	43.57
Polychaeta	0.097	89.439	0.237	0.001	396087.	1.85	1000.00
Etrumeus teres	0.401	89.840	0.236	0.063	397081.	1.84	149.13
Astropecten	0.243	90.083	0.232	0.009	398057.	1.80	463.31
Sphoeroides parvus	0.360	90.443	0.228	0.147	399019.	1.78	21.05
Cyclopsetta chittendeni	0.228	90.671	0.205	0.159	399882.	1.59	94.33
Decapterus punctatus	0.198	90.870	0.200	0.048	400723.	1.55	132.59
Menticirrhus americanus	0.304	91.174	0.197	0.094	401553.	1.53	34.45
Anchoa Prionotus tribulus	0.262 0.269	91.435	0.188	0.024	402347.	1.47	93.29
Penaeus duorarum	0.209	91.705	0.180	0.097	403104.	1.40	29.63
Renilla mulleri		91.921	0.171	0.121	403826.	1.33	24.86
Porichthya porosissimus	0.304 0.212	92.225 92.437	0.170	0.043 0.144	404543. 405201.	1.32	40.21
Callinectes sapidus	0.322	92.759	0.156 0.156	0.135	405201.	1.22	13.77
Opisthonema oglinum	0.595					1.21	41.12
Lutjanus campechanus	0.230	93.354 93.584	0.153	0.076	406504.	1.19	60.98
Hydrozoa	0.181	93.765	0.153 0.151	0.142 0.017	407149. 407785.	1.19 1.18	21.53
Mellitidae	0.145	93.910	0.139	0.017	408372.	1.08	401.21
Prionotus	0.180	94.090	0.136	0.026	408372.		120.49 57.62
Lolliguncula	0.180			0.028		1.06	32.40
Bellator militaria		94.441	0.131		409496.	1.02	
Diplectrum radiale	0.139	94.580	0.130	0.064	410044.	1.01	31.02
NTNYACELME LEGTETA	0.177	94.757	0,126	0.079	410577.	0.98	25.31

Relative Composition Table for the Seasonal FID Data

Relative Composition Table for the Sem	SOURT LID DECE						
TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	MEAN DENSITY (# / HA)	INDEX OF DISPERSION
Pristipomoides aquilonaris	0.170	94.927	0.115	0.045	411061.	0.89	70.81
Decapoda	0.323	95.249	0.114	0.017	411540.	0.89	62.75
Polydactylus octonemus	0.054	95.303	0.093	0.033	411931.	0.72	43.63
Citharichthys spilopterus	0.157	95.460	0.086	0.098	412293.	0.67	9.09
Lepophidium brevibarbe	0.106	95.566	0.085	0.030	412651.	0.66 0.54	41.20
Chaetodipterus faber	0.090	95.656	0.070	0.080	412944. 413231.	0.54	13.60 31.46
Syacium gunteri	0.070 0.063	95.726 95.789	0.068 0.066	0.033 0.028	413508.	0.53	52.69
Portunus spinimanus Sievonia dorsalis	0.056	95.845	0.061	0.041	413767.	0.48	23.20
Clypeaster	0.124	95.969	0.061	0.021	414024.	0.47	40.34
Portunus gibbesii	0.064	96.033	0.054	0.048	414251.	0.42	17.62
Saurida brasiliensis	0.172	96.205	0.052	0.067	414470.	0.40	8.32
Paralichthys lethostigma	0.087	96.292	0.049	0.155	414676.	0.38	2.46
Anchoa lyolepis	0.112	96.404	0.048 0.048	0.017	414879.	0.38 0.38	40.44 176.25
Ovalipes guadulpensis	0.128	96.532 96.630	0.048	0.008 0.046	415082. 415279.	0.36	9.92
Urophycia floridanus	0.098 0.216	96.847	0.047	0.030	415475.	0.36	17.79
Archosargus probatocephalus Prionotus roseus	0.047	96.894	0.046	0.033	415667.	0.35	19.87
Sphyraena guachancho	0.060	96.954	0.043	0.041	415850.	0.34	13.61
Scorpaena brasiliensis	0.068	97.022	0.038	0.009	416012.	0.30	37.48
Upeneus parvus	0.066	97.088	0.036	0.031	416164.	0.28	20.41
Calappa sulcata	0.041	97.129	0.035	0.038	416313.	0.28	10.40
Congrina flava	0.030	97.160	0.030 0.030	0.029 0.038	416440. 416565.	0.23 0.23	7.24 10.27
Lutjanus synagris	0.045 0.055	97.205 97.259	0.030	0.026	416690.	0.23	18.38
Brevoortia patronus Trachinocephalus myops	0.130	97.390	0.028	0.026	416809.	0.22	17.19
Cephalopoda	0.037	97.427	0.027	0.003	416923.	0.21	73.81
Symphurus plagiusa	0.025	97.452	0.027	0.038	417035.	0.21	14.53
Narcine brasiliensis	0.061	97.513	0.027	0.041	417147.	0.21	8.99
Prionotus paralatus	0.035	97.548	0.026	0.028	417258.	0.21	11.54
Sphoeroides	0.040	97.588 97.628	0.026 0.025	0.038 0.026	417366. 417470.	0.20	6.03 8.36
Brotula Trinectes maculatus	0.040 0.005	97.634	0.025	0.005	417574.	0.19	45.04
Trichopsetta ventralis	0.021	97.655	0.024	0.014	417675.	0.19	33.82
Calappa	0.109	97.764	0.023	0.050	417774.	0.18	3.93
Renilla	0.078	97.841	0.022	0.014	417867.	0.17	16.00
Rhizoprionodon terraenovae	0.047	97.889	0.022	0.054	417959.	0.17	8.30
Selar crumenophthalmus	0.039	97.927	0.021	0.029	418049. 418139.	0.17 0.17	6.29 30.83
Portunus	0.019 0.112	97.947 98.059	0.021 0.021	0.012 0.008	418227.	0.16	16.06
Gorgoniidae Polinices duplicatus	0.016	98.074	0.021	0.004	418314.	0.16	65.48
Bagre marinus	0.028	98.102	0.019	0.016	418395.	0.15	20.30
Balistes capriscus	0.065	98.167	0.019	0.033	418475.	0.15	10.81
Prionotus stearns1	0.034	98.201	0.019	0.020	418554.	0.15	16.69
Etropua	0.029	98.231	0.019	0.013	418632.	0.14	15.48
Syacium	0.032	98.263	0.018 0.018	0.012 0.008	418708. 418784.	0.14 0.14	23.27 24.30
Scorpaena Research and the state	0.047 0.029	98.309 98.338	0.018	0.005	418860.	0.14	27.38
Encope michelini Hoplunnis	0.023	98.361	0.017	0.025	418933.	0.13	6.47
Prionotus ophryas	0.051	98.412	0.017	0.030	419005.	0.13	7.17
Calappa springeri	0.022	98.434	0.017	0.017	419077.	0.13	9.86
Saurida	0.054	98.488	0.016	0.009	419145.	0.13	22.76
Raninoides louisianensia	0.034	98.522	0.016	0.018	419212.	0.12	6.38 11.90
Bairdiella chrysura	0.020	98.542 98.566	0.015 0.015	0.013 0.009	419276. 419338.	0.11	22.27
Centropristis ocyurus Anasimus latus	0.024 0.020	98.586	0.014	0.022	419399.	0.11	5.98
Citharichthys macrops	0.051	98.637	0.013	0.018	419455.	0.10	7.47
Aurelia	0.074	98.711	0.013	0.004	419508.	0.10	24.66
Peprilus paru	0.017	98.728	0.013	0.017	419561.	0.10	4.75
Gymnachirus texae	0.015	98.743	0.013	0.022 0.024	419614. 419665.	0.10 0.09	4.90 4.98
Ogcocephalus Orthopristis chrysopters	0.029 0.020	98.772 98.792	0.012 0.012	0.024	419005.	0.09	21.98
Chilomycterus schoepfi	0.020	98.812	0.011	0.029	419762.	0.09	
Brotula barbata	0.010	98,822	0.011	0.017	419807.	0.08	4.41
Antennarius radiosus	0.014	98.836	0.011	0.018	419852.	0.08	5.57
Synodus poey1	0.031	98.867	0.010	0.005	419895.	0.08	19.85
Caranx fusus	0.021	98.888	0.009	0.026	419934.	0.07	2.75
Bellator Plesionika	0.010 0.008	98.898 98.906	0.009 0.009	0.007 0.003	419973. 420009.	0.07 0.07	18.10 25.99
Conger oceanicus	0.012	98.918	0.008	0.010	420042.	0.06	
Monacanthus hispidus	0.028	98.946	0.008	0.024	420075.	0.06	
Hellita	0.047	98.993	0.008	0.004	420107.	0.06	

÷

Relative Composition Table for the Seasonal FID Data

weretive composition repression of the be	MPAN						
TAXON NAME	MEAM Percent	CUMULATIVE PERCENT	POOLED PERCENT	FREQ. OF	CUMULATIVE	MEAN Density	INDEX OF
	COMPOSITION	COMPOSITION	COMPOSITION	OCCURRENCE	ABUNDANCE	(# / HA)	DISPERSION
Scomberomorus cavella	0.009	99.002	0.008	0.005	420139.	0.06	8.53
Bollmannia communia	0.015	99.017	0.007	0.018	420170.	0.06	5.03
Sardinella aurita	0.016	99.033	0.007	0.017	420201.	0.06	3.87
Bothidae	0.004	99.036	0.007	0.003	420231.	0.06	21.66
Rhomboplites aurorubens	0.027	99.063	0.007	0.009	420261.	0.06	6.64
Eucinostomus argenteus Aluterus schoepfi	0.007 0.035	99.070 99.105	0.007 0.007	0.005 0.020	420291.	0.06	10.04
Dasyatus americana	0.020	99.125	0.007	0.014	420320. 420349.	0.05	2.62 5.18
Ophidion welshi	0.011	99.136	0.007	0.012	420377.	0.05	4.18
Holothuroidea	0.004	99.140	0.007	0.004	420405.	0.05	16.77
Hoplunnis macrurus	0.005	99.145	0.006	0.009	420431.	0.05	11.83
Menticirrhus	0.019	99.164	0.006	0.005	420457.	0.05	9.44
Congridae Trichopsetta	0.009	99.173 99.175	0.006	0.009 0.001	420482. 420506.	0.05	11.06 24.00
Scomberomorus maculatus	0.013	99.188	0.006	0.022	420530.	0.04	1.72
Prionotus scitulus	0.017	99.205	0.006	0.016	420554	0.04	2.56
Lagocephalus laevigatus	0.016	99.222	0.006	0.022	420578.	0.04	1.80
Libinia emarginata	0.008	99.230	0.006	0.012	420602.	0.04	5.23
Anthozoa	0.007 0.006	99.237	0.005	0.009 0.004	420625.	0.04	5.59
Rissola marginata Equetua acuminatua	0.006	99.243 99.249	0.005	0.004	420648. 420670.	0.04	9.16 7.80
Polynemus virginicus	0.001	99.250	0.005	0.001	420691.	0.04	21.00
Rhinoptera bonasus	0.158	99.408	0.005	0.020	420712.	0.04	1.93
Urophycis regius	0.005	99.413	0.005	0.007	420733.	0.04	6.03
Gymnothorax nigromarginatus	0.007	99.421	0.005	0.012	420753.	0.04	3.48
Diplectrum formosum	0.045	99.465	0.005	0.017	420772.	0.04	2.03
Symphurus diomedianus Ogcocephalus nasutus	0.007 0.008	99.472 99.480	0.005 0.004	0.009 0.005	420791. 420809.	0.04 0.03	3.40 12.66
Raja texana	0.008	99.488	0.004	0.016	420827.	0.03	· 2.42
Ophidiidae	0.008	99.496	0.004	0.008	420845.	0.03	3.31
Calappa flammea	0.008	99.504	0.004	0.010	420861.	0.03	2.36
Spatangoida	0.012	99.516	0.004	0.004	420876.	0.03	5.39
Synodus	0.006	99.523	0.004	0.004	420891.	0.03	6.72
Congrina Pogonius chromis	0.006 0.005	99.528 99.533	0.004 0.004	0.012 0.013	420906. 420921.	0.03	2.05 1.78
Lopholatilis chamaeleonticeps	0.002	99.536	0.003	0.003	420935.	0.03	10.57
Anadara	0.014	99.550	0.003	0.001	420949.	0.03	14.00
Scyllarides modifer	0.012	99.562	0.003	0.010	420963.	0.03	3.27
Gymnothorax	0.004	99.567	0.003	0.008	420976.	0.02	5.30
Symphurus	0.003	99.570	0.003	0.004	420988.	0.02	5.16
Encope emarginata Zalieutes mcgintyi	0.011 0.004	99.582 99.586	0.003 0.003	0.003 0.004	421000. 421012.	0.02	6.66 10.16
Prionotus alatur	0.007	99.593	0.003	0.003	421023.	0.02	6.63
Mugil cephalus	0.133	99.726	0.003	0.007	421034.	0.02	4.81
Pomatomus saltatrix	0.003	99.730	0.003	0.005	421045.	0.02	6.08
Ancylopsetta quadrocellata	0.006	99.736	0.003	0.009	421056.	0.02	2.81
Hepatus epheliticus	0.003	99.739	0.002	0.008	421066.	0.02	2.39
Raja eglanteria Sphyrna tiburo	0.014 0.008	99.753 99.762	0.002	0.010 0.009	421076. 421086.	0.02	1.39
Caranx hippos	0.004	99.766	0.002	0.005	421095.	0.02	2.99
Natantia	0.003	99.769	0.002	0.004	421104.	0.02	3.21
Cyclopaetta fimbriata	0.004	99.773	0.002	0.005	421113.	0.02	4.33
Paguridae	0.006	99.779	0.002	0.007	421122.	0.02	2.32
Ophiopholus Anasimus	0.037 0.001	99.816 99.816	0.002 0.002	0.003 0.001	421130.	0.01	5.00 8.00
Engyophrys senta	0.005	99.821	0.002	0.007	421130.	0.01 0.01	1.99
Balistidae	0.005	99.826	0.002	0.003	421154.	0.01	5.00
Gymnachirus	0.001	99.827	0.002	0.001	421162.	0.01	8.00
Rachycentron canadum	0.005	99.832	0.002	0.009	421169.	0.01	0.99
Rhinobatos lentiginosus Solaenone coellate	0.002	99.834	0.002	0.007	421176.	0.01	1.85
Sciaenops ocellata Sicyonia	0.003 0.001	99.837 99.839	0.002 0.002	0.008 0.001	421183. 421190.	0.01 0.01	1.28 7.00
Libinia	0.004	99.843	0.002	0.004	421197.	0.01	2.71
Ovalipes	0.002	99.844	0.001	0.005	421203.	0.01	
Scyllaridae	0.005	99.849	0.001	0.008	421209.	0.01	0.99
Majidae	0.002	99.851	0.001	0.005	421215.	0.01	1.99
Echeneis naucrates Sinus perspectivus	0.005	99.856	0.001	0.007	421221.	0.01	1.33
Sinum perspectivum Anchoviella eurystole	0.002 0.002	99.858 99.860	0.001 0.001	0.003 0.003	421227.	0.01	4.33
Gorgonocephalus	0.002	99.862	0.001	0.001	421233. 421239.	0.01 0.01	3.00
Paralichthys squamilentus	0.005	99.867	0.001	0.004	421245.	0.01	2.33
Spayrna lewini	0.002	99.869	0.001	0.004	421250.	0.01	2.20
							•=-

Relative Composition Table for the Seasonal FID Data

HEINTING COMPOSITION INDIA ION O							
TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE Abundance	MEAN DENSITY (# / HA)	INDEX OF DISPERSION
Selene vomer	0.003	99.871	0.001	0.003	421255.	0.01	3.40
Achirus	0.007	99.878	0.001	0.003	421260.	0.01	3.40
Rypticus saponaceus	0.001	99.880	0.001	0.003	421265.	0.01	3.40
Dasyatis sayi	0.002	99.882	0.001	0.005	421270.	0.01	1.40
Goniaster americanus	0.000	99.882	0.001	0.001	421275.	0.01	5.00
Gobionellus hastatus	0.000	99.882	0.001	0.001	421280.	0.01	5.00
Portunus say1	0.001	99.884	0.001	0.001	421284.	0.01	4.00
Gymnura micrura	0.000	99.884	0.001	0.001	421288.	0.01	4.00
Parthenope serrata	0.002	99.886	0.001	0.003 0.005	421292. 421296.	0.01 0.01	2.50 1.00
Remora remora	0.007	99.892	0.001 0.001	0.005	421300.	0.01	4.00
Plesionika martia	0.003 0.004	99.895 99.899	0.001	0.004	421304.	0.01	1.50
Etropus microstomus Acquipecten gibbus	0.002	99.901	0.001	0.003	421308.	0.01	2.00
Ogcocephalus vespertilio	0.001	99.902	0.001	0.001	421311.	0.01	3.00
Prionaster	0.000	99.902	0.001	0.001	421314.	0.01	3.00
Conger	0.001	99,903	0.001	0.001	421317.	0.01	3.00
Urophycis	0.005	99.908	0.001	0.004	421320.	0.01	1.00
Lutjanus griseus	0.002	99.910	0.001	0.001	421323.	0.01	3.00
Laemonesa	0.001	99.911	0.001	0.001	421326.	0.01	3.00
Hippocampus erectus	0.001	99.912	0.001	0.001	421329.	0.01	3.00
Carcharhinus acronotus	0.002	99.914	0.001	0.004	421332.	0.01	1.00
Citharichthys	0.001	99.915	0.001	0.003	421335.	0.01	1.66
Lopholatilis	0.001	99.916	0.001	C.001	421338.	0.01	3.00
Bollmannia	0.000	99.916	0.001	0.001	421341.	0.01	3.00 1.66
Scyllarus .	0.002	99.918	0.001	0.003 0.001	421344. 421347.	0.01 0.01	3.00
Rangia	0.003	99.921 99.921	0.001 0.001	0.001	421350.	0.01	3.00
Penacus	0.000 0.003	99.921	0.001	0.003	421353.	0.01	1.66
Callinectes Acanthostracion quadricornis	0.002	99.925	0.001	0.003	421356	0.01	1.66
Pagurus	0.002	99.927	0.001	0.001	421359.	0.01	3.00
Citharichthys cornutus	0.011	99.938	0.000	0.001	421361.	0.00	2.00
Priacanthus arenatus	0.001	99.940	0.000	0.003	421363.	0.00	1.00
Busycon	0.001	99.941	0.000	0.003	421365.	0.00	1.00
Petrochirus diogenes	0.001	99.942	0.000	0.001	421367.	0.00	2.00
Persephona aquilonaria	0.002	99.943	0.000	0.001	421369.	0.00	2.00
Gobiidae	0.000	99.944	0.000	0.001	421371.	0.00	2.00
Parapandalus longicauda	0.001	99.945	0.000	0.001	421373.	0.00	2.00
Haemulon aurolineatum	0.001	99.946	0.000	0.001	421375.	0.00	2.00
Ophidion holbrooki	0.000	99.946	0.000	0.003	421377.	0.00	1.00
Ogcocephalus parvus	0.001	99.947	0.000	0.003	421379.	0.00	1.00
Tonna galea	0.001	99.948	0.000	0.001	421381.	0.00	2.00
Sphoeroides spengleri	0.003	99.951	0.000	0.001	421383.	0.00	2.00
Scomber japonicus	0.001	99.952	0.000	0.003	421385.	0.00	1.00 1.00
Carcharhinus porosus	0.000	99.952	0.000 0.000	0.003	421387. 421389.	0.00	1.00
Triglidae	0.004	99.956 99.956	0.000	0.001	421391.	0.00	2.00
Cynoscion nebulosus	0.001	99.958	0.000	0.001	421393.	0.00	2.00
Steindachneris Carcharhinidae	0.002	99.960	0.000	0.001	421395.	0.00	2.00
Caulolatilus	0.002	99.961	0.000	0.003	421397.	0.00	1.00
Calamus pennatula	0.001	99.963	0.000	0.001	421399.	0.00	2.00
Ophichthus	0.001	99.963	0.000	0.003	421401.	0.00	1.00
Gymnothorax moringa	0.002	99.966	0,000	0.003	421403.	0.00	1.00
Synagrops spinosa	0.001	99.967	0.000	0.001	421405.	0.00	2.00
Hycteroperca phenax	0.003	99.970	0.000	0.003	421407.	0.00	1.00
Carcharhinus falciformis	0.000	99.970	0.000	0.003	421409.	0.00	1.00
Pontinus macrolepis	0.001	99.971	0.000	0.001	421410.	0.00	1.00
Echinaster modestua	0.004	99.975	0.000	0.001	421411.	0.00	1.00
Gymnothorax ocellatus	0.000	99.975	0.000	0.001	421412.	0.00	1.00
Carcharhinus seculipinnis	0.006	99.981	0.000	0.001	421413.	0.00	1.00
Saurida normani	0.001	99.982	0.000	0.001	421414.	0.00	1.00
Serranus	0.000	99.982	0.000	0.001	421415.	0.00	1.00
Grammistidae	0.001 0.001	99.983 99.983	0.000 0.000	0.001 0.001	421416. 421417.	0.00 0.00	1.00 1.00
Mugil curema	0.000	99.983	0.000	0.001	421418.	0.00	1.00
Microgobius Rhinopters	0.002	99.985	0.000	0.001	421419.	0.00	1.00
Equetus	0.001	99.986	0.000	0.001	421420.	0.00	1.00
Busycon pyrum	0.001	99.987	0.000	0.001	421421.	0.00	1.00
Trachinotus carolinus	0.000	99.987	0.000	0.001	421422.	0.00	1.00
Caulolatilus cyanops	0.000	99.987	0.000	0.001	421423.	0.00	
Sphoeroides dorsalis	0.001	99.988	0.000	0.001	421427.	0.00	
Arenaeus cribrarius	0.000	99.988	0.000	0.001	421425.	0.00	
Octopus vulgaris	0.001	99.989	0.000	0.001	421426.	0.00	

=

•

.

.

Relative Composition Table for the Seasonal FID Data

TAXON NAME	MBAN PERCENT Composition	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE	MEAN DENSITY (0 / HA)	INDEX OF DISC: RSION
Kathetostoma albigutta	0.001	99.990	0.000	0.001	421427.	0.00	1.00
Porifera	0.000	99.990	0.000	0.001	421428.	0.00	1.00
Mustelus canis	0.000	99.990	6.000	0.003	421429.	0.00	1.00
Desyatis sabina	0.000	99.991	0.000	0.001	421430.	0.00	1.00
Neobythites gillii	0.001	99.991	0.000	0.001	421431.	0.00	1.00
Encope	0.005	99.997	0.000	0.001	421332.	0.00	1.00
Parthenope	0.002	99.998	0.000	0.001	421433.	0.00	1.00
Leucestidae	0.001	99.999	0.000	0.001	421434.	0.00	1.00
Equetus umbrosus	0.001	100,000	0.000	0.001	421435.	0.00	1.00
Sargassum	0.000	100.000	0.000	0.007	421435.	0 00	
Balistes	0.000	100.000	0.000	0.001	421435.	0.00	*****
SAMPLE SUMMARY: SAMPLES = 763	TOTAL TAXA =	297 TOTA	L DENSITY =	778.80			

Table 31. Hierarchical list of demersal nekton taxa collected in three replicate samples at 154 stations in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys.

=

	Annelida	50
	Polychaeta	5001
-	rorychaera	
		<b>C</b> 0
	Arthropoda	58 61
	Crustacea	6175
*	Decapoda	61
	Natantia	617701
	Penaeidae	61770105
*	Parapenaeus	61770101
-	Penaeus	6177010101
-	Penaeus aztecus	6177010102
-	Penaeus duorarum	6177010102
-	Penaeus setiferus	61770104
-	Sicyonia Sicyonia	6177010401
	Sicyonia brevirostris	6177010402
	Sicyonia dorsalis	61770106
	Solenocera	61770102
-	Trachypenaeus X1phopeneus	61770102
-	Scyllaridae	618202
-	Scyllarides nodifer	6182020202
-	Scyllarus	61820201
-	Paguridae	618306
-	Pagurus	61830602
-	Petrochirus diogenes	6183061201
-	Portunidae	618901
	Arenaeus cribrarius	6189010101
-	Callinectes	61890103
-	Callinectes sapidus	6189010301
-	Callinectes sapidus Callinectes similis	6189010302
	Ovalipes	61890105
	Ovalipes guadulpensis	61890105??
*	Portunus	61890106
#	Portunus gibbesii	6189010601
	Portunus sayi	6189010602
	Portunus spinicarpus	6189010603
	Portunus spinimanus	6189010604
	Majidae	618701
	Anasimus	61870120
	Anasimus latus	6187012001
	Libinia	61870109
	Libinia emarginata	6187010902
	Parthenopidae	618702
	Parthenope	61870201
	Parthenope serrata	6187020104
	Calappidae	618602
	Calappa	61860201
*	Calappa flammea	6186020101
#	Calappa springeri	61860201
#	Calappa sulcata	6186020102
#	Hepatus epheliticus	6186020201

Table	e 31. Continued.	
	Leucosiidae	618603
*	Persephona aquilonaris	6186030103
	Raninidae	618604
*	Raninoides louisianensis	6186040201
	Pandalidae	617918
*	Parapandalus longicauda	6179180401
#	Plesionika	61791805
	Plesionika martia	61791805??
	Stomatopoda	6191
	Squillidae	619101
*	Squilla	61910101
	Mollusca	5085
	Bivalvia	55
	Arcoida	5506
	Arcidae	550601
	Anadara	55060102
	Pterioida	5508
	Pectinidae	550905
*	Aequipecten gibbus	55090508??
	Veneroida	5515
	Mactridae	551525
*	Rangia	55152504
#	Cephalopoda	57
	Theuthidida	5705
	Myopsida	5706
	Loliginidae	570601
*	Loligo	57060101
*	Loligo pealeii	5706010102
*	Lolliguncula	57060102
-	Lolliguncula brevis	5706010201
	Octopodida	5708
	Octopodidae	570801
•	Octopus vulgaris	5708010202
	Gastropoda	51
	Mesogastropoda Naticidae	5103 510376
		5103760407
-	Polinices duplicatus	5103760501
-	Sinum perspectivum Tonnidae	5103700501
		5103800101
-	Tonna galea Stenoglossa	5105000101
	Melongenidae	510507
	Busycon	51050701
*	Busycon pyrum	51050701??
	carlos hliam	5,650,0111

Tabl	e 31. Continued.	
	Echinodermata	81
#	Asteroidea	8104
	Paxillosida	8106
	Astropectinidae	810601
#	Astropecten	81060105
_	Porcellanasteridae	810702
•	Prionaster	810702??
	Spinulosida	8112
	Clypeasteridae	815301
	Clypeaster	81530101
	Echinasteridae	811404
#	Echinaster modestus	81140403??
	Valvatida	8109
	Goniasteridae	811104
	Goniaster americanus	81110407??
#	Echinoidea	8136
	Clypeasteroida	8152
	Mellitidae	815504
	Encope	81550402
	Encope emarginata	81550402??
	Encope michelini	8155040202
#	Mellita	81550401
	Spatangoida	8160
	Holothuroidea	8170
	Ophiuroidea	8120
	Ophiurida	8126
	Amphilepididae	812901
	Ophiopholus	81290201
	Phrynophiurida	8125
	Gorgonocephalidae	812503
	Gorgonocephalus	81250302
	Stelleroidea	8101
	Platyasterida	8105
	Luidiidae	810501
	Luidia	81050101
٠	Porifera	36
	Cnidaria	37
	Anthozoa	3740
	Pennatulacea	3752
	Renillidae	375303
	Renilla	37530301
	Renilla mulleri	3753030101
	Hydrozoa	3701
	Scyphozoa	3730
	Semaeostomeae	3734
	Ulmaridae	373403
	Aurelia	37340302

2

	Chordata	8388
	Antennarioidei	8787
	Antennariidae	878702
	Antennarius radiosus	8787020203
	Ogcocephalidae	878704
#	Halieutichthys aculeatus	8787040301
	Ogcocephalus	87870401
#	Ogcocephalus nasutus	8787040103
#	Ogcocephalus parvus	8787040105
#	Ogcocephalus vespertilio	8787040101
	Zalieutes mcgintyi	8787040401
	Balistoidei	8860
×.	Balistidae	886002
Ħ	Aluterus schoepfi	8860020101
	Balistes	88600202
#	Balistes capriscus	8860020201
Ħ	Monacanthus hispidus	8860020703
	Ostraciontidae	886003
*	Acanthostracion quadricornis	8860030201
	Batrachoidiformes	8783
	Batrachoididae	878301
Ħ	Porichthys porosissimus	8783010106
	Myctophoidei	8762
	Synodontidae	876202
#	Saurida	87620203
*	Saurida brasiliensis	8762020301
#	Saurida normani	8762020303
#	Synodus	87620201
*	Synodus foetens	8762020101
*	Synodus poeyi	8762020104
-	Trachinocephalus myops	8762020401
	Osteichthyes	87 17 87 kg
	Anguilliformes	8740
-	Congridae	874112
-	Conger Conger oceanicus	87411201 8741120101
	Congrina	8741120101
	Congrina flava	8741120302
	Ophichthus	87411310
-	Muraenesocidae	874108
	Hoplunnis	87410801
	Hoplunnis macrurus	8741080102
	Muraenidae	874105
#	Gymnothorax	87410504
	Gymnothorax moringa	8741050403
	Gymnothorax nigromarginatus	8741050404
	Gymnothorax ocellatus	8741050405
	Clupeiformes	8745
	Clupeidae	874701
	Brevoortia patronus	8747010403
#	Etrumeus teres	8747010601
	Harengula jaguana	8747010803
#	Opisthonema oglinum	8747010701
#	Sardinella aurita	8747011001

Table 3	1. Continued.	
	Engraulidae	874702
ŧ	Anchoa	87470202
*	Anchoa hepsetus	8747020201
	Anchoa lyolepis	8747020205
#	Anchoa mitchilli	8747020202
*	Anchoviella eurystole	8747020302
	Gadiformes	8789
	Gadidae	879103
#	Urophycis	87910310
*	Urophycis floridanus	87 91 03 1007
*	Urophycis regius	8791031002
	Merlucciidae	879104
*	Steindachneria	87910402
#	Steindachneria argentea	8791040201
	Moridae	879101
	Laemonema	8791010202
	Ophidiidae	879201
	Brotula	87920104
*	Brotula barbata	87 920 1040 1
*	Lepophidium	87920105
*	Lepophidium brevibarbe	8792010502
*	Neobythites gillii	8792012001
*	Ophidion holbrooki	87 920 10603 87 920 10605
-	Ophidion welshi Biazala manginata	87 920 10005
-	Rissola marginata Perciformes	8834
		883528
	Carangidae Caranx fusus	8835280302
	Caranx hippos	8835280303
	Chloroscombrus chrysurus	8835280401
*	Decapterus punctatus	8835281202
	Selar crumenophthalmus	8835280601
	Selene setapinnis	88352807??
	Selene vomer	8835280701
	Trachinotus carolinus	8835280901
	Trachurus lathami	8835280102
*	Gobildae	884701
*	Bollmannia	88470116
	Bollmannia communis	8847011601
	Gobionellus hastatus	8847010502
*	Microgobius	88470107
	Mugilidae	883601
*	Mugil cephalus	8836010101
	Mugil curema	8836010102
	Apogonidae	883518
*	Synagrops spinosa	8835180603
_	Branchiostegidae	883522
• ·	Caulolatilus	88352201
	Caulolatilus cyanops	8835220102
-	Lopholatilis	88352202
*	Lopholatilis chamaeleonticeps	8835220201
-	Echeneidae	883527
*	Echeneis naucrates	8835270201
•	Remora remora	8835270103

Ŧ

	Pahánaidan	883552
	Ephippidae Chastadisterus Cohen	8835520101
•	Chaetodipterus faber	883539
-	Gerridae	8835390101
*	Eucinostomus argenteus	8835390102
*	Eucinostomus gula Grammistidae	883503
*		8835030207
•	Rypticus saponaceus	883536
	Lutjanidae	8835360107
*	Lutjanus campechanus	8835360102
-	Lutjanus griseus	8835360112
	Lutjanus synagris Pristipomoides aquilonaris	8835360701
-	Rhomboplites aurorubens	8835360501
-	Mullidae	883545
		8835450402
-	Upeneus parvus Pomadasyidae	883540
*	Haemulon aurolineatum	8835400101
-	Orthopristis chrysoptera	8835400201
-	Priacanthidae	883517
	Priacanthus arenatus	8835170101
-	Rachycentridae	883526
	Rachycentron canadum	8835260101
-		883544
	Bairdiella chrysura	8835440301
	Mycteroperca phenax	8835020505
	Cynoscion	88354401
+	Cynoscion arenarius	8835440106
	Cynoscion nebulosus	8835440102
*	Cynoscion nothus	8835440103
	Equetus	88354412
	Equetus acuminatus	8835441201
÷	Equetus umbrosus	8835441206
*	Larimus fasciatus	8835440501
	Leiostomus xanthurus	8835440401
#	Menticirrhus	88354406
*	Menticirrhus americanus	8835440601
*	Micropogonias undulatus	8835440701
*	Pogonias chromis	8835440801
*	Sciaenops ocellata	8835440901
#	Stellifer lanceolatus	8835441001
	Serranidae	883502
*	Centropristis ocyurus	8835020304
*	Centropristis philadelphicus	8835020305
*	Diplectrum bivittatum	8835021005
*	Diplectrum formosum	8835021002
*	Diplectrum radiale	8835021004
•	Serranus	88350223
*	Serranus atrobranchus	8835022302
	Sparidae	883543
•	Archosargus probatocephalus	8835430301
	Calamus pennatula	8835430507
*	Lagodon rhomboides	8835430201
8	Stenotomus caprinus	8835430102

		00
	Pomatomidae	883525
ŧ	Pomatomus saltatrix	8835250101
	Scombridae	885003
#	Scomber japonicus	8850030301
#	Scomberomorus cavalla	8850030501
	Scomberomorus maculatus	8850030502
	Cynoglossidae	885802
*	Symphurus	88580201
	Symphurus diomedianus	8858020103
#	Symphurus plagiusa	8858020101
	Soleidae	885801
	Achirus	88580102
*	Gymnachirus	88580103
	Gymnachirus texae	8858010303
	Trinectes maculatus	8858010101
	Pleuronectoidei	8857
*	Bothidae	885703
	Ancylopsetta quadrocellata	8857030506
*	Citharichthys	88570301
#	Citharichthys cornutus	8857030106
	Citharichthys macrops	8857030109
	Citharichthys spilopterus	8857030110
	Cyclopsetta chittendeni	8857030801
	Cyclopsetta fimbriata	8857030802
-	Engyophrys senta	8857030901
-	Etropus	88570302
-	Etropus Etropus crossotus	8857030201
-	Etropus crossotus Etropus microstomus	8857030202
-	Paralichthys lethostigma	8857030304
-	Paralichthys squamilentus	8857030306
-	Syacium	88570313
-	Syacium gunteri	8857031301
	Syacium papillosum	8857031303
-	•	88570314
	Trichopsetta Trichopsetta	8857031404
-	Trichopsetta ventralis	8838
	Polynemoidei	8838010101
*	Polydactylus octonemus	883801
	Polynemidae	8838010203
•	Polynemus virginicus	8713
	Rajiformes	87 1305
	Dasyatidae	87 13 050 105
	Dasyatis sabina	8713050106
	Dasyatis sayi	87 13050 103
	Dasyatus americana	87 13050202
-	Gymnura micrura	871307
	Myliobatidae	87 1307 03
=	Rhinoptera Rhimoptera	87 1307 0301
*	Rhinoptera bonasus	871304
-	Rajidae	8713040113
	Raja eglanteria	
#	Raja texana	87 13040 133 87 1302
	Rhinobatidae	871302
÷.	Rhinobatos lentiginosus	8713020101
	Torpedinidae	871303
#	Narcine brasiliensis	87 1303 040 1

:

Table 31	. Continued.	
	Scombroidei	8850
	Trichiuridae	885002
*	Trichiurus lepturus	8850020201
	Scorpaenoidei	8826
	Scorpaenidae	882601
#	Pontinus macrolepis	8826010504
#	Scorpaena	88260106
#	Scorpaena brasiliensis	8826010605
#	Scorpaena calcarata	8826010606
#	Triglidae	882602
#	Bellator	88260202
*	Bellator militaris	8826020203
#	Prionotus	88260201
*	Prionotus alatus	8826020105
#	Prionotus ophryas	8826020113
#	Prionotus paralatus	8826020114
#	Prionotus roseus	8826020117
+	Prionotus rubio	8826020118
#	Prionotus salmonicolor	8826020120
#	Prionotus scitulus	8826020103
#	Prionotus stearnsi	8826020121
*	Prionotus tribulus	8826020104
_	Scyliorhinoidei	8708
#	Carcharhinidae	870802
	Carcharhinus acronotus	8708020504
#	Carcharhinus falciformis	8708020506
*	Carcharhinus maculipinnis	8708020509
*	Carcharhinus porosus	8708020512
	Mustelus canis	8708020401
*	Rhizoprionodon terraenovae	8708020301
-	Sphyrnidae	870803
*	Sphyrna tiburo	8708030101
-	Sphyrna lewini	8708030103 8777
	Siluriformes	877718
	Ariidae	8777180202
*	Arius felis	8777180101
*	Bagre marinus	8837
	Sphyraenoidei	883701
	Sphyraenidae Sphyraena guachancho	8837010103
-	Sphyraena guachancho Stromateoidei	8851
	Stromateidae	885103
*	Peprilus burti	8851030104
-	Peprilus paru	8851030102
	Syngnathoidei	8820
	Syngnathidae	882002
*	Hippocampus erectus	8820020201
	Tetradontoidei	8861
	Diodontidae	886103
#	Chilomycterus schoepfi	8861030101
	Tetraodontidae	886101
#	Lagocephalus laevigatus	8861010101
#	Sphoeroides	88610102
*	Sphoeroides dorsalis	8861010205
ŧ	Sphoeroides parvus	8861010210
#	Sphoeroides spengleri	8861010211
	-bussi stass should be	

	Trachinoidei Uranoscopidae	8840 884014
#	Kathetostoma albigutta	8840140301
Pł	neaophyta	15
	Phaeophyceae	1501
	Fucales	1510
	Sargassaceae	151004
*	Sargassum	15100401
Mi	iscellaneous taxa	

Miscellaneous taxa Gorgoniidae

•••

. .

.

.

375105

.

=

.

from further consideration. In addition, those taxa which represent higher levels of taxonomic identification (i.e., family, order, class or phylum level identifications) were also excluded. This process resulted in the selection of 175 taxa to be included in subsequent pattern analysis. These 175 taxa were subjected to initial TWINSPAN analysis of mean data at 256 stations (not presented). Based on the results of this initial analysis, a suite of 100 taxa that showed the most ecologically meaningful trends was selected for detailed community analysis and presentation.

The results of the initial TWINSPAN analysis were used in conjunction with maps depicting the station group locations by season to provide the basis for the elimination of 102 of the 256 stations. Some portions of the study area were more intensively sampled than others, and many of the excluded stations were located in these intensively sampled areas. The procedure involved removing redundancy in the data set while still retaining all of the important trends. This selection process yielded 154 stations that maintained adequate spatial and seasonal coverage. Therefore, the TWINSPAN analysis presented in this report consists of four seasons of data for 100 selected taxa at 154 stations that were each The numbers of stations were evenly distributed sampled on one occasion. over the four seasons. The locations of the stations in the analysis are presented, by season, in Figure 15.

The ordered two-way display resulting from this TWINSPAN analysis, which concisely displays the major trends in community structure, is presented in Figure 16. The stations in the two-way table are listed across the top, and the taxa are listed down the side. Table 32 presents the values for depth, near bottom temperature and community parameters for each station, with the stations ordered and grouped in the same manner as in the corresponding TWINSPAN display (Figure 16). Examination of Figure 16 and Table 32 in concert facilitates the identification of environmental trends most related to the ordering and grouping of stations and taxa.

These results showed that the station ordering across the top of the TWINSPAN display (Figure 16) was primarily related to hydrography (manifested in seasonal and geographical trends) and sediment composition (manifested through geographic location). The first dichotomy separated two groups of stations that differed mainly by geographic location. The stations on the left of the TWINSPAN display (Station Group I in Figure 16 and Table 32) were primarily located in the western and central portions of the study area with the addition of some of the very nearshore stations in the eastern portion of the study area. The stations on the right of the TWINSPAN display (Station Group II in Figure 16 and Table 32) were primarily located in the eastern portion of the study area with the addition of some central stations. The central portion of the study area marks a transition from the predominantly muddy sediments of the western portion of the study area to the predominantly sandy sediments of the eastern portion of the study area.

Similarly, the taxa were ordered such that those that were most characteristic of the western and central regions and the very nearshore habitat in all regions (Station Group I) were located along the upper portion of the TWINSPAN display (Taxa Group I in Figure 16), whereas those taxa that were most characteristic of the stations in the eastern portion

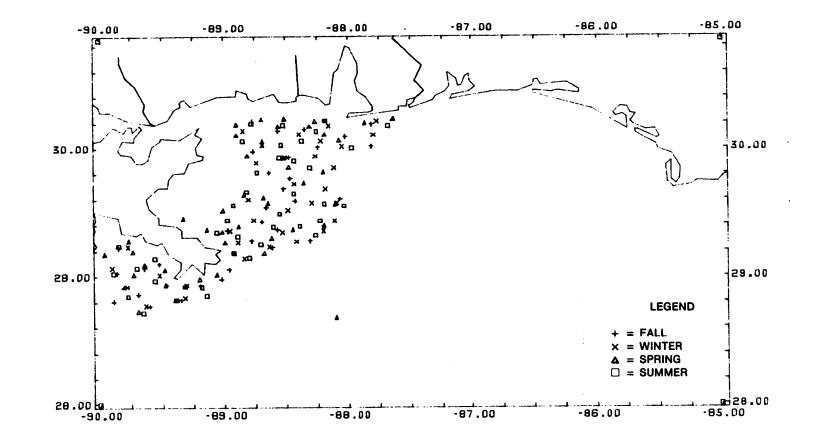



Figure 15. Map of the Tuscaloosa Trend study area showing the locations of the NMFS Fishery Independent groundfish survey stations for fall 1974 to summer 1975.

.

			- 14					-
		IA1			12IIA1		-1181-	182
							erstri	
		30000077753703PF0757530038755777771	**************************************	<b>WARE</b> PSSPEPESESNEEPUPUPUP	**************************************			
		BFABBCDBCCCDDEFABGDDDFFFGABDFFABCEF1 142112212222333235224344622445223444	• • • • • • • • • • • • • • • • • • •	10x06 EEEAEFFABEEFFAEE111 96855668475943977836989	n 5857787854667866677788683444454	7085555575545457	358886	Faaa
		111112112231111221222312112322321312	#833344332222443344354568999992776886 212211323131112312111122111114211112	111131111211111211121	2122121112212231111121213121111	1212111212213221	831212	\$111
Т	Parapagana	2133354	\ +			÷	<b> </b>	
	Tiphopearus Steindachaeria argentes		L	****	<u> </u>	+1		=
1	Grophycis floridanus Sciegeope ocellata	11 1		- 1		+1	<b></b>	=
(Å1	Ponsous setiforus Stallifor Januariatus	1- 1 1- 11 1	A32-1332111212-3223211312-1131-1121	1111211	• - 1 1 1-1		1	$\pm$
181	Breveertis patroma			2				
	Asebos mitokiili Arobosargus probatosophaius		1- 1 2 1			7		-
	Monticirring apericanus			-1				=
	Cynosolos nothus Solescora	-1113111111231114-251133	124-5-11343412512-21113-111114-111-31	<u>-1</u>				≡
	Congrine flave Trackypensous	211151-318-201301-12-112-111-		3445	+ 545111-2311-1-1-1-1-2-	d		<b>+</b>
	Micropegonies unduistus Cresseion areasrius	-953 32555555555511451 23559 15255455555	22-5	1-1-3-322341319514		1-11-131111-1-	211-	2
142	Cyneseice eronarius Poriohikys porosiasimus Chaetosiptorus faber	11112-1-1-31-11111-121						<u>+</u>
1	Larisus feesiatus		- 133	1-1		Į	· · · ·	<del>-</del>
	Polydectylus octonemus Trichiurum lepturum	1-1111-21114-3112-11111155535221-22					1	<u></u>
	Lolligunouls brovis Symphurus plagiuss		+ &= 1	523ka 1 1 3-4 1 1 		+ +1	223-	<b>F</b>
	Opisthouse ogiinus Seise esistinis			-1		<u>1</u>	1-1	<u>+2</u>
	Bolinsais commets Legophidium						İ	<u>+</u>
	Callingeton similis	21-1-1-11-1-1-1-4111-112	\			S 1 122-	2	±;
181	Pengeup asterus	5312111121111214115454222112451113	-[]]2]200-001111-12139121211-1-11-1221 185112-11151341152112151-1212221 4-112-11221121212- 182-12122111122811281-411-1-	-116-211218-3-111		1-14-1-111121-2-	8	-92
1	Paraliohthys lethestight Priomotus rubio	511-1-12-1-1-1012-421441111122-112	+- ; ; ; ;122 ; ;2 ;2 ;2 ;2 ;2	1-118-11	m11+++ 1+++ 3412-111131-2113111213	28-4-11121111		-2-1
	Citherichthys spiloptorus Leicetomus zasthurus	-3-91-118-1-1-11-1211-2-42		4-11			_	1
	Priompius iriteius Callimortes aspidus		₽			1	<u>+3</u>	-123
	Squille Anches Reportus	1-1		- 1 19 1 1 - 5 - 3 1 3		1-1	1	T
182	Chioreenshrus entremtus		\$	-21-1-1-122-3231345-214		1 + 1 + 2	5535-	-3-2
	Misseprisupdon terreseves Arius falls		12	1220544444444444444444444444444444444444	1		- 22	245
<b></b> •·	Nersine presidensis Contropristis philodelphicus	11112-31-1-111111-111111-114-1-33	h	1		2-31-1112222-	1	-1-
1841	Cyclopetts shitlementi Naisevijontays acujestus		1	- 1		1-211-1-1-1111-1- 1-2111-1-1111-		<u>.</u>
	Citherichthys mecrope Stropus crossetus			1 1 2+3 1 2++ 1 2 1- 13		1. 7	1-11	1
ILA2	Marengula jagunas Lagodos rhomboldos			- 14	1	+ 1 1	-51-	+3-1
	Peprilus burti		123	-11	111		+ !- !-	<u>+1-</u>
	Latjana synagis				1 1-2 1- 1	+111-1	÷-1	±
1	Sieyonia dornalia Elrumous teres		\$tt	1			t	1-1
	Prionotus stearnai Pristipomoides equilemenis	-)1111			1-1-111-	1-11		+
	Sphyraean guschanche Lolige pealell Diplestrum forgaeum				++ 1 1-2 1	-24	-4518	1-32
	Hongconthus hispidus		······································		++			33
1181	Sicyumia provinentris Disiectrum bivittatum	······································				1 341 1 142 1 21 1	13;	+-1- 3
i.	Lutjame cappochanus Sphoereides parvus		₿1		1 1 1 1 1 1 - 1 - 1 - 1 1 1 1 1 2 1 1 3 1	1-12-1-21-2-2	-01	+
	Synaium papiliodum Synaium (matamé		2-1-2-1-213		-213232 1	2833521351121-14	<b>8</b> 3-13 -1115	38441 383-1
	Portugue apinicarpus Balistas ceptiacus	4521111	· · · · ·			2-212211-1-21	<u>.</u>	<u>+</u>
	Deseptorus publistus	1 <b>1</b>	1					+
	Lageosphalus leavigatus Priometus salmonioslor					1	- 1-2	E
-	Calappa opringeri Aluterus scheepfi				2	2111	T	<del>1</del> -11
	Buolmostemus guls Trachimecophalus ayops	***************************************	+			-2		
	Sepilarides medifor Initiator militaria		L		++	2-121-22111122	<u>+</u>	<u>+</u>
	Controprintin convrue Fricantus convrue					11	<u></u>	+
ł	Priomius reseve	1			÷÷21	1-1-122-11		<u>+</u>
1	Seorpoene calcarata Urophysis regius Nyustup arubinatus		÷			- 11- 1	÷	<b>-</b>
1182	Saurida brasilionsis	-1			++	182-1-1111-	ţ	Į
	Cyclopetta fimeriata Repospiites surgrupona		<b>*</b> - • - • • • • • • • • • • • • • • • •		++		÷	<b>+</b>
1	Scorpects presiliensis Selar ergemeenthalme				1		÷	±
	Syneium gunteri Syneium preyi		2-			· 12-1-3	+	<u>+</u>
i.	Terrophere seals					1	1	+
	Gymnetheris sigromergiantus Fortugue apinimens		+		++- 1 1 1		+	<u>+</u> ;
i	Priometus paralatus Stemptomas caprimus	11111	2-1-13				+-1-	-03-3
:	Upeneus parvus Treeburus latkami				++1155223411531511131-i	1)	±	
	Diplostrup ratials			<u> </u>		2	3	-13
		000000000000000000000000000000000000000		00000000000000000000000000000000000000	40000000000000000000000000000000000000	000000000000000000000000000000000000000	4	hill
		000000000000000000000000000000000000000	da111111111111111111111111111111111111	111000000000000000000000000000000000000	d \$5500000000000000000000000000000000000	08111111111111111	100000	41111

Figure 16. Ordered two-way display resulting from TWINSPAN analysis of mean relative abundances of 100 selected demersal nekton taxa collected in three replicate samples at 154 stations in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys.

Table 32. Ordered table of means for environmental and community parameters in three replicate samples collected at 154 stations in and around the Tuscaloosa Trend study area during the fall 1974 to summer 1975 NMFS Fishery Independent groundfish surveys.

.

.

=

		300.000	Cell G	-	Sample Restor		Longitude		Jot Lan Tanàna kaominina	Total Tage	Total Count	Diservit-	Baa	Riebene-
г	• T T			1		Latitude (2009818) 26 43 00	LongLtude (300065) 85 39 00	Dagth (CB) 48	(aC) 64.00 79.00		271	Diversity (J*) 2.2711	(B*) 0.767	(D) 3.324
Ì		ULater Ulater	A2 81 81	1	3	29 19 00 28 55 20 28 55 20	68 38 20 89 47 00	****	70.90	19 15 14 13 11 11 10	271 417 314 491 306	1.6000	0.599 0.604 0.625 0.713 0.576	2.207 2.276 2.048 2.177
		Fall Vinter Vistor	11 C1	ì	1	28 46 20 28 50 00	69 37 40 69 19 00	151		13	306 725 959	1.8255	0.713	2.177
			8 2 2	1	7	28 58 40 28 43 40	69 01 20 89 11 20	39	65.00	10	459 760	1.6233 1.8255 1.3955 1.5266 0.7633	0.648	1.603 1.584 1.318
		Spring Pall Spring Sector	80.02	2	10 11	28 49 00	19 20 40 19 23 40	36	64.00 64.00 65.00	19	760 726 1125 1446	1.5622	0.725	1.337
		Sering	D3	1	12			39 15 43 41 40 22 13	65.00 69.00	11 13	400	1.5233	0.646 0.336 0.725 0.563 0.683 0.653 0.653 0.545 0.545 0.545 0.759 0.291 0.617 0.591 0.617 0.591 0.591 0.599 0.359 0.599 0.599 0.599 0.599	0.460 1.710 1.859 0.968
I		Vistor Summer	2	1	13 14 16 16 17 18 19 21 22 23 24 27 27 28 29 31 22 29 31 23 31 23 34 336	29 08 20 29 08 40	55 50 20 35 15 00	9	65.00 79.00	10	485 9234 3536 453 2666 2959 366 2959 366	3.6233 1.2466 1.3755 3.9033 2.0700 3.5977	0.303	1.151
	IA1	Spring Spring Vistor	A2 83 95	2	17	29 01 00 29 31 00	89 43 40 84 29 00	43 142 24 14 14 14 14 14 14 14 14 14 14 14 14 14	65.00 70.00 69.00 68.00	10 18 10 15	584 286	2.9033	0.362	2.741 1.475 2.563
1		Fall Semine Spring	02 02 24	2 2 2	19 20 21	28 55 40 28 55 00 29 16 00	89 11 40 89 11 00 84 59 40	27	70.00	15	240	0.5977 1.9788 1.6299	0.294	2,563 1.026 2,560 2,696 1.752 1.650 2.025 2.348 1.619
		Support	02 24 73 74 74	1	22	29 11 00 29 23 20	54 55 20 58 36 20	16	77.00 69.00 68.00	11	299	1.9788 1.8299 1.4500 1.0966 1.5822 3.7677 1.0722 1.2711 1.2833	0.607	1.752
		Vistor Vistor Junner	1 6 7 12	1	2	29 20 40 29 43 20 28 50 40	64 25 00 69 46 20	21	68.00 69.00 68.00 68.00 68.00 68.00 68.00	14	257	1.5822	0.599	2.025
		Spring Spring	112 14	2	21	28 58 00 29 21 00	89 33 20 89 01 00	10	68.00 67.00	16 11 7 14 34 34	461	1.2711	0.580	0.994 2.173 2.116
		-	225333	1	30	29 29 20	48 33 00 89 53 20	20	68.00	14	629 577	1.4388 0.8811 1.4300	0.537	2.208 0.992 1.749 0.414
		Pall Pall Spring	12 ()	2	12	28 51 68	69 41 20 69 28 40	5		10 3 9	851 905 354 595 815	1.0300 0.2300 1.0511	0.444 0.229 0.467	1,749 0,414 1,326
	14	Pall Pall Pall	14 14 14	2		29 22 00 29 13 40	88 34 00 88 36 10			16	219	1.6577	0.603	1.324 2.203 1.859
		Spring Spring Fall Support	17	1 2 1	3789012390112390112339011233901123390112334050074890555555555555555555555555555555555555	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64 46 40 68 41 20	10	71.00 71.00	14 10 10	271 67 602	1.4055	0.603	2, 605 2, 106 1,305
		Wit set and	2	2 2	10 10	29 01 20 29 04 00	89 53 20 89 54 00	10 16 17 14	79.00		10.97	1.8144 1.4055 1.2722 0.9966 1.7255 0.6355 1.4600 1.0422 1.3299 0.8922	0.623 0.562 0.608 0.688	0.730 2.071 0.683 1.387 1.046 1.128 1.180
		Fall Vistor Fall	22445500	1	42	29 13 40 29 14 00 29 14 00	89 51 00 89 46 20 88 11 20	1	68.00 69.00	1	1097 256 1066 686 587	0.6355	0.348 0.648 0.511 0.671	0.683
		Sector Spring Sector	83 C7	ì		29 04 09 28 54 20	89 42 00 89 28 20	16	72.00 72.00 75.67	* 7 10	272	1.3299	0.671	1,128
		Winter	222	1		28 55 20 28 54 66 28 58 50	89 19 90 89 18 20 89 12 00	6 16 12 19 16 7	75.67 69.00	10	272 3321 335 2243 745	0.6972	0.340 0.789 0.687 0.651	1.152
		Spring Spring Summer	54 34	1	50	29 22 00 29 20 40	89 08 20 89 03 40	:	81.00	19	1.85	1.5322	0.637	1.759
		Fall Fall Winter	3 2 2 2 4 2 6 2 9 8	į.	**	29 03 20 29 21 20	84 57 40 84 57 20	16 29 11 26 7 3 15 6 7	66.00	*	5.05 4.95 7176 4.93 375 4.93 4.68	1.5322 1.6955 1.0366 1.3011 0.8100 0.9611 0.9611 1.7933 0.8277 1.3660 1.2666	0.657 0.876 0.885 0.355 0.355 0.355 0.355 0.355 0.355 0.362 0.362 0.556 0.873	1.477
	142	Histor Histor	8	1	55 56	29 16 00 29 00 40 29 77 20	44 53 20 89 31 20 89 10 MG	7	66.00 69.00 69.00	12	443	0.6999	0.316	1.338 1.762 2.170
		Spring Fall	H H	1	54	29 21 40	88 18 20 68 15 60	ų.		10	4349 1629 482 2561 1199	0.8217	0.362	1.320
		Spring Spring Fall		2	61	10 06 00 36 12 46	56 15 20 56 16 00	11	75.00	10 9 12 15 10 12 75 10 13 13	1109	1.5566 0.9066 1.5766 0.3799	0.525 0.353 0.563 0.259 0.456 0.456 0.456	2.491
		Fall Spring Summer	1025558	1	2	30 13 00	88 11 80 88 30 40	i	73.00 79.00	17	641 201 1027 3569 231 134	1.5968	0.563	2.491 1.578 2.532 0.585 2.551
	iii	Spring Fall Fall	2.0	1	64 67	30 18 00 28 56 00	87 35 20 89 28 00		17.00	19 17 13 23 15 13 24 218 14	3589	1.3322 1.3266 1.7964 2.6277	0.441	2.070 2.302 4.571
		History		1		29 44 44	44 38 20 44 10 40	11	si. 08	15		1.6100	0.598	2.154
z		Spring Histor Vistor		i	1	30 04 20 30 01 10	66 50 40 66 51 20	10	61.00 64.00	23	354 1422 591 253 298	1.6433 2.3599 2.4499	0.598 0.645 0.782 0.671 0.722	2.191 3.840 3.645
Inor		Vistor Vistor Vistor		1	69 70 71 72 73 76 75			10 8 7 10		14 24 22	219 219 307 291	1.0222 1.0799 2.3408 2.3433	0.722 0.740 0.764	3.035 2.354 4.019
Į,	+	Winter	19	<del>;-</del>						16	511	2.3633		3.711
STA.		Spring Spring		3	77 78 79 80	2*9 31 002 2*9 35 20 2*9 35 20 2*9 35 20 2*9 35 20 2*9 36 40 30 03 40 2*9 16 40 30 17 00 2*9 36 40 2*9 36 20 2*9 36 40 2*9 36 40 30 12 40 30 12 40 30 12 40 30 12 40 37 11 46 2*9 31 40 30 12 40 3*9 11 40 2*9 34 40 3*9 11 46 3*9 11 40 3*9 11 40 3*9 11 40 3*9 11 40 3*9 11 40 3*9 12 40 3*9 11 40 3*9 12 40 3*9 12 40 3*9 12 40 3*9 12 40 3*9 14 40 3*0 14 14 14 14 14 14 1		1	01.00 72.00 80.00 79.00	6 11 10 7	60 547 471	1.4922 1.3155 0.7348 0.9055	0.542 0.800 0.323 0.399 0.399 0.399 0.399 0.395 0.456 0.756 0.756 0.775	1,297 1,536 1,403
		Spring Pail		1	11 12	30 03 40 29 17 00	85 51 00 84 96 00		79.00		215	0.6022	0.105	1.126
		fall Sering Summer	2.7	÷	54 5	21 12 20	60 39 40 60 41 40	;		:	30	1.0511	0.912	1.856
			222222223	1		29 19 20 29 29 29 29 29 29 29 29 29 29 29 29 29	89 59 49 89 31 20 84 31 20		80.33 79.00 79.00 64.00	6 5 15 16 15 5 13 17	167 96 217 20 159 112	0.9055 0.6022 0.7086 1.6422 1.0511 0.6286 1.3633 0.4466 2.0099	0.756	2.875 1.856 0.545 1.766 0.871 2.992 2.343 1.656
		Vistor Sector	ii n	1		23 53 28 27 14 10	36 14 29 58 14 00	•	64.00	14	227 225 480	1.4088	0.708	2.343
		Pall Spring Vistor	1		11	29 10 20 29 10 20 29 36 00	89 57 40 89 57 40	1	76.00	*	184	1.5777	0.609 0.919 0.647 0.475	2.300 1.168 1.822 2.359
	11	Pail	1	ł		10 12 MB	65 % 29 67 97 %	;	67.08	17 17 13	431 1271 123 121	1.1333 1.3677 1.7966 2.0756	0.475	2.359 2.831 2.130
	i		32220	į	************	29 64 68	80 38 78 89 64 60	"	75.00		3300	1.2000	0.627 0.609 0.609 0.609 0.622 0.622 0.616	1,306 1,156 2,461
	L			1		29 34 20 39 04 00		12	75.00 72.00 75.00	19	135	2.3348	0.422 0.816	2.747
	182	Vistor Vistor	ता जा	;	181	29 28 28	No 15 40			17	200 1005 1029	7.3600	0.610	3.286
		Spring		÷.	105	21 56 20 29 51 00 10 06 40 29 55 40 30 03 40 29 33 00 29 33 00 29 10 40 29 31 00 29 31 00 29 31 00	HII         16         00           84         07         00           84         13         20           84         33         20           84         22         20           84         22         20           84         22         20           84         22         20           84         33         80           84         31         00           84         31         00           84         31         00           84         32         20           84         32         20	11	73.00 76.00 71.67 74.00 70.00	28 14 23	1362	2.3000 1.5377 1.7199 1.5000 0.8580 7.2266 2.0011 2.0013 1.7113	0.753 0.539 0.555 0.610 0.605 0.545	3.286 2.609 3.059 2.166 1.362 1.560 3.317
			****	ì	106	30 03 40 29 33 00 29 18 40	56 22 29 56 02 08 56 53 50	11 14 23 7 14 9	76.00 71.67 78.00	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	322 219 202 329 510	0,8588	0.405	1.560
		Tall Spring	2	į.	100 100 110	29 41 08 29 37 00 29 55 40	88 31 00 88 41 00 88 31 00	14	70.00 71.00 72.00	20 18 17	202	2.0011 1.7333 1.8522	0.670 0.692 0.658 0.656 0.686	1.395 2.998 2.587
		June 1		i.	112	30 01 40	A4 32 20 64 28 00	19	76.00	16	277		8.718	2.709
	HAT	Sering Summer Fall Spring	38.8	1	114	30 01 40 29 44 00 29 54 00 29 58 40 29 58 00 29 51 20 29 51 20 30 00 44 30 10 20	68 21 20 68 26 20 64 26 60 64 26 60	21	73.00 74.00	21	145	2.0900	0.835 0.546 0.546	4.103 3.806 2.185
	11	Sering Summer	666	1	116 117 118 120 121 122	29 51 20	54 28 40 54 26 08	16 17 18	71.00 75.00	217 215 215 17 1	3427 1538 391	1.5655	0.544	4,103 3,806 2,395 2,647 3,258 2,760 2,811
:		Pall Spring Vistor	5888	1	120	10 00 40 10 10 20 29 41 00	68 14 40 68 18 48 68 11 00	10	72.00	20	391 1008 915 626 711	1,9166 2,5033 1,7444 1,7899 2,0644 2,0546 1,5055	0.650 0.837 0.562 0.699 0.638	2,811 1,981
	I I HA I	Vistor Sering Sering Fall	10	3	122	30 01 00 29 11 00 29 14 00	84 03 00 84 40 40 84 11 00	12	64.JJ	75 17 14	5.66	2.0544	0.630 0.726 0.617	3,728 2,898 2,038
		Fall Sering	04 04	1	125	29 16 40 29 22 00	M 14 20 M 25 40	12	79.00	2	319 515 672 1417	1.1477	0.523 0.649 0.510 0.653	1.548
,			22353535	÷	123 124 125 127 128 127 129 139	21 84 00 22 56 80 23 56 80 24 56 80 29 10 80 29 11 80 29 12 80 29 12 80 29 12 80 29 12 80 29 13 80 29 14 80 20	44         32         20           84         24         00           84         21         20           84         24         00           84         26         20           84         26         20           84         26         20           84         26         20           84         26         20           84         26         20           84         11         00           84         10         00           84         10         00           84         10         00           84         10         00           84         10         00           84         10         00           84         10         00           84         12         20           84         23         00           84         12         20           84         13         00           84         13         00           84         14         00	18 8 21 12 14 34 34 39 30 19	64.33 58.00 79.00 71.00 54.00 69.00 68.00	* 1777 18 18	1417 1248 787	1,5055 1,1477 2,0555 1,5380 1,9799 1,6784 2,2611	0.653 0.608 0.705	1,901 3,728 2,896 2,038 1,548 3,975 3,107 2,713 2,113
		Pall	17 18	1	130						10	2.2611	0.105	3.649 1.905 4.042
		Pall Fall Pall Spring Summer		;	131 132 133 134	24 34 20 10 05 46 25 23 46 25 34 00 25 34 00 25 34 20 25 34 20 25 34 20 25 35 20 25 35 20 25 35 20 25 36 06 25 36 06 25 49 06	84         04         00           85         81         20           64         12         06           64         12         06           64         12         06           64         14         07           64         14         06           64         06         20           84         06         40           84         17         40           84         17         00           84         13         10           84         13         10           84         12         00	21 17 12 22 23 19 19 23 19 19 21 11 21 11 21 11 21 11 21 12 21 12 22 2	72.00	9 25 18 24 19 19 14 24	347 627 208	1.4544 2.3322 2.2688 2.4011	0.666 0.730 0.751 0.762 0.762 0.762 0.762 0.765 0.563 0.605 0.639 0.605 0.639 0.639 0.753	2.801
1		Vistor		į.	135	29 34 00 29 34 20	48 11 10 48 05 10	22	72.00	19	427 208 563 486 515 2245 337 268	2.2546 2.1268 2.2268 1.8533 1.9184	0.782	2.629 2.909 2.766 3.053
ļ	HAR	Vistor Vistor Fali Fali	10	2 1 2	135 136 137 138 139 140 141	29 26 08 29 51 00 29 51 00 20 20 20 20 20 20 20 20 20 20 20 20	18 06 10 18 06 20 38 25 40	30 19 21	73.33	14 21 23	515 2245 337	2.2264 1.8533 1.9164	0.765 0.583 0.605	
		Vistor Vistor	****	2	140 141	21 34 20	88 17 10 88 12 00	2		23 17 20 18 10	268	1.6699	0.590	3.002
	11	Vistor Spring Spring	83	32 7 1	143	27 (8 00 21 16 20 21 24 00	Ma 21 00 Ma 11 40	1	69.00 68.00 70.00	10	219 483 110 110	1.6899	0.703	3.002 3.465 2.740 1.856 2.160
į	<u> </u>	Spring Spring Fall	17	;	145 186 187	29 49 08	40 12 00 89 38 20	10	73.00		110	1.2100	0.535 0.453 0.627	2.131
	1181	Fall		3	140	29 05 40 29 25 40 30 11 00 30 09 00 30 11 20	89 38 20 88 41 40 88 31 20 88 21 00 87 48 40	14	79.00 73.00 71.00	12 14 10	35 225 324 118	0.5744 1.0922 1.5711 1.1068	0.643	1,402 1,644 1,978 2,230
ļ	н <b>е</b> (	Pail	18		150 151 152	30 11 20	87 48 40 87 48 40	13	72.50		ho	1.2317	0.542	1.606
;	182	Spring Spring Summe	5	1	152 153 154	30 01 00 29 23 40 30 10 20 30 00 20 30 00 40	87 48 40 88 53 00 88 33 40 87 58 20 87 40 40	12	67.00 75.00	15 7	27 189 21	1.5422	0.775	1.925 2.730 2.121
1	11	Summer	10	í	155	10 10 40	87 40 49	7	72.33	20	295	1.5968	0.551	3.444

of the study area were located along the bottom portion of the display (Taxa Group II in Figure 16).

The stations comprising Station Group IA1 in Figure 16 and Table 32 were primarily located in middepth to deep waters in the western region and directly off the Mississippi River Delta, with the addition of a few deep water stations located in the central region. Station Group IA1 included 8 fall, 8 winter, 8 spring and 11 summer stations, indicating a stable community structure over the year. Based on the values for community parameters (Table 32), the samples at these stations were not appreciably different from those in Groups IA2 and IB1.

Station Group IA2 (Figure 16) included 40 stations located in shallow to middepth waters across the entire study area. This group included 9 fall, 13 winter, 11 spring and 7 summer collections.

The 21 stations comprising Station Group IB1 (Figure 16) were generally located in shallow depths across the entire study area. Many of these stations were located near Chandeleur and Breton Sounds. They tended to have low total numbers of taxa and low total numbers of individuals, but they were not strikingly different from the samples in Groups IA1 and IA2 (Table 32). This group was dominated by spring and summer collections, and included 5 fall, 3 winter, 6 spring and 7 summer stations.

Station Group IB2 was comprised of 1 very depauperate sample collected from a shallow water station in the central portion of the study area during spring (Figure 16 and Table 32).

Station Group IIA1 was comprised of 32 stations primarily located in middepth waters in the central and eastern portions of the study area, with the addition of a few deep water stations and a few shallow water stations. Group IIA1 was dominated by spring and summer stations, and included 5 fall, 5 winter, 12 spring and 10 summer stations. Although there was considerable variability within the group, these stations and those in Group IIA2 generally had highest numbers of taxa and clearly had highest taxa richness (Table 32).

The 15 stations comprising Station Group IIA2 were generally located in middepth waters in the eastern portions of the study area, with the addition of some deep water stations. Compared to those in Group IIA1, the Group IIA2 stations covered a narrower depth range (Table 32). This group was dominated by fall and winter collections, and included 5 fall, 5 winter, 3 spring and 2 summer stations.

Station Group IIB1 included 6 stations located in shallow to middepth waters in the eastern region with the addition of 2 central stations and 1 western station. This group included 4 fall stations, 1 spring station and 1 summer station, and tended to harbor total numbers of taxa and total numbers of individuals that were lower than those of the Group IIA stations and similar to those of the Group I stations (Table 32).

Station Group IIB2 included 2 spring and 2 summer collections from stations located in shallow to middepth waters in the central and eastern portions of the study area (Figure 16). This group also harbored low total numbers of taxa and low total numbers of individuals (Table 32). As was the case with Group IIB1, Group IIB2 included no winter collections.

The taxa in Taxa Group IA exhibited three distinct distributions. Parapenaeus LPIL, Xiphopeneus LPIL and Steindachneria argentea from Taxa Group IA1 and Solenocera, Congrina flava and Trachypenaeus LPIL from Taxa Group IA2 were most characteristic of the deep water stations located in the western portion of the study area and directly off the Mississippi These stations occupied the left-most portion of Station River Delta. Group IA1 in Figure 16 and the upper-most portion of Table 32. With the exception of Cynoscion nothus the remaining taxa in Group IA1 were generally restricted to the low salinity, nearshore and middepth stations spread across the entire study area (those in Station Groups IA2 and IB1). The stations in Group IA2 were primarily sampled during fall, winter and spring, indicating that these taxa tended to be absent from this nearshore habitat during summer. In addition, the Group IA1 taxa were almost completely absent from the nearshore stations sampled during spring and summer in Station Group IB1, further indicating that those taxa tended to be absent from the nearshore habitat during the warmer months. Some of the taxa most characteristic of this trend were Penaeus setiferus, Stellifer lanceolatus and Menticirrhus americanus from Group IA1 and Larimus fasciatus from Group IA2.

The taxa in Group IA that showed the third distinct type of distribution were, with the exception of <u>Cynoscion nothus</u>, all included in Group IA2. In general, Group IA2 taxa were widely distributed across the study area, and include many of the most ubiquitous and numerically prominent taxa. The Group IA2 taxa were relatively most abundant in the muddy sediment habitat of the western and central regions of the study area (Station Group I), and were relatively much less abundant in the sandy sediment habitat located in the eastern portion of the study area (Station Group II). As with the taxa in Group IA1, the Group IA2 taxa also showed a tendency to be absent or less numerically prominent at the nearshore stations included in Station Group IB1, particularly those sampled during spring and summer. Some of the taxa most representative of Group IA2 include <u>Micropogonias undulatus</u>, <u>Cynoscion arenarius</u>, and <u>Trichiurus lepturus</u>.

The taxa in Group IB1 exhibited distributions very similar to those described above for Taxa Group IA2, but were slightly more prominent at the stations located on sandy sediments in the eastern portion of the study area (i.e., Station Group II). As with the taxa in Group IA, the Group IB1 taxa also showed a tendency to be less numerically prominent at the nearshore stations included in Station Group IB. Some of the taxa most representative of Taxa Group IB1 include <u>Penaeus aztecus</u>, <u>Prionotus rubio</u>, and <u>Leiostomus xanthurus</u>.

The taxa in Group IB2 were virtually absent from collections at deep water stations located in the western portion of the study area and directly off the Mississippi River Delta (Station Group IA1), but were well represented at the stations located in shallow to middepth waters across the study area (Station Groups IA2 and IB1) and at many of the stations in the eastern portion of the study area (Station Group II). Many of the Group IB2 taxa were among the few that were well represented at the generally depauperate, shallow water stations included in Station Group IB1. <u>Arius felis</u> was most characteristic of these stations. Other taxa representative of Group IB2 include <u>Squilla</u> LPIL, <u>Anchoa hepsetus</u>. and <u>Chloroscombrus chrysurus</u>.

The three taxa in Group IIA1 (<u>Centropristis</u> <u>philadelphicus</u>, <u>Cvclopsetta chittendeni</u> and <u>Halieutichthys aculeatus</u> were most characteristic of middepth to deep water stations overlying sandy sediments in the eastern region (Station Group IIA), but also occurred at many of the deep water stations overlying muddy sediments in the western portion of the study area and directly off the Mississippi River Delta (Station Group IA1).

The five taxa comprising Group IIA2 (<u>Citharichthys macrops</u>, <u>Etropus</u> <u>crossotus</u>, <u>Harengula jaguana</u>, <u>Lagodon rhomboides</u>, and <u>Peprilus burti</u>) were most characteristic of the stations located over sandy sediments in the eastern portion of the study area (Station Group II), but were also collected at many of the stations located over muddy sediments in shallow and middepth waters (Station Group IA2 and IB1).

The Group IIB1 taxa were relatively most abundant at the stations located over sandy sediments in the eastern region (Station Group II), with only scattered occurrences across the remainder of the study area. Some of the taxa most characteristic of Group IIB1 were <u>Penaeus duorarum</u>, <u>Sicvonia</u> <u>brevirostris</u>, <u>Lutjanus campechanus</u>, <u>Sphoeroides parvus</u>, <u>Svacium papillosum</u>, <u>Synodus foetens</u>, and <u>Portunus spinicarpus</u>.

With the exception of <u>Eucinostomus</u> <u>gula</u>, <u>Stenotomus</u> <u>caprinus</u>, <u>Trachurus lathami</u>, and <u>Diplectrum radiale</u>, the taxa in Group IIB2 were virtually restricted to collections at stations located in middepth to deep waters overlying sandy sediments in the eastern portion of the study area primarily during fall, winter and spring (Station Group IIA2). Some of the taxa most representative of this trend included <u>Trachinocephalus myops</u>, <u>Scyllarides nodifer</u>, <u>Bellator militaris</u>, <u>Prionotus roseus</u>, <u>Scorpaena calcarata</u>, and <u>Saurida brasiliensis</u>. <u>Eucinostomus gula</u>, <u>Stenotomus caprinus</u>, and <u>Trachurus lathami</u> were also well represented at the stations located in middepth to deep waters in the eastern portion of the study area that were primarily collected in spring and summer (Station Group IIA1), and <u>Diplectrum radiale</u> was virtually restricted to these stations.

#### 2.5.4 NMFS Fishery Independent Survey Fall Data, 1973-1983

#### 2.5.4.1 Introduction

To analyze community trends in the study area over time, data from the fall cruises from 1973-1980 and 1982-1983 were subset from the database.

Based on the results of the SEAMAP analysis and Fishery Independent seasonal analysis (see above), along with the distribution of stations in the database, the Tuscaloosa Trend study area was subdivided into three regions based on longitude. The eastern region included the area east of  $88.5^{\circ}$  longitude, and differed from the central and western regions by virtue of the sandy composition of its sediments. The central region extended from 88.5 to  $90.0^{\circ}$  longitude, while the western region consisted of the region west of the Mississippi River delta. Within each of the regions, 10 fm depth strata were identified, and three replicate samples collected at one "station" in each region by depth strata cell for each

year were selected for analysis. In only three cases did three samples occur in any cell greater than 50 fm depth, and in an equal number of instances (but not the same cells) no samples were available from the 40-50 fm depths. The data set submitted for analysis included 150 stations, each with 3 replicate samples. The taxa that had been included in the final analysis of the SEAMAP and Fishery Independent data were those selected for inclusion in the initial analysis of the annual data. A number of these showed scattered or otherwise not meaningful in this initial analysis, and were eliminated from further consideration. Ninety (90) taxa were included in the final TWINSPAN analysis, and this number was further reduced to in the corresponding factor analysis.

#### 5.5.4.2 Relative Composition and Abundance

The community composition over all samples combined is summarized in Table 33. A total of 318,186 individuals representing 374 taxa were identified from 548 samples. In general, the community tended to be dominated by a relatively small number of taxa. The 11 most abundant taxa accounted for greater than 50% of the cumulative mean percent composition, while the top four taxa accounted for almost 50% of the organisms collected. Most taxa exhibited restricted distributions, with only six taxa occurring in greater than 50% of the samples collected.

Micropogonias undulatus was the most abundant taxon, accounting for 18.75 of the pooled percent composition, with a mean density of 153 individuals per hectare. This taxon occurred in almost 60% of the samples collected (frequency of occurrence = 0.599). Leiostomus xanthurus was the second most abundant taxon, with a pooled percent composition of 12.2% and a mean density of 100 individuals per hectare. Leiostomus xanthurus occurred in 46% of the samples collected and had a very clumped distribution (index of dispersion = 5941). <u>Stenotomus caprinus</u>, Chloroscombrus chrysurus, and Peprilus burti each accounted for greater than 5% of the pooled percent composition. Of these three taxa, Stenotomus caprinus was the most widespread, occurring in greater than 50% of the samples collected. Portunus spinicarpus, Penaeus aztecus, Cynoscion arenarius, Trichiurus lepturus, and Arius felis each accounted for greater than 2% of the pooled percent composition. Penaeus aztecus was the most widespread taxon in the analysis, occurring in 63% of the samples collected, and was among the most evenly distributed (index of dispersion = 41). Other taxa occurring in greater than 45% of the samples included Cynoscion arenarius, Prionotus rubio, Centropristis Dhiladelphicus and Synodus foetens. Table 34 is a hierarchical list of taxa represented in the annual data set.

#### 2.5.4.3 Two-Way Indicator Species Analysis

The two-way ordered data matrix resulting from TWINSPAN is shown as Figure 17 and the corresponding ordered table of environmental variables and community parameters is shown as Table 35. Because the stations in each region by depth zone cell were chosen to be as close geographically as possible from year to year, maps displaying the TWINSPAN results over the 10 years were difficult to interpret. Instead, the stations in each TWINSPAN group are shown in matrix form in Table 36. The four groups Table 33. Overall relative composition of demersal nekton taxa collected in three replicate samples at 150 stations in three regions of the Tuscaloosa Trend study area during fall NMFS Fishery Independent surveys from 1973 to 1983.

••

TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	MEAN DENSITY (# / HA)	INDEX OF
Micropogonias undulatus	15.309	15.309	18.735	0.599	59612.	153.38	484.70
Leiostomus xanthurus	4.375	19.684	12.209	0.456	98459.	99.95	5941.44
Stenotomus caprinus	8.536	28.220	9.929	0.505	130051.	81.29	1999.21
Chloroscombrus chrysurus	4.261	32.481	8.621	0.272	157483.	70.58	3319.32
Peprilus burti	3.022	35.503	5.386	0.259	174619.	44.09	2545.36
Portugus spinicarpus	2.426	37.930	2.703	0.232	183218.	22.13	440.82
Penaeus astecus Cynosciog aregarius	3.483 2.153	41.413 43 <b>.566</b>	2.337 2.257	0.630 0.484	190655.	19.14	41.05
Trichiurus lepturus	2.613	46.179	2.230	0.286	197837. 204934.	18.48 18.26	68.28 200.43
Arius felis	2.761	48.940	2.156	0.199	211795.	17.65	370.18
Prionotus rubio	2.164	51.104	1.861	0.586	217718.	15.24	52.51
Trachurus lathami	1.932	53.035	1.831	0.243	223543.	14.99	343.41
Penseus setiferus	1.281	54.316	1.568	0.241	228531.	12.83	494.49
Centropristis philadelphicus	1.991	56.307	1.557	0.504	233486.	12.75	40.45
Serranus atrobranchus	1.813	58.120	1.429	0.303	238034.	11.70	140.86
Anchoa hepsetus Sicyonia brevirostris	1.985 1.509	60.105 61.614	1.327 1.180	0.164 0.214	242256.	10.86	182.49
Cynoscion nothus	1.023	62.637	1.153	0.224	246012. 249682.	9.66 9.44	136.79 99.52
Squilla	1.650	64.287	1.117	0.318	253237.	9.15	49.08
Steindachneria argentes	1.254	65.540	1.107	0.068	256760.	9.06	268.55
Callinectes similis	1.445	66.985	1.036	0.319	260055.	8.48	84.04
Synodus foetens	2.119	69.104	0.939	0.536	263042.	7.69	31.70
Ophiuroidea	0.808	69.912	0.710	0.031	265301.	5.81	504.11
Lagodon rhomboides	0.756	70.668	0.647	0.299	267361.	5.30	76.33
Solenooera	0.891	71.559	0.647	0.146	269419.	5.30	57.96
Syacium papillosum	2.187 0.883	73.746 74.630	0.602	0.254	271335.	4.93	46.31
Trachypenaeus Parabenaeus	0.543	75.173	0.547 0.503	0.062	273075. 274677.	4.48 4.12	37.55 104.98
Loligo pealeii	1.620	76.793	0.488	0.188	276230.	4.00	47.26
Halieutichthys aculeatus	0.624	77.417	0.488	0.210	277782.	3.99	55.04
Pristipomoides aquilonaris	0.650	78.066	0.484	0.162	279321.	3.96	128.07
Cynoscion	0.507	78.573	0.460	0.078	280785.	3.77	75.35
Scorpaena calcarata	0.554	79.127	0.451	0.126	282220.	3.69	79.57
Prionotus paralatus	0.407	79.534	0.431	0.088	283591.	3.53	157.94
Harengula jaguana	0.329	79.862	0.424	0.102	284939.	3.47	94.78
Diplectrum bivittatum	0.921	80.783	0.395	0.170	286195.	3.23	41.56
Eucinostomus gula Portunus gibbesii	0.756 0.786	81.539 82.326	0.381 0.372	0.153 0.179	287407. 288590.	3.12 3.04	45.35 68.21
Lepophidium graellai	0.421	82.746	0.356	0.139	289724.	2.92	46.86
Bellator militaris	0.374	83.121	0.329	0.082	290770.	2.69	65.45
Lolligunoula brevis	0.751	83.872	0.319	0.113	291786.	2.61	33.27
Saurida brasiliensis	0.564	84.436	0.319	0.115	292801.	2.61	62.75
Anasimus latus	0.310	84.746	0.318	0.086	293814.	2.61	285.49
Sphoeroides parvus	0.551	85.297	0.308	0.157	294795.	2.52	26.58
Brevoortia patronus	0.268	85.565	0.272	0.060	295661.	2.23	69.60
Etropus arossotus Priozotus seimonicolor	0.454 0.327	86.019 86.346	0.247 0.229	0.137 0.122	296447. 297176.	2.02 1.88	30.80 38.58
Spatangidae	0.162	86.508	0.224	0.018	297889.	1.83	307.83
Porichthys porosissimus	0.262	86.769	0.217	0.193	298580.	1.78	12.60
Lutjanus campechanus	0.559	87.328	0.217	0.212	299269.	1.77	24.13
Asteroidea	0.709	88.037	0.197	0.086	299895.	1.61	84.38
Etrumeus teres	0.494	88.530	0.196	0.055	300518.	1.60	93.73
Anchoa mitchilli	0.239	88.770	0.194	0.015	301135.	1.59	125.28
Aurelia	0.421	89.191	0.187	0.089	301731.	1.53	41.28
Penaeus duorarum Prionotus roseus	0.348 0.269	89.539 89.807	0.181	0.089	302308.	1.48	25.44
Cyclopsetta chittendeni	0.253	90.060	0.181 0.147	0.053 0.182	302885. 303353.	1.48 1.20	87.02 8.42
Lepophidium	0.199	90.259	0.145	0.095	303814.	1.19	17.87
Prionotus steernsi	0.181	90.440	0.142	0.086	304267.	1.17	30.01
Syacium	0.337	90.776	0.140	0.080	304712.	1.14	29.94
Larimus fasciatus	0.104	90.881	0.136	0.068	305146.	1.12	26.49
Opisthonena oglinum	0.172	91.053	0.135	0.075	305574.	1.10	29.10
Peprilus paru	0.110	91.163	0.128	0.069	305982.	1.05	28.44
Hyopsida	0.581	91.745	0.127	0.069	306385.	1.04	26.62
Lepophidium brevibarbe	0.154	91.898	0.114	0.047	306748.	0.93	24.75
Hellita Chastodisterus faber	0.134	92.032	0.113	0.002	307109.	0.93	361.00
Chaetodipterus faber Echinoidea	0.131 0.154	92.163 92.316	0.110 0.105	0.139 0.044	307459.	0.90	12.41
Scyphozoa	0.154	92.310	0.103	0.044	307793. 308122.	0.26 0.85	26.79 23.46
Loligo	0.579	93.061	0.103	0.060	308451.	0.85	21.61
-							

TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE	MEAN DENSITY (# / HA)	INDEX OF DISPERSION
Acquipecten	0.239	93.299	0.103	0.007	308779.	0.84	227.27
Selene setapinnis	0.109	93.409	0.101	0.082	309101.	0.83	13.05
Upeneus parvus	0.105	93.513	0.096	0.036	309408.	0.79 0.75	78.65 71.13
Anchoa lyolepis	0.143	93.656 93.805	0.092 0.083	0.022	309700. 309965.	0.68	12.93
Syacium gunteri	0.149 0.109	93.914	0.077	0.181	310209.	0.63	4.27
Paralichthys lethostigma	0.163	94.077	0.068	0.004	310424.	0.55	117.15
Ophiolepididae Luidia	0.152	94.229	0.061	0.046	310617.	0.50	73.83
intennarius radiosus	0.066	94.295	0.058	0.053	310800.	0.47	18.53
Acquipecten gibbus	0.082	94.377	0.057	0.011	310981.	0.47	98.44
Prionotus	0.083	94.461	0.056	0.013	311159.	0.46	60.56
Trachinocephalus syops	0.288	94.748	0.054	0.047	311330.	0.44 0.42	16.75 25.06
Trichopaetta ventralis	0.055	94.803 95.007	0.052 0.050	0.036 0.033	311494. 311652.	0.42	39.47
Mellitidae	0.204 0.080	95.087	0.049	0.036	311808.	0.40	21.82
Sicyonia dorsalis	0.059	95.146	0.048	0.055	311962.	0.40	7.90
Congrina flava Etropus	0.099	95.245	0.047	0.035	312113.	0.39	17.07
Grophycis floridanus	0.041	95.286	0.047	0.036	312262.	0.38	32.20
Caranx hippos	0.032	95.319	0.045	0.018	312406.	0.37	41.52
Citharichthys spilopterus	0.082	95.401	0.045	0.071	312548.	0.37	6.26
Ophidion holbrooki	0.070	95.471	0.044	0.029	312688.	0.36 0.32	34.71 6.48
Gymnachirus texae	0.045	95.516	0.040	0.058 0.060	312814. 312935.	0.32	7.70
Callinectes sapidus	0.076	95.592 95.644	0.03 <b>8</b> 0.037	0.058	313052.	0.30	7.86
Brotula barbata	0.052 0.066	95.710	0.036	0.046	313167.	0.30	11.33
Sphyraena guachancho	0.336	96.047	0.035	0.005	313277.	0.28	59.00
Doryteuthis pleii Astropecten	0.142	96.188	0.034	0.038	313384.	0.28	10.62
Caranz fusus	0.061	96.250	0.033	0.047	313490.	0.27	7.56
Lepophidium jeannae	0.032	96.281	0.033	0.020	313595.	0.27	20.88
Bollmannia communia	0.033	96.315	0.032	0.036	313696.	0.26	8.44
Libinia emarginata	0.015	96.330	0.031	0.007	313795.	0.25	91.21 5.29
Calappa sulcata	0.050	96.380 96.431	0.030 0.030	0.075	313891. 313987.	0.25	37.27
Tellina	0.051 0.209	96.640	0.028	0.026	314077.	0.23	22.63
Diplectrum formosum	0.050	96.691	0.028	0.026	314167.	0.23	8.21
Polydactylus octonemus Menticirrhus americanus	0.020	96.710	0.028	0.027	314255.	0.23	9.79
Molluse	0.015	96.725	0.027	0.002	314341.	0.22	86.00
Plesionika	0.064	96.789	0.024	0.004	314418.	0.20	75.02
Prionotus alatus	0.034	96.823	0.024	0.011	314495.	0.20	32.74
Solenocera atlantidis	0.015	96.838	0.024	0.005	314571.	0.20	50.30 48.19
Porifera	0.103	96.941	0.024 0.023	0.015 0.029	314647. 314721.	0.19	9.48
Prionotus ophryss	0.049 0.047	96.990 97.037	0.022	0.011	314792.	0.18	25.54
Polychaeta Symphurus plagiusa	0.061	97.098	0.022	0.053	314861.	0.18	3.92
Raninoides louisianensis	0.058	97.156	0.021	0.044	314929.	0.17	4.56
Decapoda	0.136	97.292	0.021	0.004	314996.	0.17	51.39
Centropristis ocyurus	0.128	97.421	0.021	0.026	315063.	0.17	8.77
Anchos	0.035	97.456	0.020	0.011	315126.	0.16	25.63 18.95
Triglidae	0.023	97.479	0.020	0.009 0.024	315189. 315250.	0.16 0.16	11.24
Portunus spinisanus	0.033 0.019	97.512 97.531	0.019	0.029	315310.	0.15	5.80
Bagre marinus Aluterus schoepfi	0.077	97.608	0.018	0.027	315368.	0.15	5.52
Turris	0.015	97.623	0.018	0.009	315425.	0.15	19.63
Selar crumenophthalsus	0.034	97.657	0.017	0.031	315480.	0.14	5.86
Monacanthus hispidus	0.101	97.758	0.017	0.038	315534.	0.14	4.72
Symphurus dicmedianus	0.022	97.780	0.017	0.024	315588.	0.14	
Loligo pleii	0.033	97.813	0.016	0.005	315639. 315690.	0.13 0.13	
Scomber japonicus	0.014	97.827	0.016 0.016	0.004 0.002	315740.	0.13	
Squilla chydaea	0.009 0.050	97.836 97.886	0.016	0.024	315790.	0.13	
Prionotus soitulus	0.137	98.022	0.016	0.009	315840.	0.13	
Ovalipes guadulpensis Lutjanus synagris	0.025	98.047	0.015	0.029	315889.	0.13	4.47
Ophidion welshi	0.013	98.060	0.015	0.026	315936.	0.12	
Rhizoprionodon terraenovae	0.062	98.122	0.014	0.053	315982.	0.12	
Fusinus covei	0.008	98.130	0.014	0.004	316028.	0.12	
Stellifer lanceolatus	0.014	98.144	0.014	0.011	316074.	0.12	
		98.155	0.014	0.015	316119.	V.12	
Ogcocephalus	0.011			0 000	316168	0.12	13.30
Ogcocephalus Bothidae	0.018	98.173	0.014	0.009	316164. 316208.	0.12	
Ogcocephalus Bothidae Scorpaenidae	0.018 0.054	98.173 98.227	0.014 0.014	0.005	316208.	0.12 0.11 0.10	14.86
Ogcocephalus Bothidae	0.018	98.173	0.014			0.11	14.86 13.16

2

-

TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	MEAN DENSITY (# / HA)	INDEX OF DISPERSION
Fusinus	0.036	98.319	0.011	0.007	316356.	0.09	17.69
Synodus poey1	0.150	98.469	0.011	0.018	316391.	0.09	6.78
Lagocephalus laevigatus	0.030	98.499 98.505	0.011	0.020	316426.	0.09	11.13
Xiphopeneus kroyeri	0.006	98.505	0.011 0.011	0.004 0.020	316461. 316496.	0.09	18.63 13.36
Hepatus epheliticus Equetus acuminatus	0.024	98.540	0.011	0.013	316531.	0.09	6.83
Scomberomorus naculatus	0.016	98.555	0.011	0.020	316565.	0.09	5.18
Kathetostoma albigutta	0.011	98.566	0.011	0.026	316599.	0.09	4.12
Sphoeroides	0.065	98.632	0.010	0.011	316632.	0.08	11.20
Scorpaena brasiliensis	0.008	98.639	0.010	0.005	316664.	0.08	16.91
Archosargus probatocephalus	0.015 0.024	98.655 98.678	0.010 0.010	0.011 0.018	316696. 316727.	0.08 0.08	7.58
Equetus unbrosus Saurida normani	0.030	98.709	0.009	0.004	316757.	0.08	5.34 18.25
Etropus microstomus	0.007	98.715	0.009	0.004	316787.	0.08	28.06
Parthepope serrata	0.039	98.754	0.009	0.024	316816.	0.07	3.51
Balistes capriscus	0.019	98.773	0.009	0.020	316844.	0.07	4.53
Stenorhynchus seticornis	0.023	98.796	0.009	0.009	316872.	0.07	13.83
Hoplunnis tenuis	0.006	98.802	0.008	0.009	316899.	0.07	6.52
Sysoius storurus	0.014	98.816	0.008	0.004	316926.	0.07	17.65
Scomberomorus cavalla	0.006 0.016	98.822 98.838	0.008	0.005	316951. 316976.	0.06	8.97
Diplectrum radiale Congrina gracilior	0.016	98.843	0.008	0.004 0.002	316999.	0.06	21.31 23.00
Engyophrys senta	0.015	98.857	0.007	0.016	317021.	0.06	3.33
Symphurus	0.010	98.867	0.007	0.018	317043.	0.06	4.42
Raninoides	0.004	98.871	0.007	0.002	317064.	0.05	21.00
Peristedion gracile	0.005	98.877	0.007	0.007	317085.	0.05	9.26
Decapterus punctatus	0.109	98.986	0.007	0.016	317106.	0.05	4.21
Rhomboplites aurorubens	0.010	98.996	0.007	0.013	317127.	0.05	6.12
Sphoeroides dorsalis	0.004	99.000	0.006	0.004	317147.	0.05	10.38
Gymnachirus melas	0.005	99.005	0.006	0.007	317167.	0.05	7.78
Orthopristis chrysoptera	0.013	99.018 99.023	0.006	0.009 0.009	317186. 317205.	0.05	4.13 5.40
Urophycis cirratus Prionotus tribulus	0.019	99.042	0.006	0.018	317224.	0.05	2.44
Petrochirus diogenes	0.015	99.057	0.006	0.009	317243.	0.05	9.51
Pagurus	0.007	99.064	0.006	0.004	317261.	0.05	14.44
Paraconger caudilimbatus	0.010	99.074	0.006	0.011	317279.	0.05	3.42
Hildebrandia flava	0.013	99.087	0.006	0.007	317297.	0.05	9.43
Calappa flammea	0.011	99.098	0.005	0.015	317314.	0.04	3.92
Lolliguncula	0.008	99.106	0.005	0.009	317331.	0.04	6.98
Mullus auratus Scyllarides nodifer	0.006	99.111 99.116	0.005	0.004 0.018	317348. 317365.	0.04	9.22 2.97
Selene vomer	0.008	99.125	0.005	0.009	317382.	0.04	5.92
Pitar cordatus	0.005	99.130	0.005	0.007	317398.	0.04	5.86
Cnidaria	0.026	99.155	0.005	0.005	317414.	0.04	6.86
Natantia	0.011	99.167	0.005	0.004	317430.	0.04	12.49
Xiphopeneus	0.008	99.175	0.005	0.005	317445.	0.04	5.38
Raja texana	0.012	99.187	0.005	0.026	317460.	0.04	1.11
Caulolatilus intermedius	0.009	99.196	0.005	0.013	317475.	0.04	3.65
Synagrops spinosa	0.004	99.199	0.005	0.007 0.004	317490.	0.04	5.38 8.32
Uroconger syringinus Zalieutes megintyi	0.003	99.202 99.206	0.005 0.004	0.002	317505. 317519.	0.04	14.00
Renilla	0.021	99.227	0.004	0.005	317532.	0.03	6.83
Myropais quinquespinosa	0.006	99.233	0.004	0.005	317545.	0.03	9.46
Crassostres virginica	0.010	99.243	0.004	0.002	317557.	0.03	12.00
Antennarius	0.001	99.244	0.004	0.002	317569.	0.03	12.00
Epinephelus flavolimbatus	0.004	99.247	0.004	0.009	317581.	0.03	4.65
Calappa	0.014	99.261	0.003	0.009	317592.	0.03	3.17
Raja eglanteria	0.005	99.266	0.003	0.011	317603.	0.03	2.26
Pecten	0.045	99.311	0.003	0.004 0.004	317614.	0.03 0.03	7.72 9.18
Ascidiacea Ophidion gravi	0.006 0.012	99.317 99.328	0.003 0.003	0.009	317625. 317635.	0.03	9.18 3.19
Bivalvia	0.002	99.330	0.003	0.004	317645.	0.03	5.19
Citherichthys cornutus	0.002	99.333	0.003	0.004	317655.	0.03	5.19
Calappa springeri	0.007	99.340	0.003	0.004	317665.	0.03	5.79
Synagrops bella	0.002	99.342	0.003	0.002	317674.	0.02	9.00
Synodus	0.002	99.344	0.003	0.002	317683.	0.02	9.00
Elops saurus	0.001	99.345	0.003	0.002	317692.	0.02	9.00
Sciaenops ocellata	0.003	99.348	0.003	0.011	317701.	0.02	1.88
Caulolatilus cyanops	0.003	99.351	0.003	0.005	317710.	0.02	3.88
Rhimoptera bonasus	0.004	99.355	0.003	0.009	317719.	0.02	2.32
Sardinella aurita Portunus	0.054	99.409 00 128	0.003 0.003	0.005 0.005	317728. 317737.	0.02	4.55
rortunus	0.019	99.428	0.003	0.005	31/3/.	0.02	3.66

TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	MEAN DENSITY (# / HA)	INDEX OF DISPERSION
Scyllarus	0.004	99.432	0.003	0.005	317745.	0.02	3.24
Ophidion	0.003	99.435	0.003	0.005	317753.	0.02	2.99
Leiolambrus nitidus	0.030	99.465	0.003	0.007	317761.	0.02	3.49
Equetus	0.003	99.468	0.003	0.004	317769.	0.02	6.25
Antennarius ocellatus	0.002 0.004	99.470	0.003	0.004	317777.	0.02	4.24
Sphyrna tiburo Pomatomus saltatrix	0.002	99.473 99.475	0.003	0.009	3177 <b>85.</b> 317792.	0.02	1.99
Congridae	0.001	99.476	0.002	0.004	317799.	0.02	5.28
Hemathias leptus	0.006	99.482	0.002	0.002	317806.	0.02	7.00
Citherichthys	0.004	99.486	0.002	0.002	317813.	0.02	7.00
Bairdiella chrysura	0.004	99.491	0.002	0.004	317820.	0.02	3.57
Gyznothorax nigromarginatus	0.013	99.503	0.002	0.007	317827.	0.02	2.13
Hoplunnis Porcellana sayana	0.003 0.002	99.507 99.509	0.002 0.002	0.004 0.004	317834. 317840.	0.02	3.57
Rossia	0.002	99.511	0.002	0.005	317846.	0.02	4.33 2.99
Paguridae	0.003	99.514	0.002	0.007	317852.	0.02	1.99
Ophichthidae	0.001	99.515	0.002	0.004	317858.	0.02	4.33
Anthozoe	0.047	99.562	0.002	0.004	317864.	0.02	3.33
Chilomycterus schoepfi	0.005	99.567	0.002	0.005	317870.	0.02	2.99
Citharichthys macrops	0.005	99.572	0.002	0.009	317876.	0.02	1.32
Ogcocephalus nasutus	0.003	99.575	0.002	0.005	317882.	0.02	2.99
Echeneis neucrates	0.009 0.004	99.584 99.588	0.002	0.005	317888. 317894.	0.02	2.99
Rachycentron canadum Eucinostomus argenteus	0.004	99.590	0.002	0.002	317900.	0.02	1.32
Paraliohthys albigutta	0.001	99.591	0.002	0.004	317906.	0.02	4.33
Paralionthys squamilentus	0.003	99.594	0.002	0.005	317912.	0.02	2.99
Pontinus longispinis	0.002	99.596	0.002	0.002	317917.	0.01	5.00
Mustelus canis	0.001	99.598	0.002	0.007	317922.	0.01	1.39
Rypticus maculatus	0.001	99.599	0.002	0.007	317927.	0.01	1.39
Porcellada Arca	0.004 0.001	99.602 99.604	0.002	0.004 0.002	317932. 317937.	0.01 0.01	3.40 5.00
Libinia	0.000	99.604	0.002	0.002	317942.	0.01	5.00
Ophidiidae	0.007	99.611	0.002	0.004	317947.	0.01	2.60
Porcellanidae	0.001	99.612	0.002	0.004	317952.	0.01	2.60
Cronius	0.001 .	99.613	0.002	0.002	317957.	0.01	5.00
Gymnothorax moringa	0.009	99.622	0.002	0.005	317962.	0.01	2.19
Opsanus beta	0.005 0.003	99.627	0.002	0.004	317967.	0.01	3.40
Seriola dumerili Dasyatus americana	0.003	99.630 99.637	0.002 0.002	0.004 0.009	317972. 317977.	0.01 0.01	2.60 0.99
Conger oceanicus	0.001	99.638	0.001	0.002	317981.	0.01	4.00
Anadara baughmani	0.002	99.640	0.001	0.002	317985	0.01	4.00
Libinia dubia	0.003	99.644	0.001	0.002	317989.	0.01	4.00
Conus	0.009	99.652	0.001	0.004	317993.	0.01	2.50
Amusium papyraceum	0.001	99.654	0.001	0.004	317997.	0.01	2.50
Persephona aquilonaris	0.004 0.002	99.658	0.001	0.005	318001.	0.01	1.50
Portunus sayi Pagrus Sedecim	0.002	99.660 99.662	0.001 0.001	0.002	318005. 318009.	0.01	4.00 2.50
Fistularia tabacaria	0.009	99.671	0.001	0.007	318013.	0.01	0.99
Carcharhinus acronotus	0.001	99.671	0.001	0.002	318016.	0.01	3.00
Lutjanus griseus	0.008	99.679	0.001	0.004	318019.	0.01	1.66
Serranus phoebe	0.002	99.681	0.001	0.004	318022.	0.01	1.66
Pagrus pagrus	0.002	99.684	0.001	0.002	318025.	0.01	3.00
Scorpaena	0.004	99.688	0.001	0.005	318028.	0.01	1.00
Neomerinthe hemingwayi Ophichthus	0.002	99.690 99.691	0.001 0.001	0.004 0.002	318031. 318034.	0.01 0.01	1.66 3.00
Ogcocephalus radiatus	0.002	99.693	0.001	0.005	318037.	0.01	1.00
Gymnothorax saxicola	0.001	99.694	0.001	0.004	318040.	0.01	1.66
Galatheidae	0.002	99.696	0.001	0.002	318043.	0.01	3.00
Renilla mulleri	0.002	99.698	0.001	0.002	318046.	0.01	3.00
Nudibranchia	0.003	99.701	0.001	0.002	316049.	0.01	3.00
Parthenope	0.008	99.709	0.001	0.004	318052.	0.01	1.66
Tetraxanthus Scaphella	0.001 0.001	99.710	0.001	0.004 0.002	318055.	0.01	1.66
Scapcella Sicyonia	0.001	99.711 99.712	0.001 0.001	0.002	318058. 318061.	0.01 0.01	3.00 3.00
Microgobius gulosus	0.002	99.712	0.001	0.002	318064.	0.01	3.00
Hemipteronotus martinicensis	0.016	99.729	0.001	0.004	318066.	0.01	1.00
Mugil cephalus	0.003	99.731	0.001	0.002	318068.	0.01	2.00
Pogonias chromis	0.001	99.733	0.001	0.004	318070.	0.01	1.00
Sargassaceae	0.012	99.744	0.001	0.004	318072.	0.01	1.00
Trachinotus carolinus	0.000	99.745	0.001	0.004	318074.	0.01	1.00
Synodus synodus	0.041	99.785	0.001	0.002	318076.	0.01	2.00
Ovalipes	0.001	99.787	0.001	0.004	318078.	0.01	1.00

z

TAIOH NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	MEAN DENSITY (# / HA)	INDEX OF DISPERSION
Acanthostracion quadricornis	0.014	99.801	0.001	0.004	318080.	0.01	1.00
Turridae	0.001	99.802	0.001	0.002	318082.	0.01	2.00
Aluterus heudeloti	0.007 0.008	99.809 99.817	0.001 0.001	0.004 0.004	318084. 318086.	0.01	1.00
Clypeaster Ophiolepis	0.001	99.818	0.001	0.002	318088.	0.01	1.00
Aequipecten glyptus	0.001	99.819	0.001	0.002	318090.	0.01	2.00
Grapsidae	0.002	99.821	0.001	0.004	318092.	0.01	1.00
Persephona orinita	0.001	99.822	0.001	0.002	318094.	0.01	2.00
Gymothorax	0.002	99.824	0.001	0.002	318096.	0.01	2.00
Caridea Scyllarus chacei	0.001 0.001	99.824 99.825	0.001 0.001	0.002	318098. 318100.	0.01 0.01	2.00 2.00
Bemprops anatirostris	0.002	99.827	0.001	0.002	318102.	0.01	1.00
Dactylopterus volitans	0.000	99.827	0.001	0.002	318104.	0.01	2.00
Neobythites gillii	0.001	99.828	0.001	0.002	318106.	0.01	2.00
Calamus nodosus	0.003	99.831	0.001	0.002	318108.	0.01	2.00
Hemipteronotus novacula	0.010	99.841	- 0.001	0.004	318110.	0.01	1.00
Calanus	0.001	99.842	0.001	0.002	318112.	0.01	2.00
Physiculus fulvus Epinephelus niveatus	0.002	99.844 99.845	0.001 0.001	0.002 0.004	318114. 318116.	0.01 0.01	2.00
Epinnula magistralis	0.001	99.845	0.001	0.004	318118.	0.01	1.00
Pagrus	0.005	99.850	0.001	0.002	318120.	0.01	2.00
Rretmochelys imbricata	0.000	99.851	0.000	0.002	318121.	0.00	1.00
Gymnothorax odellatus	0.000	99.851	0.000	0.002	318122.	0.00	1.00
Carcharhinus obscurus	0.000	99.851	0.000	0.002	318123.	0.00	1.00
Carcharhinus porosus Saurida	0.000	99.852 99.852	0.000	0.002	318124. 318125.	0.00	1.00
Cypselurus heterurus	0.046	99.898	0.000	0.002	318126.	0.00	1.00 1.00
Menticirrhus saxatilis	0.001	99.899	0.000	0.002	318127.	0.00	1.00
Carcharhinus limbatus	0.000	99.899	0.000	0.002	318128.	0.00	1.00
Carcharhimus falciformis	0.002	99.901	0.000	0.002	318129.	0.00	1.00
Hyliobatis	0.000	99.902	0.000	0.002	318130.	0.00	1.00
Ogoocephalus vespertilio	0.005	99.907	0.000	0.002	318131.	0.00	1.00
Priscanthus arenatus Prionotus sartis	0.013 0.001	99.920 99.921	0.000	0.002	318132. 318133.	0.00	1.00
Alectis crinitus	0.001	99.921	0.000	0.002	318134.	0.00	1.00
Poecilopsetta	0.001	99.922	0.000	0.002	318135.	0.00	1.00
Hippocampus	0.005	99.927	0.000	0.002	318136.	0.00	1.00
Diodon hystrix	0.005	99.932	0.000	0.002	318137.	0.00	1.00
Priscanthus cruentatus	0.001	99.933	0.000	0.002	318138.	0.00	1.00
Ophichthus ocellatus	0.000	99.934 99.934	0.000	0.002	318139. 318140.	0.00	1.00
Remora remora Rypticus saponaceus	0.001	99.935	0.000	0.002	318141.	0.00	1.00 1.00
Reptilia	0.000	99.935	0.000	0.002	318142.	0.00	1.00
Mustelus	0.001	99.936	0.000	0.002	318143.	0.00	1.00
Kathetostoma	0.003	99.939	0.000	0.002	318144.	0.00	1.00
Decodon puellaris	0.004	99.943	0.000	0.002	318145.	0.00	1.00
Synodus intermedius	0.005	99.948 99.948	0.000	0.002	318146. 318147.	0.00	1.00
Scorpaena agassizi Ogeocephalus parvus	0.000	99.948	0.000	0.002	318148.	0.00	1.00
Cauloiatilus microps	0.000	99.949	0.000	0.002	318149.	0.00	1.00
Urophydis regius	0.002	99.950	0.000	0.002	318150.	0.00	1.00
Dasyatis sayi	0.000	99.950	0.000	0.002	318151.	0.00	1.00
Ophichthus gomesii	0.001	99.951	0.000	0.002	318152.	0.00	1.00
Ogcocephalidae	0.001	99.951	0.000	0.002	318153.	0.00	1.00
Chlorophyceae	0.003 0.005	99 <b>. 955</b> 99. 960	0.000	0.002	318154. 318155.	0.00	1.00
Syngmathidae Orthopristis	0.001	99.960	0.000	0.002	318156.	0.00	1.00
Ophichthus spinicauda	0.001	99.961	0.000	0.002	318157.	0.00	1.00
Squilla lijdingi	0.001	99.962	0.000	0.002	318158.	0.00	1.00
Encope	0.002	99.964	0.000	0.002	318159.	0.00	1.00
Atrina	0.001	99.965	0.000	0.002	318160.	0.00	1.00
Apogon maculatus	0.001	99.966	0.000	0.002	318161.	0.00	1.00
Goblidae Sicyonia stimpsoni	0.001 0.000	99.968 99.968	0.000	· 0.002 0.002	318162. 318163.	0.00 0.00	1.00
Octopodida	0.001	99.969 99.969	0.000	0.002	318164.	0.00	1.00
Majidae	0.000	99.969	0.000	0.002	318165.	0.00	1.00
Ancylopsetta quadrocellata	0.006	99.975	0.000	0.002	318166.	0.00	1.00
Dasyatis sabina	0.001	99.976	0.000	0.002	318167.	0.00	1.00
Gastropoda	0.001	99.977	0.000	0.002	318168.	0.00	1.00
Alpheidae Busycon contrarium	0.000	99.977	0.000	0.002	318169.	0.00	1.00
Polinices duplicatus	0.001 0.001	99.978 99.979	0.000 0.000	0.002	318170. 318171.	0.00	1.00
	0.001	33.313	0.000	V.VUZ	3101/1.	0.00	1,00

.

1

TAXON NAME	MEAN PERCENT COMPOSITION	CUMULATIVE PERCENT COMPOSITION	POOLED PERCENT COMPOSITION	FREQ. OF OCCURRENCE	CUMULATIVE ABUNDANCE	MEAN DENSITY (# / HA)	INDEX OF DISPERSION
Myropais	0.001	99.979	0.000	0.002	318172.	0.00	1.00
Cancellaria reticulata	0.001	99.980	0.000	0.002	318173.	0.00	1.00
Iliacantha liodactylus	0.001	99.981	0.000	0.002	318174.	0.00	1.00
Dromidia antillensis	0.000	99.981	0.000	0.002	318175.	0.00	1.00
Hydrozoa	0.005	99.986	0.000	0.002	318176.	0.00	1.00
Stenocionope	0.000	99.986	0.000	0.002	318177.	0.00	1.00
Nassariidae	0.001	99.987	0.000	0.002	318178.	0.00	1.00
Holothuroidea	0.001	99.988	0.000	0.002	318179.	0.00	1.00
Achirus lineatus	0.009	99.996	0.000	0.002	318180.	0.00	1.00
Octopus vulgaris	0.000	99.997	0.000	0.002	318181.	0.00	1.00
Marex	0.001	99.997	0.000	0.002	318182.	0.00	1.00
Marez pogun	0.001	99.998	0.000	0.002	318183.	0.00	1.00
Arenaeus cribrarius	0.001	99.999	0.000	0.002	318184.	0.00	1.00
Narcine brasiliensis	0.001	99.999	0.000	0.002	318185.	0.00	1.00
Astroscopus y-graecus	0.001	100.000	0.000	0.002	318186.	0.00	1.00
Psuedopriscanthus altus	0.000	100.000	0.000	0.002	318186.	0.00	******
SAMPLE SUMMARY: SAMPLES = 548	TOTAL TAXA =	374 TOTA	L DENSITY =	818.69			

:

.

Table 34. Hierarchical list of demersal nekton taxa collected in three replicate samples at 150 stations in three regions of the Tuscaloosa Trend study area during fall NMFS Fishery Independent surveys from 1973 to 1983.

		50
	Annelida	50
	Polychaeta	5001
	Arthropoda	58
	Crustacea	61
#	Decapoda	6175
*	Natantia	61
	Penaeidae	617701
#	Parapenaeus	61770105
#	Penaeus aztecus	6177010101
#	Penaeus duorarum	6177010102
#	Penaeus setiferus	6177010103
	Sicyonia	61770104
	Sicyonia brevirostris	6177010401
*	Sicyonia dorsalis	6177010402
#	Sicyonia stimpsoni	6177010406
*	Solenocera	61770106
*	Solenocera atlantidis	6177010601
#	Trachypenaeus	61770102
#	Xiphopeneus	61770107
*	Xiphopeneus kroyeri	6177010701
#	Galatheidae	618310
-	Scyllaridae	618202
*	Scyllarides nodifer	6182020202
#	Scyllarus	61820201
*	Scyllarus chacei	6182020102
*	Paguridae	618306
*	Pagurus	61830602
*	Petrochirus diogenes	6183061201
	Porcellanidae	618312
-	Porcellana	61831205
-	Porcellana sayana	6183120505
	Grapsidae	618907
	Portunidae	618901
-	Arenaeus cribrarius	6189010101
	Callinectes sapidus	6189010301
	Callinectes similis	6189010302
	Cronius	61890104 61890105
	Ovalipes	
-	Ovalipes guadulpensis	61890105??
	Portunus Portunus cibbogii	61890106 6189010601
	Portunus gibbesii Portunus soui	
-	Portunus sayi	6189010602
-	Portunus spinicarpus	6189010603
-	Portunus spinimanus Xanthidae	6189010604 618902
	Tetraxanthus	61890211
-	Dromiidae	618502
	Dromidae Dromidia antillensis	6185020301
-	DLAMIAIS SUCCESS	0105020501

.

Tabl	e 34. Continued.	
¥	Majidae	618701
¥	Anasimus latus	6187012001
*	Libinia	61870109
#	Libinia dubia	6187010901
#	Libinia emarginata	6187010902
#	Stenocionops	61870124
*	Stenorhynchus seticornis	6187011701
	Parthenopidae	618702
#	Leiolambrus nitidus	6187020201 61870201
#	Parthenope	6187020104
#	Parthenope serrata	618602
	Calappidae	61860201
*	Calappa	6186020101
*	Calappa flammea	61860201
*	Calappa springeri	6186020102
*	Calappa sulcata Hepatus epheliticus	6186020201
-	Leucosiidae	618603
	Iliacantha liodactylus	6186030301
-	Myropsis	61860302
-	Myropsis quinquespinosa	6186030201
	Persephona aquilonaris	6186030103
#	Persephona crinita	6186030102
	Raninidae	618604
	Raninoides	61860402
	Raninoides louisianensis	6186040201
	Caridea	6179
	Alpheidae	617914
	Pandalidae	617918
#	Plesionika	61791805
	Stomatopoda	6191
	Squillidae	619101
*	Squilla	61910101
*	Squilla chydaea	6191010102 61910101??
#	Squilla lijdingi	0191010111
	Mollusca	5085
-	Bivalvia	55
-	Arcoida	5506
	Arcidae	550601
₩.	Anadara	55060102
*	Anadara baughmani	5506010205
#	Arca	55060104
	Mytiloida	5507
	Pinnidae	550702
	Atrina	55070201
	Pterioida	5508
	Ostreidae	551002
*	Crassostrea virginica	5510020102
	Pectinidae	550905
#	Aequipecten	55090508 55090508??
*	Acquipecten gibbus	
<b>*</b>	Aequipecten glyptus	5509050803 5509051101
*	Amusium papyraceum	55090504
	Pecten	55050504

=

Tabl	le 34. Continued.	
	Veneroida	5515
	Tellinidae	551531
	Tellina	55153102
	Veneridae	551547
*	Pitar cordatus	5515471202
	Cephalopoda	57
	Theuthidida	5705
	Myopsida	5706
	Loliginidae	570601
	Doryteuthis pleii	5706010301
Ħ	Loligo	57060101
	Loligo pealeii	5706010102
#	Loligo pleii	5706010103
	Lolliguncula	57060102
#	Lolliguncula brevis	5706010201
	Octopodida	5708
	Octopodidae	570801
	Octopus vulgaris	5708010202
	Gastropoda	51
	Mesogastropoda	5103
	Naticidae	510376
	Polinices duplicatus	5103760407
	Neogastropoda	5104
	Cancellariidae	510514
	Cancellaria reticulata	5105140204
	Muricidae	510501
	Murex	51050110
#	Murex pomum	5105011003
#	Nassariidae	510508
	Conidae	510603
*	Conus	51060301
#	Turridae	510602
	Turris	510602??
*	Nudibranchia	5127
	Stenoglossa	5105
-	Fasciolariidae	510509
	Fusinus	51050905
•	Fusinus covei	5105090504
*	Melongenidae	510507
	Busycon contrarium	5105070104
	Volutidae	510513
-	Scaphella	51051302
	Echinodermata	81
*	Asteroidea	8104
	Paxillosida	8106
	Astropectinidae	810601
	Astropecten	81060105
	Spinulosida	8112
	Clypeasteridae	815301
*	Clypeaster	81530101

Tabl	Le 34. Continued.	
*	Echinoidea	8136
	Clypeasteroida	8152
	Mellitidae	815504
	Encope	81550402
	Mellita	81550401
	Spatangoida	8160
	Spatangidae	816302
	Holothuroidea	8170
	Ophiolepididae	81????
¥	Ophiuroidea	8120
	Ophiurida	8126
	Ophiacanthidae	812801
	Ophiolepis	81280103
	Stelleroidea	8101
	Platyasterida	8105
	Luidiidae	810501
*		81050101
-	Luidia	61050101
*	Porifera	36
	Criterio	37
	Cnidaria Anthozoa	3740
-	Pennatulacea	3752
	Renillidae	375303
	Renilla	37530301
-		3753030101
*	Renilla mulleri	
	Hydrozoa	3701 3730
	Scyphozoa	3734
	Semaeostomeae	
	Ulmaridae	373403
Ŧ	Aurelia	37340302
	Chordata	8388
	Antennarioidei	8787
	Antennariidae	878702
	Antennarius ocellatus	8787020202
	Antennarius radiosus	8787020203
#	Ogcocephalidae	878704
	Halieutichthys aculeatus	8787040301
	Ogcocephalus	87870401
	Ogcocephalus nasutus	8787040103
*	Ogcocephalus parvus	8787040105
	Ogcocephalus radiatus	8787040106
	Ogcocephalus vespertilio	8787040101
	Zalieutes mcgintyi	8787040401
	Aulostomoidei	8819
	Fistulariidae	881902
	Fistularia tabacaria	8819020101

z

.

14010	J-1. 002022220020	
	Balistoidei	8860
	Balistidae	886002
¥	Aluterus heudeloti	8860020102
*	Aluterus schoepfi	8860020101
Ħ	Balistes capriscus	8860020201
#	Monacanthus hispidus	8860020703
	Ostraciontidae	886003
#	Acanthostracion quadricornis	8860030201
	Batrachoidiformes	8783
	Batrachoididae	878301
*	Opsanus beta	8783010202
#	Porichthys porosissimus	8783010106
	Dactylopteriformes	8832
	Dactylopteridae	883201
#	Dactylopterus volitans	8832010101
	Elopiformes	8737
	Elopidae	873801
	Elops saurus	8738010101
	Exocoetoidei	8803
	Exocoetidae	880301
	Cypselurus heterurus	8803010101
	Labroidei	8839
	Labridae	883 90 1
#	Decodon puellaris	883 90 1 0 5
#	Hemipteronotus martinicensis	883 90 1 0 80 1
#	Hemipteronotus novacula	8839010802
	Myctophoidei	8762
	Synodontidae	876202
#	Saurida	87620203
#	Saurida brasiliensis	8762020301
	Saurida normani	8762020303
	Synodus	87620201
*	Synodus foetens	8762020101
#	Synodus intermedius	8762020102
	Synodus poeyi	8762020104
#	Synodus synodus	8762020106
#	Trachinocephalus myops	8762020401
	Osteichthyes	8717
	Anguilliformes	8740
*	Congridae	874112
	Conger oceanicus	8741120101
÷	Congrina	87411203
#	Congrina flava	8741120302
÷.	Congrina gracilior	8741120303
#	Hildebrandia flava	8741121001
*	Ophichthus	87411310
#	Ophichthus gomesii	8741131001
ŧ	Ophichthus ocellatus	8741131003
#	Ophichthus spinicauda	87411310??
	Paraconger caudilimbatus	8741120501
#	Uroconger syringinus	8741120801
	Muraenesocidae	874108
#	Hoplunnis	87410801
	Hoplunnis macrurus	8741080102
*	Hoplunnis tenuis	8741080102
		0141000105

	Muraenidae	874105
*	Gymnothorax	87410504
*	Gymnothorax moringa	8741050403
	Gymnothorax nigromarginatus	8741050404
#	Gymnothorax ocellatus	8741050405
	Gymnothorax saxicola	8741050407
<b>`#</b>	Ophichthidae	874113
	Clupeiformes	8745
	Clupeidae	874701
×	Brevoortia patronus	8747010403
ŧ	Etrumeus teres	8747010601
	Harengula jaguana	8747010803
ŧ	Opisthonema oglinum	8747010701
*	Sardinella aurita	8747011001
	Engraulidae	874702
	Anchoa	87470202
*	Anchoa hepsetus	8747020201
	Anchoa lyolepis	8747020205
#	Anchoa mitchilli	8747020202
	Gadiformes	8789
	Gadidae	879103
*	Urophycis cirratus	8791031005
÷	Urophycis floridanus	8791031007
*	Urophycis regius	8791031002
	Macrouridae	87 940 1
#	Scorpaena agassizi	8826010601
	Merlucciidae	879104
#	Steindachneria argentea	8791040201
	Moridae	879101
1 <b>#</b>	Physiculus fulvus	8791010301
Ħ	Ophidiidae	879201
	Brotula barbata	8792010401
#	Lepophidium	87920105
#	Lepophidium brevibarbe	8792010502
*	Lepophidium graellsi	8792010504
*	Lepophidium jeannae	8792010505
#	Neobythites gillii	8792012001
	Ophidion	87 920 106
	Ophidion grayi	8792010602
	Ophidion holbrooki	8792010603
-	Ophidion welshi	8792010605
	Perciformes	8834 883528
	Carangidae	8835280201
-	Alectis crinitus	8835280302
-	Caranx fusus	8835280303
-	Caranx hippos Chloroscombrus chrysurus	8835280401
-	Decapterus punctatus	8835281202
-	Selar crumenophthalmus	8835280601
	Selene setapinnis	88352807??
-	Selene vomer	8835280701
-	Seriele vomer Seriola dumerili	8835280801
	Trachinotus carolinus	8835280901
#	Trachurus lathami	8835280102
	TI GARAT AD TGARGUT	

:

Gempylidae885001E binnula magistralis885001Gobiidae884701Bollmannia communis884701Microgobius gulosus8847017001Mugli cephalus883518Apogon dae883518Apogon dae883518Apogon dae883518Apogon dae883518Apogon dae883518Apogon dae883518Branchiostegidae883522Caulolatilus granops8835220103Branchiostegidae8835220103Caulolatilus intermedius8835220103Caulolatilus intermedius8835270103Echeneis nauerates8835270201Remora remora8835270201Remora remora883520103Gerridae8835390102Graminatidae8835390102Graminatidae8835300207Lutjanus grapenaus8835360102Graminatidae8835360102Rupticus saponaceus8835360102Lutjanus grapens8835360102Lutjanus grapens8835400201Pristipondies aquilonaris883560101Rhomboplites aurorubens8835170101Priacanthus erenatus8835170101Priacanthus erenatus8835170101Priacanthus erenatus8835170101Priacanthus erenatus8835170101Priacanthus erenatus8835170101Priacanthus erenatus8835170101Priacanthus erenatus8835400201Priacanthus erenatus8835400201Priacanthus erenatus8835400201P		• • • • • • • • • • •		•
Gobiidae 84701 Gobiidae 84701 Hicrogobius gulosus 8447011601 Migil cephalus 883601 Apogonidae 883601 Apogon maculatus 883518 Apogon maculatus 8835180603 Branchiostegidae 883522 Caulolatilus grapps 8835220103 Caulolatilus microps 8835220103 Caulolatilus microps 8835220103 Caulolatilus microps 8835220103 Echeneidae 883527 Echeneidae 883527 Cheetodipterus faber 883520 Craetodipterus faber 883520 Gramistidae 883539 Eucinostomus argenteus 8835390101 Gerridae 883539 Eucinostomus agenteus 8835303027 Lutjanus campechanus 8835303027 Lutjanus griseus 8835300127 Lutjanus griseus 8835360102 Lutjanus griseus 88354002 Pomadasyidae 88354002 Orthopristis chrysoptera 88354002 Orthopristis chrysoptera 88354002 Orthopristis 88354002 Granchus crenatus 88354002 Orthopristis 88354002 Orthopristis 88354002 Orthopristis 88354002 Driacenthus arenatus 88354002 Driacenthus arenatus 88354002 Driacenthus arenatus 88354002 Driacenthus arenatus 88354002 Driacenthus arenatus 88354002 Driacenthus arenatus 88354001 Sciaenidae 88354001 Sciaenidae 88354001 Sciaenidae 88354001 Sciaenidae 88354001 Sciaenidae 88354001 Sciaenidae 8835440106 Cynoscion nothus 8835440106 Cynoscion atus 8835440106 Cynoscion atus 883544001 Sciaenidae 8835440001 Menticirrhus aartiis 8835440001 Menticirhus aartiis 8835440001 Menticirhus aartiis 8835440001 Menticirhus aartiis 8835440001 Menticirhus aartiis 8835440001 Menticirhus aartiis 8835440001 Menticirhus aartiis 8835440001 Micropogonias undulatus 8835440001 Micropogonias undulatus 8835440001 Micropogonias und		Gempylidae		885001
bolinas bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasis bolinasi	#	Epinnula magistralis		8850010102
<ul> <li>Microgobius gulosus</li> <li>Mugilidae</li> <li>Mugilidae</li> <li>Mugilicephalus</li> <li>Apogonidae</li> <li>Basson</li> <li>Apogonidae</li> <li>Basson</li> <li>Bapogonidae</li> <li>Basson</li> <li>Bapogonidae</li> <li>Basson</li> <li>Bapogonidae</li> <li>Basson</li> <li>Banchiostegidae</li> <li>Caulolatilus oyanops</li> <li>Basson</li> <li>Caulolatilus nicrops</li> <li>Basson</li> <li>Basson</li> <li>Caulolatilus nicrops</li> <li>Basson</li> <li>Bass</li></ul>	*	Gobiidae		884701
<ul> <li>Microgobius gulosus</li> <li>Mugilidae</li> <li>Mugilidae</li> <li>Mugilicephalus</li> <li>Apogonidae</li> <li>Basson</li> <li>Apogonidae</li> <li>Basson</li> <li>Bapogonidae</li> <li>Basson</li> <li>Bapogonidae</li> <li>Basson</li> <li>Bapogonidae</li> <li>Basson</li> <li>Banchiostegidae</li> <li>Caulolatilus oyanops</li> <li>Basson</li> <li>Caulolatilus nicrops</li> <li>Basson</li> <li>Basson</li> <li>Caulolatilus nicrops</li> <li>Basson</li> <li>Bass</li></ul>	÷.	Bollmannia communis		8847011601
Nugil cephalus883601Mugil cephalus883601011Apogonidae883518Apogon maculatus8835180601Synagrops bella8835180603Branchiostegidae8835220103Caulolatilus yanops8835220103Caulolatilus intermedius8835220104Echeneidae8835270103Echeneidae8835270201Remora remora8835270201Remora remora883520103Ephippidae883520101Gerridae8835390101Bucinostomus argenteus8835390102Grammistidae8835030204Rypticus maculatus88353030204Rypticus aponaceus883536012Lutjanus griseus883536012Lutjanus griseus883536012Upeneus parvus883545002Pomadasyidae88354002Pomadasyidae883577Priacanthus arenatus8835170102Pristipoodies aguionaris88354002Pomadasyidae883577Priacanthus arenatus8835170102Priacanthus arenatus8835170102Priacanthus altus8835170102Priacanthus altus8835170102Priacanthus altus88352011Priacanthus altus883524002Orthopristis883526011Sciaenidae883544010Cynoscion nothus883544010Cynoscion nothus883544010Cynoscion nothus8835440103Equetus acuminatus8835440013Equetus acuminatus8835440013Equetus acuminatus	#			
Mugil cephalus8836010101Apogonidae883518Apogon maculatus8835180107Synagrops bella8835180107Synagrops spinosa883520102Caulolatilus cyanops8835220102Caulolatilus microps8835220103Caulolatilus microps883520103Echeneidae883527Echeneis naucrates8835270201Remora remora8835270201Gerridae8835270103Ephippidae883539Eucinostomus gula8835390102Grammistidae8835030207Lutjanus campechanus88353030204Rypticus maculatus88353030207Lutjanus griseus8835360102Lutjanus griseus8835360102Lutjanus griseus8835360102Lutjanus griseus883540021Pristipomolites auroubens883540021Priacanthus arenatus88354002Orthopristis chrysoptera88354002Pomadasyidae8835170101Friacanthus arenatus8835170101Friacanthus arenatus8835170101Friacanthus arenatus8835170101Friacanthus arenatus883544001Sociaenidae remora8835440106Cynoscion rothus8835440106Cynoscion rothus8835440106Cynoscion rothus8835440016Cynoscion rothus8835440016Cynoscion rothus8835440016Cynoscion rothus8835440016Cynoscion rothus8835440016Cynoscion rothus8835440016Cynoscion roth				
Apogonidae883518Apogon maculatus8835180107Synagrops bella8835180601Synagrops spinosa8835180603Branchiostegidae883522Caulolatilus intermedius8835220102Caulolatilus intermedius8835220103Caulolatilus microps8835220103Caulolatilus microps8835220103Echeneidae8835270013Ephippidae883520011Gerridae883520101Gerridae883520101Gerridae883520101Gerridae8835303Rypticus maculatus883503Rypticus maculatus8835030204Rypticus saponaceus8835360102Lutjanus campechanus8835360102Lutjanus griseus8835360102Lutjanus griseus8835450112Pristipomoides ayulonaris8835400201Mullidae883545Upeneus parvus8835450402Pomadayidae8835400201Pristis chrysoptera8835400201Priacanthus greenatus8835170101Priacanthus greenatus883540Orthopristis chrysoptera8835440103Sciaenidae8835440103Cynoscion nothus8835441201Sciaenidae8835441201Equeus acuminatus8835441201Equeus acuminatus8835440013Cynoscion nothus8835440013Equeus acuminatus8835440013Equeus acuminatus8835440013Equeus acuminatus8835440013Equeus acuminatus8835440013	#			
Apogon maculatus8885180017Synagrops bella8835180601Synagrops spinosa8835180601Branchiostegidae883522Caulolatilus cyanops8835220102Caulolatilus intermedius8835220103Caulolatilus intercops8835220104Echeneis naucrates8835270201Remora remora8835270201Remora remora8835270103Ephippidae8835300101Gerridae8835300101Eucinostomus gula8835300102Grammistidae8835030204Rypticus maculatus8835030207Lutjanus campechanus8835360107Lutjanus griseus8835360107Lutjanus griseus8835360107Lutjanus griseus8835450102Lutjanus griseus8835450102Lutjanus griseus8835450102Pomadasyidae883545002Pomadasyidae8835400201Priacanthus arenatus8835400201Priacanthus arenatus8835177712Rachycentridae88354002Pomadasyidae88354002Pomadasyidae88354002Ponacianthus arenatus8835177777Rachycentridae8835440103Sciaenidae8835440103Equetus acuminatus8835440103Cynoscion arenarius8835440103Equetus acuminatus8835440103Equetus usbrosus8835440103Equetus usbrosus8835440103Equetus usbrosus8835440103Equetus usbrosus8835440103Equetus usbrosus88354				
Synagrops bella8835180601Synagrops spinosa8835180601Branchiostegidae883522Caulolatilus intermedius8835220102Caulolatilus intermedius8835220103Caulolatilus intermedius8835220103Caulolatilus intermedius8835220103Echeneidae883527Echeneidae8835270103Ephippidae8835270103Ephippidae883520101Gerridae883520101Gerridae883520101Gerridae883539Eucinostomus argenteus8835303002Grammistidae8835030204Rypticus maculatus8835030204Rypticus saponaceus8835360107Lutjanus campechanus8835360102Lutjanus griseus8835450012Pristipomoides aquilonaris8835450012Pristipomoides aquilonaris8835450021Pristipomoides aquilonaris883540021Priacanthus arenatus883540021Priacanthus arenatus8835170101Priacanthus arenatus8835170102Pauedopriacanthus altus8835170102Psuedopriacanthus altus883540021Priacanthus arenatus883540021Priacanthus arenatus883540011Sciaenidae883541010Cynoscion arenarius8835440103Sciaenidae8835440103Equetus acuminatus8835440103Equetus acuminatus8835440103Equetus acuminatus8835440103Equetus acuminatus883544001Cynoscion arenarius88354	+			
<ul> <li>Synagrops spinosa</li> <li>Branchiostegidae</li> <li>Caulolatilus cyanops</li> <li>Caulolatilus intermedius</li> <li>Caulolatilus microps</li> <li>Cheneis naucrates</li> <li>Cheneis naucrates</li> <li>Chaetodipterus faber</li> <li>Catodipterus faber</li> <li>Catonotomus gula</li> <li>Basissi and and and and and and and and and and</li></ul>				
Branchiostegidae883522Caulolatilus syanops8835220102Caulolatilus intermedius8835220103Caulolatilus microps8835220104Echeneidae883527Echeneidae8835270201Remora remora8835270201Remora remora8835270103Ephippidae8835270103Ephippidae883520101Gerridae8835230101Gerridae8835390101Eucinostomus argenteus8835030204Rypticus maculatus8835030204Rypticus saponaceus8835366Lutjanus griseus8835360107Lutjanus griseus8835360107Lutjanus griseus8835360107Lutjanus griseus8835450107Mulidae8835450107Mulidae8835450107Mulidae8835450107Mulidae883545002Pomadasyidae883545002Porthopristis chrysoptera88354002Priacanthus arenatus88351770101Priacanthus arenatus88351770101Priacanthus arenatus88351771010Priacanthus atus8835440103Sciaenidae8835440103Cynoscion arenarius8835440103Cynoscion arenarius88354410301Cynoscion arenarius883544103Equetus auminatus8835440103Equetus auminatus8835440103Equetus auminatus8835440103Equetus auminatus8835440103Equetus auminatus8835440103Equetus auminatus8835440103Equet				
Caulolatilus cyanops 8835220102 Caulolatilus intermedius 8835220103 Caulolatilus microps 8835220104 Echeneidae 883527 Echeneis naucrates 8835270201 Remora remora 8835270201 Remora remora 8835270103 Ephippidae 883552 Chaetodipterus faber 883552 Chaetodipterus faber 883553 Eucinostomus argenteus 8835390101 Eucinostomus gula 8835390102 Grammistidae 883503 Rypticus maculatus 8835030207 Lutjanus campechanus 883530107 Lutjanus campechanus 8835360107 Lutjanus griseus 8835360107 Lutjanus griseus 8835360107 Lutjanus synagris 8835360102 Mullidae 883545 Upeneus parvus 8835400201 Pomadasyidae 883540 Orthopristis chrysoptera 8835400201 Priacanthidae 883517 Priacanthidae 883517 Priacanthidae 883517 Priacanthidae 883517 Priacanthidae 883517 Priacanthidae 883517 Priacanthidae 883517 Priacanthidae 883517 Priacanthidae 883517 Priacanthidae 883540 Orthopristis chrysoptera 8835400201 Priacanthidae 883544 Orthopristis chrysoptera 8835400201 Priacanthidae 883544 Orthopristis chrysoptera 8835400201 Priacanthidae 883544 Orthopristis chrysoptera 8835440103 Eucineariae 8835440103 Soiaenidae 8835440103 Soiaenidae 8835440103 Soiaenidae 8835440103 Equetus 883544001 Cynoscion nothus 8835440103 Equetus 8835440103 Equetus 883544001 Menticirrhus axatilis 883544003	-			
<ul> <li>Caulolatilus intermedius</li> <li>Caulolatilus microps</li> <li>Caulolatilus microps</li> <li>Babereita naucrates</li> <li>Echeneits naucrates</li> <li>Babereita e</li> <li>Babszy (201)</li> <li>Remora remora</li> <li>Babszy (201)</li> <li>Remora remora</li> <li>Babszy (201)</li> <li>Remora remora</li> <li>Babszy (201)</li> <li>Babszy (201)</li> <li>Gerridae</li> <li>Babszy (201)</li> /ul>	*			
Cauloiatilus incerps 8835220104 Echeneidae 883527 Echeneis naucrates 8835270201 Remora remora 8835270201 Remora remora 8835270201 Remora remora 8835270201 Gerridae 883539 Eucinostomus argenteus 883539 Eucinostomus gula 88353390101 Eucinostomus gula 88353390102 Grammistidae 8835030204 Rypticus maculatus 8835030204 Rypticus maculatus 8835030204 Rypticus maculatus 8835030207 Lutjanus campechanus 8835360107 Lutjanus campechanus 8835360107 Lutjanus griseus 8835360107 Lutjanus synagris 8835360107 Mullidae 883545 Upeneus parvus 8835450402 Pomadasyidae 883540 Orthopristis chrysoptera 883517 Priacanthus arenatus 8835170101 Priacanthus arenatus 8835170101 Priacanthus arenatus 8835170101 Priacanthus arenatus 8835170101 Priacanthus arenatus 8835170101 Priacanthus arenatus 8835170101 Soiaenidae 883544 Bairdiela chrysura 883524 Baist440106 Cynoscion arenarius 8835440103 Equetus 8835440061 Menticirrhus arenatus 8835440061 Menticirrhus satilis 8835440601 Menticirrhus satilis 8835440601	-			
Control activities million psConsisting millionEchemeidae883527Echemeidae883527Echemeidae8835270103Ephippidae8835270103Ephippidae883552Chaetodipterus faber8835390101Gerridae8835390102Eucinostomus argenteus8835390102Grammistidae8835030204Rypticus maculatus8835030204Rypticus saponaceus8835030207Lut janus campechanus8835360102Lut janus griseus8835360102Lut janus griseus8835360102Lut janus griseus8835360102Lut janus griseus8835360102Mullidae883540020Pomadasyidae883545Upeneus parvus8835400201Pristipomoides aurorubens8835170102Pomadasyidae8835170102Priacanthus arenatus8835170102Priacanthus arenatus8835170102Priacanthus arenatus8835170102Psuedopriacanthus altus8835170102Psuedopriacanthus altus8835440031Soiaenidae8835440103Soiaenidae8835440103Equetus acuminatus8835440103Equetus acuminatus8835440103Equetus acuminatus8835440103Equetus acuminatus8835440103Equetus acuminatus883544003Equetus acuminatus883544003Equetus acuminatus883544003Equetus acuminatus883544003Equetus acuminatus883544003Equetus acum	-			
Echeneis naucrates8835270201Remora remora8835270201Ephippidae8835270103Ephippidae8835220101Gerridae883539Eucinostomus argenteus8835390101Eucinostomus gula8835030102Grammistidae8835030204Rypticus maculatus8835030207Lutjanus campechanus8835360107Lutjanus griseus8835360102Lutjanus griseus8835360102Lutjanus griseus8835360102Lutjanus ynagris8835360102Pristipomoides aquilonaris8835360501Mullidae8835450402Pomadasyidae88354002Orthopristis chrysoptera883540020Priacanthus arenatus88351770101Priacanthus arenatus8835170102Priacanthus arenatus8835400201Priacanthus arenatus8835170101Priacanthus arenatus8835400201Priacanthus arenatus8835170101Priacanthus arenatus8835400201Sciaenidae8835440103Sciaenidae8835440103Cynoscion nothus8835440103Equetus umbrosus8835440106Cynoscion nothus8835440103Equetus us arenatus8835440103Equetus us arenatus88354400501Equetus us arenatus8835440106Cynoscion arenarius8835440106Cynoscion arenarius8835440106Cynoscion arenarius8835440106Cynoscion arenarius88354400501Equetus us arenatus8835440601 <th>-</th> <th>•</th> <th></th> <th></th>	-	•		
Remora remora8835270103Ephippida883552Chaetodipterus faber883552Chaetodipterus faber8835530101Gerridae8835330102Eucinostomus argenteus8835390102Grammistidae8835030204Rypticus maculatus8835030204Rypticus saponaceus8835030204Lutjanus campechanus8835360107Lutjanus griseus8835360102Lutjanus griseus8835360102Lutjanus griseus8835360102Lutjanus griseus8835360102Lutjanus griseus8835450402Pristipomoides aquilonaris8835450402Pomadasyidae8835450402Pomadasyidae8835400201Priacanthus arenatus8835170101Priacanthus arenatus8835170102Psuedopriacanthus altus8835170102Psuedopriacanthus altus8835440201Priacanthus arenatus8835440101Cynoscion arenarius8835440101Cynoscion arenarius8835441201Cynoscion arenarius8835441201Equetus umbrosus8835441201Equetus umbrosus8835441201Equetus umbrosus8835441201Equetus acuminatus883544001Menticirrhus anetianus883544001Menticirrhus asatilis883544001Menticirrhus asatilis883544001Menticirrhus asatilis883544001Menticirrhus asatilis883544001Menticirrhus asatilis883544001Menticirrhus anatilis883544001Menticirr				
Ephippidae883552Chaetodipterus faber8835520101Gerridae8835390102Eucinostomus gula8835390102Gramistidae8835030204Rypticus maculatus8835030207Lutjanus campechanus8835360102Lutjanus griseus8835360102Lutjanus griseus8835360102Lutjanus griseus8835360102Lutjanus griseus8835360102Lutjanus griseus8835360102Lutjanus griseus8835360102Pristiponoides aquilonaris8835360102Mullidae8835450402Pomadasyidae88354002Orthopristis chrysoptera8835170101Priacanthus arenatus8835170102Psuedopriacanthus altus8835170102Psuedopriacanthus altus8835440100Sciaenidae8835440103Cynoscion nothus8835440103Equetus umbrosus8835440103Equetus umbrosus8835440103Equetus umbrosus883544003Larimus fasciatus883544003Menticirrhus axetilis883544001Menticirrhus axetilis883544001Menticirrhus axetilis883544001Menticirrhus axetilis883544001Menticirrhus axetilis883544001Menticirrhus axetilis883544001Menticirrhus axetilis883544001Menticirrhus axetilis883544001Menticirrhus axetilis883544001Menticirrhus axetilis8835440001Menticirrhus axetilis8835440001Menticirrhus axetili				
<ul> <li>Chaetodipterus faber</li> <li>Gerridae</li> <li>Eucinostomus argenteus</li> <li>Eucinostomus gula</li> <li>Businostomus gula</li> <li>Crammistidae</li> <li>Rypticus maculatus</li> <li>Rypticus maculatus</li> <li>Bassino accus</li> <li>Lutjanus campechanus</li> <li>Lutjanus griseus</li> <li>Lutjanus griseus</li> <li>Lutjanus griseus</li> <li>Bassino accus</li> /ul>	-			
Gerridae 883539 Eucinostomus argenteus 8835390101 Eucinostomus gula 8835390102 Grammistidae 883503 Rypticus maculatus 8835030207 Lut janus appenaecus 8835030207 Lut janus campechanus 8835360102 Lut janus griseus 8835360701 Rhomboplites aurorubens 8835360501 Mullidae 883545 Upeneus parvus 883545002 Pomadasyidae 8835400 Orthopristis chrysoptera 8835400201 Priacanthus arenatus 8835170101 Priacanthus arenatus 8835170101 Priacanthus arenatus 8835170101 Priacanthus arenatus 8835170101 Priacanthus altus 8835170102 Bachycentridae 883526011 Sciaenidae 88354401 Cynoscion arenarius 883544010 Cynoscion arenarius 883544010 Cynoscion nothus 8835440103 Equetus 8835440103 Equetus 8835440103 Leiostomus xanthurus 883544001 Leiostomus xanthurus 883544001 Menticirrhus arenicanus 883544001 Menticirrhus axatilis 883544001 Menticirrhus axatilis 883544001 Menticirrhus saxatilis 883544001 Menticirrhus axatilis 8835440003 Microopgonias undulatus 8835440001	-			
Eucinostomus argenteus88353 90101Eucinostomus gula88353 90102Grammistidae883503 0204Rypticus maculatus883503 0207Lut janidae883536Lut janus campechanus8835360107Lut janus griseus8835360107Lut janus griseus8835360102Lut janus griseus8835360107Lut janus griseus8835360102Pristipomoides aquilonaris8835360501Mullidae883545002Pomadasyidae8835400Orthopristis88354002Orthopristis chrysoptera8835170101Priacanthus arenatus8835170101Priacanthus arenatus8835170101Priacanthus arenatus8835260101Sciaenidae8835440102Ponscion canadum883526101Sciaenidae8835440103Cynoscion nothus8835440103Equetus8835440103Equetus umbrosus8835440103Equetus umbrosus8835440103Equetus umbrosus883544001Cynoscion nothus883544001Equetus umbrosus883544001Equetus umbrosus883544001Equetus umbrosus883544001Equetus umbrosus883544001Equetus umbrosus883544001Menticirrhus saratilis883544001Menticirrhus saratilis883544001Menticirrhus americanus883544001Menticirrhus anericanus883544001Menticirrhus anericanus883544001Menticirrhus anericanus883544001 <t< th=""><th>*</th><th>Chaetodipterus faber</th><th></th><th>8835520101</th></t<>	*	Chaetodipterus faber		8835520101
Eucinostomus gula8835390102Grammistidae883503Rypticus maculatus8835030204Rypticus saponaceus8835030207Lutjanidae8835030207Lutjanus campechanus8835360107Lutjanus griseus8835360107Lutjanus griseus8835360102Pristipomoides aquilonaris8835360501Mullidae8835450Openeus parvus8835450402Pomadasyidae8835400201Priacanthus arenatus8835170101Priacanthus arenatus8835170102Psuedopriacanthus altus8835170102Psuedopriacanthus altus8835440301Sciaenidae8835440301Cynoscion arenarius883544011Sciaenidae883544016Cynoscion nothus883544016Cynoscion nothus883544016Cynoscion nothus883544016Cynoscion nothus883544016Cynoscion nothus883544016Cynoscion nothus883544026Larimus fasciatus883544026Larimus fasciatus883544026Larimus fasciatus883544026Larimus fasciatus88354400601Menticirrhus saxatilis8835440601Menticirrhus saxatilis8835440601Menticirrhus saxatilis8835440601Micropogonias undulatus8835440601Micropogonias undulatus8835440601Micropogonias undulatus8835440601Micropogonias undulatus8835440601Micropogonias undulatus8835440601Micropogonias undula		Gerridae		883539
Grammistidae         883503           Rypticus maculatus         8835030204           Rypticus saponaceus         8835030207           Lutjanidae         883536           Lutjanus campechanus         8835360102           Lutjanus griseus         8835360102           Lutjanus synagris         8835360102           Lutjanus synagris         8835360102           Pristipomoides aquilonaris         8835360701           Rhomboplites aurorubens         8835450402           Pomadasyidae         88354002           Pomadasyidae         8835400201           Priacanthus arenatus         8835170101           Priacanthus arenatus         8835170101           Priacanthus arenatus         8835170102           Psuedopriacanthus altus         8835400201           Priacanthus arenatus         8835170102           Psuedopriacanthus altus         8835170102           Psuedopriacanthus altus         883544026           Rachycentron canadum         88354402           Sciaenidae         8835440103           Cynoscion arenarius         8835440103           Cynoscion nothus         8835440103           Cynoscion nothus         8835440103           Equetus umbrosus         8835440201	*	Eucinostomus argenteus		8835390101
Grammistidae         883503           Rypticus maculatus         8835030204           Rypticus saponaceus         8835030207           Lutjanidae         883536           Lutjanus campechanus         8835360102           Lutjanus griseus         8835360102           Lutjanus synagris         8835360102           Lutjanus synagris         8835360102           Pristipomoides aquilonaris         8835360701           Rhomboplites aurorubens         8835450402           Pomadasyidae         88354002           Pomadasyidae         8835400201           Priacanthus arenatus         8835170101           Priacanthus arenatus         8835170101           Priacanthus arenatus         8835170102           Psuedopriacanthus altus         8835400201           Priacanthus arenatus         8835170102           Psuedopriacanthus altus         8835170102           Psuedopriacanthus altus         883544026           Rachycentron canadum         88354402           Sciaenidae         8835440103           Cynoscion arenarius         8835440103           Cynoscion nothus         8835440103           Cynoscion nothus         8835440103           Equetus umbrosus         8835440201	*	Eucinostomus gula		8835390102
Rypticus maculatus8835030204Rypticus saponaceus8835030207Lutjanus saponaceus883536Lutjanus campechanus883536Lutjanus griseus8835360102Lutjanus synagris8835360102Pristipomoides aquilonaris8835360112Pristipomoides aquilonaris8835360501Mullidae883545Upeneus parvus883540Orthopristis88354002Pomadasyidae88354002Orthopristis chrysoptera8835400201Priacanthus arenatus8835170101Priacanthus arenatus8835170102Psuedopriacanthus altus8835170102Psuedopriacanthus altus8835440Sciaenidae8835440Cynoscion8835440103Cynoscion nothus8835440103Equetus umbrosus8835440103Equetus umbrosus8835441201Equetus umbrosus8835440013Equetus umbrosus8835440013Equetus umbrosus8835440013Equetus acuminatus8835440013Equetus acuminatus8835440001Menticirrhus americanus8835440001Micropogonias undulatus8835440003Micropogonias undulatus8835440001Micropogonias undulatus8835440001Micropogonias undulatus8835440001Micropogonias undulatus8835440001Micropogonias undulatus8835440001Micropogonias undulatus8835440001Micropogonias undulatus8835440001Micropogonias undulatus8835440001 </th <th></th> <th>Grammistidae</th> <th></th> <th></th>		Grammistidae		
Rypticus saponaceus         8835030207           Lutjanidae         883536           Lutjanus campechanus         8835360107           Lutjanus griseus         8835360102           Lutjanus synagris         8835360102           Lutjanus synagris         8835360102           Lutjanus synagris         8835360102           Pristipomoides aquilonaris         8835360701           Rhomboplites aurorubens         8835360501           Mullidae         883545           Upeneus parvus         8835450402           Pomadasyidae         883540           Orthopristis         8835450402           Pomadasyidae         8835170           Priacanthus arenatus         8835170101           Priacanthus arenatus         8835170102           Psuedopriacanthus altus         883526           Rachycentridae         8835440301           Sciaenidae         8835440103           Cynoscion arenarius         8835440103           Cynoscion nothus         8835440501           Laiostom	*	Rypticus maculatus		
Lutjanidae883536Lutjanus campechanus8835360107Lutjanus griseus8835360102Lutjanus griseus8835360102Lutjanus synagris8835360701Rhomboplites aurorubens8835360701Mullidae883545Upeneus parvus8835450402Pomadasyidae88354002Orthopristis8835400201Priacanthidae8835170Priacanthidae8835170102Psuedopriacanthus arenatus88351770102Psuedopriacanthus altus88354402011Sciaenidae883544Bairdiella chrysura8835440301Cynoscion nothus8835440103Cynoscion nothus8835440103Equetus acuminatus8835440103Equetus acuminatus8835440103Equetus acuminatus8835440501Larimus fasciatus8835440501Leiostomus xanthurus8835440601Menticirrhus americanus8835440601Menticirrhus astills8835440601Menticirrhus achinus8835440601Micropogonias undulatus8835440701Pogonias chromis8835440901Sciaenops ocellata8835440901	*	Rypticus saponaceus		
Lut janus campechanus8835360107Lut janus griseus8835360102Lut janus synagris8835360102Pristipomoides aquilonaris8835360701Rhomboplites aurorubens8835360501Mullidae8835360501Mullidae883545Upeneus parvus88354002Pomadasyidae8835400201Priacanthidae8835170101Priacanthus arenatus8835170101Priacanthus arenatus8835170101Priacanthus cruentatus8835170102Psuedopriacanthus altus883526Rachycentridae8835440Sciaenidae8835440Cynoscion arenarius88354401Cynoscion nothus8835440103Equetus acuminatus8835440103Equetus acuminatus8835440103Equetus acuminatus8835440010Leiostomus xanthurus8835440601Menticirrhus americanus8835440601Menticirrhus saxatilis8835440601Menticirrhus satilis8835440601Menticirrhus anericanus8835440601Menticirrhus anericanus8835440601Menticirrhus anericanus8835440601Micropogonias undulatus8835440901Sciaenops ocellata8835440901				
Lut janus griseus8835360102Lut janus synagris8835360112Pristipomoides aquilonaris8835360701Rhomboplites aurorubens8835360501Mullidae8835450402Openeus parvus8835450402Pomadasyidae88354002Orthopristis88354002Orthopristis chrysoptera8835170101Priacanthidae8835170101Priacanthus arenatus8835170102Priacanthus cruentatus8835170102Psuedopriacanthus altus8835170102Sciaenidae883526Rachycentridae883544Bairdiella chrysura8835440103Cynoscion arenarius8835440103Equetus8835440103Equetus acuminatus8835440103Equetus umbrosus8835440201Equetus acuminatus8835440103Equetus acuminatus8835440103Equetus acuminatus8835440103Equetus acuminatus8835440201Equetus acuminatus88354	*			
Lutjanus synagris8835360112Pristipomoides aquilonaris8835360701Rhomboplites aurorubens8835360701Mullidae883545Upeneus parvus8835450402Pomadasyidae883540020Orthopristis8835400201Priacanthidae883517Priacanthus arenatus8835170101Priacanthus cruentatus8835170101Priacanthus cruentatus88351770102Psuedopriacanthus altus883526Rachycentridae883544Bairdiella chrysura8835440101Sciaenidae8835440103Cynoscion nothus8835440103Equetus acuminatus8835440103Equetus umbrosus8835440201Equetus acuminatus8835440103Equetus acuminatus8835440103Equetus acuminatus8835440501Leiostomus xanthurus8835440501Matricirrhus americanus8835440601Menticirrhus ascatilis8835440601Menticirrhus anthurus8835440601Menticirrhus anthurus8835440601Micropogonias undulatus8835440901Sciaenops ocellata8835440901	#			
Pristipomoides aquilonaris8835360701Rhomboplites aurorubens8835360501Mullidae883545Upeneus parvus88354002Pomadasyidae88354002Orthopristis88354002Orthopristis chrysoptera8835400201Priacanthidae883517Priacanthus arenatus8835170101Priacanthus cruentatus8835170102Psuedopriacanthus altus883526Rachycentridae883526Rachycentron canadum8835440Sciaenidae8835440103Cynoscion arenarius8835440106Cynoscion nothus8835440103Equetus acuminatus88354412Equetus umbrosus8835440103Equetus umbrosus8835440501Larimus fasciatus8835440603Micropogonias undulatus8835440603Micropogonias chromis883544001Micropogonias chromis883544001Sciaenops ocellata8835440901				
Rhomboplites aurorubens8835360501Mullidae883545Upeneus parvus883545Orthopristis88354002Orthopristis chrysoptera8835400201Priacanthidae8835400201Priacanthus arenatus8835177Priacanthus arenatus8835170101Priacanthus cruentatus8835170102Psuedopriacanthus altus883526Rachycentridae883526Rachycentridae8835440301Sciaenidae8835440301Cynoscion arenarius8835440103Cynoscion nothus8835440103Equetus8835440103Equetus acuminatus883544120Equetus umbrosus8835440501Leiostomus xanthurus8835440601Menticirrhus americanus8835440601Micropogonias undulatus8835440701Pogonias chromis8835440901	*			
Mullidae883545Upeneus parvus8835450402Pomadasyidae88354002Orthopristis8835400201Priacanthidae8835170101Priacanthus arenatus8835170102Priacanthus cruentatus8835170102Psuedopriacanthus altus8835170102Psuedopriacanthus altus883526Rachycentridae883544Bairdiella chrysura883544011Sciaenidae8835440103Cynoscion arenarius8835440103Equetus8835440103Equetus acuminatus88354412Equetus unbrosus8835440103Equetus unbrosus8835440501Leiostomus xanthurus8835440601Menticirrhus americanus8835440603Micropogonias undulatus8835440603Micropogonias chromis8835440801Sciaenops ocellata8835440901				
Upeneus parvus8835450402Pomadasyidae88354002Orthopristis88354002Orthopristis chrysoptera8835400201Priacanthidae883517Priacanthus arenatus8835170101Priacanthus cruentatus8835170102Psuedopriacanthus altus883517????Rachycentridae883526Rachycentron canadum883526Sciaenidae8835440301Cynoscion8835440301Cynoscion arenarius8835440106Cynoscion nothus8835440103Equetus88354412Equetus acuminatus8835441201Equetus mbrosus8835440201Leiostomus xanthurus883544001Menticirrhus americanus8835440603Micropogonias undulatus8835440601Micropogonias undulatus8835440801Sciaenops ocellata8835440901		-		
Pomadasyidae883540Orthopristis88354002Orthopristis chrysoptera8835400201Priacanthidae883517Priacanthus arenatus883517Priacanthus cruentatus8835170101Priacanthus cruentatus8835170102Priacanthus cruentatus8835177??Rachycentridae883526Rachycentron canadum8835260101Sciaenidae883544Bairdiella chrysura8835440301Cynoscion arenarius8835440106Cynoscion nothus8835440103Equetus88354412Equetus acuminatus8835441201Equetus tatus8835440201Leiostomus xanthurus8835440601Menticirrhus americanus8835440601Micropogonias undulatus8835440601Micropogonias undulatus8835440801Sciaenops ocellata8835440901				
Orthopristis88354002Orthopristis chrysoptera8835400201Priacanthidae883517Priacanthus arenatus883517Priacanthus cruentatus8835170101Priacanthus cruentatus8835170102Psuedopriacanthus altus883517????Rachycentridae883526Rachycentron canadum8835260101Sciaenidae8835440Bairdiella chrysura8835440101Cynoscion88354401Cynoscion arenarius8835440103Equetus8835440103Equetus acuminatus8835441201Equetus umbrosus8835441201Equetus umbrosus8835440001Leiostomus xanthurus883544001Menticirrhus americanus8835440001Micropogonias undulatus8835440001Sciaenops ocellata8835440001	-			
Orthopristis chrysoptera8835400201Priacanthidae883517Priacanthus arenatus883517Priacanthus cruentatus8835170101Priacanthus cruentatus8835177???Rachycentridae883526Rachycentron canadum8835260101Sciaenidae8835440Bairdiella chrysura8835440301Cynoscion88354401Cynoscion arenarius8835440106Cynoscion nothus8835440103Equetus acuminatus88354412Equetus umbrosus8835441201Equetus umbrosus8835440501Leiostomus xanthurus8835440401Menticirrhus americanus8835440603Micropogonias undulatus8835440601Micropogonias undulatus8835440801Sciaenops ocellata8835440901		-		
Priacanthidae883517Priacanthus arenatus8835170101Priacanthus cruentatus8835170102Psuedopriacanthus altus883517????Rachycentridae883526Rachycentron canadum8835260101Sciaenidae883544Bairdiella chrysura8835440301Cynoscion88354401Cynoscion arenarius8835440106Cynoscion nothus88354412Equetus88354412Equetus acuminatus8835441201Equetus umbrosus8835440201Equetus yanthurus8835440501Leiostomus xanthurus8835440601Menticirrhus americanus8835440601Micropogonias undulatus883544001Pogonias chromis8835440801Sciaenops ocellata8835440901	-			
Priacanthus arenatus8835170101Priacanthus cruentatus8835170102Psuedopriacanthus altus8835177???Rachycentridae883526Rachycentron canadum8835260101Sciaenidae883544Bairdiella chrysura8835440301Cynoscion88354401Cynoscion arenarius8835440106Cynoscion nothus8835440103Equetus88354412Equetus acuminatus88354412Equetus umbrosus8835441201Equetus umbrosus883544001Leiostomus xanthurus883544001Menticirrhus americanus8835440601Micropogonias undulatus8835440701Pogonias chromis8835440901	-			
<ul> <li>Priacanthus cruentatus</li> <li>Psuedopriacanthus altus</li> <li>Psuedopriacanthus altus</li> <li>Rachycentridae</li> <li>Rachycentron canadum</li> <li>Sciaenidae</li> <li>Bairdiella chrysura</li> <li>Cynoscion</li> <li>Cynoscion arenarius</li> <li>Cynoscion nothus</li> <li>Equetus</li> <li>Equetus</li> <li>Equetus acuminatus</li> <li>Equetus unbrosus</li> <li>Leiostomus xanthurus</li> <li>Menticirrhus americanus</li> <li>Micropogonias undulatus</li> <li>Pogonias chromis</li> <li>Sciaenops ocellata</li> <li>883544001</li> <li>883544001</li> <li>883544001</li> <li>8835440103</li> <li>8835440103</li> <li>8835440103</li> <li>8835440103</li> <li>8835440103</li> <li>8835440103</li> <li>8835440103</li> <li>8835440103</li> <li>8835440201</li> <li>883544001</li> <li>8835440601</li> </ul>	-			
<ul> <li>Psuedopriacanthus altus</li> <li>Rachycentridae</li> <li>Rachycentron canadum</li> <li>Sciaenidae</li> <li>Bairdiella chrysura</li> <li>Bairdiella chrysura</li> <li>Bairdiella chrysura</li> <li>Cynoscion</li> <li>Cynoscion arenarius</li> <li>Cynoscion nothus</li> <li>Equetus</li> <li>Equetus acuminatus</li> <li>Equetus aubrosus</li> <li>Equetus unbrosus</li> <li>Equetus anthurus</li> <li>Bais544001</li> <li>Leiostomus xanthurus</li> <li>Menticirrhus americanus</li> <li>Menticirrhus saxatilis</li> <li>Menticirrhus saxatilis</li> <li>Micropogonias undulatus</li> <li>Sciaenops ocellata</li> <li>Sciaenops ocellata</li> </ul>				
Rachycentridae883526Rachycentron canadum8835260101Sciaenidae883544Bairdiella chrysura8835440301Cynoscion88354401Cynoscion arenarius8835440106Cynoscion nothus8835440103Equetus8835440103Equetus88354412Equetus acuminatus8835441201Equetus umbrosus8835441201Equetus umbrosus8835440501Larimus fasciatus8835440501Leiostomus xanthurus8835440601Menticirrhus americanus8835440603Micropogonias undulatus8835440603Micropogonias chromis8835440801Sciaenops ocellata8835440901	*			
Rachycentron canadum8835260101Sciaenidae883544Bairdiella chrysura8835440301Cynoscion88354401Cynoscion arenarius8835440106Cynoscion nothus8835440103Equetus8835440103Equetus acuminatus88354412Equetus umbrosus8835441201Equetus umbrosus883544001Larimus fasciatus883544001Menticirrhus americanus8835440601Menticirrhus saxatilis8835440603Micropogonias undulatus8835440701Pogonias chromis8835440901	<b>.</b>			
Nachycentron canaddm000000000000000000000000000000000	_	•		
Bairdiella chrysura8835440301Cynoscion88354401Cynoscion arenarius8835440106Cynoscion nothus8835440103Equetus8835440103Equetus88354412Equetus acuminatus8835441201Equetus umbrosus8835441206Larimus fasciatus8835440501Leiostomus xanthurus8835440601Menticirrhus americanus8835440601Menticirrhus saxatilis8835440603Micropogonias undulatus8835440801Pogonias chromis8835440901	-	÷		
Cynoscion88354401Cynoscion arenarius8835440106Cynoscion nothus8835440103Equetus8835440103Equetus88354412Equetus acuminatus8835441201Equetus umbrosus8835441206Larimus fasciatus8835440501Leiostomus xanthurus8835440501Menticirrhus americanus8835440601Menticirrhus saxatilis8835440603Micropogonias undulatus8835440603Micropogonias undulatus8835440801Sciaenops ocellata8835440901	_			
CynoscionCostinCynoscion arenarius8835440106Cynoscion nothus8835440103Equetus88354412Equetus acuminatus8835441201Equetus umbrosus8835441206Larimus fasciatus8835440501Leiostomus xanthurus8835440501Menticirrhus americanus8835440601Menticirrhus saxatilis8835440603Micropogonias undulatus8835440701Pogonias chromis8835440801Sciaenops ocellata8835440901	-			
Cynoscion arenariusCossidationCynoscion nothus8835440103Equetus88354412Equetus acuminatus8835441201Equetus umbrosus8835441206Larimus fasciatus8835440501Leiostomus xanthurus8835440501Menticirrhus americanus8835440601Menticirrhus saxatilis8835440603Micropogonias undulatus8835440701Pogonias chromis8835440801Sciaenops ocellata8835440901		Cynoscion		88354401
Equetus8835440103Equetus88354412Equetus acuminatus8835441201Equetus umbrosus8835441206Larimus fasciatus8835440501Leiostomus xanthurus8835440601Menticirrhus americanus8835440603Micropogonias undulatus8835440603Micropogonias undulatus8835440801Sciaenops ocellata8835440901	#	Cynoscion arenarius		8835440106
Inductus00354412Equetus acuminatus8835441201Equetus umbrosus8835441206Larimus fasciatus8835440501Leiostomus xanthurus8835440401Menticirrhus americanus8835440601Menticirrhus saxatilis8835440603Micropogonias undulatus8835440603Pogonias chromis8835440801Sciaenops ocellata8835440901	*	Cynoscion nothus		8835440103
Equetus acuminatus6035441201Equetus umbrosus8835441206Larimus fasciatus8835440501Leiostomus xanthurus8835440401Menticirrhus americanus8835440601Menticirrhus saxatilis8835440603Micropogonias undulatus8835440701Pogonias chromis8835440801Sciaenops ocellata8835440901	*	Equetus		88354412
Larimus fasciatus8035441200Larimus fasciatus8835440501Leiostomus xanthurus8835440401Menticirrhus americanus8835440601Menticirrhus saxatilis8835440603Micropogonias undulatus8835440701Pogonias chromis8835440801Sciaenops ocellata8835440901	#	Equetus acuminatus		8835441201
<ul> <li>Larimus fasciatus</li> <li>Leiostomus xanthurus</li> <li>Menticirrhus americanus</li> <li>Menticirrhus saxatilis</li> <li>Micropogonias undulatus</li> <li>Micropogonias chromis</li> <li>Sciaenops ocellata</li> <li>8835440501</li> <li>8835440601</li> <li>8835440603</li> <li>8835440603</li> <li>8835440603</li> <li>8835440701</li> <li>8835440801</li> </ul>	+	-		
<ul> <li>Leiostomus xanthurus</li> <li>Menticirrhus americanus</li> <li>Menticirrhus saxatilis</li> <li>Micropogonias undulatus</li> <li>Pogonias chromis</li> <li>Sciaenops ocellata</li> <li>8835440401</li> <li>8835440601</li> <li>8835440603</li> <li>8835440701</li> <li>8835440801</li> <li>8835440901</li> </ul>	*			
<ul> <li>Menticirrhus americanus</li> <li>Menticirrhus saxatilis</li> <li>Menticirrhus saxatilis</li> <li>Micropogonias undulatus</li> <li>Bogonias chromis</li> <li>Sciaenops ocellata</li> <li>8835440601</li> <li>8835440603</li> <li>8835440901</li> </ul>	#			
<ul> <li>Menticirrhus saxatilis</li> <li>Micropogonias undulatus</li> <li>Pogonias chromis</li> <li>Sciaenops ocellata</li> <li>8835440603</li> <li>8835440701</li> <li>8835440801</li> <li>8835440901</li> </ul>	#			
<ul> <li>Micropogonias undulatus</li> <li>Pogonias chromis</li> <li>Sciaenops ocellata</li> <li>8835440701</li> <li>8835440801</li> <li>8835440901</li> </ul>	*			
<ul> <li>Pogonias chromis</li> <li>Sciaenops ocellata</li> <li>8835440801</li> <li>8835440901</li> </ul>	*			
<ul> <li>Sciaenops ocellata</li> <li>8835440901</li> </ul>	*			
ocidentips ocertata 0055440901	*	-		
		•	1/6	
		SCETTIEL TAUGEOTACUS	140	0055441001

aure		
	Serranidae	883502
*	Centropristis ocyurus	8835020304
*	Centropristis philadelphicus	8835020305
*	Diplectrum bivittatum	8835021005
*	Diplectrum formosum	8835021002
	Diplectrum radiale	8835021004
*	Epinephelus flavolimbatus	8835020405
	Epinephelus niveatus	8835020411
	Hemanthias leptus	. 8835021201
#	Serranus atrobranchus	8835022302
#	Serranus phoebe	8835022308
	Sparidae	883543
*	Archosargus probatocephalus	8835430301
÷.	Calamus	88354305
#	Calamus nodosus	8835430506
#	Lagodon rhomboides	8835430201
#	Pagrus	88354306
	Pagrus pagrus	8835430601
	Pagrus sedecim	8835430602
*	Stenotomus caprinus	8835430102
	Pomatomidae	883525
*	Pomatomus saltatrix	8835250101
	Scombridae	885003
#	Scomber japonicus	8850030301
	Scomberomorus cavalla	8850030501
#	Scomberomorus maculatus	8850030502
	Cynoglossidae	885802
#	Symphurus	88580201
•	Symphurus diomedianus	8858020103
*	Symphurus plagiusa	8858020101
	Soleidae	885801
Ħ	Achirus lineatus	8858010202
#	Gymnachirus melas	8858010301
	Gymnachirus texae	8858010303
	Pleuronectiformes	8855 8855
	Pleuronectidae	885704
#	Poecilopsetta	88570421
	Pleuronectoidei	8857
	Bothidae	885703 8857030506
*	Ancylopsetta quadrocellata	88570301
<b>#</b>	Citharichthys	8857030106
÷.	Citharichthys cornutus	8857030109
÷.	Citharichthys macrops	8857030110
	Citharichthys spilopterus	8857030801
*	Cyclopsetta chittendeni	8857030901
	Engyophrys senta	88570302
	Etropus	8857030201
-	Etropus crossotus Etropus microstorus	8857030202
-	Etropus microstomus Paralichthys albigutta	8857030302
-	Paralichthys lethostigma	8857030304
-	Paralichthys squamilentus	8857030306
-		88570313
-	Syacium Succium suntoni	8857031301
-	Syacium gunteri	8857031302
-	Syacium micrurum	8857031303
-	Syacium papillosum	8857031404
*	Trichopsetta ventralis	002 ( 03 1404

=

Table 34. Continued. 8838 Polynemoidei 8838010101 -Polydactylus octonemus 8713 Rajiformes 871305 Dasyatidae Dasyatis sabina 8713050105 * 8713050106 ŧ Dasyatis sayi 8713050103 # Dasyatus americana 871307 Mvliobatidae 87130702 Myliobatis * Rhinoptera bonasus 8713070301 * 871304 Rajidae 8713040113 Raja eglanteria 8713040133 * Raja texana 871303 Torpedinidae . Narcine brasiliensis 8713030401 8850 Scombroidei 885002 Trichiuridae 8850020201 Trichiurus lepturus 8826 Scorpaenoidei 882601 Scorpaenidae 8826010402 Neomerinthe hemingwayi # 8826010503 * Pontinus longispinis 88260106 Scorpaena 8826010605 Scorpaena brasiliensis 8826010606 Scorpaena calcarata 882602 -Triglidae 8826020203 Bellator militaris 8826020303 # Peristedion gracile 88260201 * Prionotus 8826020105 * Prionotus alatus * Prionotus martis 8826020111 8826020113 Prionotus ophryas Prionotus paralatus 8826020114 8826020117 ž Prionotus roseus 8826020118 Prionotus rubio 8826020120 Prionotus salmonicolor Prionotus scitulus 8826020103 8826020121 Prionotus stearnsi Prionotus tribulus 8826020104 8708 Scyliorhinoidei 870802 Carcharhinidae 8708020504 ٠ Carcharhinus acronotus . Carcharhinus falciformis 8708020506 8708020507 * Carcharhinus limbatus * Carcharhinus obscurus 8708020501 8708020512 # Carcharhinus porosus 87080204 * Mustelus 8835450201 * Mullus auratus 8708020401 * Mustelus canis 8708020301 * Rhizoprionodon terraenovae 870803 Sphyrnidae 8708030101 Sphyrna tiburo

	Siluriformes	8777
	Ariidae	877718
	Arius felis	8777180202
	Bagre marinus	8777180101
-	Sphyraenoidei	8837
	Sphyraenidae	883701
	Sphyraena guachancho	8837010103
-	Stromateoidei	8851
	Stromateidae	885103
<b>#</b> 5	Peprilus burti	8851030104
	Peprilus paru	8851030102
-	Syngnathoidei	8820
	Syngnathidae	882002
-	Hippocampus	88200202
-	Tetradontoidei	8861
	Diodontidae	886103
	Chilomycterus schoepfi	8861030101
	Diodon hystrix	886 103020 1
-	Tetraodontidae	886101
	Lagocephalus laevigatus	886 10 10 10 1
-		88610102
-	Sphoeroides	886 10 10 20 5
	Sphoeroides dorsalis	886 10 10 20 9
-	Sphoeroides parvus Trachinoidei	8840
		884007
	Percophididae	8840070101
	Bemprops anatirostris	884014
	Uranoscopidae	8840140102
	Astroscopus y-graecum	88401403
	Kathetostoma	8840140301
	Kathetostoma albigutta	8401
-	Ascidiacea	0401
	Probable	90
-	Reptilia Cheloniidae	900204
	Eretmochelys imbricata	9002040301
•	M.etmocueils Implicata	5002040501
	Chlorophyta	08
	Chlorophyceae	0801
• .	Pheaophyta	15
	Phaeophyceae	1501
	Fucales	1510
Ħ	Sargassaceae	151004
	Miscellaneous taxa	570100
-	Sepiolidae	570402 570k0201
	Rossia	57040201

.

:

STATION GROUPS

	Personacius Sermanus atrobranchus Saladacomeris argentes Saladacomeris argentes Saladacomeris argentes Mojumais anorumus Mojumais anorumus Mojumais anorumus Salainas aguatas Cittarichthys spiloperus Citarichthys spiloperus Citarichthys spiloperus Salirer igeneius Magn actualitas Magna actualitas Sanobergerum Anoritas Cysthomes colinam Fujyactjius otlomeau Sanobergerum Anoritas Cysthomes colinam Fujyactjius otlomeau Salame status Cysthomes colinam Fujyactjius otlomeau Salame status Cysthomes anoritas Salame status Krunogalas umolitas Bareroprila patrones Bareroprila patrones Bareroprila patrones	777777 6467577 4636333 1121112 	1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1	177         184444447         177         18444447         177         18444444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         18444444         184444444         1844444444444444444444444444         18444444444444444444444444444444444444	b) 77 647 77647 84677771           36 78027 9923 6023 44493           37 8027 9923 6023 44493           37 813 1443 441 723 44           31 13 1121 1121 11121 11121           31 13 1423 24-1223 41           31 13 1121 1121 11121 11121           31 13 1423 24-1223 41           31 13 1423 24-1223 11121           31 13 2422 2-1225 11 1-11           31 13 2422 2-123 11 1-11           31 13 2422 -123 11 1-11           11 13	777677687777 57926800956 IIIGLIBYCKIBOS 184593344594 181212112131 -21111- 11	76777777687771 83344456933773; 8631314456933773; 8631314111111111111111111111111111111111	87 8877777787777778778778778 2523 4667 8807 93 45603 90 1911 FIGHIMTHPOPPPPPR 55 7888777 858867877457
	Seriama direkrankus Stalakolomia argetes Salakolomia argetes Salakolomia argetes Salakolomia argetes Gagina flare Balamata organia Balamata organia Stalaretes Sympurus pieguna Ciliarichitys spilopierus Cymoolom argetes Logona argetes Copistoum graniai Salaretes Deplatum graniai Deplatum graniai Salaretes Califor argetes Logona argetes Copistours acciliam Naiyostylus ostoneus Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salarete	777777 6467577 4636333 1121112 		177         184444447         177         18444447         177         18444444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         18444444         184444444         1844444444444444444444444444         18444444444444444444444444444444444444	B716877768784677771 B7107279520214459 D70279520214459 D7027952217021 D7021795221121 D702279521121 D702279522 D702279522 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952	777677687777 57926800956 IIIGLIBYCKIBOS 184593344594 181212112131 -21111- 11	7 6777777867771 63344456 933773: 63 INN INKKKODON 545457757575555 111111191111121	87 8877777787777778778778778 2523 4667 8807 93 45603 90 1911 FIGHIMTHPOPPPPPR 55 7888777 858867877457
	Seriama direkrankus Stalakolomia argetes Salakolomia argetes Salakolomia argetes Salakolomia argetes Gagina flare Balamata organia Balamata organia Stalaretes Sympurus pieguna Ciliarichitys spilopierus Cymoolom argetes Logona argetes Copistoum graniai Salaretes Deplatum graniai Deplatum graniai Salaretes Califor argetes Logona argetes Copistours acciliam Naiyostylus ostoneus Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salarete	777777 6467577 4636333 1121112 		177         184444447         177         18444447         177         18444444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         1844444         18444444         184444444         1844444444444444444444444444         18444444444444444444444444444444444444	B716877768784677771 B7107279520214459 D70279520214459 D7027952217021 D7021795221121 D702279521121 D702279522 D702279522 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D70227952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952 D7027952	777677687777 57926800956 IIIGLIBYCKIBOS 184593344594 181212112131 -21111- 11	7 6777777867771 63344456 933773: 63 INN INKKKODON 545457757575555 111111191111121	87 8877777787777778778778778 2523 4667 8807 93 45603 90 1911 FIGHIMTHPOPPPPPR 55 7888777 858867877457
	Seriama direkrankus Stalakolomia argetes Salakolomia argetes Salakolomia argetes Salakolomia argetes Gagina flare Balamata organia Balamata organia Stalaretes Sympurus pieguna Ciliarichitys spilopierus Cymoolom argetes Logona argetes Copistoum graniai Salaretes Deplatum graniai Deplatum graniai Salaretes Califor argetes Logona argetes Copistours acciliam Naiyostylus ostoneus Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salarete			W #233062217 #2223453333346         333745333622477 #22234533344533432           # #3535628847477 #28288547477 #2828558474777         # # # # # # # # # # # # # # # # # # #	547 0027 9523 0023 4449 9 5133 1443 441 123 44 21 111 121 121 121 13 2423 2-125 11-11 13 2423 2-125 11-11 13 2423 2-125 11-11 14 1-1	87 9268009567 Anging Gikano 112 12 112 11 21 11 	03344456933773; 047111111111111111111111111111111111111	252346678807934560390 WHPIONIKINFOPPPPPPN 557888777958867877457
	Seriama direkrankus Stalakolomia argetes Salakolomia argetes Salakolomia argetes Salakolomia argetes Gagina flare Balamata organia Balamata organia Stalaretes Sympurus pieguna Ciliarichitys spilopierus Cymoolom argetes Logona argetes Copistoum graniai Salaretes Deplatum graniai Deplatum graniai Salaretes Califor argetes Logona argetes Copistours acciliam Naiyostylus ostoneus Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salarete	4038333 1121112 		56556572201241121914421412114442141121 12211111111111121112111121	<b>9</b> 313 31443 44 11 23 44 11 23 44 11 23 44 11 23 44 11 23 44 11 23 44 11 23 44 11 23 44 11 23 44 11 11 23 11 11 11 11 11 11 11 11 11 11 11 11 11	11212112111 11212112111 211	8454577575757555 111111111111111111111111	587888777858867877457
	Seriama direkrankus Stalakolomia argetes Salakolomia argetes Salakolomia argetes Salakolomia argetes Gagina flare Balamata organia Balamata organia Stalaretes Sympurus pieguna Ciliarichitys spilopierus Cymoolom argetes Logona argetes Copistoum graniai Salaretes Deplatum graniai Deplatum graniai Salaretes Califor argetes Logona argetes Copistours acciliam Naiyostylus ostoneus Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salarete	-12-11 	111111111111121221112111111113121211221         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1         1-1	11221111111111121112211121 2-2411111-11122211121 2-24111-1231121122211121 	a 1111121112111121         1324232-1235111-11         a 112225111-11         a 112225111-11         a 11-1         a 11-1<	11212112111 211- 1 11	111111111111111111111111111111111111111	1111112111111121111 11
	Seriama direkrankus Stalakolomia argetes Salakolomia argetes Salakolomia argetes Salakolomia argetes Gagina flare Balamata organia Balamata organia Stalaretes Sympurus pieguna Ciliarichitys spilopierus Cymoolom argetes Logona argetes Copistoum grania Copistoum grania Copistoum grania Copistoum grania Salaretes Copistoum and Copistoum and Salaretes Salaretes Copistoum and Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Salaretes Sa	-12-11. 11. 	1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1		- 2		22	
	Stalasconsta regetas Salasconsta regetas Salasconsta Casprial Teamona Casprial Teamona Balimania comunis Brotuia Barbata Stephine piaguas Climarchityr solicytorus Climarchityr solicytorus Climarchityr solicytorus Stellifer indeesistus Bagra carinos Larinus faceistus Opisitiones celinama Dallifer indeesistus Destastrus mana Status con taba Francus atiferus Arise Fois Arturo Status Arise Fois Arturo Status Arise Fois Arturopatia undeitus Starestis patemas Arturopatia undeitus Casociajtierus	-12-11. 11. 	1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1		- 2		2	
	Astemarius rediewes Gengrins flars Nojimenis meserurus Bolimenis meserurus Botula mereta Stoppurus pidiosi Consolitator spiso Consolitator spiso Consolitator Mege agrinos Larimus fasistus Opisthomes colinem Polysettius ottomenus Sometercore meselitus Sometercore meselitus Soleme estensiants Arius folia Barenguia jaguan Metercore meselitus	-12-11. 11. 	112	2	h   m   maximum 21 m   m 11 m   m 14 m   m	1		-2
	Comprise field Comprise field Boyling in an ensemble Boyling in an ensemble Boyling in an ensemble Ciliar (chipy spilopierus Cynoscios arearius Copisitoum granist Copisitoum granist De financia Copisitoum and anti- Souther field Cynoscios anti- Souther field Souther field Souther contained Souther co	-12-11. 11. 	112	1 12 11 - 1	11-1 -1-1	1	2 2 2 1 	
	Boilmanis communis Brotain Barbaia Symphyse pilogiant (C)Barlichtyr spilogiarus (C)Barlichtyr spilogiarus (C)Barlichtyr spilogiarus (C)Barlichtyr spilogiarus (C)Barlichtyr spilogiarus (C)Barbaross cellus (C)Barbaross cellus (C)Barbaross active Samberorus machitus Seisenspe celluta (C)Barbaross active Seisenspe celluta (C)Barbaross active Seisenspe celluta (C)Barbaross active Seisenspe celluta Arise fois Arise fois Arise fois Arresortis patrons Marengis jagass Micropagnis untiltus Castolijthere faber	-12-11. 11. 	112	2	1 1111323121159422 1-21111	1 	22	-2
IA2	Symphurus plagtume Clibarichtys spliopterus Cymosolos areasrius Lopophidum gracini Sublifer isseetstus Bagra arises Larimus fascistus Ogisthoome colima Suberga colima Sube	-12-11. 11. 	112		1 1111323121159422 1-21111	111	22	• • • • • • • • • • • • • • • • • • •
IA2	Crossolis arearius Lospinitum graini Sublifer isseeistus Bagra ariuss Larinus fasistus Cysthogen collett Subergarus sociatus Subercarus sociatus Crossolistus Crossolistus Solese seistiarus Metticirrhus aperiaanus Solese seistiarus Barreguis jagaan Barreguis jagaan Barreguis jagaan Barreguis jagaan Barreguis jagaan Barreguis jagaan Barreguis jagaan	-12-11. 11. 		21214-12-11113111314124333 -213-1231-112	1-2111	1111		
IA2	Legopisium granisal Solifier inscolatus Regre merime Larimus facelatus Thijtéctile oliemenus Sentercomeru monilatus Sentercomeru monilatus Sentercomeru monilatus Sentercomeru monilatus Metiosrtwes merimen Arius Falis Arius Falis Arius Falis Arius Falis Mereneris meteome Nereneris meteome Nereneris meteome Nereneris meteome Nereneris meteome Nereneris meteome Senterista		1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	213-12211-12211-12212-12221-12221-12221-12221-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-1222-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-122-12-1	1-2111			
IA2	Negro action Lerina facilata Opisticomes egiinm Phiydestrike ootomesus Sembercoerus acculata Sisempo collata Cransus actiforus Postus actiforus Postus actiforus Postus actiforus Postus actiforus Postus actiforus Postus actiforus Portoria patrona Biroweria patrona Dises estartus fate Portoria patrona Chastajitarus fate Popria para		- - - - - - - - - - - - - - - - - - -		1			
IA2	Opistonese oglisme Polydestrike ostonesus Sombercoerus socilatus Sismenye oscilatus Cymesules motian Postus estiforus Notiforrives emericanus Soleme estejanis Arius Folis Preveria pitrone Norroponia putrone Nicroponia putrone Nicroponia putrone Nicroponia sutturus	1-1-33- -1	11		1			
IA2	Fujséctjis ottomsus Joseferosza kovitku Joseferosza kovitku Joseferosza kovitku Paneska estiferu Metticzrénis szerisans Siles estejnals Arius Fölla Bareggis jagosa Bareggis jagosa Bareggis jagosa Baregjis szere Baregjis szere Baregjis szere Baregjis szere Baregjis szere Baregjis szere	-1						
IA2	Seisemps collita Cynecics anthus Penseus attiferus Mattiffreus americanus Seises estajanis Arius folia Pervecriis patrenus Micropogenis undelatus Chastedjitrus faber Peprius paru Leisotomus anthurus	1-111 1-111 552-511 2-2- -11-111 125-351	12-111-111121231532424341113 422-413-3131421313121321213-12144 -211				+	
	Pessens estiferus Meticirus emprisens Soines estapianis Arius fois Bruverila patrenus Hisroppianis undulatus Chastopiperus faber Peprilus paru Liostome sunthurus	1-111 552-511 2-2- -11-111 125-351			1		<b>.</b>	<b>_</b>
	Meticirrhus apricanus Soleas estapionis Arius folio Inverguia jageons Nicreopogenias undulatus Chastaliptarus faber Poprilus paru Loiostome sunthurus	552-511 22- -11-111 125-351	-2	L			1	
	Arius folis Broverils patronus Harongula jaguans Nicropogoalas undulatus Chastodipterus faber Peprilus parus Leiestomes sasthurus	552-511 22- -11-111 125-351	12	1	<b>†</b>		+	
	Harengula jagnana Hisropogonina undulatus Chastodipterus faber Poprilus paru Leiostomes xasthurus	-11-111 125-351			·····		22	
	Micropogodino undulatus Chaotodiptorus fabor Poprilus paru Leicetomus xasthurun	125-351	-2	1-1	1			222-2-2
	Peprilus paru Leigetomus xasthurun		1141214432312525553353254445555553355533	41-23 145 155551-1-3-554443323 35	9	8-3212-11	-2-34-1-143	1 2- 151 1
	COTOBCOMM XPHCBM-AB					1		
	Trickiurus lepturus		1211211121112221-12231141331322544255313 1-1121	1 - 2 - 1 1 45 1 5 - 1 1 1 1 3 - 1 3 3 1 3 1 45 55 3 : 1 1 1 3 3 1 5 1	11111-3222 11241-	2121	-1-11	
	Trachypenseus Callingetes similis	-1-1-	1-1121	2511-2-14-131111111-113- 1211-2214525111121	1-111	1	11	8-1
	Squille Penseus asteous		111434252-231-1-2-444311-11-1143 451124-1-142-312151321141121321111322141	- 1521 1-21 233 123 341 11 3113	11311111	-1111	1-2 3-1-3	1-121-33
	Lepophidius		-2	11	21114121211-11122	911-11-11-1		2-2322111
	Portubue spinicarpus	-1	- 2	221-12-11-1112-3111-1-+11111	11112-3-21	111-1122-1-		122
	Priomotus paraistus Priomotus stoarmai			1	A) 124 112 1	-311-11	211	
	Poprilus burti	-11-	113111111		11-51514-5514111135	11-1553-2141	11	211122
	Pristiposoides equilomeris Seuride presilioneis		1131111))=====2=1===1===1===1==== 111======2===21=4)11==41 22==111==1==2==1==1==1===1===1====		011-12121211211 1111211	-1112	2214	311-1-1
	Contropristis philodelphieue Crolosette shittendeni		02-1111-1-2-1-111-1221-41111-411	111332134111211323441133213111	4111422134311312412	154113131-11	1-2112-1233	1
182	Mailoutichthys soulestup		111	-211-1-12114115-31-1	12114-121	1-1 12	-22112-1	-112-1311-2-
182	Priometus rubie Chieroseebbrus akrysurus	1155555						1
182	Paralichthys jethostigas Musoprionades terreeseves	-1111-		11-221111111-111	1	1 1 1 -	1-13	1-1-21-21
	Sphyraona guschansho Anchos mitchilli				1	1		
	Sphoeroides parvus Lolliguacula brevis			12			31	-112-11113-112
	Callimetes sepidus			121+11		21		14-32
IA1	Anobos hopestus Lutjanus componingus		+14513-32111-111		1 15		-21111112	
	Portugue gibbosii	*****		-1111-111				1832-1121-53
-	Loligo podieli Etropus crossetus		131-21411112	- 11 1 1-1 11	11-111111-1-31-13		- 1 1	24444-1555-2-112
H	Calappa sulosta	-=11	<u></u>	11	11			3-1
11.42	Lagodon rhombeides Trachurus lathani			-1-1-1-3311111	1321-1-1-1-1	1	-2-1111122-2	
	Penneus duorarum Dibientrum bivittatum			-1			1 11214-3	1-5 1-1-12-1-2
	Synodus Costans		111111118-1 t11 t t t	11111111311-1	131112223211	213112221122	111111-2-33243	244125134-1-1-11-4- 3515321-1213542442133
1101	Priomotus reasons Stemotumus coprimus		\$41=51=2	-115445-11111-3411-3-3311+11	24113255543311-211-	11	1-1111-2-	5
11	Syncium gantari Urophysia floridama		1	1-1121-1-1	111		- 1 - 1 - 1 2 9 1 - 2 1 1	1
	Ovalipes guadulpessis Balistas capriseus				·····			2
	Diplostrum forganum			****				
	Aluterus sebeepfi Priometus seitujus					1-1-	121-	
	Deceptorus pumetatus Priometus tribuius							
1	Syncium papilionum		- 1-2	11-1	-1	1-11-1-1111	-14423441413455	
1162	Contropriotis exympus ' Homeonsthus hispidus		1				-221-13	2-
	Pricestus saissajoslar Sectores saiserala		113		1	2-51-+2-1-1	-1111122-31142-	
	Secondary and I			- 1	1		1-2335253-3330 114	
1			7			1141	92-11-331-121- 1112113	
1	Ballator militaria Ophidion holbrooki					1++1		
11	Priosetus operas			- 2111			5424134521235-3	
	Ophidion bolbrooki Priometus ophryss Trachisocophalus myope Sicycala brevirustris	0000000	000000000000000000000000000000000000000			111111111		
	Priometus ophryss Trachimorophalus nyope	0000001	A 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00000000000000000000000000000000000000		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	D00000000000000	

Figure 17. Ordered two-way display resulting from TWINSPAN analysis of mean relative abundances of 90 selected demersal nekton taxa collected in three replicate samples at 150 stations in three regions of the Tuscaloosa Trend study area during fall NMFS Fishery Independent surveys from 1973 to 1983. Table 35. Ordered table of means for environmental and community parameters in three replicate samples collected at 150 stations in three regions of the Tuscaloosa Trend study area during fall NMFS Fishery Independent surveys from 1973 to 1983.

		Tutor	Region	Cell	Graup	Sample Restor	Lotitu		Longitude	Depth (fm)	Bottom Temperature (oC)	Total. Tass	Total Count	Diversity (j')	Presson (H ¹ )	Richmon (D)
Т	TT	78			1	1 2	(000000 25 13 30 02		(DOVENSA) 89 43 00 88 45 40		79.00	1	196 206	0.314	0.246	0.601 1.186
	IAI	76 76 77 75		1) 10	1	1 2 3 4 9	25 13 30 02 25 11 30 09 25 03 25 06 25 05	*****	84     43     00       84     45     40       89     43     20       80     07     20       89     32     00       89     41     40       89     34     00	1	62.00 77.00	5	196 206 545 546 645 675 675	0.314 0.626 1.906 0.126 1.537 1.621 0.147	0,246 0.406 0.565 0.043 0.644 0.691 0.047	0.601 1.106 2.669 0.869 1.633 2.027 0.620
		<b>11</b>	ų.	15 13	;	;			89 41 40 89 34 00	12 7	75.00	14 5 26	674 495 246	3 887	0.691	1.621
		42 42 76 77 87 80 82 83 74 83 75 75 83 75 75 83 75 75 83 75 75 83 75 75 75 83 75 75 75 83 75 75 75 83 75 75 75 75 75 75 75 75 75 75 75 75 75				10	29         13         16         04         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17 <th17< th="">         17         17         17<!--</td--><td>***************************************</td><td>50 54 00 50 41 00 58 36 00</td><td>15 7 24</td><td>73.00</td><td>2020</td><td>310 300</td><td>2.4315 2.1315 2.1315 2.672 2.4574 2.4574 2.4574 2.4574 2.4574 2.4574 1.4514 1.4517 1.4517 1.4517 1.4513 1.4514 1.314 1.314 2.005 1.314 2.005 1.314 2.005 1.514</td><td>0.758</td><td>3.883 3.883 3.283 3.284 4.376 3.653 3.244 3.653 2.143 3.653 2.145 2.247 2.247 2.247 2.247 2.247 2.457 2.447 2.455 2.447 2.455 2.447 2.455 2.447 2.455 2.455 1.564 1.564 1.564 1.564 1.564 1.564</td></th17<>	***************************************	50 54 00 50 41 00 58 36 00	15 7 24	73.00	2020	310 300	2.4315 2.1315 2.1315 2.672 2.4574 2.4574 2.4574 2.4574 2.4574 2.4574 1.4514 1.4517 1.4517 1.4517 1.4513 1.4514 1.314 1.314 2.005 1.314 2.005 1.314 2.005 1.514	0.758	3.883 3.883 3.283 3.284 4.376 3.653 3.244 3.653 2.143 3.653 2.145 2.247 2.247 2.247 2.247 2.247 2.457 2.447 2.455 2.447 2.455 2.447 2.455 2.447 2.455 2.455 1.564 1.564 1.564 1.564 1.564 1.564
		77		76		11 12 13	29 31	2921	84 34 40 85 46 40	24 16 15 7 17 7 7		16 26 22 21	120	2.002	0.713 0.699 0.737 0.821 0.797 0.793	3.268
		80 82 83				15	30 09 30 10	80	58 04 20 58 01 20	1	75.00 76.00	21 20 14	263	2,404	0.793	3.653
		74 76 79		10	1	17 18 19 20 21	30 10	40 40 20	M 43 70	77	65.00 73.00	26	187 263 1579 167 359 442 599 1252 661 158 1423	2.701	0.583 0.628 0.836 0.721 0.562 0.478 0.671 0.675 0.495	4.187 2.847 2.422
		80 87	c a		1	22	30 00	28.28	48 36 00 89 41 40 49 51 20	1		10	1252	1.413	0.478	2.755 2.696 2.652
	IA	73		43	;	22.25	29 10	8 2 8	41 43 20 44 45 40 41 13 40	16 7 7	70.00 74.33 77.00 72.00	14	1423 942 275 618 1407	1.292	0.302	1.845 1.907 1.364
	IAZ	75		020202020202020		22 23 23 23 23 23 23 23 23 23 23 23 23 2	28 59	20	89 33 00 88 09 00 89 46 00	· 16 7 25 14 23 16 8 23 18 23 16 22 34 27 44 25 14		26 15 16 19 18 19 19 15 12	618 1807 529	1.643 1.318 1.514	0.516 0.645 0.626 0.739 0.724 0.841	1.814 1.890 1.772
	11	78	,	13	1	30 31 32	29 05 28 51 29 04	00 00 20	89 43 40 89 45 40 89 41 40	14 23 16	78.50	16 17	529 390 309 469 309 1069 427 985 498 531 444 642 754 754 772	2.048 7.934 2.306	0.739 0.724 0.841	2.534 2.547 2.385
	, j. E.	83 73 71		43 127	;		29 09	20	89 49 29 89 43 10 89 42 20	23	75.00 72.00 72.00	21	300 1069 427	2.246 1.514 2.197	0.402	2.996 1.629 3.251
	e a i	74	****	1)	1	34 37 38	28 58	00	89 47 00 89 44 00 88 53 00	23 16 22			985 498 531	1,153 1,122 1,682 1,716	0.726 0.476 0.468 0.650	1,504 1,610 2,045
		75	ł		;	34 35 36 37 38 40 41 42	28 51	20	89 32 20 89 38 20 89 41 00	34 27 64	79.00	13 14 5 16 12	444 642 8687	1.716 1.532 0.315	0.672 0.575 0.196	1.968 2.062 0,846
		76 76 77	Ĭ	81 82 83 82	1	43	28 54 29 04 28 51	20	89 18 20 89 63 20 89 34 40	14 26	73.00 73.00	16 12 12	756 772 456	1.532 0.315 1.357 1.255 1.640 1.770	0.505	2,245 1,676 1,871
	l	79 79 82		21.022	1	43 4 5 <b>4</b> 7 <b>8</b> 8	28 11 29 46 29 46 29 46 29 46 20 50 20 50 50 50 50 50 50 50 50 50 50 50 50 50 5	20 00 20	89 39 00 89 51 40	****	74.50	12 11 17 13 15 28	456 875 355 667 782 439 797	2.076	0.650 0.672 0.575 0.196 0.505 0.505 0.752 0.743 0.505 0.552 0.777 0.737	2,045 1,568 2,062 0,446 2,245 1,676 1,871 1,569 2,756 2,559 2,049 3,255 4,115
	۱. 	76 80 83		11	i	50		20	80 44 00 89 41 00 89 40 40	20 A	74.50 71.00 76.00			2.076 1.202 1.463 2.347 2.458	0.777 0.737	3.254
		75 79 77 70		CECCECCERERE	1 2 2	51 52 53 55 56 55 56 55 56 60 61 62 66 67 66 66 67 68 66 67 71 71 73 75 75 76 77 78 80 81	28 8 8 27 1 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 2 8 2 8 2 2 8 2 8 2 2 8 2 8 2 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 2 8 2 8 2 8 2 2 8 2 2 8 2 2 8 2 8 2 2 8 2 2 8 2 8 2 2 8 2 2 8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			24 13 27 28 24 24 24 24 24 24 24 24 24 24 24 24 24	76.00	18 21 20 29 17	217 235 122	2.260 2.238 2.279 2.407	0.782 0.736 0.764 0.764	3.066 3.680 3.950 3.837
		12		222	;	54 55 54	29 11 23 24	00 40 100	84 33 20 88 42 00 88 31 20	28 34 29	77.00	24 17 21	235 122 440 286 224 1860 745 858 391 316 379	2,407 2,269 2,251 1,534 2,324 2,162 2,228 1,997 2,011	0,784 0,818 0,746 0,544 0,742 0,695 0,749 0,695 0,749 0,639	3.837 2.847 3.642
		63 80 80		636	ł	57 58 59	29 5 28 5 29 2	00	88 30 00 89 36 48 88 35 48	16 36 28	76.00 74.00	73	745	2.320	0.742	3.345
	* . [·	13 40 40 12 42 43 77 77 90 42 42		A2 54 41		60 61 62	28 54 29 24 28 4	00 00	69 47 40 68 48 30 89 45 48	26 26 37		21122202221514	316	1.997	0.639	2.847 3.642 2.091 3.345 3.207 3.215 3.395 3.837 2.404 2.272 1.984 4.781
		17		*****			29 1	00	40 10 00 40 19 20 89 21 10	34	75.00	14	399 287 602 523	2.090 1.763 1.320 2.541	0.748 0.689 0.505 0.753 0.779 0.818	2.272
	181	223		81 167 161	2		20 5	00	61 38 44 61 36 44	1423	65.00 77.00 65.00	2	439	2.532	0.779	4.167
		73		10	1	70	29 0	20	66 50 70 68 34 00		76.00	14 30 36 27 18 16 15	513 815 152	1,964 1,657 2,248 2,122 2,287	0.828 0.681 0.603 0.828 0.771 0.764	8.479 2.744 2.203 2.449
z		83 73 74 75 76 83 71	5			73	29 1		84 10 10 84 15 10	34 31	65.00 75.00	14	818 335 1103	2.122 2.287 1.570	0.771 0.764 0.552 0.738	2.049 2.194 3.405 2.337 4.073 2.737 2.071
	Ĩ	- 22		100	Ì	76	29 1	3 40	89 38 20 88 96 20 88 12 20	14 34	75.00 75.00 71.00 71.00	14 21 7 24 14 7 14	273	1.570 2.320 1.790 1.596 1.623 2.068	0.626	4.073 2.737 2.071
BTATION		73 73 78 83	Ì		ļ	79 80 81	26 0 29 2 26 1 29 2 29 1 29 1 29 1 29 1 29 1 29 1 29	6 00 6 20 1 20	89 36 00 89 33 20 88 08 20	66 33 43		11	439 332 209 513 615 352 818 335 103 273 540 491 491 491 491 959	1.623 2.068 2.047	0.625 0.806 0.656	1.760
5		76	C C C		1			9 20	84 36 00 84 36 00		64.08	7	647 542 644	2.342 1.146 1.936 1.595 2.046 2.053 2.283 1.807 1.528 2.344 1.681 1.745 1.959 5.681 7.430	0.711 0.363 0.656 0.536 0.536 0.652 0.652 0.652 0.657 0.617 0.556 0.797 0.556 0.556 0.556 0.556 0.648 0.648 0.649 0.617	4.081 3.535 3.173
		10 11 17	ĉ				29 0 29 1 28 4 29 0 29 0 29 1 29 1 29 1 29 1 29 1 29 1 29 1 29 1	9 29 6 09	35 41 00 34 41 00 89 44 40	1.5	63.00	27 23 20 20 19 16 15	447 542 644 719 661 210 96 226 846 237 554 419 318	1.595	0.536 0.696 0.708	2.054 2.030 3.150 3.132
		79		255		- 14 15 15	21 1	1 20	54 41 20 54 43 20 54 19 00	34 47 47	68.00	15 16 17	226 846	2.283 1.807 1.928	0.642 0.664 0.676	2.698
	182	79 83 78 83	ĉ	222	ł	11 12 15	29 0 29 1 29 1	9 04 5 25 9 04	0 66 63 60 3 66 37 70 1 66 36 70	4111		15	237 554 419	2,344 1,681 1,745	0.797 0.614 0.594	3.609 2.319 2.991
		83 74			ł	222	21 4	e 20 4 40 1 40	1 69 35 48 1 69 27 28 1 69 61 29	55 33	65.00 67.67	22	318 749 805	1,459 5,681 1,430	0.544	3.609 2.319 2.991 2.649 3.221 1.749 2.278 2.278 2.278 2.454 1.559
		74 74 75		2.12	ł	82 83 88 87 98 99 99 99 99 99 99 99 99 99 99 99 99	29 0 29 1 28 4 29 29 2 29 2 29 2 29 1 29 1 29 1 29 1 2	9 20 20 3 20 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 9 20 4 20 4	5 58 60 20 5 58 64 60 5 58 33 60	9 9 5	75.00	22 10 12 14 11	749 105 109 364 507 125	1.657 1.658 1.862 1.519	0.639 0.617 0.699	2.454
				81 34 10		100 101 102 103		3 44	5 54 58 50 40 5 54 68 60 5 54 61 20		71.00	14	639	2.023	0.736	2.351
	i.	15 77 19 11 14	, i	3	ł	105 106 105 105	29 2 29 2 29 2 29 1 29 1 29 1 29 1 29 1		54         68         61         20           64         64         61         20         64         22         06           64         64         22         06         64         22         06           64         64         22         06         64         16         60           64         37         20         64         37         20         64         37         20           64         37         20         64         16         00         64         37         20         64         16         00         64         37         20         64         16         00         64         37         20         64         16         00         64         03         60         64         03         60         64         03         46         0         64         17         20         64         17         20         64         17         20         64         17         20         64         17         20         64         65         64         65         64         65         64         65         64         65         64         65         64         65	57 63 63 13 62 44 16 55 17 25	71.00	;	420 3540 3978 457 234 1062 576 576	2.023 2.169 1.968 0.610 1.410 2.068	3.736 3.746 0.716 0.261 0.657 0.655 0.678	2.351 2.557 2.597 1.173 1.707 2.948 2.538 7.960 2.285
	HAT	76 80 79 75	i		1	106 107 108	29 C 29 1 29 2	9 04 8 24 1 04	0 68 17 20 0 68 18 00 0 88 03 00	44 35	71.00 65.00 68.00 88.00 75.00	*****	234	1,761	0.678	2,534
			i		1	110	29 2	1 0	0 88 10 80 0 88 03 80 0 88 19 20	25	65.00	17	578 535 1076 701	1,761 1,686 1,686 0,888 1,654 0,595	0.623 0.536 0.255 0.540 0.269	2.005 2.045 2.026
	-	78		15		113	2	1	0 68 05 40 0 68 15 40	- 75 - 13			80.2 154 83	2.111 2.818 2.546 2.539	0.700	2.945
		73 74 74	i	15	1	110	29 2	3 4	0 87 48 20 0 68 08 44 0 88 01 44	23 34 35 37 14 25	74,00 76,00 78,00	21 21 19		2.546 2.539 2.079	0.700 0.779 0.833 0.837 0.703 0.703 0.706 0.700	3.366
	i i	74 75 76	ł	11	;	119	29		0 87 94 20 0 88 01 44 0 88 04 25	11	71.00	22	754	2.352 2.173 1.859	0.708	3.210
		79 83 83	ł	11 12	;	121 122 123	219 219 219	18 2 16 8 56 9	0 00 03 20 0 00 02 00 0 00 00 20	22	75.00	21 22 21 19 22 22 19 28 28 19 19 19 19 19 19 19 19 19 19 19 19 19		2.079 2.352 2.113 1.859 2.267 1.760 2.426 1.516 1.644 0.917	0.693 0.874 0.867 0.598 0.599 0.521	2.469
		73 74 74 75 76 79 83 87 77 73 82		的复数形式的复数形式	-	120 121 122 123 125 125 125 125 125 125 125	219 219 219 219 219 219 219 219 219 219		0 84 03 40 0 84 15 40 0 85 15 40 0 86 16 46 0 88 01 24 0 88 02 46 0 88 02 24 0 88 02 24 0 88 02 24 0 88 02 25 0 88 02 0 88 0	22 17 17 24 21 24 21 21	75.00		383 754 786 286 296 33 50 635 39 38 21	1.644	0.869 0.521 0.829	1.782
	•	75				1/0	29	17 0	0 M 04 04 04			- 18	114	2.213	A 774	3.634 2.132
	1.1	75 82 83 76 76 76 76 77 78 80 80 71 79 8 73 74 75 74 75		11		129 130 131 132 133 136 135 136 137 138 139 140 141	29 30 30 30 29 29 30 30 30 30 30 30 30 30 30 30 30 30 30	37 0 58 2 11 2 10 2 58 0 59 0 59 0 59 0 59 0 59 0 59 0 59 0 59	G         88         34         60         60           G         88         36         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60         60 <td>3     15       3     18       3     7       3     7       3     7       3     16       3     15       3     7       3     7       3     16       3     15       3     7       3     15       3     7       3     14       0     7</td> <td>75.00 71.00 66.00</td> <td>90 10 11 15 13 14 13</td> <td>282 118 61 860 79 133 110 53 192</td> <td>2.213 1.565 2.762 1.237 1.567 1.352 1.567 1.352 1.626 1.626 1.640 2.820 2.820 2.756 1.644</td> <td>0.808 0.820 0.542 0.613 0.617 0.617 0.617 0.510 0.706 0.512 0.752</td> <td>5.242</td>	3     15       3     18       3     7       3     7       3     7       3     16       3     15       3     7       3     7       3     16       3     15       3     7       3     15       3     7       3     14       0     7	75.00 71.00 66.00	90 10 11 15 13 14 13	282 118 61 860 79 133 110 53 192	2.213 1.565 2.762 1.237 1.567 1.352 1.567 1.352 1.626 1.626 1.640 2.820 2.820 2.756 1.644	0.808 0.820 0.542 0.613 0.617 0.617 0.617 0.510 0.706 0.512 0.752	5.242
		76 77 78	1	10 10 10		133 134 135	21	50 0	0 56 04 04 0 58 09 21 0 58 01 54	1	73.00	19	818 860 79	1.590	0.617	1.004
		76 80 77	E E			136 137 138	10 29 10	29 2	6 87 52 2 9 88 06 8 9 88 42 0		72.00	14 12 28	****	1.640	0.692	2.505
	118 1	4 73 74				139	29	03 4 08 4 54 6		1	73.00	12	53 192	1.765	0.612	2.800
		75 76 80 73	c	-		142	29	57 2 57 0	10 50 31 2 10 50 31 0 10 50 30 10	0 14 0 15 0 24	76.90 72.00 74.00	17 58 76 75 81	1108 296 223 212	1,225 1,941 1,612 1,290 1,441	0.430 0.728 0.577 0.493	2,935 4,935 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,936 4,
		73 79 80				143 744 745 146 747 748	29 29 29 29 29 29 29	13 No 44 No 24 No		0 24 0 28 0 18 0 6	74.00 81.00 68.00	11	212 116 40 325	2,117	0.445 0.465 0.620	2.566 2.138 2.938 1.237
				1 1 1	1 1	140	29 30	53 4	NG 87 51 2 NG 87 51 2 NG 87 81 8		73.00	i	19	1.680	0.835	2.512

-

Table 36. Distribution of stations (by region and depth) in each of eight TWINSPAN groups resulting from analyses of 90 selected demersal nekton collected in three replicate samples at 150 stations in three regions of the Tuscaloosa Trend study area during fall NMFS Fishery Independent surveys from 1973 to 1983.

				1	TATIO	-	141								STAT 10	68089	142								37473D		181								87AT 108	GROUP :	8			
					1										1	العار									1															
	73	74	75	76	11	78	79	80	82	83	73	79	75	76	π	78	79		82	83	73	74	ъ	76	Π	78	79	80	82	43	73	74	15	76	11	78	79	80	82	43
0-10			w	¥	E/W	C/W					C/W	C/W	E	c			C/W	C/W	E/C/W	E/V																				
10-20 D					۲						۲	۷	v	۷	¢	C/W	۷	¥	C/W	۷							c			c										
E 20-30											۲	C/N	۳	C/W	U	۲	C/W	W		۷			c		c	¢			C/N	C										
T 30-40													۷	¥			¥				C/N	c		c	C/¥	۲		C/W	C/1	C/₩		۷	c			c	c	c		
¥0-50														۷							E/C/W	¥	۲				۳	W	¥	E/W		E/C		c	C/W	۲	E	c	E/C	c
>50																																	¥						۳	W

					IOLTATI I		P 114	•								BOLTATS T	68087 248	1142									121								,	I GROUP		
	<b>T</b> 3	74	75	76	77	78		19	80	82	43	73	74	15	76	17				83	73	74:	15	76	11	78	79	80	62	83	73	74	75	76	77	78	80	
0-10											•											E	C	I	C	E	E	E		c	E	·						
<b>0-</b> 20													E	t						E	c	c	c	<b>E</b> /C	E	E		E/C	E		E							
- 30			E									Ľ	E		E	E	E		E	£	c						8	8										
-40			E	E				E	E	E		2	8			£				E																		
50				E	E	c		c	E																													
0																																						

across the upper half of Table 36 represent the groups on the right side of the corresponding TWINSPAN display (Group I in Figure 17, while those across the bottom half of Table 36 represent the groups on the left side of the display (Group II in Figure 17). Even though they are at opposite ends of Table 36, Groups IA2 and IIA1 are similar to each other (i.e., both are at the center of Figure 17). Examination of Figure 17 and Tables 35 and 36 in concert helps identify environmental trends most related to the ordering and grouping of the samples and taxa.

The station ordering across the top of Figure 17 primarily represents responses of the taxa to geographical location and depth, with some secondary year to year trends also evident. Station Group I includes all the stations from the western region of the study area and the majority of those from the central region. Station Group II includes the vast majority of the stations from the eastern region, along with 11 stations from the central region of the study area. Within each of these two major TWINSPAN groups, those samples near the outside of the display (i.e., those in Groups IA and IIB) are generally from shallow stations, while those near the center of the display (i.e., those in Groups IB and IIA were from the deepest stations (Tables 35 and 36).

Within Station Group IA, Group IA1 includes seven shallow stations (depth range of 6.0 to 12.3 fm), most of which were collected from the western region. Table 36 shows that all these stations were collected during the period 1975 to 1978, indicating that a temporal trend may be embodied in this station group. These seven stations were very depauperate, with a range of mean number of taxa of 4.0 to 17.7 (Table 35). The inclusion of stations from the eastern and central regions during 1977 and 1978, respectively, may indicate that the processes responsible for this impoverished community structure were acting over a wide geographical area.

Group IA2 was the largest station group in the display, and includes the vast majority of the very shallow stations from the western and central regions that were not in the closely related Group I, as well as virtually all the stations from the western region in the 10-30 fm depth range. It also includes several samples from the 30-50 fm range, all of which were from the western region. Six stations from the central region at depths of 20-40 fm and three stations from the eastern region at 0-10 fm depths were also included in Group IA2. The community at the Group IA2 stations was more speciose than that at the related Group IA1 stations (Table 35), with only two of the 43 stations in Group IA2 with means of less than 10 taxa. The inclusion of several shallow eastern stations in group IA2, and the large number of years when shallow stations from several or all regions were included, is indicative of the longshore similarity in community structure in the shallow Gulf during many years.

Group IB includes the majority of the deep water stations from the central and western regions of the study area, with Groups IB1 and IB2 both including a number of stations from the 40-50 fm depth zone (Table 36). All the stations from the 30-40 fm depths in the central region were included in Group IB. The two groups differed in that Group IB1 included a number of stations shallower than 30 fm (the vast majority of which are from the central region), while Group IB2 included none from shallow depths. Also, Group IB2 includes all three stations which were greater than 50 fm in depth (all of which were from the western region). Although there was considerable overlap, the stations from Group IB1 appeared to be generally the most speciose of all those in Group I, with those in Group IB2 being similar in numbers of taxa to those in the shallower Group IA2. Therefore, it appears that within the muddy bottom habitats, the communities at middepth stations were more speciose than those located either shallower or deeper.

As is evident from Table 36, going from left to right in Group II (Figure 17), stations become shallower. Group IIA1 includes all the stations in Group II that were deeper than 30 fm. While this includes all but one of the stations in the eastern region in the 30-40 fm depth range, only five stations in the 40-50 fm range were included in Group II (2 from the central region and 3 from the eastern region). The majority of the stations in the 40-50 fm depth range from the eastern region were located in Group IB, along with the majority of the stations from the central and western regions. The stations in Group IIA1 were all collected from a well defined time period (Table 36), indicating that the same community was consistently represented at middepth stations from the eastern and later years.

Group IIA2 stations were all from the eastern region, and represent three distinct time periods (Table 36). No stations from the 40-50 fm range were included in Group IIA2, and the group can generally be categorized as a middepth group from the eastern region. Comparing the stations in Groups IIA1 and IIA2, it is apparent that at the depth of overlap (i.e., the 30-40 fm zone), the middepth portion of the eastern region was characterized by a community more characteristic of shallower depths during some years (i.e., 1973-74, 1977 and 1983), while during most years the community inhabiting these stations was more typical of a deeper water habitat.

Group IIB included most of the shallow samples from the eastern and central regions that were not included in Groups IA, or IIA1, and included no samples located at depths greater than 30 fm. Within Group IIB, Group IIB2 includes only two samples, those being from the 0-20 fm depths in the eastern region during the hydrologically atypical year of 1973. Within Group IIB1, there appeared to be a secondary temporal trend, with most of the stations from the early portion of the record (i.e., 1973-1976) being from the central region and the majority from the middle and latter portion of the record (i.e., 1977-1982) being from the eastern transect. This indicates that the community that characterizes these stations exhibited similar spatial trends over time.

Unlike some of the other TWINSPAN displays presented earlier in this report, the taxa in Figure 17 did not show a simple left to right gradient of station affinity going down the table. This is attributable to trends in distribution of several taxa groups, and especially those of Taxa Groups IA1 and IB1 (Figure 17).

The taxa at the top of the display (i.e., those in Taxa Group IA1 in Figure 17) were found almost exclusively at Station Group IB1 stations and, to a lesser extent, at Station Group IB2 stations, indicating that they were relatively restricted to the middepth to deep water stations of the central and especially the western regions of the study area (Table

This taxa group, which includes Parapenaeus LPIL, Steindachneria 36). argentea, Solenocera LPIL, and Congrina flava, was essentially equivalent to Group 2 defined from the seasonal analysis (see Table 11). The presence of these Group IA1 taxa, along with the absence of a number of taxa in Taxa Group IA2 characteristic of only the nearshore stations in Station Group I, differentiated Station Group IB1 from Station Group IA (Figure 17). The taxa in Group IA1, which seldom occur in waters shallower than 15 fm, were the taxa that most differentiated Station Group IB1 from the rest of the stations, and were the most unique component of the brown shrimp grounds. These nearshore taxa in Taxa Group IA2 included several that are commercially important and many that are estuarine dependent and estuarine related. These include the star drum (Stellifer lanceolatus), the gafftopsail catfish (Bagre marinus), the banded drum (Larimus fasciatus), the Gulf menhaden (Brevoortia patronus), the white shrimp (Penaeus setiferus), the Atlantic threadfin (Polydactylus octonemus), the silver seatrout (Cynoscion nothus), and the hardhead catfish (Arius felis). These were essentially the same taxa that defined Group 1 resulting from a synthesis of the seasonal analysis data (see Table 11), and were the characteristic component of the white shrimp ground community. The clear differences in the distributions of these Group IA1 and IA2 taxa with depth is very impressive, and indicates that distinct depth-related communities exist in the western and central regions of the Tuscaloosa Trend study area.

In addition to the inshore restricted taxa, Taxa Group IA2 included a number of taxa that were distributed over the entirety of Station Group I, which essentially defined the the muddy bottom habitat of the western and central regions of the study area. These taxa included the brown shrimp (Penaeus aztecus), the croaker (Micropogonias undulatus), the lesser blue crab (<u>Callinectes</u> <u>similis</u>), the Atlantic cutlassfish (Trichiurus lepturus), the spot (Leiostomus xanthurus) and the silver seatrout (Cynoscion arenarius). Note that the distribution of the brown shrimp actually extended into the region defined by the Group II stations (Figure 17), with the croaker, spot or sand seatrout better differentiating the Group I stations from those of Group II. These widely distributed Group IA2 taxa are known to characterize both the white and brown shrimp grounds, and most of their members are estuarine dependent. In the analysis of the seasonal data, a similar group was distinguished (Group 3 in Table 11). A number of these widely distributed Group IA2 taxa occurred in decidedly lower densities at stations in Station Group IB2, which represented the deep water habitat in western and central regions of the study area, including all of the stations greater than 50 fm in depth (Table 36).

The taxa in Taxa Group IB1, were found in relatively greatest abundance at the deep water stations from the entire study area (Station Groups IB1, IB2 and IIA1 in Figure 17). While these taxa showed considerable "scatter" in their distributions, the importance of the deep water habitat is evident. These taxa include two subgroups. Taxa in the first subgroup (including the portunid crab (<u>Portunus spinicarpus</u>), several searobins (<u>Prionotus paralatus</u> and <u>P. stearnsi</u>), and the butterfish (<u>Peprilus burti</u>)) all showed a distinct preference for the deep water stations in Station Group IB2 and IIA1 over those in Station Group IB1. As such, these taxa were more prominent at the deepest, sandy stations from the eastern region of the study area as compared to the stations at similar depths from the western region.

The other suite of taxa in Taxa Group IB1, including the rock sea bass (Centropristis philadelphicus), the Mexican flounder (Cyclopsetta chittendeni), the pancake batfish (Halieutichthys aculeatus), and the blackfin searobin (Prionotus rubio), were more widely distributed over Station Groups IB1, IB2, and IIA1, but were somewhat less well represented at stations in Station Group IIA1, The importance of depth to the distribution of these taxa was not as evident in the seasonal analysis which only dealt with the distributions during a single year. In the seasonal analysis, these deep water taxa displayed what appeared to be mainly sediment related trends, and were characterized as either being widely distributed over the study area but preferring sandy bottoms, to being widely distributed over sandy bottoms (see Table 11). These deep water taxa constituted a second assemblage that characterizes the stations in Station Group IB (i.e., the brown shrimp grounds), but were generally more important in the central and eastern regions of the study area. Therefore, while the white shrimp grounds (Station Group IA) were characterized mainly by an inshore restricted taxa group and the generalists (both in Taxa Group IA2 in Figure 17), the brown shrimp grounds was characterized by the generalists, a middepth group that preferred the muddier sediments of the western region and portions of the central region (Taxa Group IA), and a deep water assemblage (Taxa Group IB1) consisting of taxa that appeared to show a wide range of sediment preferences but were generally more prominent in the eastern region. It is for this reason that the stations located at middepths in the western region and portions of the central region (Station Group IB in Figure 17) were the most speciose of all (Table 35).

The taxa in Taxa Group IB2 and especially those in Taxa Group IIA1 showed very unique distributions over the study area (Figure 17). They quite clearly preferred the shallow, sandy bottom stations from the eastern and central regions located in Station Group IIB1, as well as a number of stations from the central and eastern regions located to the far left of Station Group IA2 (Figure 17). Some shallow water sandy stations were included in Station Group IA2 because they contained a number of taxa characteristic of the white shrimp grounds, which were not present at the very sandy Group IIB stations. The location of these shallow stations from the central and eastern regions in Station Group IA2 was responsible for the bimodal distributions of several of the Taxa Group IB2 and IIA1 taxa, including the red snapper (Lutianus campechanus), the silver jerry (Eucinostomus gula), the striped anchovy (Anchoa hepsetus), the least puffer (Sphoeroides paryus), the portunid crab (Portunus gibbesii), the fringed flounder (Etropus crossotus), and the squid (Loligo pealeii). In the seasonal analysis, these taxa were variously classified as being characteristic of the shallow water habitat, being widespread across the study area but preferring sandy bottoms, and being widespread over sandy bottoms (see Table 11). This long term analysis confirmed that these taxa did not generally occur in deep water habitats, and that they constituted a distinct, sandy bottom, inshore community.

Three taxa constituted Taxa Group IIA2 (Figure 17). All three of these taxa (<u>Calappa sulcata</u>, <u>Lagodon rhomboides</u>, and <u>Trachurus lathami</u>)

were widely distributed over the study area. None of them showed much preference for any of the station groups, except they appeared to be in relatively greater abundance at some of the middepth to deeper water stations (Station Groups IB1, IB2 and IIA1).

The taxa in Taxa Group IIB1 included the pink shrimp (Penaeus duorarum), the dwarf sand perch (<u>Diplectrum</u> <u>bivittatum</u>), the inshore lizardfish (Synodus foetens), and the longspine porgy (Stenotomus caprinus). They were widely distributed over the study area, but showed a distinct preference for the sandy bottoms. This was evidenced by the increasing relative importance of these taxa on the right side of the TWINSPAN display (Figure 17). Besides their general preference for sandy bottoms, there was little similarity in the distributions of these The pink shrimp generally preferred shallow bottoms while the taxa. longspine porgy showed a greater preference for deep water stations. The inshore lizardfish also showed a distinct preference for the sandy inshore stations, and exhibited one of the best gradients in the entire suite of taxa (Figure 17). In the seasonal analysis, this taxon was characterized as being widespread over the study area but preferring sandy bottoms, while the pink shrimp and inshore lizardfish were widespread over, and relatively restricted to, the sandy bottoms. Compared to the community at the shallow water, muddy bottom stations, generally fewer taxa characterized the shallow water, sandy bottom habitat.

The final taxa group (Group IIB2 at the very bottom of Figure 17) included the only taxa that clearly characterize the middepth habitats in the eastern region, where sandy sediments predominate. The majority of these taxa were quite restricted to the stations in Station Group IIA2, which includes a number of stations from the 10-40 fm depths from only the eastern region (Station Group IIA2 in Table 36). It was noted earlier that the stations in Station Group IIA2 represented three somewhat distinct blocks of time (1973-1974, 1976-1978 and 1982-1983). Since the Taxa Group IIB2 taxa provided the unique character to the community at these stations, indications are that the taxa in Taxa Group IIB2 may have migrated into the Tuscaloosa Trend study area when conditions were favorable. When they were present, they contributed to the more speciose nature of these stations as compared to stations at similar depths in the western region where they were not present. These taxa included the smoothhead scorpionfish (Scorpaena calcarata), the horned searobin (Bellator militaris), the snakefish (Trachinocephalus myops), the bandtail searobin (Prionotus ophyrus), and the bluespotted searobin (P. roseus). These same taxa also formed a distinct assemblage in the seasonal (fall 1974-summer 1975) analysis (see Table 11). 1974 was one of the years when the group was best represented in the Tuscaloosa Trend study area (Table 36). The dusky flounder (Syacium papillosum) and the rock shrimp (Sicvonia brevirostris) also characterized these middepth stations, but were more widely distributed. The dusky flounder was especially characteristic of the inshore sandy stations of Station Group IIB, and was one of the few taxa that spans several depth zones in the sandy eastern region (Figure 17). The rock shrimp was also found at some of the deepest stations of Station Group IIA1, being (along with the longspine porgy) one of the few taxa that showed a distinct preference for the deep water sandy stations. It is for this reason that many of the deep water sandy Group IIA1 stations were less speciose than were the middepth stations from

the eastern region (Station Group IIA2); however, the presence of some of the deep water taxa characteristic of Taxa Group IB1 at these Group IIA2 stations added considerably to the species richness in these habitats (Table 35). In general, there appeared to be less change in numbers of taxa with depth in the sandy habitat than was evident in the muddy habitat.

#### 2.5.4.4 Factor Analysis

The factor pattern matrix resulting from the R-mode factor analysis of the individual replicate annual data set is presented in Table 37, along with final communalities for each taxon and variance explained by each factor. The suite of taxa from the final TWINSPAN analysis (Figure 17) were input to the factor analysis, and the taxa included in Table 37 are those with communalities (i.e., shared variance) greater than 0.20 and loadings of at least 0.30 on one of the factors. Seven factors were retained for rotation to simple structure. Factor scores were generated from the final factor solution, and entered into correlation analysis to relate taxa groups defined by the factors to environmental variables. The results of this correlation analysis are shown in Table 38.

Overall, the assemblages defined in the factor analysis (Table 37) were very similar to those found in the corresponding TWINSPAN analysis (Figure 17). Factor 1, which represented the strongest community trend in the data, was essentially equivalent to TWINSPAN Taxa Group IIB2 (Figure These taxa, which included the rock shrimp (Sicyonia brevirostris), 17). the snakefish (Tracinocephalus myops), the smoothhead scorpionfish (Scorpaena calcarata), the horned searobin (Bellator militaris), the bandtail searobin (Prionotus ophyrus), bluespotted searobin (Prionotus roseus), the bank seabass (Centropristis ocvurus), and the planehead filefish (Monacanthus hispidus), were, for the most part, restricted to middepth stations (10-40 m) in the sandy eastern portion of the study area (Station Group IIA2 in Table 36). Of these taxa, only the rock shrimp had a salient loading on another factor (Factor 3), demonstrating some adherence to the trends defined by Factor 3. The Factor 1 taxa appear to exhibit some long term trends, since they occurred in several blocks of time and space (Table 36). These taxa also formed a distinct group (Group 6) in the community analysis of the seasonal data (see Table 11). Factor 1 scores were significantly and negatively correlated with precipitation and estuarine water temperature in winter, and significantly and positively correlated with low tides in summer and fall at Pensacola (Table 38).

Factor 2 included those taxa that were widely distributed over the study area but were numerically most prominent in waters overlying muddy sediments. All of these taxa except the sand seatrout (<u>Cynoscion arenarius</u>) were included in Taxa Group IA2 in the corresponding TWINSPAN analysis (Figure 17). These included a number of the commercially most important nekton in the Gulf of Mexico, among them the croaker (<u>Micropogonias undulatus</u>), the silver seatrout (<u>Cynoscion nothus</u>), the spot (<u>Leiostomus xanthurus</u>), and both the brown and white shrimp (<u>Penaeus aztecus</u> and <u>P. setiferus</u>). As can be seen in Figure 17, the white shrimp showed a more inshore-restricted distribution than the other taxa, but not as restricted as some of the other taxa in Taxa Group IA2 of the TWINSPAN analysis (Figure 17). The affinity of the white shrimp to the nearshore habitat was shown by its salient loading on Factor 5 (Table 37).

# Table 37. Factor pattern matrix resulting from R-mode factor analysis of 90 selected demersal nekton taxa collected in three replicate samples at 150 stations in three regions of the Tuscaloosa Trend study area during fall NMFS Fishery Independent surveys from 1973 to 1983.

	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Communality
Scorpaena calcarata	0.87909	-0.07163	-0.01541	0.11344	-0.05590	-0.01514	0.00889	0.79446
Sicyonia previrostris	0.70831	-0.14256	0.40625	-0.05680	-0.04133	-0.09826	-0.01406	0.70186
Bellator militaria	0.67633	0.02811	0.24881	-0.11337	-0.01091	-0.13683	-0.09655	0.56114
Ophidion holbrooki	0.61698	-0.04817	-0.04095	0.05666	-0.00348	0.05522	0.03943	0.39250
Prionotus ophryas	0.56642	-0.00949	0.04468	-0.01919	0.01548	-0.00272	0.01390	0.32373
	0.50958	-0.20574	-0.17695	0.02919	-0.16452	-0.14037	-0.08754	0.38860
Syncium papillosum Prionotus salmonicolor	0.50926	-0.07974	-0.02514	0.11143	-0.03546	-0.08735	-0.09903	0.29745
	0.38333	-0.12973	-0.11642	-0.01871	-0.08871	-0.01002	-0.03187	0.18666
Trachinocephalus Byops				0.04791	0.14348	-0.10792	-0.04598	0.83110
Micropogonias undulatus	-0.10272	0.87825	-0.11212 0.04357	-0.10778	0.16361	0.12430	-0.06986	0.60782
Cynoscion arenarius	-0.15918	0.72240				0.02886	-0.29433	0.53228
Leiostomus xanthurus	-0.10856	0.65019	0.03738	-0.07456	0.05769	0.02000	0.11765	0.41853
Cynoscion aothus	-0.08071	0.59689	-0.19327	0.01150				
Penaeus astecus	-0.10886	0.55157	0.21143	0.08152	-0.15347	0.22346	-0.00169	0.44092
Penseus setiferus	-0.09484	0.45230	-0.24614	0.16569	0.40921	-0.08039	0.04541	0.47758
Centropristis philadelphicus	-0.08274	0.22090	0.65270	0.09218	-0.21610	0.18038	-0.17847	0.60124
Prionotus paralatus	0.10332	-0.07325	0.57736	-0.08456	0.04548	-0.04382	-0.01271	0.36069
Prionotus rubio	0.05615	0.29605	0.56945	0.13943	-0.02355	0.11739	0.04800	0.45115
Portunus apinicarpus	0.17220	-0.05780	0.56864	-0.17755	-0.04804	0.12866	-0.03868	0.40822
Prionotus stearnsi	<b>-0.</b> 10051	-0.07677	0.51857	-0.03544	-0.06678	-0.01346	0.06676	0.29526
Stenotomus caprinus	0.08394	-0.19546	0.50340	-0.08438	-0.23673	-0.13497	0.11507	0.39328
Serranus atrobranchus	-0.21711	0.06021	0.48437	-0.04393	-0.21026	0.32750	0.03214	0.43981
Pristipomoides aquilonaris	-0.07527	-0.07881	0.47480	-0.06321	-0.05531	0.19258	0.08446	0.28859
Synodus foetens	0.07336	-0.20790	0.31751	0.08841	-0.23306	-0.30421	-0.00117	0.30409
Penseus duorarum	0.39703	-0.11888	-0.03170	0.61696	0.02326	0.01817	0.06161	0.55808
Portunus gibbesii	-0.03887	0.01065	-0.06205	0.61510	0.01726	-0.06467	-0.05638	0.39148
Sphoeroides parvus	0.23912	0.01022	-0.09691	0.57410	0.13386	-0.09685	-0.00874	0.42364
Etropus crossotus	-0.07095	-0.06107	-0.07271	0.55580	0.10838	-0.13588	-0.02720	0.35391
Trachypenseus	-0.06560	0.12749	0.05349	0.49322	-0.14310	0.21744	-0.19653	0.37307
Diplectrum bivittatum	0.36856	-0.20002	-0.08796	0.44317	-0.11492	-0.08558	0.04524	0.40256
Squille	-0.05189	0.24967	0.08574	0.42400	-0.02088	0.34536	-0.17184	0.40139
Callinectes similis	-0.17319	0.37106	-0.01348	0.39125	-0.03898	0.05028	-0.14152	0.34502
Bagre marinus	-0.03753	0.02680	-0.02088	-0.01853	0.64908	-0.00854	-0.01838	0.42463
Brevoortia patronus	-0.03960	0.14926	-0.04784	-0.04028	0.55651	0.01932	0.0605 <b>6</b>	0.34150
Arius felis	0.01152	0.03731	-0.24192	0.21779	0.52621	-0.09175	-0.06830	0.39746
Sciaesops ocellata	-0.02378	-0.02533	0.00852	-0.01415	0.50594	0.01229	-0.02193	0.25809
Selene setapinnis	-0.07518	0.16003	-0.11261	0.00257	0.42694	-0.11128	0.00750	0.23867
Chloroscombrus chrysurus	-0.14325	-0.16872	-0.18110	0.04449	0.33448	-0.16376	0.07059	0.22744
Steindachmeria argentea	-0.02579	0.02236	0.00951	-0.03978	-0.04108	0.71508	0.09399	0.52469
Parapenaeus	-0.04045	0.01719	0.00956	-0.00214	-0.03637	0.66970	0.01222	0.45200
Solenocera	-0.10725	0.07048	0.26403	-0.04389	-0.11389	0.57989	-0.17795	0.46901
Congrina flava	-0.05900	0.01467	0.13314	-0.04870	-0.03004	0.33978	-0.19905	0.17977
Peprilus burti	-0.12515	-0.06828	0.28621	-0.10798	-0.08688	-0.07011	0.56051	0.44054
Trachurus lathami	-0.14177	-0.14739	0.30059	-0.05722	-0.14023	0.03017	0.55024	0.45879
Trichiurus lepturus	-0.11842	0.38047	-0.11909	-0.16014	0.16953	0.04914	0.49687	0.47664
Halieutichthys aculeatus	0.01357	0.06157	0.29027	0.03478	-0.05719	0.13720	-0.32334	0.21608
Lepophidium graelisi	-0.12949	0.19015	0.21116	0.18088	-0.18246	0.23027	-0.35192	0.34040
•••••	3.80812	3.48804	3.47242	2.49058	2.23377	2.21315	1.48573	
VARIANCE EXPLAINED	3.00012	3.40004	J.9/242	2.77030	E+E3311	6161313	1140373	

Table 38. Results of correlation analysis of environmental variables with factor scores resulting from analysis of 90 selected demersal nekton taxa collected in three replicate samples at 150 stations in three regions of the Tuscaloosa Trend study area during fall NMFS Fishery Independent surveys from 1973 to 1983.

PACTOR	850105	TEAD	EDIAR TRANS MERIDIORAL	Cat Zonal	PRICIPITATION	AIB THIPERATURE	TIDES	NTSSISSIPPI BIVER DISCEARCE	ESTUARINE TROPERATURE	RETUARINE BALLMITT
Paster 1	l Kast				- Viator				- Wister	
i	i I I Enst			+ Vister + Spring		+ Sumar	• Sector			- Apring
	l I Castral			+ Vistor • Spring		+ Vistor - L. Spring	• Vistor • Spring		• Viator - L. Spring	- Spring
	     <b>Yest</b>     	-		+ Vistor • Spring		+ Vinter - L. Spring	- Yinter - Spring - Semer	+ Fall	- Vinter - L. Spring	- Spring
Paster 3	1 1 <b>Eust</b> 1 1	•	• Vistor - Spring			- Vinter (Md) + L. Spring (D)	- Vister - Spring + Summer	- Pall (36) - Janual		+ Spring
	f Contral f f	•	• Vistor - Spring	- fobruary - Juan		- Vister (Nd) • L. Spring (D)	- Spring		- L. Vister - Spring	+ Spring
	t 1 Yest 1 1 1	(mp. 3k)	- Vister - Spring	- Yobroary - June		- Vinter (Nd) + L. Spring (D)	- All Your		- L. Vister - Spring	+ Spring
Factor 4	•	•	- Spring - Sammer - Fall	- Harsh		- Sagate	• Spring			• E. Spring
	i f Central i f	•				- Pall	• Spring	- Fall		- L. Spring - Support
	Yant	•			+ Vister • Spring	• 3	• Spring	• Jumer		- Sering - Semer + Fall
Pealor 5	•		- Jupper (Hd)		+ Vinter (Nd) + Spring (Nd)	- Vistor (B)	• Spring • Summer • Vinter		- Harah (Md)	
	Central	-	- Tokruary	- Apring	- Vinter (NG) - Spring (NG)	+ ágrál			+ Byring	- Pal1
	1 1 Yent 1 1 1	(142)	- Folmary	- Spring		• April - Fall			- <b>Fal</b> l	- Pall
Peolar é	l East 1 1	-	- Spring - Bussor			• Jume	- Jugar		- Spring • Tall	• L. Spring
	t 1 Cestral 1			• baser			- Fall - Viator	- Vister	- Vistor	• L. Spring - Sugger
	1 1 Vest 1	•	+ fobruary		• Vister	+ Harsh		- Pall	- Viator	• .
Paster 7	l I Kast I I			- Spring - Pall	+ Sugar (Sh)	• April - Fall	- Vister - Spring - Summer - Fall		- L. Vinter + Spring (D)	• Spring (D) • Summer (D)
	Control				+ Pall (3h)	- L. Spring	- (Sh)	+ Fall (3)		- fall
	     Vest       	- (B)		+ L. Vinter			°+ (3h)	- <del>Januar</del> (3)	+ Opring	- Spring - Samter - Fall
	•									

(Sh) = Shaller (Md) = Hiddopth (D) = Deep

١.

All entries indicate at least one significant correlation at a = 0.10

160

Factor 2 scores from the western region were the only ones showing strong negative correlations with year, indicating that stocks of the Factor 2 taxa (Table 37) declined in this region over the study period. Factor 2 scores showed a number of strong correlations with environmental variables, with some differences apparent from region to region. These strong relationships would be expected since the Factor 2 taxa (Table 37) are generally estuarine dependent. Scores in all three regions were positively correlated with wind and tide variables in winter and spring, including zonal Ekman transport, mean sea level, mean higher high The scores from the western and central regions water and low tide. were also positively correlated with air temperatures and estuarine water temperatures in winter and high tides in spring. Both were negatively correlated with estuarine salinities in spring and air and estuarine temperatures in late spring and summer. Scores in the western region were also positively correlated with Mississippi River discharge in fall and negatively correlated with mean lower low water in summer. Scores from the eastern region showed somewhat different trends, including negative correlations with estuarine salinities only in spring and air temperatures only in summer, and positive correlations with a number of tide variables during the the entire summer to winter period, and especially in fall.

Factor 5 included a large number of taxa that were included in TWINSPAN Taxa Group IA2 which showed very inshore restricted distributions, including the menhaden (<u>Brevoortia Datronus</u>), the hardhead catfish (<u>Arius felis</u>), the gafftopsail catfish (<u>Bagre marinus</u>), the Atlantic bumper (<u>Chloroscombrus chrysurus</u>), and the Atlantic moonfish (<u>Selene setipinnis</u>), as well as the white shrimp (<u>Penaeus setiferus</u>). These taxa are the ones that most characterize the inshore white shrimp ground community in the northwest Gulf of Mexico, and formed a similar assemblage in the seasonal analysis (Group 1 in Table 11).

Factor 5 scores from the 21-40 fm depths in the western region and those for stations from all depths in the central region were negatively correlated with time, indicating that there were lower populations of the Factor 5 taxa (Table 37) in these areas during more recent years. In the western and central regions, correlations of scores with meridional Ekman transport in February and zonal transport in spring were negative, while in the eastern region, correlations of scores from 21-40 fm depth stations with meridional transport in summer were negative. Scores at 21-40 fm depths in the eastern and central regions showed exactly the opposite trends with respect to precipitation in winter and spring, with those for the central region being negative. Correlations with air temperature variables also differed across the study area. In the deepest parts of the eastern region, correlations of scores with winter temperatures In the western and central regions, correlations with were negative. air temperature in April were positive, and, in the western region, correlations with fall temperatures were negative. This indicates that Factor 5 taxa (Table 37) were relatively less abundant in the western region of the study area during those fall seasons when air temperatures (and presumably water temperatures) were lower. Correlations of scores with tide variables were not strong, with only those from the eastern region being significant (positive in spring and summer and negative Virtually no significant correlations were observed with in winter). discharge. Correlations with estuarine temperature variables were also not strong, except in the west, where correlations with spring temperatures were positive and those with fall temperatures were negative. In the eastern region, scores from the 20-40 fm depths were negatively correlated with estuarine temperature in March. Correlations with estuarine salinity variables were stronger, with those involving scores from the western and central regions in the fall being among the strongest and negative.

Eleven taxa showed salient loadings on Factor 3, nine of which had their highest loadings on this factor. Taxa showing the strongest affinity to Factor 3 included the rock seabass (Centropristis philadelphicus), several species of searobin (Prionotus paralatus, P. rubio, and P. stearnsi), the portunid crab (Portunus spinicarpus), the longspine porgy (Stenotomus caprinus), the wenchman (Pristipomoides aquilonaris) and the blackear bass (Serranus atrobranchus). The vast majority of these taxa were located in Taxa Group IB1 of the corresponding TWINSPAN analysis, with several others included in Taxa Group IIB1 (Figure 17). While many were widely distributed over the study area, they all exhibited an affinity for the deepest stations, and especially those in Station Group IB2 (Figure 17 and Table 36). Several characterized the deep zones in all regions, while several others (the portunid crab, the wenchman and several searobins) occurred in significantly lower numbers in the middepth to deep water stations in the western region (Station Group IB1 in Figure 17). This taxa group was not similarly identified in the seasonal analysis, with most of these taxa being characterized as either widespread over the study area but more prominent in the sandy sediments, or widespread over sandy sediments (see Table 11). These taxa were an important component of the deep water habitat in the study area. In the sandy region, this group was the main component of the deep water community. Along with the widespread taxa characteristic of Factor 2 and the Factor 6 taxa (see below), they characterized the communities at middepth to deep water stations over muddy bottoms.

The scores for the Factor 3 taxa with time were generally positive, with those for the shallow stations in the western region of the study area being the strongest. This indicates that Factor 3 taxa (Table37) generally increased in abundance over the study period and especially in the more inshore areas of the western region. Correlations with meridional Ekman transport in winter were generally positive, while those in summer were generally negative. In the western and central regions, correlations with zonal Ekman transport in February were negative, as were the correlations with this same variable in June. Virtually no significant correlations with precipitation variables were apparent. Correlations with air temperatures in winter were negative and strongest at the shallowest Scores for the deepest stations in spring were depths (20-30 fm). positively correlated with air temperatures in late spring. All of the strong correlations of Factor 3 scores with tide variables were negative. Strong correlations were seen in all seasons, but especially so in spring in the central region (where relationships were strongest) and winter and spring at the shallowest depths in the eastern region. Mississippi River discharge, and especially discharge in the fall was negatively correlated with scores from the eastern region at shallowest depths. Few significant correlations were seen with estuarine temperature variables, with the strongest being the negative correlations with estuarine temperature variables in spring. Similarly, most strong correlations with estuarine salinity variables involved salinities in spring, but were positive.

The taxa with salient loadings on Factor 4 were those in TWINSPAN Taxa Groups IB2 and IIA1 which showed bimodal distributions across the study area (Figure 17). They were characteristic of shallow inshore stations predominantly in the eastern and central regions, presumably with sandy sediments. Their bimodal distributions in Figure 17 resulted from the fact that some of the shallow samples from the central and eastern regions in which they were collected also included representatives of the inshore community characteristic of muddy bottoms predominantly in the western region. The pink shrimp (Penaeus duorarum) and the portunid crab, Portunus gibbesii, had the highest loadings on Factor 4. Other taxa with their highest loadings on this factor included the least puffer (Sphoeroides paryus), the fringed flounder (Etropus crossotus) and the shrimp, Trachypenaeus LPIL. These taxa were not identified as a discrete assemblage in the seasonal analysis, where they were included among the widely distributed taxa that occurred most prominently in waters overlying sandy bottoms or among those that occurred widely over sandy bottoms (Groups 4 and 5, respectively, in Table 11).

Factor 4 scores showed relatively strong positive correlations with time, with those from the western and central regions being particularly This indicates that stocks of the Factor 4 taxa (Table 37) strong. increased in the Tuscaloosa Trend study area during the study period. Scores from the eastern region, and especially those from shallow depths, showed the strongest correlations with Ekman transport variables, including positive correlations with meridional transport in the spring to fall period, and negative correlations with zonal transport in March. The only strong relationships to precipitation variables were in the western region in winter and spring, and they were positive. Correlations with temperature variables differed from region to region. Scores from the eastern and western regions were, respectively, negatively and positively related to air temperatures in summer, while, scores from the central region were negatively correlated with air temperatures in fall. Very few strong relationships of Factor 4 scores with tide variables were observed; however, correlations with spring tide variables were generally positive. Little relationship was seen with discharge from the Mississippi River either, but the correlations of scores from the western region with summer discharge were generally positive and those from the central region with fall discharge were generally negative. Correlations with estuarine salinity variables showed several major trends. Scores from the eastern and central regions were positively correlated with estuarine salinities from the shallow bay stations in early and late spring, respectively. Scores from the eastern and western regions, and especially those from 0-20 fm depths, were negatively correlated with salinities from deeper open bay stations during spring and summer. Over all depths in the western region, scores were positively correlated with open bay salinities in fall.

The four taxa with highest loadings on Factor 6 (the luminous hake, <u>Steindachneria argentea</u>), two shrimp (<u>Parapenaeus</u> LPIL and <u>Solenocera</u> LPIL), and the yellow conger (<u>Congrina flava</u>) formed a distinct assemblage in both the corresponding TWINSPAN analysis (Taxa Group IA1 in Figure 17) and in the Fishery Independent survey seasonal analysis (see Table 11), where they were characteristic of deep waters overlying muddy sediments mainly in the western region of the study area. These taxa, along with those with highest loadings on Factors 2 and 3, comprised the communities inhabiting deep waters over muddy bottoms. They showed some of the most restricted distributions of any taxa groups, and apparently occur only rarely east of the Mississippi River Delta.

Factor 6 scores showed different relationships to time, depending on location in the study area. Those from the eastern region were generally negative with respect to time, while those from the western region were This indicates a shifting in the distributions of generally positive. the Factor 6 taxa (Table 37) during the study period. Scores from the western region were positively correlated with meridional Ekman transport in February, while those from the eastern region were negatively correlated with meridional transport in spring and summer. Scores from the central region were positively related to zonal transport in summer. The only strong correlation with precipitation variables involved scores from the western region in winter, and it was positive. Scores from the western region were positively related to air temperature in March, while, in the eastern region, scores were positively related to air temperatures in summer. Correlations with tide variables were not strong. In the eastern region, scores were negatively correlated with summer tides, while in the central region, negative correlations were observed with tide variables Scores in the western and central regions were in fall and winter. negatively correlated with Mississippi River discharge in winter and fall, respectively. Correlations of scores from the central and western regions with winter estuarine temperatures were negative, while, in the eastern region, scores were negatively correlated with estuarine temperatures in spring and positively correlated with estuarine temperatures during the Correlations of scores from the eastern and central regions with fall. estuarine salinities during late spring were positive, while scores from the central region with estuarine salinities in summer were negative.

Factor 7 was a bipolar factor, with three taxa (the Gulf butterfish, Peprilus burti, the Atlantic cutlassfish, Trichiurus lepturus, and the rough scad, Trachurus lathami) having positive salient loadings, and two taxa (the pancake batfish, Halieutichthys aculeatus, and the blackedge cusk eel, Lepophidium graellsi) having negative loadings. This indicates that for the trends embodied in Factor 7, these two groups showed much the opposite relationships. The rough scad and the cutlassfish showed salient loadings on other factors, while the batfish and butterfish showed loadings on other factors that approached being salient (i.e., 0.30). Therefore, the trends embodied in Factor 7 were not particularly distinct. Based on the distribution of the taxa with the highest loading on Factor 7 (i.e., the butterfish), it appears that the taxa with positive and negative salient loadings on Factor 7 favor different groups of deep water stations in the study area (TWINSPAN Station Group IB1 versus Groups IB2 and IIA1 in Figure 17).

For the most part, Factor 7 scores were not significantly correlated with time, indicating no significant trends in the abundance of the Factor 7 taxa (Table 37) over the study period. The one exception was the significant negative correlation of the scores from the deep water stations in the western region (20-50 fm depths). This indicates that stocks of Factor 7 taxa in the deep water habitat declined over the study period. Correlations with Ekman transport variables differed in the eastern and western regions. In the eastern region, scores were negatively correlated to zonal transport in spring and fall, while in the western region, scores were positively correlated with zonal transport in late winter. Correlations with precipitation variables were, for the most part, not strong, but those for the shallow stations in the eastern and central regions were positively correlated with precipitation in summer and fall, respectively. Correlations with temperature variables also differed across In the eastern region, scores were positively related the study area. to air temperature in April and negatively related to air temperature in fall. For the central region, correlations of scores with temperature variables in May and June were negative. As was the case for other types of variables, correlations of Factor 7 scores with tide variables were different in the several regions of the study area. In the eastern region, correlations with tide variables in winter and spring were generally negative, those with summer tide variables were generally positive, and those with tide variables in fall were strongly negative. In the central region at shallow depths, scores were negatively related to tide variables, and in the shallow depths of the western region, correlations of scores with tide variables from all seasons were positive. Few strong correlations were seen with Mississippi River discharge variables. Scores from the deepest stations in the western region were negatively correlated with discharge in summer, while those for the deepest stations from the central region were positively correlated with fall discharge. Estuarine temperatures in late winter and spring were positively correlated with Factor 7 scores from the deepest stations in the eastern region of the study area, and estuarine temperatures in spring were positively correlated with scores from the western region. Scores from the deepest stations in the eastern region of the study area were also positively correlated with estuarine salinities in spring and summer. In the western and central regions, scores were negatively correlated with estuarine salinities in fall, and those from the western region were negatively correlated with estuarine salinities during much of the year (all seasons except the winter).

The only taxa that were not represented in the factor analysis were those with widespread distributions that showed no strong preferences for any stations. The nature of factor analysis is to pick out distinct trends. If taxa do not show distinct trends, they do not load saliently on any of the factors or, as was the case with <u>Penaeus</u> <u>setiferus</u>, load saliently on several factors.

# 2.5.5 <u>GCSD</u> 2.5.5.1 Introduction <u>General Life Cycle</u>

The life cycle of commercially important shrimp of the genus <u>Penaeus</u> has been the subject of numerous investigations. According to Kutkuhn (1966) spawning occurs in the nearshore Gulf, with individual females each producing up to a million microscopic eggs. Within hours these semibouyant eggs hatch into small, planktonic nauplii. Development proceeds rapidly through the protozoal and mysis stages as the developing larvae are 'transported landward toward the mouths of shallow estuaries. The time elapsing between hatching offshore and entry of the 7-15 mm postlarval shrimp to inshore waters varies from three to five weeks and is determined by spawning depths and prevailing wind and current conditions. Once in the estuary, postlarvae quickly transform into juveniles, and, over the next two to four months, approach or reach commercial size.

Estuarine areas are vital to penaeid shrimp (Kutkuhn 1966, Gunter 1967), providing the habitat required by the postlarvae and juveniles. Upon entry the estuaries, postlarval and/or juvenile shrimp drift or migrate to fertile and protected backwater nursery areas, including tidal creeks, bayous, marshes and shallow bays. The nursery and open bay areas occupied by young shrimp are determined in part by water salinity and Christmas et al. (1976) found that the preferred habitats temperature. of young penaeid shrimp in Mississippi Sound included areas along the margins of marshes, in submerged grass beds, and in nonvegetated areas where organic debris had accumulated. Small juveniles feed on detritus, while larger shrimp become more predaceous bottom feeders as they move to the deeper portions of the bay (Gulf of Mexico Fishery Management Council 1981).

The growth rates of young shrimp depend primarily on food availability and water temperature, and have been estimated at from 30-60 mm per month (Moffett 1970). When 50-75 mm in length, young shrimp move to the deeper waters of bays (staging areas) where they become vulnerable to fishing. Advanced juvenile and subadult shrimp, 75-125 mm in length, migrate back to the Gulf of Mexico, completing the life cycle.

Maturation of female brown shrimp occurs around 115-140 mm total length (Burkenroad 1939, Renfro 1964, and Moffett 1970), while female white shrimp are believed to reach sexual maturity at approximately 135 mm (Lindner and Bailey 1968, Moffett 1970, Gallaway and Reitsema 1981). Eldred et al. (1961) found ripe female pink shrimp of 92 mm length. According to Anderson (1970), female seabobs reach sexual maturity at 63 mm length. Major differences in the life cycle of brown, white and pink shrimp in the Gulf of Mexico are related to shifts in time and space, while the seabob shows a somewhat different overall pattern. Current knowledge on the life histories of each of these taxa is discussed below.

#### Brown Shrimp

Offshore in the northern Gulf, fishable stocks of brown shrimp reach maximum densities at depths of from 20 to 100 m (Comiskey et al. 1981) where most spawning occurs (Kutkuhn 1962, Gallaway and Reitsema 1981). The depth at which spawning occurs is important since it determines the distance the larvae and postlarvae must traverse to reach the estuaries. Spawning is believed to occur between depths of approximately 50 to 100 m throughout the year and between 20 to 50 m from March to December (Lindner and Anderson 1956, Renfro and Brusher 1965, Moffett 1970). Temple and Fisher (1967) reported greatest abundance of penaeid shrimp larvae off the Texas coast at depths of 30 to 90 m in late summer and fall, following the peak occurrence of brown shrimp adults at these depths. They also found that the breeding season tended to be protracted with depth, with penaeid larvae continually being produced at spawning depths greater than Kutkuhn et al. (1969) found that during spring, when brown shrimp 50 m. postlarvae are entering estuaries, early larval stages of penaeid shrimp are absent in waters closer than ten km (kilometers) from shore, but are present further offshore. Subrahmanyam (1971), who sampled penaeid shrimp larvae off Mississippi Sound out to 100 m depths, concluded that brown shrimp spawning occurred mainly at depths of around 36 m in fall and 72-90 m in winter. Angelovic (1976), who reported the results of the analyses of plankton samples collected monthly on the South Texas OCS study area from February 1962 to December 1965, found that during the fall to early winter period the spawning peak occurred later with depth. Greatest catches of Penaeus spp. larvae occurred at the 45.8 m depth station, and lowest catches were reported at the 109.7 m depth station, indicating that the outer limits of the brown shrimp spawning area were being approached.

Gunter (1950) proposed a February-March spawning period for brown shrimp in Texas, based on the abundance of juveniles in the estuaries. Baxter and Renfro (1967) found that postlarval brown shrimp were the only ones to enter Galveston Bay during the first four months of the year. Results from the Texas Park and Wildlife Department (TPWD) estuarine surveys (Moffett 1970) indicated that the first waves of brown shrimp postlarvae entered Texas coastal bays in March and April, and the success of these postlarvae generally determines the success of the brown shrimp year class. Subadults usually leave Texas estuaries in late May and early June.

Gaidry and White (1973) and White and Boudreaux (1977) report February and March as peak months of recruitment for brown shrimp postlarvae to Louisiana estuaries. A steady increase in postlarval densities occurred from late March through mid May, during which time peak density of juvenile brown shrimp also occurred. In early May, larger juvenile shrimp (65-75 mm) migrated from shallow nursery areas to the deep, open bay staging areas, prior to their migration to the Gulf at lengths of 90-100 mm. Once in the open bays, the shrimp are subject to exploitation, and there was an abrupt decline in the population following the opening of the bay shrimping season (15th-31st of May). There was strong indication that upon entering the shallow Gulf, young brown shrimp migrate longshore, possibly entering other estuaries in western Louisiana. Lowest bay populations of brown shrimp in Louisiana were found in late fall and early winter.

Christmas et al. (1966) found that during 1966, brown shrimp postlarvae began arriving in Mississippi Sound in February and continued through October. While peak recruitment occurred in March and April, a second wave of postlarvae was noted in September. Young adults comprised over half the bay catch in June. Christmas et al. (1976) reported peak recruitment of brown shrimp postlarvae to Mississippi waters from March to May, similar to that in Texas and Louisiana. According to Benson (1982) adult brown shrimp spawn offshore of Mississippi Sound from about November to April, with most postlarvae moving inshore to the estuaries from February to April. Migration of juveniles (60-70mm) from the shallow nursery areas to the deeper open bays and finally to the offshore areas extended from May to July. Loesch (1965) reported that young brown shrimp first appeared in Mobile Bay in late March and April, with some recruitment continuing into November. He did not observe two distinct (spring and fall) peaks in recruitment. Brown shrimp were most abundant in Mobile Bay during June-August. Ingle (1956) reported that young brown shrimp first entered Apalachicola Bay, Florida in April.

Some controversy exists as to when brown shrimp postlarvae that appear in great numbers in the late winter and early spring in Gulf estuaries are spawned. Temple and Fischer (1967) proposed a fall spawning period, with an overwintering of postlarvae in the nearshore Gulf. This hypothesis is supported by the work of Aldrich et al. (1968) who showed that postlarval brown shrimp burrow into the bottom at low temperatures (approximately 15° C) and emerge when temperatures reached 18 to 21.5° C. This question was addressed in the NMFS shrimp spawning site survey off Texas (Gallaway and Reitsema 1981). Results indicated that peak spawning of brown shrimp off Texas occurred in autumn at 46 m depth, but no overwintering brown shrimp postlarvae were found offshore. Even so, Gallaway and Reitsema (1981) still felt that the large size of the early (February to March) arriving postlarvae indicated that they were spawned the previous fall. They noted that Ekman transport is generally not favorable for transport of larvae to the estuaries of the northwest Gulf in the fall and early winter, with net transport being predominantly offshore.

Growth rates of brown shrimp have been estimated at from 0.5 mm per day in January and February to a maximum of 3.3 mm per day in late spring (St. Amant et al. 1966, Ford and St. Amant 1971) when temperatures are not limiting. Moffett (1970) reported that brown shrimp growth was usually slow in Texas bays in April and rapid in May. During colder springs, growth is retarded and the shrimp remain longer in the estuaries.

Brown shrimp do not penetrate as far into the estuaries as do white shrimp, nor do they remain in the estuaries for as long a period of time. Consequently at the time of the early summer egress, many brown shrimp are still relatively small (less than 100 mm or greater than 68 shrimp per pound, heads off). Trent (1967) found that brown shrimp emigrating from Galveston Bay to the Gulf averaged less than 100 mm (4 in) in length from mid May to July. This has considerable management implications. In the Gulf, brown shrimp tend to migrate offshore as they grow and as the summer passes to fall.

### White Shrimp

White shrimp are much more restricted in depth distribution in the Gulf compared to brown shrimp, and are reported to spawn at depths of 4 to 17 fm during the spring to fall period (Lindner and Anderson 1956). The early spring spawning is probably attributable to females which have migrated from the estuaries the previous summer and fall and have overwintered as adults in the Gulf. These same shrimp are probably also part of the late spring-early summer spawning stock, being supplemented by relatively younger females recently arriving offshore from the estuaries. This latter group, which apparently results from a late summer or early fall spawning the previous year, are of insufficient size to join the adult stocks the same fall. They either remain in the estuaries during mild winters or are driven by low estuarine temperatures and/or salinities into the nearshore Gulf where they overwinter. These shrimp reenter the bays in spring to complete their juvenile development before migrating offshore in late spring. They probably remain part of the offshore spawning population for much of the rest of their lives. From midsummer to midfall, these adult stocks are supplemented by young of the year shrimp migrating out of the estuaries. These shrimp, contribute to the fall spawning stock, and also comprise the majority of the stock that overwinters in the open Gulf and spawns in spring. By October, white shrimp spawning appears to be completed, as evidenced by the decline in ripe ovaries and increased occurrence of spent females (Lindner and Anderson 1956).

Young white shrimp spend more time in the estuaries than do brown shrimp, and also penetrate them to a greater degree (Burkenroad 1934, Gunter 1950, Lindner and Anderson 1956). Because of their longer stay in the estuaries, they reach a large size there (115-140 mm) than do brown shrimp. Therefore, white shrimp are subject to much more intense inshore exploitation, and support an important sport and commercial estuarine fishery.

Anderson al. (1949) reported that larval development in white shrimp took two to three weeks, with transformation to the postlarval stage generally occurring inside the estuary. Ripe females have been collected inside bays and estuaries, indicating some spawning may occur there. On occasion, spawning has been noted very close to shore in the vicinity of inlets. Everything considered, white shrimp postlarvae are much less dependent on the vagarities of ocean currents for transport to the estuaries than are brown shrimp. Considerable evidence also indicates that individual females may spawn more than once during the season. Lindner and Bailey (1968) noted that the percent of spent females remains low throughout the summer and there is evidence of subsequent redevelopment of ovaries.

At depths within which white shrimp are assumed to spawn (7.6 m station), Temple and Fischer (1967) found the greatest abundance of <u>Penaeus</u> sp. larvae from May to August. Kutkuhn et al. (1969) stated that penaeid larvae are found closer than ten kilometers from shore off Texas only during the summer, when white shrimp are spawning. In the nearshore zone (7.3-13.7 m) off the south Texas OCS area, Angelovic (1976) reported two peaks in abundance of penaeid larvae, one in spring and the other in early fall, with no larvae being found from April to October. Subrahmanyam

(1971) concluded that summer spawning of penaeid shrimp (presumable white shrimp) off Mississippi Sound occurred mainly at 18 m depths.

Baxter and Renfro (1967) found that by June advanced postlarval and early juvenile white shrimp had become abundant in Galveston Bay, with both brown and white shrimp being present through the summer. They reported that white shrimp postlarvae entered Texas estuaries from May through October, appearing in distinct waves. Results of the TPWD surveys conducted from 1960 to 1970 showed that white shrimp postlarvae often enter bays of the upper Texas coast in several waves from June through October. This suggests pulses in spawning activity or periods when conditions are favorable for survival of larvae offshore and/or for transport of larvae to the estuaries. Unlike the situation for brown shrimp, the first wave of white shrimp entering the estuaries is not always the largest or most successful (Moffett 1970). In both 1965 and 1966, white shrimp were scarce in summer and abundant in fall in Galveston Bay. Moffett (1966) noted that the large waves of small white shrimp that appeared in Galveston Bay late in the season in 1966 would contribute to the 1967 catch if conditions were suitable for survival and growth. Moffett (1969) noted that the large numbers of adult white shrimp caught in the spring of 1969 in Texas inshore waters reflected a large late-fall to winter wave of postlarvae Many of these shrimp spent the mild 1968-1969 winter the previous fall. inshore and apparently migrated to the open waters of Galveston Bay in April.

Gaidry and White (1973) found that most white shrimp postlarvae entered Louisiana estuarine waters from June to September. Smaller pulses occurred in early spring and late fall, indicating that spawning occurred in all seasons except winter. Juveniles first appeared in bay catches in June and July, with recruitment generally continuing through September. Largest inshore populations were generally found in April-May and August-September. The spring group migrates offshore in late summer to early fall as adults. Juveniles resulting from late (midsummer to early fall) arriving postlarvae are forced to migrate from the estuaries during cold spells in the fall and winter. They reenter the estuaries in the late winter and early spring at about 100 mm size to complete their growth, migrating offshore in late spring and summer. The populations of the inshore deep lakes and bays from July to December are mainly dependent on recruitment of shrimp from the nursery, while the spring population depends on immigration of stocks of juveniles that overwintered offshore. Highest densities of white shrimp in Gulf waters off Louisiana occurred during the November-January period.

White shrimp are most abundant in Mississippi Sound and Mobile Bay in the summer and fall (Benson 1982). Spawning apparently occurs in the open Gulf from March to October (GMFMC 1981). In Mississippi and Alabama, postlarvae recruitment to the estuaries extends from May through October (Christmas et al. 1966; Loesch 1965). Christmas (1966) observed white shrimp postlarvae in greatest numbers in Mississippi Sound in June and August, while Christmas et al. (1966) found highest numbers of white shrimp postlarvae in October. Loesch (1976) noted that white shrimp migration from Mobile Bay occurred in two stages. The first occurred in midsummer and involved migration of subadults from shallow estuaries to the open bay. The second stage occurred in midfall, and involved the offshore migration of this same group. He reported that larger shrimp (that apparently overwintered offshore) enter lower Mobile Bay during the late winter, and migrated offshore by the end of June. Christmas et al. (1976) reported that adult white shrimp comprised over half the penaeid catch in Mississippi estuarine waters during midfall to midwinter during some years. Christmas et al. (1973) reported two distinct size groups of white shrimp in Mississippi Sound in the spring. The larger shrimp were in the Sound in April, but were not collected during the previous December to March or after June. They apparently migrated from the Gulf into Mississippi Sound in early spring. Females from this group had fully developed gonads, and apparently migrated offshore to spawn by the end of June. The second size group were juveniles which appeared in May. Early juveniles were still apparent in November. Ingle (1956) reported continuous recruitment of white shrimp during the spring to fall period in the bays of the north Florida Gulf coast.

Growth rates of white shrimp have been estimated from 0.6 to 2.2 mm/day, with temperature being a critical factor. Lindner and Anderson (1956) found that growth decreased with size. Loesch (1965) reported that white shrimp in Mobile Bay grew 14 to 27 mm/month in winter and 18 to 30 mm/month in summer, with growth rates of up to 65 mm/month being possible in the very young. Occasionally, winter conditions can be severe, and white shrimp kills have been reported by Gunter (1941), Gunter and Hildebrand (1951), and Joyce (1965). In 1966, heavy mortality was experienced by young white shrimp that entered Galveston Bay as part of a late arriving postlarval wave (Moffett 1966). Chapman (1964) found few white shrimp in Galveston Bay in late February after large numbers had been found in mid January. Apparently, heavy mortality was experienced when temperatures dropped to about 4° C. Prerecruitment waves of white shrimp usually moved from back bays to primary bays during the first "norther" of the fall. At this time they first became vulnerable to the inshore fishery.

Lindner and Anderson (1956) reported that white shrimp on the Continental Shelf east of the Mississippi River to Mobile Bay tend to migrate westward toward the Mississippi River during summer and fall. It is unclear whether or not these shrimp migrate across the narrow shelf off the southern tip of the delta to the central and western Louisiana shelf, where the majority of the white shrimp production occurs.

#### Pink Shrimp

Because the pink shrimp is relatively uncommon in the central Gulf, its life history in the Tuscaloosa Trend study area is not well known. Most information on pink shrimp life history comes from the south Florida shelf, where pink shrimp dominate the commercial catch of penaeid shrimp. In this region, spawning (at depths of 25 to 50 m) and recruitment to the estuaries occur more or less continuously, with peaks of activity from spring through fall (Ingle et al. 1959). Further north in Florida (in the areas from Tampa Bay to Apalachicola Bay), most spawning appears to occurs in summer (Christmas and Etzold 1977). Spawning apparently occurs in the Gulf off Mississippi Sound from May to December at depths of between 4 and 52 m (GMFMC 1981), with most recruitment to the estuaries occurring over this same period. Pink shrimp are relatively uncommon in Mississippi estuaries (Christmas et al. 1976). In Mobile Bay, Loesch (1965) captured relatively few pink shrimp, and all these were taken from October to May. All of those collected in October and November were found at the lower end of the bay, probably indicating that they had been driven from the shallow estuaries by low temperatures and/or were migrating to the open Gulf. Christmas et al. (1973) reported the largest catch of pink shrimp in Mississippi Sound in October, with all of the larger catches occurring from August through October.

#### <u>Seabobs</u>

Very little is known regarding seabob ecology, with the only directed study being that of Juneau (1977) in Louisiana. It appears that seabobs differ from the <u>Penaeus</u> spp. by not being estuarine dependent, although they generally occur in inland waters. Juneau (1977) concluded that the seabob spawning season off Louisiana begins in July and August, and may extend to as long as December. Small non-gravid females were collected in relatively large numbers in the very nearshore Gulf between December and March. These shrimp probably represented the production that resulted from spawning during the previous summer and fall. The seabob is apparently quite restricted in depth distribution in the open Gulf, and may prefer soft clayey bottoms out to about six or seven fm (GMFMC 1981).

# Factors Affecting Shrimp Populations

For many years it has been assumed that the critical phases in the penaeid shrimp life history involve transport of larvae and postlarvae to the estuaries and survival and growth of the postlarvae and juveniles in the estuaries. Numerous investigators have attempted to predict commercial shrimp catch from postlarvae and juvenile abundance either in Gulf estuaries or in the shallow Gulf in the vicinity of estuaries.

Based on the results of six years of sampling near the entrance to Galveston Bay, Berry and Baxter (1969) concluded that postlarval abundance was not a good indicator of subsequent commercial catch. While collections from March to April during the 1960-1966 period showed similar abundances of postlarvae, there were significant differences in commercial catch during these years. They concluded that the relative sizes of the shrimp stocks developing in Galveston Bay were better reflected by bait shrimp (juvenile) landings than by postlarval abundance. This indicates that conditions in the estuaries subsequent to the arrival of the postlarvae and early in the juvenile growth period had greater influence on the subsequent abundance of shrimp offshore. Moffett felt that favorable large scale water movements in the Gulf of Mexico in spring, resulting from onshore winds, can carry more than the usual number of postlarvae to the expanded Gaidry and White (1973) noted that postlarval data alone has nurseries. proven inconsistent in Louisiana's efforts to predict commercial shrimp catch. Therefore, Louisiana has relied heavily on juvenile indices.

Because of these and other similar results, most studies addressing the influence of environmental factors on shrimp production have concentrated on processes acting inside the estuaries. St. Amant et al. (1963) showed that populations of postlarval brown shrimp were quite responsive to hydrologic conditions that existed during and shortly after

their arrival at Louisiana estuaries. St. Amant et al. (1963, 1965), and Ford and St. Amant (1971) all found increasing numbers of juveniles and maximum postlarval densities of brown shrimp in Louisiana estuaries when water temperature remained at or above  $18^{\circ}$  C and  $20^{\circ}$  C, respectively. Barrett and Gillespie (1973) found that unseasonally low temperatures in Louisiana estuarine waters, especially during the early weeks following spawning, were critical factors in the survival of recently arriving larval and postlarval brown shrimp. They suggested that the number of hours that temperature remained below  $20^{\circ}$  C. after April 8 was important in determining brown shrimp production for the year. It appears that an average temperature of 20° C is minimum for "normal" growth of brown shrimp (1 mm/day). As temperatures increase above 20° C during the spring, accelerated growth could be expected. If temperature remained below 20 C for less than 33 hours, other factors, such as rainfall, river discharge and availability of food became important. Berry and Baxter (1969), found a strong relationship between average April air temperature at Galveston and time of peak abundance of juvenile shrimp in Galveston Bay, indicating that in colder years, growth is slower and offshore migration is later. Moffett (1967) noted that a good brown shrimp season in Texas was likely if postlarval immigration was late, thereby avoiding the colder late winter to early spring period.

Salinities are also important in determining shrimp production by determining the size of the estuarine area where shrimp can survive and grow. St. Amant et al.( 1963, 1965) found denser populations of juvenile brown shrimp and larger postlarvae at salinities above 15 ppt. Gaidry and White (1973) reported that above average abundance of brown shrimp in Louisiana estuaries during 1970-1972 resulted from abnormally high salinity Upper levels in the estuaries during the spring of these three years. to lower bay salinities of 15 and 20 ppt, respectively, appeared to be ideal for brown shrimp production (Barrett and Gillespie 1973). After April, salinity appears to be the dominant factor influencing brown shrimp Annual brown shrimp catch appeared distribution in Louisiana estuaries. to be related to the number of acres of estuarine surface water in coastal Louisiana above 10 ppt salinity in the spring. The large amount of freshwater which entered the estuaries in 1973 resulted in a drastic reduction in the amount of nursery area as compared to 1972. Moffett (1966) noted that reduced salinities in Texas estuaries resulting from increased runoff can act similar to temperature in moving juvenile shrimp from peripheral bays and nursery areas to the open bays where they can Prolonged flooding of marshes during long-lasting periods be exploited. of high spring tides and prevailing onshore winds along the upper Texas coast apparently increase brown shrimp production by increasing the amount of available nursery space (Moffett 1972). Turner (1977) found a strong linear correlation ( $r^2 = 0.69$ ) between the area of intertidal land and yield of penaeid shrimp caught in inshore Louisiana waters. The percent of the total inshore catch that were brown shrimp was directly related to the percent of salt marsh in the estuaries.

Gunter and Edwards (1969) found no significant correlation between brown shrimp catch and rainfall in Texas. However, Moffett (1971) found brown shrimp landings in Texas for the 1962-1970 period to be inversely related to spring rainfall. Barrett and Gillespie (1973) and Barrett and Ralph (1976) concluded that good brown shrimp catches occurred in Louisiana when salinities were average (due to low spring rainfall and river discharge), and water temperatures in the spring were mild. Higher than average salinities in Louisiana estuaries were related to increased production of both white and brown shrimp. However, as seen during the drought of the early 1950s, excessively high salinities in summer can apparently lead to reduced white shrimp production.

In an analysis of the relationship of commercial shrimp catch to environmental variables along the northeast Texas coast, Comiskey et al. (1982) found annual and spring river discharge as well as annual, spring and winter precipitation to be negatively related to brown shrimp catch on the Texas continental shelf, while the relationship with summer river discharge was positive. Lagged river discharge variables were also negatively related to brown shrimp catch. Both salinity and temperature variables for the February to April period were positively related to brown shrimp catch. March zonal Ekman transport was highly and positively correlated with brown shrimp catch, while other wind, tide and Ekman transport variables for the period February to April were also related. Catches in primary and secondary bays in spring were most closely related to offshore catch.

Annual river discharge and (one year) lagged annual river discharge as well as precipitation have been shown to be positively related to catch in Texas (Gunter and Edwards 1969, Comiskey et al. 1982). The strength of the 1973 white shrimp year class that yielded a record high 14.9 million pounds in Texas may have been positively related to the abundant rainfall during the late spring and summer (Moffett and McEachron, 1973). Gunter and Hildebrand (1954) had previously found a positive correlation between white shrimp production and rainfall in Texas but their work related mainly to the early 1950s when the effects of a severe and prolonged drought were obvious. Therefore, it appears that in Texas white shrimp catch shows trends much the opposite of those of brown shrimp with regard to variables that influence estuarine salinity. During 1973, a record catch of white shrimp was recorded in Texas, but brown shrimp catch was relatively poor due to excessive river discharge and runoff as well as abnormally low Under "normal" conditions in Louisiana waters, temperatures in April. white shrimp catch is positively related to estuarine salinity in the summer months.

Barrett and Ralph (1976) found that years of good brown shrimp catch in Louisiana were often not good years for white shrimp catch, and vice versa. They concluded that if river discharge and rainfall remained relatively low throughout the summer, white shrimp production in Louisiana should be well above average. The apparently different response of white shrimp in Louisiana and Texas to discharge and estuarine salinity may be related to different ambient salinities of the estuaries in the two states.

Temperature does not appear to be related to white shrimp catch in Texas (Comiskey et al. 1982). In this same study, BCF-NMFS postlarval catch/effort variables for the summer months were important predictor variables for catch and catch/effort of white shrimp, as was bay catch/effort. All were positively related to white shrimp catch offshore. Wind and tide variables during the early to midsummer period (June to August) were closely related to white shrimp catch, possibly by expanding the size of the estuarine nursery areas. As expected from the more nearshore location of their spawning grounds, Ekman transport variables were generally not strongly related to white shrimp catch (Comiskey et al. 1982).

# Historical Trends

In the historical record there has been a notable change in trends in catch of the two major species, brown and white shrimp. Prior to the development of the otter trawl in 1917, shrimp were commercially harvested with haul seines (GMFMC 1981). This restricted the fishing to nearshore areas, resulting in the exploitation of mainly white shrimp. Until the late 1940s most trawling was done from relatively small vessels rigged with single trawls, fishing within approximately six miles of the coast. Lindner and Anderson (1956) stated that white shrimp made up 95 percent of the total catch off the Louisiana coast prior to WW II. During the 1950s, increased market demand and the discovery of new brown shrimp grounds further offshore resulted in a rapid expansion of the industry. A large decline in white shrimp harvest occurred after 1952, coincident with an The decline in white shrimp catch increase in brown shrimp production. was coincident with increasing estuarine salinities during the summer of 1952 to the spring of 1957, a period of prolonged drought. The subject of extended droughts and their influence on shrimp production was discussed in the works of Hildebrand and Gunter (1953), Gunter and Hildebrand (1954), Parker (1955), and Viosca (1958). Because young white shrimp generally display a greater propensity for less saline water than do other species, it was assumed that higher estuarine salinities accompanying the drought caused environmental stress and reduced habitat carrying capacity, resulting in a lower annual production of white shrimp.

Through the 1960s the Gulf coast shrimp fishery evolved into the most valuable fishery in the U.S., with dockside values in 1977 exceeding \$355 million (GMFMC 1980).

## 2.5.5.2 Analysis Results

# Brown Shrimp

Over all years and months, brown shrimp C and C/A was highest in the western region and lowest in the eastern region at all depths out to 200 m (Figures 18 and 19 and Table 39). However, C and C/A were very low at depths beyond 100 m. In the eastern and western regions, C/A was highest in the inshore waters, while in the central region, C/A was higher offshore out to 40 m. The estuarine waters in the western region appear to be particularly productive, while the offshore area in the eastern region held the smallest stocks. C/A was similar in the inshore waters of the central and eastern regions, a situation far different from that offshore. In offshore waters of the central and western regions, C/A was highest in the 20-40 m depth zone, but was relatively evenly distributed out to 100 m depths. In the eastern region where C was generally low, C/A decreased dramatically from inshore waters to 40 m depth, beyond which no brown shrimp were caught.

The data clearly indicated a trend for declining C/A of brown shrimp going west to east and offshore across the Tuscaloosa Trend study area

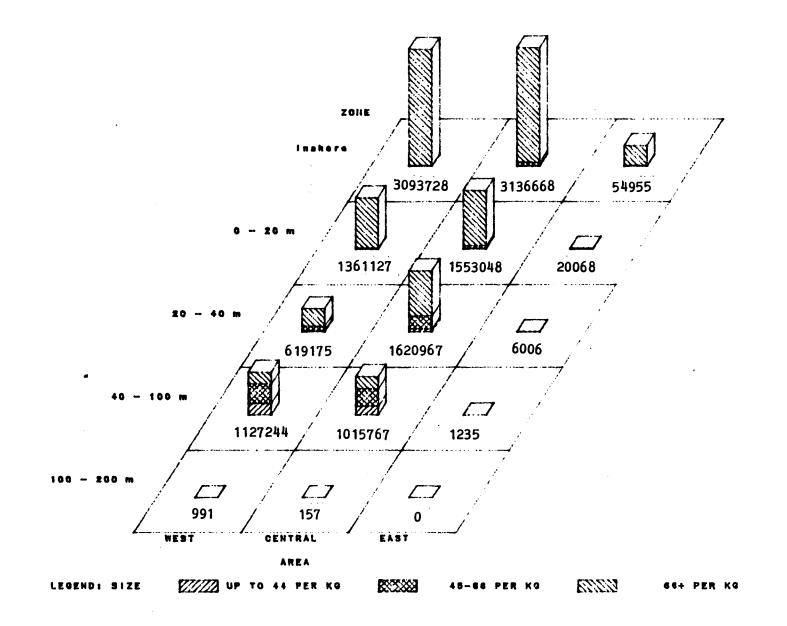



Figure 18. Region by depth by size means of brown shrimp catch (kg, heads on) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

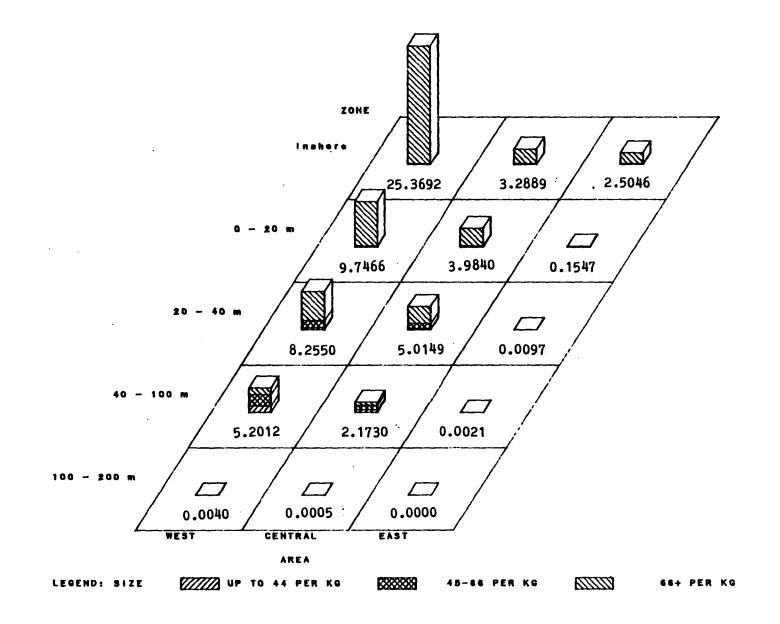



Figure 19. Region by depth by size means of brown shrimp catch/unit water surface area (kg, heads on, per ha)for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

P.AZTECUS	LT 44/KG	44-66/KG	GT 66/KG	TOTAL
WEST				
Inshore	0.0026	0.0293	25.3373	25.3692
0 <b>-</b> 20 m	0.0314	0.1443	9.5709	9.7466
20 <b>-</b> 40 m	0.4035	1.5677	6.2838	8.2550
40 - 100 m	1.3757	2.3906	1.4349	5.2012
100 - 200 m	0.0013	0.0019	8000.0	0.0040
REGION	0.3905	0.7728	6.0989	7.2622
CENTRAL				
Inshore	0.0035	0.1045	3.1809	3.2889
0 - 20 m	0.0343	0.1657	3.7840	3.9840
20 <b>-</b> 40 m	0.2248	1.0758	3.7144	5.0149
40 <b>-</b> 100 m	0.4757	0.9918	0.7055	2.1730
100 - 200 m	0.0000	0.0000	0.0005	0.0005
REGION	0.1271	0.3978	2.4624	2.9873
EAST				
Inshore	0.0068	0.0835	2.4143	2.5046
0 – 20 m	0.0181	0.0473	0.0893	0.1547
20 <b>-</b> 40 m	0.0012	0.0023	0.0062	0.0097
40 - 100 m	0.0005	0.0006	0.0010	0.0021
100 <b>-</b> 200 m	0.0000	0.0000	0.0000	0.0000
REGION	0.0024	0.0128	0.2676	0.2828
STUDY AREA MEANS				
Inshore	0.0040	0.0939	5.1373	5.2351
0 - 20 m	0.0305	0.1378	4.2829	4.4512
20 - 40 m	0.1021	0.4597	1.6505	2.2122
40 - 100 m	0.4104	0.7739	0.5055	1.6899
100 - 200 m	0.0004	0.0005	0.0004	0.0012
	0.1216	0.3108	2.2060	2.6384

Table 39. Region by depth by size means of brown shrimp catch/unit water surface area (kg, heads on, per ha)for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982. (Figure 19). Dramatic declines in both C and C/A were apparent from the central to the eastern regions. The boundary between these regions (see Figure 10) approximates the transition from silty to sandy bottoms in the Tuscaloosa Trend study area.

C/A for the three size classes of brown shrimp showed very different trends with depth out to 100 m (Figure 19). C/A of the size class of smallest shrimp was highest inshore, and decreased consistently with depth. Both size classes of larger shrimp showed just the opposite trend, with C/A increasing consistently from inshore waters out to 100 m depths. For both of these larger size classes, highest C/A was reported in the 40-100 m depth range. The data clearly indicated that the C in the estuaries and the shallow offshore zone (out to 20 m) was composed almost exclusively of shrimp under 100 mm length (equivalent to 86+ per kg., heads on), and the size class of largest shrimp was taken in only token quantities in waters less than 40 m.

Means of brown shrimp C and C/A by month, depth zone and size class are shown in Table 40 and are portrayed in Figure 20. Collectively, they embody the dominant trends in the brown shrimp life cycle. Over the 0-100 m depth range, peak C/A occurred later in the season at greater depths, indicating offshore migration over time. However, monthly trends for C/A inshore and in the shallow Gulf (0-20 m) were virtually identical. Catch of brown shrimp less than 100 mm increases dramatically in inland waters and the shallow offshore zone in May. At this time, the major cohort of brown shrimp resulting from postlarvae which had entered the estuaries in late winter and early spring were approaching adulthood, and were beginning to move offshore. Peaks in C/A occurred during June in the 0-20 and 20-40 m depth zones, during July in the 21-30 m zone and during September in the 40-100 m zone, indicating offshore migration over the entire late spring to early fall period. By October, the only appreciable C of brown shrimp were landed from the 40-100 m depth zone. Lowest C/A was reported in this zone in June, the month of peak C/A in the 0-20 m zone. C/A was clearly more evenly distributed over the year at greater depths (Figure 20). This indicates that the nearshore zone was not the preferred habitat of adult brown shrimp, and was primarily an area through which they must migrate to reach the more offshore and preferred grounds (i.e., 40-100 m depths). Of the four zones with substantial C/A, the inshore waters showed the greatest variability over the year, with both the lowest monthly mean (March) and the highest monthly mean (June).

All three regions showed generally similar seasonal trends, with highest C/A reported during late spring to midsummer (Figure 20). The patterns (but not absolute values) for the central and eastern regions were almost identical, lagging those of the western region by about one month. C/A increased abruptly in May in the western region, but not until June in the central and eastern regions. By September, C/A in the western region was considerably lower than in the previous months, while C/A in the central and eastern regions remained at relatively high levels. This might indicate migration of brown shrimp from the western to the eastern and central regions.

The distinctly different trends over the year in C/A of the different size classes of brown shrimp clearly showed the growth of shrimp populations (Figure 20). The size class of smallest shrimp showed the

P.AZTECUS	LT 44/KG	44-66/KG	GT 66/KG	TOTA
January				
Inshore	0.0005	8000.0	0.0008	0.002
0 – 20 m	0.0021	0.0030	0.0027	0.007
20 <b>–</b> 40 m	0.0097	0.0113	0.0065	0.027
40 <b>—</b> 100 <b>m</b>	0.0398	0.0544	0.0143	0.108
100 <b>-</b> 200 <b>m</b>	0.0000	0.0001	0.0000	0.000
TOTAL	0.0117	0.0156	0.0052	0.032
February				
Inshore	0.0000	0.0001	0.0006	0.000
0 <b>-</b> 20 m	0.0016	0.0026	0.0019	0.006
20 <b>-</b> 40 m	0.0039	0.0080	0.0045	0.016
40 <b>—</b> 100 <b>m</b>	0.0469	0.0434	0.0107	0.101
100 - 200 m	0.0001	0.0002	0.0000	0.000
TOTAL	0.0121	0.0122	0.0038	0.028
March				
Inshore	0.0000	0.0001	0.0004	0.000
0 - 20 m 20 - 40 m	0.0006	0.0013	0.0003	0.002
	0.0036	0.0048	0.0039	0.012
40 - 100 m 100 - 200 m	0.0610	0.0352	0.0054	0.101
100 - 200  m	0.0001	0.0001	0.0000	0.000
TOTAL	0.0153	0.0094	0.0022	0.026
April				
Inshore	0.0000	0.0002	0.0011	0.001
0 - 20 m	0.0010	0.0009	0.0051	0.006
20 <b>-</b> 40 m	0.0040	0.0025	0.0030	0.009
40 <b>-</b> 100 m	0.0563	0.0155	0,0050	0.076
100 - 200 m	0.0001	0.0001	0.0000	0.000
TOTAL	0.0143	0.0043	0.0027	0.021
May		_		
Inshore	0.0000	0.0002	1.1266	1.126
0 - 20 m	0.0027	0.0052	0.9126	0.920
20 - 40 m	0.0044	0.0079	0.0626	0.074
40 - 100 m	0.0342	0.0217	0.0145	0.070
100 - 200 m	0.0000	0.0000	0.0002	0.000
TOTAL	0.0093	0.0073	0.4008	0.417

Table 40. Month by depth by size means of brown shrimp catch/unit water surface area (kg, heads on, per ha)for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

P.AZTECUS	LT 44/KG	44-66/KG	GT 66/KG	TOTA
June				
Inshore	0.0005	0.0026	2.4466	2.449
0 – 20 m	0.0053	0.0153	1.7825	1.803
20 - 40 m	0.0109	0.0205	0.4784	0.509
40 - 100 m	0.0101	0.0096	0.0287	0.048
100 - 200 m	0.0000	0.0000	0.0001	0.000
TOTAL	0.0052	0.0087	0.9101	0.924
July				
Inshore	0.0004	0.0174	1.1333	1.151
0 - 20 m	0.0028	0.0301	1.1664	1.199
20 <b>-</b> 40 m	0.0080	0.0464	0.5531	0.607
40 - 100 m	0.0109	0.0218	0.0900	0.122
100 - 200 m	0.0000	0.0000	0.0000	0.000
TOTAL	0.0045	0.0219	0.5447	0.571
August				
Inshore	0.0015	0.0454	0.3219	0.368
0 - 20 m	0.0047	0.0420	0.3308	0.377
20 - 40 m	0.0156	0.1417	0.3909	0.548
40 - 100 m	0.0208	0.0954	0.1294	0.245
100 - 200 m	0.0000	0.0000	0.0000	0.000
TOTAL	0.0089	0.0657	0.2237	0.298
September Inshore	0.0004	0.0211	0.0708	0.092
0 - 20 m	0.0022	0.0146	0.0281	0.044
20 - 40 m	0.0167	0.1281	0.0694	0.214
40 - 100 m	0.0290	0.1827	0.0753	0.287
100 - 200 m	0.0000	0.0000	0.0000	0.000
TOTAL	0.0104	0.0746	0.0517	0.136
October				
Inshore	0.0003	0.0039	0.0233	0.027
0 - 20 m	0.0025	0.0099	0.0212	0.033
20 - 40 m	0.0089	0.0481	0.0280	0.085
40 - 100 m	0.0245	0.1450	0.0430	0.212
100 - 200 m	0.0000	0.0000	0.0000	0.000
TOTAL	0.0079	0.0457	0.0238	0.077

.

:

Table 40. Continued.

•

Table 40. (	Continued.
-------------	------------

;

.

•

P.AZTECUS	LT 44/KG	44-66/KG	GT 66/KG	TOTAI
November				
Inshore	0.0002	0.0013	0.0094	0.0110
0 - 20 m	0.0023	0.0074	0.0217	0.0313
20 - 40 m	0.0069	0.0209	0.0285	0.0563
40 <b>-</b> 100 m	0.0304	0.0774	0.0511	0.1588
100 <b>-</b> 200 m	0.0000	0.0000	0.0000	0.000
TOTAL	0.0088	0.0236	0.0225	0.0549
December				
Inshore	0.0002	0.0007	0.0025	0.0031
0 - 20 m	0.0027	0.0055	0.0096	0.0178
20 <b>-</b> 40 m	0.0096	0.0195	0.0217	0.0509
40 - 100 m	0.0467	0.0719	0.0379	0.1566
100 - 200 m	0.0000	0.0000	0.0000	0.0000
TOTAL	0.0133	0.0216	0.0149	0.0498

.

.

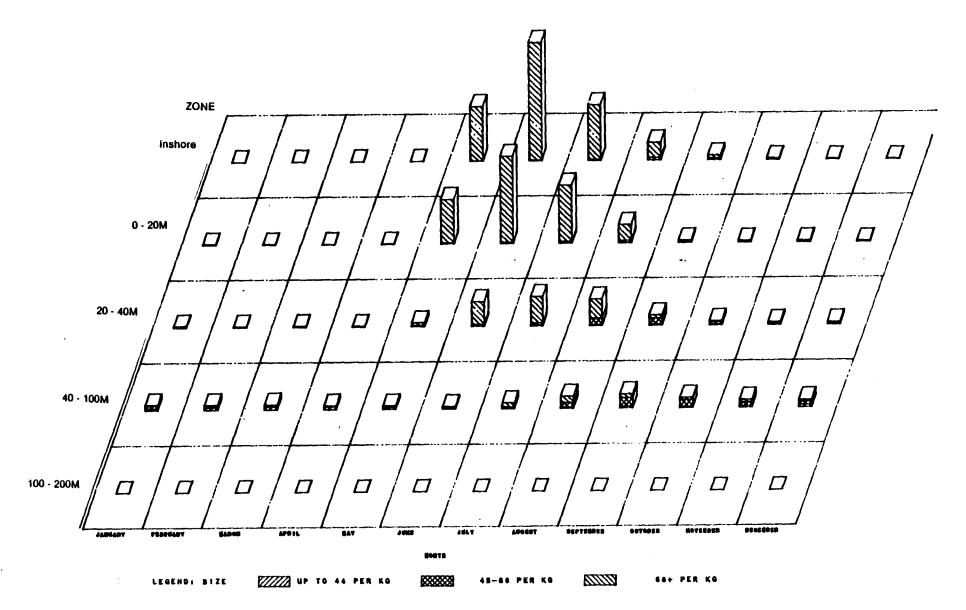



Figure 20. Month by depth by size means of brown shrimp catch/unit water surface area (kg, heads on, per ha)for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

greatest variability in C/A over the year, with both the lowest (March) and highest (June) monthly means. The size class of largest shrimp showed the smallest range of monthly means over the year (Figure 20 and Table 40). Lowest C/A of the size class of largest shrimp occurred in June and July, months of peak C/A of the size class of smallest shrimp. For the intermediate size class, peaks in C/A occurred during the period August to October. For the size class of largest shrimp the winter and early spring period included those months with peak C/A. The results indicate that as the year progresses, there is a gradual change from smaller shrimp inshore to larger shrimp offshore.

Over the period 1960-1982, brown shrimp C and C/A in the central and western regions of the Tuscaloosa Trend study area generally showed similar trends, but years of peak C/A did not necessarily coincide (Figure 21 and Table 41). Lower C/A was reported for both regions during the 1973-1975 period, probably attributable to both poor year classes of brown shrimp and less fishing effort. Otherwise since the middle 1960s, C/A has remained relatively stable in both regions. However, there are some indications that the western region has become relatively more important in recent years. Peaks in C/A occurred there during the period 1976-1982, while for the central region, highest C/A occurred during the period 1967-In the western region, offshore C generally increased in absolute 1972. terms as well as relative to the estuarine C through the 23 year period, although it was generally low during the overall poor years of the early 1970s (Figure 21). Inshore C in the western region was relatively highest from 1967 to 1972. In the central region, offshore C was highest from 1965 to 1972 and in 1977. In all these years relatively higher C was also reported inshore. While C was low both inshore and offshore during the poor years of 1973-1975, inshore C has been relatively high since 1975. Except for 1977, offshore C remained relatively low during this same period. The different trends in offshore C during this time in the central and western regions represented the greatest difference in brown shrimp C in the Tuscaloosa Trend study area. In the eastern region, where C/A was generally lower, C/A was relatively high in the early years (up to 1968) and during the last several years, with lower C/A reported during the period 1968-1976.

There has been some concern that in more recent years, brown shrimp reaching the market are becoming smaller in size. Overfishing of stocks of subadults could affect recruitment and could also represent a loss of potential C of larger, more valuable shrimp (later in the season). Results of these analysis indicated that there were two periods when the relative importance of size classes shifted (Figure 21). The first occurred during the period 1972-1975 when C/A of the size classes of smallest and intermediate sized shrimp were among the lowest recorded, and C/A of the size class largest shrimp was among the highest. This shift in the relative importance of the several size classes was probably attributable to less fishing pressure on the small stocks of subadults, permitting a larger percentage than usual to attain large size. The 1973-1974 period in general, and the winters and springs of both years, in particular, were characterized by abnormally high rainfall in the eastern U.S., causing high river flows and lowered estuarine salinities in the springtime. During 1975, the Gulf shrimp industry was crippled by high fuel costs, making shrimping relatively unprofitable, and substantially reducing effort. The

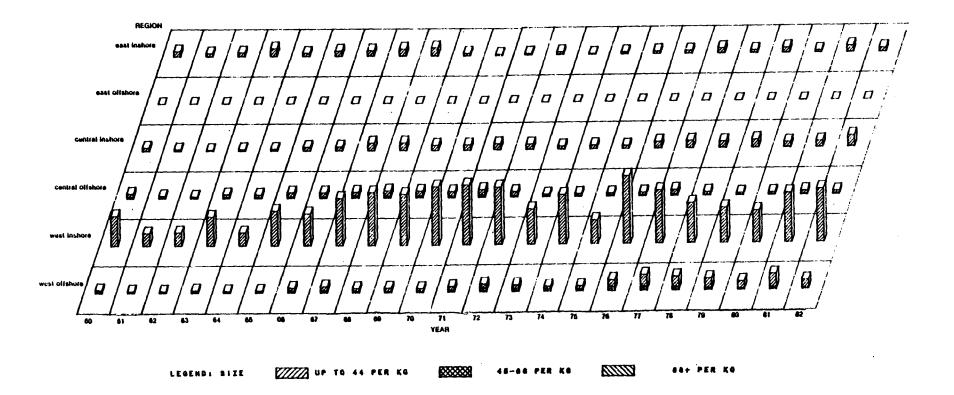



Figure 21. Year by region by size means of brown shrimp catch/unit water surface area (kg, heads on, per ha)for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

P.AZTEC	US		LT 44/KG	44-66/KG	GT 66/KG	TOT
1960						
	West	Offshore	0.5900	0.8068	0.5897	1.98
	West	Inshore	0.0019	0.0007	18.8249	18.82
	Central	Offshore	0.2077	0.9716	1.9894	3.16
	Central	Inshore	0.0007	0.1265	2.1602	2.28
	East	Offshore	0.0000	0.0000	0.0000	0.00
	East	Inshore	0.0007	0.0284	3.3143	3.34
		TOTAL	0.1392	0.4066	1.5892	2.13
1961						
	West	Offshore	0.3071	0.5274	0.2940	1.12
	West	Inshore	0.0057	0.0257	7.9379	7.96
	Central	Offshore	0.1239	0.3542	1.0660	1.54
	Central	Inshore	0.0003	0.0485	1.1424	1.19
	East	Offshore	0.0005	0.0011	0.0028	0.00
	East	Inshore	0.0025	0.0953	1.9963	2.09
		TOTAL	0.0772	0.1851	0.8068	1.06
1962						
		Offshore	0.1491	0.3199	0.6227	1.09
		Inshore	0.0001	0.0119	8.4133	8.42
		Offshore	0.0939	0.2116	0.8815	1.18
		Inshore	0.0014	0.0355	0.7127	0.74
		Offshore	0.0042	0.0164	0.0356	0.05
	East	Inshore	0.0229	0.1707	2.2761	2.46
		TOTAL.	0.0493	0.1223	0.7570	0.92
1963						
		Offshore	0.1445	0.5071	0.9606	1.61
		Inshore	0.0011	0.0000	18.2195	18.22
		Offshore	0.2242	0.4039	1.9753	2.60
		Inshore	0.0009	0.1054	1.0297	1.130
		Offshore	0.0048	0.0072	0.0071	0.01
	East	Inshore	0.0191	0.1254	4.8241	4.968
1064		TOTAL	0.0852	0.2091	1.4850	1.77
1964	11+		0 0060	0 4400	0.000	4 40
		Offshore	0.2362	0.1183	0.8442	1.19
		Inshore	0.0000	0.0000	8.3012	8.30
		Offshore	0.1825	0.3554	1.7723	2.31
		Inshore	0.0004	0.0132	1.2115	1.22
		Offshore	0.0017	0.0015	0.0066	0.00
	East	Inshore	0.0009	0.0066	1.9866	1.99
		TOTAL	0.0842	0.1190	1.1017	1.30

Table 41. Year by region by size means of brown shrimp catch/unit water surface area (kg, heads on, per ha)for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

P. AZTECUS	LT 44/KG	44-66/KG	GT 66/KG	TOTAL
1965				
West Offshore	0.2663	0.5051	0.5644	1.3358
West Inshore	0.0025	0.0030	21.6949	21.7003
Central Offshore	0.3650	0.6130	2.5875	3.5655
Central Inshore	0.0016	0.0375	2.4224	2.4614
East Offshore	0.0005	0.0023	0.0033	0.006
East Inshore	0.0202	0.0355	3.2528	3.3085
TOTAL	0.1401	0.2500	1.8643	2.254
1966			• ·	
West Offshore	0.3266	0.9378	1.8459	3.110
West Inshore	0.0000	0.0448	20.0465	20.091
Central Offshore	0.2923	0.7215	2.5557	3.569
Central Inshore	0.0012	0.0254	2.5448	2.571
East Offshore	0.0003	0.0010	0.0130	0.0142
East Inshore	0.0020	0.1907	3.2669	3.4596
TOTAL	0.1271	0.3444	2.0189	2.490
1967			0 7000	1 000
West Offshore	0.2861	0.9842	2.7320	4.002
West Inshore	0.0000	0.0170	29.5987	29.615
Central Offshore	0.4111	1.0925	2.3249	3.828
Central Inshore	0.0012	0.0838	4.8726	4.957
East Offshore	0.0000	0.0000	0.0042	0.004 4.440
East Inshore	0.0138	0.1087	4.3177	4.440
TOTAL	0.1552	0.4608	2.7488	3.364
1968	-		4 m + 4 H	
West Offshore	0.3623	0.7926	1.7164	2.871
West Inshore	0.0000	0.0034	33.1504	33.153
Central Offshore	0.3462	1.0236	3.2817	4.651
Central Inshore	0.0029	0.0938	4.8980	4.994
East Offshore	0.0007	0.0004	0.0007	0.001
East Inshore	0.0057	0.1235	5.0169	5.146
TOTAL	0.1476	0.4175	2.9910	3.556
1969			o 4014	
West Offshore	0.1873	0.6626	2.1941	3.044
West Inshore	0.0000	0.0000	31.9865	31.986
Central Offshore	0.2920	1.0759	2.8394	4.207
Central Inshore	0.0003	0.0238	3.4011	3.425
East Offshore	0.0000	0.0015	0.0034	0.004
East Inshore	0.0004	0.0106	1.6101	1.621
TOTAL	0.1076	0.3975	2.5000	3.005

--

Table 41. Continued.

P.AZTECUS		LT 44/KG	44-66/KG	GT 66/KG	TOTAL
1970					
	Offshore	0.4062	0.7090	1.4582	2.5734
West	Inshore	0.0001	0.0020	36.5195	36.5215
Central	Offshore	0.3087	0.9716	2.7359	4.0162
Central	Inshore	0.0001	0.0759	3.5027	3.5787
East	Offshore	0.0000	0.0006	0.0024	0.0030
East	Inshore	0.0001	0.0106	0.8836	0.8941
	TOTAL.	0.1422	0.3837	2.4616	2.987
1971					
	Offshore	0.4498	0.6223	2.3945	3.4666
	Inshore	0.0018	0.1456	37.2248	37.3722
	Offshore	0.3461	1.0233	3.4647	4.8341
	Inshore	0.0016	0.0605	3.7270	3.7891
	Offshore	0.0009	0.0000	0.0006	0.0015
East	Inshore	0.0006	0.0060	0.9928	0.9991
	TOTAL	0.1593	0.3864	2.8541	3.3998
1972 Veet		0 7044	4 6719	0.6904	
	Offshore	0.7314	1.6748	2.6801	5.086
	Inshore	0.0186	0.1821	35.8095	36.0102
	Offshore	0.2339	0.6993	2.5824	3.5156
	Inshore Offshore	8000.0	0.0962 0.0043	3.4331 0.0000	3.530 ⁴ 0.0046
	Inshore	0.0003 0.0194	0.1062	1.5630	1.6886
East	TUSIOLE			1.5050	
1072	TOTAL	0.1672	0.4525	2.5843	3.2040
1973 Maat	Offshore	0 0117	1.0023	2.3274	4.2413
	Inshore	0.9117 0.0053	0.0365	22.1298	22.1715
	Offshore	0.1584	0.3339	1.0202	1.5126
	Inshore	0.0025	0.0792	2.0557	2.1374
	Offshore	0.0008	0.0013	0.0015	0.0036
	Inshore	0.0006	0.0096	0.3885	0.3987
	TOTAL	0.1701	0.2466	1.4926	1.9094
1974					
	Offshore	0.7299	1.0598	1.4360	3.2257
	Inshore	0.0000	0.0058		
	Offshore	0.1533	0.3080	1.3727	1.8340
	Inshore	0.0002	0.0226	2.5051	
	Offshore	0.0011	0.0018		
East	Inshore	0.0020	0.0526	1.1967	1.2513
	TOTAL	0.1434	0.2384	1.7850	2.1668

# Table 41. Continued.

.

P.AZTECUS		LT 44/KG	44-66/KG	GT 66/KG	TOTA
1975					
	Offshore	0.5645	0.8004	1.9685	3.333
	Inshore	0.0002	0.0036	14.9890	14.992
Central	Offshore	0.1963	0.3568	1.4336	1.986
Central	Inshore	0.0000	0.0298	2.0534	2.083
East	Offshore	0.0000	0.0000	0.0000	0.000
East	Inshore	0.0001	0.0026	1.6009	1.603
	TOTAL	0.1323	0.2151	1.4453	1.792
1976					
	Offshore	0.9953	1.5206	4.4917	7.007
	Inshore	0.0022	0.0113	42.3090	42.322
	Offshore	0.1541	0.5420	1.6072	2.303
	Inshore	0.0012	0.1080	4.1898	4.299
East	Offshore	0.0000	0.0002	0.0001	0.000
East	Inshore	0.0010	0.0207	1.7636	1.785
1077	TOTAL	0.1798	0.3806	2.8505	3.410
1977 Host	Offshore	0 5549	1 0620	7 4609	0.007
	Inshore	0.5548	1.9630	7.4698	9.987
	Offshore	0.0177	0.0730	33.1568	33.247
	Inshore	0.0934 0.0021	0.7667 0.1588	2.7668	3.627
	Offshore	0.0000	0.0000	4.5469 0.0200	4.707
	Inshore	0.0004	0.1908	3.0586	0.020
	100101 6				5.249
	TOTAL	0.1030	0.5216	3.4983	4.122
1978					
	Offshore	0.5988	1.5887	6.6038	8.791
	Inshore	0.0028	0.0498	25.0402	25.092
	Offshore	0.0711	0.3175	1.8631	2.251
	Inshore	0.0026	0.1345	4.0073	4.144
	Offshore	0.0032	0.0021	0.0104	0.015
East	Inshore	0.0142	0.1276	1.6846	1.826
1070	TOTAL	0.1041	0.3377	2.7853	3.227
1979 West	Offshore	0 5264	0 0046	6 0 4 0 9	
		0.5364	0.8816		7.4287
	Inshore	0.0000	0.0035	•	
	Offshore Inshore	0.0794	0.1498	1.1683	1.3975
	Insnore Offshore	0.0013	0.1085	5.0911	5.2009
	Inshore	0.0051 0.0210	0.0250 0.1006	0.0319 3.0286	0.0620
	TOTAL	0.0986	0.1948	2.6977	2.9911

.

Table 41. Continued.

••

P.AZTECUS		LT 44/KG	44-66/KG	GT 66/KG	TOTA
1980					
	Offshore	0.3405	0.6436	4.4302	5.414
West	Inshore	0.0000	0.0078	20.1248	20.132
Central	Offshore	0.1136	0.3234	1.2702	1.707
Central	Inshore	0.0456	0.3859	3.0294	3.460
East	Offshore	0.0187	0.0316	0.0339	0.084
East	Inshore	0.0013	0.1137	1.1966	1.311
	TOTAL	0.0930	0.2632	2.0228	2.379
1981					
	Offshore	0.5136	1.1296	8.2214	9.8640
West		0.0000	0.0324	31.0078	31.040
Central		0.1125	0.3112	2.0738	2.497
Central	Inshore	0.0026	0.0854	3.8602	3.9482
East		0.0000	0.0001	0.0015	0.0017
East	Inshore	0.0056	0.1267	3.9486	4.0809
1982	TOTAL	0.1026	0.2632	3.2656	3.6314
-	Offshore	0.2792	0.8645	4.7159	5.8596
West	Inshore	0.0000	0.0131	33.2950	33.3082
Central	Offshore	0.1724	0.5145	1.4893	2.1762
Central	Inshore	0.0100	0.4647	6.7626	7.2374
East	Offshore	0.0000	0.0010	0.0153	0.0163
East	Inshore	0.0016	0.1582	2.3601	2.5199
	TOTAL	0.0884	0.3527	3.1311	3.5722

Table 41. Continued.

.

1973-1975 period was preceeded by periods of low C/A for all size classes in the early 1960s and relatively high C/A for all size classes during the middle 1960s to 1972.

The second period when there appeared to be a major shift in the relative importance of the several size classes was 1977-1982. During this period there were several years of high C/A of the size class of smallest shrimp, with lower than average C/A of this size class reported only during 1980. Relatively high C/A was also reported for the intermediate size class during several recent years. C/A for the size class of largest shrimp has been consistently low during this six year period, approaching the low values reported during the early 1960s when less effort was expended in the more offshore waters where large brown shrimp reside.

The trends for the several size classes of brown shrimp by year and zone (Figure 22) elaborate on these trends. Trends in C/A with depth differed considerably between the two periods of generally poor C as well as the two periods of relatively higher C. During the early 1960s, C/A was relatively low at all depths and especially so in the 40-100 m zone. In the early 1970s, C in the 40-100 m depth zone was relatively good, especially for larger shrimp. The early period of relatively higher C (1962-1972) differed from the more recent period of relatively higher C in that more small shrimp were being harvested in the shallow Gulf (0-20 m depths), and less larger shrimp were being harvested from the deeper Gulf.

#### White Shrimp

White shrimp C and C/A decreased consistently going west to east across the Tuscaloosa Trend study area, with the trend being consistent across all depths zones (Figures 23 and 24, and Table 42). However, the relative importance of inshore and offshore C changed with region. In the western and central regions, inshore C/A was less than but similar to that in the shallowest Gulf (0-20 m). In the eastern region, where white shrimp C/A was generally low, C in the estuaries dominated total C. Offshore C/A was approximately two orders of magnitude lower in the eastern region compared to the central region, indicating that those white shrimp raised in the estuaries of the eastern region probably migrate to the central region once they move offshore.

C/A decreased consistently with depth across the entire study area. The vast majority of white shrimp were caught in waters less than 40 m deep. Substantial numbers of white shrimp of the largest and intermediate size classes were caught inshore (Figure 23). Such a trend was not apparent for brown shrimp (see Figure 19), but, was consistent with our understanding that white shrimp remain longer and grow larger in the estuaries than do brown shrimp. The size class of smallest shrimp dominated white shrimp C/A in both the estuaries and offshore (Figure 24). For offshore waters all three size classes showed consistently decreasing C/A with depth, with maximum C/A of all size classes in the 0-20 m depths. However, in the western region where C/A was highest, the two size classes of larger shrimp were relatively more important further offshore than in the central and eastern regions.

Although there were substantial differences from region to region, C/A of white shrimp showed similar seasonal patterns across the entire study

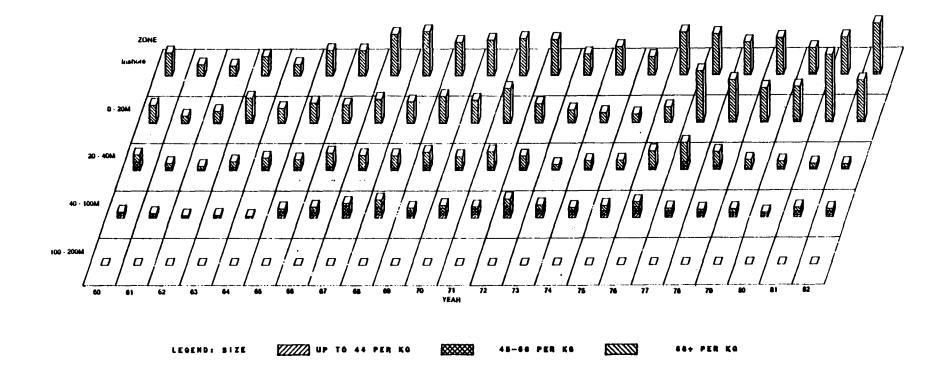



Figure 22. Year by depth by size means of brown shrimp catch/unit water surface area (kg, heads on, per ha)for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

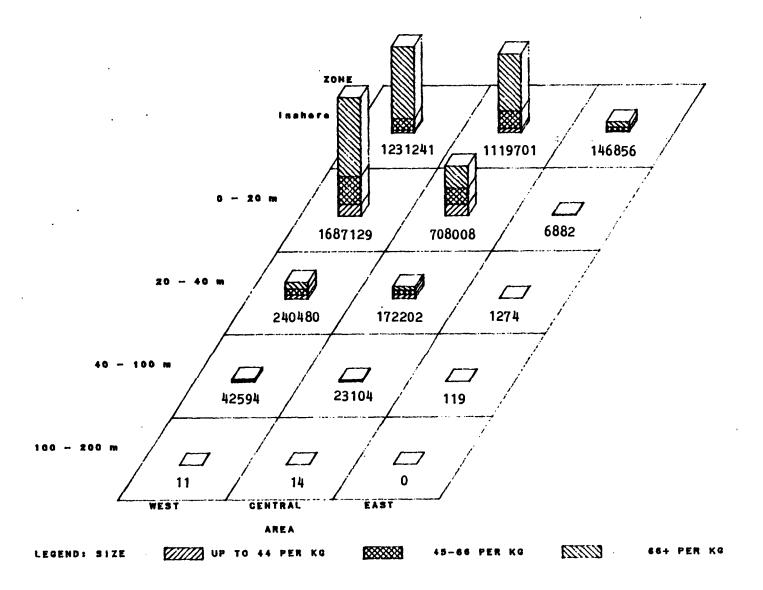



Figure 23. Region by depth by size means of white shrimp catch (kg, heads on) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

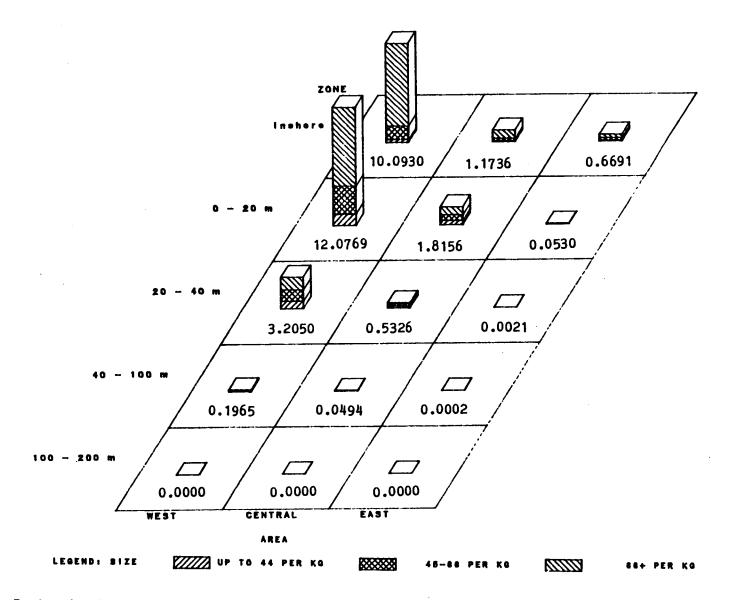



Figure 24. Region by depth by size means of white shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

		· · · · · · · · · · · · · · · · · · ·	<u> </u>	
P.SETIFERUS	LT 44/KG	44-66/KG	GT 66/KG	TOTAL
WEST		*** <u>**********************************</u>		
Inshore	0.2831	1.3925	8.4174	10.0930
0 - 20 m	1.1674	2.8568	8.0527	12.0769
20 - 40 m	0.7342	1.1615	1.3094	3.2050
40 - 100  m	0.0659	0.0899	0.0406	0.1965
100 - 200 m	0.0000	0.0000	0.0000	0.0000
REGION	0.3125	0.7908	2.6439	3.7471
CENTRAL	0.3125	0.7900	2.0439	5.1411
Inshore	0.0595	0.2641	0.8500	1.1736
0 - 20 m	0.4071	0.6003	0.8082	1.8156
20 - 40 m	0.1836	0.1985	0.1504	0.5326
40 - 100  m	0.0196	0.0177	0.0121	0.0494
100 - 200 m	0.0000	0.0000	0.0000	0.0000
REGION	0.1158	0.2277	0.4811	0.8246
EAST				
Inshore	0.0541	0.2524	0.3626	0.6691
0 - 20 m	0.0187	0.0164	0.0180	0.0530
20 - 40 m	0.0005	0.0011	0.0005	0.0021
40 - 100 m	0.0002	0.0000	0.0000	0.0002
100 <b>-</b> 200 <b>m</b>	0.0000	0.0000	0.0000	0.0000
REGION	0.0072	0.0285	0.0403	0.0760
STUDY AREA MEANS				
Inshore	0.0796	0.3684	1.4800	1.9280
0 - 20 m	0.4918	0.9634	2.1874	3.6426
20 <b>-</b> 40 m	0.1130	0.1496	0.1449	0.4076
40 - 100 m	0.0186	0.0219	0.0114	0.0519
100 - 200 m	0.0000	0.0000	0.0000	0.0000
	0.1058	0.2416	0.6584	1.0059

Table 42. Region by depth by size means of white shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

•

area (Figure 25 and Table 43). These trends included a major increase in the summer to early winter period (August - December) and a second smaller peak in late spring (May - June). It is difficult to determine whether the spring peak was due to increased abundance of white shrimp in the study area or simply the result of increased effort directed at brown shrimp that were just entering the offshore fishery. Evidence was presented above (Section 2.5.5.1) that indicated some white shrimp postlarvae may enter Gulf coast estuaries too late in summer or fall to contribute to offshore These juvenile or subadults may overwinter in the stocks that same fall. nearshore Gulf, reentering the estuaries in late winter as temperatures These shrimp then complete their growth in the estuaries during rise. late winter and early spring, entering the offshore fishery in midspring. In this respect, it is interesting to note that the spring peaks mainly involve the size class of largest shrimp (Figure 25), while the initial summer C mainly involve the size class of smallest shrimp. C/A of the size class of largest shrimp in May and June was almost as great as in the fall. This would indicate either that the shrimp leaving the estuaries in the spring were larger than those leaving the estuaries in the summer or that the increased C was attributable to the adult stock which overwintered offshore.

During summer and fall, increases in C/A were first observed for the size class of smallest shrimp (August), and latest for the size class of largest shrimp (October). This trend clearly demonstrates the growth of white shrimp over the period (Figure 25). The rather extended period over which white shrimp of the smallest size class were caught in elevated numbers (August-January) is consistent with evidence that indicates that periods of postlarval recruitment of white shrimp are extensive, with white shrimp apparently migrating out of the estuaries over the entire fall period. Several studies have indicated that white shrimp postlarvae enter northern Gulf estuaries in several "waves" over the entire summer to early The more abbreviated period of peak C of brown shrimp of fall period. the smallest size class (see Figure 20) indicates that their postlarvae enter the estuaries over a much more abbreviated period of time, and the offshore brown shrimp production is based on a single or several closely spaced waves of postlarvae.

These general seasonal patterns appear to be relatively consistent across depths, with some minor exceptions (Figure 25). For example, C/A increased dramatically in August in the estuaries and shallow Gulf, but not until October in the 20-40 m depth zone. However, all strata showed peak C from October to December. The still elevated C in the nearshore zone in January and February was not accompanied by elevated C in the estuaries. Since most of the offshore C in winter was dominated by the size class of smallest shrimp, which was not caught in the estuaries at this time, it appears they were overwintering offshore.

Years of highest C/A of white shrimp in the western region included 1963-1964, 1969-1971, 1977 and 1980-1981 (Figure 26 and Table 44). The central region showed similar patterns during the 1960s, but generally did not display elevated C/A during the late 1970s. In general, years of high C/A inshore were also years of high C/A offshore in both the central and western regions (Figures 26 and 27). However, it appears that C/A in the offshore zones of the western region was of relatively greater importance

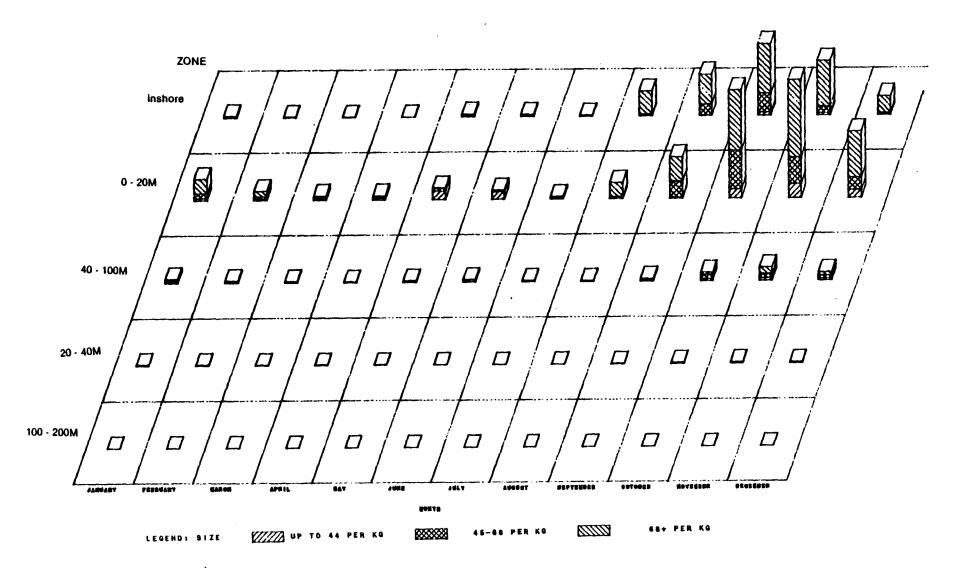



Figure 25. Month by depth by size means of white shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

197

P.SETIFERUS	<u></u>	LT 44/KG	44-66/KG	GT 66/KG	TOTA
January			•		
Insho	re	0.0003	0.0018	0.0118	0.013
0 - 20	ш	0.0174	0.0420	0.1307	0.190
20 - 40	m	0.0065	0.0130	0.0172	0.036
40 - 100	m	0.0024	0.0035	0.0028	0.008
100 - 200		0.0000	0.0000	0.0000	0.000
	TOTAL	0.0040	0.0089	0.0229	0.035
February					
Insho	re	0.0001	0.0005	0.0025	0.003
0 - 20	m	0.0113	0.0192	0.0498	0.080
20 - 40	m	0.0042	0.0064	0.0061	0.016
40 <u>– 1</u> 00		0.0020	0.0017	0.0009	0.004
100 - 200	m	0.0000	0.0000	0.0000	0.000
	TOTAL	0.0027	0.0041	0.0081	0.014
March					
Insho		0.0001	0.0005	0.0007	0.001
0 - 20	m	0.0081	0.0113	0.0144	0.033
20 - 40	m	0.0041	0.0037	0.0032	0.011
40 - 100		0.0015	0.0007	0.0003	0.002
100 - 200	m	0.0000	0.0000	0.0000	0.000
	TOTAL	0.0022	0.0024	0.0026	0.007
April					
Insho	-	0.0003	0.0002	0.0002	0.000
0 - 20	m	0.0162	0.0089	0.0091	0.034
20 - 40	m	0.0028	0.0013	0.0007	0.004
40 - 100	m	0.0010	0.0003	0.0000	0.001
100 - 200	m	0.0000	0.0000	0.0000	0.000
Mov	TOTAL	0.0028	0.0015	0.0013	0.005
May		0.0063	0.0123	0.0036	0.022
Insho: 0 - 20			0.0123	0.0036	0.022
20 <b>-</b> 20	m	0.0736 0.0106	0.0240	0.0002	0.103
40 - 100		0.0019	0.0012	0.0002	0.002
100 - 200		0.0000	0.0001	0.0000	0.002
100 - 200	ш	0.0000	0.0000	0.0000	0.000
	TOTAL	0.0131	0.0062	0.0016	0.020

Table 43. Month by depth by size means of white shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

P.SETIFERUS	LT 44/KG	44-66/KG	GT 66/KG	TOTAL
June				
Inshore	0.0135	0.0045	0.0008	0.0188
0 - 20 m	0.0665	0.0115	0.0020	0.0799
20 <b>-</b> 40 m	0.0172	0.0018	0.0002	0.0192
40 - 100 m	0.0007	0.0001	0.0000	3000.0
100 - 200  m	0.0000	0.0000	0.0000	0.000
TOTAL	0.0149	0.0029	0.0005	0.0183
July				
Inshore	0.0050	0.0013	0.0012	0.007
0 <b>-</b> 20 m	0.0155	0.0025	0.0011	0.019
20 - 40 m	0.0117	0.0008	0.0000	0.0126
40 <b>—</b> 100 <b>m</b>	0.0008	0.0000	0.0000	0.0008
100 - 200 m	0.0000	0.0000	0.0000	0.000
TOTAL	0.0055	0.0008	0.0004	0.006
August			o ook0	0.040
Inshore	0.0024	0.0108	0.2048	0.218
0 <b>-</b> 20 m	0.0045	0.0141	0.1253	0.143
20 - 40 m	0.0028	0.0017	0.0021	0.006
40 - 100  m	0.0004	0.0001	0.0003	0.000
100 - 200 m	0.0000	0.0000	0.0000	0.000
TOTAL	0.0018	0.0047	0.0655	0.072
September	0 0007	0 0060	0 06 117	0.261
Inshore	0.0027	0.0969	0.2647 0.2146	0.364 0.366
0 - 20 m	0.0077	0.1440		0.021
20 - 40 m	0.0015	0.0123	0.0077 0.0006	0.021
40 - 100 m 100 - 200 m	0.0003 0.0000	0.0020 0.0000	0.0000	0.000
		0.0440	0.0922	0.138
TOTAL	0.0020	0.0440	0.0322	0.100
October	0.0268	0.1663	0.4398	0.632
Inshore	0.0288	0.3422	0.4390	0,958
0 - 20 m 20 - 40 m	0.0781	0.0422	0.0177	0.073
20 - 40 m 40 - 100 m	0.0020	0.0425	0.0015	0.007
40 - 100  m 100 - 200  m	0.0000	0.0000	0.0000	0.000
100 <b>-</b> 200 m	0.0000	0.0000	0.0000	
TOTAL	0.0192	0.0915	0.1766	0.287

•

Table 43. Continued.

Table 43. Continued.

P.SETIFERUS	LT 44/KG	44-66/KG	GT 66/KG	TOTAL
November				
Inshore	0.0185	0.0608	0.3994	0.4787
0 - 20 m	0.1253	0.2338	0.6878	1.0469
20 <b>-</b> 40 m	0.0226	0.0376	0.0595	0.1196
40 <b>–</b> 100 m	0.0041	0.0047	0.0023	0.0110
100 - 200 m	0.0000	0.0000	0.0000	0.0000
TOTAL	0.0252	0.0518	0.1934	0.2704
December				
Inshore	0.0039	0.0124	0.1504	0.1667
0 - 20 m	0.0675	0.1099	0.4085	0.5859
20 <b>–</b> 40 m	0.0152	0.0277	0.0304	0.0733
40 <b>-</b> 100 m	0.0015	0.0044	0.0026	0.0086
100 - 200 m	0.0000	0.0000	0.0000	0.0000
TOTAL	0.0125	0.0229	0.0932	0.1286

1

••

.

.



Figure 26. Year by region by size means of white shrimp catch/unit water surface area (kg, heads on per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

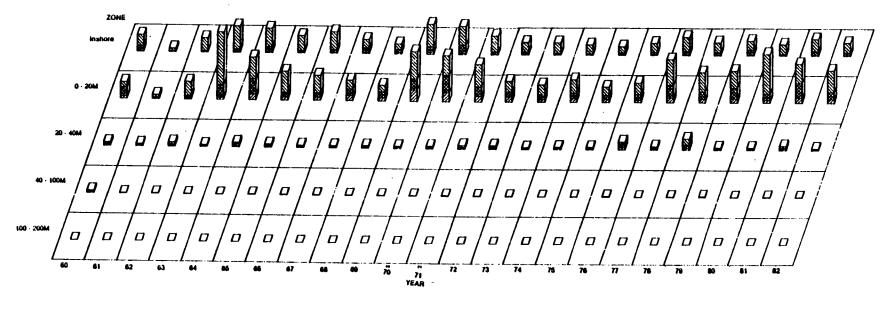



Figure 27. Year by depth by size means of white shrimp catch/unit water surface area (kg, heads on per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

P.SETIFERUS		LT 44/KG	44-66/KG	GT 66/KG	TOTA
1960					
	Offshore	0.4734	1.1421	0.6348	2.250
	Inshore	0.0753	1.7344	4.3432	6.152
	Offshore	0.1097	0.1650	0.0484	0.323
Central	Inshore	0.0536	0.5503	1.0007	1.604
East	Offshore	0.0000	0.0000	0.0000	0.000
East	Inshore	0.0479	0.4189	1.1035	1.570
	TOTAL	0.1088	0.3576	0.4234	0.889
1961		<b>.</b>			
	Offshore	0.0926	0.1585	0.4246	0.675
	Inshore	0.0094	0.1062	2.0056	2.121
	Offshore	0.0166	0.0460	0.0230	0.085
	Inshore	0.0025	0.0585	0.1841	0.245
	Offshore Taskana	0.0012	0.0061	0.0056	0.013
Last	Inshore	0.0090	0.1378	0.1657	0.312
	TOTAL	0.0188	0.0552	0.1519	0.225
1962			<b>•</b> • • • • •		
	Offshore	0.0661	0.3324	1.3329	1.731
-	Inshore	0.0465	0.2151	6.4982	6.759
	Offshore	0.0395	0.1248	0.2900	0.454
	Inshore	0.0194	0.1302	1.2269	1.376
	Offshore	0.0008	0.0005	0.0004	0.001
Last	Inshore	0.0228	0.0665	0.2907	0.380
	TOTAL	0.0258	0.1115	0.6429	0.780
1963 Nort	Offehana	0 1070	1 0951	h 4540	6 0 m li
	Offshore	0.1373	1.0854	4.1518	5.374
	Inshore	0.0404	0.5772	15.8201	16.437
	Offshore Inshore	0.0651 0.0206	0.2224 0.3490	0.8478	1.135
	Offshore	0.0009	0.0004	1.5967 0.0045	1.966 0.005
	Inshore	0.0734	0.2802	0.7002	1.053
	TOTAL	0.0450	0.2981	1.4822	1.825
1964	10111	0.0490	0.2301	1.7022	1.023
West	Offshore	0.3552	1.0604	2.0282	3.443
	Inshore	0.3571	3.0650	12.8412	16.263
	Offshore	0.2349	0.4590	0.2745	0.968
	Inshore	0.0591	0.2736	1.2452	1.577
	Offshore	0.0027	0.0025	0.0003	0.005
East	Inshore	0.2030	0.6816	0.5629	1.447
	TOTAL	0.1424	0.4214	0.8929	1.456

Table 44. Year by region by size means of white shrimp catch/unit water surface area (kg, heads on per ha)for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

Table	44.	Continued.
-------	-----	------------

P.SETIFERUS	LT 44/KG	44-66/KG	GT 66/KG	TOTAL
1965				
West Offshore	e 0.2426	0.3749	1.6658	2.2833
West Inshore	0.1380	0.3650	9.5265	10.0295
Central Offshore		0.1393	0.4110	0.6876
Central Inshore	0.0549	0.1473	1.0669	1.2691
East Offshore		0.0041	0.0024	0.0112
East Inshore	0.0658	0.3767	0.6862	1.1287
TOTAL	0.0890	0.1418	0.7799	1.0107
1966				
West Offshore	0.2470	0.3175	1.7020	2.2665
West Inshore	0.4195	1.6534	11.7551	13.8280
Central Offshore	0,1066	0.1202	0.1979	0.4246
Central Inshore	0.0404	0.1847	1.3892	1.6143
East Offshore	0.0001	0.0005	0.0002	0.0008
East Inshore	0.0269	0.1955	0.2781	0.5004
TOTAL 1967	0.0816	0.1560	0.8160	1.0536
West Offshore	0.3811	0.4782	0.9310	1.7904
West Inshore	0.8281	2.4237	4.9096	8.1614
Central Offshore		0.1788	0.0662	0.4200
Central Inshore	0.0417	0.3461	0.7172	1.1050
East Offshore	0.0000	0.0000	0.0000	0.0000
East Inshore	0.0919	0.3598	0.2413	0.6930
TOTAL	0.1313	0.2474	0.3959	0.7746
1968				
West Offshore		0.4368	0.6436	1.3447
West Inshore	0.5916	1.2161	3.1275	4.9352
Central Offshore		0.1957	0.0833	0.3947
Central Inshore	0.0843	0.2928	0.5036	0.8807
East Offshore		0.0000	0.0000	0.0001
East Inshore	0.1346	0.3402	0.2230	0.6979
TOTAL.	0.1027	0.2086	0.2818	0.5931
West Offshore	0.3504	0.5808	2.2603	3.1916
West Inshore	0.4928	1.8934	12.9210	15.3072
Central Offshore		0.3515	0.4112	1.2896
Central Inshore	0.2338	0.5952	1.9146	2.7436
East Offshore		0.0000	0.0004	0.0006
East Inshore	0.1008	0.5148	0.4134	1.0290
TOTAL	0.2528	0.3486	1.0782	1.6796

٠,

## Table 44. Continued.

P.SETIFERUS		LT 44/KG	44-66/KG	GT 66/KG	TOTAL
1970					
	Offshore	0.4580	1.0960	1.6586	3.2126
	Inshore	0.5913	5.2068	15.1791	20.9772
	Offshore	0.3289	0.4900	0.3044	1.1233
Central		0.1004	0.6679	1.0124	1.7807
	Offshore	0.0014	0.0000	0.0000	0.0014
	Inshore	0.0098	0.2829	0.4722	0.7649
	TOTAL	0.1872	0.5370	0.8587	1.5828
1971		-			
West	Offshore	0.3691	0.7515	1.8210	2.9416
West	Inshore	0.2977	2.3734	13.7497	16.4207
Central	Offshore	0.1983	0.2471	0.4844	0.9298
Central	Inshore	0.0440	0.1225	0.7485	0.9150
East	Offshore	0.0000	0.0003	0.0000	0.0003
East	Inshore	0.0233	0.1003	0.2321	0.3557
	TOTAL	0.1217	0.2524	0.8418	1.2159
1972					
West	Offshore	0.4100	0.4095	1.0008	1.8204
West	Inshore	0.4527	1.5774	9.4292	11.4593
Central	Offshore	0.2005	0.1512	0.1957	0.5474
Central	Inshore	0.0539	0.1251	0.3833	0.5623
	Offshore	0.0003	0.0009	0.0007	0.0019
East	Inshore	0.0222	0.0432	0.0432	0.1086
	TOTAL	0.1333	0.1589	0.4774	0.7695
1973					
	Offshore	0.2367	0.4307	0.9106	1.5779
	Inshore	0.2171	0.6203	8.5735	9.4109
	Offshore	0.0735	0.1012	0.1470	0.3217
	Inshore	0.0460	0.0824	0.6047	0.7330
	Offshore	0.0000	0.0000	0.0000	0.0000
last	Inshore	0.0369	0.0637	0.2190	0.3195
	ጥረጥል፣	0.0677	0.1188	0.4783	0.6648
1974	TOTAL.	0.0077	0.1100	0.4/05	0.0040
	Offshore	0.3731	0.4541	1.0850	1.9122
	Inshore	0.1686	0.5410	7.0454	7.7550
	Offshore	0.1068	0.1317	0.2465	0.4849
	Inshore	0.0256	0.0520	0.5303	0.6080
	Offshore	0.0000	0.0000	0.0002	0.0002
	Inshore	0.0386	0.1046	0.1917	0.3349
	-11011VI G	0.0000		V.1211	C - J J J J
	TOTAL	0.0910	0.1250	0.4809	0.6970

		•
Table	44.	Continued.

P.SETIFERUS		LT 44/KG	44-66/KG	GT 66/KG	TOTAL
1975					
	Offshore	0.2446	0.2683	0.7766	1.289
West	Inshore	0.2089	0.7270	4.5835	5.519
	Offshore	0.1401	0.1379	0.1220	0.400
Central	Inshore	0.0661	0.1141	0.4202	0.600
	Offshore	0.0001	0.0002	0.0000	0.000
	Inshore	0.0555	0.1373	0.1845	0.377
	TOTAL	0.0916	0.1180	0.3276	0.537
1976				•	
West	Offshore	0.5514	0.9289	1.2338	2.714
West	Inshore	0.4073	1.0250	5.9281	7.360
Central	Offshore	0.0857	0.1997	0.1549	0.440
Central	Inshore	0.0580	0.1754	0.6269	0.860
East	Offshore	0.0000	0.0000	0.0014	0.001
East	Inshore	0.0370	0.1888	0.5137	0.739
1977	TOTAL	0.1207	0.2456	0.4810	0.847
	Offshore	0.4012	1.1027	2.4988	4.002
	Inshore	0.3319	1.5132	11.9786	13.823
	Offshore	0.1440	0.2578	0.2019	0.603
	Inshore	0.0570	0.2812	0.6780	1.016
	Offshore	0.0000	0.0008	0.0003	0.001
	Inshore	0.0356	0.2962	0.4866	0.818
	TOTAL	0.1145	0.3204	0.8130	1.247
1978					
	Offshore	0.4172	0.9489	2.6403	4.006
	Inshore	0.1903	0.5140	4.8845	5.588
	Offshore	0.1264	0.2287	0.2283	0.583
	Inshore	0.0717	0.3125	0.9406	1.324
	Offshore	0.0025	0.0020	0.0016	0.006
	Inshore	0.0342	0.1313	0.2376	0.403
	TOTAL	0.1119	0.2676	0.7151	1.0946
1979 Mast		0 2459	1 0007	4 6000	0.00
	Offshore	0.3158	1.0297		2.984
	Inshore	0.2830	1.5056	5.5785	7.367
	Offshore	0.1558	0.2005	0.1431	0.499
	Inshore	0.0754	0.4942	0.6653	1.2350
	Offshore	0.0078	0.0106	0.0035	0.021
Last	Inshore	0.0827	0.4399	0.2922	0.8148
	TOTAL	0.1129	0.3414	0.5236	0.977

206

,

Table 44. Continued.

••

P.SETIFERUS		LT 44/KG	44-66/KG	GT 66/KG	TOTA
1980					
	Offshore	0.1783	0.5315	3.8516	4.561
West	Inshore	0.1108	0.7768	9.0054	9.893
Central	Offshore	0.0993	0.1519	0.2844	0.535
Central	Inshore	0.0294	0.0662	0.4117	0.507
East	Offshore	0.0124	0.0036	0.0106	0.026
East	Inshore	0.0224	0.0720	0.2766	0.371
	TOTAL	0.0651	0.1491	0.9009	1.115
1981					
West	Offshore	0.4989	1.4264	1.9263	3.851
West		0.2317	2.1123	9.6719	12.015
Central		0.1431	0.2225	0.2171	0.582
Central		0.0503	0.3299	0.6837	1.063
East		0.0005	0.0024	0.0005	0.003
East	Inshore	0.0340	0.2396	0.1796	0.453
	TOTAL	0.1243	0.3754	0.6748	1.174
1982					
	Offshore	0.2362	0.5373	1.8734	2.646
West		0.0216	0.2845	4.2442	4.550
	Offshore	0.1575	0.1796	0.2844	0.621
Central		0.0804	0.3244	0.9991	1.403
East		0.0001	0.0002	0.0010	0.001
East	Inshore	0.0359	0.3332	0.3449	0.714
	TOTAL.	0.0928	0.2020	0.6258	0.920

to total regional C in the later years (1976-1982) and relatively less important during the overall poor years of 1972-1975. Years of relatively high C/A in the eastern region, which occurred for the most part during the 1960s, generally coincided with years of high white shrimp C/A in the other regions. The period 1972-1975 were years of generally lower C/A, especially offshore in the western region (Figure 26).

From year to year, there did not appear to be any consistent changes in the relative importance of the different size classes of white shrimp to total C. Years of high C/A for the size class of smallest shrimp were also generally years of highest C/A of the intermediate size class, and often of the size of largest shrimp as well (e.g., 1964, 1969, and 1970).

Over the 23 year period 1960-1982, trends for inshore and offshore C were generally similar (Figure 26). Years of low C/A inshore (e.g., 1961, 1962, 1968-1969, 1972-1976) were also years of low C/A offshore, while years of high C inshore (1963, and 1969-1970) were also years of high C offshore. Beginning in 1977, this relationship appeared to change somewhat, with offshore C being relatively high thereafter and inshore C never increasing substantially over the lows of the 1972-1976 period.

### Pink Shrimp

Mean C and C/A of pink shrimp by region and depth zone (Figures 28 and 29, and Table 45) reveals very interesting trends, especially with regard to inshore and offshore production. C/A in inshore waters decreased sharply from east to west across the Tuscaloosa Trend study area, with very few pink shrimp being caught in inshore waters west of the Mississippi River (i.e., the western region). While the most productive estuaries appeared to be in the eastern region, offshore C in the eastern region was only marginally higher than that in the western region, and very much lower than that in the central region. This may indicate that pink shrimp migrating from Florida and Alabama estuaries move westward into the central region of the Tuscaloosa Trend OCS. Such a pattern may indicate that pink shrimp prefer the silty sediments of the central region to the fine terrigenous sands off eastern Alabama and western Florida. Considering both inshore and offshore areas combined, C/A for the eastern and central regions were somewhat similar and considerably higher than that for the western region.

In offshore waters, C/A of pink shrimp decreased consistently with depth (Figure 29). C of pink shrimp have never been reported from depths beyond 100 m, and only rarely beyond 40 m. The estuarine pink shrimp C was made up almost exclusively of the smallest size class. The proportion of shrimp in the smallest size class to total C appears to decrease offshore out to 40 m depth. In contrast to the trends for brown shrimp, there was little indication that larger pink shrimp sought out the deeper portions of the depth range, with C/A of the two size classes of largest shrimp being generally higher at 0-20 m depth (Figure 29).

The relationship of size, season and depth zone are shown in Figure 30 and Table 46. C/A generally begins to increase slowly in inshore waters during the midwinter period, with more substantial increases occurring in March and April. C/A peaks in May (inshore) and June (0-20 m depths offshore) and then declines to low values in August. A second, modest

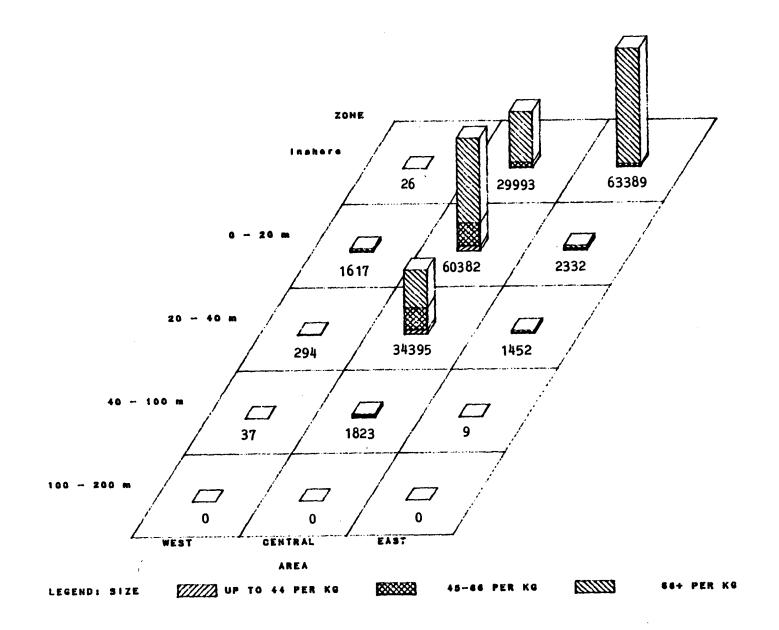



Figure 28. Region by depth by size means of pink shrimp catch (kg, heads on) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

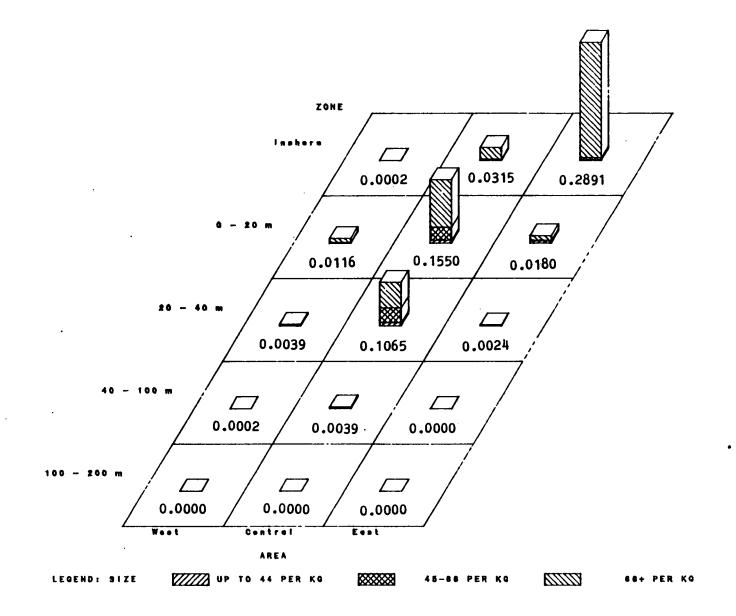



Figure 29. Region by depth by size means of pink shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

P. DUORARUM	LT 44/KG	44-66/KG	GT 66/KG	TOTA
WEST				
Inshore	0.0000	0.0000	0.0002	0.000
0-20 m	0.0005	0.0011	0.0100	0.011
20 - 40 m	0.0000	0.0017	0.0022	0.003
40 - 100 m	0.0000	0.0001	0.0001	0.000
100 - 200 m	0.0000	0.0000	0.0000	0.000
REGION	0.0001	0.0004	0.0019	0.002
CENTRAL				
Inshore	0.0001	0.0028	0.0286	0.031
0 - 20 m	0.0065	0.0316	0.1169	0.155
20 - 40 m	0.0072	0.0367	0.0626	0.106
40 - 100 m	0.0005	0.0017	0.0017	0.003
100 <b>-</b> 200 m	0.0000	0.0000	0.0000	0.000
REGION	0.0021	0.0113	0.0383	0.051
EAST				
Inshore	0.0004	0.0061	0.2825	0.289
0 - 20 m	0.0049	0.0016	0.0115	0.018
20 <b>-</b> 40 m	0.0002	0.0007	0.0015	0.002
40 - 100 m	0.0000	0.0000	0.0000	0.000
100 - 200 m	0.0000	0.0000	0.0000	0.000
REGION	0.0004	0.0010	0.0316	0.033
STUDY AREA MEANS				
Inshore	0.0001	0.0031	0.0689	0.072
0 - 20 m	0.0049	0.0192	0.0735	0.097
20 <b>-</b> 40 m	0.0024	0.0122	0.0210	0.035
40 <b>-</b> 100 m	0.0002	0.0006	0.0006	0.001
100 - 200 m	0.0000	0.0000	0.0000	0.000
	0.0011	0.0056	0.0299	0.036

Table 45. Region by depth by size means of pink shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

-

.

· .

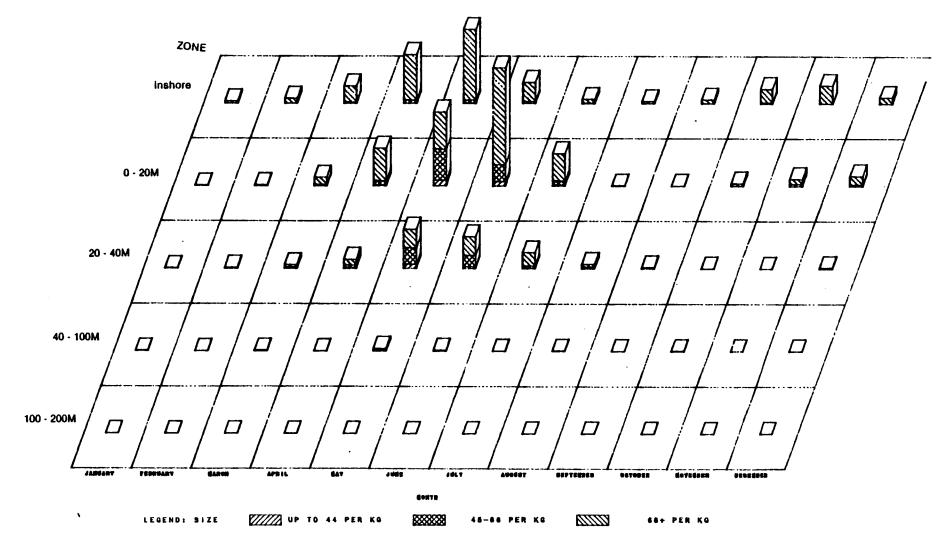



Figure 30. Month by depth by size means of pink shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

•

212

**`**..._

Table 46. Month by depth by size means of pink shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscalcosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

•

P. DUORARUM	LT 44/KG	44-66/KG	GT 66/KG	TOTA
January				
Inshore	0.0000	0.0000	0.0007	0.000
0 - 20 m	0.0000	0.0000	0.0001	0.000
20 - 40 m	0.0000	0.0000	0.0000	0.000
40 - 100  m	0.0001	0.0000	0.0000	0.000
100 - 200  m	0.0000	0.0000	0.0000	0.000
TOTAL	0.0000	0.0000	0.0002	0.000
February				
Inshore	0.0000	0.0000	0.0016	0.001
0 - 20 m	0.0000	0.0000	0.0002	0.000
20 - 40 m	0.0000	0.0001	0.0002	0.000
40 - 100 m	0.0000	0.0000	0.0000	0.000
100 - 200 m	0.0000	0.0000	0.0000	0.000
TOTAL	0.0000	0.0000	0.0004	0.000
March				
Inshore	0.0000	0.0003	0.0055	0.005
0 - 20 m	0,0002	0.0002	0.0025	0.002
20 - 40 m	0.0001	0.0002	0.0008	0.001
40 - 100 m	0.0000	0.0001	0.0001	0.000
100 - 200 m	0.0000	0.0000	0.0000	0.000
TOTAL	0.0000	0.0002	0.0018	0.002
April				
Inshore	0.0000	0.0010	0.0154	0.016
0 - 20 m	0.0002	0.0014	0.0110	0.012
20 - 40 m	0.0002	0.0009	0.0019	0.003
40 - 100 m	0.0000	0.0000	0.0000	0.000
100 - 200 m	0.0000	0.0000	0.0000	0.000
TOTAL	0.0001	0.0006	0.0055	0.006
May	0.0001	0.0000		0.000
Inshore	0.0000	0.0010	0.0237	0.024
0 - 20 m	0.0018	0.0105	0.0125	0.024
20 - 40 m	0.0013	0.0056	0.0062	0.013
40 - 100  m	0.0000	0.0004	0.0005	0.000
100 - 200  m	0.0000	0.0000	0.0000	0.000
TOTAL	0.0005	0.0027	0.0086	0.011

Table	46.	Continued.
Table	40.	CONCTURE C.

P. DUORARUM	LT 44/KG	44-66/KG	GT 66/KG	TOTAL
June				
Inshore	0.0000	0.0005	0.0065	0.0070
0 <b>-</b> 20 m	0.0015	0.0056	0.0326	0.0397
20 <b>-</b> 40 m	0.0005	0.0038	0.0064	0.0107
40 <b>-</b> 100 m	0.0001	0.0001	0.0000	0.0002
100 - 200 m	0.0000	0.0000	0.0000	0.000
TOTAL	0.0003	0.0015	0.0068	0.008
July				
Inshore	0.0000	0.0001	0.0013	0.0013
0 - 20 m	0.0003	0.0013	0.0093	0.0109
20 - 40 m	0.0001	0.0008	0.0044	0.0053
40 - 100 m	0.0000	0.0000	0.0000	0.000
100 <b>-</b> 200 m	0.000	0.0000	0.0000	0.000
TOTAL	0.0001	0.0003	0.0023	0.0027
August				
Inshore	0.0000	0.0000	0.0006	0.0006
0 – 20 m	0.0000	0.0000	0.0000	0.000
20 - 40 m	0.0001	0.0005	0.0009	0.001
40 <b>-</b> 100 <b>m</b>	0.0000	0.0001	0.0000	0.0001
100 <b>-</b> 200 m	0.0000	0.0000	0.0000	0.000
TOTAL	0.0000	0.0001	0.0003	0.0004
September				
Inshore	0.0000	0.0000	0.0012	0.0012
0 - 20 m	0.0000	0.0000	0.0000	0.0000
20 - 40 m	0.0000	0.0003	0.0000	0.0003
40 - 100 m	0.0000	0.0000	0.0000	0.000
100 - 200 m	0.0000	0.0000	0.0000	0.000
TOTAL	0.0000	0.0001	0.0003	0.0002
October	<b>•</b> • • • • •	0 0000	0.0046	0.004
Inshore	0.0000	0.0003	0.0046	0.0049
0 <b>-</b> 20 <b>m</b>	0.0000	0.0000	0.0009	0.000
20 - 40  m	0.0000	0.0000	0.0000	0.0000
40 - 100 m	0.0000	0.0001	0.0000	0.000
100 <b>-</b> 200 m	0.0000	0.0000	0.0000	0.000
TOTAL	0.0000	0.0001	0.0012	0.0013

••

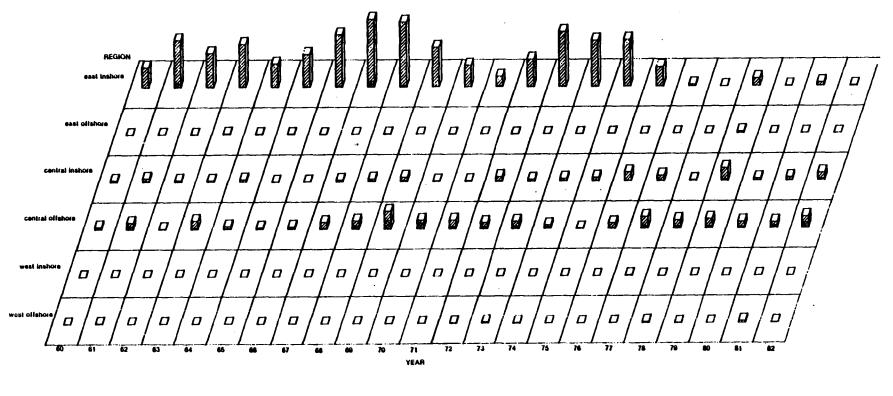
P. DUORARUM	LT 44/KG	44-66/KG	GT 66/KG	TOTAL
November				
Inshore	0.0000	0.0000	0.0060	0.0060
0 - 20 m	0.0007	0.0000	0.0016	0.0024
20 <b>-</b> 40 m	0.0000	0.0000	0.0000	0.0000
40 <b>-</b> 100 <b>m</b>	0.0000	0.0000	0.0000	0.0000
100 - 200 m	0.0000	0.0000	0.0000	0.0000
TOTAL	0.0001	0.0000	0.0017	0.0018
December				
Inshore	0.0000	0.0000	0.0020	0.0020
0 - 20 m	0.0002	0.0002	0.0029	0.0033
20 - 40 m	0.0001	0.0001	0.0002	0.0003
40 - 100 m	0.0000	0.0000	0.0000	0.0000
100 - 200 m	0.0000	0.0000	0.0000	0.0000
TOTAL	0.0000	0.0000	0.0009	0.0010

.

.

.

•


# Table 46. Continued.

increase in C/A generally occurs both inshore and offshore in the midfall to early winter period, with the peak occurring later and being of shorter duration further offshore. This fall C mainly involved the size class While these results undoubtedly reflect increased of smallest shrimp. densities of pink shrimp in the spring and early summer, the fall increase may be an artifact. Pink shrimp C/A in the Tuscaloosa Trend study area was generally low, and much of the C is probably due to effort directed at other species (i.e., brown shrimp in the spring and early summer and white shrimp in the fall to winter). This may be especially so for the fall peak. However, the fact that the fall peak involves the size class of smallest shrimp indicates that spawning must take place over a long period of time. If this were true, it would indicate that pink shrimp reach adulthood early enough in the year to spawn in early summer, with the fall peak in C being the result of this early summer spawning.

There were some indications of changes in the relative importance of the several size classes of pink shrimp over the typical year (Figure 30). C/A was highest for all three size classes in May, although the size class of smallest shrimp appeared in relatively larger numbers earlier in the year. The size classes of intermediate and large sized shrimp were best represented in May, when they made up almost half of the offshore C. By July, they were virtually unrepresented. As discussed above, the fall peak consists mainly of shrimp of the smallest size class.

In the central region, years of relatively high C included 1969, 1977, 1979 and 1982. These were years of relatively high C both inshore and offshore (Figure 31). For the eastern region, years of relatively high C generally occurred earlier in the record (1961, 1963, 1966-1968, and 1973-1975) and were dominated in all years by inshore C. This shift in relative importance of the eastern and central regions represented the greatest regional change over the 23 year period. It was attributable mainly to substantial decreases in inshore C in the eastern region since 1976 and, except for the period 1974 and 1975, to higher C offshore in the central region in the 1970s, but the trends were less consistent than for offshore C. C/A in the estuaries of the eastern region in 1980 was an order of magnitude lower than during some of the better earlier years.

Figure 31 and Table 47 indicate that there was an inverse relationship of pink shrimp C inshore and offshore, at least during some years. This was quite unlike the situation for brown and white shrimp, where inshore and offshore C were positively related. Prior to 1970, inshore and offshore pink shrimp C were positively related. However, in 1971-1972, 1977-1978 and 1980-1982, inshore production was relatively low while offshore production was relatively high. Figure 31 shows that during these years C/A in the estuaries of the eastern area was consistently low, while C/A in the estuaries of the central region was not. During the period 1973-1975, inshore production was relatively high while offshore production decreased through the period. C/A in the estuaries of the central region was at intermediate levels during these years, increasing slightly through the period (Figure 31). The offshore C in 1975 was the lowest of the 23 year period, and may have been at least partly due to greatly decreased effort during that year.



LEGEND: SIZE 7///// UP TO 44 PER KG 200000

2000 48-88 PER KG

68+ PER KG

11111

Figure 31. Year by region by size means of pink shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

P.DUORARUM		LT 44/KG	44-66/KG	GT 66/KG	TOTA
1960					
	est Offshore	0.0000	0.0000	0.0000	0.000
	est Inshore	0.0000	0.0000	0.0000	0.000
	ral Offshore	0.0017	0.0071	0.0130	0.021
Cent	ral Inshore	0.0000	0.0020	0.0139	0.015
E	ast Offshore	0.0000	0.0000	0.0003	0.000
E	ast Inshore	0.0000	0.0000	0.2047	0.204
	TOTAL	0.0005	0.0023	0.0146	0.017
1961 W	est Offshore	0.0003	0.0023	0.0000	0.002
	est Inshore	0.0000	0.0000	0.0000	0.000
	ral Offshore	0.0016	0.0283	0.0378	0.067
	ral Inshore	0.0001	0.0045	0.0277	0.032
	ast Offshore	0.0000	0.0000	0.0000	0.000
	ast Inshore	0.0022	0.0366	0.4385	0.477
	TOTAL	0.0006	0.0105	0.0335	0.044
1962					
. W	est Offshore	0.0000	0.0000	0.0000	0.000
	est Inshore	0.0000	0.0000	0.0000	0.000
Cent	ral Offshore	0.0000	0.0009	0.0023	0.003
Cent		0.0000	0.0000	0.0148	0.014
	ast Offshore	0.0000	0.0009	0.0005	0.001
E	ast Inshore	0.0010	0.0017	0.3440	0.346
	TOTAL	0.0001	0.0006	0.0176	0.018
1963		0 0000	0 0000	0 0001	0 000
	est Offshore	0.0000	0.0000	0.0001	0.000
	est Inshore ral Offshore	0.000	0.0000 0.0124	0.0000 0.0722	0.000
	ral Ulishore	0.0009 0.0000	0.00124	0.0722	0.005
	ast Offshore	0.0000	0.0000	0.0085	0.008
	ast Inshore	0.0000	0.0028	0.4333	0.436
	TOTAL	0.0002	0.0039	0.0424	0.046
1964					
W	est Offshore	0.000	0.0000	0.0009	0.000
W	est Inshore	0.000	0.0000	0.0000	0.000
Cent	ral Offshore	0.0007	0.0040	0.0226	0.027
	ral Inshore	0.0000	0.0006	0.0213	0.021
	ast Offshore	0.000	0.0003	0.0041	0.004
E	ast Inshore	0.0000	0.0000	0.2365	0.236
	TOTAL	0.0002	0.0013	0.0214	0.022

Table 47. Year by region by size means of pink shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

P. DUORARUM		LT 44/KG	44-66/KG	GT 66/KG	TOTA
1980					
	Offshore	0.0000	0.0000	0.0000	0.000
West	Inshore	0.0000	0.0000	0.0000	0.000
Central	Offshore	0.0052	0.0067	0.0509	0.062
Central	Inshore	0.0000	0.0002	0.0197	0.019
East	Offshore	0.0000	0.0000	0.0013	0.001
East	Inshore	0.0000	0.0000	0.0030	0.003
	TOTAL	0.0015	0.0019	0.0183	0.021
1981		-			
West	Offshore	0.0000	0.0001	0.0186	0.018
West	Inshore	0.0000	0.0000	0.0000	0.000
Central	Offshore	0.0058	0.0174	0.0341	0.057
Central	Inshore	0.0000	0.0018	0.0315	0.033
East	Offshore	0.0000	0.0000	0.0006	0.000
East	Inshore	0.0000	0.0009	0.0324	0.033
	TOTAL	0.0016	0.0053	0.0193	0.026
1982	•				
West	Offshore	0.0000	0.0001	0.0040	0.001
West	Inshore	0.0000	0.0000	0.0000	0.000
Central	Offshore	0.0162	0.0345	0.0617	0.112
Central	Inshore	0.0001	0.0147	0.0592	0.073
East	Offshore	0.0000	0.0000	0.0000	0.000
East	Inshore	0.0001	0.0001	0.0046	0.001
	TOTAL	0.0046	0.0123	0.0286	0.045

.

Table 47. Continued.

.

•

P. DUORARUM		LT 44/KG	44-66/KG	GT 66/KG	TOTA
1975					
	Offshore	0.0000	0.0000	0.0000	0.000
West	Inshore	0.0000	0.0000	0.0000	0.000
Central	Offshore	0.0002	0.0001	0.0011	0.001
Central	Inshore	0.0000	0.0035	0.0335	0.037
East	Offshore	0.0000	0.0007	0.0007	0.001
East	Inshore	0.0000	0.0020	0.4515	0.453
	TOTAL	0.0001	0.0010	0.0251	0.026
1976					
West	Offshore	0.0000	0.0000	0.0000	0.000
	Inshore	0.0000	0.0000	0.0000	0.000
Central		0.0001	0.0041	0.0469	0.051
Central		0.0000	0.000	0.0860	0.086
	Offshore	0.0000	0.0000	0.0000	0.000
East	Inshore	0.0000	0.0028	0.1836	0.186
	TOTAL	0.0000	0.0013	0.0360	0.037
1977					
	Offshore	0.0000	0.0000	0.0000	0.000
	Inshore	0.0000	0.0000	0.0049	0.004
Central	-	0.0018	0.0179	0.0917	0.111
Central		0.0000	0.0013	0.0521	0.053
	Offshore	0.0000	0.0000	0.0000	0.000
Last	Inshore	0.0000	0.0000	0.0158	0.015
4050	TOTAL	0.0005	0.0053	0.0358	0.041
1978		0 0000	0 0040	0 0 106	0.011
	Offshore	0.0000	0.0010	0.0106	0.011
	Inshore	0.0000	0.0000	0.0000	0.000 0.080
Central Central		0.0023	0.0136 0.0003	0.0650 0.0055	0.005
		0.0000	0.0005	0.0005	0.005
	Offshore Inshore	0.0000 0.0000	0.0000	0.0003	0.000
	TOTAL	0.0007	0.0042	0.0208	0.025
1979		2			
	Offshore	0.0003	0.0000	0.0013	0.001
	Inshore	0.0000	0.0000	0.0000	0.000
	Offshore	0.0034	0.0125	0.0740	0.089
Central		0.0010	0.0127	0.1110	0.124
	Offshore	0.0074	0.0001	0.0101	0.017
	Inshore	0.0000	0.0000	0.0749	0.074
	TOTAL	0.0037	0.0058	0.0472	0.056

· .

Table 47. Continued.

P. DUORARUM		LT 44/KG	44-66/KG	GT 66/KG	TOTA
1965					
	Offshore	0.0000	0.0000	0.0000	0.000
West	Inshore	0.0000	0.0000	0.0000	0.000
Central	Offshore	0.0006	0.0027	0.0126	0.015
Central	Inshore	0.0000	0.0000	0.0010	0.001
East	Offshore	0.0002	0.0006	0.0016	0.002
East	Inshore	0.0000	0.0015	0.3293	0.330
	TOTAL	0.0002	0.0010	0.0178	0.019
1966					
	Offshore	0.0000	0.0000	0.0000	0.000
	Inshore	0.0000	0.0000	0.0000	0.000
	Offshore	0.0012	0.0023	0.0178	0.021
	Inshore	0.0002	0.0000	0.0005 0.0007	0.000
	Offshore Inshore	0.0000 0.0000	0.0000	0.5196	0.531
	TOTAL	0.0004	0.0011	0.0266	0.028
1967					
West	Offshore	0.0000	0.0003	0.0003	0.000
West	Inshore	0.0000	0.0000	0.0000	0.000
Central	Offshore	0.0002	0.0077	0.0607	0.068
Central	Inshore	0.0000	0.0000	0.0171	0.017
East	Offshore	0.0000	0.0000	0.0000	0.000
East	Inshore	0.0019	0.0556	0.6273	0.684
	TOTAL	0.0001	0.0045	0.0459	0.050
1968					
	Offshore	0.0000	0.0000	0.0000	0.000
	Inshore	0.0000	0.0000	0.0000	0.000
	Offshore	0.0040	0.0281	0.0524	0.084
	Inshore	0.0000	0.0060	0.0197	0.025
	Offshore Inshore	0.0013 0.0031	0.0036	0.0002 0.6404	0.005
		0.0017	0.0107	0.0446	0.057
1969	TOTAL	0.0017	0.0107	0.0440	0.05/
	Offshore	0.0005	0.0000	0.0000	0.000
West	Inshore	0.0000	0.0000	0.0000	0.000
Central	Offshore	0.0015	0.0834	0.0953	0.180
Central	Inshore	0.0003	0.0093	0.0360	0.045
	Offshore	0.0000	0.0000	0.0000	0.000
East	Inshore	0.0000	0.0021	0.3966	0.398
	TOTAL	0.0005	0.0251	0.0494	0.075

Table 47. Continued.

.

•

P.DUORARUM	<u></u>	LT 44/KG	44-66/KG	GT 66/KG	TOTA
1970					
	Offshore	0.0008	0.0006	0.0000	0.001
West	Inshore	0.0000	0.0000	0.0000	0.000
Central	Offshore	0.0162	0.0453	0.0282	0.089
Central	Inshore	0.0000	0.0018	0.0039	0.005
East	Offshore	0.0000	0.0007	0:0011	. 0.001
East	Inshore	0.0000	0.0001	0.2186	0.218
	TOTAL	0.0046	0.0133	0.0179	0.035
1971					
West	Offshore	0.0003	0.0003	0.0006	0.001
	Inshore	0.0000	0.0000	0.0000	0.000
	Offshore	0.0063	0.0137	0.0663	0.086
Central	Inshore	0.0000	0.0020	0.0060	0.008
East	Offshore	0.0000	0.0000	0.0000	0.000
East	Inshore	0.0009	0.0054	0.0986	0.104
	TOTAL	0.0018	0.0045	0.0238	0.030
1972					
	Offshore	0.0000	0.0003	0.0030	0.003
	Inshore	0.0000	0.0000	0.0000	0.000
	Offshore	0.0038	0.0138	0.0429	0.060
	Inshore	0.0000	0.0008	0.0452	0.046
	Offshore	0.0006	0.0005	0.0002	0.001
East	Inshore	0.0000	0.0009	0.2669	0.267
	TOTAL	0.0013	0.0043	0.0315	0.037
1973					
	Offshore	0.0000	0.0038	0.0075	0.011
	Inshore	0.0000	0.0000	0.0000	0.000
	Offshore	0.0009	0.0195	0.0497	0.070
	Inshore	0.0000	0.0004	0.0188	0.019
	Offshore	0.0000	0.0000	0.0000	0.000
East	Inshore	0.0000	0.0027	0.5307	0.533
	TOTAL	0.0002	0.0062	0.0401	0.046
1974 Wast		0 0000	0 000	0.000	0 0.03
	Offshore Inshore	0.0000	8000.0	0.0024	0.003
	Inshore Offshore	0.0000	0.0000	0.0000 0.0226	0.033
		0.0037 0.0000	0.0070 0.0010	0.0248	0.025
	Inshore Offshore	0.0000	0.0010	0.0248	0.025
	Inshore	0.0000	0.0000	0.4471	0.448
	TOTAL.	0.0010	0.0023	0.0294	0.032

..

## Table 47. Continued.

•

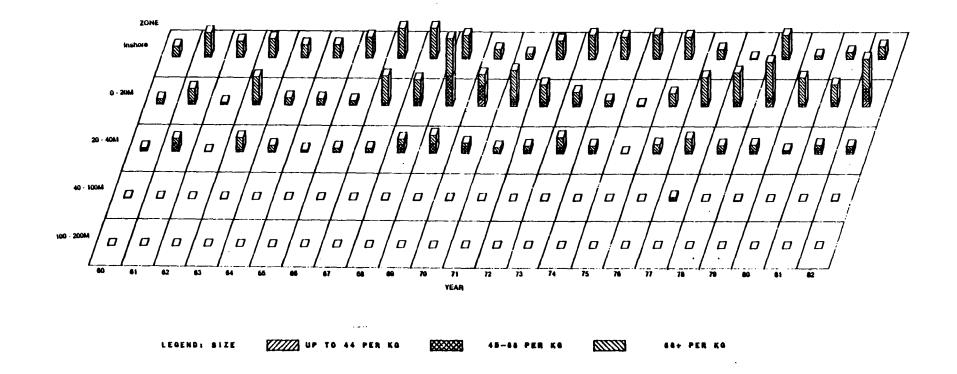



Figure 32. Year by depth by size means of pink shrimp catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

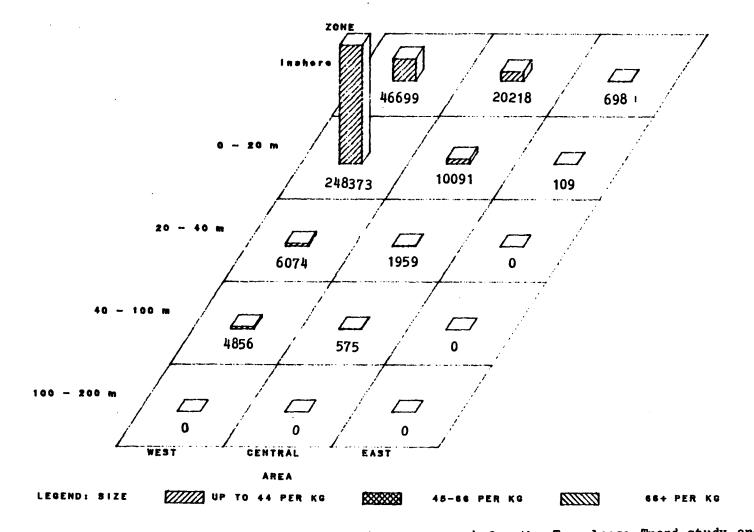



Figure 33. Region by depth means of seabob catch (kg, heads on) for the Tuscalcosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

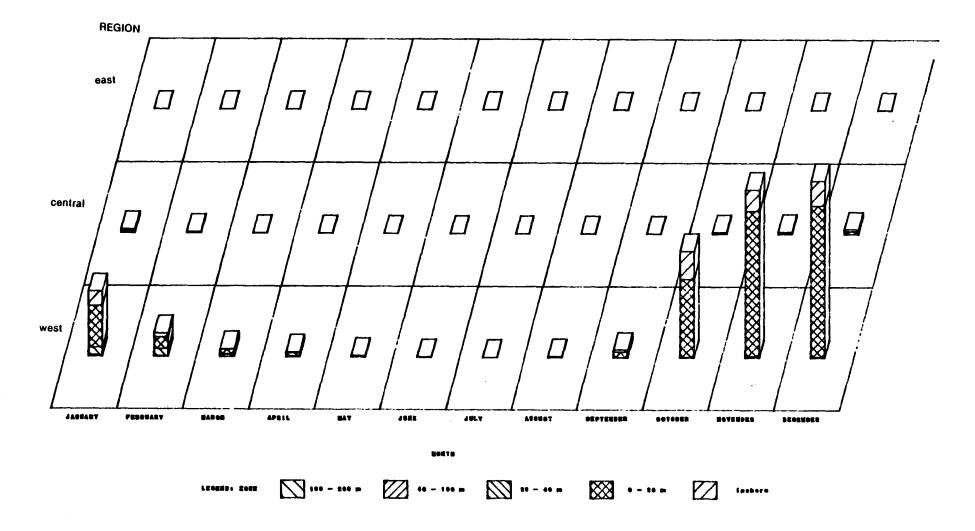



Figure 34. Month by region by depth means of seabob catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

	depth means				
Tuscaloosa	Trend study	area based	on Gulf C	oast Shrimp	Data for
the period	1960 to 1982	•		-	

C.KROYERI	TOTAL CATCH IN KILOGRAMS				
WEST					
Inshore	46699				
0 <b>-</b> 20 <b>m</b>	248373				
20 <b>–</b> 40 <b>m</b>	6074				
40 - 100 m	4856				
100 - 200 m	0				
REGION TOTAL	306003				
CENTRAL					
Inshore	20218				
0 - 20 m	10091				
20 <b>-</b> 40 <b>m</b>	1959				
40 - 100 m	575				
100 - 200 m	0				
REGION TOTAL	32844				
EAST					
Inshore	698				
0 - 20 m	109				
20 <b>-</b> 40 m	Ō				
40 <b>-</b> 100 <b>m</b>	0				
100 - 200 m	Ō				
REGION TOTAL	807				
SPECIES TOTAL	339654				

Table 49. Month by region by depth means of seabob catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

	January	February	Harch	April	Kay	June	July	August	September	October	Novenber	Decemb
VEST												
Inshore	0.0578	0.0144	0.0017	0.0000	0.0000	0.0000	0.0002	0.0000	0.0084	0.1105	0.0844	0.097
0 - 20 <b>m</b>	0.1645	0.0475	0.0203	0.0017	0.0030	0.0006	0.0001	0.0022	0.0214	0.3082	0.5756	0.59
20 - 40	0.0303	0.0265	0.0008	0.0122	0.0013	0.0000	0.0000	0.0000	0.0000	0.0026	0.0058	0.00
40 - 100 m	0.0042	0.0030	0.0080	0.0029	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
100 - 200 .	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
												=-
AREA MEAN	0.0389	0.0129	0.0057	0.0021	0.0007	0.0001	0.0000	0.0004	0.0047	0.0664	0.1067	0.11
CENTRAL												
Inshore	0.0016	0.0002	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0004	0.0060	0.0042	0.00
0 – 20 <b>m</b>	0.0071	0.0027	0.0000	0.0001	0.0000	0.0000	0.0000	0.000	0.0001	0.0006	0.0040	0.01
20 - 40 m	0.0046	0.0007	0.0000	0.0001	0.0000	0.0000	0.0003	0.0000	0.0000	0.0000	0.0002	0.00
40 - 100 m	0.0000	0.0012	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
100 - 200 =	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
						0.0000				0.0024	0.0000	
AREA MEAN EAST	0.0024	0.0009	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0024	0.0023	0.00
Inshore	0.0000	0.0002	0.0002	0.0013	0.0009	0.0003	0.0000	0.0000	0.0000	0.0000	0.0001	0.00
0 - 20	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0004	0.0000	0.0000	0.0000	0.00
20 - 40 .	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
40 - 100 m	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
100 - 200 -	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
AREA MEAN	0.0000	0.0000	0.0000	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00

No consistent trends in C/A were apparent among the three size classes of pink shrimp over the 23 year period. Years of high C/A for the different size classes appear to bear little relationship to one another. The years 1969 and 1970 were exceptional, with C/A of the size class of intermediate sized shrimp in offshore waters constituting half the total C (Figure 32). The size class of largest shrimp was most important in 1970, 1979 and 1982.

## <u>Seabobs</u>

Figure 33 and Table 48 shows mean seabob C by region and depth (over all years and months), while Figure 34 and Table 49 present month by region by depth means of seabob C/A. Virtually all of the seabob harvest in the Tuscaloosa Trend study area was taken from the western region (i.e., west of the Mississippi River delta). C/A in the central region was very low considering the substantial C for <u>Penaeus</u> spp. Only a token number of seabobs have been reported from the eastern region, and all of those were from GCSD statistical subarea 10, which encompassed the western half of the eastern region (see Figures 9 and 10). Since the sediment composition in the eastern region is relatively sandy, the absence of seabobs on these bottoms is not surprising.

Going westward across the study area, seabob C/A in inshore waters constituted relatively less of the regional totals, although in absolute terms C/A in inshore waters increased dramatically from east to west. In the eastern region, highest C/A was reported in inshore waters, with no C reported beyond 20 m depths. In the central and western regions, C of seabobs were reported out to 100 m depths, but C/A in both regions decreased dramatically with depth. In the western region, C/A was by far the highest in the nearshore zone (0-20 m depths), while, in the central region, C/A in inshore waters and in the shallow (0-20 m) depths offshore were similar. The relatively small contribution of estuaries to total seabob production is consistent with the general feeling that they are not estuarine dependent. The estuarine contribution to total seabob C in any one month remains fairly consistent over the year.

Trends in seabob C/A in the central and western regions, where C has been reported during most months, were very similar over the year (Figure 34). Seabob C/A first increased in August and September, with substantially higher values reported during the fall and early winter (October to January). C/A then declined throughout the remainder of the winter and spring, reaching lowest values in the May-July period. Seasonal patterns in the eastern region, where C/A was generally much lower, were quite different from those in the central and western regions. C/A was relatively high in the eastern region when C/A was relatively low in the other regions (May) and was lowest when C/A in the central and western regions was highest (October).

In the western region, the same general seasonal pattern was exhibited at all depths at which seabobs were caught (inshore to 100 m depths offshore), with departures from this basic pattern becoming more noticeable as depth increases. While inshore waters and the 0-20 m depths offshore showed very similar seasonal patterns, C/A was consistently higher in the shallow Gulf, especially during months of high C. Catches in waters greater than 20 m in depth did not constitute a substantial fraction of the total seabob C until December, after which they increased through winter and early spring. The depth by month trends (Figure 34) appear to indicate an offshore migration with time. C/A in the 20-40 m depth zone remained near zero until January, when it increased sharply and remained relatively high through April. C/A was higher in 40-100 m depths in March and May compared to inshore waters, and higher in both the 20-40 m depths and the 40-100 m depths in April compared to the 0-20 m depths.

Over the 23 year period 1960-1982, seabob C/A showed inconsistent trends across the three regions, with only the means for the western region being substantial during all years (Figure 35 and Table 50). In this region, higher seabob C were reported in 1962, 1970, 1975, 1977 and 1979-1981, while 1971 was represented by the lowest C/A. Other years of relatively low C/A in the western region included 1963, 1967, 1969, 1976 Since 1977, during years of relatively high C, virtually no and 1979. seabobs were caught inshore, with the vast majority being harvested in the shallow Gulf in waters less than 20 m depth. Considering the years of higher C in the western region, only 1962 and 1975 showed substantial inshore C. In 1962, the best year for seabob C during the 1960s, C/A was relatively evenly distributed out to 100 m depths. C/A in the central region appears to be generally higher since 1978, with most years of low C/A occurring before 1970.

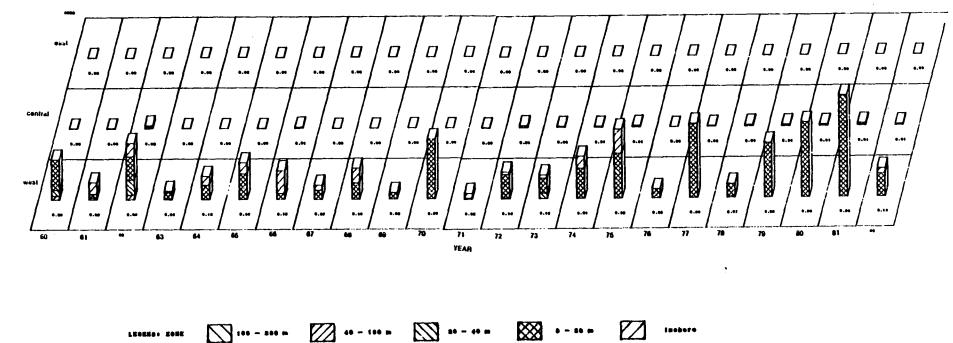



Figure 35. Year by region by depth means of seabob catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

Table 50. Year by region by depth means of seabob catch/unit water surface area (kg, heads on, per ha) for the Tuscaloosa Trend study area based on Gulf Coast Shrimp Data for the period 1960 to 1982.

	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	197
VEST							_			· · - ·		
Inshore	0.0000	0.7103	0.8169	0.0733	0.5343	0.6790	1.3811	0.3077	0.9014	0.0145	0.0000	0.30
0 - 20 🔳	1.8382	0.2303	1.4162	0.4154	0.8710	1.5404	0.3438	0.5521	0.9756	0.3730	3.5952	0.05
20 - 40 =	0.3710	0.0993	0.8992	0.0025	0.0031	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
40 - 100 <b>=</b>	0.2110	0.0000	0.2779	0.0162	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
100 - 200 -	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
AR EA MEAN	1.0981	0.4197	1.4134	0.2349	0.6219	0.9906	0.7196	0.3811	0.8185	0.1791	1.6694	0.14
CENTRAL					0.0023	0.0001	0.0746	0.0000	0.0000	0.0000	8000.0	0.02
Inshore	0.0000	0.0246	0.0848	0.0020		0.0069	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
0 - 20 =	0.0000	0.0002	0.0095	0.0108	0.0005	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
20 - 40 =	0.0091	0.0043	0.0670	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.00
40 - 100 m	0.0000	0.0000	0.0277	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.00
100 - 200 -	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		·			
AREA MEAN	0.0092	0.0783	0.3744	0.0194	0.0075	0.0087	0.2235	0.0000	0.0000	0.0000	0.0025	0.07
BAST	0.0000	0.0000	0.0000	0.0044	0.0000	0.0054	0.0112	0.0123	0.0107	0.0039	0.0023	0.00
Inshore	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
0 - 20 🖿	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
20 - 40 =	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.00
40 - 100 m	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0
100 - 200 m	0.000	0.0000	0.0000									
AREA MEAN	0.000	0.0000	0.0000	0.0020	0.0000	0.0024	0.0050	0.0055	0.0048	0.0017	0.0010	0.00
- <u></u>	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	-
VEST												
Inshore	0.1677	0.1967	0.7262	1.4562	0.0000	0.0092	0.0000	0.0000	0.0041	0.0325	0.3219	
0 - 20 m	1.4161	0.9088	1.8037	2.7089	0.5414	4.4666	0.7415	3.2979	4.5258	6.0969	1.3801	
20 - 40 m	0.0456	0.3214	0.0000	0.0000	0.0000	0.0000	0.0836	0.0000	0.0000	0.0000	0.0000	
40 - 100 m	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
100 - 200 -	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
								1.5314	2.1032	2.8443	0.7714	
AREA MEAN CENTRAL	0.7369	0.5819	1.1320	1.8484	0.2514	2.0778	0.3651	1.5314	2.1032	2.0443	0.7714	
Inshore	0.0051	0.0009	0.0366	0.0777	0.0018	0.0215	0.0617	0.0092	0.0020	0.0020	0.0457	
0 - 20 #	0.1098	0.0575	0.0241	0.0095	0.0000	0.0146	0.0232	0.0813	0.1040	0.0899	0.0417	
20 - 40 m	0.0001	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000	0.0562	0.0000	
40 - 100 m	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
100 - 200 =	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
AR EA MEAN	0.1499	0.0730	0.1392	0.2444	0.0054	0.0821	0.2132	0.1270	0.1334	0.1731	0.1879	
ANEA PEAN EAST	0.1499	0.0130	V.1376	V.6777	0.0034	0.00L I						
Inshore	0.0034	0.0033	0.0021	0.0007	0.0004	0.0000	0.0000	0.0003	0.0010	0.0000	0.0103	
0 - 20 m	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0103	0.0086	0.0000	0.0000	0.0000	
20 - 20 m 20 - 40 m	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
40 - 100 m 100 - 200 m	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
100 - 200 A												
	0.0015	0.0015	0.0009	0.0003	0.0002	0.0000	0.0027	0.0024	0.0005	0.0000	0.0046	

## 3.0 BIBLIOGRAPHY

- Aldrich, D.V., C.E. Wood, and K.N. Baxter 1968. An ecological interpretation of low temperature responses in <u>Penaeus</u> <u>aztecus</u> and <u>P.</u> <u>setiferus</u> postlarvae. Bull. Mar. Sci. 18:61-71.
- Anderson, W. W., J. E. King, and M. J. Lindner 1949. Early stages in the life history of the common marine shrimp, <u>Penaeus setiferus</u> (Linnaeus). Biol. Bull. 96:168-172.
- Anderson, W. W., M. J. Lindner, and J. E. King. 1949. The shrimp fishery of the southern United States. Comm. Fish. Rev. 11:1-17.
- Anderson, W. W. 1970. Contributions to the life histories of several penaeid shrimps (Penaeidae) along the south Atlantic coast of the United States. US Fish Wildl. Ser., SSR-F. 605. 24 pp.
- Angelovic, J. W. 1976. Relative seasonal abundance and areal distribution of larval shrimp (<u>Penaeus</u> spp.). <u>In</u>: Jackson, W. B. (ed.). Environmental studies of the South Texas outer continental shelf. Vol 1. Plankton and fisheries. pp 11-19.
- Barrett, B. B., and M. Gillespie. 1973. Primary factors which influence commercial shrimp production in coastal Louisiana. La. Wildl. and Fish. Comm., Tech. Bull. 9:28 pp.
- Barrett, B. B., and E. J. Ralph. 1976. 1976 environmental conditions relative to shrimp production in coastal Louisiana. La. Dept. Wildlife and Fish., Tech. Bull. No. 21:20 pp.
- Baxter, K. N., and W. C. Renfro. 1967. Seasonal occurrence and size distribution of postlarval brown and white shrimp near Galveston, Texas, with notes on species identification. U.S. Fish. Wildl. Serv., Fishery Bull. 66:149-158.
- Benson, N. G. (ed). 1982. Life history requirements of selected finfish and shellfish in Mississippi Sound and adjacent areas. U.S. Fish and Wildlife Service, Office of Biological Services, Washington, D.C. FWS/OBS-81151. 97 pp.
- Berry, R. J., and K. N. Baxter 1969. Predicting brown shrimp abundance in the northwestern Gulf of Mexico. FAO Fish Rep. 57:775-798.
- Burkenroad, M. D. 1934. The Penaeidae of Louisiana with a discussion of their world relationships. Bull. Am. Mus. Nat. Hist. 68:61-143.
- Burkenroad, M. D. 1939. Further observations on Penaeidae of the Northern Gulf of Mexico. Bull. Bingham Ocean. Collect. 6:1-62.
- Chapman, C. R. 1964. Biological comparison of Trinity Bay and Clear Lake, two subdivisions of the Galveston Bay system, 1961. In: Fishery research for the year ending June 30, 1963, pp. 71-75. U.S. Fish. Wildl. Serv., Circ. 183.
- Christmas, J. Y. 1973. Cooperative Gulf of Mexico estuarine inventory and study Mississippi. Phase I: Area description. Phase IV: Biology. Gulf Coast Res. Lab., Ocean Springs, Miss. 434 pp.

- Christmas, J. Y., L. N. Eleuterius, W. W. Langley, H. M. Perry and R. S. Waller 1973. Cooperative Gulf of Mexico estuarine inventory and study, Mississippi. Phase IV: Biology. Gulf Coast Res. Lab., Ocean Springs, Ms. pp. 139-434.
- Christmas, J. Y. and D. J. Etzold. 1977. The shrimp fishery of the Gulf of Mexico United States: a regional management plan. Gulf Coast Res. Lab., Ocean Springs, Miss., Tech. Report Ser. No. 2:128 pp.
- Christmas, J. Y., G. Gunter, and P. Musgrave. 1966. Studies on annual abundance of postlarval penaeid shrimp in the estuarine waters of Mississippi as related to subsequent commercial catches. Gulf Res. Rep. 2:117-212.
- Christmas, J. Y., W. Langley, and T. Van Devender. 1976. Investigations of commercially important penaeid shrimp in Mississippi. Gulf Coast Res. Lab., Ocean Springs, Miss. 66 pp.
- Comiskey, C. E., R. McCord, D. Bozarth, S. Grady, C. Hall, C. Brandt, and T. Farmer. 1982. Vol. I(A). Shrimping success. <u>In</u>: Klima, E. F. (Contracting Officer's Technical Representative). Shrimp and redfish studies; Bryan Mound brine disposal site off Freeport, Texas, 1979-1981. NOAA Technical Memorandum NMFS-SEFC-65, 449p.
- Crance, J. H. 1971. Description of Alabama estuarine area--Cooperative Gulf of Mexico estuarine inventory. Ala. Mar. Res. Bull. 6. 85 pp.
- Eldred, B., R. M. Ingle, K. D. Woodburn, R. F. Hutton, and H. Jones. 1961. Biological observations on the commercial shrimp, <u>Penaeus duorarum</u> Burkenroad, in Florida waters. Florida St. Board Conserv., Prof. Paper Series 3:1-139.
- Ford, T. B., and L. S. ST. Amant. 1971. Management guidelines for predicting brown shrimp, <u>Penaeus</u> <u>aztecus</u>, production in Louisiana. Pages 149-161 in Proc. Gulf Carib. Fish. Inst., 23d Ann. Ses.
- Gaidry, W. J. III, and C. J. White. 1973. Investigations of commercially important penaeid shrimp in Louisiana estuaries. La. Wildlife and Fish. Comm., Tech. Bull. 8. 154 pp.
- Gallaway, B. J. and L. A. Reitsema. 1981. Shrimp spawning site survey. Vol. 1. <u>In</u>: Klima, E. F. (Contracting Officer's Technical Representative). Shrimp and redfish studies; Bryan Mound brine disposal site off Freeport, Texas, 1979-1981. NOAA Technical Memorandum NMFS-SEFC-67, 84 p.
- Gulf of Mexico Fishery Management Council (1981) Fishery management plan for the shrimp fishery of the Gulf of Mexico, United States Waters. Gulf of Mexico Fishery Management Council, Tampa, Fl. November 1981.
- Gunter, G. 1941. Death of fishes due to cold on the Texas coast, January 1940. Ecology 22:203-208.
- Gunter, G. 1950. Seasonal population changes and distributions as related to salinity of certain invertebrates of the Texas coast, including the commercial shrimp. Publ. Inst. Mar. Sci. Univ. Texas 1:7-51.

- Gunter, G. 1967. Some relationships of estuaries to the fisheries of the Gulf of Mexico. <u>In</u>: G. H. Lauff (ed.), Estuaries. Pub. 83. Am. Assoc. Advmt. Sci. pp. 621-638.
- Gunter, G. and J. C. Edwards. 1969. The relation of rainfall and freshwater drainage to the production of the penaeid shrimps (<u>Penaeus</u> <u>fluviatilis</u> Say and <u>Penaeus</u> <u>aztecus</u> <u>Ives</u>) in Texas and Louisiana waters. FAO Fish. Rep. 57:875-892.
- Gunter, G. and H. H. Hildebrand. 1951. Destruction of fishes and other organisms on the south Texas coast by the cold wave of January 28 to February 3, 1951. Ecology 32:731-736.
- Hill, M. O. 1979. TWINSPAN. A computer program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Ecology and Systematics, Cornell Univ., Ithaca, New York.
- Ingle, R. M. 1956. Intermittent shrimp sampling in Apalachicola Bay with biological notes and regulatory applications Proc. Gulf Carib. Fish. Inst. 9:6-17.
- Ingle, R. M., B. Eldred, H. Jones, and R. F. Hutton. 1959. Preliminary analysis of Tortugas shrimp sampling data 1957-1958. Fla. St. Board Conserv. Tech. Series 32. 45 pp.
- Joyce, E. A. Jr. 1965. The commercial shrimps of the northeast coast of Florida. Fla. St. Board Conserv., Prof. Paper Series 6. 224 pp.
- Juneau, C. L. 1977. A study of the seabob, <u>Xiphopeneus kroyeri</u> (Heller) in Louisiana. La. Dept. Wildlife and Fish. Tech. Bull. 24. 24 pp.
- Kemmerer, A. J., E. J. Gutherz and B. A. Rohr. 1982. Summary of fishery independent surveys for groundfish in the northern Gulf of Mexico (1972-1981). Special report for the Southeast Fisheries Center's 1982 Stock Assessment Workshop. National Marine Fisheries Service, NSTL Station, Mississippi.
- Kutkuhn, J. H. 1962a. Gulf of Mexico commercial shrimp populations-trends, and characteristics, 1956-1959. Fish. Bull. 62:343-402.
- Kutkuhn, J. H. 1962b. Recent trends in white shrimp stocks of the northern Gulf. Proc. Gulf Carib. Fish Inst. 14:3-28.
- Kutkuhn, J. H. 1966a. The role of estuaries in the development and perpetuation of commercial shrimp resources. Am. Fish. Soc. Sp. Publ. 3, pp. 16-36.
- Kutkuhn, J. H. 1966b. Dynamics of a penaeid shrimp population and management implications. Fish. Bull. 65:313-338.
- Kutkuhn, J. H., H. L. Cook, and K. N. Baxter. 1969. Distribution and density of prejuvenile <u>Penaeus</u> shrimp in Galveston entrance and the nearby Gulf of Mexico (Texas). FAO Fish. Rep. 57:1075-1099.
- Lindner, M. J., and W. W. Anderson. 1956. Growth, migrations, spawning and size distribution of shrimp <u>Penaeus</u> <u>setiferus</u>. Fish. Bull. 56:555-645.

- Lindner, M. J., and J. S. Bailey. 1968. Distribution of brown shrimp (<u>Penaeus aztecus</u> Ives) as related to turbid water photographed from space. Fish. Bull. 67:289-294.
- Loesch, H. 1965. Distribution and growth of penaeid shrimp in Mobile Bay, Alabama. Publ. Inst. Mar. Sci. Univ. of Texas 10:41-58.
- McIlwain, T. D. 1982. Fishery monitoring and assessment. Completion report on Project 2-296-R, 1 January 1977 to 31 December 1981, to National Marine Fisheries Service, 930 pp.
- McNulty, J. K., W. N. Lindall Jr., and J. E. Sykes. 1972. Cooperative Gulf of Mexico estuarine inventory and study, Florida: Phase I, area description. US Dept. Commerce, NOAA Tech. Rep. NMFS CIRC-368. 126 pp.
- Moffett, A. W. 1966. A study of commercial shrimps in coastal bays of Texas. Coastal Fish. Div., Proj. Reps., Texas Parks and Wildl. Dept. 1-26.
- Moffett, A. W. 1967. A study of commercial shrimp populations in coastal bays of Texas, 1967. Coastal Fish. Proj. Rep. Texas Parks & Wildl. Dept. 19-48.
- Moffett, A. W. 1969. A study of commercial shrimp populations in coastal bays of Texas, 1969. Coastal Fish. Proj. Rep. Texas Parks & Wildl. Dept. 169-183.
- Moffett, A. W. 1970. A study of commercial shrimp populations in coastal bays of Texas, 1970. Coastal Fish. Proj. Rep. Texas Parks & Wildl. Dept. 185-206.
- Moffett, A. W. 1971. A study of brown shrimp in Texas coastal bays (spring 1971). Coastal Fish. Proj. Rep. Texas Parks & Wildl. Dept. 191-208.
- Moffett, A. W. 1972. A study of brown shrimp (<u>Penaeus aztecus</u>) and white shrimp (<u>P. setiferus</u>) in coastal bays of Texas, 1972. Coastal Fish. Proj. Rep. Texas Parks & Wildl. Dept. 1-36.
- National Oceanic and Atmospheric Administration 1976. Gulf Coast Shrimp Data, annual summary 1975. National Marine Fisheries Service Current Fisheries Statistics No. 6925.
- Patella, F. 1975. Water surface area within statistical subareas used in reporting Gulf Coast shrimp data. Mar. Fish. Rev. 37:22-24.
- Perret, W. S., B. B. Barrett, W. R. Latapie, J. F. Pollard, W. R. Mock, G. B. Adkins, W. J. Gaidry, and C. J. White. 1971. Cooperative Gulf of Mexico estuarine inventory and study, Louisiana. Phase I, Area description. Louisiana Wildlife and Fish. Comm., New Orleans, La. 175 pp.
- Renfro, W. C. 1964. Life history stages of Gulf of Mexico brown shrimp. Fishery Research Biological Laboratory, Galveston Circ. Fish. Wildl. Serv. Wash. 183:93-95.
- Renfro, W. C., and H. A. Brusher. 1964. Population distribution and spawning. Pages 13-15 in US Fish Wildl. Cir. No. 183.

- Renfro. W. C., and H. A. Brusher. 1965. Distribution and intensity of shrimp spawning activity. Pages 68-70 in US Fish Wildl. Cir. 230.
- Roithmeyer, C. M. 1965. Industrial bottomfish fishery of the Northern Gulf of Mexico, 1959-1963. U. S. Fish and Wildlife Service Special Science Dept. Fisheries No. 518, 23 pp.
- Savell, A., J. Pollard, D.P. DeBlanc and K. Savastano 1983. Louisiana estuarine data base project. National Marine Fisheries Service, Southeast Fisheries Center, Mississippi Labs, NSTL, Mississippi. 176 pp.
- SEAMAP 1982. Southeast Area Monitoring and Assessment Program. 1982 Report to the SEAMAP Technical Coordinating Committee, Gulf States Marine Fisheries Commission, Ocean Springs, Ms. October 1982 21 pp Phase One Appendix.
- SEAMAP 1983. Southeast Area Monitoring and Assessment Program. 1983 Report to the SEAMAP Technical Coordinating Committee, Gulf States Marine Fisheries Commission, Ocean Springs, Ms. October 1983. 15 pp.
- SEAMAP 1984. SEAMAP operation plan: 1985-1990. Gulf States Marine Fisheries Commission, Ocean Springs, Ms. January 1984. 83 pp.
- St. Amant, L. S., J. G. Broom, and T. B. Ford. 1965. Studies of the brown shrimp, <u>Penaeus aztecus</u>, in Barataria Bay, Louisiana, 1962-1965. Proc. Gulf Carib. Fish. Inst., 18:1-17.
- St. Amant, L. S., K. C. Corkum, and J. G. Broom. 1963. Studies on growth dynamics of the brown shrimp, <u>Penaeus aztecus</u>, in Louisiana waters. Bull. Mar. Sci. Gulf Carib. 15:14-26.
- Subrahmanyam, C. B. 1971. The relative abundance and distribution of penaeid shrimp larvae off the Mississippi coast. Gulf Res. Repts. 3:291-345.
- Sutter, F. C. and J. Y. Christmas 1983. Multilinear models for the predictions of brown shrimp harvest in Mississippi waters. Gulf Research Reports 7:205-210.
- Swingle, H. A. 1971. Biology of Alabama estuarine areas. Cooperative Gulf of Mexico estuarine inventory. Ala. Mar. Res. Bull. 5:123 pp.
- Temple, R. F. and C. C. Fischer. 1967. Seasonal distribution and relative abundance of planktonic-stage shrimp (<u>Penaeus</u> spp.) in the northwestern Gulf of Mexico, 1961. Fish. Bull. 66:323-334.
- Trent, L. 1967. Size of brown shrimp and time of emigration from the Galveston Bay system, Texas. Gulf Carib. Fish. Inst. 19th Ann. Sess., pp. 7-16.
- Turner, R. E. 1977. Intertidal vegetation and commercial yields of penaeid shrimp. Trans. Am. Fish. Soc. 106:411-416.
- White, C. J. and C. J. Boudreaux. 1977. Development of an areal management concept for Gulf penaeid shrimp. La. Wildl. and Fish. Comm. Tech. Bull. No. 22. 77 pp.



## The Department of the Interior Mission

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; preserving the environmental and cultural values of our national parks and historical places; and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people by encouraging stewardship and citizen participation in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.



## The Minerals Management Service Mission

As a bureau of the Department of the Interior, the Minerals Management Service's (MMS) primary responsibilities are to manage the mineral resources located on the Nation's Outer Continental Shelf (OCS), collect revenue from the Federal OCS and onshore Federal and Indian lands, and distribute those revenues.

Moreover, in working to meet its responsibilities, the **Offshore Minerals Management Program** administers the OCS competitive leasing program and oversees the safe and environmentally sound exploration and production of our Nation's offshore natural gas, oil and other mineral resources. The MMS **Minerals Revenue Management** meets its responsibilities by ensuring the efficient, timely and accurate collection and disbursement of revenue from mineral leasing and production due to Indian tribes and allottees, States and the U.S. Treasury.

The MMS strives to fulfill its responsibilities through the general guiding principles of: (1) being responsive to the public's concerns and interests by maintaining a dialogue with all potentially affected parties and (2) carrying out its programs with an emphasis on working to enhance the quality of life for all Americans by lending MMS assistance and expertise to economic development and environmental protection.