Gulf of Mexico Air Quality Study, Final Report

Volume II: Data Analysis, Appendices A-M

Prepared by

Systems Applications International 101 Lucas Valley Road San Rafael, California 94903 BEST AVAILABLE COPY

Sonoma Technology, Inc. 5510 Skylane Boulevard, Suite 101 Santa Rosa, California 95403

Earth Tech 196 Baker Avenue Concord, Massachusetts 01742

Alpine Geophysics P. O. Box 17344 Covington, Kentucky 41017

A.T. Kearney 225 Reinekers Lane Alexandria, Virginia 22313

Prepared under MMS Contract 14-35-0001-30604 by Systems Applications International 101 Lucas Valley Road San Rafael, California 94903

Published by

U.S. Department of the Interior Minerals Management Service Gulf of Mexico OCS Region

DISCLAIMER

This report was prepared under contract between the Minerals Management Service (MMS) and SAI. This report has been technically reviewed by the MMS and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Service, nor does mention of trade names or commercial products constitute endorsement of recommendations for use. It is, however, exempt from review and compliance with MMS editorial standards.

REPORT AVAILABILITY

Extra copies of the report may be obtained from the Public Information Unit (Mail Stop 5034) at the following address:

U.S. Department of the Interior Minerals Management Service Gulf of Mexico OCS Region Public Information Unit (MS 5034) 1201 Elmwood Park Boulevard New Orleans, Louisiana 70123-2394

Telephone Number: (504) 736-2519 or 1-800-200-GULF

SUGGESTED CITATION

Systems Applications International, Sonoma Technology Inc., Earth Tech, Alpine Geophysics, and A. T. Kearney. 1995. Gulf of Mexico air quality study, final report. Volume II: Data analysis, appendices A-M. OCS Study MMS 95-0039. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, La. 212 pp.

TABLE OF CONTENTS

Appendix A:	List of Surface and Upper-Air Sites and the Parameters Measured at These Sites	. A -1
Appendix B:	Surface Hydrocarbon and Carbonyl Compound Species Lists and Data	B -1
Appendix C:	Comparisons Between Surface and Aircraft Ozone Measurements During the August 17-21, 1993 Episode	C-1
Appendix D:	List of Sites that Exceeded the National Ambient Air Quality Standard (NAAQS) for Ozone During 1993 Episodes	D-1
Appendix E:	Analyses of Pressure Gradients and Onshore-Offshore Winds in Southeast Texas and Louisiana	E-1
Appendix F:	Analyses of Hourly Surface Ozone Concentrations, Onshore-Offshore Velocity Components, and Surface Winds in Southeast Texas on August 19, 1993 and September 8, 1993	F-1
Appendix G:	Plots of Mixing Depth Derived from C_n^2 and Virtual Temperature Data	G-1
Appendix H:	Aircraft Hydrocarbon and Carbonyl Compound Data	H-1
Appendix I:	Comparisons of Surface and Aircraft Hydrocarbon and Carbonyl Compound Data	I-1
Appendix J:	Analyses of Integral Transport Quantities for the Radar Profiler Stations in Southeast Texas and Louisiana	J-1
Appendix K:	Trajectory Analyses	K-1
Appendix L:	Profile Plots of Ozone and NO _x Concentrations, Southwesterly Component of the Wind Speed, and Ozone and NO _x Flux at Galveston on August 10, 1993	L-1
Appendix M:	Time Series Plots of Surface Ozone and NO _x Concentrations, Surface Southwesterly Component of the Wind Speed, and Ozone and NO _x Fluxes for Galveston, Gilchrist, Seabrook, Smith Point, and HRM Site 7 for August 17-21 and September 7-11, 1993.	M-1

APPENDIX A

LIST OF SURFACE AND UPPER-AIR SITES AND THE PARAMETERS MEASURED AT THESE SITES

This appendix lists the surface and upper-air monitoring sites and the parameters measured at these sites, which were used in the data analysis. Table A-1 lists the locations and parameters measured at surface air quality and meteorological sites in the southeast Texas, Louisiana, and Gulf of Mexico regions. These sites were operated by GMAQS contractors, state air quality agencies, private monitoring networks, and the National Weather Service. Table A-2 lists the upper-air monitoring sites and the parameters measured by these instruments. The upper-air instruments included radar profilers and Radio Acoustic Sounding Systems (RASS), rawinsondes, and sodars, which were operated by GMAQS contractors, state air quality agencies, and the National Weather Service.

Table A-1. Lists the locations and parameters measured at surface air quality and meteorological sites in the southeast Texas, Louisiana, and Gulf of Mexico Regions.

Page 1 of 2

SITE ID	AIRS ID	State	Site Name, County/Parish	Parameters Measured										
3112.10	Aires ib	Juane	Site Hairie, Southly and a	ws	WD	T	TD	RH	Р	SR	Pcp	О3	NO/NO _X	VOC
DPIA	N/A	AL	UPHINE ISLAND	X	Х	Χ			X					
	N/A		MOBILE (NWS)	X	Х	X	X	X	X					
BURL	N/A	LA	SOUTHEAST PASS	X	Х	Х			Х					
COC	N/A	Δ	COCODRIE	X	X	Х	Χ		X			Х	Х	X
GDIL	N/A	LA	GRAND ISLE	X	X	Х			X					
LO1	220870002		MEHLE AVE., ARABI									X		
LO2	220331001	LA	HIGHWAY 964, E. BATON ROUGE						<u> </u>	L	<u> </u>	X	Х	
LO3	220330009		CAPITOL, E. BATON ROUGE								<u> </u>	Х	Х	
LO4	220330003		ASTER LANE, E. BATON ROUGE						<u> </u>			X	Х	
LO5	220190002		HIGHWAY 27/108, CALCASIEU	L								×		
LO6	220470002		HIGHWAY 75, IBERVILLE	lacksquare					<u> </u>			X	Х	
LO7	220930002		HWY44&CANAPEL, ST. JAMES		igsqcup				<u> </u>			X	X	
LO8	220170001		HAGOOD ROAD, CADDO	<u> </u>	L				<u> </u>	<u> </u>	<u> </u>	Х		
LO9	220050004		DUTCHTOWN, ASCENSION		lacksquare				<u> </u>			X		ļ
LO10	220630002		FRENCH SETTLEMENT, LIVINGSTON									Х	Х	<u> </u>
	220950002		AZALEA & S. APRICOT, ST. JOHN THE BAPTIST	<u> </u>	L				<u> </u>			X		
	220470007		HIGHWAY 77/GROSS TETE, IBERVILLE	<u> </u>					<u> </u>	-	<u> </u>	X	X	
	220890003		1 RIVER PARK DRIVE, ST. CHARLES	—	 	_		<u> </u>	-	} -		X	}−-	
LO14	220511001		WEST TEMPLE PL, JEFFERSON	-	 			<u> </u>		₩		X.	Х	
LO15	220550004		LAFAYETTE, LAFAYETTE		\vdash			_	-	 	⊢	X	 	
	220190007		LEBLEU,CALCASIEU	├	$\vdash \vdash$				 	 	-	X	X	—
LO17	220730002		4709 CONSTRUCTION AVENUE, OUACHITA	├	\vdash					├	<u> </u>	_		\vdash
LO18	221010003		MORGAN CITY, ST. MARY	 -				-	-	-	\vdash	X	X	├
LO19	220710012		FLORIDA & ORLEANS AVE, ORLEANS	<u> </u>		-		-		 	 	X	X	┼
LO21	220770001		TED DAVIS & HIGHWAY 415, POINTE CUPEE	├					-			X	- X -	├──
	221210001		HIGHWAY 1, WEST BATON ROUGE	├	-				-	╁	\vdash	X	X -	┼
	220330008		PRIDE PORT HUDSON ROAD, E. BATON ROUGE	⊢	 			 -	-	╁	-	x	X	
LO24	220110002		HWY 171 & HWY 190, BEAUREGARD	┢─	-			┝		╁	-	x	X	
LO25	220150008 220570002		SHREVEPORT MUNI AIRPORT, BOSSIER	├-				\vdash		1	\vdash	Ŷ	- ^ -	├
LO26 LO27	220190009		MADEWOOD DR & ARDOYNE ST, LAFOURCHE VINTON, CALCASIEU	┢	_	_	_	├	├			Ŷ	х	┼──
LO27	220190008		WESTLAKE, CALCASIEU	├─	\vdash					 	 	x	-	-
LSU	N/A		LOUISIANA STATE UNIVERSITY	X	X	Х	X	х	Х	X	X	 ^		
NCD1	N/A		LAKE CHARLES (NWS)	Î	x	X	x	X	x	 ^	┼	\vdash		
NCD3	N/A	_	NEW ORLEANS (NWS)	Î	X	X	x	X	x	 	 	├─	 	
NCD8	N/A		BATON ROUGE (NWS)	 x	X	X	X	X	X	 	 	-	-	
SSP	N/A		SHIP SHOAL 178A PLATFORM	x	x	X	Ŷ	X	Ŷ	X	TX	\vdash		\vdash
34ST	N/A		34TH STREET	 ^` -			<u> </u>	<u> </u>	<u> </u>	 	 ^	Х	X	
BLOG	N/A	-	BLOOMINGTON (GLDN CRES 84?)	X	X	Х	_				┪	Ĥ		
CRSC	N/A		CROSBY AQ/MET	Ϊ́х	X	X	 			X		X	×	
GAL	N/A		GALVESTON	X	Х	Х	х	Х	X	X	X			
GALC	N/A		GALVESTON AS SITE	X	Х	Х				Х		Х	Х	1
GILC	N/A		GILCHRIST	X	X	X					\top	X	X	Х
GLRC	N/A	_	GALLERIA CGC SITE	X	Х	Х				X		Х	х	
HIP	N/A		HIGH ISLAND 199 PLATFORM	X	X	Х	Х	X	Х	Х	Х			
HM01	482010801	-	HRM SITE 001, HARRIS	X	X	Х				Х		X	Х	
НМОЗ	482010803	ŤΧ	HRM SITE 003, HARRIS	X	Х	Х				X		X	Χ	
HM04	482010804	TX	HRM SITE 004, HARRIS	X	X	X				X		X	X	L
HM07	482010807	TX	HRM SITE 007, HARRIS	X	X	Х				X	٠	X	X	<u> </u>
HM08	482010808	TX	HRM SITE 008, HARRIS	Х	X	Х				X		X	Х	
HM10	480710900	TX	HRM SITE 010, CHAMBERS	X	Х	Х				X		Х	X	
HM11	480710901		HRM SITE 011, CHAMBERS	X	Х	Х				X		Х	Х	
HTCC	N/A		TEXAS COMMERCE TOWER	X_	X	Х				X		X	Х	
ME5T	N/A		MET 5	Х	X	Х		X	Х		X			ļ
MOBT	N/A	TX	MOBILE	X	X									$oxed{\Box}$
NCD2	N/A		VICTORIA (NWS)	X	X	X	X	X	X					
NCD4	N/A	TX	PORT ARTHUR (NWS)	X	Х	Х	X	X	Х					

Table A-1. Lists the locations and parameters measured at surface air quality and meteorological sites in the southeast Texas, Louisiana, and Gulf of Mexico Regions.

Page 2 of 2

SITE ID	AIRS ID	State	Site Name, County/Parish	Parameters Measured										
			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ws	WD:	T	TD	RH	Р	SR	Pcp	03	NO/NO _x	Voc
NCD5	N/A	ΤX	CORPUS CHRISTI (NWS)	X	X	Х	X	Х	Х	-	1	-	, none	100
NCD6	N/A		HOUSTON (NWS)	X	Х	Х	X	Х	X					\vdash
PCOG	N/A	ΙX	POINT COMFORT (GLDN CRES 84?)	Х	X	Х			-					
	N/A	_TX	PORT ARANSAS	Х	X	X								
S40S	N/A		Sabine Pass (SETRPC SITE 40)	Х	X	Х						Х	х	
S41S	N/A	Υ	West Orange (SETRPC SITE 41)	Х	Х	Х								
S42S	N/A	X	Orange Co. (SETRPC SITE 42)	X	х	Х						Х	Х	
S43S	N/A	X	Beaumont (SETRPC SITE 43)	Х	Х	X						X	X	
SBRC	N/A		SEABROOK C20	X	Х	Х				X		X	X	
SDRG	N/A	χ	SEA DRIFT (GLEN CRES 82)	Х	Х	Х				1				
SEH	N/A	X	SOUTHEAST HOUSTON	X	Х	X	Х	Х	X	X	Х			
SPTC	N/A	TX	SMITH POINT AQ/MET	Х	Х	X				X		Х	X	
SRST	Ņ/A	TX	SABINE	X	X	Х			Х					
STWC	N/A	TX	STOWELL (WINNIE) AQ/MET	X	X	X				X		X	X	
SWLT	N/A	TX	SEAWALL	Х	Х								Х	
	482011053	X	CLINTON, HARRIS											Х
TN2	482011037	TX	CRAWFORD, HARRIS	X	Х	X						Х	х	
TN3	482010046	ΤX	N WAYSIDE, HARRIS	X	X	Х						X		
TN4	482010047	ΤX	LANG, HARRIS	X	Х	Х						X	Х	
TN5	482010051		CROQUET, HARRIS	X	Х	Х						X		
TN6	482010062	тх	SWISS&MONROE, HARRIS	X	х	х						X		
TN8	482450009		BEAUMONT C02, JEFFERSON	X								X	х	
TN9	483550025		WEST CO4, NUECES	Х	Х	Х	_	·				Х		
TN10	482010024		ALDINE COS, HARRIS	T X	X	X						X	х	\Box
TN11	483611001		WEST ORANGE COS, ORANGE	X	Х	Х						X	Х	
TN12	481671002		TEXAS CITY C10, GALVESTON	Х	Х	Х			·			Х		
TN13	480391003		CLUTE C11, BRAZORIA	X	Х	Х						X		
TN14	482011003		DEER PARK C18, HARRIS	X	Х	Х								
	483550026		TULOSA C21, NUECES	Х	X	Х						Х		
TN16	482010004	ΤX	BAYTOWN C24, HARRIS	Х	Х	Х							-	
TN17	482010029	ΤX	NW HARRIS C26, HARRIS	Х	Х	Х						Х	·- <u>-</u>	
TN18	481990002	ΤX	KOUNTZE C85, HARDIN	Х	Х	Х						х		
TN19	484690003		VICTORIA	X	Х	Х						Х		
TN20	482010059	ΤX	MANCHESTER C22, HARRIS	X	Х	х						X		
TN21	481830001		LONGVIEW C19, GREGG	Х	X	х						Х		
TN22	482450011	ΤX	PORT ARTHUR C28, JEFFERSON	Х	Х	Х						X		
VICG	N/A		VICTORIA	X	Х	X								
BUO1	N/A	-	BUOY 42001	X	Х	X			Х			-		
	N/A		BUOY 42002	Х	Х	X			Х					
BUO3	N/A	-	BUOY 42003	X	Х	X			Х					
BUO4	N/A	-	BUOY 42007	X	Х	X			Х					
01TN	N/A	•	NWS platform	Х	Х	Х	Х		Х					
5RON	N/A		NWS platform	Х	Х	Х	X		Х					
7R8N	N/A		NWS platform	X	Х	X	Х		X					

Table A-2. List of upper-air monitoring sites and the parameters measured by these instruments.

SITE ID	State	Site Name	In	strun	nent*	Parameters measured							
			RP	S	RWN	WS	WD	$T_{\mathbf{v}}$	Т	T_d	Р		
SSP	-	Ship Shoal 178A Platform	Х			Х	Х	Χ					
HIP	-	High Island 199 Platform	Х			Х	Х	X					
coc	LA	Cocodrie	Х			Х	Х	Х					
LSU	LA	Louisiana State University	Х			Х	Х	X					
GAL	TX	Galveston RP site	Х			X	X	X					
SEH	TX	Southeast Houston	Х			X	Х	Χ					
JCA	TX	Jefferson County Airport	Х	Χ		X	Х	X					
SPS	TX	Sabine Pass		X		Х	Х						
NHS	TX	Nortwest Houston		X		Χ	Х						
GALC	TX	Galveston		X		X	Х						
GAR	-	Garden Banks 236 Platform			Х	Х	Х		X	Х	Х		
LKCH	LA	Lake Charles			Х	Х	Х		X	Х	Х		
SLID	LA	Slidell			Х	Х	Х		Х	Х	Х		
CORP	ΤX	Corpus Christi			Х	Х	Х		X	X	X		

^{*} RP= 915 MHz radar profiler

S=Doppler sodar

RWN=Rawinsonde

APPENDIX B

SURFACE HYDROCARBON AND CARBONYL COMPOUND SPECIES LISTS AND DATA

Because of the large number of hydrocarbon samples collected (52 valid surface and 278 valid aircraft) and the large number of individual species (73 hydrocarbon and 10 carbonyl compounds), many plots and tables were prepared for the analyses which were not included in the main report. This appendix contains figures and tables concerning the surface hydrocarbon and carbonyl compound data including the following:

- Table listing the target species reported by Biospherics for the surface canisters.
- Table listing the target species reported by Radian for the surface continuous gas chromatograph (GC) data.
- Table listing the species group assignments for the Clinton continuous GC data plots.
- Table of statistics for species group totals by site and by site and time of day at the Cocodrie and Gilchrist surface sites.
- Table of the frequency distributions of NMHC, NMOC, NO_x, and ratios at Cocodrie and Gilchrist.
- Table of invalid hydrocarbon and carbonyl compound samples at Cocodrie and Gilchrist.
- Plots of statistics (minimum, maximum, average, median, and 25th, 75th, and 90th percentile concentrations) for species and species groups by hour at Clinton for the month of August, 1993.
- Diurnal plots of species and species groups for August 17-21, 1993 at Clinton.

The following terms are used in the three appendices which show surface and aircraft hydrocarbon and carbonyl compound data:

NMHC

nonmethane hydrocarbon. These data are the sum of identified species peaks and unidentified mass by gas chromatography-flame ionization detection (GC-FID). Samples at Gilchrist, Cocodrie, and in the aircraft were collected in canisters and 73 species were identified. Samples at Clinton were measured by continuous GC and 52 species were identified. All data were reported in ppbC.

Carbonyl Compounds Sum of ten carbonyl compounds collected in C18-bonded silica gel cartridges coated with dinitro phenylhydrazine (DNPH). Aldehydes and ketones react with the DNPH to form hydrazones which are identified and quantified using high pressure liquid chromatography. Data were reported in ppb and converted to ppbC.

NMOC

nonmethane organic compounds. Sum of the NMHC and carbonyl compound concentrations. Hydrocarbon and carbonyl compound samples were matched by sampling time and location. Reported in ppbC.

List of Target Species Reported by Biospherics (Surface and Aircraft Canisters)

Ethane	1 24Mhexa	50
Ethene	2 234Mpenta	51
Acetylene	3 Toluene	52
Propane	4 23Mhexa	53
Propene	5 2Mhepta	54
iButane	6 3Ehex/3Mhep	55
iButene	7 22Mhepta	56
1Butene	8 224Mhexa	57
13Butad	9 Octane	58
Butane	10 Ecyhexa	59
t2Butene	11 Etbenz	60
22mpropa	12 m&pXylene	61
c2Butene	13 Styrene	62
3M1bute	14 oXylene	63
iPentane	15 Nonane	64
1Pentene	16 iPropbenz	65
2M1bute	17 Propbenz	66
Pentane	18 pEtol	67
Isoprene	19 mEtol	68
t2Pente	20 135TMB	69
c2Pente	21 oEtol	70
2M2bute	22 124TMB/sBB	71
22Mbuta	23 Decane	73
Cypente	24	
4M1pente	25	
Cypenta	26	
23Mbuta	27	
c4M2pente	28	
2Mpenta	29	
3Mpenta	30	
2M1pente	31	
1Hexene	32	
Hexane t2Hexene	33 34	
2M2pente	3 4 35	
c2Hexene	36	
Mcypenta	37	
24Mpenta	38	
Benzene	39	
Cyhexane	40	
2Mhexa	41	
23Mpenta	42	
3Mhexa	43	
224Mpenta	44	
Heptane	45	
244M1pente	46	
Mcyhexa	47	
244M2pente	48	
25Mhexa	49	
	· -	

Target Species Reported by the Continuous GC

Species 5	Species Name
1	Ethane
2	Ethene
3	Propane
4	Propene
5	Isobutane
6	n-Butane
7	Acetylene
8	trans-2-Butene
9	1-Butene&i-Butylene
10	cis-2-Butene
11	Isopentane&Cyclopentane
12	n-Pentane
13	2-Methyl-2-Butene
14	Cyclopentene
15	trans-2-Pentene
16 47	3-Methyl-1-Butene
17	1-Pentene
18	cis-2-Pentene
19	2,2-Dimethylbutane
20	2,3-Dimethylbutane
21	2-Methylpentane
22	3-Methylpentane
23	Isoprene
24	4-Methyl-1-Pentene
25	2-Methyl-1-Pentene
26	n-Hexane
27	trans-2-Hexene
28	cis-2-Hexene
29	Methylcyclopentane
30	2,4-Dimethylpentane
31	Benzene
32	Cyclohexane
33	2-Methylhexane
34	2,3-Dimethylpentane
35	3-Methylhexane
36	2,2,4-Trimethylpentane
37	n-Heptane
38	Methylcyclohexane
39	2,3,4-Trimethylpentane
40	Toluene
41	2-Methylheptane
42	3-Methylheptane
43	n-Octane
44	Ethylbenzane
45	m/p-Xylene
46	Styrene
47	o-Xylene
48	n-Nonane
49	Isopropylbenzene
50	n-Propylbenzene
51	unknown #1
52	1,3,5-Trimethylbenzene
53	1,2,4-Trimethylbenzene
54	unknown #2

52 53 54

unknown #2

LIST OF SPECIES GROUPS USED IN CONTINUOUS GC PLOTS

Species and Species Group	Species
Ethane	Ethane
Ethene	Ethene
Propane	Propane
Propene	Propene
C4	iso-Butane, n-Butane
Acetylene	Acetylene
C4ole_2	Trans-2-Butene, Cis-2-Butene
C4ole_1	1-Butene, iso-Butylene
C5	iso-Pentane, Cyclopentane, n-Pentane
C5ole_2	Trans-2-Pentene, Cis-2-Pentene, 2-Methyl-2-Butene
CYCC5ole	Cyclopentene
C5ole_1	3-Methyl-1-Butene, 1-Pentene
C6	2-Methylpentane, 3-Methylpentane, 2,2-Dimethlybutane, 2,3-Dimethylbutane, n-Hexane
Isoprene	Isoprene
C6ole_1	4-Methyl-1-Pentene, 2-Methyl-1-Pentene
C6ole_2	Trans-2-Hexene, Cis-2-Hexene
CYCC6	Methylcyclopentane, Cyclohexane
C7	2-Methylhexane, 2,3-Dimethylpentane, 2,4-Dimethylpentane, 3-Methylhexane, n-Heptane
Benzene	Benzene
C8	2,2,4-Trimethylpentane, 2,3,4-Trimethylpentane, 2-Methylheptane, 3-Methylheptane, n-Octane
CYCC7	Cycloheptane
Toluene	Toluene
BenzC8	Ethylbenzene
Xylenes	o-,m-, and p-Xylenes
Styrene	Styrene
C9	n-nonane
BenzC9	1,2,4-Trimethylbenzene, 1,3,5-Trimethylbenzene, isopropylbenzene, n-Propylbenzene

STATISTICS FOR SPECIES GROUP TOTALS BY SITE AND BY SITE AND TIME OF DAY AT COCODRIE AND GILCHRIST

3,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·	J. L. J. G.			, ,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,	0172	*****			0	0000111
Begin	End											NMHC/	NMOC/
DATE Time	Time	CO	ID	PAR	OLE	AROM	UNID	TCarby	NMHC	NMOC	NOx	NOx	NOx
Cocodne	min	85.0	27 8	22.0	1.6	1.2	2.6	14 3	37.0	61 4	0.8	7.9	11.9
23 NMHC samples	max	236.0	244 0	232.1	11.2	20.0	22.9	45.1	261.0	294.4	7.0	157.2	177.3
19 carbonyt samples	avg	137.4	83 2	72.1	46	6.5	9.5	30 0	92.7	122.7	4.0	32.9	
	median	145.0	63.0	56.4	4.3	4.2	8.0	30.5			3.9		
	25th%	107.0	47.1	39.3	2.8	3.3					2.4		
	75th%	161 5	100.3	84.7	5.7	8 8					5.7		
	, 50170	101 5	100.0	U 1.1	0.1		12.0	55.0	100 0	147 1	U.1	00.3	730
Gilchrist	min	65.0	9 5	5.2	18	14	3.4	12.0	13.0	29.8	1.4	1.9	3.7
28 NMHC samples	max	262 0	575 2	388.2	140.4	46.6							209.9
28 carbonyl samples	avg	118.2	82.4	62.1	13 0	7.2					5.8		
	median	104.0	33.2	27.3	4.3	3.0	9.5				4.0		22.3
	25th%	104.0	33.2	27.3	4.3	3.0	9.5				4.0		
	75th%	118.0	67.9	56.4	7.2						6.8		
	750170	110.0	01.0	50.4		0.2	12.5	404	17.2	115,	U.U	21,1	37.0
Cocodrie 0700-0900	min	85.0	52.4	47.0	1.6	3.8	3 1	15 9	55 5	81.7	0.8	12.4	17.5
6 NMHC samples	max	170.0	158.3	140.5	11.2	16.9	22.9	398	173 0	201.3	7.0	69.4	102.2
6 carbonyl samples	avg	136.3	104.9	90.7	6.0	8.2	10.9	27 8	115 8	143 6	4.5	33.5	
	median	145.0	95.6	82.4	6.1	7.5	10 0	28.4	105.6	143.3	5.1	30.1	35.7
	25th%	114.0	77.5	70.1	2.4	4.2	7.1				3.0		
	75th%	163.3	140.9	115.2	8.7	9.8	12.4				6.5		
Cocodrie 1200-1400	min	92.0	34.4	30.1	1.9	2.4	2.6	27 2	37 0	666	2.5	7.9	11.9
5 NMHC samples	max	165.0	63.0	56. 4	6.4	4.1	6.6	45 1	69 4	102.1	6.7	22.1	40.0
5 carbonyl samples	avg	125.2	48.2	41.4	3.7	3.1	5.1	34 7	53 3	880	4 6	13.3	22.6
	median	110.0	48.3	41.5	2.8	2.8	6.3	32 7	52 4	90.7	3.9	10.8	17 1
	25th%	97.0	45.8	37.0	2.7	2.4	3.5	29 6	51 8	796	3.2	9.5	15.9
	75th%	162.0	49.7	42.0	4.9	3.8	6 4	38.9	56 0	101 1	6 4	16.0	27.9
Cocodne 1700-1900	min	92.0	27 8	22.0	19	1.2	4.1	14 3	37 3	61.4	1.4	9.0	15 1
	max	236.0	244.0	232.1	6.3								
8 NMHC samples		145.B	88.8	77.3	4.2		17.0			-	59		
8 carbonyl samples	avg					7.3	11.3				3 2		
	median	148.5	66.5	54.5	4.4	6.7	11.8				2.6		-
	25th%	114.3	40.3	33.7	3.6	3.6	8.1				1.9		
	75th%	155.0	101.9	85.8	4.7	8.6	14.7	33.9	111.0	141 1	4 3	50.1	62 5
G/lchrist 0700-0900	min	65.0	28.7	19.3	1.8	3.1	6.3	12.7	38.0	50 7	1.4	3.9	4.7
5 NMHC samples	max	241.0	575.2	388 2	140.4	46.6	81.4						209.9
5 carbonyl samples	avg	127 8	181.8	137.3	30.0	14.6	22.8				8.3		57.2
	median	104.0	87.1	60.5			12.1						22.8
	25th%	86.0	53.7	41.2		4.2					19		
	75th%	156.D	339.4	242.6	_	20.4	22.6						
		,,,,,,,	200.1			20.4			001.0	700 2	0.0	JQ.2	74.0
Gilchnst 1200-1400	min	69.0	14 4	5.6	2.5	16	3.4	12.0	17.8	29 5	1.6	6.6	11 6
10 NMHC samples	max	201.0	105 4	82.0	11.9	11.5	31.1	102 1	115.1	217 2	7.0	51.6	97 4
10 carbonyl samples	avg	105.4	40.8	31.0	5.9	3.9	10.4	43.8	51 2	95 0	38	16.5	31 0
-	median	103 0	34 7	25 7	6.0	2.4	8.3	41.7	54 2	89 1	29	11.2	
	251h%	80.8	21 4	16.1	4.2	1.7	7.3	28.1	31 3	66 9	2 2	10.2	
	75th%	111 3	50.4	40.7	7.1	5 1	10.0				5 5		
014			. -			_	_				_		_
Gilchrist 1700-1900		80 0 262.0	9.5 104.8	5 2 76 8		1.4	3.5				15		3.7
9 NMHC samples	max	122.8		21.6							12 6		45 7
9 carbonyl samples	avg		29.1			3.6							19.0
	median	112.0	21.0	16 8		2.3							15 2
	25th%	95.0	14.8	10 3		2.0							9 2
	75th%	117.0	25 3	19.9	37	2.4	11.5	41.1	32.8	82 1	5 4	116	23 0

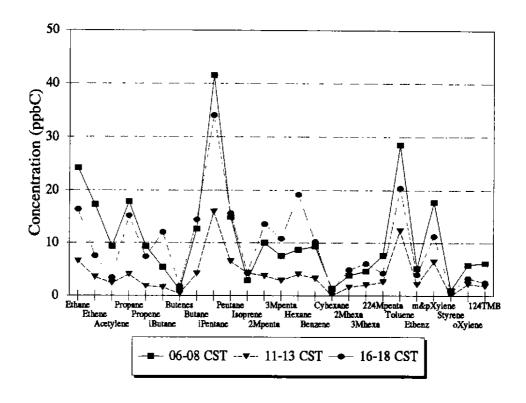
Frequency Distribution Updated 2/22/95 Cochodrie

	NMOC/	NMHC/			
Bins	NOx	NOx Bins	NOx Bins	NMOC	NMHC
0-5	0	0 0-1	1 0-25	0	0
5-10	0	3 1-2	3 25-50	0	4
10-15	1	5 2-3	4 50-75	2	7
15-20	5	1 3-4	4 75-100	7	5
20-25	1	3 4-5	4 100-125	4	1
25-30	3	2 5-6	3 125-150	1	0
30-35	0	1 6-7	4 150-175	1	3
35-40	1	2 >7	0 175-200	2	2
40-45	3	2 Total	23 200-225	1	0
45-50	1	1	225-250	0	0
>50	4	3	250-275	0	1
Total	19	23	>275	1	0
			Total	19	23

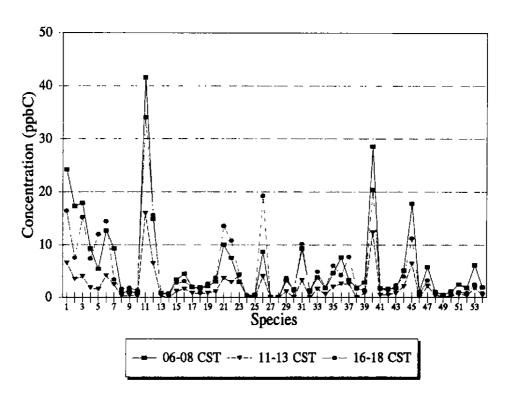
Gilchrist

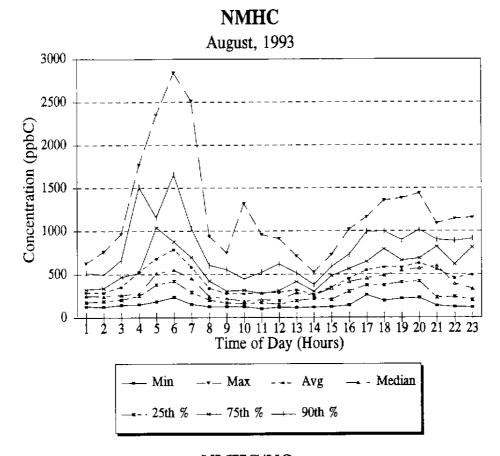
	NMHC/	NMOC/			
Bins	NOx Bins	NO _x Bins	NO _x Bins	NMOC	NMHC
0-2	1 0-5	2 0-4	16 0-25	Ô	6
2-4	2 5-10	3 4-8	9 25-50	4	9
4-6	2 10-15	2 8-12	2 50-75	7	7
6-8	3 15-20	6 12-16	1 75-100	6	1
8-10	2 20-25	5 16-20	0 100-125	5	2
10-12	7 25-30	2 20-24	1 125-150	1	1
12-14	1 30-35	1 >24	1 150-175	1	0
14-16	1 35-40	0 Total	30 175-200	0	0
16-18	1 40-45	0	200-225	1	0
18-20	1 45-50	2	225-250	0	0
>20	9 >50	6	250-275	. 0	0
Total	30 Total	29	>275	4	4
			Total	29	30

NOx concentrations in ppb. NMOC, NMHC concentrations in ppbC.

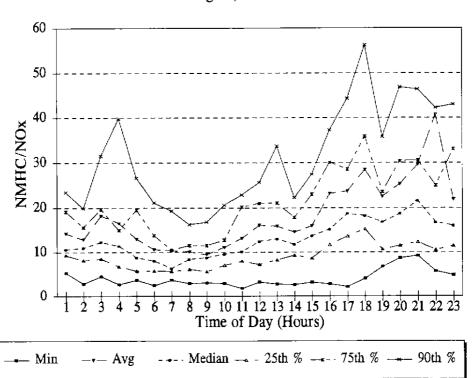

List of Invalid Surface VOC Samples

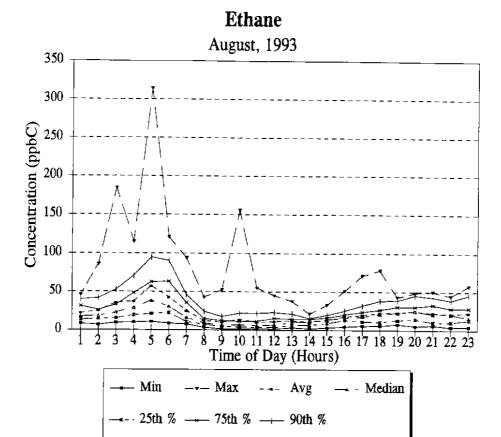
Surface NMOC

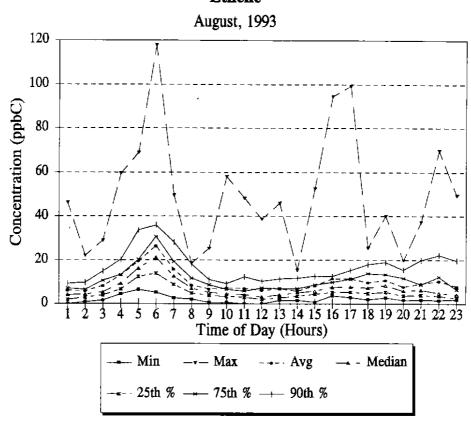

Concentrations are ppbC Below detection are listed as 0.0


			Begin			Valid	Valid
LOCN	SAMPL CAN	DATE	Time	Comments	Remarks	VOC	Carby
COCODRIE,LA	1 LAC-01	31-Jul-93	7		Not an exposed sample	V	ı ´
COCODRIE,LA	2 LAC-06	31-Jul-93	12		Not an exposed sample	V	ı
COCODRIE,LA	4 LAC-08	01-Aug-93	7		Exposed for 7.7 min., not valid.	V	1
COCODRIE,LA	5 LAC-07	01-Aug-93	12		Cartridge might not have been exposed.	v `	I
GILCHRIST,TX	27 MXC-27	20-Aug-93	17		haze, cartridge sampled same period from 8/20-22 (6 hr	V	1
GILCHRIST,TX	28 MXC-28	25-Aug-93	7	high unid		I	V

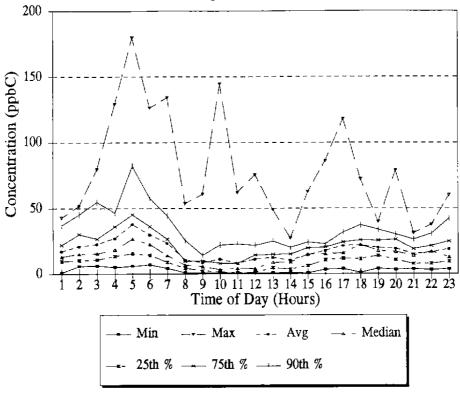
Clinton - Median Composition August, 1993


Clinton - Median CompositionAugust, 1993

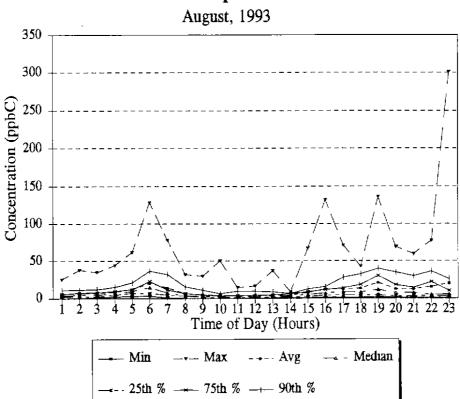


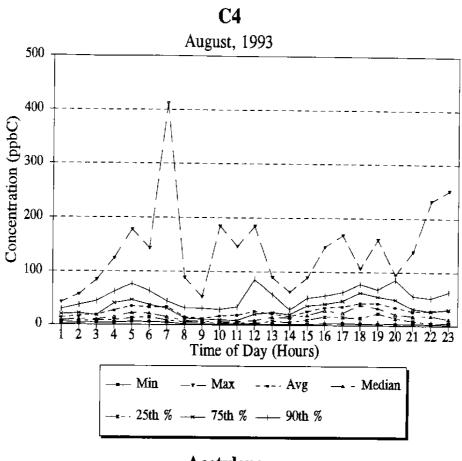

NMHC/NOx

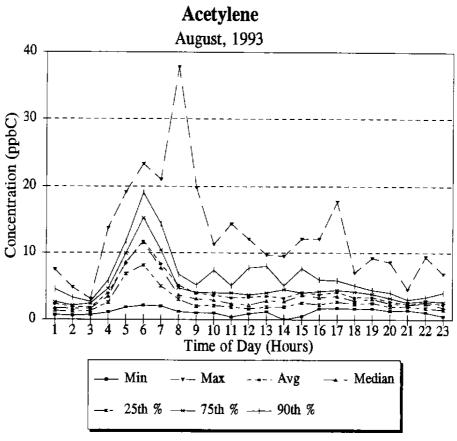
August, 1993

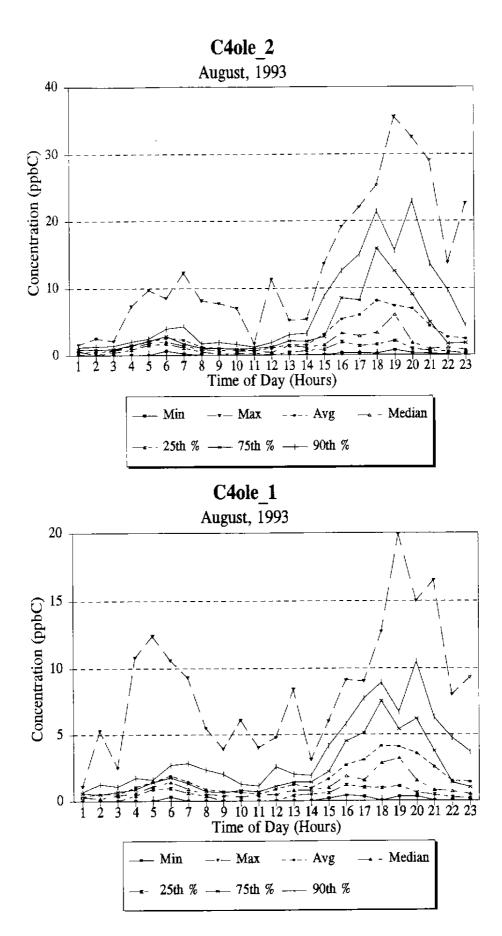


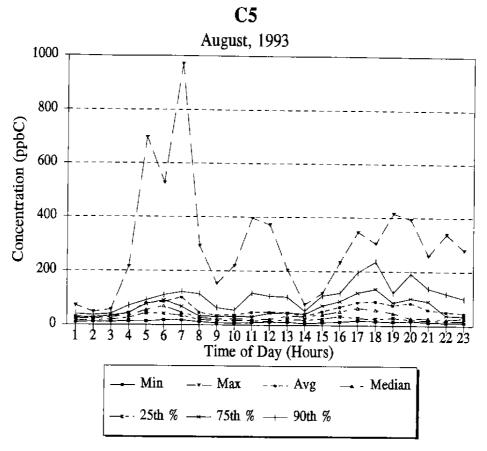
Ethene

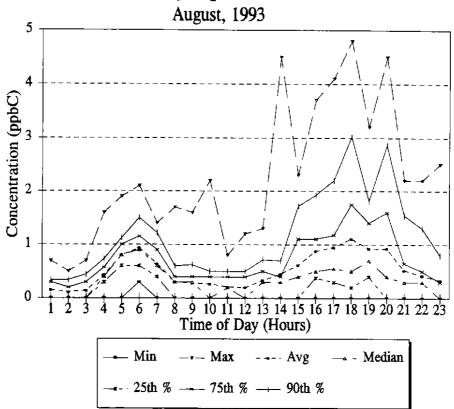


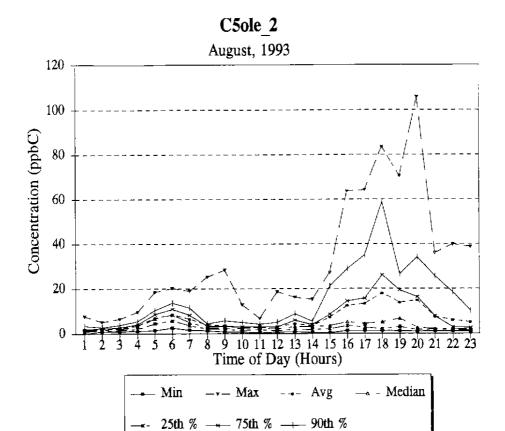


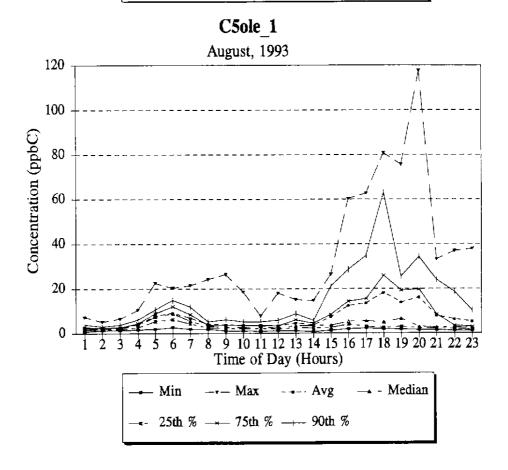


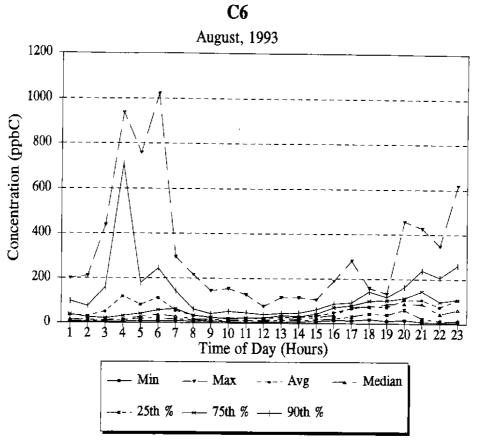



Propene

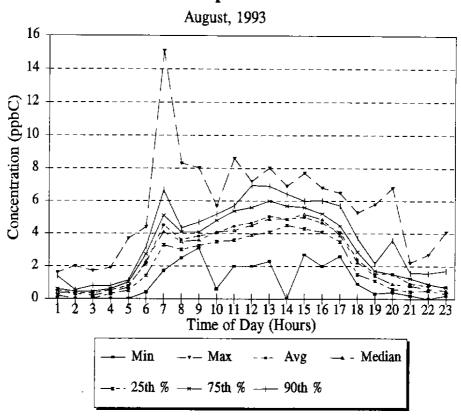


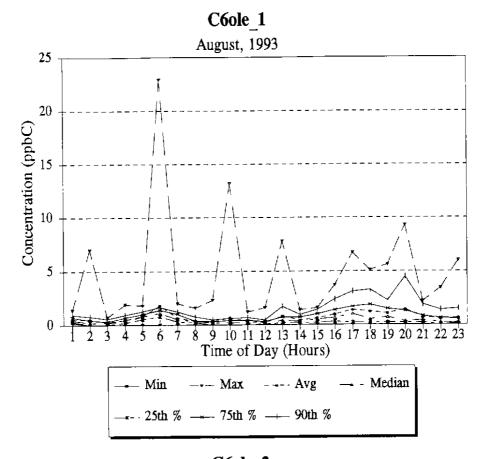


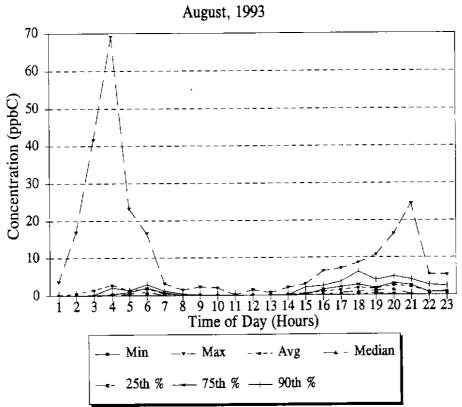


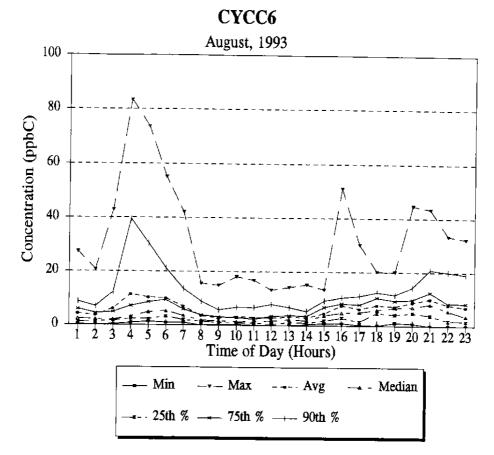


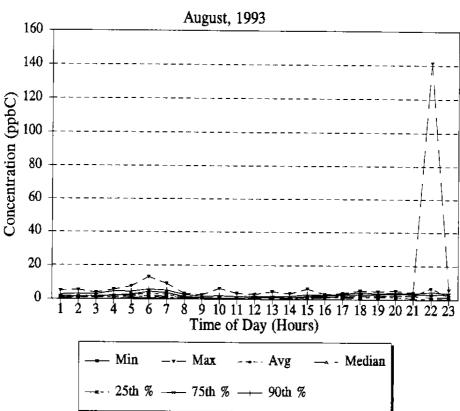
Cyclopentene

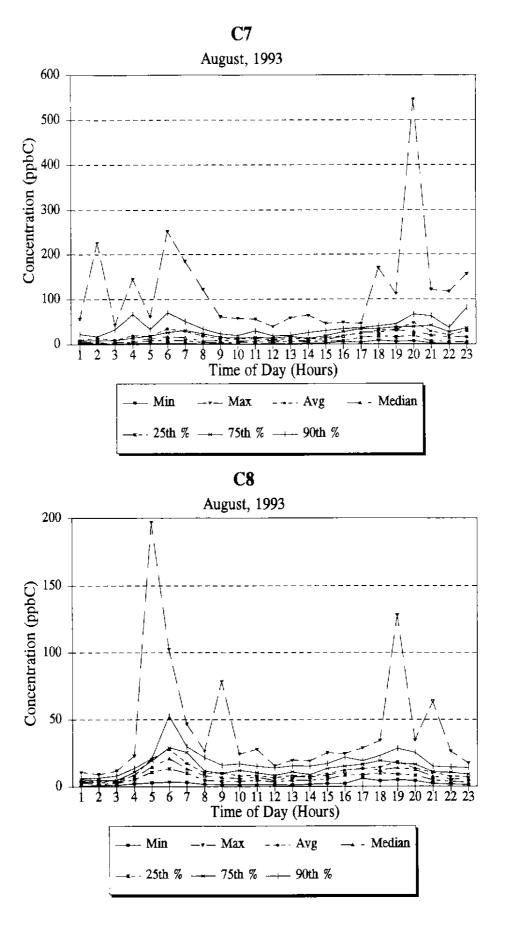


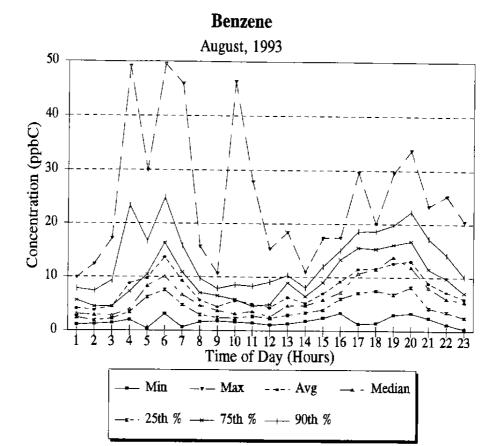




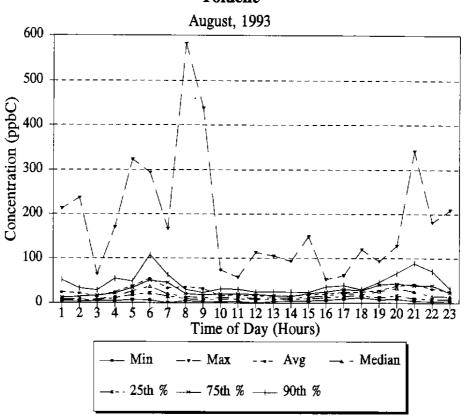

Isoprene

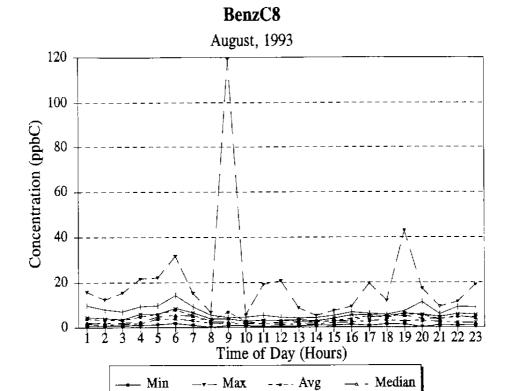



C6ole_2

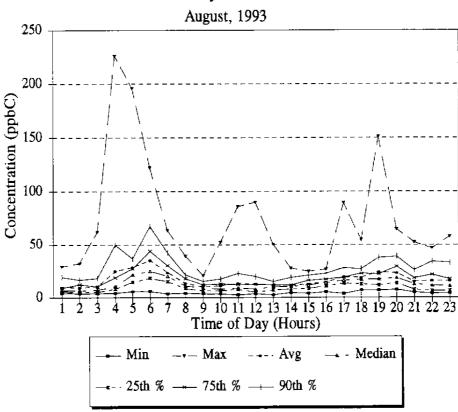


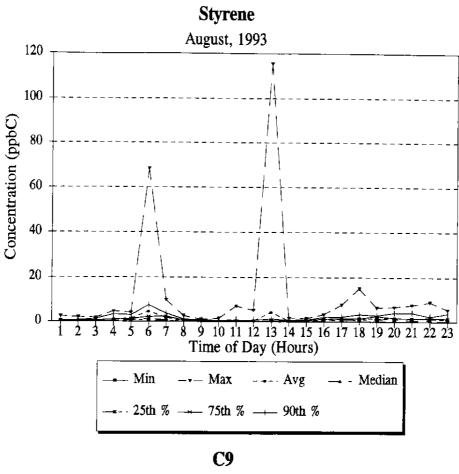
CYCC7

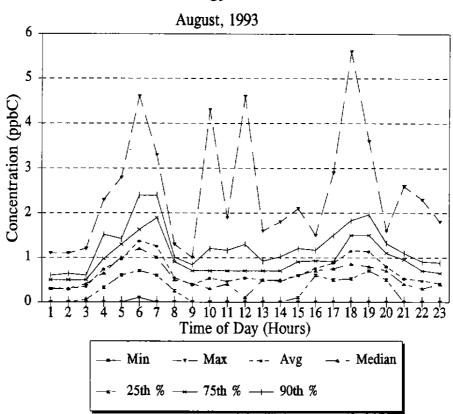




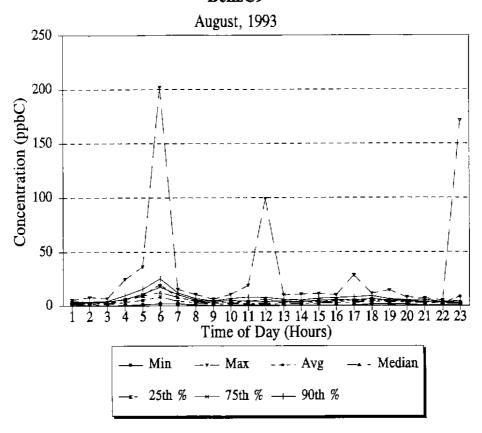
.

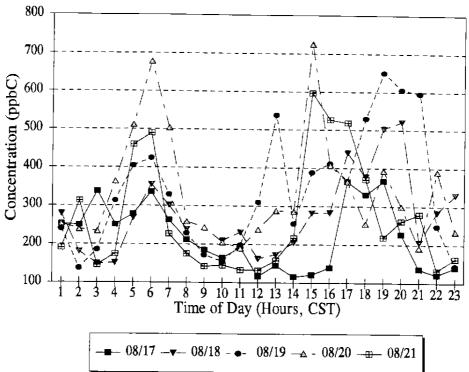

Toluene

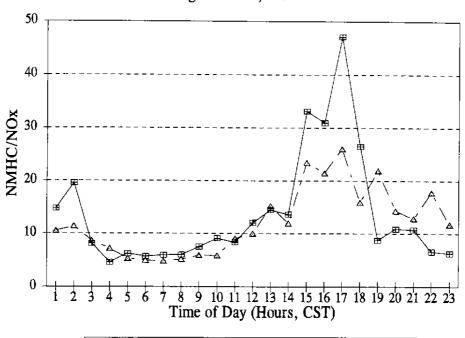




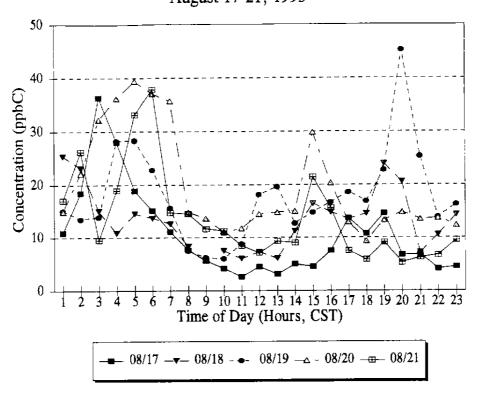
Xylenes


-- 25th % — 75th % — 90th %

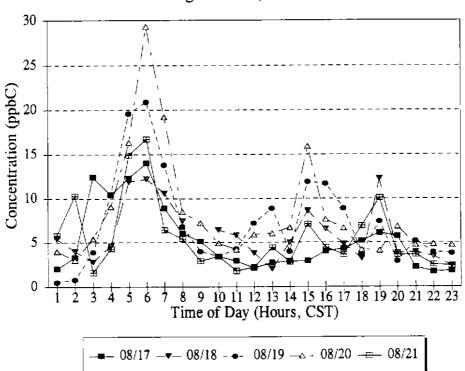




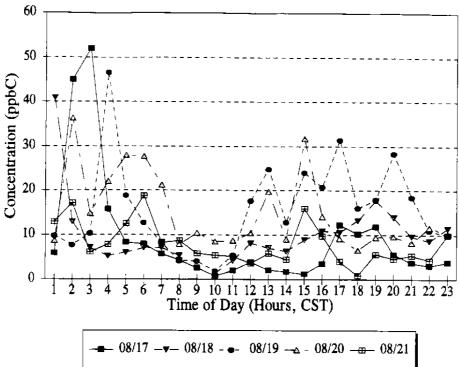
Clinton NMHC August 17-21, 1993

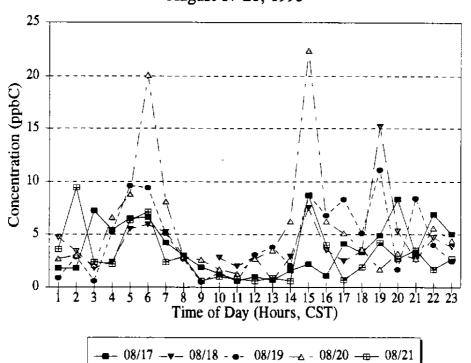


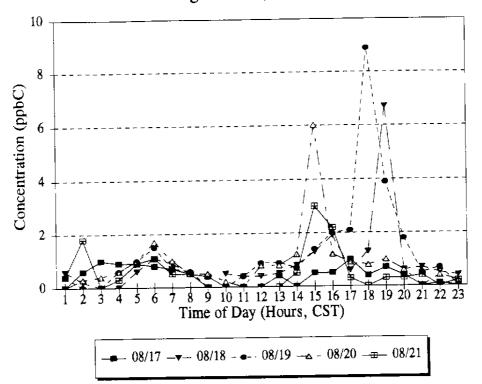
Clinton - NMHC/NOx August 17-21, 1993

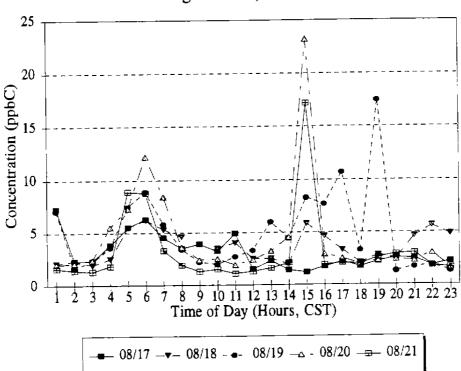


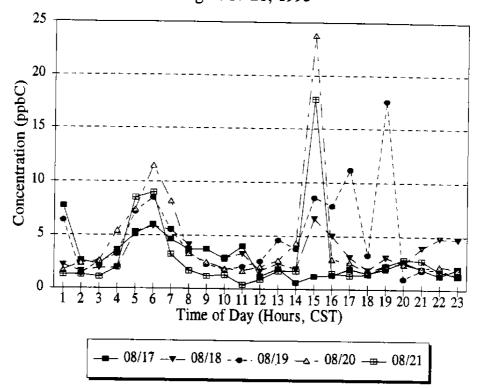
-- 08/17 **--** 08/18 **- •** 08/19 **-** 08/20 **-** 08/21


Clinton - Ethane August 17-21, 1993

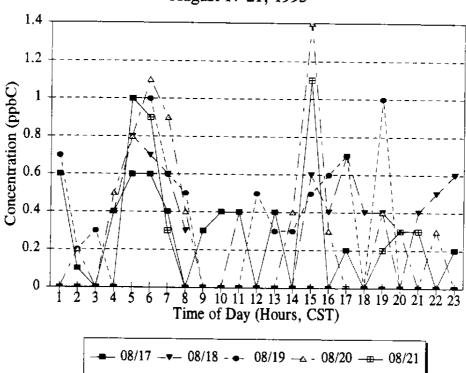

Clinton - Ethene August 17-21, 1993


Clinton - Propane August 17-21, 1993

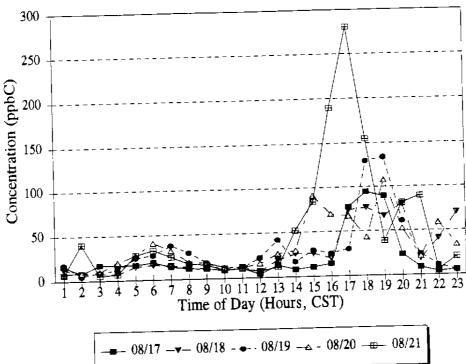

Clinton - Propene August 17-21, 1993


Clinton - C4ole_1 August 17-21, 1993

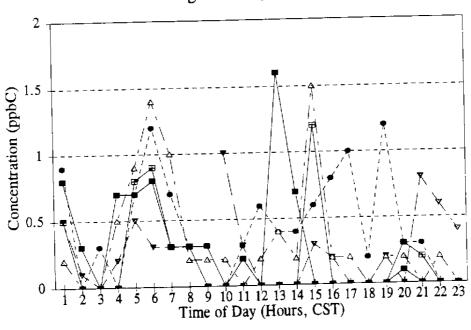
Clinton - C5ole_1 August 17-21, 1993



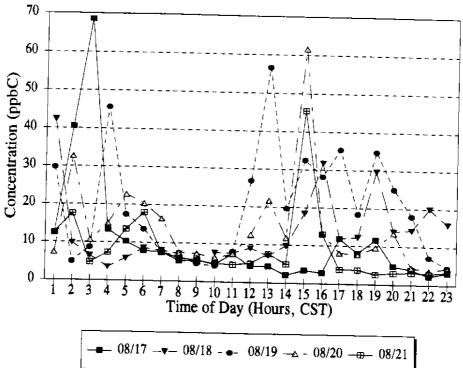
Clinton - C5ole_2 August 17-21, 1993



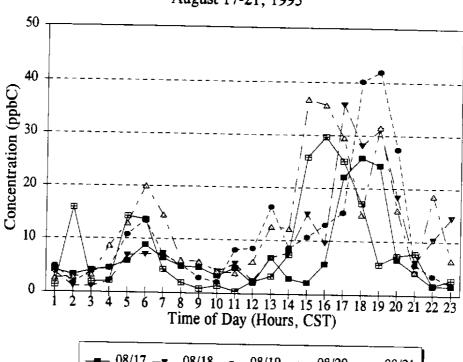
Clinton - CYCC5ole


August 17-21, 1993

Clinton - C6 August 17-21, 1993

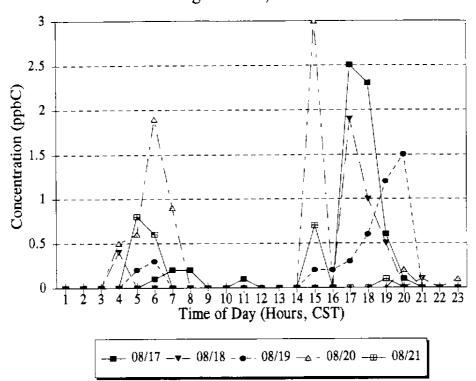


Clinton - C6ole_1 August 17-21, 1993

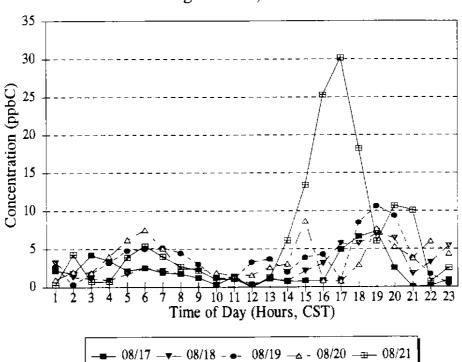


-- 08/17 **--** 08/18 - **-** 08/19 **-** - 08/20 **--** 08/21

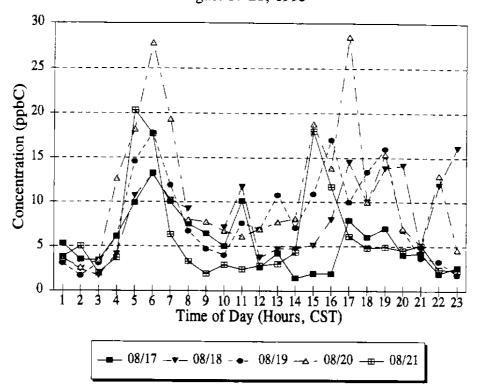
Clinton - C4 August 17-21, 1993

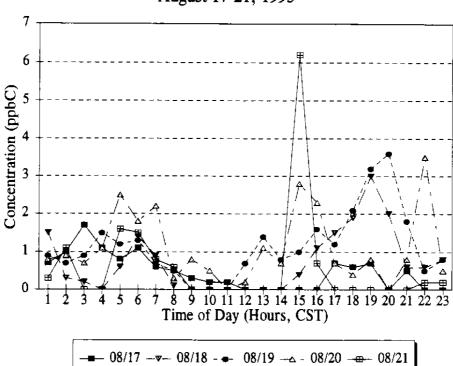


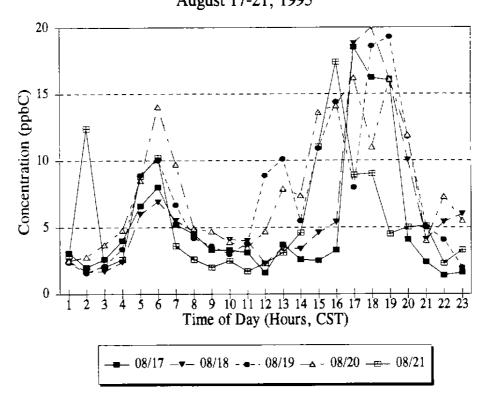
Clinton - C7 August 17-21, 1993

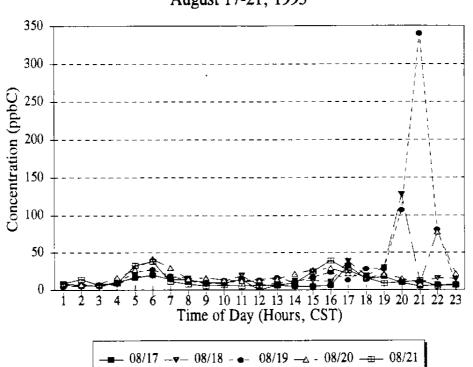


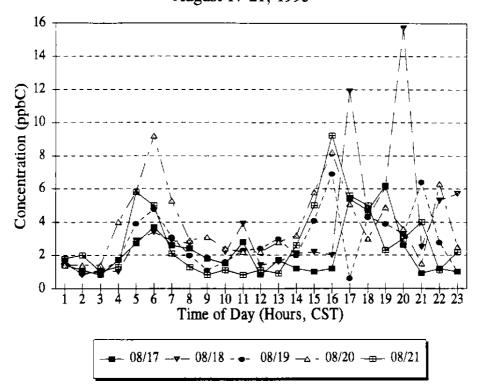
■— 08/17 —**▼**— 08/18 - **●**- 08/19 —△ - 08/20 —□— 08/21


Clinton - C6ole_2 August 17-21, 1993

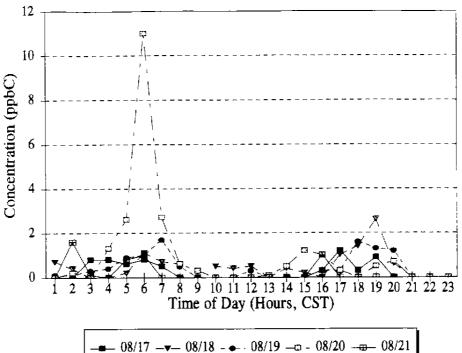

Clinton - CYCC6 August 17-21, 1993


Clinton -C8August 17-21, 1993

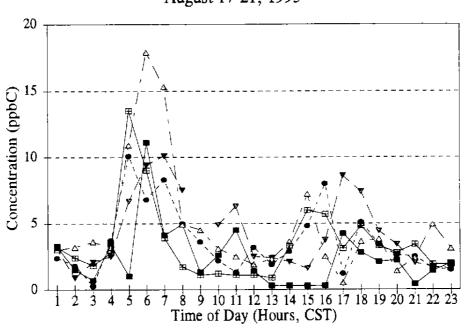

Clinton -CYCC7 August 17-21, 1993


Clinton -Benzene August 17-21, 1993

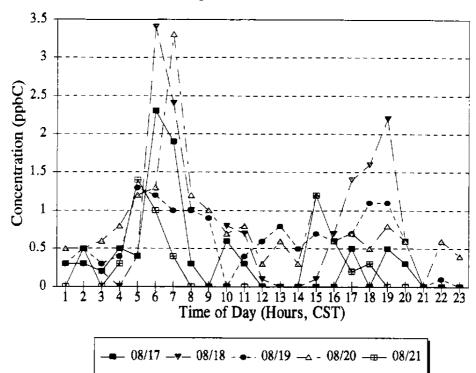

Clinton -Toluene August 17-21, 1993


Clinton -BenzC8 August 17-21, 1993

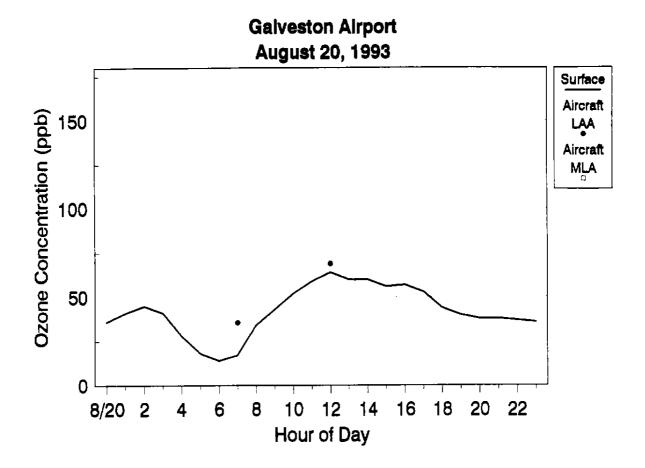
Clinton -Xylenes August 17-21, 1993

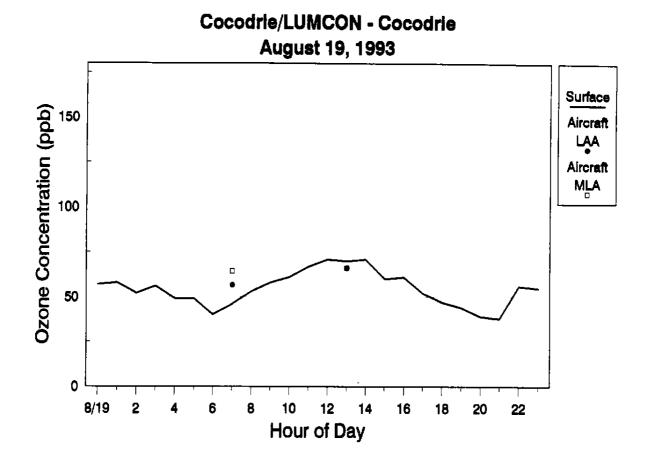


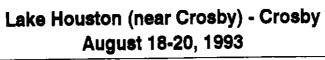
Clinton -Styrene August 17-21, 1993

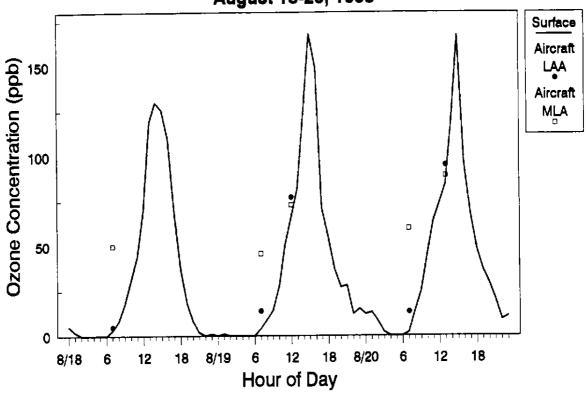

_ 08/17 _**-** 08/18 - **-** 08/19 _□ - 08/20 -□ 08/21

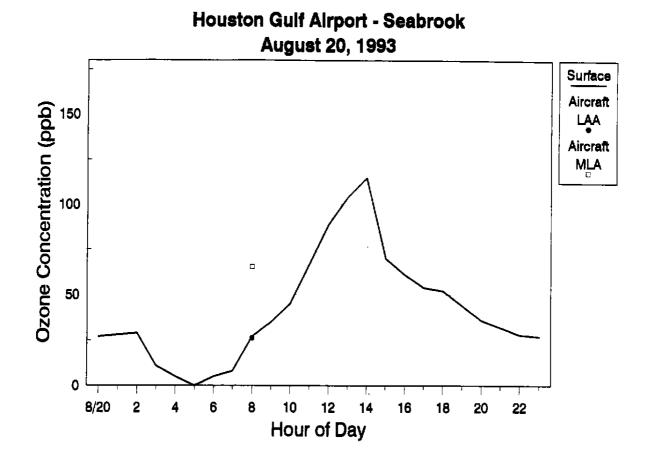
Clinton - BenzC9 August 17-21, 1993

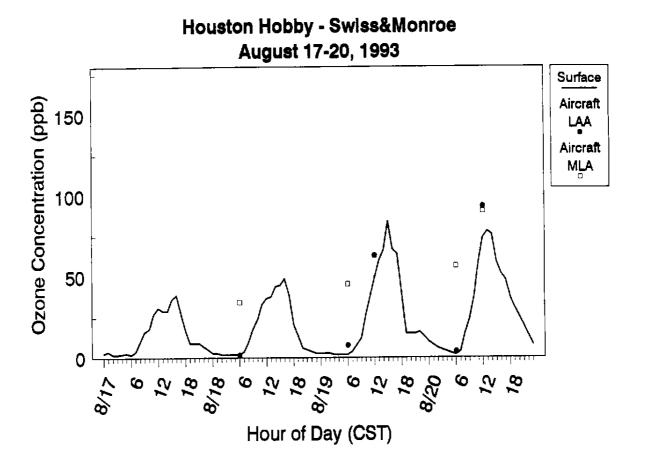

-- 08/17 **-v**− 08/18 - **-** 08/19 **-**△ - 08/20 **-**⊕− 08/21

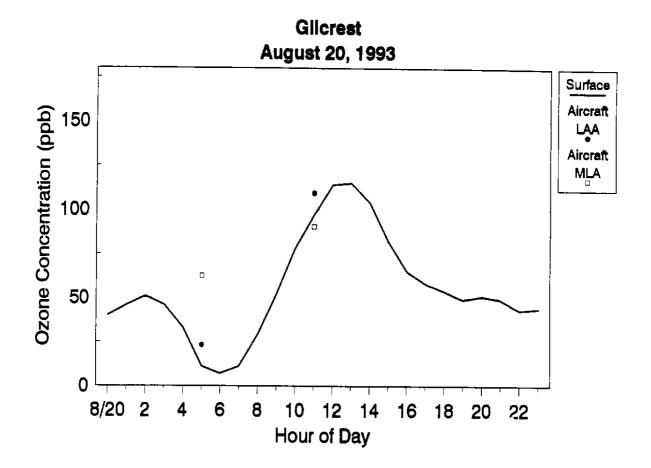

Clinton - C9 August 17-21, 1993

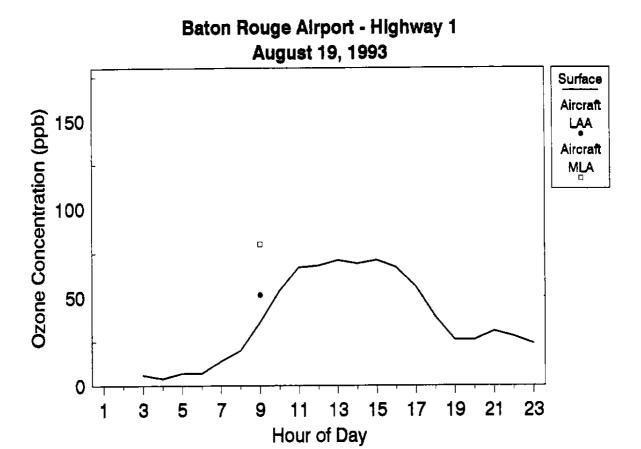


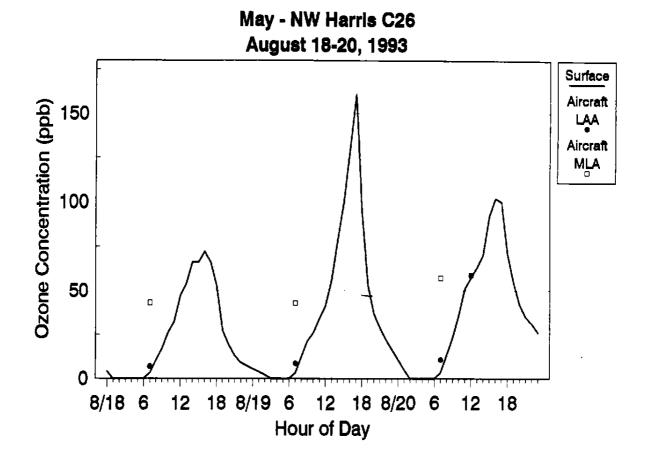

APPENDIX C

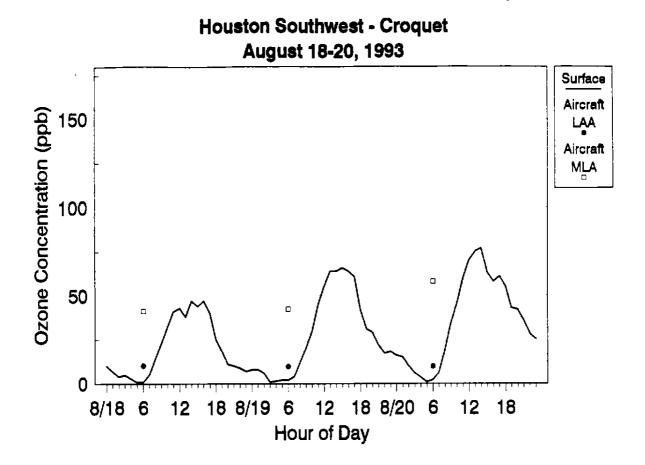

COMPARISONS BETWEEN SURFACE AND AIRCRAFT OZONE MEASUREMENTS DURING THE AUGUST 17-21, 1993 EPISODE

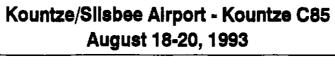


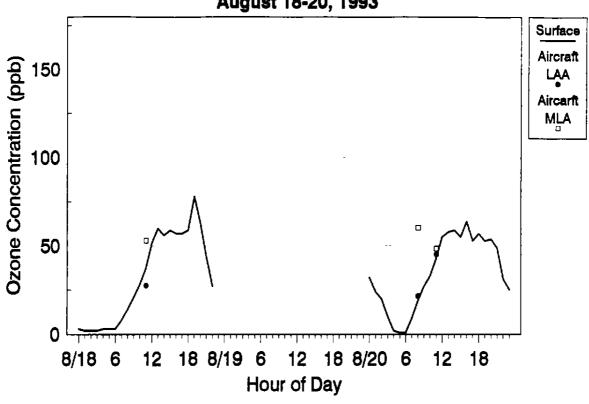












APPENDIX D

LIST OF SITES THAT EXCEEDED THE NATIONAL AMBIENT AIR QUALITY STANDARD (NAAQS) FOR OZONE DURING 1993 EPISODES

This appendix lists all exceedances of the NAAQS for ozone for the August 9-11, 1993, August 17-21, 1993, September 7-11, 1993 episodes in southeast Texas and the August 17-19, 1993 episode in Louisiana. Each table lists the dates, sites and their locations, maximum ozone concentrations, and the time that the maxima were measured for all sites that exceeded the NAAQS for ozone of 125 ppb.

August 9-11, 1993 Episode in southeast Texas

Date	Site ID	Location	Maximum Ozone Concentration (ppb)	Time of Maximum (CST)
8/10/93	GLRC	Galleria Cgc Site	170	14
8/10/93	HM01	HRM Site 1	170	13
8/10/93	TN20	Manchester C22, Harris	169	13
8/10/93	TN2	Crawford, Harris	165	13
8/10/93	TN4	Lang, Harris	159	14
8/10/93	TN17	NW Harris C26, Harris	146	15
8/10/93	HTCC	Texas Commerce Tower	143	13
8/11/93	TN17	NW Harris C26, Harris	145	15

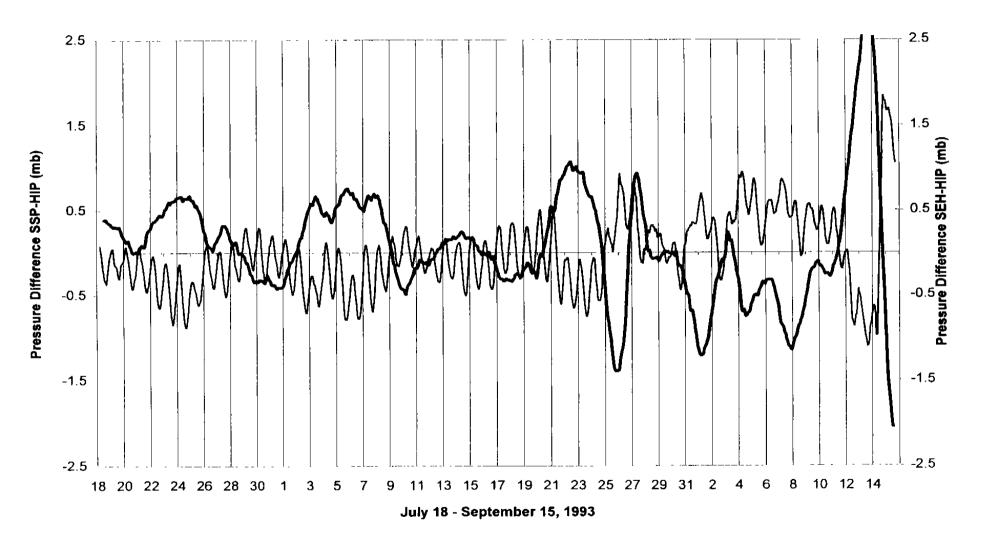
August 17-21, 1993 Episode in southeast Texas

			Maximum Ozone	Time of
Date	Site ID	Location	Concentration (ppb)	Maximum (CST)
8/18/93	STWC	Stowell (Winnie) Aq/Met	139	13
8/18/93	HM04	HRM Site 4	134	14
8/18/93	CRSC	Crosby Aq/Met Sites	130	14
8/18/93	HM10	HRM Site 10	130	14
8/18/93	TN10	Aldine C08, Harris	125	15
8/19/93	TN10	Aldine C08, Harris	231	16
8/19/93	TN3	N Wayside, Harris	177	15
8/19/93	HM03	HRM Site 3	170	16
8/19/93	CRSC	Crosby Aq/Met Sites	168	15
8/19/93	TN17	NW Harris C26, Harris	161	17
8/19/93	HM04	HRM Site 4	161	15
8/19/93	HM10	HRM Site 10	141	14
8/19/93	HM11	HRM Site 11	140	15
8/19/93	S42S	Orange Co.	125	16
8/20/93	HM11	HRM Site 11	187	14
8/20/93	HM10	HRM Site 10	185	15
8/20/93	HM07	HRM Site 7	184	14
8/20/93	HM04	HRM Site 4	179	15
8/20/93	CRSC	Crosby Aq/Met Sites	167	15
8/20/93	TN10	Aldine C08, Harris	1 46	14
8/20/93	HM03	HRM Site 3	132	14
8/20/93	HM08	HRM Site 8	129	13
8/21/93	HM11	HRM Site 11	142	14
8/21/93	HM10	HRM Site 10	141	15

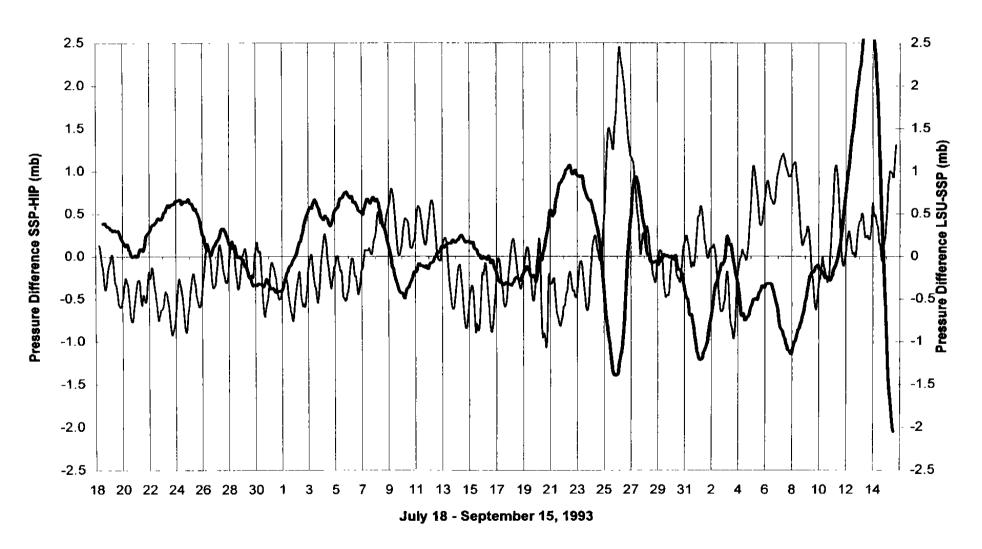
September 7-11, 1993 Episode in southeast Texas

Date	Site ID	Location	Maximum Ozone Concentration (ppb)	Time of Maximum (CST)
9/8/93	SPTC	Smith Point Aq/Met Site	214	14
9/8/93	SBRC	Seabrook C20	208	14
9/8/93	TN12	Texas City C10, Galveston	176	13
9/8/93	HM11	HRM Site 11	157	15
9/8/93	HM07	HRM Site 7	142	13
9/8/93	HM04	HRM Site 4	141	18
9/8/93	TN15	Tulosa C21, Nueces	137	14
9/8/93	TN6	Swiss&monroe, Harris	135	16
9/8/93	HM01	HRM Site 1	134	13
9/8/93	GILC	Gilcrest	126	13
9/9/93	SPTC	Smith Point Aq/Met Site	195	12
9/9/93	GILC	Gilcrest	189	17
9/9/93	TN12	Texas City C10, Galveston	184	16
9/9/93	SBRC	Seabrook C20	159	14
9/9/93	TN13	Clute C11, Brazoria	140	15
9/9/93	HM07	HRM Site 7	139	12
9/9/93	GALC	Galveston As Site	126	12
9/10/93	GALC	Galveston As Site	162	14
9/10/93	SPTC	Smith Point Aq/Met Site	148	17
9/10/93	\$40S	Sabine Pass	141	14
9/10/93	TN12	Texas City C10, Galveston	140	12
9/10/93	TN5	Croquet, Harris	137	16
9/10/93	GLRC	Galleria Cgc Site	136	18
9/10/93	SBRC	Seabrook C20	134	12
9/10/93	S43S	Beaumont	129	17
9/10/93	HM01	HRM Site 1	129	19
9/10/93	GILC	Gilcrest	128	14
9/10/93	TN6	Swiss&monroe, Harris	125	18
9/11/93	HM01	HRM Site 1	189	13
9/11/93	TN20	Manchester C22, Harris	180	12
9/11/93	TN3	N Wayside, Harris	164	13
9/11/93	TN2	Crawford, Harris	163	12
9/11/93	HM03	HRM Site 3	158	13
9/11/93	TN4	Lang, Harris	147	13
9/11/93	HM07	HRM Site 7	146	12
9/11/93	HM04	HRM Site 4	138	13
9/11/93	HTCC	Texas Commerce Tower	136	12
9/11/93	SBRC	Seabrook C20	131	11
9/11/93	CRSC	Crosby Aq/Met Sites	126	13

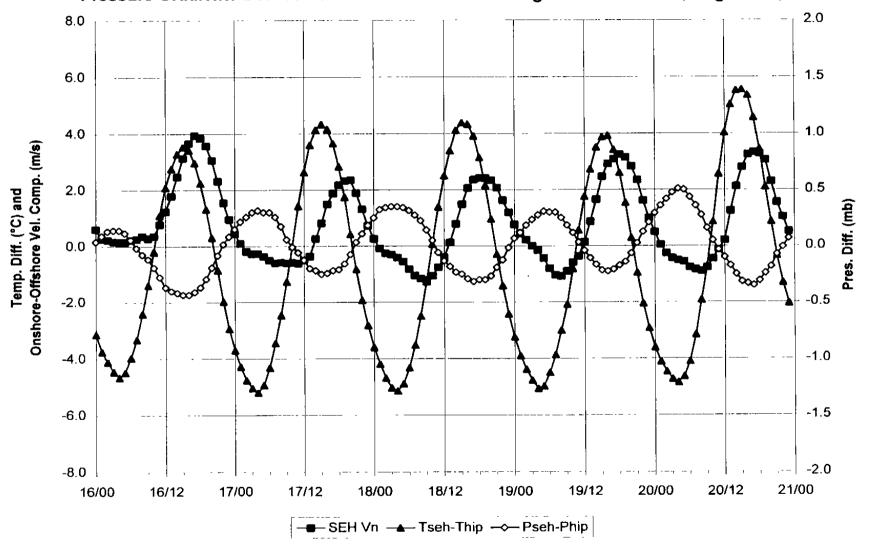
August 17-19, 1993 Episode in Louisiana

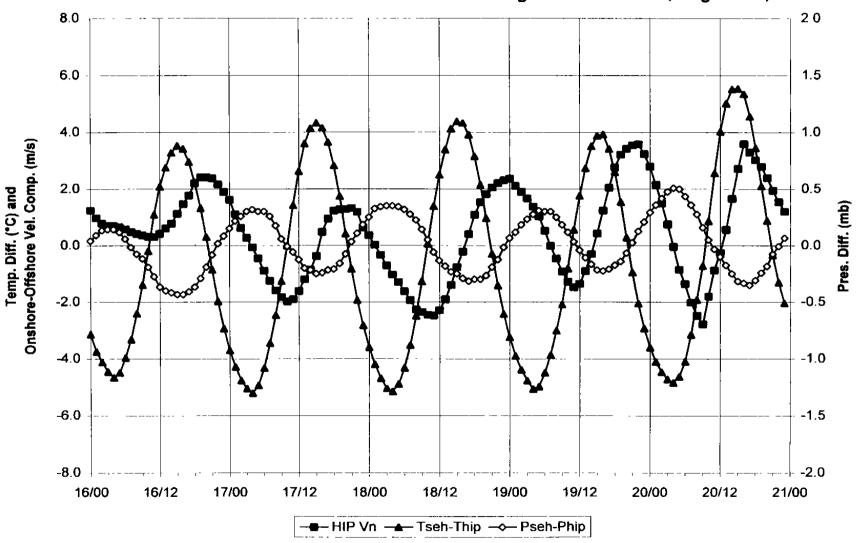

				Maximum Ozone	Time of
	<u>Date</u>	Site ID	Location	Concentration (ppb)	Maximum (CST)
-	8/18	LO2	East Baton Rouge, Highway 964	127	14
	8/18	LO9	Ascension Par	127	15
	8/19	LO9	Ascension Par	126	14

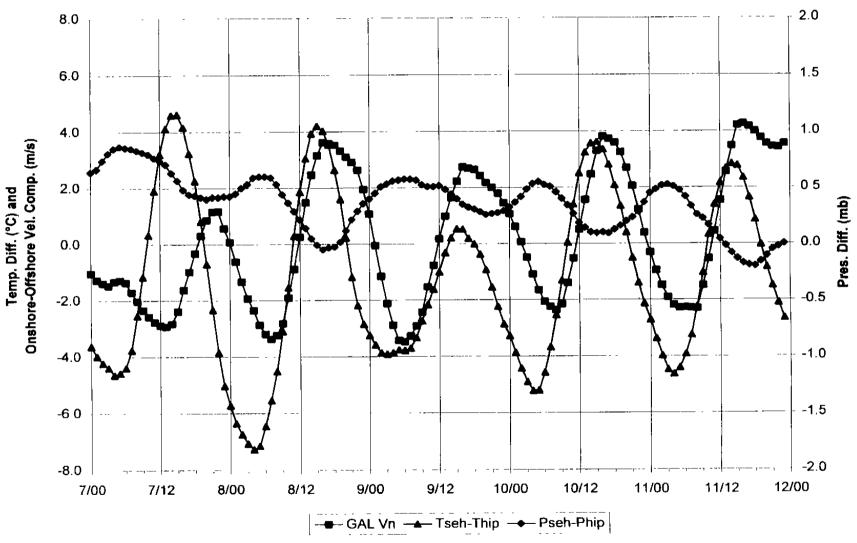
APPENDIX E

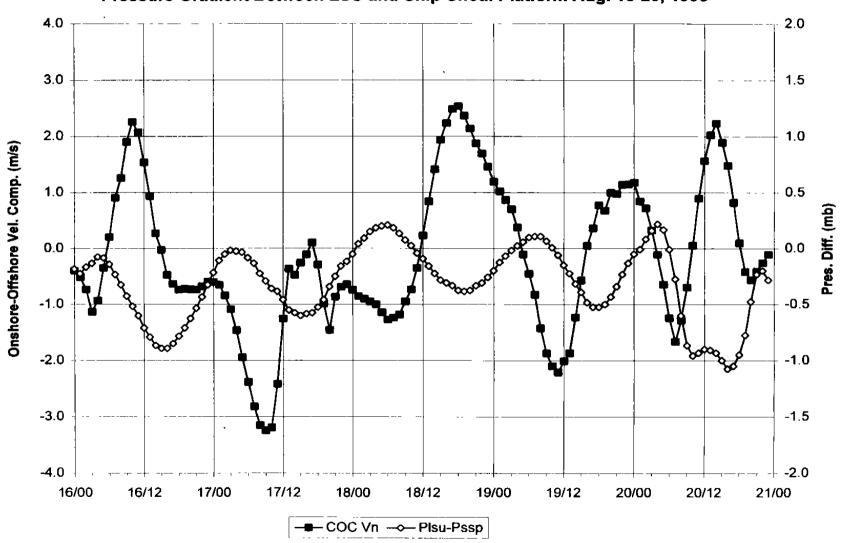

ANALYSES OF PRESSURE GRADIENTS AND ONSHORE-OFFSHORE WINDS IN SOUTHEAST TEXAS AND LOUISIANA

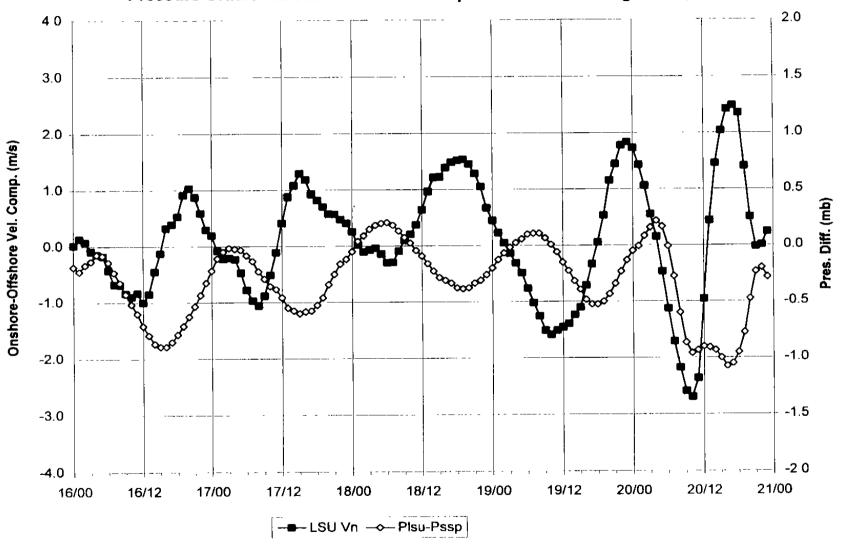
The figures in this appendix present additional analyses of synoptic-scale and mesoscale pressure gradients, and onshore-offshore wind components, in the southeast Texas and Louisiana areas of the GMAQS study region. Included with these figures are analyses of sea-level pressure differences (mb) across the Gulf of Mexico between the High Island and Ship Shoal Platform radar profiler sites, and onshore-offshore pressure differences between the LSU and Ship Shoal Platform profiler sites. Also included in this appendix are analyses of the onshore-offshore sea-level pressure (mb) and temperature (°C) differences between the Southeast Houston and High Island Platform radar profiler sites, and the component of the surface wind perpendicular to the coastline (V_n, m/s) at Southeast Houston and High Island, TX, for August 17 - August 21, 1993, and for September 7-11, 1993. Similar analyses are given for the profiler sites located in Louisiana during the August 19, 1993 ozone episode.

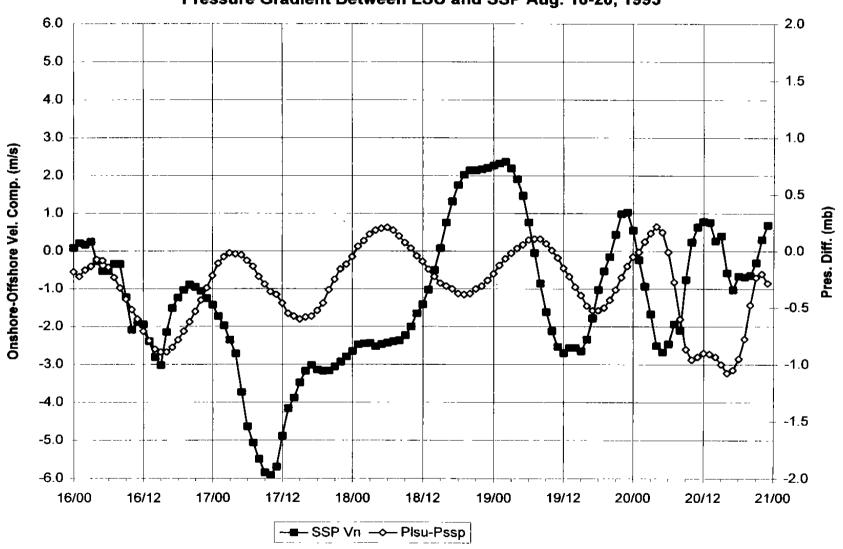

Sea Level Pressure Difference Between Ship Shoal (SSP) and High Island Platforms (HIP), and Between Southeast Houston (SEH) and HIP, July 18 - September 15, 1993

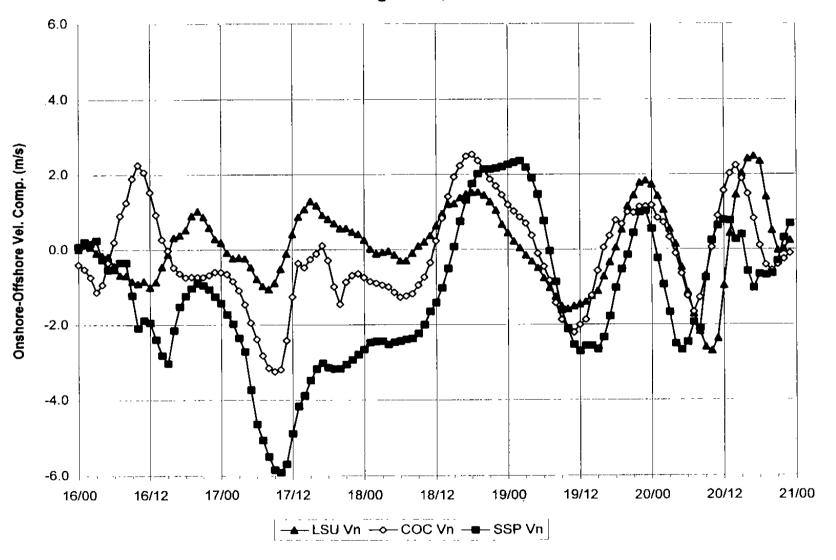

Sea-Level Pressure Difference Between Ship Shoal (SSP) and High Island Platforms (HIP), and Between LSU and SSP, July 18 - September 15, 1993


Onshore-Offshore Velocity Component (V_n) at Southeast Houston, and Temperature and Pressure Gradients Between Southeast Houston and High Island Platform, Aug. 16-20, 1993

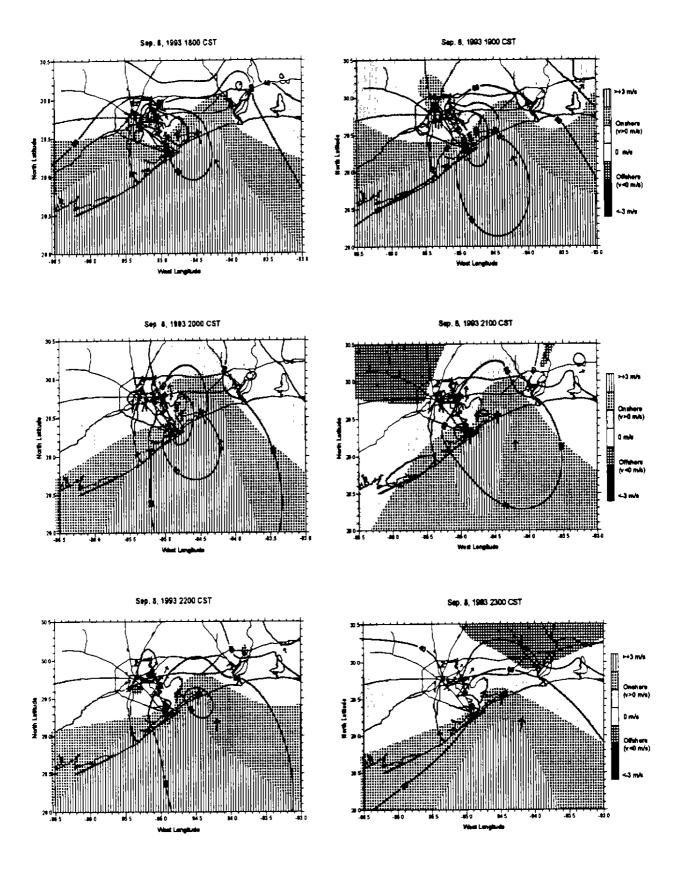


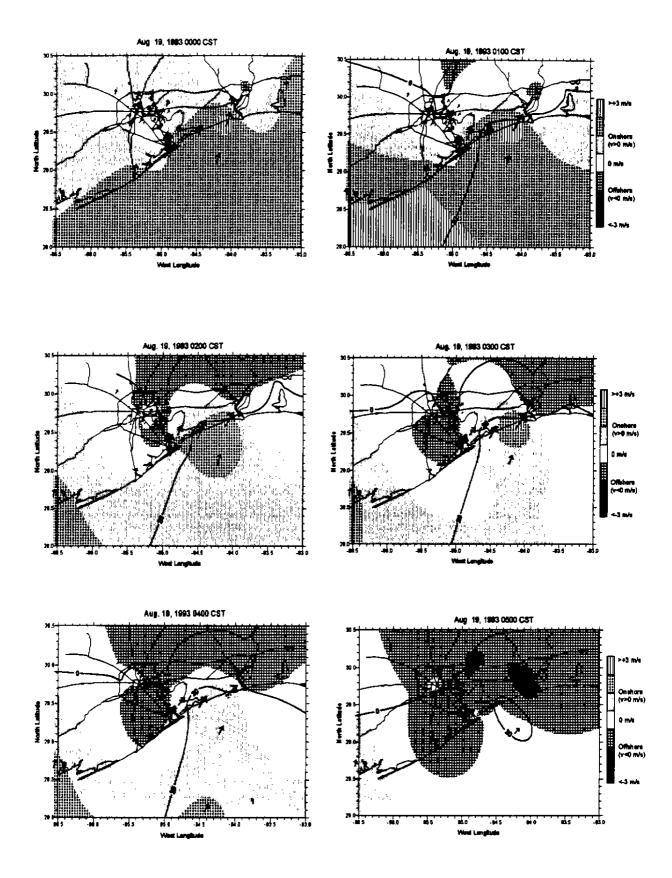

Onshore-Offshore Velocity Component (Galveston), Temperature Gradient, and Pressure Gradient Between SE Houston and High Island Platform Sept. 7-11, 1993

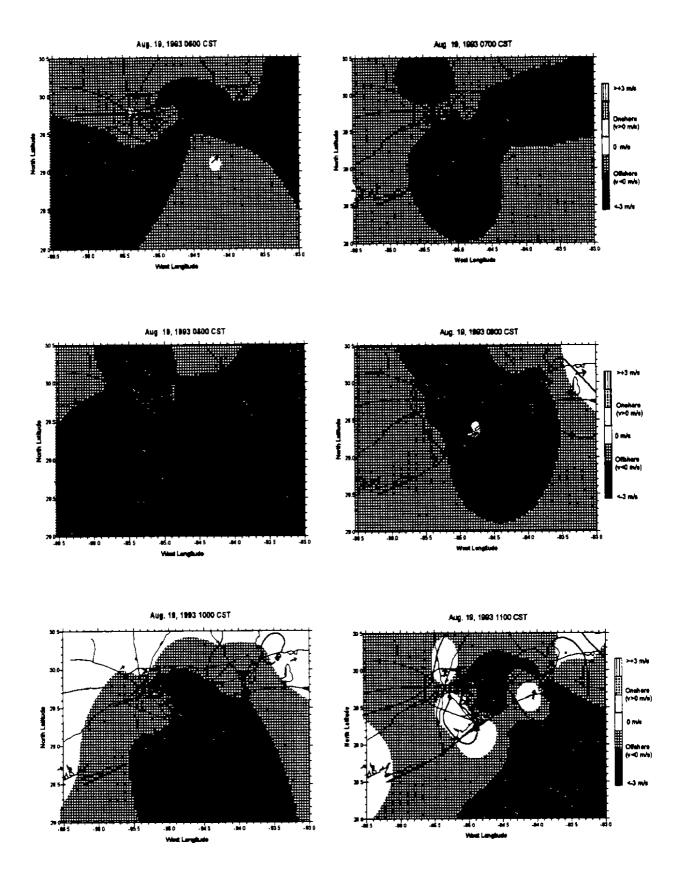

Onshore-Offshore Velocity Component (V_n) at Cocodrie, and Sea-Level Pressure Gradient Between LSU and Ship Shoal Platform Aug. 16-20, 1993

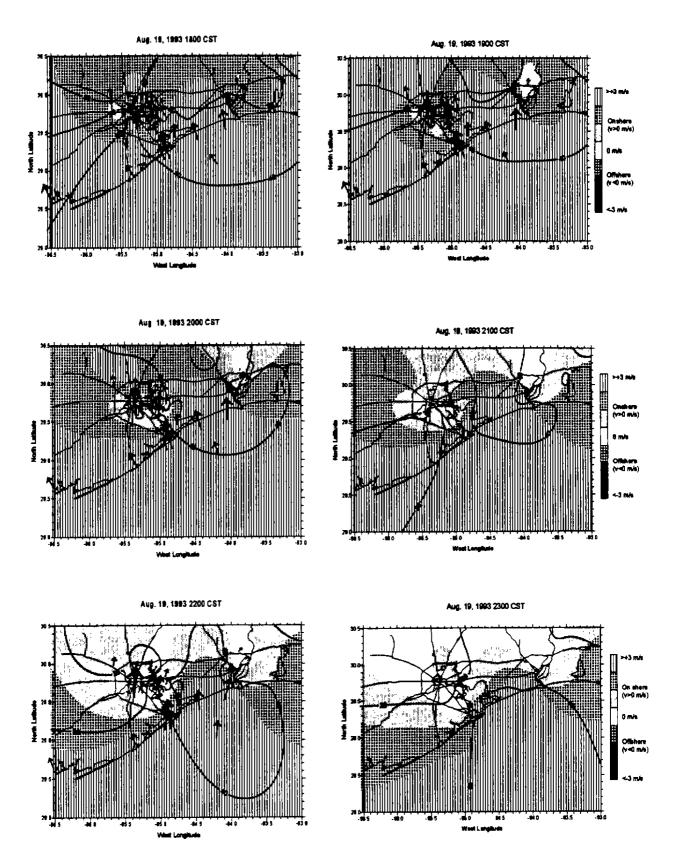

Onshore-Offshore Velocity Component (V_n) at LSU, and Sea-Level Pressure Gradient Between LSU and Ship Shoal Platform Aug. 16-20, 1993

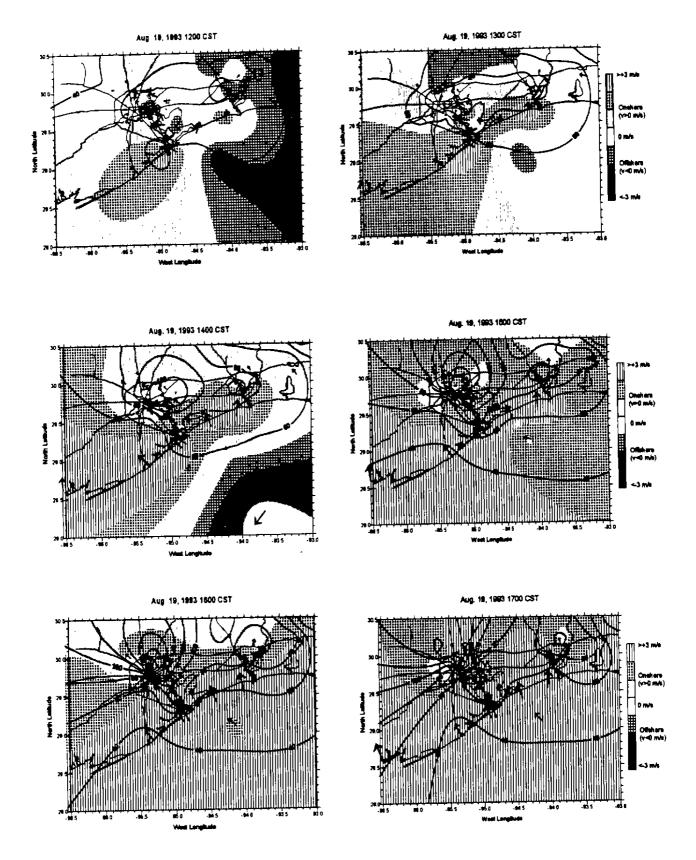
Onshore-Offshore Velocity Component (V_n) at Ship Shoal Platform (SSP), and Sea-Level Pressure Gradient Between LSU and SSP Aug. 16-20, 1993

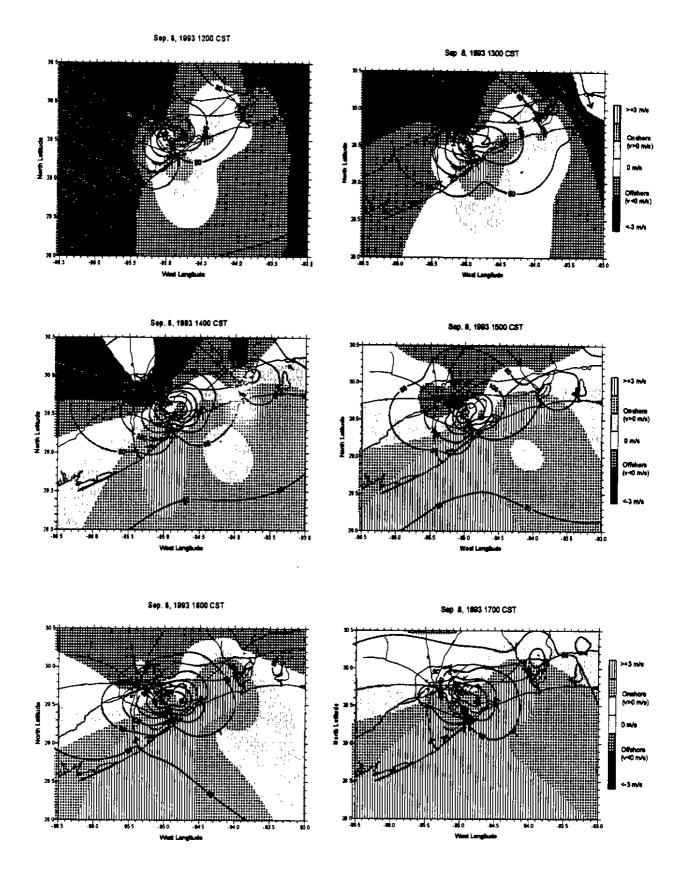

Onshore-Offshore Velocity Component (V_n) at LSU, Cocodrie, and Ship Shoal Platform Aug. 16-20, 1993

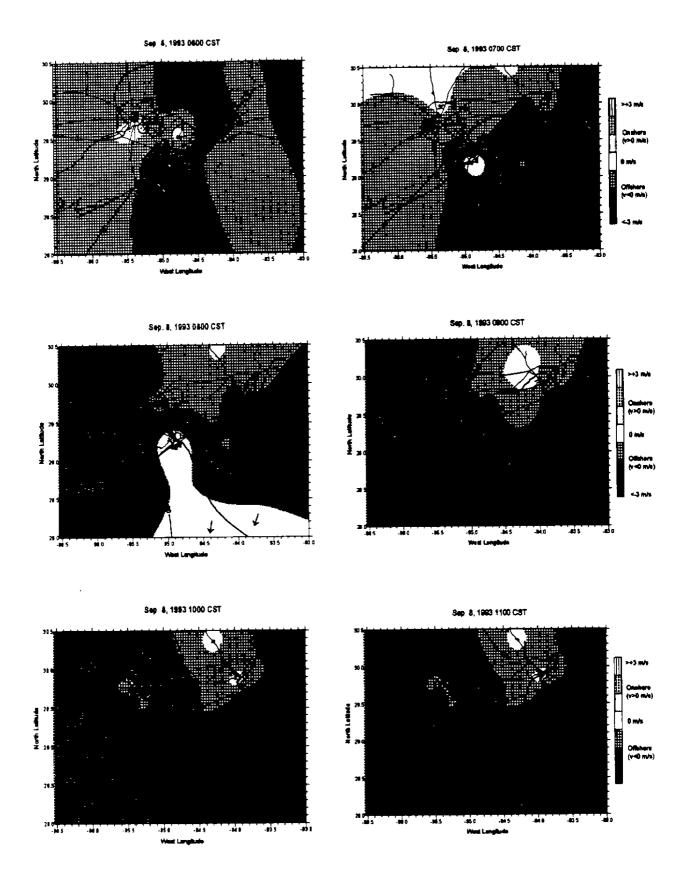


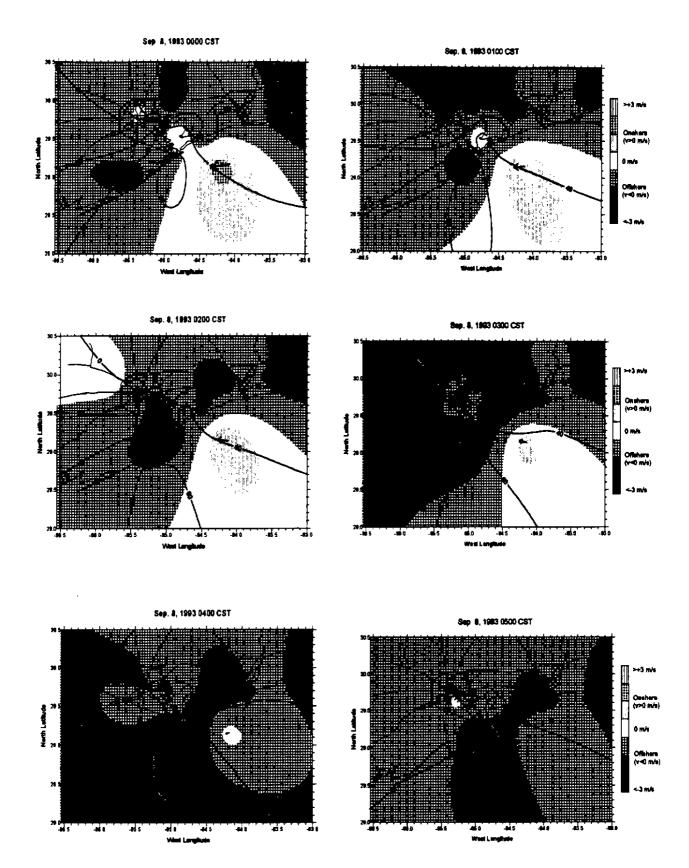

APPENDIX F


ANALYSES OF HOURLY SURFACE OZONE CONCENTRATIONS, ONSHORE-OFFSHORE VELOCITY COMPONENTS, AND SURFACE WINDS IN SOUTHEAST TEXAS ON AUGUST 19, 1993 AND SEPTEMBER 8, 1993

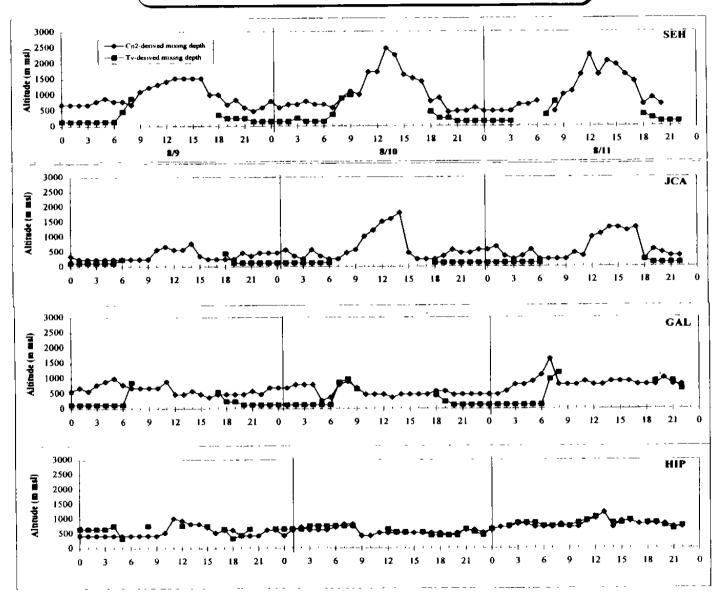

This appendix contains additional analyses of surface ozone, surface winds, and the onshore-offshore component of the airflow perpendicular to the coastline in southeast Texas for August 19, 1993 and September 8, 1993. These figures show isopleths of ozone concentrations (ppb), the onshore-offshore component of the surface wind perpendicular to the shoreline (V_n , m/s), and surface winds for each hour on August 19 and September 8.



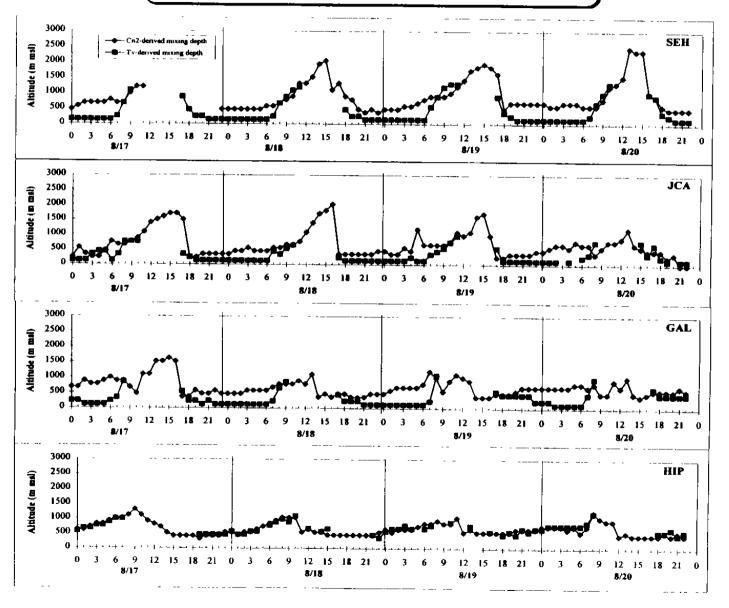




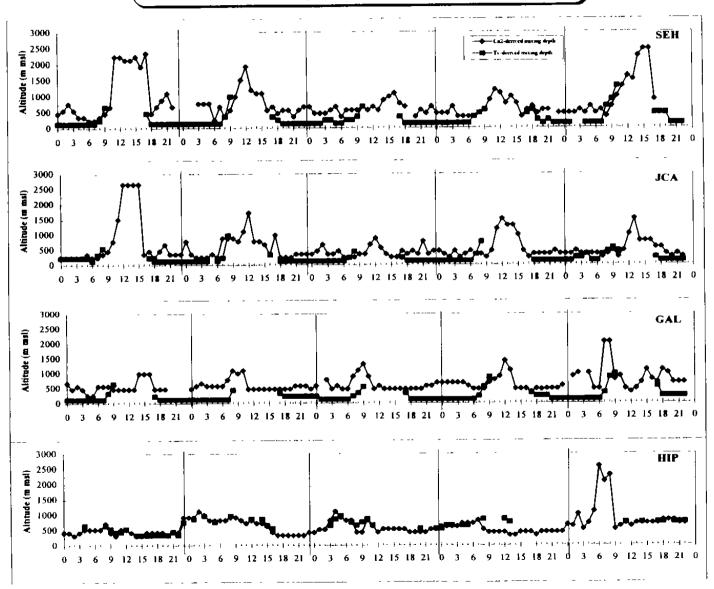
.

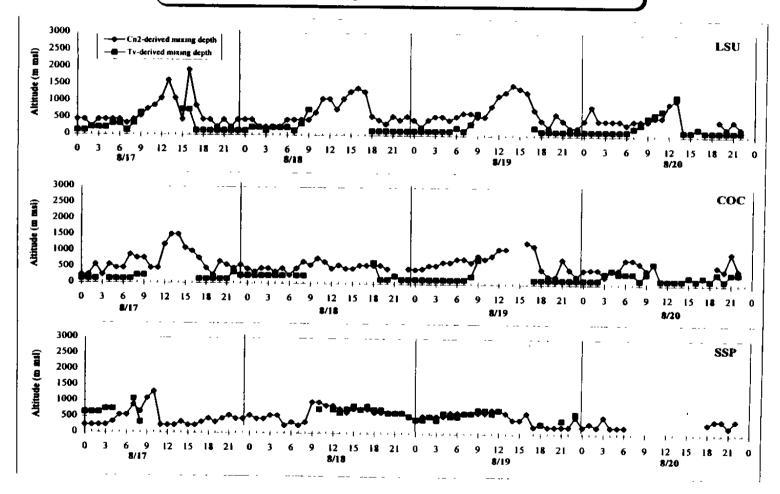


APPENDIX G


PLOTS OF MIXING DEPTH DERIVED FROM $C_{\scriptscriptstyle B}^{\; 2}$ AND VIRTUAL TEMPERATURE DATA

This appendix contains time-series plots of mixing depth at each profiler site for the four ozone episodes discussed in this report. The time-series plot shows mixing depths at each site for all days in the episode. These mixing depths were estimated using C_n^2 and virtual temperature data as described in the section on Analyses of Mixing Depths and Boundary Layer Development. At night the mixing depth computed from the virtual temperature data provides a better estimate of surface-based mixing while the C_n^2 -derived mixing depths during the daytime provide an estimate of the mixing in the convective boundary layer. Mixing depths are reported in meters above mean sea level and the time standard is Central Standard Time (CST).


Gulf of Mexico Air Quality Study Mixing Depth Analysis August 9-11, 1993


Gulf of Mexico Air Quality Study Mixing Depth Analysis August 17-20, 1993

Gulf of Mexico Air Quality Study Mixing Depth Analysis September 7-11, 1993

Gulf of Mexico Air Quality Study Mixing Depth Analysis August 17-20, 1993

APPENDIX H

AIRCRAFT HYDROCARBON AND CARBONYL COMPOUND DATA

Many plots and tables were prepared for the analyses which were not included in the main report. Appendix B included a table listing the target species reported by Biospherics for the surface and aircraft canisters. This appendix contains figures and tables concerning the aircraft hydrocarbon and carbonyl compound data including the following:

- Table of statistics for species group totals as measured by the aircraft. Statistics are presented by site and by site and time of day.
- Table of the frequency distributions of NMHC, NMOC, NO_x, and ratios measured by the aircraft.
- Table of outliers and invalid aircraft hydrocarbon and carbonyl compound samples.
- Line plots of the abundant species and carbonyl compounds measured by aircraft near Baytown, all samples. Species are shown in roughly chromatographic order.

Aircraft sampling location abbreviations may be found in Anderson et al., 1993.

Updated 2/28/95

Site Statistics

Total 293 samples 278 validated NMHC samples 281 validated carbonyl samples

Results for Texas Sampling Locations Site Statistics AAP, BMT (high altitude), OW5, OW2, OW1 had only one sample.

Results for Louisiana Sampling Locations

Site Statistics BTR (high altitude), HUM (midday) had only one sample.

	stat	co n	D	PAR	OLE	AROM	UNID	NMHC	Carbonyl
Overall	min	49.0	3.8	2.0	0.9	0.2		15.7	
	max	400.0	492 3	349.6	226.5	70.1	107.5	572.2	
	average	128.7	76.0	51.8	15.3	9.0	27.0	103.1	47.1
	median	115.0	51.5	37.3	7.4	5.5	23.4	76.1	43.3
	25th %	78.0	21.2	16.1	2.5	2.4	15.9	39.4	30.1
	75 th %	162.0	93.0	62.9	14,9	10.3	33.6	126.3	58.8
Results for Texas Sampling Lo	cations								
45R	min	101.0	45.9	32.8	7.0	2.1	16.6	63.1	23.9
2 NMHC samples	max	115,0	46.5	35.0	11.6	3.9	17.6	63 5	40.4
2 carbonyl samples	average	108.0	46.2	33.9	9.3	3.0	17.1	63.3	
	median	108,0	46.2	33.9	9.3	3.0	17.1	63.3	
	25th %	104.5	45.1	33.4	8.2	2.6	16.9	63.2	
	75th %	111.5	46.4	34.5	10.5	3.5	17.4	63.4	36.3
AXH	min	76.0	48.4	34.8	6.1	5.9	28.1	81.4	26,6
2 NMHC samples	max	92.0	56.2	44.2	7.6	6.0	33.0	84.3	
2 carbonyl samples	average	84.0	52.3	39.5	6.9	6.0	30.6	82.9	37.0
	median	84.0	52.3	39.5	6.9	6.0	30.6	82.9	37.0
	25th %	80.0	50.4	37.2	6.5	5.9	29.3	82.1	31.8
	75th %	88.0	54.3	41.9	7.2	6.0	31.8	83.6	42.2
BMT-LOW	min	68.0	27.9	18.5	2.6	2.0	12.3	40.2	17.7
9 NMHC samples	max	228.0	250.1	183.8	53.1	36.1	55.1	284.8	101.1
10 carbonyl samples	average	109.9	83.6	56.9	18.0	8.7	24.5	108.1	46.5
10 carbonyr samples	median	99.5	63.4	47.2	9.9	6.8	19.8	91.5	
	25th %	76.3	37.7	31.9	4.5	2.6	15.1	53.2	
	75th %	122.8	95.7	55.8	22.8	9.0	32.2	136.2	
			,-	00.0		0.0	52 ,2		
CRY	min	92.0	22.3	15.6	2.3	2.6	12.5	38.6	9.8
25 NMHC samples	max	230.0	492.3	349.6	112.2	31.5	79.9	572.2	114.2
26 carbonyl samples	average	155.0	95.0	63.3	19.1	12.5	27.4	122.4	52.0
	median	155.0	76.3	50.4	14.5	9.4	20.3	102.8	50.7
	25th %	118.5	38.8	22.4	9.2	5.7	16.8	56,2	
	75th %	176.5	109.6	71.9	21.9	18.7	31.3	142.7	65.4
GIL	min	61.0	8.9	5 .7	1.3	1.1	7.2	22.2	20.0
15 NMHC samples	max	181.0	102.3	78.6	39.1	13.7	51.7	126.4	
15 carbonyl samples	average	102.1	46.3	33.7	7.8	4.8	21.8	68.1	41.2
	median	84.0	40.7	33.2	5.5	4.0	19.0	64.0	
	25th %	68.0	18.9	15.6	1.8	1.8	14.7	41.2	29.2
	75th %	121.5	66.8	46.9	8.8	7.5	26.9	94.9	51.6
CIS	- -		2.5	4.4			~ -	46-	a= c
GLS	min	64.0	6.3	4.1	0.9	0.9	7.5	15.7	
14 NMHC samples	max	151.0	163.1	135.6	24.3	14.2	35.9	199.0	
15 carbonyl samples	average	88.4 79.5	38.1 22.9	28.5 16.9	6.0 2.9	3.6 2.5	16 9 15.4	55.0 39.6	41.9 37.3
	median 25th %	79.5 66.5	15.0	10.9	1.4	2.5 1.6	10.0	39.6 27.4	
	25th %	97.0	34.2	25.2	1.4 5.1	3.9	20.8	52.8	
	13UL 70	91.U	34.2	23.2	Q. I	3.9	ZŲ.0	J2.0	40.4

	stat	со	ID	PAR	OLE	AROM	UNID	NMHC	Carbonyl
НІР	min	59.0	6.9	5.0	1.0	0.7	7.1	20.9	9.4
11 NMHC samples	max	132.0	36.0	26.5	6.6	2.9	33.5	61.9	63.4
12 carbonyl samples	average	84.2	18.5	14.7	2.3	1.5	16.1	34.6	34.0
12 cathony: ampive	median	74.5	16.0	13.0	2.1	1.1	14.0	32.5	30.8
	25th %	64.8	11.4	9.4	1.2	0.9			
	75th %	97.5	22.6	18.3	2.3	1.8	18.8	37.3	44.5
HOU-LOW	min	70.0	12.1	8.0	2.6	1.2	12.5	26.2	13.9
28 NMHC samples	max	400.0	311.1	170.7	91 4	49.0	79.3	367 3	112.9
26 carbonyl samples	average	173.0	76.7	50.8	12.2	13.7	31.3		44.2
24 42.002/1 20.004	median	154.0	57.7	37.8	7.7				
	25th %	103.8	3 32.1	21.7	5.1				24.2
	75th %	207.	5 98.2	60.7	12.0	18.7	35.4	133.1	57.1
HOU-HIGH	min	49.0	3.8	2.0	1.1				
27 NMHC samples	max	172.0	3 47.6	27.9					
28 carbonyl samples	average	79.0							
	median	69.							
	25th %	63.							
	75th %	81.	5 15.9	9.3	3.2	2 3.4	26.9	37 8	41.4
*****	•		• •	. 44.0	4.7	7 6.0	12.9	3 76.1	23.4
HPY	min	87.							
27 NMHC samples	max	37 4 .							
25 carbonyl samples	average								
	median	138. 107.							
	25th % 75th %	107. 174.							
	13 u 1 70	μ τ≔.	3 277.1	, , , , , , ,	, 55.0		,.		
MAT	min	61.	0 9.8	3 5.3	3 1.4	4 23	2 7.9	9 17.7	18.0
2 NMHC samples	max	63.	0 12.2	2 8.6	5 1.4	4 3.1	32.	7 44.9	58.8
2 carbonyl samples	average	62.	0 11.0	7 (1.4	4 2.	7 20.3	3 31.3	38.4
	median		0 11.0	7.0	1.4	4 2.	7 20.3	3 31.3	
	25th %	61.	5 10.4	4 6.1	1 14				
	75th %	62.	5 11.6	5 7.8	3 1.4	4 2.5	9 26.	5 38.	48.6
MAV	•	+ 4	. 40	4 40	2 3.1	7 2.	4 20.	9 39.	5 27.0
MAY	min	74							
6 NMHC samples	max	262 e 147.							
7 carbonyl samples	average median								
	25th %								
	75th %								
	/Jus /t		0.			- · ·			
NUN	min	121	0 51.	8 34.	7 5.	B 11.	3 39.	4 93.	
2 NMHC samples	max	168		2 52.	7 8.	4 18.	1 41.	3 118.	6 454
2 carbonyl samples	averag				7 7.	1 14.	7 40.	4 105.	
- 1	mediar		.5 65.	5 43.	7 7.	1 14.			
	25th %	132	.8 58.	7 39 .	2 6.				
	75th %	156	.3 72.	4 48.	2 7.	8 16.	4 40.	8 112	2 41.4

OWIA	stat	со	ID	PAR	OLE	AROM	UNID	NMHC	Carbonyl
OW4	min								26.0
0 NMHC samples	max								34.9
2 carbonyi samples	average								30,5
	median								30.5
	25th %								28.2
	75th %								32.7
SAB	min	62.0	10.2	8.1	1.0	0.8	7.2	25.0	47.0
13 NMHC samples	max	152.0	98.3	60.2		12.1	r.∠ 36.7		
13 carbonyl samples	average	101.3	35.3	26.3	5.8	3.2	20.4		71.9
• •	median	96.0	24.1	20.2	3.0	2.0	20. 4 16.8	55.7 48.6	42.4
	25th %	78.0	19.4	16.5	1.7	1.1	13.6	37.0	43.3
	75th %	129.0	35.3	29.4	3.7	2.9	27.9	57.0 60.6	24.1
					0.7	2.0	21.8	0.00	53.1
SPT	min	139.0	39.4	25.3	5.7	8.0	25.4	64.8	42.5
3 NMHC samples	max	217.0	196.1	120.4	50.8	24.9	57.3	253.4	79.3
2 carbonyl samples	average	186.0	99.4	59.7	26.0	13.8	39.2	138.6	60.9
	median	202.0	62.8	33.4	21.4	8.4	34.8	97.6	60.9
	25th %	170.5	51.1	29.4	13.6	8.2	30.1	81.2	21.2
	75th %	209.5	129.5	76.9	36.1	16.7	46.1	175.5	60.9
SPX	min	73.0	18,2	11,9	24	0.0	45.5		
6 NMHC samples	max	225.0	53.1		2.1	2.2	10.9	31.7	13.1
6 carbonyl samples	average	110.0	30.9	38.2 22.4	6.0	8.9	33.2	86.3	95.6
v versonyi sampios	median	85.0	23.8	17.1	3.9	4.5	17.3	48.2	40.9
	25th %	80.3	21.3	15.4	3.8 2.7	3.6	14.9	36.5	29.6
	75th %	106.3	40.4	30.9	5.1	3.2	12.6	35.1	26.2
	7541 70	100.5	70.7	30,5	J.1	5.3	17.3	56.7	46.8
T00	min	153.0	75.1	62.9	8.4	3.8	19.5	94.9	39.7
3 NMHC samples	max	248.0	163.7	95.4	51.4	16.9	21.5	183.2	84.0
3 carbonyl samples	average	187.3	115.3	78.8	24.6	11.9	20.3	135.6	63.3
	median	161.0	107.1	78.0	14.1	15.0	19.8	128.6	66.3
	25th %	157.0	91.1	70.5	11.3	9.4	19.7	111.8	53.0
	75th %	204.5	135.4	86.7	32.8	16.0	20.7	155.9	75.1
T78	min	88.0	30.2	17.0	6.9	2.5	16.5	46.7	47.4
12 NMHC samples	max	206.0	386.4	229.4	144.3	68.4	107.5	486.5	17.1
11 carbonyl samples	average	120.8	119.8	76.3	28.8	14.6	35.4	400.5 155.1	80.2 47.5
•	median	110.0	66.0	49.3	12.5	6.1	29.5	102.1	47.5 42.6
	25th %	102.5	39.1	24.4	8.6	4.6	17.9	66.0	31.6
	75th %	122.3	117.8	90.2	18.3	10.7	38.0	148.1	55.4

	stat	co	ID	PAR	OLE	AROM	UNID	NMHC	Carbonyl
Results for Louisiana Sam	pling Loc	ations							
BTR-LOW	min	168.0	35.1	19.8	9.6	3.8		51.6	
11 NMHC samples	max	232.0	217.6	184.1	27.0	19.6		246.1	101.0
12 carbonyl samples	average	192.4	118.2					147.7	76.0
	median	186.0						137.5	67.3
	25th %	172.0	83.4					107.1	52.0
	75 th %	205.0	155.7	115.7	21.4	15.1	32.1	199.2	97.0
CAN	min	104.0	36.1	27.7	5.0	3.4	15.1	63.6	32.3
10 NMHC samples	max	225.0	184.0	89.0	76.3	21.3	56.0	240.0	80.8
11 carbonyl samples	average	173.1	85.3	61.1	15.3	8.9	37.7	122.9	62.7
	median		78.9	63.8	8.0	6.6	42.7	121.2	63.3
	25th %	137.0	52.1	42.2	5.6	4.3	18.8	69.3	52.9
	75th %	195.5	101.3	78.4	10.2	9.7	5 0.1	145.7	76.1
COC	min	83.0	27.€	5 20.4	1.4	1.8	13.5	52.3	31.6
14 NMHC samples	max	215.0	173.9	140.2	17.9	24.9	59.3	213.1	91.9
14 carbonyl samples	average			55.6	5.7	6,3	31.2	98.7	52.8
27 722 723	median		54.8	45.6	4.6	3.7	28.4	85.8	50.4
	25th %		46.5	39.0	3.4	3.0	20.4	72.7	41.2
	75th %	169.5	68.5	61.0	6.9	5.5	39.1	107.5	63.0
HUM	min	112.0	63.7	7 35.3	3.7	5.7	11.1	74.8	34.8
7 NMHC samples	max	211.0	145.0	71.9	70.9	12.1	56,6	182.5	69.2
8 carbonyl samples	average			7 59.3	21.9	7.5	32.7	121.4	49.3
,· <u>-</u> · · -	median		82.4	4 62.3	8.4	7.2	37.5	113.1	45.3
	25th %	116.5	69.7	7 45.9	5.5	5.5	18.5	96 2	40.1
	75th %	182.3	87,3	67.0	20.8	3 7.6	5 40.1	127.1	59.6
SSP	min	70.0) 14.7	7 9.3	3 1.2	2 1.2	10.2	36.4	25.7
14 NMHC samples	max	153.0			43.0	70.1	64.6	342.9	92.3
13 carbonyl samples	average				7 5.5	7.4	28.3	88.9	52.9
	median		39.1	34.5	5 2.5	2.5	21.8	65.7	54.5
	25th %	77.5	28.7	7 24.8	3 1.7	7 1.8	3 13.9	49.1	33.7
	75th %			5 42.4	3.4	3.5	38.2	76.2	59.7
VEN	min	110.0	30.0	5 23 8	3 4.1	1 2.7	7 16.3	46.9	33.9
2 NMHC samples	max	203.0							
2 carbonyl samples	average								
=	median								
	25th %					2.9	16.7	53.6	33.9
	75th %		3 49.5	5 33.3	3 12.8	3 3 4	17.4	66,9	33.9

Time statistics

Total 293 samples 278 validated NMHC samples 281 validated carbonyl samples

Results for Texas Sampling Locations
Time Statistics by Site
AAP, BMT (high altitude), OW5, OW2,
OW1, NUN, T00 and 45R had only one sample
per time period.

Results for Louisiana Sampling Locations
Time Statistics by Site
BTR (high altitude), HUM
(midday), and VEN, had only one
sample per time period.

		stat	со	ID	PAR	OLE	AROM	UNID	NMHC	Carbonyl
Overall	0600-0900	min	50.0	6.3	3.9	1.0	0.7	25	15.7	2.2
	125 NMHC samples	max	400.0	492.3	349.6	226.5	51.6	79.9	572.2	114.2
	130 carbonyl samples	avg	117.4	87.8	57.7	20.1	9.9	28.5	116.3	40.2
		median	101.0	56.2	42.6	7.8	6.0	22.3	84.6	35.7
		25th %	73.0	16.8	13.0	2.3	2.0	15.6	36.4	27.1
		75th %	138.0	97.8	66.4	15,6	12.1	36.7	139,1	50.5
	0900-1200	min	66 0	22.8	18.6	2.0	2.1	11.1	39.0	22.0
ple	22 NMHC samples	max	232.0	250.1	184.1	50.8	36.1	57.3	284.8	101.0
	25 carbonyl samples	avg	148.2	115.0	84.0	20.0	10.9	28.8	143.7	53.2
		median	117.0	77.8	55.0	_	74		97.6	41.4
\$		25th %	96.0	33.0	24 8		2.3		54.1	32.4 58.5
		75th %	195.0	105.3	79.4	20.2	11.4	30.2	143.0	68 6
	1200-1700	min	49.0	3.8	2.0	0.9	0.2	7.2	17.7	16.7
	131 NMHC samples	max	374.0	379.0	229.4	81.2	70.1	107.5	486.5	112.9
•	126 carbonyl samples		136.4	61.2	42.8	10.5	7.9	25.7	86.9	53.0
	, ,	median	128.0	45.5	32.8	6.4	4.7	23.8	68.6	51.0
		25th %	89.0	22.1	17.6	2.9	2.5	16 4	45 .1	37.3
		75th %	167.0	76.0	53.4	12.5	9.0	31.1	107.1	62 .7
Results for Te	xas Sampling Locatio	ons								
			CO	ID	PAR	OLE	AROM	UNID	NMHC	Carbonyl
BMT Low	0600-0900	min	68.0							17.7
	9 NMHC samples	max	162.0				21.2		207.1	101.1
	10 carbonyl samples	avg	98.1							38.8
		median	90.0							31.2
		25th %	73.3							24.3
		75th %	106.3	1196	73.1	32.2	9.1	34.9	148.2	40.6
	0900-1200	min	77.0	32.6	27.2	2.6	2.1	14.9	47.5	22.0
	5 NMHC samples	max	228.0	250.1	183.8	41.7	36.1	34.7	284.8	88.1
	5 carbonyl samples	avg	123.8	85.7	62.2	14.6	8.8	20.0	105.7	50.0
		median	101 5	51.9	39.3	5.3	3.4	17.0	70.1	46.7
		25th %	85.5	39.9	34,7	2.9	2.5	15.4	56.9	
		75th %	141.5	61.8	47.8	3 24.5	5.2	20.5	99.3	60 3
	1200-1400	min	103.0	27.9	18.5	6.1	2.0	12.3	40.2	36,7
	4 NMHC samples	max	129.0							
	5 carbonyl samples	avg	117.7							
		median					2.7	14.7	44.4	55.0
		25th %	77.3			9 46	1.5	9.2	30.2	44.7
		75th %	123.0	37.3	26.1	7.6	4.6	17.7	55.0	70.5
CRY	0600-0900	min	92 0) 22.3	3 15.6	5 2.3	3 26	5 15.9	38.6	9.8
CKI	13 NMHC samples	max	230.0							
	14 carbonyl samples		138.6							
	i - cerconyi samples	median								
		25th %	107.0							
		75th %	134.0							
	1200-1500	min	122.0							
	12 NMHC samples	max	226.0							
	12 carbonyl samples	_	172.8							
		median	164.0	84.6	5 54.5	5 154	10.1	19.1	107.2	65.3

Column			stat	CO)	ID		PAR	OLE	AROM	UNID	NMHC	Carbonyl
Call			25th %		155.8		56.5						
B NMHC samples max 115.0 94.5 53.6 39.1 13.7 51.7 113.5 51.4 94.6 94.			75th %		187.3		107.3	70.3	22.1	14.0			
B NMHC samples max 115.0 94.5 53.6 39.1 13.7 51.7 113.5 51.4 94.6 94.	CII	0000 0000	!_										
Rearbonyl samples Rear	GIL												
		· ·											
1200-1500 min 67.0 13.8 1.8 1.4 15.7 38.0 25.8 76th 4.8 83.0 67.6 47.0 8.8 5.8 31.7 99.3 40.2		o carbony samples	_										
1200-1500													
1200-1500													
T. NiHHC samples T. Carbonyl samples T			, , , , ,				01.0	47.0	0.0	3.0	31.1	50 .3	₩.2
Toerbonyl samples avg 128.6 47.6 36.3 6.5 4.9 19.1 96.8 50.2 7.5 50.5 4.4 23.2 64.0 61.8 256 4.9 7.5 5.5 4.4 23.2 64.0 61.8 256 4.9 7.5 2.3 2.7 13.3 46.5 61.0 61.6 2.7 2.3 2.7 2.3 3.6 5.5 4.4 23.2 2.6 61.8 2.5 2.3 2.7 13.3 46.5 41.0 2.5 2.3 2.7 2.3 4.5 2.3 2.7 2.3 4.5 2.3 2.7 2.3 4.5 2.3 2.7 2.3 4.5 2.3 2.5 2.2 2.5 2.2 2.5 2.2 2.5 2.2 2.5 2.5 2.2 2.5		1200-1500	min		67.0		13.8	9.5	1.3	1.1	7.2	22.2	22.7
Marcolina 128.0 40.7 33.2 5.5 4.4 23.2 84.0 51.8 526 44.0 51.8 52.5 756 44.0 51.8 52.5 756 44.0 51.8 52.5 756 44.0 51.8 52.5 756 44.0 51.8 52.5 756 44.0 51.8 52.5 756 44.0 51.8 52.5 756 44.0 51.8 52.8 52.5 52.0 52.0 52.5 52.0 52.5 52.0 52.5 52.0 52.5 52.0 52.5 52.0 52.5 52.0 52.5 52.0 52.5 52.0 52.5 52.0 52.5 52.0 52.5 52.0 52.5 52.0 52.5 52.0 52.5 52.0 52.5 52.0 52.5 52.0 52.5 52.0 52.5 52.0 52.5 52.0 52.0 52.5 52.0 52.0 52.0 52.5 52.0 52.0 52.0 52.0 52.5 52.0		7 NMHC samples	max	•	181.0		102.3	78.6	15.4	8.3	29.6	126.4	79.1
Section Sect		7 carbonyl samples	_		128.6		47.6	36.3	6.5	4.9	19,1	66.8	50.2
Part					128.0		40.7	33.2	5.5	4.4	23.2	64.0	51.8
Column C							26.7	21.5	2.3	2.7	13.3	46.5	41.0
T NMHC samples Rax 115.0 163.1 135.6 24.3 14.2 35.9 199.0 104.1			75th %		167.0		61.6	44.9	9.2	7.5	23.7	80.9	58.0
T NMHC samples Rax 115.0 163.1 135.6 24.3 14.2 35.9 199.0 104.1	GLS	0600_0900	min		64.0		63	44	12	4.0	0.4	457))E e
Rearbonyl samples avg median 68.0 24.5 15.9 35.5 25.5 22.0 43.2 36.5 36	020												
		•											
1200-1500		o car portyr carriptor	_										
Toth													
Table Tabl													
Tourish Tour								• • • • • • • • • • • • • • • • • • • •		4.1	20.0	10,0	41.4
Tourbonyl samples		1200-1500	min		70.0		8.2	6.3	0.9	0.9	7.5	25.6	28.2
HIP 0600-0900 min 59.0 6.9 5.0 1.0 0.7 7.1 20.9 9.4 6.7 5th % 132.0 24.0 19.9 2.3 18. 21.7 40.5 56.9 avg median 66.0 13.9 11.1 1.7 1.0 15.3 29.2 29.6 6.2 25th % 60.3 12.2 10.3 11.1 0.8 13.0 23.8 26.5 13.4 29.9 30.4 16.7 5th % 10.6 12.6 25th % 71.8 15.6 12.6 23 12.9 13.5 61.9 63.4 23.1 16.7 5th % 10.6 12.6 25th % 71.8 15.6 12.6 23 12.2 10.3 1.1 0.8 13.0 23.8 26.5 16.4 25th % 71.8 15.6 12.6 23 12.2 19.7 35.3 30.9 19.9 19.7 25th % 10.2 5 26.8 22.1 3.0 2.6 17.1 45.6 48.0 19.9 19.9 19.9 19.7 19.9 19.7 19.9 19.7 19.0 19.9 19.9 19.9 19.9 19.9 19.9 19.9		7 NMHC samples	max		151.0		54.5	38.8	10.4	5.3	18.8	69.7	50.7
HIP 0600-0900 min 59.0 6.9 5.0 1.0 0.7 7.1 20.9 9.4 6.5 6.6 carbonyl samples 75th % 76.0 10.0 75th % 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10		7 carbonyl samples			96.1		25.3	19.4	3.1	2.7	13.0	38.3	39.9
HIP 0600-0900 min 59.0 6.9 5.0 1.0 0.7 7.1 20.9 9.4 6.5 6 arbonyl samples 6 carbonyl samples 75th % 71.8 15.6 12.6 23 1.2 19.7 35.3 30.9 1200-1500 min 66.0 10.0 7.4 1.4 1.0 8.9 28.1 16.7 75th % 102.5 26.8 22.1 3.0 2.6 17.1 45.6 48.0 48.0 19.9 14.0 32.5 38.5 13 carbonyl samples 14 NMHC samples 15 T5th % 105.8 39.7 27.6 7.4 6.6 21.3 70.7 21.9 median 184.0 79.0 51.9 8.6 17.4 33.3 118.9 31.6 25th % 105.8 39.7 27.6 7.4 6.6 21.3 70.7 21.9 14.0 30.5 38.9 13.6 25th % 105.8 39.7 27.6 7.4 6.6 21.3 70.7 21.9 14.0 30.5 38.9 13.6 25th % 105.8 39.7 27.6 7.4 6.6 21.3 70.7 21.9 14.0 30.5 38.9 16.2 25th % 105.8 39.7 27.6 7.4 6.6 21.3 70.7 21.9 14.0 30.5 38.9 16.2 25th % 105.8 39.7 27.6 7.4 6.6 21.3 70.7 21.9 14.0 30.5 38.9 16.2 25th % 105.8 39.7 27.6 7.4 6.6 21.3 70.7 21.9 25th % 105.8 39.7 27.6 7.4 6.6 21.3 70.7 21.9 21.9 25th % 105.8 39.7 27.6 7.4 6.6 21.3 70.7 21.9 25th % 105.8 20.9					88.0		21.0	17.7	1.6	2.3	12.9	33.9	43.9
HIP 0600-0900 min 59.0 6.9 5.0 1.0 0.7 7.1 20.9 9.4 6 NMHC samples 6 carbonyl samples 25th % 60.3 12.2 10.3 1.1 1.7 1.1 15.4 29.9 30.4 median 66.0 13.9 11.1 1.7 1.0 15.3 29.2 29.6 25th % 71.8 15.6 12.6 2.3 1.2 19.7 35.3 30.9 12.2 19.7 35.3 12.2 19.7 35.3 12.2 19.7 35.3 12.2 19.7 35.3 12.2 19.7 35.3 12.2 19.7 35.3 12.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2					76,0		15.2	11.9	1.3	1.7	10.6	27.4	31.6
6 NMHC samples 6 carbonyl samples avg 75.8 14.4 11.7 1.7 1.1 15.4 29.9 30.4 median 66.0 13.9 11.1 1.7 1.0 15.3 29.2 29.6 25th % 60.3 12.2 10.3 1.1 0.8 13.0 23.8 26.5 75th % 71.8 15.6 12.6 2.3 1.2 19.7 35.3 30.9 12.0 19.9 12.6 12.6 2.3 1.2 19.7 35.3 30.9 12.0 19.9 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6			75th %		106.0		31.5	24.8	3.2	3.6	15.4	42.1	4 6.5
6 NMHC samples 6 carbonyl samples avg 75.8 14.4 11.7 1.7 1.1 15.4 29.9 30.4 median 66.0 13.9 11.1 1.7 1.0 15.3 29.2 29.6 25th % 60.3 12.2 10.3 1.1 0.8 13.0 23.8 26.5 75th % 71.8 15.6 12.6 2.3 1.2 19.7 35.3 30.9 12.0 19.7 35.3 30.9 12.0 19.7 35.3 30.9 12.0 19.7 35.3 30.9 12.0 19.7 35.3 30.9 12.0 19.7 35.3 30.9 12.0 19.7 35.3 30.9 12.0 19.7 35.3 30.9 12.0 19.7 35.3 30.9 12.0 19.7 35.3 30.9 12.0 19.7 35.3 30.9 12.0 19.7 35.3 30.9 12.0 19.7 35.3 30.9 12.0 19.7 35.3 30.9 12.0 19.7 35.3 30.9 12.0 19.7 35.3 30.9 12.0 19.7 35.3 30.9 12.0 19.7 35.3 30.9 12.0 19.7 35.3 35.5 61.9 63.4 65.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	HIP	0600_0900	min		50.0		60	5.0	1.0	0.7	71	20.0	0.4
Carbonyl samples Avg 75.8 14.4 11.7 1.7 1.1 15.4 29.9 30.4													
Median		-											
1200-1500		,	_										
1200-1500 min 66.0 10.0 7.4 1.4 1.0 8.9 28.1 16.7 5 NMHC samples 6 carbonyl samples 25th % 78.5 12.6 9.8 1.5 1.0 9.3 28.4 23.1 75th % 70.5 75th % 102.5 26.8 22.1 3.0 2.6 17.1 45.6 48.0 HOU LOW 0600-0900 min 70.0 12.1 8.3 2.6 1.2 13.7 33.1 13.9 13 carbonyl samples avg 178.3 95.5 60.8 16.3 18.4 35.1 130.5 38.9 median 184.0 79.0 51.9 8.6 17.4 33.3 118.9 31.6 25th % 105.8 39.7 27.6 7.4 6.6 21.3 70.7 21.9 75th % 214.5 126.2 80.1 15.1 24.0 43.9 160.3 56.2 1200-1700 min 79.0 13.7 8.0 2.8 2.9 12.5 26.2 18.4 14 NMHC samples max 328.0 210.9 164.7 26.4 19.8 35.4 246.3 112.9 13 carbonyl samples max 328.0 210.9 164.7 26.4 19.8 35.4 246.3 112.9 13 carbonyl samples avg 167.7 58.0 40.9 8.2 9.0 27.5 85.6 49.6													
S NMHC samples Factor S NMHC samples Factor S NMHC samples S N			75th %		71.8								
S NMHC samples Factor S NMHC samples Factor S NMHC samples S N													
HOU LOW 0600-0900 min 70.0 12.1 8.3 2.6 1.2 13.7 33.1 13.9 14 NMHC samples avg 13 carbonyl samples avg 14 NMHC samples avg 15 cb. 214.5 126.2 80.1 15.1 24.0 43.9 160.3 56.2 18.4 NMHC samples avg 167.7 58.0 40.9 8.2 9.0 27.5 85.6 49.6		1200-1500	min		66,0		10.0	7.4	1.4	1.0	8.9	28.1	16.7
HOU LOW 0600-0900 min max max at 30.0 median median max 400.0 min median median max 400.0 min min max 400.0 min min max 400.0 min min max 400.0 min min max 400.0 min max		5 NMHC samples									33.5	61.9	63.4
## Page 125th ## Page 125th ## Page 13.1 ## Page		6 carbonyl samples											
HOU LOW 0600-0900 min 70.0 12.1 8.3 2.6 1.2 13.7 33.1 13.9 14 NMHC samples avg 175th % 105.8 39.7 27.6 74 6.6 21.3 70.7 21.9 75th % 214.5 126.2 80.1 15.1 24.0 43.9 12.5 26.2 18.4 14 NMHC samples max 328.0 210.9 164.7 26.4 19.8 35.4 246.3 112.9 13 carbonyl samples avg 167.7 58.0 40.9 8.2 9.0 27.5 85.6 49.6													
HOU LOW 0600-0900 min 70.0 12.1 8.3 2.6 1.2 13.7 33.1 13.9 14 NMHC samples avg 178.3 95.5 60.8 16.3 18.4 35.1 130.5 38.9 median 184.0 79.0 51.9 8.6 17.4 33.3 118.9 31.6 25th % 105.8 39.7 27.6 7.4 6.6 21.3 70.7 21.9 75th % 214.5 126.2 80.1 15.1 24.0 43.9 160.3 56.2 13 NMHC samples max 328.0 210.9 164.7 26.4 19.8 35.4 246.3 112.9 13 carbonyl samples avg 167.7 58.0 40.9 8.2 9.0 27.5 85.6 49.6													
14 NMHC samples max 400.0 311.1 170.7 91.4 49.0 79.3 367.3 60.5 13 carbonyl samples avg 178.3 95.5 60.8 16.3 18.4 35.1 130.5 38.9 median 184.0 79.0 51.9 8.6 17.4 33.3 118.9 31.6 25th 105.8 39.7 27.6 7.4 6.6 21.3 70.7 21.9 75th 214.5 126.2 80.1 15.1 24.0 43.9 160.3 56.2 1200-1700 min 79.0 13.7 8.0 2.8 2.9 12.5 26.2 18.4 14 NMHC samples max 328.0 210.9 164.7 26.4 19.8 35.4 246.3 112.9 13 carbonyl samples avg 167.7 58.0 40.9 8.2 9.0 27.5 85.6 49.6			75 th %		102.5		26.8	22.1	3.0	2.6	17.1	45.6	48.0
14 NMHC samples max 400.0 311.1 170.7 91.4 49.0 79.3 367.3 60.5 13 carbonyl samples avg 178.3 95.5 60.8 16.3 18.4 35.1 130.5 38.9 median 184.0 79.0 51.9 8.6 17.4 33.3 118.9 31.6 25th 105.8 39.7 27.6 7.4 6.6 21.3 70.7 21.9 75th 214.5 126.2 80.1 15.1 24.0 43.9 160.3 56.2 1200-1700 min 79.0 13.7 8.0 2.8 2.9 12.5 26.2 18.4 14 NMHC samples max 328.0 210.9 164.7 26.4 19.8 35.4 246.3 112.9 13 carbonyl samples avg 167.7 58.0 40.9 8.2 9.0 27.5 85.6 49.6	HOULOW	0600-0900	min		70.0		121	คร	26	12	13.7	22.4	13.0
13 carbonyl samples avg 178.3 95.5 60.8 16.3 18.4 35.1 130.5 38.9 median 184.0 79.0 51.9 8.6 17.4 33.3 118.9 31.6 25th % 105.8 39.7 27.6 7.4 6.6 21.3 70.7 21.9 75th % 214.5 126.2 80.1 15.1 24.0 43.9 160.3 56.2 1200-1700 min 79.0 13.7 8.0 2.8 2.9 12.5 26.2 18.4 14 NMHC samples max 328.0 210.9 164.7 26.4 19.8 35.4 246.3 112.9 13 carbonyl samples avg 167.7 58.0 40.9 8.2 9.0 27.5 85.6 49.6													
median 184.0 79.0 51.9 8.6 17.4 33.3 118.9 31.6 25th % 105.8 39.7 27.6 7.4 6.6 21.3 70.7 21.9 75th % 214.5 126.2 80.1 15.1 24.0 43.9 160.3 56.2 1200-1700 min 79.0 13.7 8.0 2.8 2.9 12.5 26.2 18.4 14 NMHC samples max 328.0 210.9 164.7 26.4 19.8 35.4 246.3 112.9 13 carbonyl samples avg 167.7 58.0 40.9 8.2 9.0 27.5 85.6 49.6		·											
25th % 105.8 39.7 27.6 7 4 6.6 21.3 70.7 21.9 75th % 214.5 126.2 80.1 15.1 24.0 43.9 160.3 56.2 1200-1700 min 79.0 13.7 8.0 2.8 2.9 12.5 26.2 18.4 14 NMHC samples max 328.0 210.9 164.7 26.4 19.8 35.4 246.3 112.9 13 carbonyl samples avg 167.7 58.0 40.9 8.2 9.0 27.5 85.6 49.6			-										
75th % 214.5 126.2 80.1 15.1 24.0 43.9 160.3 56.2 1200-1700 min 79.0 13.7 8.0 2.8 2.9 12.5 26.2 18.4 14 NMHC samples max 328.0 210.9 164.7 26.4 19.8 35.4 246.3 112.9 13 carbonyl samples avg 167.7 58.0 40.9 8.2 9.0 27.5 85.6 49.6													
1200-1700 min 79.0 13.7 8.0 2.8 2.9 12.5 26.2 18.4 14 NMHC samples max 328.0 210.9 164.7 26.4 19.8 35.4 246.3 112.9 13 carbonyl samples avg 167.7 58.0 40.9 8.2 9.0 27.5 85.6 49.6													
14 NMHC samples max 328.0 210.9 164.7 26.4 19.8 35.4 246.3 112.9 13 carbonyl samples avg 167.7 58.0 40.9 8.2 9.0 27.5 85.6 49.6									,	.			
14 NMHC samples max 328.0 210.9 164.7 26.4 19.8 35.4 246.3 112.9 13 carbonyl samples avg 167.7 58.0 40.9 8.2 9.0 27.5 85.6 49.6		1200-1700	min		79.0		13.7	8.0	2.8	2.9	12.5	26.2	18.4
13 carbonyl samples avg 167.7 58.0 40.9 8.2 9.0 27.5 85.6 49.6		14 NMHC samples	max			;							
		13 carbonyl samples	avg										
			median		133.0		44.2	30.1	5.8	8.0	29.0	70.1	44.5

		stat	CO	ID	PAR	OLE	AROM	UNID	NMHC	Carbonyl
		25th %	105.8	31.2	21.2	4.5	4 .8	24.7	61.6	34.9
		75th %	202.0	59.1	38.6	10.7	11.8	31.2	86 0	55.3
HOU HIGH	0600-0900	min	50.0	7.1	3.9	1.1	0.7		15.8	2.2
	14 NMHC samples	max	141.0	31.6			7.9		62.8	46.4
	15 carbonyl samples		79.9	13.5			2.5		32.8	29.2
		median	70.0	12.4					32.2	30.1
		25th %	64.3	9.0			1.2		19.9	23.4
		75th %	81.5	15.7	8.7	2.7	2.6	20.9	37,1	35 .1
	1200-1700	min	49.0	3.8	2.0	1.3	0.2	12.0	22.3	24.5
	13 NMHC samples	max	172.0	47.6	27.9	20.4	7.1	31.8	79.4	81.0
	13 carbonyl samples	avg	79.2	16.9	9.9	4.1	2.9	23.0	39.9	42.1
	• •	median	69.0	13.5	8.7	2.7	2.6	24.9	36.0	38.8
		25th %	63.0	7.6	3.6	1.7	1.8	17.0	26.7	29.7
		75th %	81.5	18.1	11.0	3.3	3.6	27.1	38.9	48.6
HPY	0600-0900	min	87.0	73.8	56.0	10.0	6.3	12.9	86.7	23.4
•••	14 NMHC samples	max	210.0						496.0	102.3
	14 carbonyl samples	avg	136.7						292.4	44.2
	1-7 02/00/191 02/1/pilo	median						39.9	281.4	35.8
		25th %	102.3			1 21.9	14.4	27.3	173.7	29.8
		75th %	173 0	398.6	3 227.8	3 117.6	27.4	49.8	447.7	49.5
	1200-1600	min	102.0	55.5	5 41.9	4.7	6.0	16.2	7 6 .1	39.4
	13 NMHC samples	max	374.0		147.5	5 50.7	35.1	57.8	244.1	93.8
	11 carbonyl samples	avg	168.7	129.8	87.8	3 26.6	15.4	35.0	164.8	69.2
	,	median	145.0	130.4	90.6	23.6	14.0	35.2	170.1	65.7
		25th %	126.0	108.3	3 71.9	20.6	8.9	26.0	127.0	46.9
		75th %	172.0	162.7	7 109.4	4 32.7	19.1	44.6	197.9	83.7
MAT	1200-1600	min	61.0	9.0	5.3	3 1.4	1 2.2	2 7.9	17.7	18.0
	2 NMHC samples	max	63.0	12.2	2 8.6	5 1.4	3 .1	32.7	44.9	58.8
	2 carbonyl samples	avg	62.0	11.0	7.6	1.4	2.7	7 20.3	31.3	38.4
		median	62.0	11.0	7.0	1.4	2.7	7 20.3	31.3	38.4
		25th %	61.5	10.4	4 6.1	1.4	2.4	4 14.1	24.5	
		75th %	62.5	5 11.0	6 7.0	8 1.4	4 2.9	9 26.5	38.1	48.6
MAY	0600-0900	min	74.0	61.6	0 38.9	9 7.8	8.6	35.5	96.5	5 27.0
	2 NMHC samples	max	97.0	79.	7 63.	3 10.4	11.7	7 38.9	118.6	44.5
	3 carbonyl samples	avg	85.5	5 70. ₋	4 51.	1 9.1	10.2			
		mediar	1 85.5	5 70.	4 51.					
		25th %	37.0	30.	5 19.	5 3.9				
		75th %	85.5	5 70.	4 51.	1 9.1	1 10.2	2 37.2	107.6	38.1
MAY	1200-1600	min	77.0	18.	4 12.	2 3.	7 2.4	4 20.9	39.	
	4 NMHC samples	max	262.0	82.	8 59.					
	4 carbonyl samples	avg	178.8	B 41.						
		mediar								
		25th %								
		75th %	251.	5 54.	5 36	8 7.	2 10.	5 28 5	i 79.i	570
OW4	0900-1200	min								26.0
	2 NMHC samples	max								34.9
	2 carbonyl samples	avg								30.5
		media	1							30.5

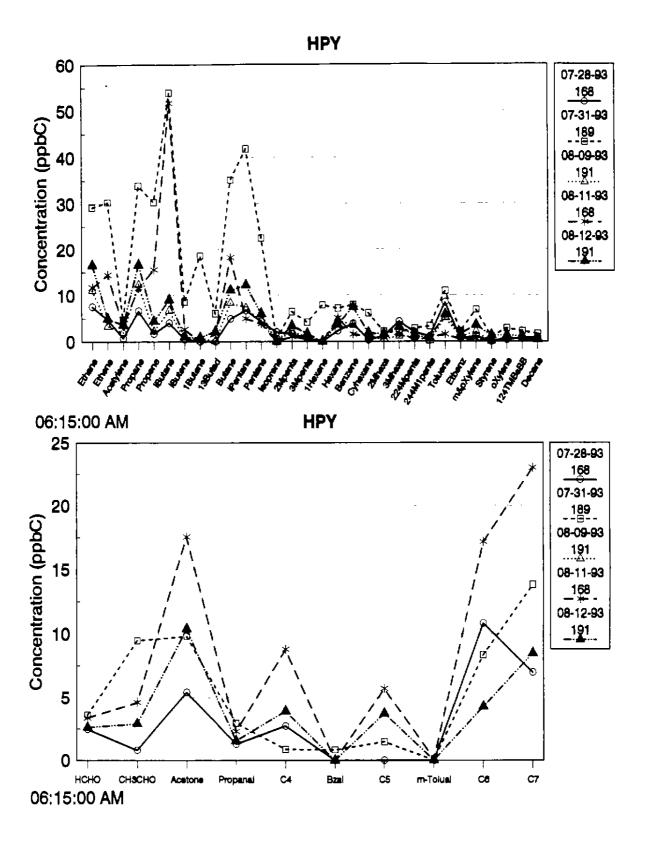
		stat 25th % 75th %	co	ID	PAR	OLE	AROM	UNID	NMHC	Carbonyl 28.2 32.7
SAB	0600-0900	min	62.0	10.2	8.1	1.0	0.8	12.9	25.8	17.8
	6 NMHC samples	max	152.0	98.3			12.1	36.7	135.0	71.9
	6 carbonyl samples	avg	86.7	34.6		6.1	3.4	18.8	53.4	36.9
	, r	median	77.0	26.7		2.4	1.8	16.0	41.5	32.8
		25th %	66.3	14.0			1.1	14.0	30.0	23.0
		75th %	86.3	33.8		3.5	2.8	17.3	48.2	42.8
	1200-1600	min	78.0	19.2	15.7	1.7	1.0	7.2	32.2	18.4
	7 NMHC samples	max	145.0	66.3	53.3	7.2	5.8	32.3	73.5	60.7
	7 carbonyl samples	avg	116.8	30.4		3.1	2.4	22.6	53.0	46.7
		median	123.0	23.0	18.9	2.6	1.9	27.3	52.4	49.9
		25th %	104.3	20.1	16.8		1.5	16.3	47.5	43.7
		75th %	131.3	29.8	24.7		2.4	28.6	59.5	57.2
SPT	1200-1600	min	139.0	39.4	25.3	5.7	8.0	25.4	64.8	42.5
	2 NMHC samples	max	217.0	62.8	33.4	21.4	8.4	34.8	97.6	42.5
	1 carbonyl sample	avg	178.0	51.1	29.4	13.6	8.2	30.1	81.2	42.5
		median	178.0	51.1	29.4	13.6	8.2	30.1	81.2	42.5
		25th %	158.5	45.3	27.3	9.6	8.1	27.8	73.0	10.6
		75th %	197.5	57.0	31.4	17.5	8.3	32.5	89.4	31.9
SPX	0600-0900	min	73.0	18.2	11.9	2.1	2.2	10.9	31.7	13.1
	5 NMHC samples	max	113.0	53.1	38.2	6.0	8.9	33.2	86.3	52.4
	5 carbonyl samples	avg	87.0	27.9	19.8	3.8	4.3	17.3	45.2	30.0
		median	84.0	22.6	16.7	3.2	3.4	12.9	35.5	29.1
		25th %	79.0	20.8	15.0	2.5	3,1	12.5	35.0	25.3
		75th %	86.0	24.9	17.4	5.3	3.7	16.8	37.4	30.0
T00	1200-1500	min	153.0	75,1	62.9	8.4	3.8	19.8	94.9	66.3
	2 NMHC samples	max	248.0	. 107.1	78.0	14.1	15.0	21.5	128.6	84.0
	2 carbonyl samples	avg	200.5	91.1	70.5	11.3	9.4	20.7	111.8	75,1
		median	200.5	91.1	70.5	11.3	9.4	20.7	111.8	75.1
		25th %	176.8	83.1	66. 7	9.8	6.6	20.2	103.3	70.7
		75th %	224.3	99,1	74.2	12.7	12.2	21.1	120.2	79,6
T78	0600-0900	min	105.0	35.4	22.7	7.9	4,8	18.0	53.4	17.1
	2 NMHC samples	max	120.0	386.4	198.1	144,3	44.0	51. 6	438.0	34.0
	2 carbonyl samples	avg	112.5	210.9			24.4	34.8	245.7	25.5
		median	112.5	210.9	110.4		24.4	34.8	245.7	25.5
		25th %	108.8	123.2	66.6	42.0	14.6	26.4	149.6	21.3
		75th %	116.3	298.7	154.3	110.2	34.2	43.2	341.9	29.8
	1200-1300	min	88.0	30.2	17.0		2.5	16.5	46.7	24.3
	10 NMHC samples	max	206.0	379.0	229 4	81.2	68.4	107.5	486.5	80.2
	9 carbonyl samples	avg	122.5	101.5	69 .5	19.4	12.7	35.5	137.0	52.4
		median	110.0	66.0	49.3	12.5	6.1	29.5	102.1	43.3
		25th %	101.5	41.9	26.6	9.2	4.4	19.2	68.9	38.1
		75th %	126.8	105.1	79.0	16.4	10.0	37.0	134.5	69.4
	0900-1200	min	168.0	35.1	19.8	9.6	3.8	16.5	51.6	52.6
	11 NMHC samples	max	232.0	217.6	184.1	27.0	19.6	52.0	246.1	101.0
	10 Carbonyl samples	avg	192.4	118.2	89.2	17.9	11.2	29.5	147.7	76.0

		stat	co		ID		PAR	OL	E .	AROM	UNID	NMHC	Carbonyl
		median		186.0		101.6	76.	5	17.6	11.4	26.1	137.5	67.3
		25th %		172.0		83.4	55.2	2	13.9	7.5	23.5	107.1	62.0
		75th %		205.0		155.7	115.	7	21.4	15.1	32.1	199.2	97.0
Results for Lo	uisiana Sampling Lo	cations	СО		ID		PAR	OL	.IF.	AROM	UNID	NMHC	Carbonyl
CAN	0600-0900	min	CO	62.0	ш	3.9	2.		1.0	0.8	14.0	17.9	32.3
CAN	5 NMHC samples	max		210.0		184.0	89.		76.3	18.7	56.0	240.0	78.2
	6 carbonyl samples	avg		155.2		91.4	62.		20.3	8.5	39.8	131.2	60.0
	O CEI DONY! CEINPICO	median		177.0		90.1	71.		10.2	8.5	47.9	138.0	58.5
		25th %		88.5		38.5	31	7	4.2	2.7	16.1	54.6	55.6
		75th %		183.5		101.3	78.	4	13.7	9.7	53.6	150.7	70.0
								_			4= 4	22.0	F4 &
	1200-1300	min		104.0		36.1	27.		5.0	3.4			51.6 80.8
	5 NMHC samples	max		225.0		110.5			8.6	21.3 7.7			65.4
	5 carbonyl samples	avg		172.4		61.7			6. 4 5.6	4.7			66.5
		median		173.0		54.2 50.0			5.5	4.0			52.8
		25th % 75th %		159.0 201.0		57.6			7.3	5.3			
		1 au 1		201.0		37 0				4		,,,,,,	
COC	0600-0900	min		83.0)	27.6	20.	.4	1.4	1.8	13.5	52.3	31.6
	7 NMHC samples	max		215.0)	107.9	82.	.5	6.5	18.9	59.3	167.2	
	7 carbonyl samples	avg		135.0)	56.5	47.	2	3.7	5.5			
		median	ì	108.0)	50.6	44.	.7	3.8				
		25th %		101.5	i	40.3			2.5				
		75th %		168.0)	64.4	56	.2	4.6	4.9	40.8	99.1	62.4
	1200-1400	min		91.0)	45.5	38	.8	3.3	3,0) 19.1	68.6	43.3
	7 NMHC samples	max		208 0)	173.9	140	.2	17.9	24.9			
	7 carbonyl samples	avg		149.0)	78.€	64	.0	7.6				
		mediar	1	162.0)	56.8			7.0				
		25th %		122.0		51.1			4.3				
		75th %		169.0)	86.0	69	.2	8.3	5.4	34.9	116.2	61.0
HUM	0600-0900	min		112.0)	63.7	49	.4	3.7	5.7	7 11.1	74.8	34.8
	6 NMHC samples	max		211.0)	145.0	71	.9	70.9				
	7 carbonyl samples	avg		157.8		89.2			18.2				
		mediar		160.0		81.3			7.8				
		25th %		115.0		67.7			4.9				
		75th %		183.5	5	87.4	67	.6	10 8	7.7	7 40.5	5 134.4	61.2
SSP	0600-0900	min		70.0	0	14.7	7 9	.3	1.2	1.5	5 10.2	2 36.4	30.6
	7 NMHC samples	max		131.0	0	129.1	123	.4	3.5	4.4			
	6 carbonyl samples	avg		94.9	9	48.6		1.6	2.3				
		media		96.0		39.			2.3				
		25th %		75.0		32.5			1.5				
		75th %		108.	5	45.9	40).5	3.2	2.0	9 26.	5 72.8	55.4
	1200-1500	min		75.0	0	15.6	3 12	2.3	1.5	i 1.:	2 11.	5 38 (5 25.7
	7 NMHC samples	max		153.	0	278.3	3 165	5.2	43.0	70.	1 64.	5 342 9	
	7 carbonyl samples	avg		116.	9	72.5	5 51	9	8.6	12.	1 34.		
		media	n	117.	0	36.:	2 31	.7	2.6				
		25th %		93.	5	29.		1.1	2.0				
		75th %		143.	0	59	7 52	2.9	45	3.	9 48.	6 99.5	63.6

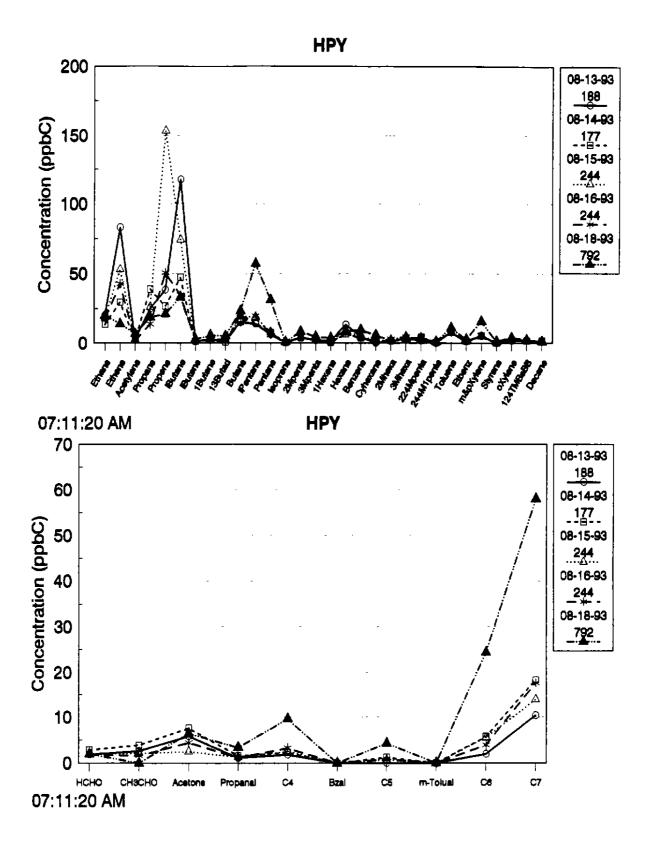
Frequency Distribution of NMHC/NOx ratios All Aloft Samples

	NMOC/	NMHC/			
Bins	NOx	NOx Bins	NO _x Bins	NMHC	NMOC
0-10	6	28 <0	1 0-50	78	10
10-20	50	103 0-2	60 50-100	65	78
20-30	60	33 2-4	55 100-150	35	52
30-40	23	19 4- 6	27 150-200	18	36
40-50	25	5 6-8	13 200-250	8	16
50-60	12	5 8-10	16 250-300	2	9
60-70	5	6 10-12	10 300-350	3	3
70-80	7	5 12-14	9 350-400	1	5
80-90	7	3 14-16	5 400-450	2	1
90-100	1	0 16-18	5 450-500	5	2
>100	19	8 18-20	4 >500	1	6
Total	215	215 >20	11 Total	218	218
		Total	216		

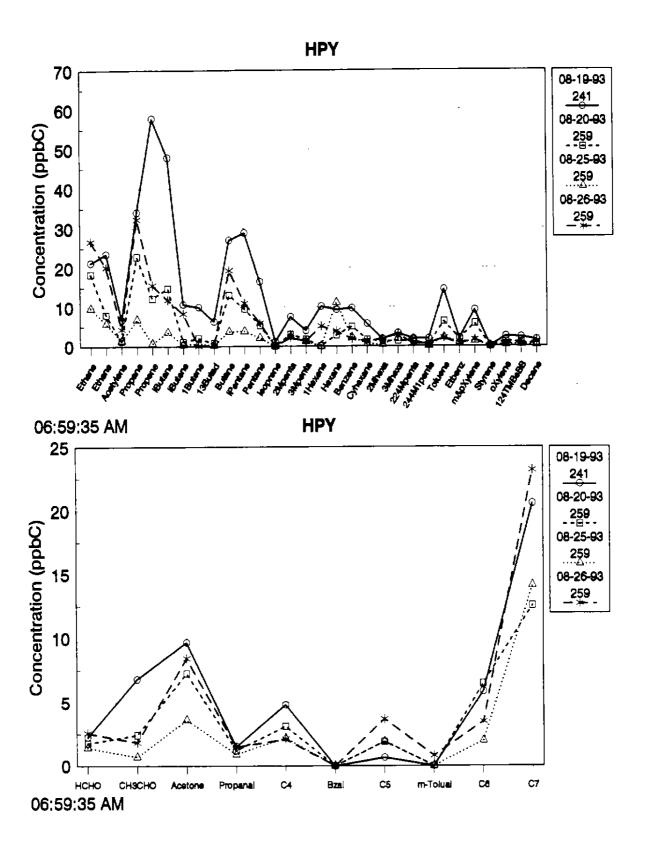
Louisiana

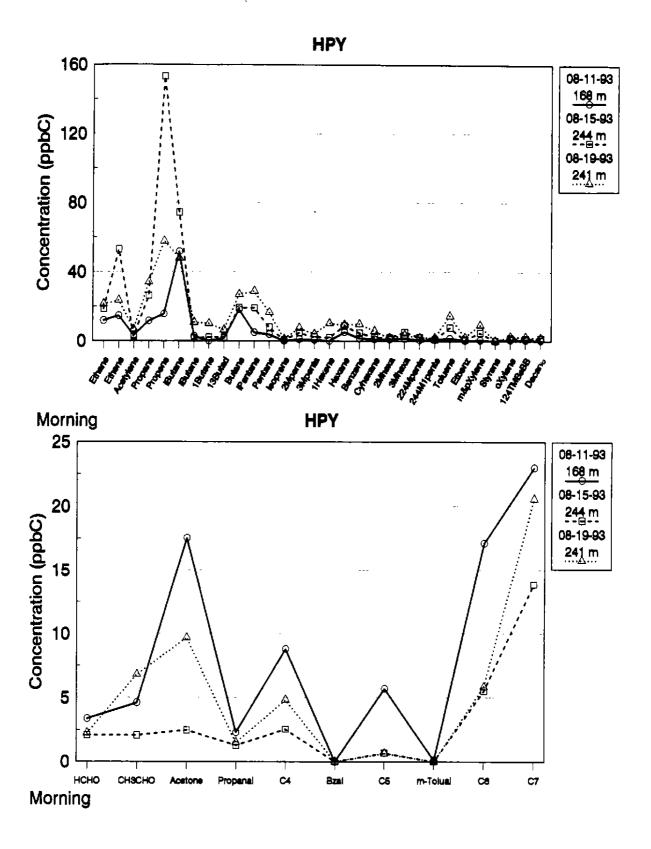

Luuisiaila					
	NMOC/	NMHC/			
Bins	NOx	NOx Bins	NOx Bins	NMHC	NMOC
0-10	2	5 0-2	1 0-50	5	0
10-20	5	19 2-4	27 50-100	20	6
20-30	16	18 4- 6	12 100-150	10	22
30-40	10	8 6-8	4 150-200	4	13
40-50	9	3 8-10	6 200-250	2	10
50-60	9	0 10-12	5 250-300	0	2
60-70	0	1 12-14	0 300-350	1	3
70-80	1	1 14-16	0 350-400	0	0
80-90	0	0 16-18	0 400-450	0	1
90-100	1	0 18-20	1 450-500	0	0
>100	2	1 >20	0 >500	0	0
Total	55	56 Total	56 Total	42	57

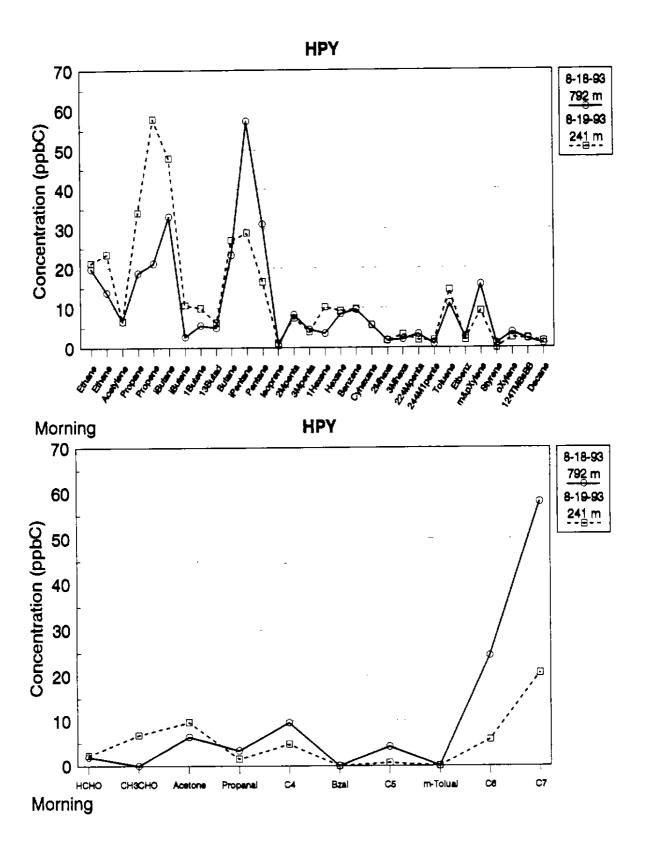
LIST OF SUSPECT AND INVALID VOC SAMPLES COLLECTED BY THE AIRCARFT

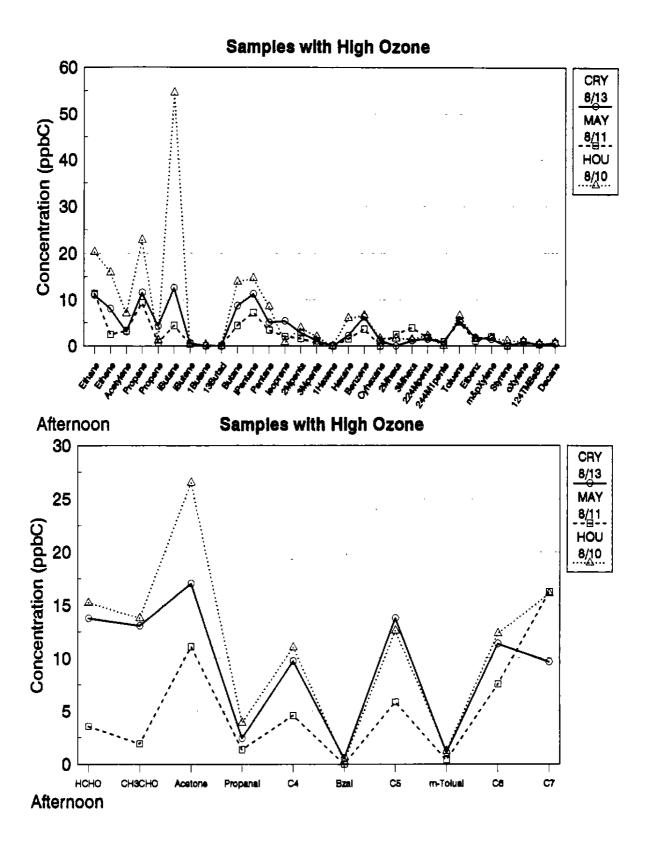

CAN	DATE	Location	RTime 1 altavg	,	VOC_Comments	RValid	CValid	Carby_Comments
MS-001	02-Aug-93	HUM	08:13:00	235	_	i	V	
MS-007	02-Aug-93	CAN	08:35:00	253		1	v	
MS-010	01-Aug-93	BMT	12:59:00	157		1	V	
MS-014	10-Aug-93	BTR	09:18:00 2	229		V	S	High total
MS-026	01-Aug-93	SSP	07:19:00 2	259		V	S	Don't agree with this match/high c5 carby
MS-028	01-Aug-93	GLS	08:04:00 1	162		V	S	High acetone, high total
MS-031	10-Aug-93	SSP		259 I	High toluene and ethene	S	v	
MS-040	10-Aug-93	HOU		168 t	high toluene	S	v	
MS-049	10-Aug-93	HOU			high butane	S	S	most likely 389, but was read and recorded as 369/high total
MS-054	31-Jul-93	HIP				S	v	
MS-066	31-Jul-93	BTR			Low toluene	S	v	
		CRY	*****	183	LOW TOTALIA	v	S	High C6, high total
MS-083	11-Aug-93				A book allows Income	S	v	
MS-084	11-Aug-93	HOU			high ethene, isoprene		v	
MS-091	11-Aug-93	CAN			high propene	S	v	
MS-093	11-Aug-93	COC			high toluene	S		High CE analysis
MS-102	19-Aug-93	SSP		183		V	S	High C5 carby
MS-106	19-Aug-93	COC		183		V	S	High C5 carby
MS-119	24-Aug-93	HUM			high ethene	S	V	
MS-124	24-Aug-93	OW5			high unide	S	V	
SPO E-3	24-Aug-93			107		Ī	V	
SPO E-4	24-Aug-93			305		I	V	
TX-001	01-Aug-93	T78		195		V	S	Suspect match of data
TX-002	01-Aug-93	T78			high propene (looks contaminated)		V	
TX-013	31-Jul-93	BMT		183		1	V	
TX-020	28-Jul-93	HPY		192		V	S	appears to be ok match of data
TX-028	01-Aug-93	HOU			Low toluene	S	V	0 () 1 1 1
TX-031	09-Aug-93		*	191		V	S	Suspect data, double exposure?
TX-034	09-Aug-93	HPY		191		V	S	most likely 369 but was read and recorded as 389
TX-044	11-Aug-93		14:41:35	198		V	I	a a b cash dan
TX-049	12-Aug-93				high etbene	S	S	appears to be ok match of data
TX-050	12-Aug-93				high ethane	S	v	
TX-070	19-Aug-93			244		V	Ī	
TX-088	14-Aug-93			244		V	S	appears to be ok match of data
TX-093	16-Aug-93	HOU	07:28:50	241		V	I	
TX-094	15-Aug-93	HPY			High propene	S	V	
TX-098	14-Aug-93	HOU		3429			I	
TX-105	18-Aug-93	BMT		157		V	S	High C7 fraction, high total
TX-106	18-Aug-93	HOU	07:06:57 3	3429	contaminated	1	V	
TX-106	18-Aug-93	SPT	13:16:00	183	High 244m1pente	S	V	
TX-114	18-Aug-93	HPY	06:45:03	792		V	S	High C7, high total
TX-121	19-Aug-93		12:54:16 3	3429	high olefins	S	v	
TX-121	18-Aug-93			3658		v	1	
TX-124	13-Aug-93			210		i	i	
	13-Aug-93 13-Aug-93				high ethene	s	v	
TX-130	_				man tractic	v	S	most likely 396, but reported as 376
TX-131	12-Aug-93			3429		•	3	those lineit 250, but reported as 270
TX-136	13-Aug-93			3429	171-t- 4-1		-	
TX-137	12-Aug-93	T78	12:25:50	EGO	High toluene	S	V	

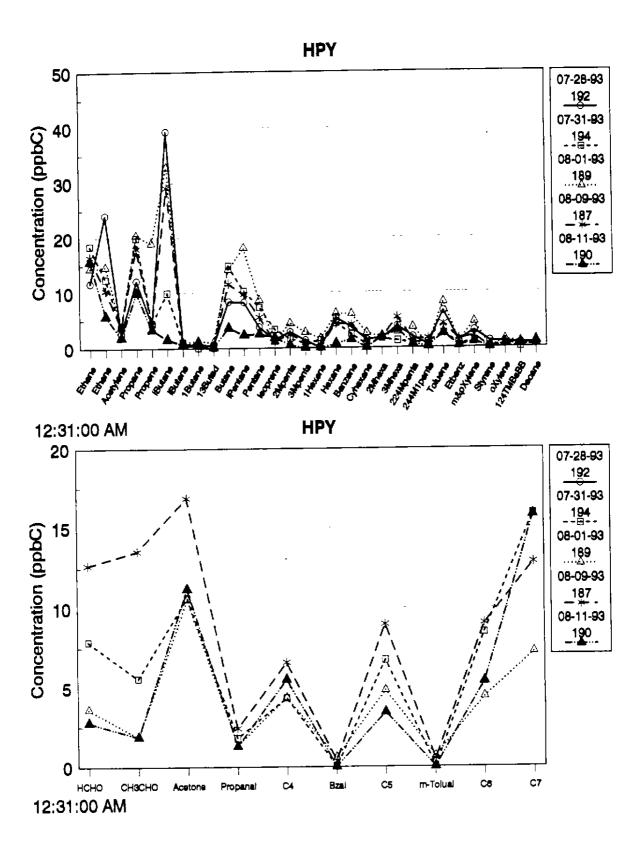
LIST OF SUSPECT AND INVALID VOC SAMPLES COLLECTED BY THE AIRCARFT

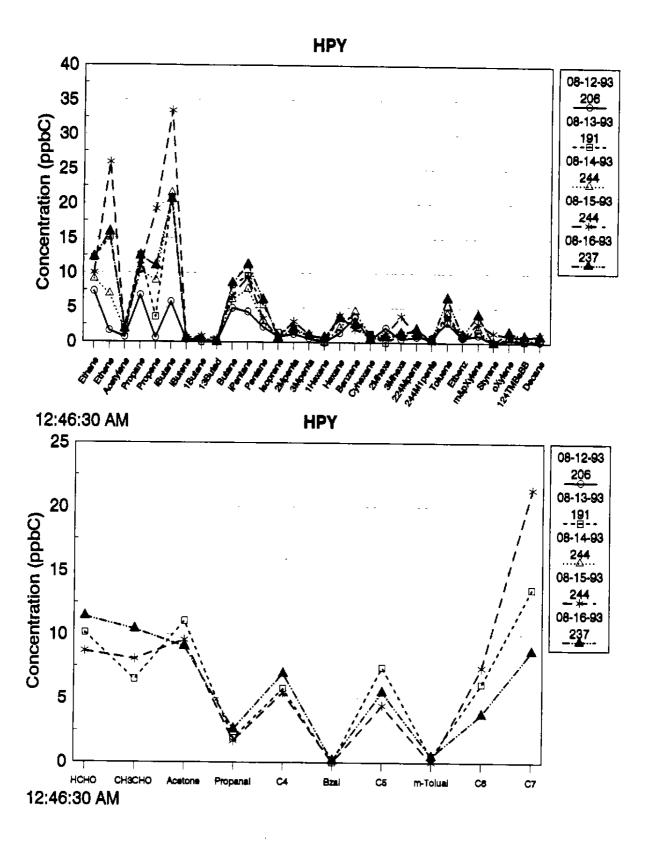

CAN	DATE	Location	RTime_1_altavg	VOC Comments	RValid	CValid	Carby Comments
TX-146	12-Aug-93	GLS	07:08:35	241	1	V	errol_committees
TX-154	26-Aug-93	BMT	06:09:35	259 High 224tmp,22dmhept	S	v	
TX-158	26-Aug-93	HOU	07:33:51	168 high propene	S	v	
TX-165	25-Aug-93	MAY	08:23:45	244	ī	v	
TX-179	25-Aug-93	CRY	06:47:55	259	Ī	v	
TX-181	20-Aug-93	SPT	13:42:17	274	v	•	

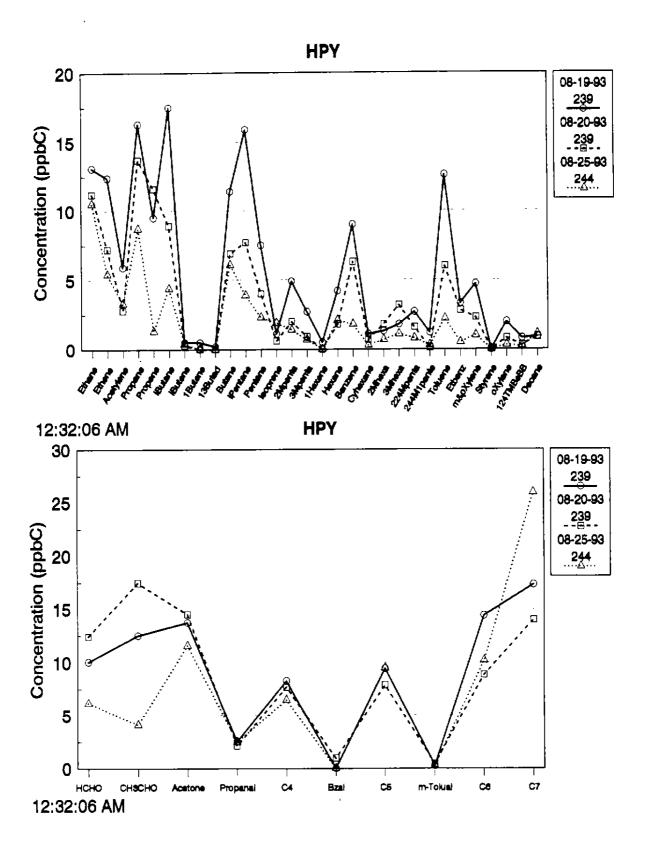

hpyam1.drw 1-19-95

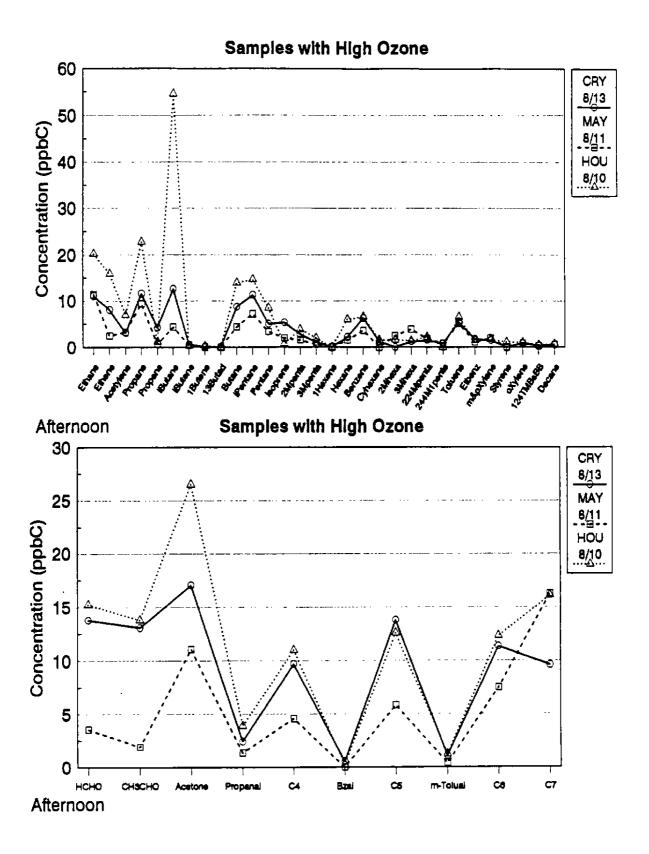

hpyam2.drw 1-19-95


hpyam3.drw 1-19-95

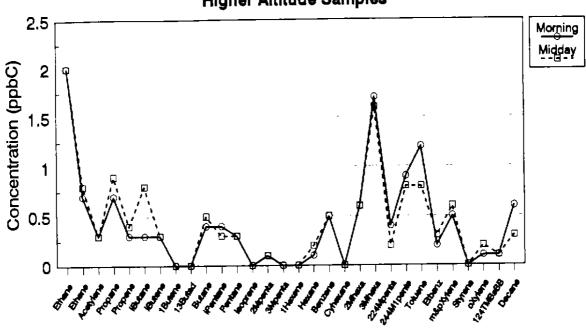

hpyam4.drw 1-19-95


hpyam5.drw 1-19**-**95

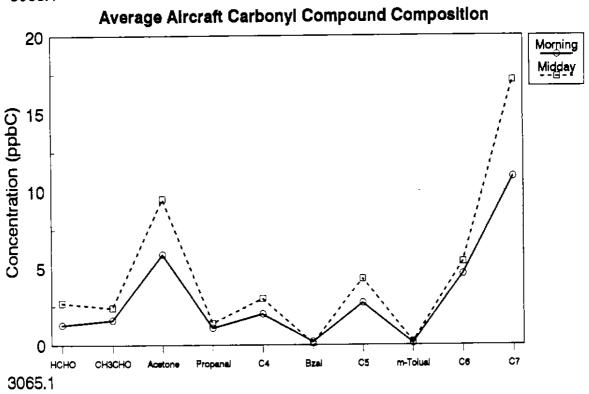

hpyam6.drw 1-19-95


hpypm1.drw 1-19-95

hpypm2.drw 1-19-95



hpypm3.drw 1-19-95

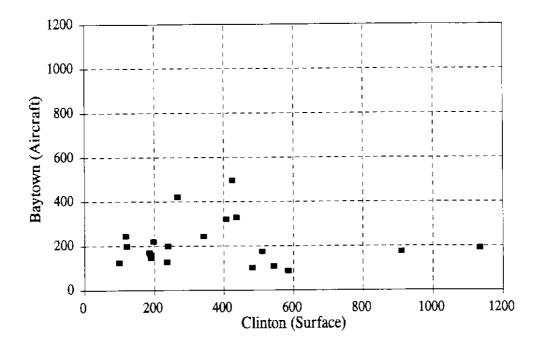


hpyam6.drw f-19-95

Average Aircraft Hydrocarbon Composition Higher Aititude Samples

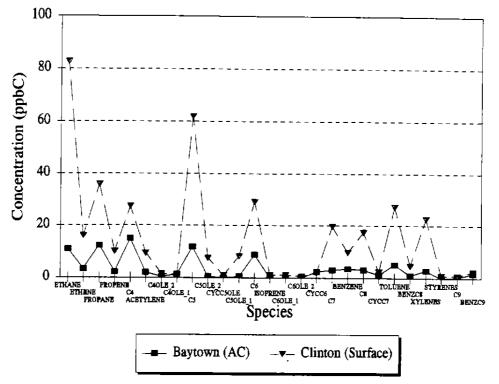
3065.1

achavg.drw 2-24-95

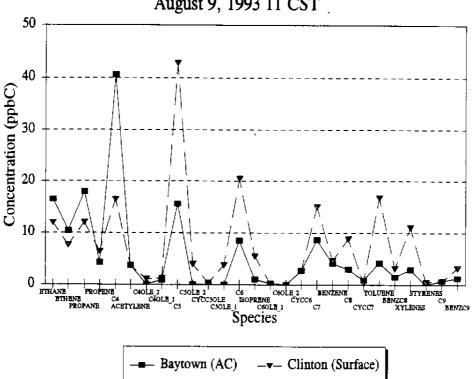

APPENDIX I

COMPARISONS OF SURFACE AND AIRCRAFT HYDROCARBON AND CARBONYL COMPOUND DATA

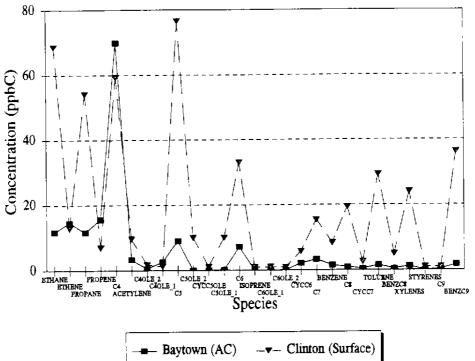
Many plots and tables were prepared for the analyses which were not included in the main report. Appendix B included a table listing the target species reported by Biospherics for the surface and aircraft canisters. This appendix contains figures comparing the surface and aircraft hydrocarbons and carbonyl compound data including the following:


- Line plots of hydrocarbon species and species group concentrations measured at the surface at Clinton and by aircraft near Baytown. Plots for all matching samples collected during August 1993.
- Line plots of abundant hydrocarbon species and carbonyl compounds measured at the surface at Gilchrist and by aircraft near High Island Platform. Plots are provided for both the concentration and the weight percent of NMOC.
- Line plots of abundant hydrocarbon species and carbonyl compounds measured at the surface of Cocodrie and by aircraft near Ship Shoal Platform. Plots are provided for both the concentration and the weight percent of NMOC.

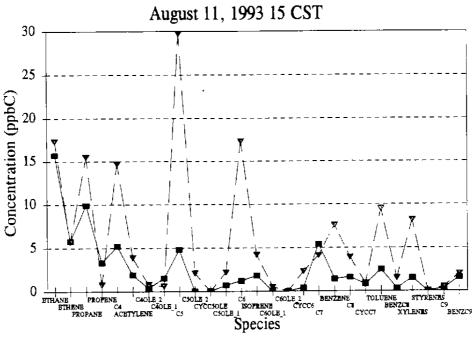
NMHC Concentration (ppbC) August, 1993


Aircraft - Surface NMHC Comp.

August 9, 1993 05 CST

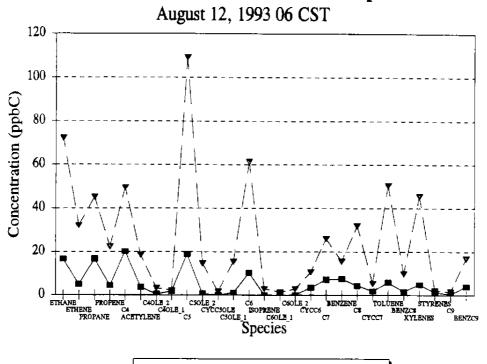

Aircraft - Surface NMHC Comp.

August 9, 1993 11 CST

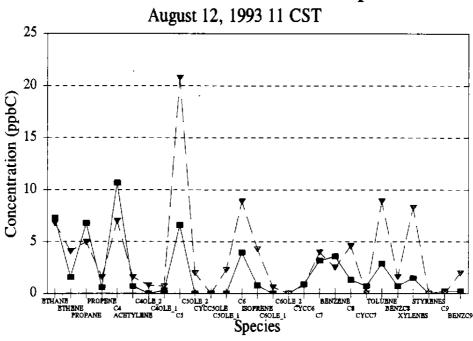


Aircraft - Surface NMHC Comp.

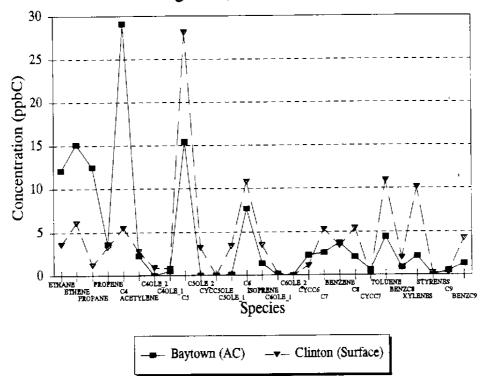
August 11, 1993 05 CST



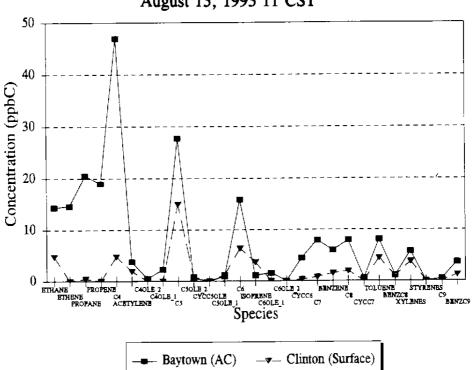
Aircraft - Surface NMHC Comp.


Baytown (AC) --- Clinton (Surface)

Aircraft - Surface NMHC Comp.

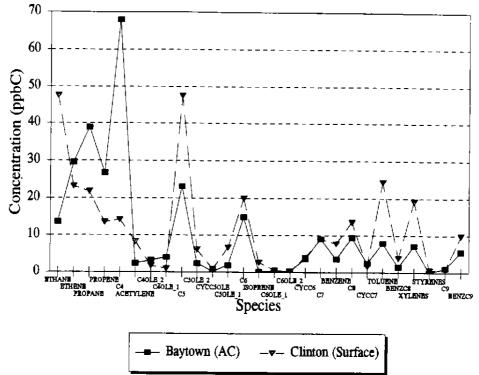

—— Baytown (AC) ——— Clinton (Surface)

Aircraft - Surface NMHC Comp.

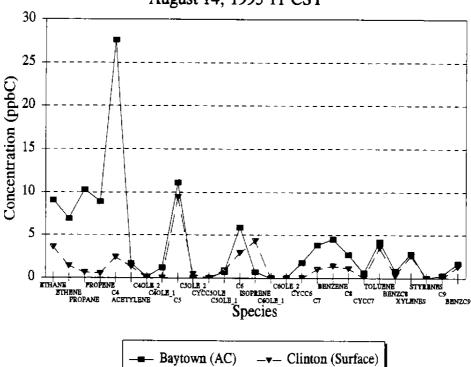


--- Baytown (AC) --- Clinton (Surface)

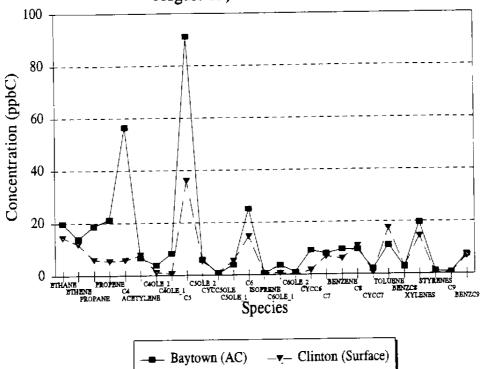
Aircraft - Surface NMHC Comp. August 13, 1993 06 CST



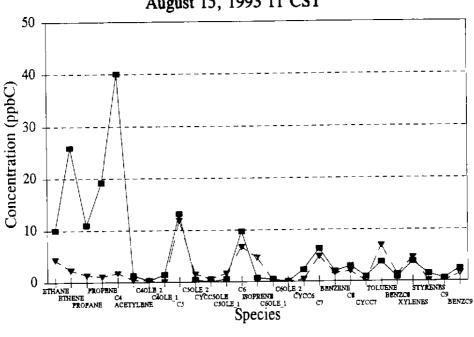
Aircraft - Surface NMHC Comp. August 13, 1993 11 CST


Aircraft - Surface NMHC Comp.

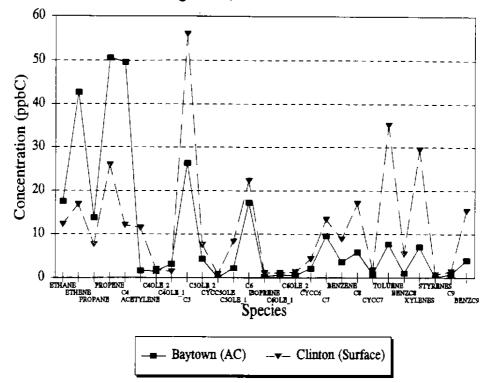
August 14, 1993 06 CST



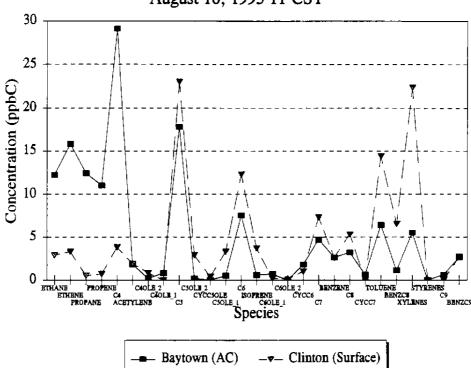
Aircraft - Surface NMHC Comp.


August 14, 1993 11 CST

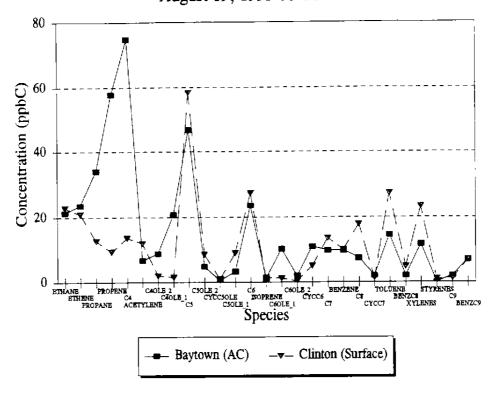
Aircraft - Surface NMHC August 15, 1993 05 CST


Aircraft - Surface NMHC Comp. August 15, 1993 11 CST

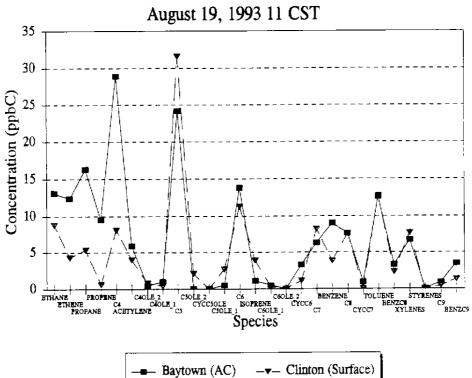
—— Baytown (AC) ——— Clinton (Surface)


Aircraft - Surface NMHC Comp.

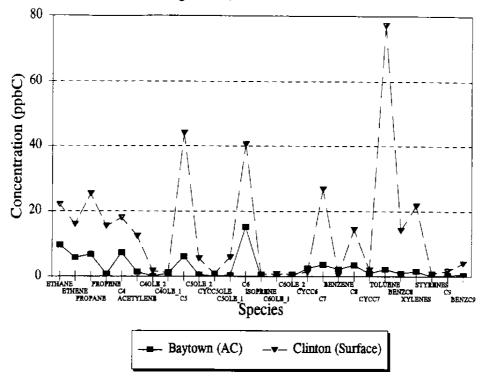
August 16, 1993 06 CST



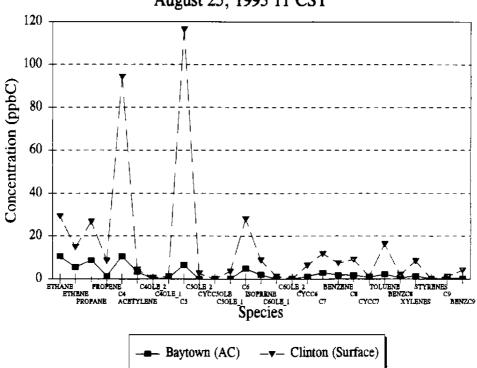
Aircraft - Surface NMHC Comp.


August 16, 1993 11 CST

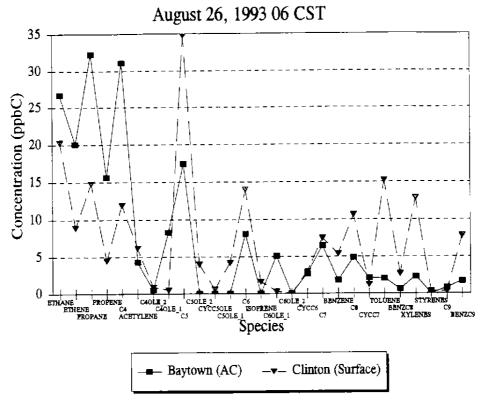
Aircraft - Surface NMHC August 19, 1993 06 CST

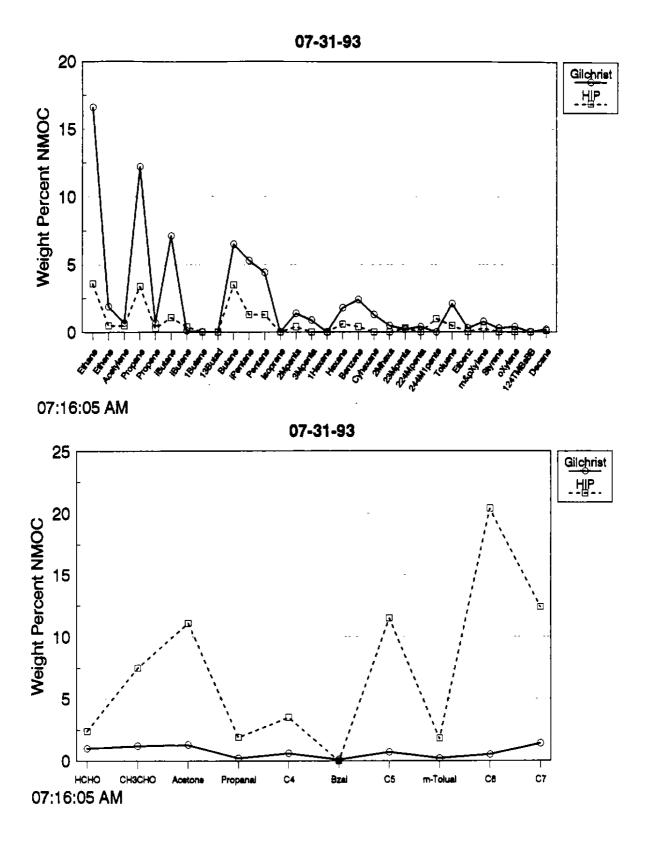


Aircraft - Surface NMHC

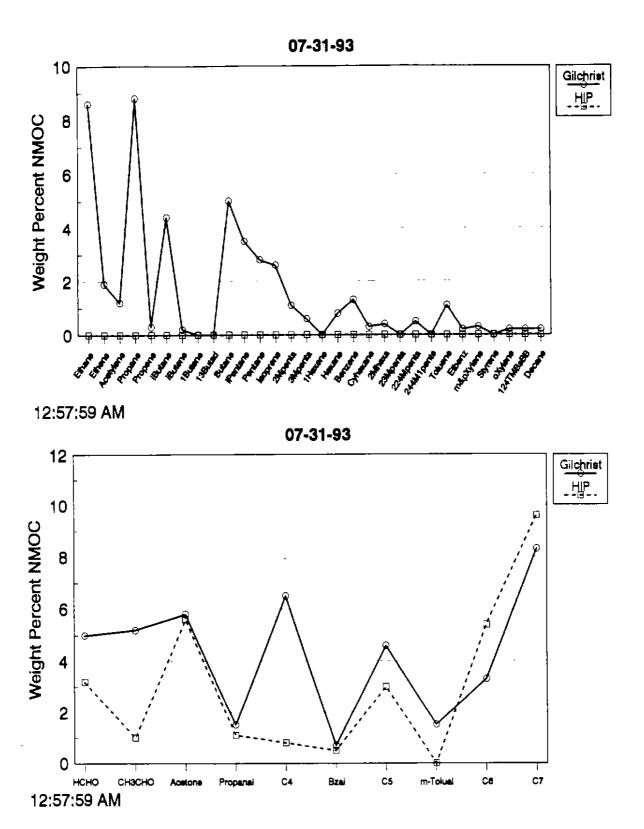


Aircraft - Surface NMHC Comp.

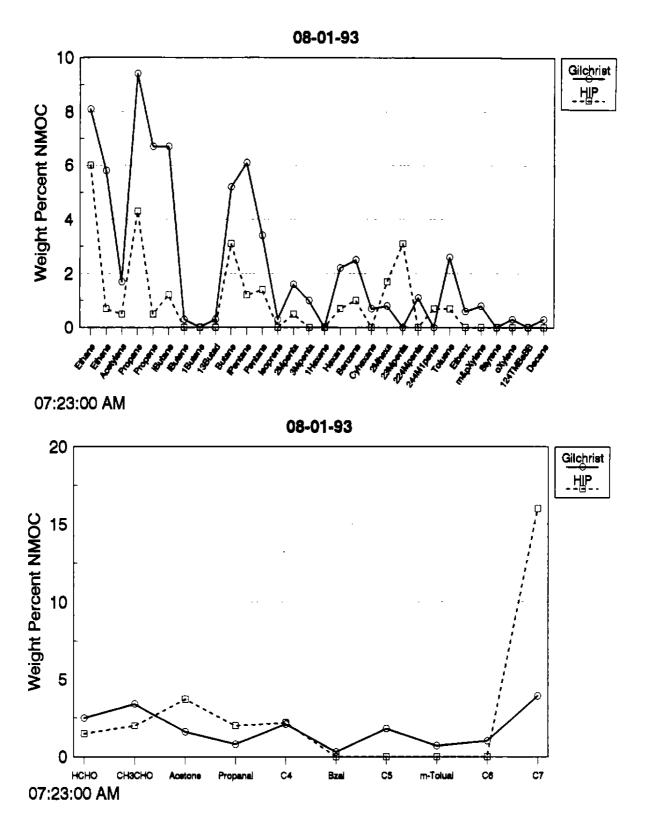

August 25, 1993 05 CST

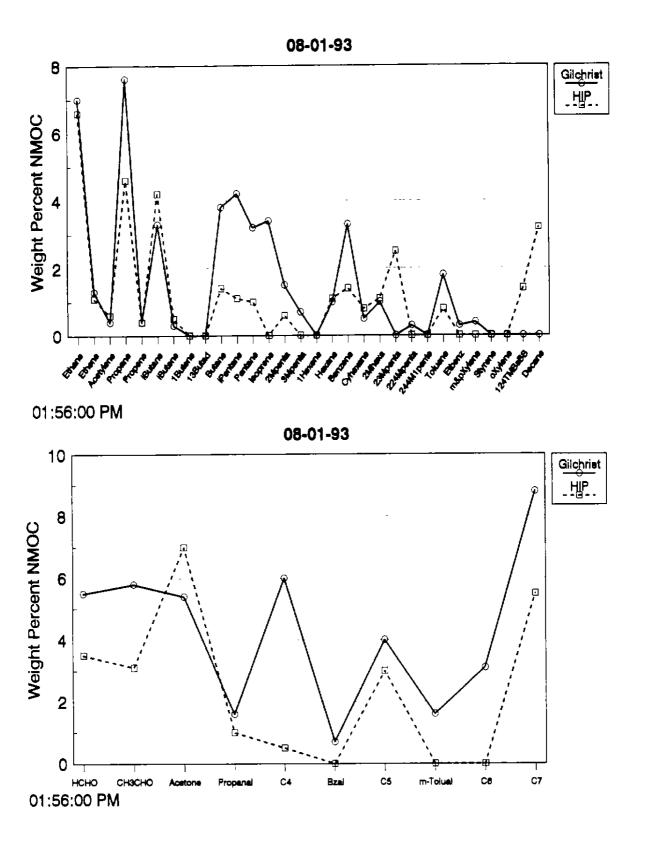


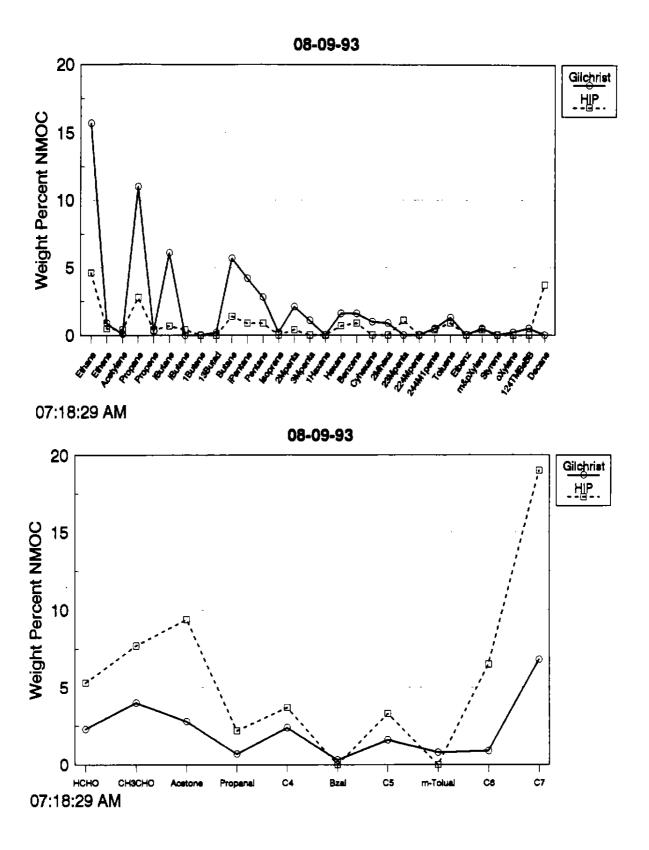
Aircraft - Surface NMHC Comp. August 25, 1993 11 CST

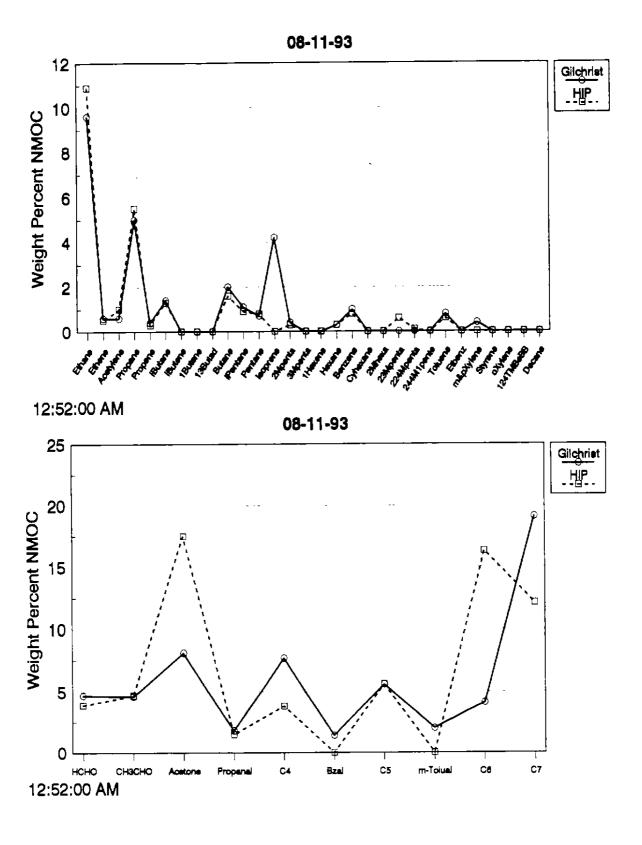


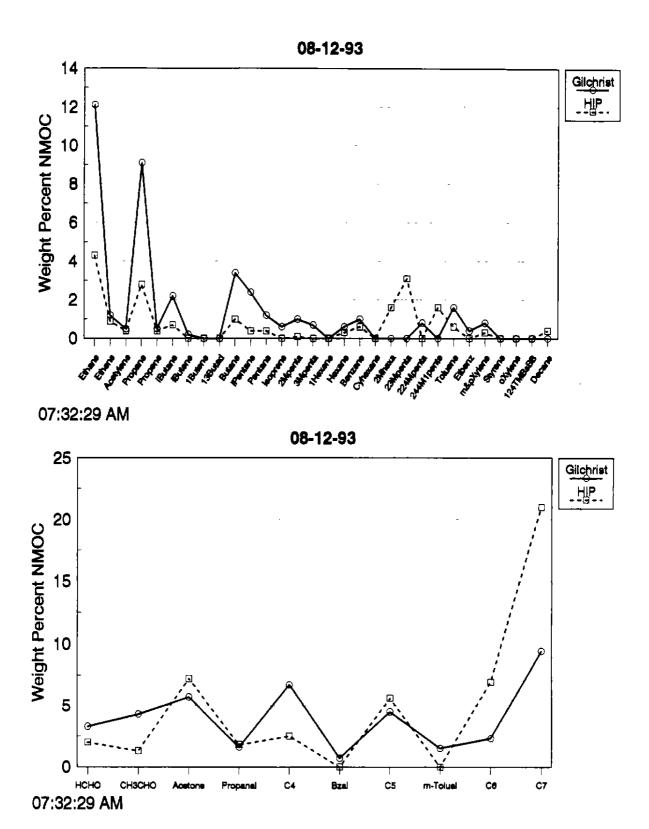
Aircraft - Surface NMHC Comp.

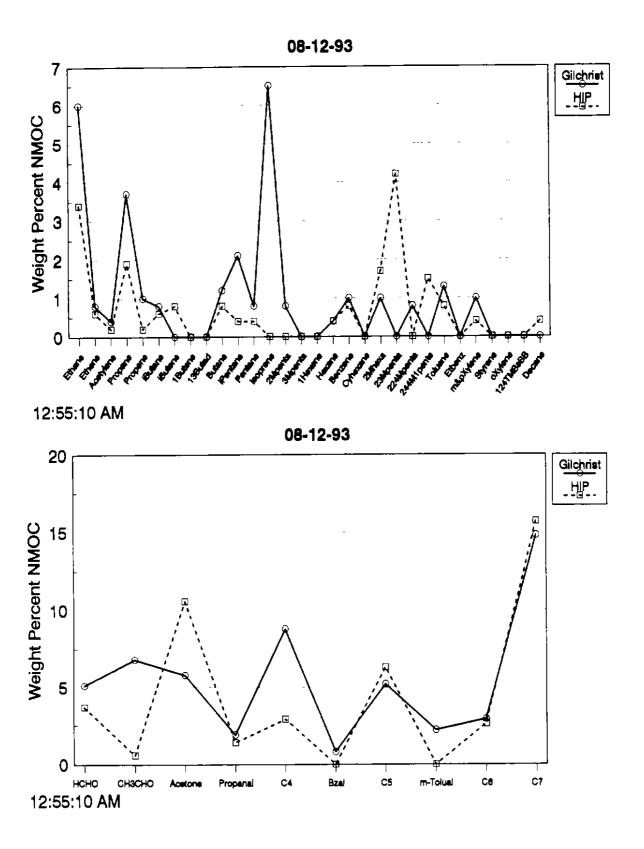


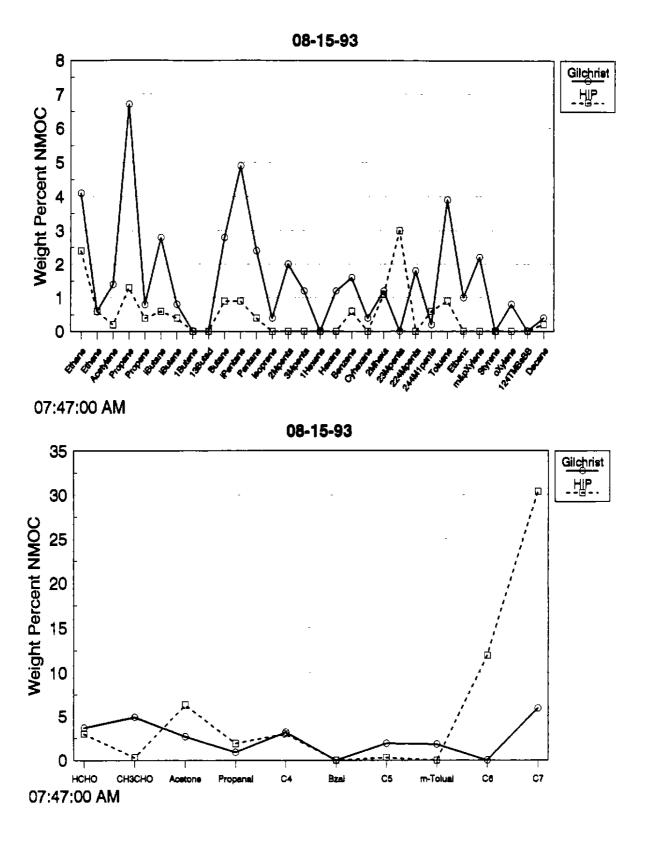

gilhipf1.drw 1-19-95

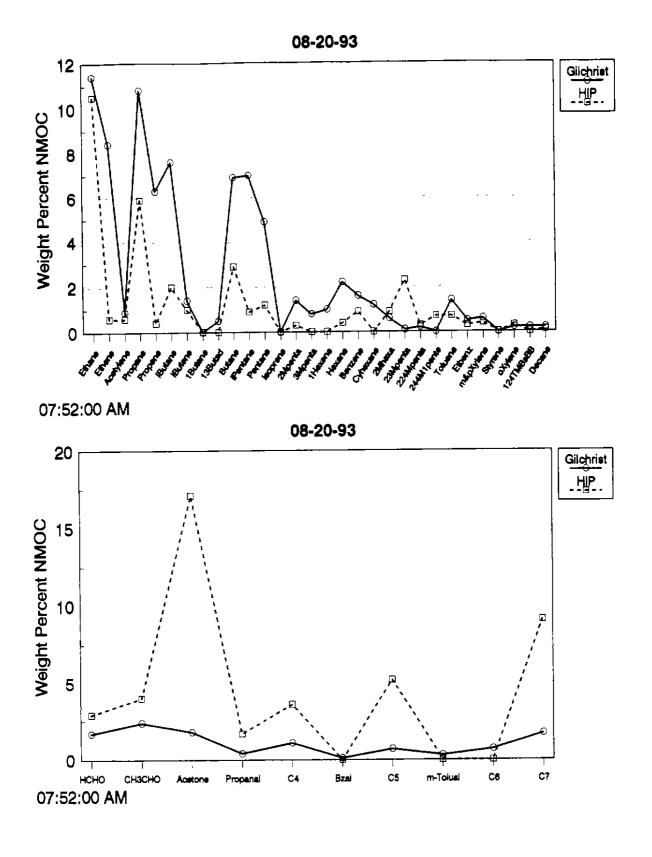

gilhipf2.drw 1-19-95

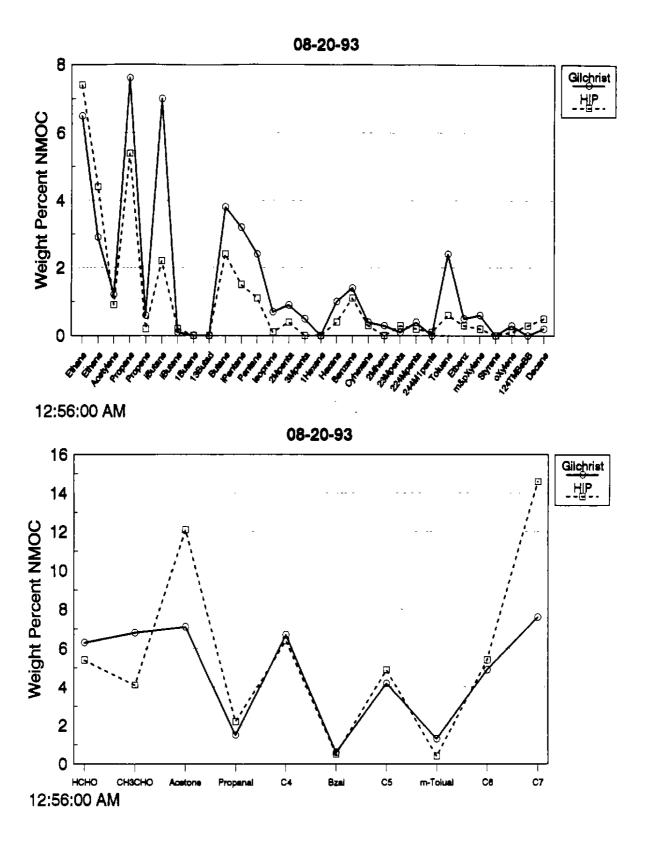

gilhipf3.drw 1-19-95

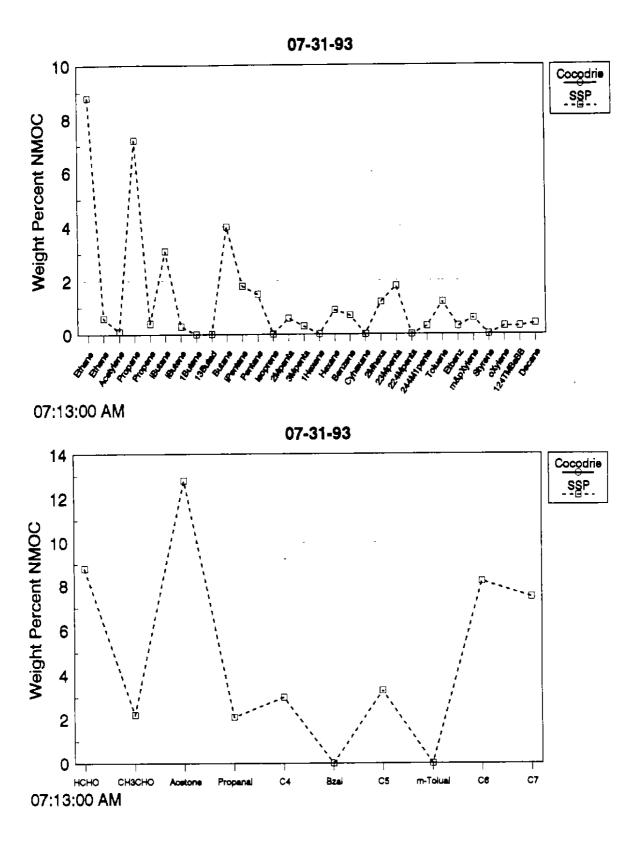

gilhipf4.drw 1-19-95

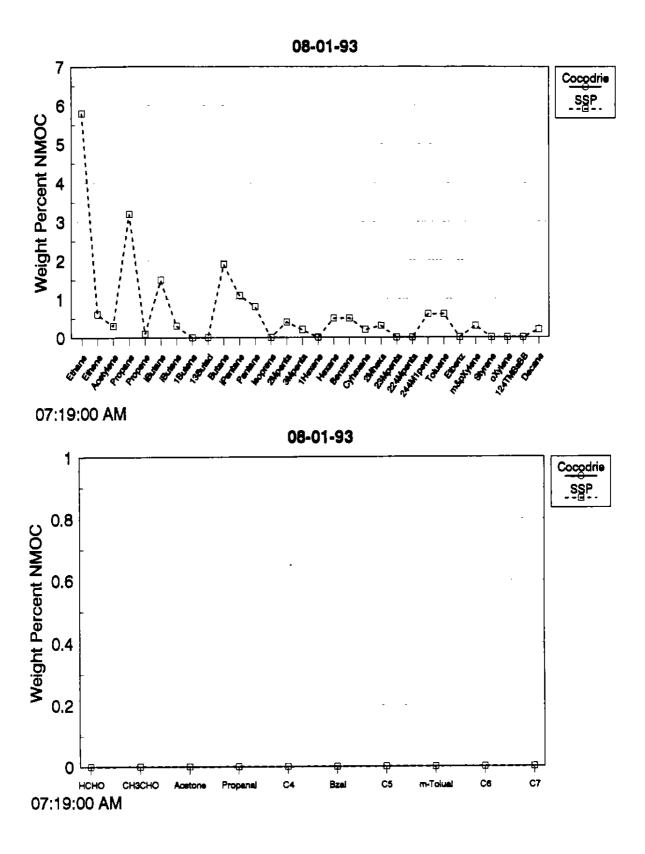

gilhipf5.drw 1-19-95

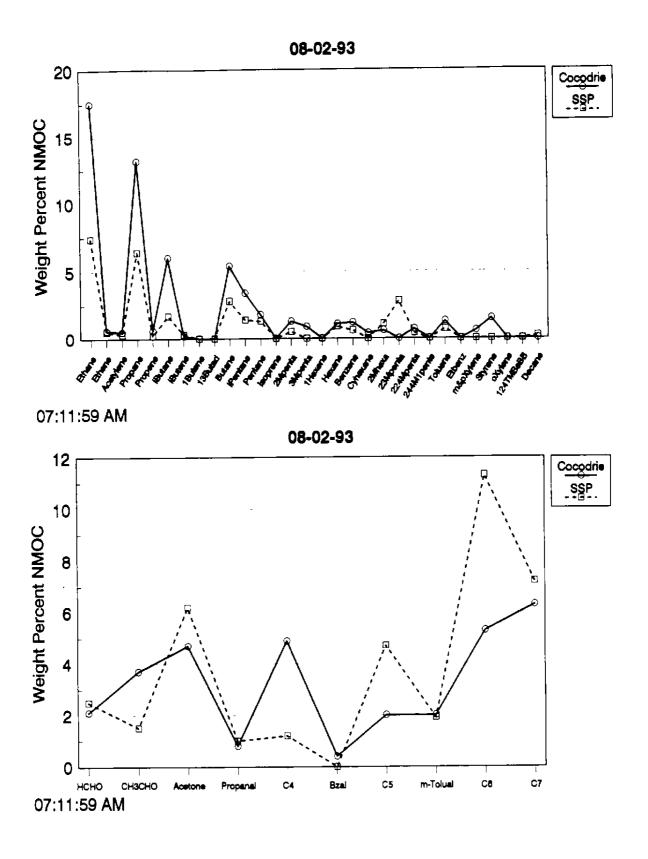

gilhipf6.drw 1-19-95

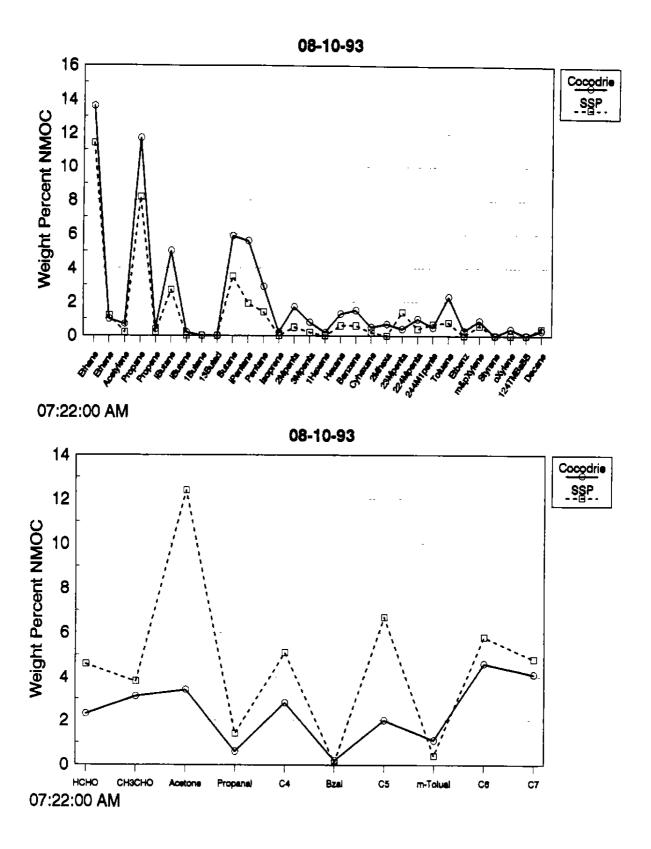

gilhipf7.drw 1-19-95

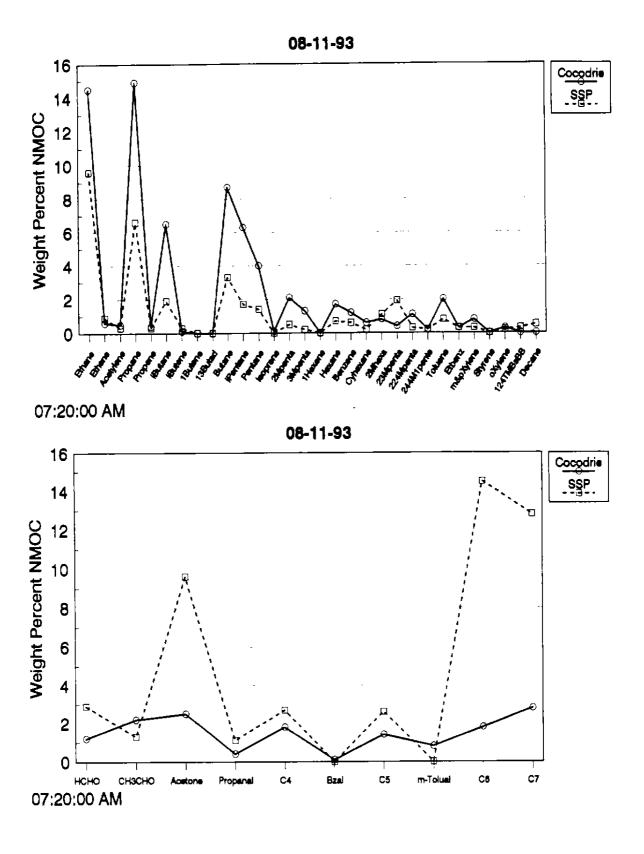

gilhipf8.drw 1-19-95

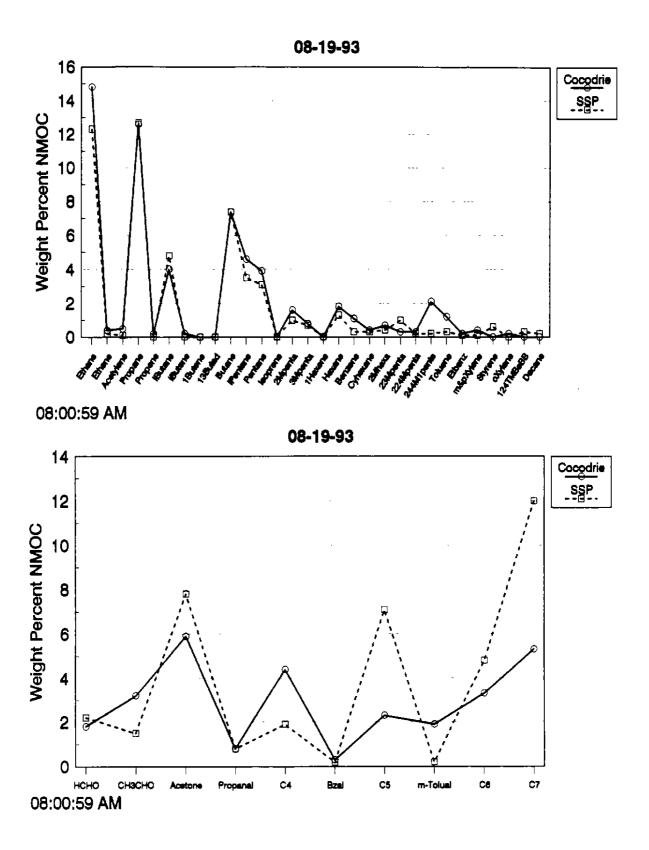

gilhipf9.drw 1-19-95

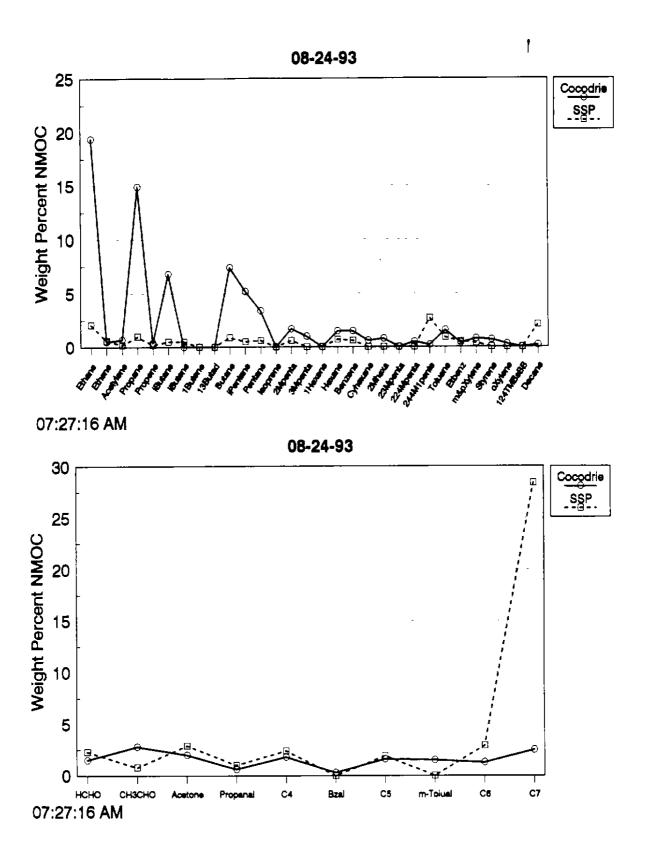

gilhpf10.drw 1-19-95

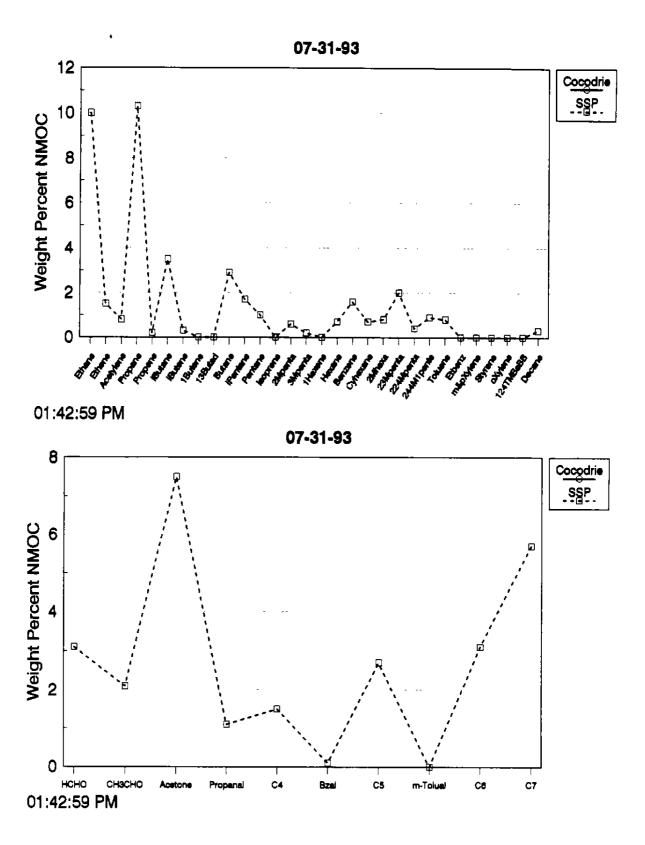

gilhpf11.drw 1-19-95

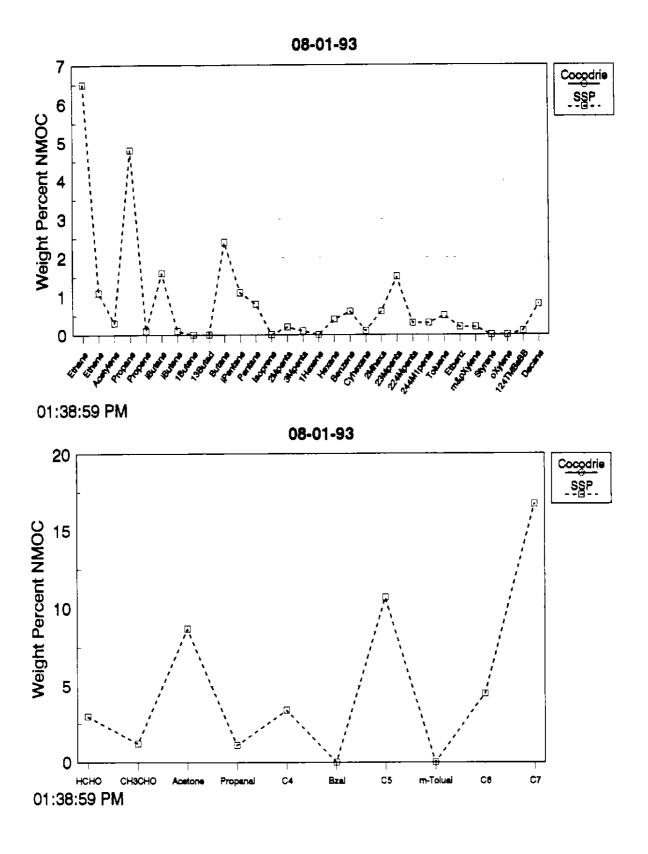

cocsspf1.drw 1-20-95

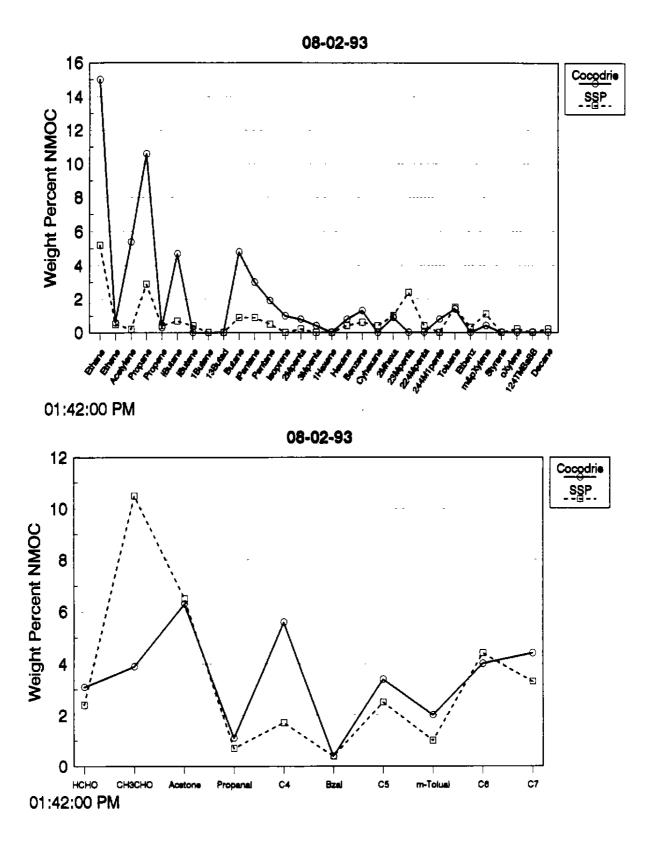

cocsspf2.drw 1-20-95

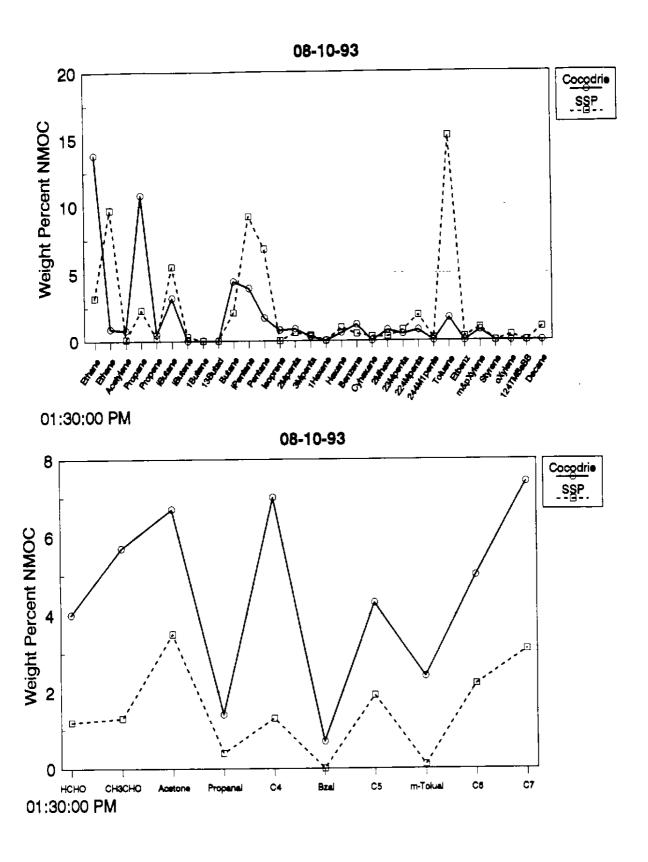

cocsspf3.drw 1-20-95

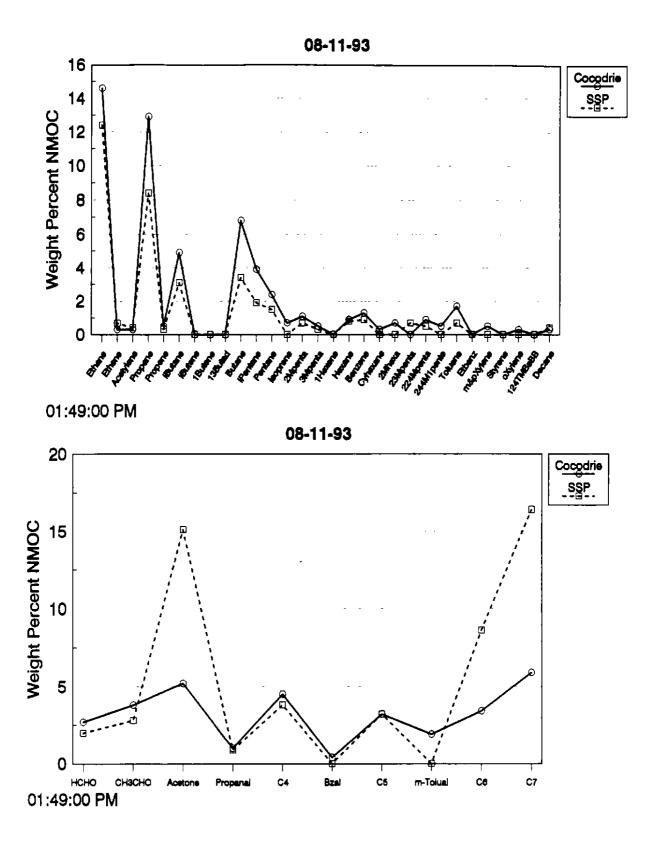

cocsspf4.drw 1-20-95

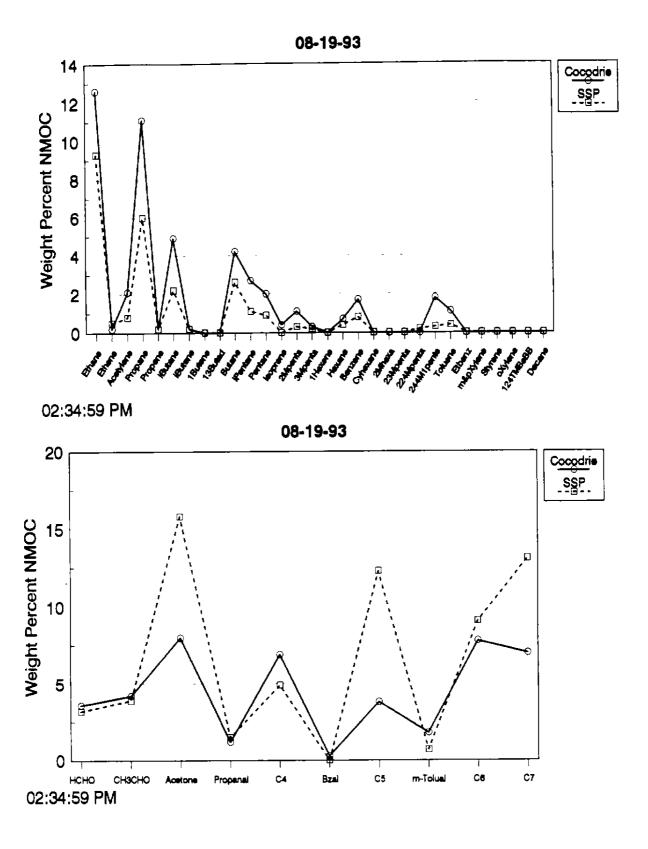

cocsspf5.drw 1-20-95

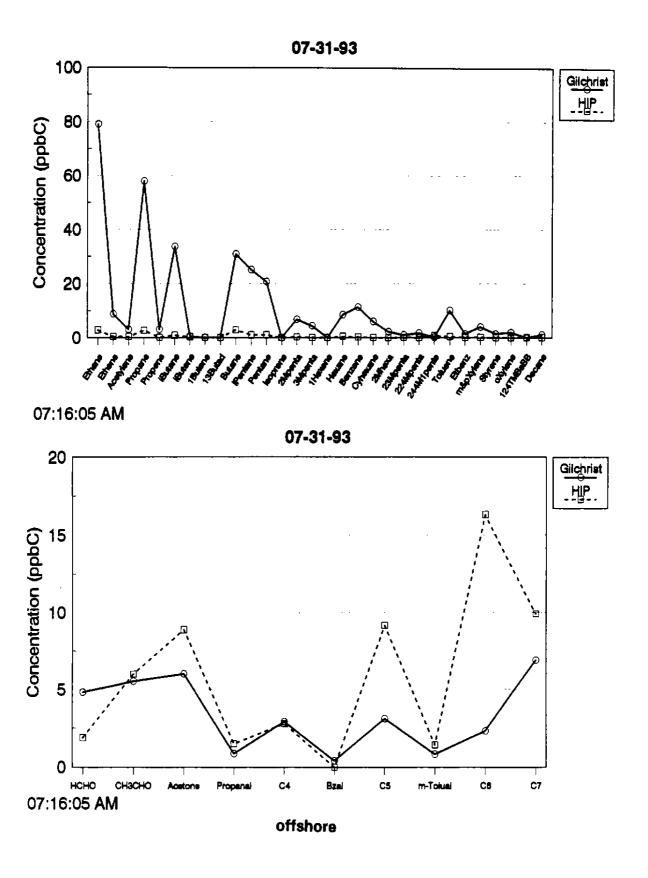

cocsspf6.drw 1-20-95

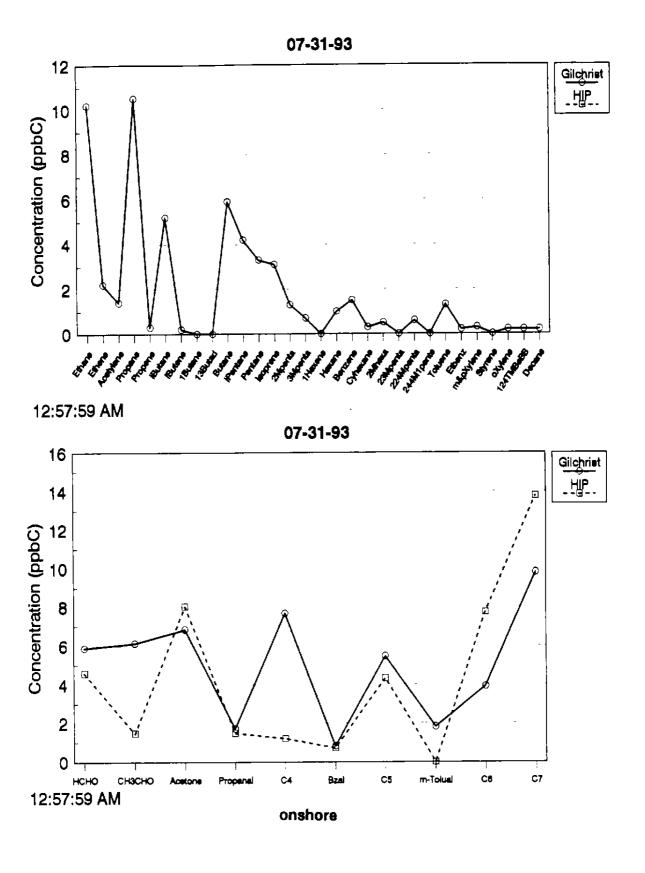

cocsspf7.drw 1-20-95

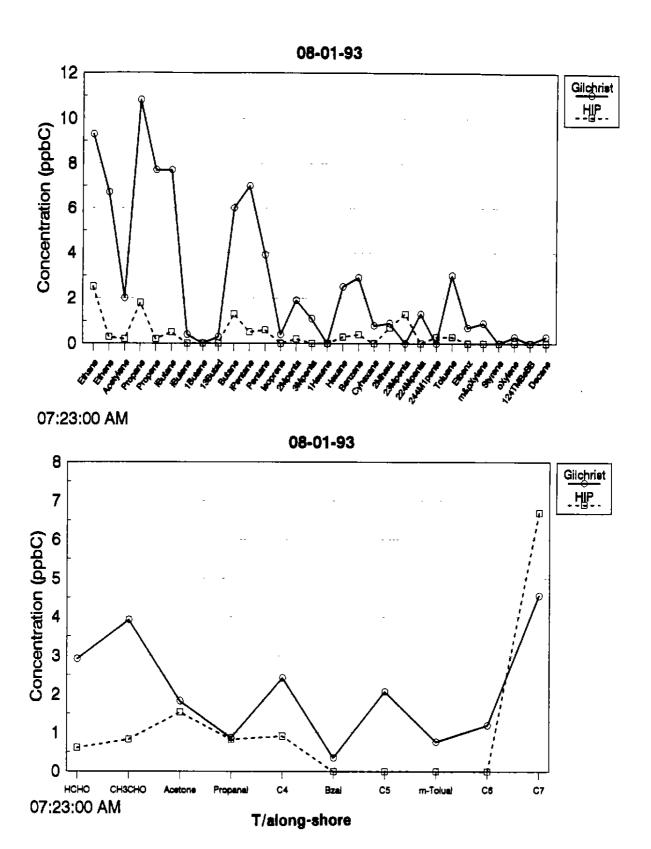

cocsspf8.drw 1-20-95

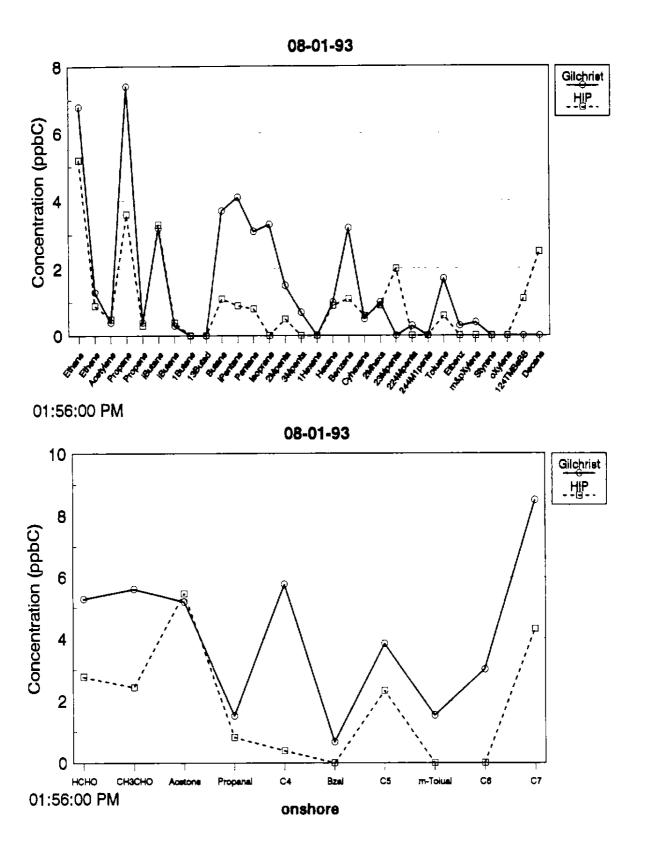

cocsspf9.drw 1-20-95

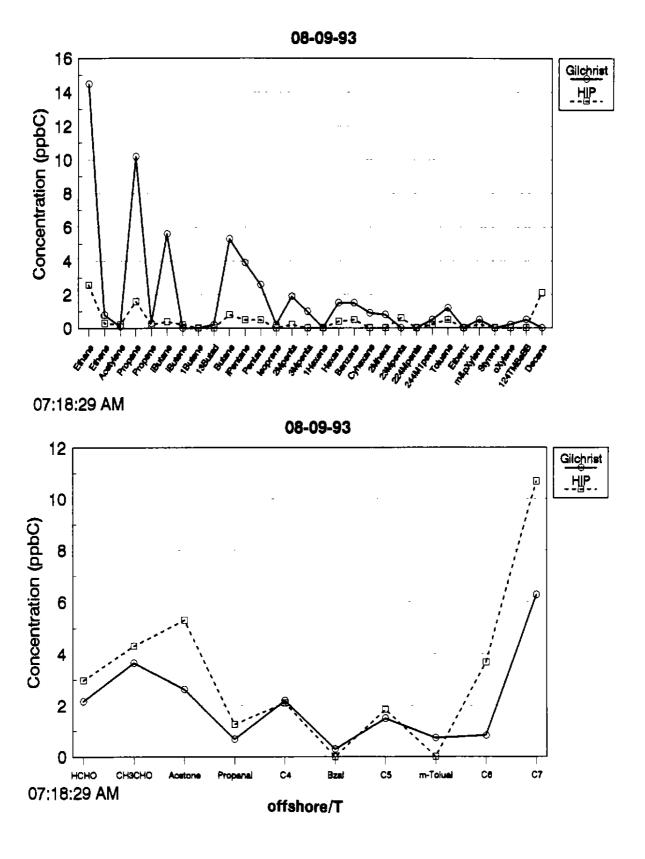

cocspf10.drw 1-20-95

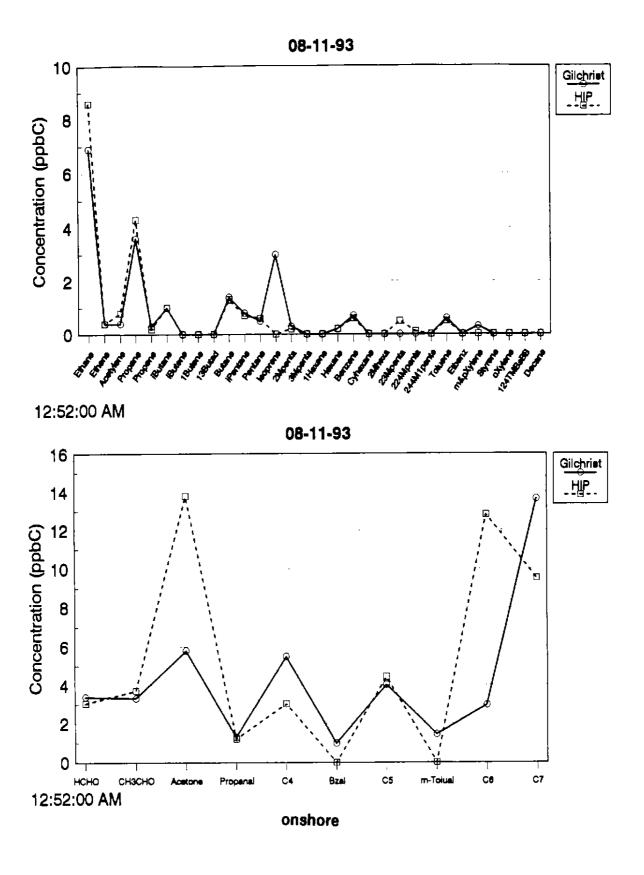

cocspf11.drw 1-20-95

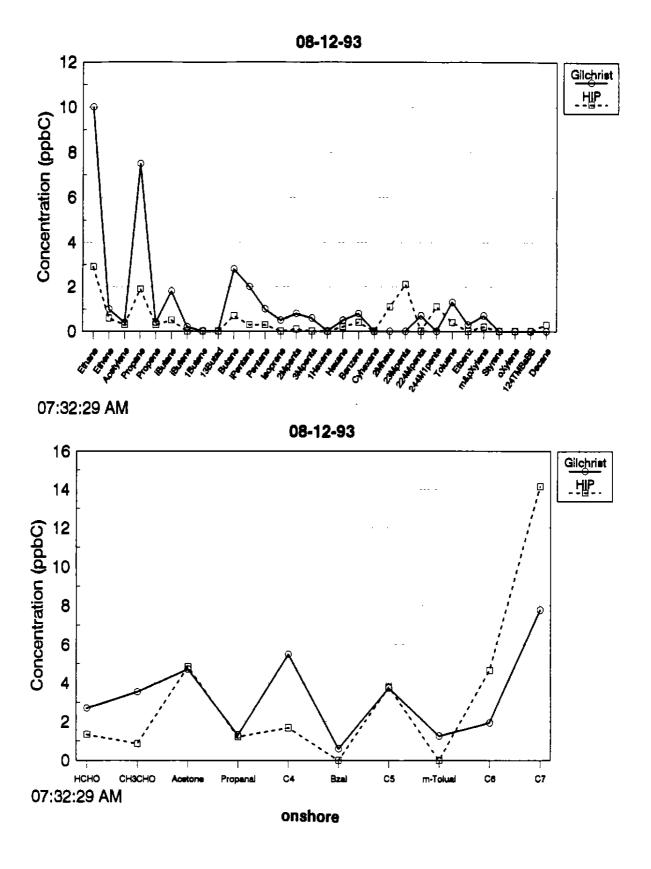

cocspf12.drw 1-20-95

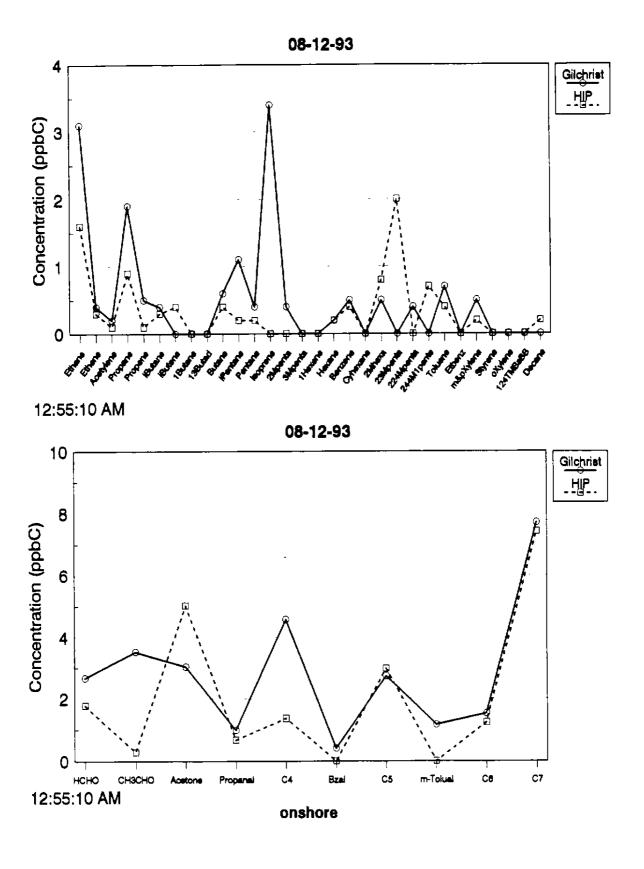

cocspf13.drw 1-20-95

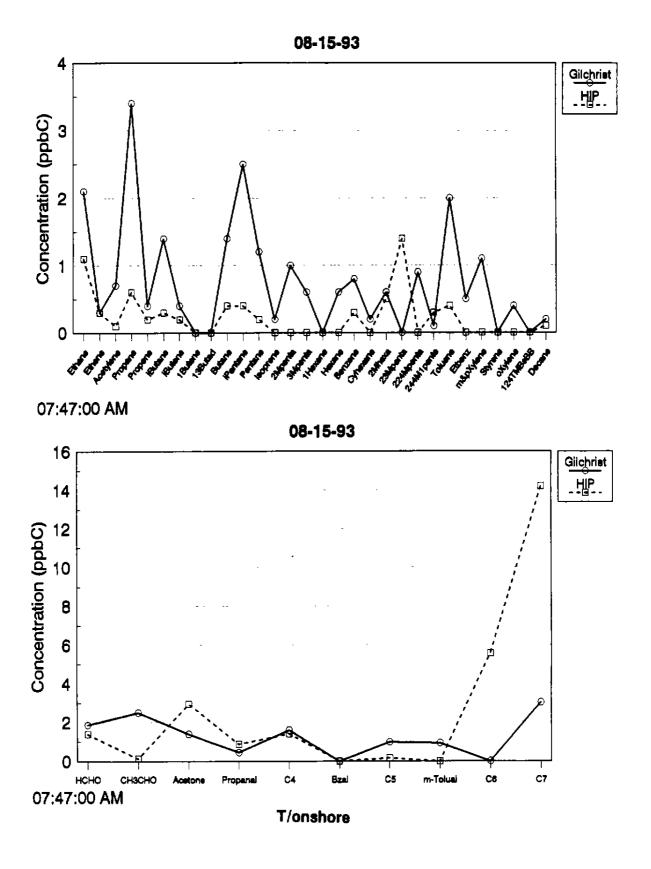

gilhip1.drw 1-19-95

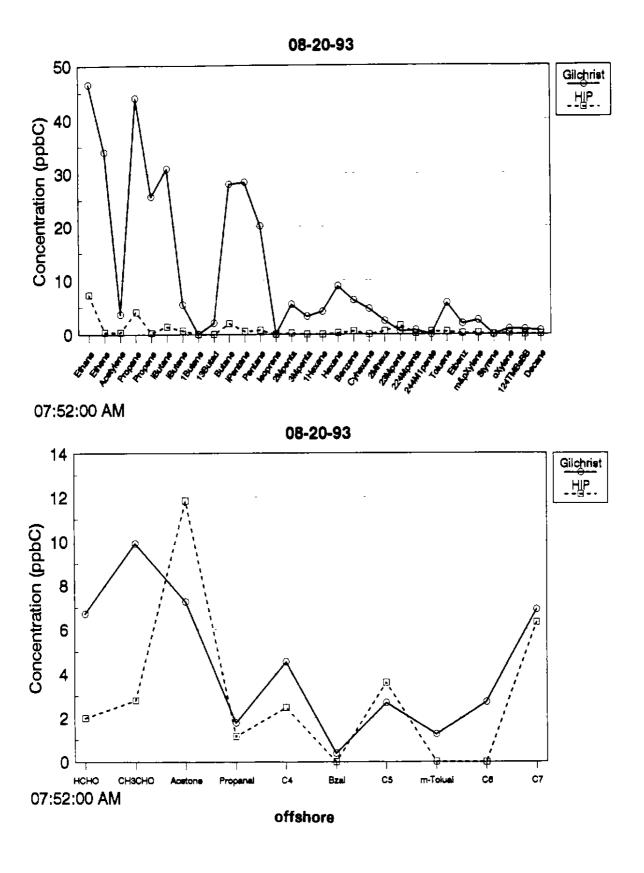

gilhip2.drw 1-19-95

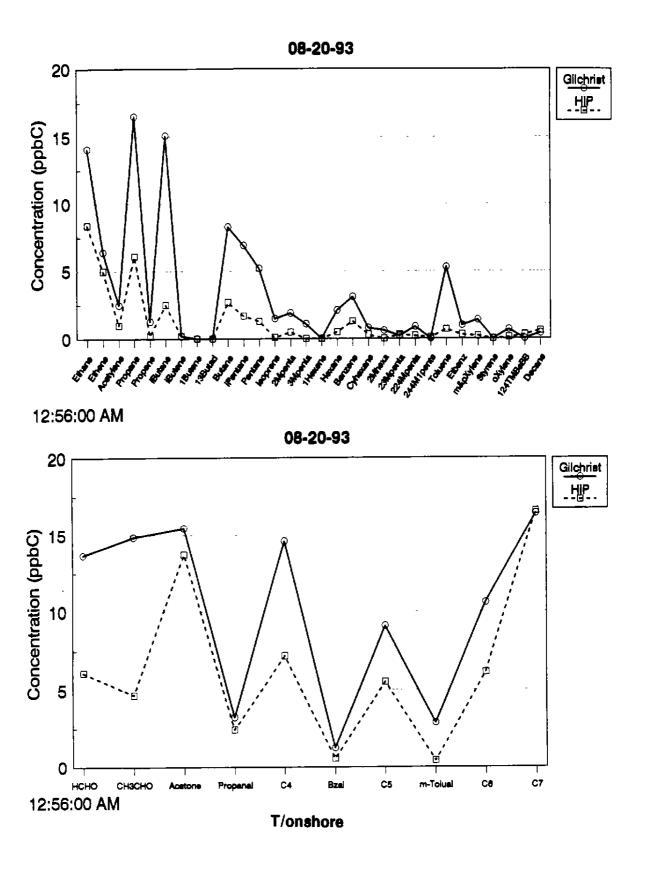

gilhip3.drw 1-19-95

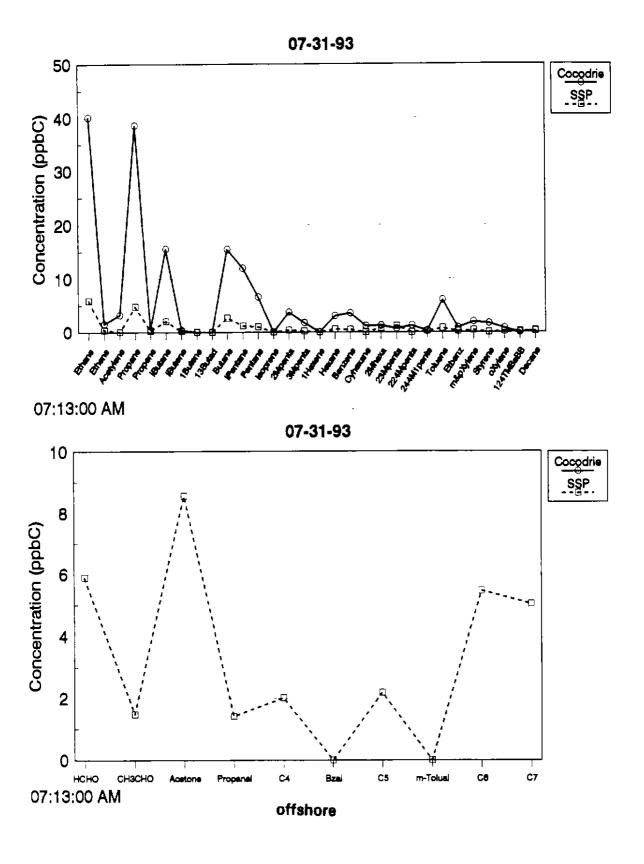

gilhip4.drw 1-19-95

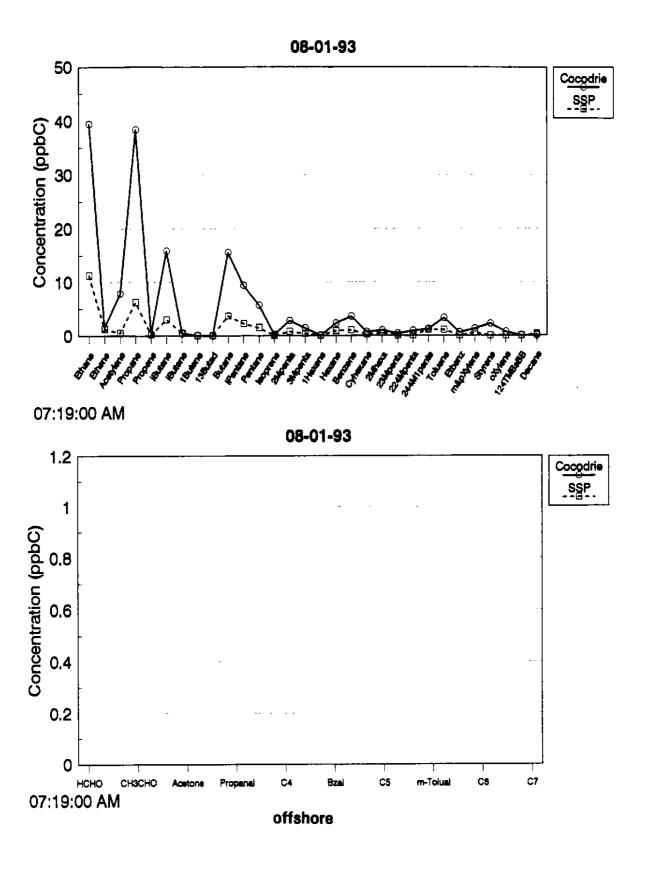

gilhip5.drw 1-19-95

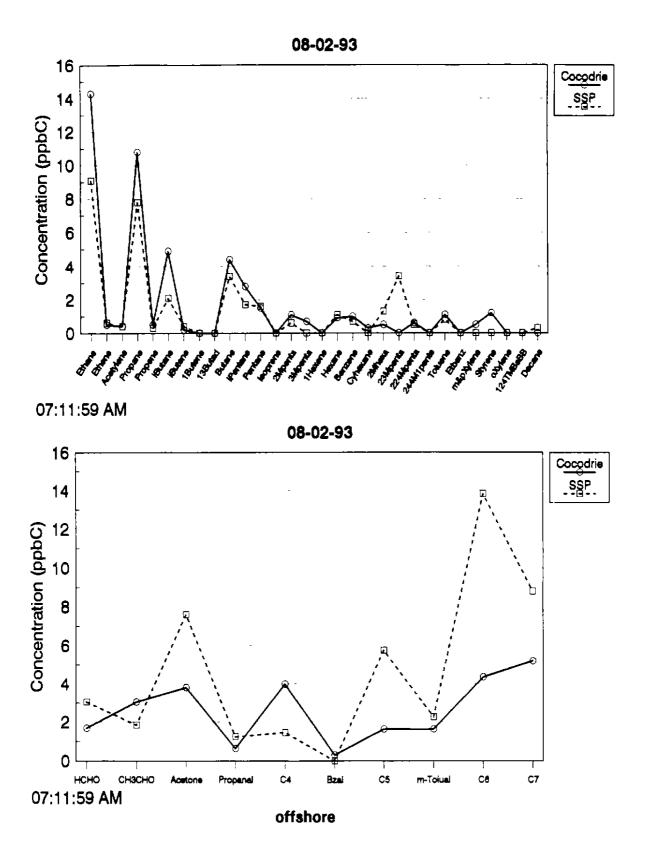

gilhip6.drw 1-19-95

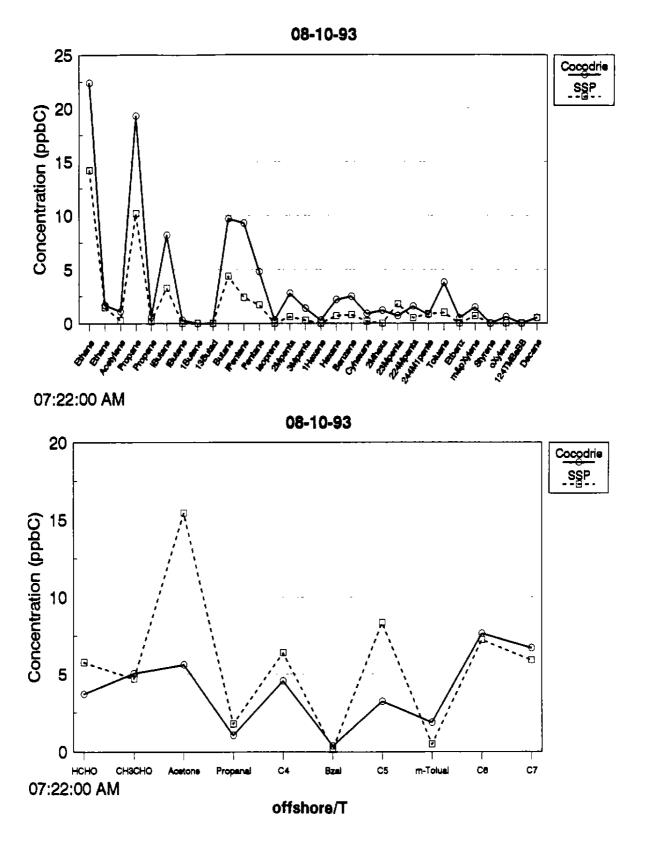

gilhip7.drw 1-19-95

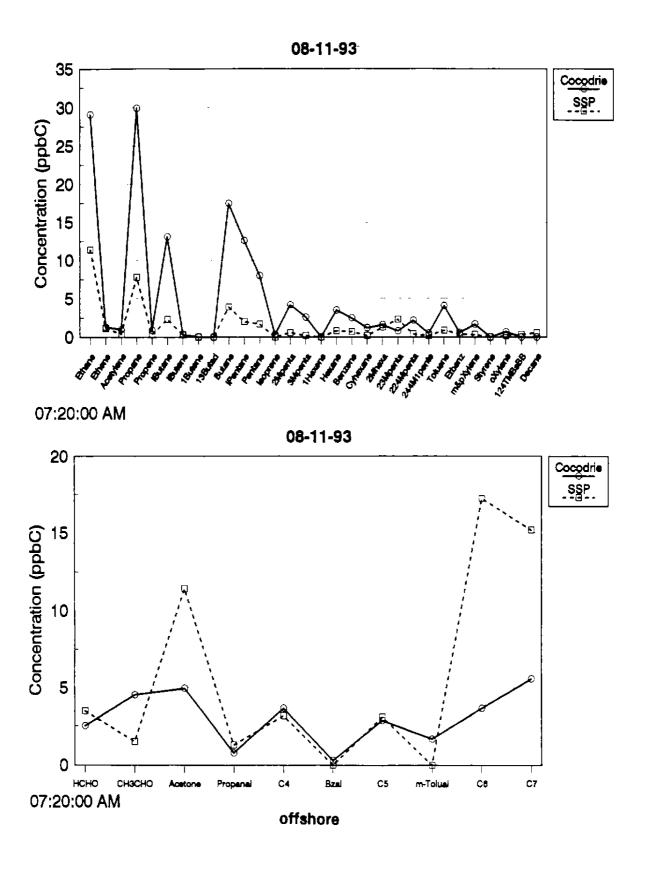

gilhip8.drw 1-19**-**95

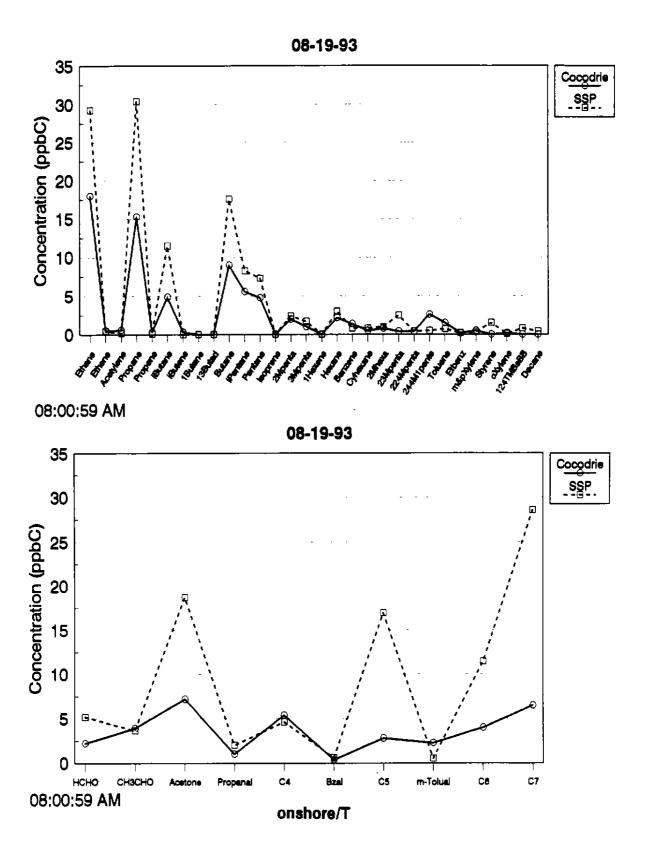

gilhip9.drw 1-19-95

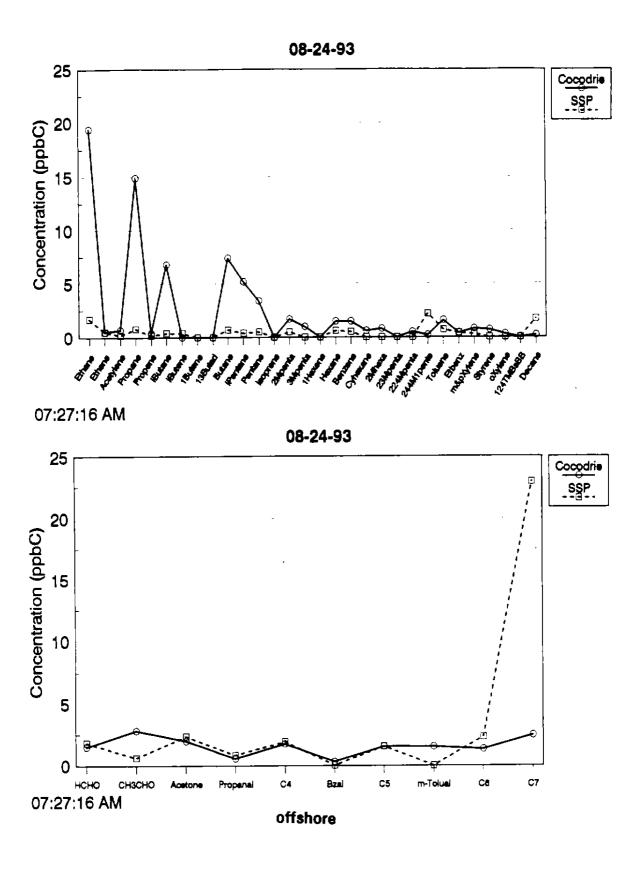

gilhip 10.drw 1-19-95

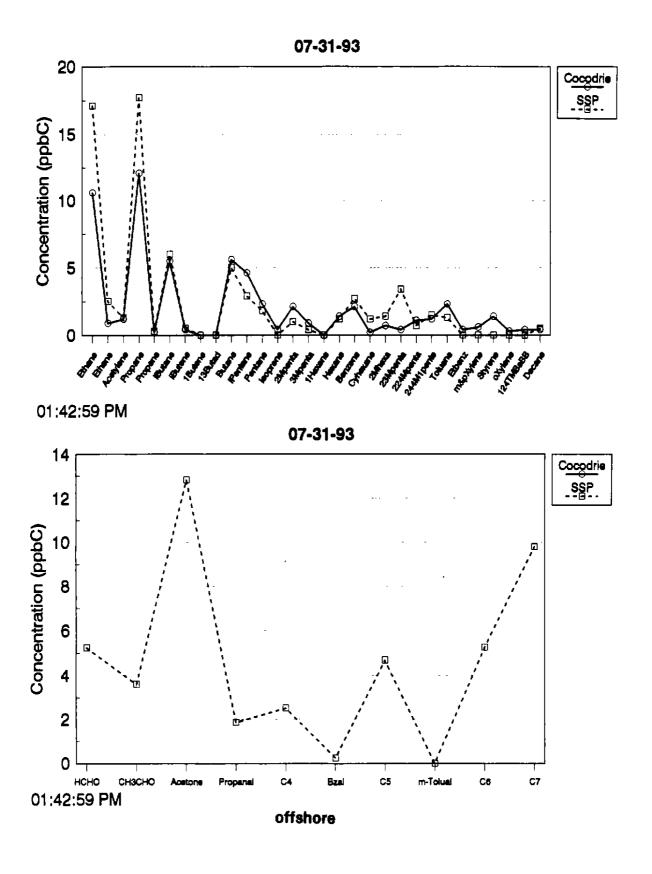

gilhip11.drw 1-19-95

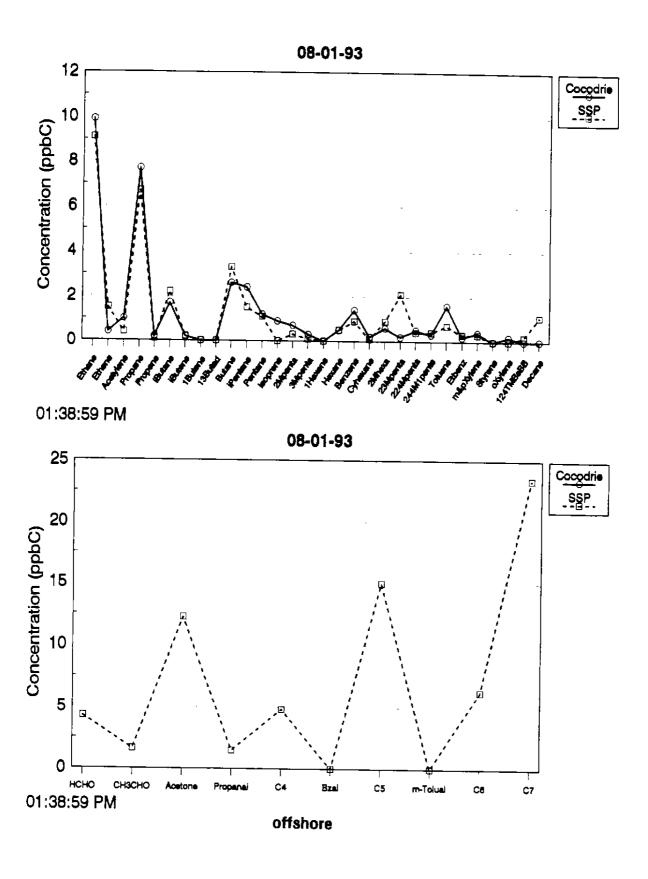

cocssp1.drw 1-20-95

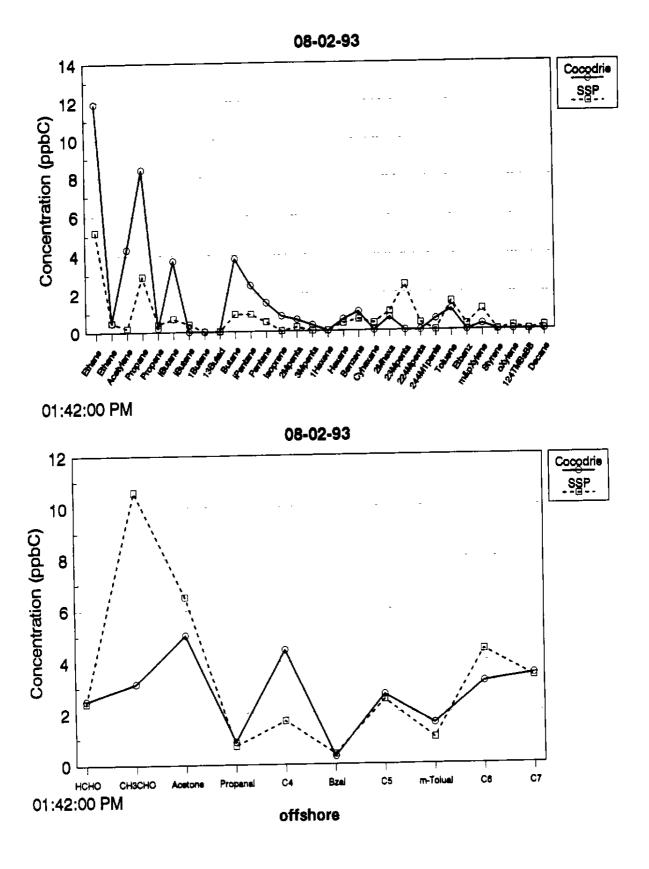

cocssp2.drw 1-20-95

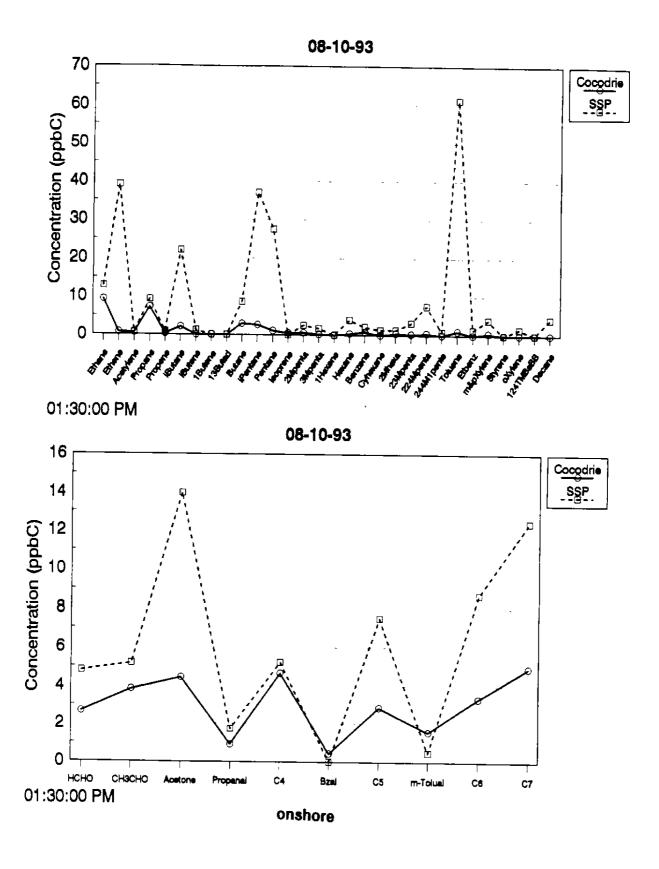

cocssp3.drw 1-20-95

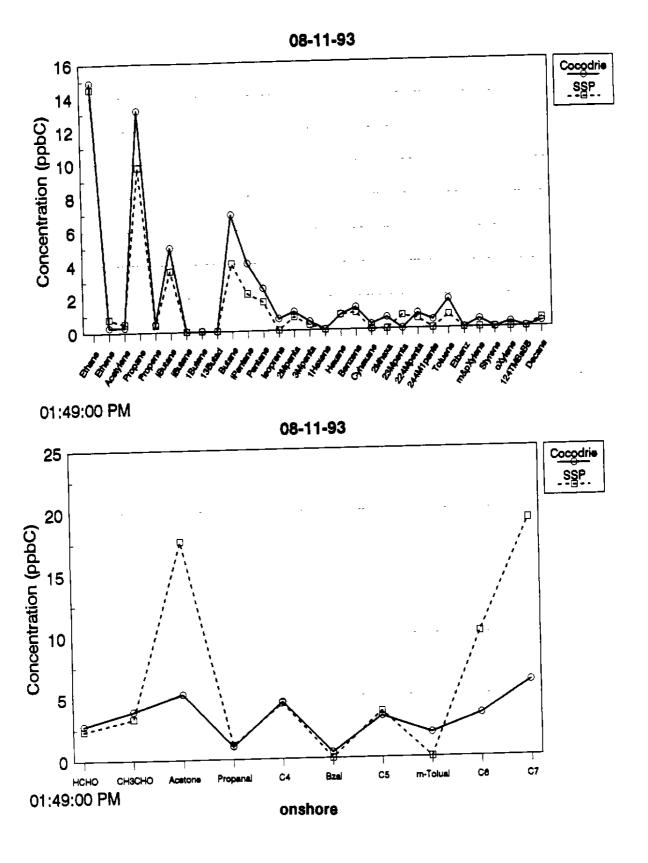

cocssp4.drw 1-20-95

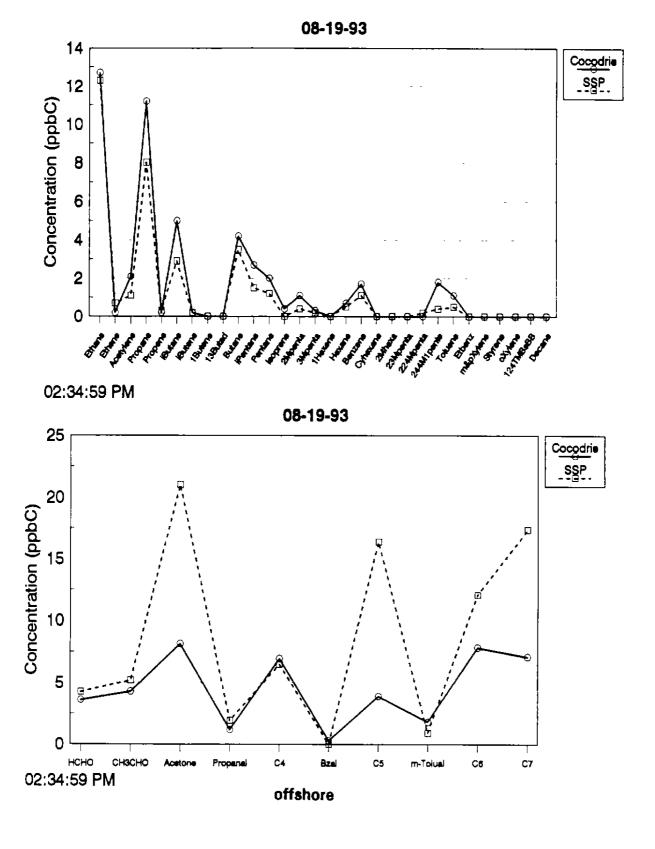

cocssp5.drw 1-20-95


cocssp6.drw 1-20-95


cocssp7.drw 1-20-95

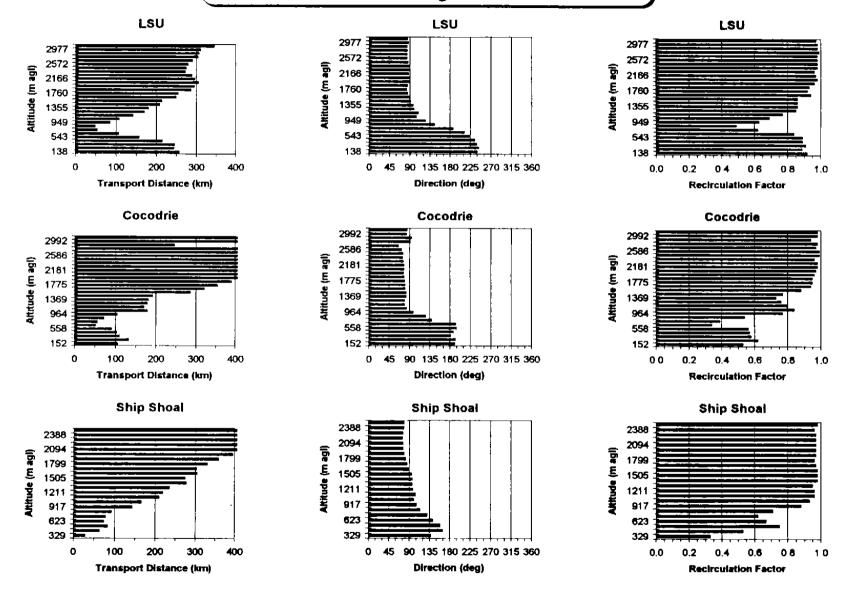

cocssp8.drw 1-20-95

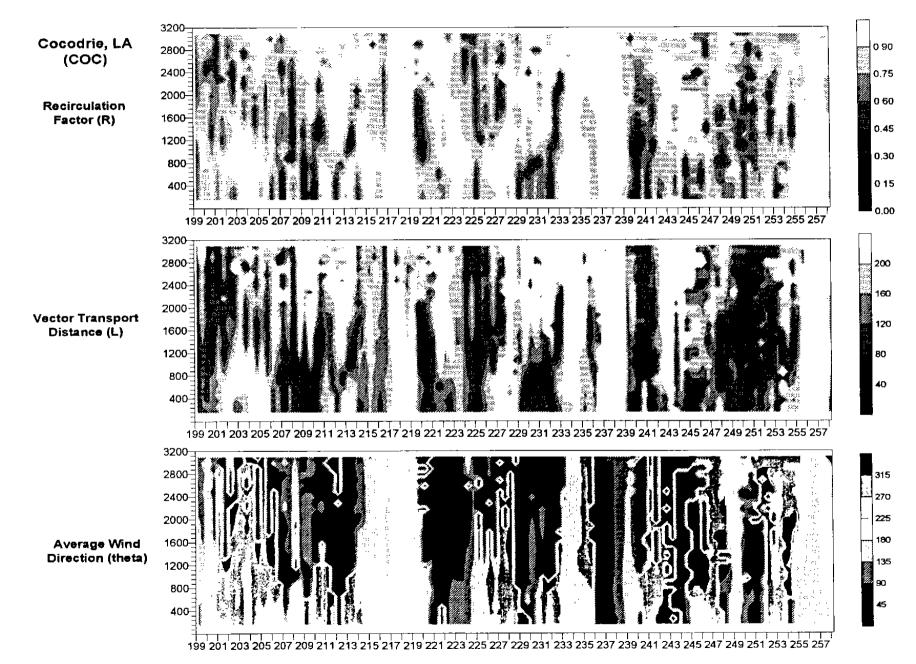

cocssp9.drw 1-20-95

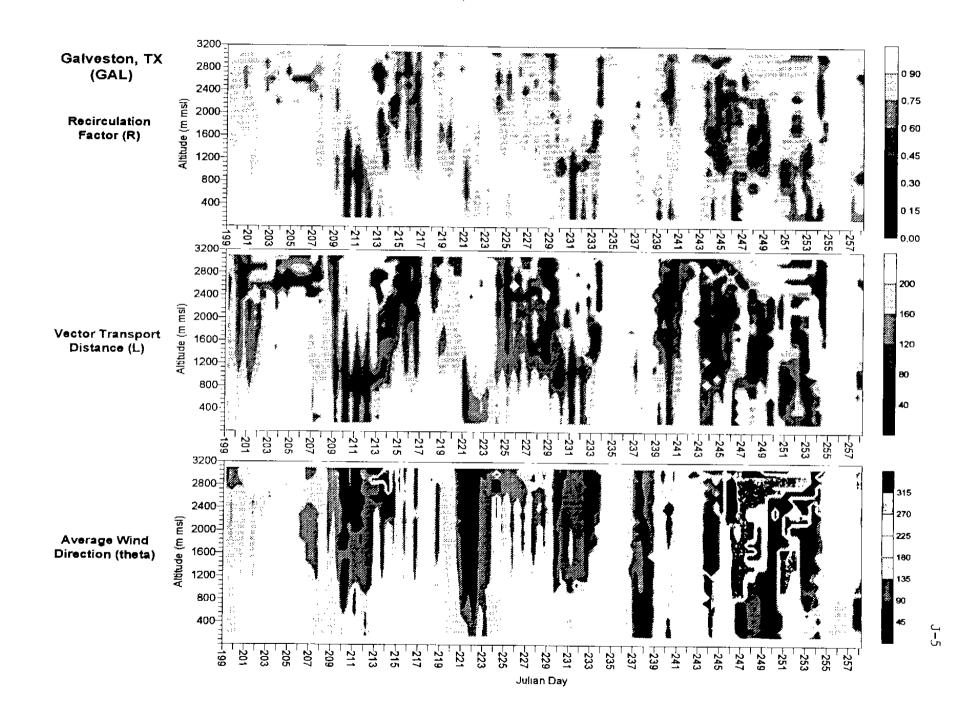

cocssp10.drw 1-20-95

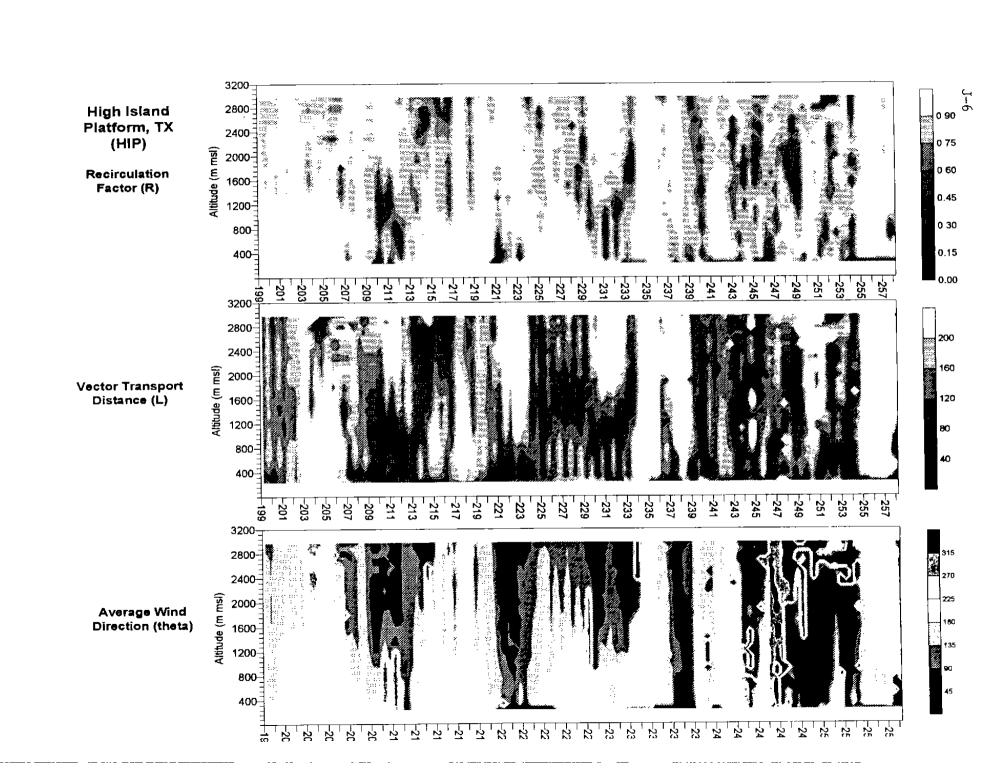
cocssp11.drw 1-20-95

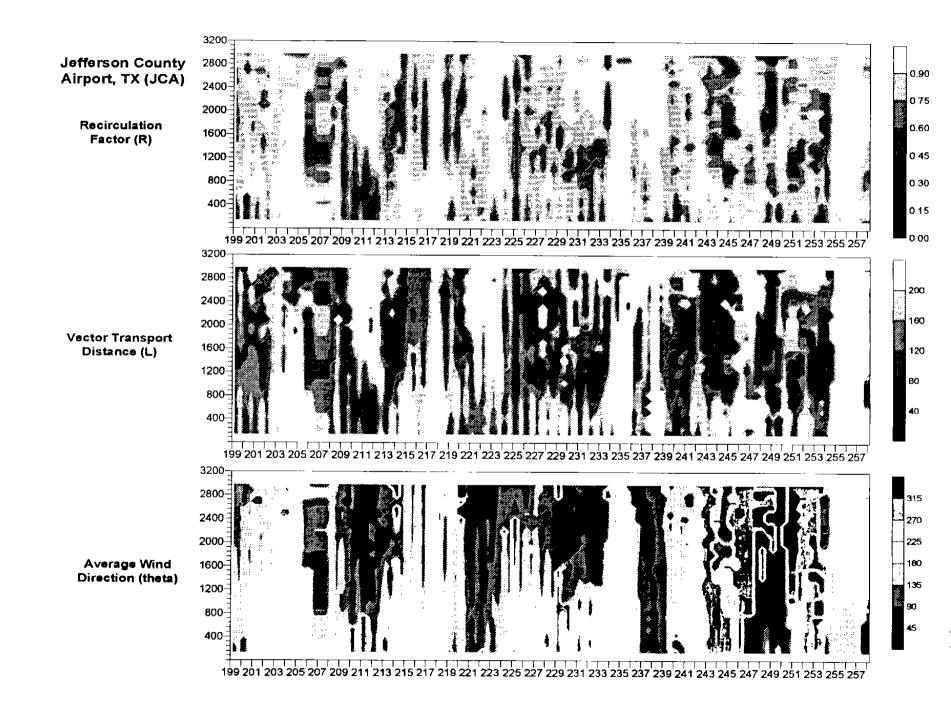
cocssp12.drw 1-20-95

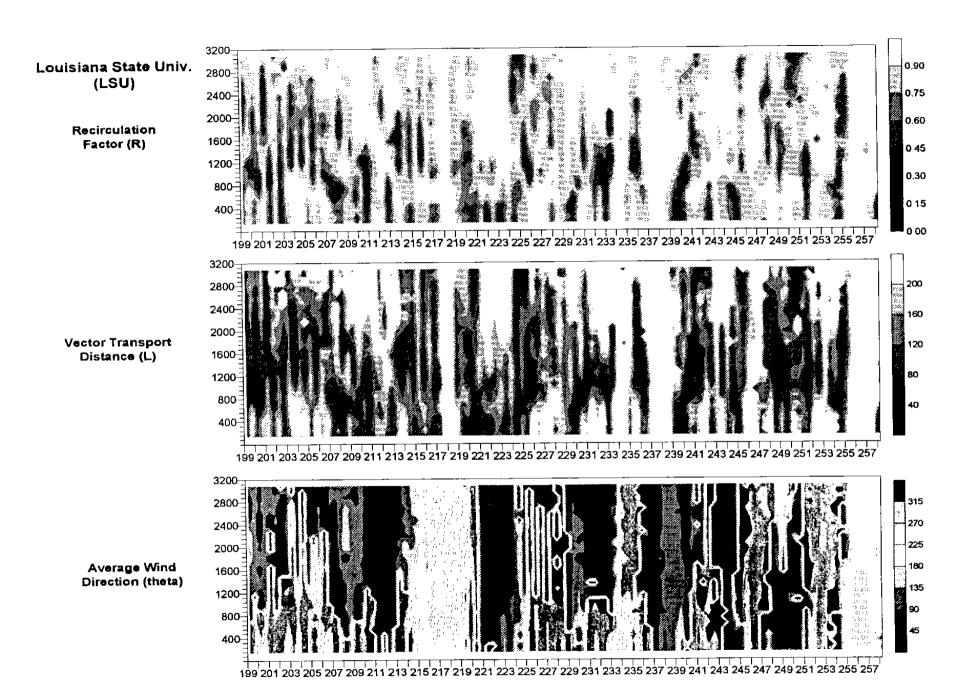

cocssp13.drw 1-20-95

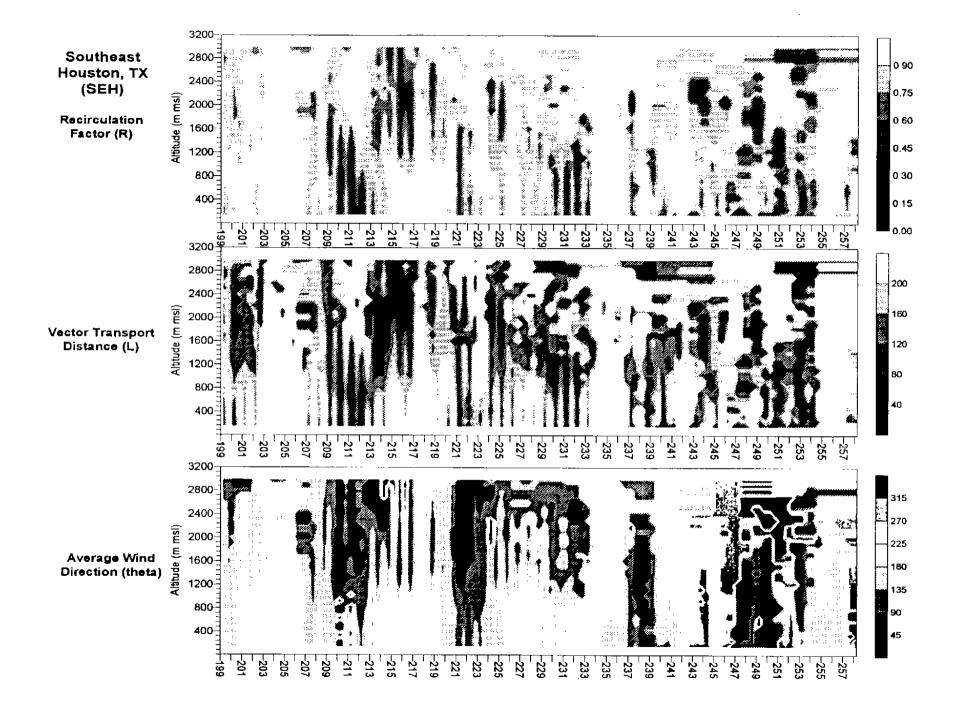

APPENDIX J

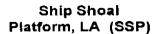

ANALYSES OF INTEGRAL TRANSPORT QUANTITIES FOR THE RADAR PROFILER STATIONS IN SOUTHEAST TEXAS AND LOUISIANA

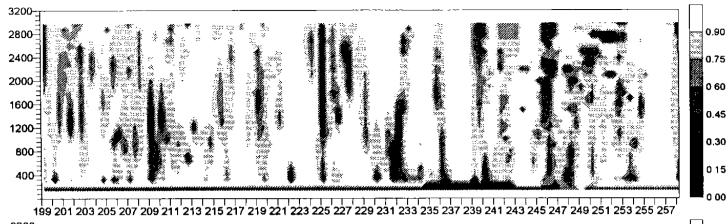

This appendix contains additional results from the analyses of the integral transport quantities discussed in Section 3 of the report. The first figure uses a bar chart format to show the vertical distribution of the integrated wind direction, resultant transport distance (L), and the recirculation factor (R) computed from the hourly-averaged wind data collected at the LSU, Cocodrie, and Ship Shoal Platform radar profiler sites. These results were computed for an 18-hour period beginning August 8, 1993 at 1200 CDT and continuing through 0500 CDT August 19. The remaining figures show the results of the ventilation analysis in a time-height cross-section format for all the upper-air data collected at the profiler sites for the period July 18-September 15, 1993. The three panels show contours of the recirculation factor, resultant (vector) transport distance, and the mean wind direction, respectively. The 12-hour integration periods used for the analyses were the same as those described in the report, i.e., 0600-1700 CDT and 1800-0500 CDT each day. Time is plotted along the horizontal axis in Julian day format.

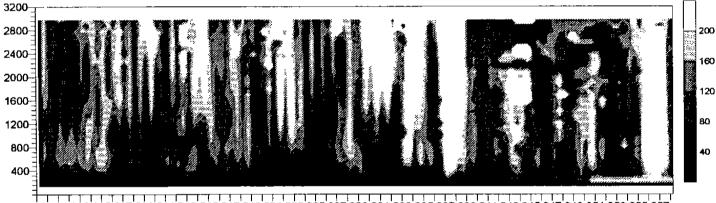

Ventilation Analysis 8/18/93 1200 CDT through 8/19/93 0500 CDT

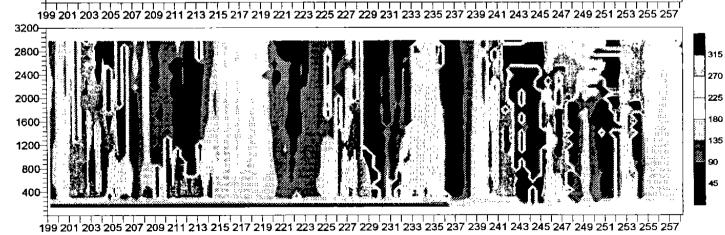








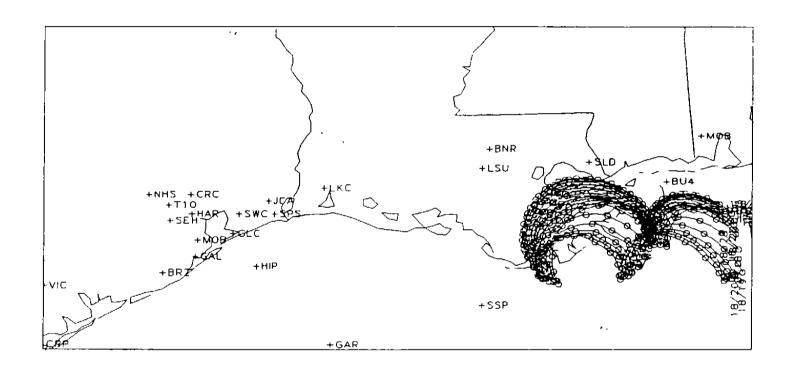



Recirculation Factor (R)

Vector Transport Distance (L)

Average Wind Direction (theta)

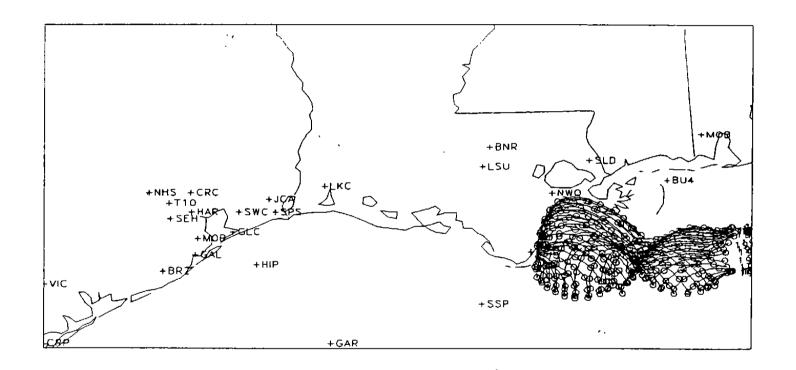
APPENDIX K


TRAJECTORY ANALYSES

Many plots and tables were prepared for the trajectory analyses which were not included in the main report. This appendix contains figures and tables concerning the following:

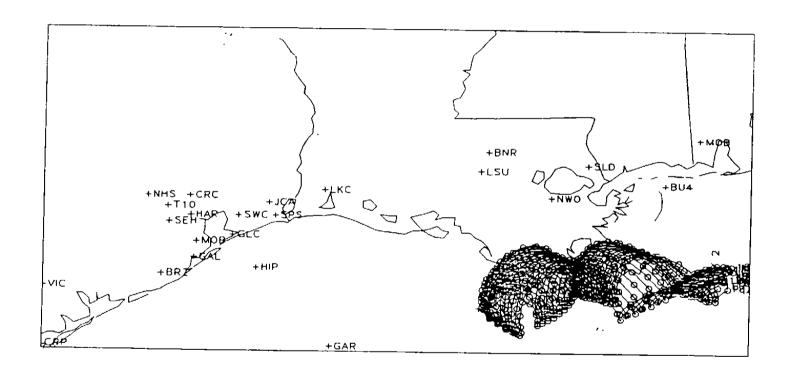
- Table of the 48 surface sites and the 13 upper-air sites from which hourly averaged data were used by the 2D and 3D wind field models.
- 300 m msl forward trajectories starting from Cocodrie, Louisiana, for every hour of August 18 and 19, 1993.
- 300 m msl forward trajectories starting from the radar profiler site on Ship Shoal Platform, for every hour of August 18 and 19, 1993.

	Surface Sites used by 2D Wind Model					
Site ID	Latitude	Longitude	Site Name	State		
BUO4	30.09	88.77	Buoy 42007			
COC	29.25	90.65	Cocodrie	LA		
CRSC	29.95	95.07	Crosby ag/met	TX		
GAL	29.23	94.93	Galveston	ΤX		
GALC	29.26	94.86	Galveston as site	TX		
GILC	29.52	94.46	Gilchrist	TX		
GLRC	29.72	95.46	Galleria CGC site	TX		
HIP	29.15	94.20	High island 199 platform			
HM01	29.71	95.26	HRM site 001	TX		
HM03	29.77	95.18	HRM site 003	TX		
HM04	29.85	95.12	HRM site 004	TX		
HM07	29.77	95.02	HRM site 007	TX		
HM08	29.65	95.06	HRM site 008	TX		
HM10	29.88	94.92	HRM site 010	TX		
HM11	29.77	94.91	HRM site 011	TX		
HTCC	29.76	95.36	Texas Commerce Tower	TX		
LSU	30.36	91.18	Louisiana State University	LA		
ME5T	29.38	94.91	Met 5	TX		
MOBT	29.39	94.89	Mobile	TX		
NCD2	28.85	96.92	Victoria	TX		
NCD7	30.68	88.25	Mobile	AL		
NCD1	30.12	93.22	Lake Charles (NWS)	LA		
NCD3	29.98	90.25	New Orleans (NWS)	LA		
NCD6	29.97	95.35	Houston (NWS)	TX		
NCD8	30.53	91.13	Baton Rouge (NWS)	LA		
S40S	29.72	93.89	Sabine Pass (setrpc site 40)	TX		
S42S	30.18	93.87	Orange Co. (setrpc site 42)	TX		
S43S	29,94	94.00	Beaumont (setrpc site 43)	TX		
SBRC	29.57	95.02	Seabrook C20	TX		
SEH	29.65	95.30	Southeast Houston	TX		
SPTC	29.53	94.76	Smith Point aq/met	TX		
SRST	29.67	94.05	Sabine	TX		
SSP	28.60	91.21	Ship Shoal 178a Platform			
STWC	29.79	94.41	Stowell (Winnie) aq/met	TX		
SWLT	29.39	94.89	Seawall	TX		
TN10	29.86	95.32	Aldine C08	TX		
TN11	30.05	93.75	West Orange C09	TX		
TN12	29.38	94.93	Texas City C10	TX		
TN13	29.00	95.38	Clute C11	TX		
TN16	29.76	95.00	Baytown C24	TX		
TN17	30.03	95.66	NW Harris C26	TX		
TN18	30.36	94.30	Kountze C85	TX		
TN19	28.83	97.00	Victoria	TX		
TN2	29.75	95.35	Crawford	TX		
TN3	29.81	95.28	N wayside	TX		
TN4	29.83	95.48	Lang	TX		
TN5	29.61	95.46	Croquet	TX		
TN6	29.62	95.26	Swiss&monroe	TX		

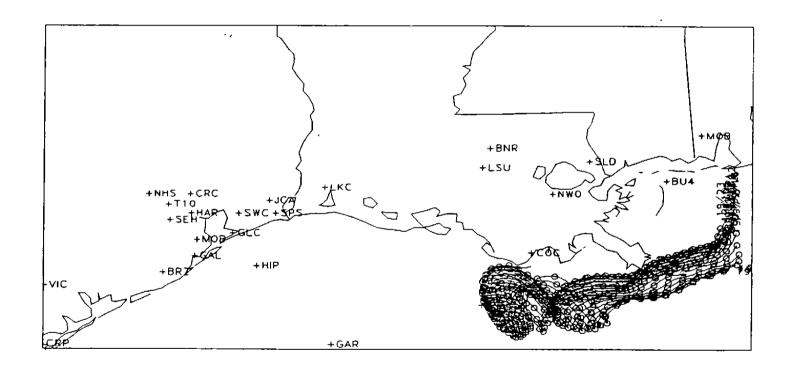

Upper Air Sites used by the 3D Wind Model							
Site ID	Latitude	Longitude	Site Name	State			
Radar Prof	ilers						
HIP	29.15	94.20	High Island Platform				
SEH	29.65	95.30	TX Southeast houston	TX			
JCA	29.96	94.02	Jefferson County Airport	TX			
GAL	29.26	94.86	Galveston	TX			
COC	29.25	90.68	Cocodrie	LA			
LSU	30.36	91.18	Louisiana State University	LA			
SSP	28.57	91.31	Ship Shoal Platform #178A				
Rawinsond	es						
LKCH	30.12	93.22	Lake Charles	TX			
CORP	27.77	97.50	Corpus Christi	TX			
SLID	30.35	89.81	Slidell	TX			
GAR	27.79	93.14	Garden Banks				
Sodars							
NHS	29.95	95.54	North West Houston	TX			
SPS	29.70	93.94	Sabine Pass	TX			

Forward Trajectory From Cocodrie

AUG 18, 1993 (01 CST) - AUG 18, 1993 (23 CST) 2 HOUR INTERVALS


300 M AGL

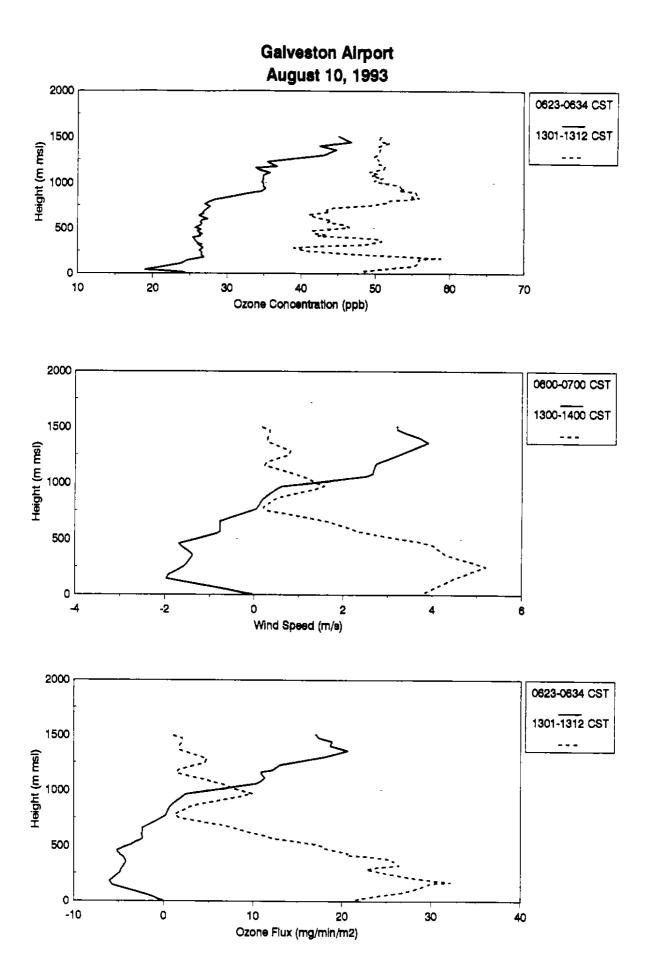
Forward Trajectory From Cocodrie


AUG 19, 1993 (01 CST) - AUG 19, 1993 (23 CST) 2 HOUR INTERVALS

300 M AGL

Forward Trajectory From Ship Shoal Platform

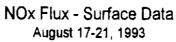
AUG 18, 1993 (01 CST) - AUG 18, 1993 (23 CST) 2 HOUR INTERVALS

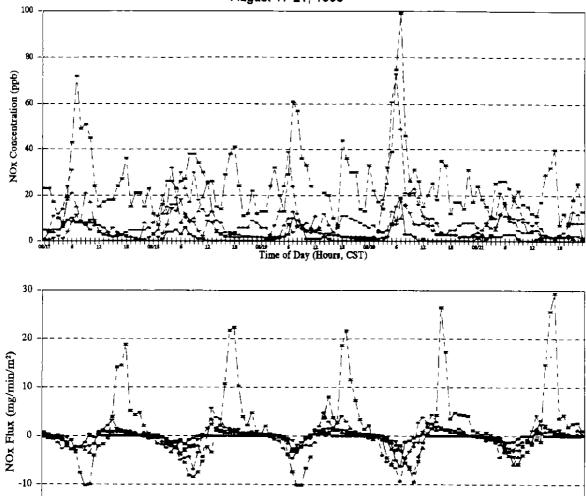

Forward Trajectory From Ship Shoal Platform

AUG 19, 1993 (01 CST) - AUG 19, 1993 (23 CST) 2 HOUR INTERVALS

300 M AGL

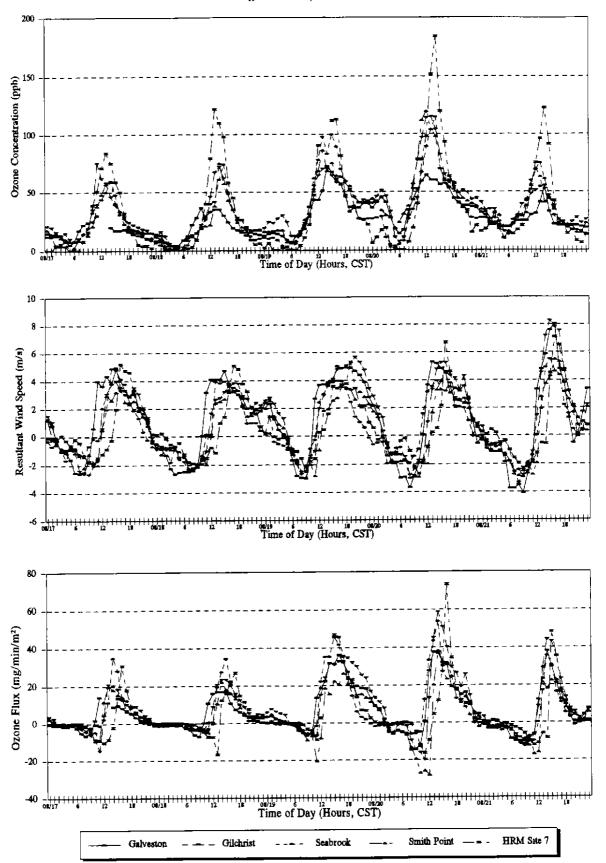
APPENDIX L

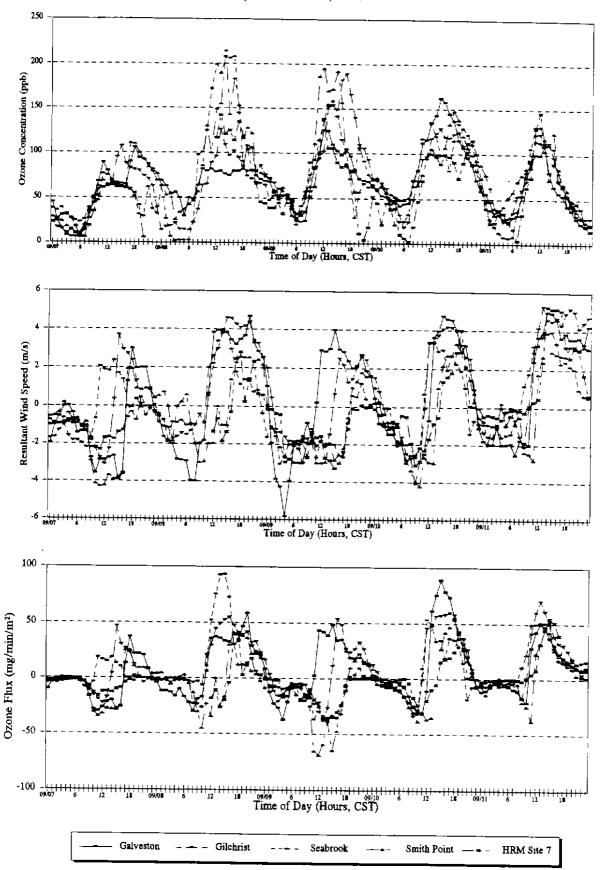

PROFILE PLOTS OF OZONE AND NO, CONCENTRATIONS, SOUTHWESTERLY COMPONENT OF THE WIND SPEED, AND OZONE AND NO, FLUX AT GALVESTON ON AUGUST 10, 1993



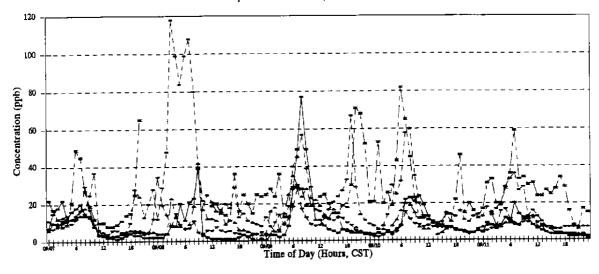
APPENDIX M

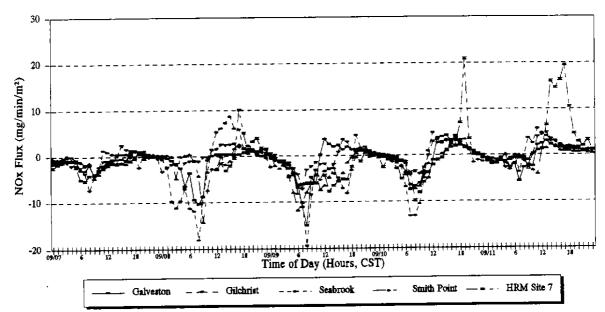
TIME SERIES PLOTS OF SURFACE OZONE AND NO, CONCENTRATIONS, SURFACE SOUTHWESTERLY COMPONENT OF THE WIND SPEED, AND OZONE AND NO, FLUXES FOR GALVESTON, GILCHRIST, SEABROOK, SMITH POINT, AND HRM SITE 7 FOR AUGUST 17-21 AND SEPTEMBER 7-11, 1993




Time of Day (Hours, CST)

Galveston - - Gilchrist --- Seabrook --- Smith Point -- HRM Site 7


Ozone Flux - Surface Data August 17-21, 1993



Ozone Flux - Surface Data September 7 - 11, 1993

NOx Flux - Surface Data September 7 - 11, 1993

The Department of the Interior Mission

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; preserving the environmental and cultural values of our national parks and historical places; and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people by encouraging stewardship and citizen participation in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

The Minerals Management Service Mission

As a bureau of the Department of the Interior, the Minerals Management Service's (MMS) primary responsibilities are to manage the mineral resources located on the Nation's Outer Continental Shelf (OCS), collect revenue from the Federal OCS and onshore Federal and Indian lands, and distribute those revenues.

Moreover, in working to meet its responsibilities, the **Offshore Minerals Management Program** administers the OCS competitive leasing program and oversees the safe and environmentally sound exploration and production of our Nation's offshore natural gas, oil and other mineral resources. The MMS **Minerals Revenue Management** meets its responsibilities by ensuring the efficient, timely and accurate collection and disbursement of revenue from mineral leasing and production due to Indian tribes and allottees, States and the U.S. Treasury.

The MMS strives to fulfill its responsibilities through the general guiding principles of: (1) being responsive to the public's concerns and interests by maintaining a dialogue with all potentially affected parties and (2) carrying out its programs with an emphasis on working to enhance the quality of life for all Americans by lending MMS assistance and expertise to economic development and environmental protection.