Texas-Louisiana Shelf Circulation and Transport Processes Study: Synthesis Report

Volume II: Appendices

U.S. Department of the Interior

Minerals Management Service
Gulf of Mexico OCS Region

Texas-Louisiana Shelf Circulation and Transport Processes Study: Synthesis Report

Volume II: Appendices

Authors
W.D. Nowlin, Jr.
A.E. Jochens
R.O. Reid
S.F. DiMarco

Prepared under MMS Contract
14-35-0001-30509
by
Texas A\&M University
College Station, Texas 77843-3146

Published by
U.S. Department of the Interior

Minerals Management Service

DISCLAIMER

This report was prepared under contract between the Minerals Management Service (MMS) and the Texas A\&M Research Foundation. This report has been technically reviewed by the MMS and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. It is, however, exempt from review and compliance with MMS editorial standards.

REPORT AVAILABILITY

Extra copies of the report may be obtained from the Public Information Office (Mail Stop 5034) at the following address:

U.S. Department of the Interior
Minerals Management Service
Gulf of Mexico OCS Region
Public Information Office (MS 5034)
1201 Elmwood Park Boulevard
New Orleans, Louisiana 70123-2394

Telephone Number: 1-800-200-GULF or
504-736-2519

CITATION

Suggested citation:
Nowlin, W.D. Jr., A.E. Jochens, R.O. Reid, and S.F. DiMarco. 1998. Texas-Louisiana
Shelf Circulation and Transport Processes Study: Synthesis Report, Volume II: Appendices. OCS Study MMS 98-0036. U.S. Dept. of the Interior, Minerals Mgmt Service, Gulf of Mexico OCS Region, New Orleans, LA. 288 pp.

ABOUT THE COVER

The cover art, by Karen Glenn, shows the LATEX study area, with LATEX A's mooring locations superimposed over the bathymetry.

TABLE OF CONTENTS

VOLUME II

APPENDIX PAGE
A Winter Cyclogenesis 1
A. 1 Event analysis 1
A. 2 30-year climatology of cyclogenesis events 10
B Examples of Effects on Shelf Circulation by EpisodicAtmospheric Forcing 13
B. 1 Hurricane Andrew (25-27 August 1992) 13
B. 2 The Storm of the Century (March 1993) 27
B. 3 Coastal upwelling off south Texas 42
C Effects of the Texas Flood of October 1994 55
D Case Study of Eddy Vazquez 63
E A Volumetric Temperature-Salinity Census for the Texas-Louisiana Shelf 89
F Inertial and Superinertial Motions 107
F. 1 Deterministic tides 107
F. 2 Non-deterministic 40-hr high-passed signals 119
G Comparison of Observed and Modeled Surface Gravity Waves 129
H Realizations of Current Fields 147
H. 1 Geopotential anomaly fields 147
H. 2 Monthly average LATEX current fields 158
I Current, Temperature, and Salinity Statistics 165
J Comparisons of Currents Derived from ADCP, Current Meter, and Hydrographic Observations 195
J. 1 Comparison of vertical shear from ADCP and hydrography 195
J. 2 Comparison of current meter and ADCP velocities 209
K Wave Propagation Along the Shelf and Slope 217
L Model and Observations of Wind-Driven Circulation Over the Inner Shelf 227
M Estimates of Property Exchanges Between Shelf Subregimes Using Box Models 245
REFERENCES 275

Appendix A: Winter Cyclogensis

A. 1 Event analysis

Cyclogenesis is defined as a development or strengthening of cyclonic circulation in the atmosphere (Hsu 1988). Many winter storms originate and strengthen in Gulf of Mexico waters, creating havoc along the Gulf coast (Hsu 1993). In certain coastal regions such as the Texas-Louisiana shelf, cyclogenesis is an important phenomenon to shipping and drilling interests as well as coastal residents and businesses.

Gulf storms are sometimes described as "a swollen belly of water surrounded by pouring rain"-the ocean surface bulges upward beneath a whirling, forward moving, low pressure system. High waves, stirred by high winds form atop this bulge. The worst storms are meteorological bombs, i.e., they form quickly and exhibit pressure drops of 12 mb or more in 24 hr in these latitudes. They are accompanied by waves of up to 5 m or more, floods, and strong winds. It is helpful to classify this cyclogenesis on the basis of minimum pressures and related maximum wind speeds. Pressure variations are significant, especially in the tropics where they are normally minor compared to those in higher latitudes. Over the Texas-Louisiana shelf pressure observations are plentiful thanks to NDBC buoys and C-MAN (Coastal-Marine Automated Network) stations, and reports from ships and other platforms in the Voluntary Observing Ship program.

In a 40-year climatology of western Gulf cyclones prepared by Saucier (1949), an average of 9.7 cyclones per year developed across the region, with an average of 11 years between peaks. The majority of these storms developed between 25° and $30^{\circ} \mathrm{N}$, from 90° to $99^{\circ} \mathrm{W}$. Using 1972-1982 as a control period, an average of 10.4 winter cyclones developed each year over the Gulf of Mexico, and in half of them central pressures dipped to 1010 mb or below (Johnson et al. 1984). From November 1982 through March 1983, a total of 26 surface cyclones affected the Gulf region. Five of those met the criteria for meteorological bombs (Murty et al. 1983). During these intensification periods the mean subtropical jet stream was about 5° farther south than normal over the Gulf of Mexico (Quirox 1983). This southward displacement of the mean jet stream, particularly during El Niño years, is an important factor in the formation of upper level disturbances. When upper level lows move over the surface weather front along the shelf break, the cyclogenesis and deepening process is enhanced; i.e., there is a good chance for the rapid development or intensification of a coastal storm (Hsu 1988).

Examples of cyclogenesis

A classic example of cyclogenesis over the Gulf of Mexico and its effect on shelf waters occurred on 16 February 1983 (Figure A.1-1). This storm was one of the top five cyclones

Figure A.1-1. A GOES satellite image showing an example of cyclogenesis which took place over the Gulf of Mexico on 16 February 1983. Note the comma shaped whirlpool cloud pattern and also that this system is not linked to other larger scale systems.
that developed over the Gulf during the 1982-1983 El Niño year (Johnson et al. 1984). This storm qualified as a meteorological bomb when its central pressure fell 12 mb within a 24-hr period. Its minimum pressure was 996 mb with a reported maximum wind of $20 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ (Figure A.1-2). At a platform on the shelf off Louisiana, the lowest pressure recorded was 1001 mb , with a maximum wind of $15 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and a significant wave height of 4.3 m . The time series of the pressure, winds, and waves for this storm are similar to those of a hurricane. The maximum wind speed does not usually occur at the time of lowest pressure, but, in general, the lower the pressure, the stronger the wind will be. These particular time series (Figure A.1-2) very much resemble typical tropical cyclone plots, for which the wind speed would be expected to drop off dramatically in the eye or center of lowest pressure.

Figure A.1-2. Time series of atmospheric pressure, wind speed, and significant wave height for the 16 February 1983 storm (Figure A.1-1) from $28.4^{\circ} \mathrm{N}, 92.0^{\circ} \mathrm{W}$. Note the relationship between pressure and winds.

A second example of a meteorological bomb in the Gulf of Mexico occurred on 27 February 1983. This storm generated seas and tides that caused extensive erosion and property damage on Grand Isle, Louisiana. February 1983 also provided a fine example of a nor'easter that had its origins in the Gulf. A storm that developed near the mouth of the Mississippi River on 10 February moved to off Wilmington, North Carolina, the following day, where the ship John Cabot reported $32 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ winds in $6-\mathrm{m}$ seas. This nor'easter was generating hurricane-force winds by 13 February, and it devastated the eastern seaboard with a snowfall of up to 89 cm . New York City measured 51 cm , Baltimore had 61 cm , and 66 cm buried Washington, D.C. At least 69 deaths were attributed to this storm (Hsu 1993).

A third recent example is shown in Figures A.1-3 and A.1-4. During the period 12-13 March 1993, a combination of upper-level dynamics and an existing baroclinic zone in the western Gulf of Mexico produced an intense extratropical cyclone. This system was comparable in strength to a category 1 hurricane, and was dubbed by many as the "Storm of the Century" (also see Appendix B). Along the storm's path, winds reached $40 \mathrm{~m} \cdot \mathrm{~s}^{-1}$, generating seas more than 7 m high and producing storm surges of more than 3 m along parts of the northeastern Gulf coast (Figure A.1-3; see Schumann et al. 1995). For brevity, we concentrate our description of this cyclogenesis near the sea surface, inasmuch as the upper air dynamics are discussed in detail in Schumann et al. (1995). Figure A.1-5a shows the stationary front over the northern Gulf of Mexico, which had persisted for several days. Surface cyclogenesis became evident at 1200 UTC when a closed, $1002-\mathrm{mb}$ low moved into the Gulf from the Texas coast (Figure A.1-5b). Southeast winds near the low were approaching $23 \mathrm{~m} \cdot \mathrm{~s}^{-1}$, with seas of $2-3 \mathrm{~m}$ in the northwestern Gulf. The strength of the surface cold outbreak advancing southward was well indicated with cold, $1000-\mathrm{mb}$ temperatures moving south across the mid-west and a 1044-mb high center moving southward over Wyoming. Figure A.1-5c shows a pressure fall of 10 mb in 12 hours (compared to Figure A.1-5b) associated with the surface low (992 mb at 0000 UTC on 13 March). On the northwest side of the low, offshore oil rigs approximately 30 m above the water surface reported sustained winds near $40 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ (see also Figure A.1-4). Sea heights increased to $4.5-6 \mathrm{~m}$ over a large area of the northwestern Gulf. Minimum pressure at Moisant International Airport (MSY) in New Orleans reached 1003.6 mb , with winds around the metropolitan area gusting to $32 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ for several hours. Twelve hours later, at 1200 UTC on 13 March, the surface low was over southeast Georgia with a pressure of 976 mb , and the cold front was crossing Florida (Figure A.1-5d). During the previous 24 hours, the storm's central pressure at the surface fell 26 mb . When the bitter cold surge entered the less frictional northern Gulf, the wind force showed incredible strength again-the buoy data indicated northerly winds of $29-40 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ from $90^{\circ} \mathrm{W}$ eastward to Florida. Seas reached 9 m at NDBC buoy $42001\left(25.9^{\circ} \mathrm{N}, 89.7^{\circ} \mathrm{W}\right)$, and there were numerous buoy and C-MAN reports of $6-7.5 \mathrm{~m}$ seas over the north-central and eastern Gulf.

Figure A.1-3. Surface low center track across the Gulf of Mexico (from Schumann et al. 1995).

A classification of winter cyclogenesis over the Gulf of Mexico

Winter storms in the Gulf of Mexico are important both to maritime interests in that basin and along the east coast. A classification scheme is needed to compare the intensity of these systems, and using the relationship of maximum winds to minimum pressures is a theoretically sound and simple way of achieving this. The classification scheme shown in Figure A.1-6 is based on Hsu (1993).

Because airflow around the centers of these winter storms in the Gulf is nearly circular (e.g., Figure A.1-1) to a first approximation, the cyclostrophic equation (see, e.g., Hsu 1988) may be applicable, such that the centrifugal force and the pressure gradient are in balance, as

$$
-\frac{V_{\max }^{2}}{R}=\frac{1}{\rho} \frac{\partial P}{\partial R}=\frac{1}{\rho} \frac{\left(P_{\text {ambient }}-P_{0}\right)}{(R-0)}
$$

6

Figure A.1-4. Surface wind analysis (isotachs in kt ; from low to high, these are 15.4, 20.6, 25.7, and $30.9 \mathrm{~m} \cdot \mathrm{~s}^{-1}$) for 1200 UTC 13 March 1993 (from NWS Forecast Office, New Orleans).
or

$$
V_{\max }^{2}=\frac{1}{\rho}\left(P_{\text {ambient }}-P_{0}\right),
$$

where $\mathrm{V}_{\max }$ is the maximum wind speed; R is the radius to $\mathrm{V}_{\max } ; \rho$ is the air density; $\mathrm{P}_{\text {ambient }}$ is the ambient pressure, which equals 1016 mb for the annual climatological average over the northwestern Gulf of Mexico; P_{0} is the minimum pressure of the storm; and $(\mathrm{R}-0)$ is an effective scale. For statistical analysis, equation (A.1.2) may be written

$$
V_{\max }=A+B\left(1016-P_{0}\right)^{.5}
$$

when A and B are determined in the data.

Figure A.1-5. (a) Surface fronts (heavy solid), isobars (solid; mb), and $1000-\mathrm{mb}$ temperatures (dashed; ${ }^{\circ} \mathrm{C}$) for 0000 UTC 12 March 1993. (b) Same as (a) for 1200 UTC 12 March 1993. (c) Same as (a) for 0000 UTC 13 March 1993. (d) Same as (a) for 1200 UTC 13 March 1993.

Figure A.1-6. Cyclogenesis classification (upper) is based on the minimum pressure of winter storms in the Gulf of Mexico. The graph (lower) shows the number of storms of each class studied and the relationship between the pressure gradient parameter and the reported maximum winds. Vertical bars indicate one standard deviation around means. (After Hsu 1993).

On the basis of 26 winter cyclones studied (Johnson et al. 1984), it was verified that

$$
V_{\max }=3.9+3.5\left(1016-P_{0}\right)^{.5}
$$

where $\mathrm{V}_{\max }$ is in $\mathrm{m} \cdot \mathrm{s}^{-1}$ and P_{0} is in mb . Equation (A.1.4) has a correlation coefficient 0.98 (as shown in Figure A.1-6) and is recommended for practical use such as the cyclogenesis classification. This storm ranking scheme has two constraints:

1) when $P_{0} \geq 1015 \mathrm{mb}$, no cyclogenesis is observed, and
2) when $P_{0} \leq 980 \mathrm{mb}$, the minimum (or central) pressure approaches the hurricane classification scheme of Saffir/Simpson (Simpson and Riehl 1981).

Taking the above conditions along with the interval analysis suggested by Panofsky and Brier (1968) and the winter storm classification suggested by Dolan and Davis (1992), five classes for the winter cyclogenesis are proposed. For ease of classification, we use numerical intervals of $\left(1016-\mathrm{P}_{0}\right)^{5}$, which range from 1 to 6 with five classes in between.

Equation (A.1.4) may be applied to relate maximum wind speed in $\mathrm{m} \cdot \mathrm{s}^{-1}$ to the storm's central pressure in mb. For example, if the storm's central pressure is 991 mb , then the maximum wind speed works out to $3.9+3.5(25) \cdot 5$ or $21.4 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. Using the classification table, this puts the storm in Class 4 , indicating strong cyclogenesis. The suggested classification of Gulf of Mexico winter storms range from Class 0 to Class 5, or from no cyclogenesis to extreme cyclogenesis. The corresponding pressure values and approximate wind speeds are indicated in Figure A.1-6. The Dolan/Davis classification scheme is based upon storm effect (beach erosion), while this one is based upon storm pressure. Despite this difference, they are in reasonable agreement.

If the lowest pressure in the "Storm of the Century" is 972 mb , as is now estimated, then the classification equation would give maximum winds of $27 \mathrm{~m} \cdot \mathrm{~s}^{-1}$, which, in Figure A.1-6, is greater than Class 5, or approaching hurricane status-an unusual occurrence in the Gulf of Mexico.

A. 2 30-year climatology of cyclogenesis events

Presented here are the results of a detailed analysis of the frequency of occurrence of cyclogenesis over the Texas-Louisiana shelf region.

A 30-year record of the NOAA series Daily Weather Maps, extending from 1966 to 1996, was examined for incidences of cyclone formation over the Texas-Louisiana shelf region, specifically between 25° to $30^{\circ} \mathrm{N}$ and 90° to $100^{\circ} \mathrm{W}$ (NOAA 1996). The winter season was defined as the months of November through May; after May, hurricane season begins with the dominance of tropical systems. The winter cyclones were further classified using the scheme described in Section A.1. Therefore, any atmospheric low pressure center having a minimum central pressure $\leq 1014 \mathrm{mb}$ was included. Table A.2-1 shows the total number of cyclogenesis events in our region for each month of the winter seasons studied.

Figure A.2-1 shows cyclogenesis events over the northwestern Gulf of Mexico by season and category of strength. There appears to be a relationship between the number of cyclones per winter season and the influence of the El Niño/La Niña phenomenon. There were El Niño episodes in 1972-1973, 1976-1977, 1982-1983, 1986-1987, and 1991-1995. At least the latter three of these were accompanied by higher cyclogenetic activity over the northwestern Gulf, and in 1972-1973, 1982-1983, and 1991-1993 a greater number of the cyclones formed intensified into Category 3 and 4 storms. The longest consecutive El Niño event on record was from 1991-1995 (Trenberth and Hoar 1996). This is clearly reflected in our data, with those five years each having six or more strong cyclogenesis cases. Note also that there is a marked decrease in both the frequency and strength of cyclogenesis associated with the La Niña periods of 1970-1971, 1973-1975, and 1988-1989.

Table A.2-1. Monthly totals of cyclogenesis events from 1966-1967 through 1995-1996 winter seasons.

Month	No. of Events
November	12
December	19
January	25
February	20
March	12
April	9
May	10

Figure A.2-1. Winter cyclogenesis freqencies and intensities in the northwest Gulf for the winter seasons 1966-1967 to 1995-1996.

Appendix B: Examples of Effects on Shelf Circulation by Episodic Atmospheric Forcing

In this report much attention is directed to the influence on subinertial currents and meso- to large-scale property distributions by regular or long-term forcing agents: seasonal and longer term wind forcing, seasonal and interannual variations in Mississippi-Atchafalaya river discharge, and mesoscale current rings adjacent to the shelf. The mesoscale and even the large scale distributions of currents and water properties are also influenced by an array of episodic forcing functions, including frontal passages, cold air mass outbreaks, cyclogenesis over the shelf, and hurricanes.

During the LATEX observing period, many such events took place. Their study has been of second order priority to the LATEX A science team, in view of the fact that the currents and transports in response to the major regular or long-term forcing are the thrust of the LATEX program. Nevertheless, we have begun to examine the effects of such episodic forcing. In a report of this nature, it is not feasible to present an exhaustive series of investigations or even to detail selected case studies. We have chosen to present in this appendix brief descriptions of the effects of two extreme episodic events: Hurricane Andrew (August 1992) and the "Storm of the Century" (March 1993). We also describe (in Appendix B.3) the episodic nature of coastal upwelling along the Texas coast as non-summer downcoast winds shift to upcoast at the onset of summer conditions.

B. 1 Hurricane Andrew (25-27 August 1992)

Hurricane Andrew, the first named tropical storm of 1992 in the Atlantic basin, attained hurricane status winds at approximately 1200 UTC 22 August 1992, 1300 km east of the Bahamas (Grymes and Stone 1995). Forty-eight hours later, Andrew crossed over the southern tip of Florida, weakened slightly, and then moved into the eastern Gulf of Mexico. As the hurricane crossed the Gulf it reintensified to Category 4 status on the Saffir/Simpson scale, with sustained wind speeds in excess of $61 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. The hurricane eye crossed over the TexasLouisiana shelf edge at approximately 2135 UTC 25 August 1992. A LATEX wave gauge located at mooring 16 was within 30 km of Andrew's eye as the hurricane crossed the eastern edge of the Texas-Louisiana shelf. Hurricane Andrew's path traversed a broad shelf region densely populated with oil and gas structures; more than 145 satellite wells, 38 full platforms, and 450 pipeline segments were damaged or destroyed by the forces Andrew generated (MMS 1994). A number of offshore structures were tilted or toppled as Andrew cut a swath over the shelf.

This section summarizes the measurements made by the LATEX A current meter array during the storm's passage over the Texas-Louisiana shelf. Surface wind waves and the
swell environment are summarized; then we present the response to Andrew of currents over the shelf. Appendix G contains a brief discussion of a WAM model-data comparison study during Hurricane Andrew.

Wave environment during Hurricane Andrew

The LATEX program had four bottom-mounted wave gauges deployed along the TexasLouisiana shelf when Hurricane Andrew crossed the southern tip of Florida and entered the Gulf of Mexico on 24 August (DiMarco et al. 1995a). Figure B.1-1 shows the LATEX wave gauge locations, National Data Buoy Center (NDBC) buoy locations, and the storm track. The wave gauges deployed during the hurricane's passage were three Coastal Leasing, Inc. MiniSpec directional wave gauges, located at moorings 16, 20, and 23, and one SeaData 635-8 non-directional wave gauge at mooring 1. All four gauges were mounted approximately one meter off the bottom and recorded hydrostatic pressure. The MiniSpecs also recorded current velocity and temperature.

Stone et al. (1993) and Grymes and Stone (1995) present a chronological overview of the meteorology, sea state, and storm surge associated with Hurricane Andrew. Breaker et al. (1994) describe its impact on the near-surface marine environment.

The eye of Andrew passed approximately 30 km southwest of mooring 16 , which was about 20 km south of Terrebonne Bay, Louisiana. Although a considerable distance from the storm center, the more western moorings 20, 23, and 1 recorded longer period waves. As Andrew traveled westward across the west Florida shelf and into the deeper eastern Gulf of Mexico, the hurricane quickly generated fast-moving long period waves that propagated westward and reached the Texas-Louisiana shelf. Long period waves, i.e., of period 10 seconds and greater, are rare in the Gulf of Mexico for all but the most extreme weather events (NDBC 1990). Such long period waves are of particular interest; because of the larger orbital velocity that is added to the mean flow, these waves can resuspend sediments at much greater depths than under normal circumstances.

Shown in Figure B.1-2 are the significant wave heights at each LATEX mooring during the 48 -hour period centered on the time of highest waves at mooring 16 . The most striking feature is the peak height of 9.09 meters at that mooring at approximately the time the eye was closest. The maximum wave heights observed at moorings 20,23 , and 1 occurred when long period waves represented a large percentage of spectral energy, i.e. at 0200, 0300, and 0900 UTC 26 August 1992, respectively. In comparison, the second largest significant wave height recorded by LATEX A wave gauges during the field program was during a frontal passage event on 8 April 1993, also at mooring 16 ; this was 3.5 m with a spectral peak at 8.0 s (DiMarco et al. 1995b).

Figure B.1-1. Map of northwestern Gulf of Mexico showing the coastline, the 50-, 100-, and $200-\mathrm{m}$ isobaths, Hurricane Andrew's track, the LATEX A wave gauge locations, and NDBC buoy locations. Moorings 16, 20, and 23 had MiniSpec directional gauges and mooring 1 had a SeaData non-directional wave gauge. All times are UTC. From DiMarco et al. (1995a).

The frequency of the peak spectral value for each wave burst is shown as a function of time in Figure B.1-3. Early in the 24-hour period preceding Andrew, the spectra at moorings 20, 23 , and 1 were generally dominated by locally generated high frequency waves. Peak frequency dropped abruptly as the swell generated by Andrew reached each location. The dramatic shift to low frequency was accompanied by a rise in the wave height at each location (Figure B.1-2). After the shift, peak frequency increased gradually with time because of the frequency dependent celerity of the waves. In a few cases, the wave spectra became multi-modal and showed peaks at both high and low frequencies. In constructing the curves of Figure B.1-3 for the case of multi-modal spectra, we chose the peak whose frequency corresponded to swell and had a period greater than eight seconds, thus focusing on energy derived from the distant storm.

Figure B.1-2. Significant wave heights estimated at moorings 1, 16, 20, and 23 during Hurricane Andrew (from DiMarco et al. 1995a).

Figure B.1-3. Spectral peak periods estimated at moorings 1, 16, 20, and 23 during Hurricane Andrew (from DiMarco et al. 1995a).

An analysis of the arrival times of the long period swell at each LATEX wave gauge and NDBC wave buoy in the deep eastern Gulf using linear wave propagation theory shows that the swell was generated when the eye of Andrew was located between 83.1° and $85.0^{\circ} \mathrm{W}$, or upon entering the deep eastern Gulf of Mexico (DiMarco et al. 1995a). This generation zone was established by extrapolating waves of known period and deep water group velocity from several points along the hurricane track to the observation locations. By comparing the arrival times of the extrapolated waves to the arrival times of the observed waves, boundaries could be set on a region in which the long-period swell was generated and propagated westward across the Gulf. The uncertainty in location of the generation zone is mainly due to the 1-3 hr gaps between observations. Extrapolated waves generated east or west of the generation zone could not have arrived at the LATEX gauges at the observed times.

Directional wave spectra during Hurricane Andrew were estimated using the method of Longuet-Higgins et al. (1963) and utilized the near-bottom pressure and horizontal velocities (DiMarco et al. 1995a). The calculation involves expanding the spectrum as a Fourier series and relating the first five terms in this series to the auto- and cross-spectra of the pressure and horizontal velocity components. Only one (mooring 23) of the three operational LATEX directional wave gauge locations yielded directional wave data throughout the duration of the hurricane. In general, the swell associated with Andrew propagated west-northwestward at mooring 23 ; the alongshelf isobath direction at this mooring is 245°. The pressure sensor of the wave gauge at mooring 20 failed upon deployment and, therefore, yielded no directional wave spectra. At mooring 16, directional wave spectra were estimated until 2100 UTC 25 August 1992, the time the instrument and frame were toppled. This instrument, however, continued to record bottom pressure throughout the hurricane. The directional wave spectra at mooring 16 prior to the instrument toppling also showed the wave direction of the wave energy associated with Andrew to be aligned with the alongshelf bathymetry. Unfortunately, the instrument was pushed over several hours before the hurricane's eye passed closest to this location, so no directional wave spectra are available for that time.

The combination plot of contoured energy density spectra and significant wave height versus time at mooring 16 (Figure B.1-4) shows the evolution of the correlation between significant wave height and the spectral distribution of wave energy. This figure demonstrates how low frequency energy contributed to the increase of significant wave height at the wave gauge locations far from the storm. At mooring 16, low frequency waves outran the storm center by several hours because deep water, 16 -second period waves travel at $45 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ and over the deep eastern Gulf the storm moved at a forward speed of $14 \mathrm{~km} \cdot \mathrm{~h}^{-1}$.

Low frequency waves, however, continued to contribute to the energy spectra after the eye passed mooring 16 (after 0600 UTC 26 August 1992) (Stone et al. 1993; Grymes and Stone 1995). During the eight-hour period when the storm center was closest to mooring 16

Figure B.1-4. Contour plot of energy density versus time with significant wave height superimposed at mooring 16 . Contour interval is $8.0 \mathrm{~m}^{2} \cdot \mathrm{~Hz}^{-1}$ (from DiMarco et al. 1995a). All times are UTC.
(2000 UTC 25 August to 0400 UTC 26 August 1992), the spectra had considerable energy in the high frequency range-between 0.15 and 0.22 Hz . For example, at 0100 UTC 26 August 1992, the spectrum consisted of locally generated wind waves and storm generated swell in the deeper Gulf. Similar plots at moorings 1, 23, and 20 show the wave energy due to Andrew present only as swell (DiMarco et al. 1995a).

The multi-modal character of the spectra recorded at mooring 16 at the time of Andrew's closest approach represents a unique data set, in that they are markedly different from other LATEX wave gauge spectra recorded at the time and also differ from historical hurricane wave spectra recorded by deep water buoys (Ochi 1994). We believe the shallow water depth and the gauge's proximity to the storm center are important factors for the bi-modal structure of this spectra. Some of the high frequency energy at mooring 16 may have been locally generated, but a significant portion was probably a result of nonlinear, second-order, sum-frequency effects (Zhang et al. 1992, 1994). Shoaling topography may also have
enhanced the nonlinear interaction. The nature of the strongly bi-modal spectra generated by Andrew in shallow water should be pursued for its engineering applications. A study specifically to quantify the nonlinear wave effects in the high frequency range of the Andrew data is currently underway.

Ocean currents and winds during Hurricane Andrew

The effects of Hurricane Andrew were far reaching; evidence of its passing were apparent in every LATEX current meter record. On the eastern shelf the evidence was due to the hurricane's passing directly over 10 mooring locations. On the western shelf, instruments recorded the effects of Andrew that propagated westward from the storm center and across the shelf waters.

The sequence shown in Figures B.1-5 through B.1-9 is of five-minute average current vectors measured at the LATEX current meter locations and wind vectors at selected moorings. The sequence begins at 1100 UTC 25 August, approximately 10 hours prior to Hurricane Andrew's crossing of the Texas-Louisiana shelf and ends two days later at 2300 UTC 27 August. The current vectors are measured from the upper current meters (at approximately 10 m depth) for all locations except moorings 15,16 , and 17 ; the bottom current vectors are given for those moorings. Mooring 15 has two vectors shown in the first two figures because the surface instrument failed at 2200 UTC 25 August 1992. The wind gauge at mooring 17 recorded direction only, so the magnitude has been prescribed at a constant value for all five figures.

The wind over the Texas-Louisiana shelf was from the northeast and light prior to Andrew's sweep over the shelf. At 1100 UTC 25 August (Figure B.1-5), the eye of Hurricane Andrew was located at approximately $27^{\circ} \mathrm{N}, 88^{\circ} \mathrm{W}$. Winds on the eastern shelf had already begun to feel the effect from the northwest quadrant of the hurricane's cloud wall and had increased in magnitude slightly more than the winds to the west. The ocean currents were generally downcoast over the entire shelf region. The influence of an anticyclone-cyclone pair to the west are seen along the $200-\mathrm{m}$ isobath where the shelf bends sharply southward. This feature persisted throughout the hurricane.

As Andrew approached, the winds at the eastern stations increased in magnitude while the directions began to align with the cyclonic winds of the storm. The surface currents on the eastern shelf responded to the increased wind stress and also began to increase in magnitude. At 2330 UTC 25 August (Figure B.1-6), the eye crossed the 50-m isobath near mooring 14. The surface instrument at mooring 15 failed, the bottom-mounted current meter at mooring 16 turned over, and the surface instrument at mooring 16 was swept away. Surface currents at moorings $12-15$ exceeded $100 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$. The current speed at mooring $13(10-\mathrm{m}$ depth) was $163.5 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ at 2230 UTC 25 August 1992—the largest speed recorded by the LATEX

Figure B.1-5. Near surface current and wind vectors (bold) at 1100 UTC 25 August 1992.

Figure B.1-6. Near surface current and wind vectors (bold) at 2330 UTC 25 August 1992. Circle is approximate radius of hurricane force winds.

Figure B.1-7. Near surface current and wind vectors (bold) at 0930 UTC 26 August 1992. Circle is approximate radius of hurricane force winds.

Figure B.1-8. Near surface current and wind vectors (bold) at 1930 UTC 26 August 1992. Circle is approximate radius of tropical storm force winds.

Figure B.1-9. Near surface current and wind vectors (bold) at 2330 UTC 27 August 1992.
array during the field program. The downcoast flow increased at virtually all locations on the shelf, including the stations near South Padre Island, Texas. The ring structures persisted at the coastal bend, although the cross-shelf velocity of the anticyclone was reduced significantly. The winds at the western shelf locations remained northeasterly. In the east, the winds were aligned with the cyclonic rotation of the hurricane winds. The approximate radius of hurricane force winds is depicted in Figure B.1-6 as a circle of 60 km radius. The winds to the south of this circle at BUSL1 $\left(27.9^{\circ} \mathrm{N}, 90.9^{\circ} \mathrm{W}\right)$ were perpendicular to the winds measured to the west at mooring 17. The peak sustained winds measured at BUSL1 were $21.3 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ at 2300 UTC 25 August 1992. Peak sustained winds at BURL1 ($28.9^{\circ} \mathrm{N}$, $89.4^{\circ} \mathrm{W}$) were $25 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ at 2200 UTC 25 August 1992 (not shown).

As the storm continued toward the Louisiana coast, the currents at the eastern moorings began to oscillate clockwise as they were turned by Coriolis force. Along the $200-\mathrm{m}$ isobath, the currents remained steadily downcoast, greater than $30 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$. On the inner shelf, the currents also remained downcoast out to the 20-m isobath. At 0200 UTC 26 August 1992, the inner shore current at mooring 20 began to reverse to upcoast and strengthen. The winds in the east continued to track the hurricane as it crossed the shelf and made landfall at approximately 0830 UTC 26 August 1992, near Cypremort Point, Louisiana, with peak sustained wind speeds estimated at $53 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ and peak gusts at $63 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ (Grymes and Stone 1995; Stone et al. 1993).

At 0930 UTC 26 August 1992 (Figure B.1-7), the winds had reversed direction to southwesterly over essentially the entire Texas-Louisiana shelf. Much of the shelf current flow was still downcoast, the notable exceptions being the anticyclonic rotation of the easternmost current vectors, as compared to the previous figure and the strong upcoast coastal currents measured at moorings 17 and 20 . Some surface currents responded to the change in direction of the wind stress by decreasing in magnitude (moorings 18 and 21) or changing direction (moorings 19, 22, 24, and 25). We will see below in the time series vector stick plots of the eastern current meters that there are strong inertial oscillations at these stations.

The winds over the Texas-Louisiana shelf continued to increase in magnitude and remained southwesterly as the hurricane proceeded inland. The winds directly associated with the hurricane decreased as the storm progressed inland, and the hurricane was downgraded to a tropical storm at 1800 UTC 26 August 1992 by the National Hurricane Center. By 1930 UTC 26 August 1992 (Figure B.1-8), the currents on the inner shelf (shallower than 100 m) east of $96^{\circ} \mathrm{W}$ had reversed and were upcoast; the currents along $90.5^{\circ} \mathrm{W}$ have rotated anticyclonically and indicate southerly flow; and along the $200-\mathrm{m}$ isobath, the currents remained downcoast. Only the wind gauge at mooring 17 continued to show the effects of the winds of the trailing outer wall of the tropical storm. Currents at the cross-shelf line near South Padre Island continued downcoast until approximately 0030 UTC 27 August 1992, when they began to turn upcoast.

At 230027 August 1992 (Figure B.1-9), the winds remained southwesterly and much flow over the shelf was upcoast. Exceptions to this trend were the downcoast flow seen in the east and the downcoast flow along the 200-m isobath. Also, the ring structure on the western shelf along the $200-\mathrm{m}$ isobath persisted throughout the hurricane.

Figure B.1-10 shows vector stick plots from the surface instruments along the cross-shelf mooring line along $90.5^{\circ} \mathrm{W}$. The southwesterly flow intensified as the hurricane approached the shelf and was first seen at approximately 1800 UTC 25 August 1992. After the hurricane passed and made landfall, the response of the shelf waters was inertial, with anticyclonic rotation of the current vector with periods of slightly greater than 24 hr . This response persisted for more than two days.

In summary, Hurricane Andrew was a dramatic event that drastically affected the general circulation pattern over the entire Texas-Louisiana shelf. Maximum values for significant wave height, peak spectral wave period, current velocity, and wind speed during the LATEX field program were recorded during this hurricane.

B. 2 The Storm of the Century (March 1993)

By any criterion, the winter cyclone that crossed the Gulf of Mexico and swept the eastern seaboard of North America 12-14 March 1993 was a major storm. Comparisons between this storm and previous exceptional winter storms ("Great Snow of 1717" and "Blizzard of 1888") prompted some to name the March 1993 event the "Storm of the Century". This storm killed an estimated 100-270 people on land and 48 at sea. Property loss in the U.S. and Cuba is estimated at nearly $\$ 3$ billion. Tornadoes, high surf, and storm surge threatened thousands of people while millions more were hampered by road and airport closures and by widespread power outages. Over the eastern third of the U.S., the storm produced record low temperatures and atmospheric sea level pressures, and record high snowfalls and wind gusts. Expanded descriptions of the meteorological extrema and accounts of the devastation appear in Lott (1993) and Kocin et al. (1995). The March 1993 storm continues to be a topic of discussion and study in the meteorological community.

Although winter cyclones affecting the northeast are notoriously hard to predict, weather forecasters were able to project many elements of this storm four to six days in advance (Uccellini et al. 1995). This was due to the existence of an extensive weather observing network capable of delivering observational data in near real time to weather centers for assimilation by numerical weather prediction models, a resource weather forecasters of previous "great" storms did not have. Reviews of the performance of the National Center for Environmental Prediction's medium range forecast (MRF) model in relation to this storm appear in Caplan (1995). Data sets, graphics, and satellite imagery of the storm are available via the worldwide web. In the following sections we will examine the storm from

Mooring 14-11m

Mooring 13-10m

Figure B.1-10. Vector stick plots from the upper instruments of the cross-shelf mooring line along $90.5^{\circ} \mathrm{W}$. Instrument depths are indicated on plot, time-step between vectors is 30 minutes.
an oceanographic perspective, particularly its effect on the circulation over the TexasLouisiana shelf.

Observations of wind and current fields

In the early hours of 12 March 1993, the soon-to-be "Storm of the Century" was a disorganized area of low pressure located over northern Mexico just south of the Texas border. Within 12 hours, this low-pressure feature moved into the coastal waters off south Texas where it consolidated and deepened. Wind speeds at NDBC buoy 42020 (approximately 180 km NE of Brownsville) increased from about 8 to $18 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ as the wind direction changed from east to northwest. Wind speeds at 42020 exceeded $10 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ for the next 36 hours. Over the second $12-\mathrm{hr}$ period, central pressures in the cyclone dropped dramatically as the cyclone moved east-northeast. The rate of pressure decrease, 17 mb in 12 hours, is rarely observed in the Gulf of Mexico (Kocin et al. 1995) and it far exceeded the rate needed to classify the storm as a "bomb" cyclogenic event (see Appendix A. 2 for a discussion of bomb cyclogenic events in the Gulf of Mexico). By 0000 UTC 13 March wind speeds at the Bullwinkle oil platform near Southwest Pass, Louisiana (BURL1) had exceeded $25 \mathrm{~m} \cdot \mathrm{~s}^{-1}$, and would continue to do so for the next 12 hours. The storm made landfall near Pensacola, Florida, around 0900 UTC 13 March (see Figure A.1-3 for the storm track) and continued to deepen for the next 15 hours or so, although at a much slower rate, as it continued northward along the eastern seaboard of the U.S.

The near-surface circulation over the Texas-Louisiana shelf was profoundly affected by the passage of the storm. The resulting circulation patterns were caused by the persistent high winds and the sea surface slopes resulting from the convergence and divergence of the waters on the shelf. The response appeared largely barotropic. Tidal forcing was relatively unimportant during the storm passage; even the strong near-surface flow associated with Eddy Vazquez was masked for several days by the storm-driven flow.

Figures B.2-1 through B.2-9 show a time sequence of wind vectors over the northwest Gulf of Mexico on a 0.5° by 0.5° grid paired with near-surface current vectors over the TexasLouisiana shelf on a 0.25° by 0.25° grid. The sequence shown covers the period from a day preceding the storm's entry into the Gulf to a day after landfall. The winds are described in Section 2.1.1; the currents in Section H.2. The current fields are based on instantaneous current meter observations at the indicated time and were gridded using the adjustable tension continuous curvature surface gridding algorithm found in the GMT package (Smith and Wessel 1990).

Figure B.2-1 shows the winds and currents 24 hours before the storm entered the Gulf. Winds were relatively light from the east or southeast. The current patterns do not appear to be responding to the present wind field. The strongest currents are associated with Eddy Vazquez located in the southwest region of the shelf.

Figure B.2-1. Gridded currents (top) and winds (bottom) for 11 March 19931200 UTC showing conditions during the passage of the "Storm of the Century".

Figure B.2-2. Gridded currents (top) and winds (bottom) for 12 March 19931200 UTC showing conditions during the passage of the "Storm of the Century".

Figure B.2-3. Gridded currents (top) and winds (bottom) for 12 March 19931400 UTC showing conditions during the passage of the "Storm of the Century".

Figure B.2-4. Gridded currents (top) and winds (bottom) for 12 March 19931600 UTC showing conditions during the passage of the "Storm of the Century".

Figure B.2-5. Gridded currents (top) and winds (bottom) for 12 March 19931800 UTC showing conditions during the passage of the "Storm of the Century".

Figure B.2-6. Gridded currents (top) and winds (bottom) for 12 March 19932000 UTC showing conditions during the passage of the "Storm of the Century".

Figure B.2-7. Gridded currents (top) and winds (bottom) for 12 March 19932200 UTC showing conditions during the passage of the "Storm of the Century".

Figure B.2-8. Gridded currents (top) and winds (bottom) for 13 March 19931000 UTC showing conditions during the passage of the "Storm of the Century".

Figure B.2-9. Gridded currents (top) and winds (bottom) for 14 March 19931000 UTC showing conditions during the passage of the "Storm of the Century".

Twenty-four hours later (1200 UTC 12 March, Figure B.2-2) wind speeds have increased dramatically. A strong downcoast wind component has developed along the entire coast from south Texas to the Mississippi delta and currents over the inner shelf region have organized and begun to flow west and south along the coast. East of $96^{\circ} \mathrm{W}$, easterly winds seaward of the shelf break and northeasterly winds over the shelf combined with the need to replace water transported downcoast in the highly divergent nearshore regime from $96^{\circ} \mathrm{W}$ to the Mississippi delta have produced strong onshore flow over the eastern half of the Texas-Louisiana shelf. The influence of Eddy Vazquez on the circulation has diminished as the coastal jet begins to overwhelm the northern arm of the eddy. The flow over the shelf is cyclonic with the center of the cyclone occurring near the $50-\mathrm{m}$ isobath in the southwest region of the shelf just north and west of the storm center.

Two hours later (1400 UTC 12 March, Figure B.2-3) the center of the cyclone has moved offshore and winds between it and the coast are from the northwest. An associated cyclone in the water appears with its center between the storm center and the coastline. As will be seen in subsequent frames, the center of the cyclone in the water remains between the 50and $200-\mathrm{m}$ isobaths and follows the storm as it tracks eastward. Although the coastal flow continues to intensify and transport water south, a strong northward transport continues across a broad region $\left(96^{\circ} \mathrm{W}\right.$ to $\left.91^{\circ} \mathrm{W}\right)$ at the shelf break. This net transport of water onto the shelf must compensate for the downcoast export of water over the inner shelf.

During 1600-2200 UTC 12 March (Figures B.2-4 through B.2-7) central pressures in the cyclone deepened rapidly (approximately $1.5 \mathrm{mb} \cdot \mathrm{h}^{-1}$) and wind speeds continued to increase. As the storm center moved east of New Orleans wind directions over the Texas-Louisiana shelf shifted from northeast to northwest. During this time sequence, downcoast currents over the inner shelf intensified in the eastern part of the region. The eastern limit of the strong southward arm of the shelf circulation migrated eastward with the storm and by 2200 UTC surface water was being exported from the shelf everywhere along the shelf break except in a relatively narrow region just west of the Mississippi delta. Currents measured along the south Texas coast reached their peak values of $80-120 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ between $1600-1730$ UTC.

Figure B.2-8 (1000 UTC 13 March) shows conditions an hour after the storm center made landfall. Strong winds persist and are nearly uniformly from the northwest. Downcoast of Galveston, coastal winds had a strong downcoast component and currents there were also directed strongly downcoast. Currents over the inner shelf from 91° to $93^{\circ} \mathrm{W}$ were upcoast (eastward) in response to the upcoast wind component. East of $91^{\circ} \mathrm{W}$ the currents remained downcoast, presumably not having yet had time to respond to the wind shift. Between 93° and $95^{\circ} \mathrm{W}$ flow was inshore perhaps in response to the large scale alongcoast divergence of flow over the inner shelf. In the southwest near the shelf break, Eddy Vazquez appears to have been reasserting its influence on the flow.

Figure B.2-9 (1000 UTC 14 March) shows conditions when the storm was centered near Maine. Wind speeds over the Texas-Louisiana shelf were greatly diminished, with variable direction. Rather than a weak cyclone-anticyclone pair with a zone of shoreward flow between them, the pattern shown is a broad anticyclonic flow similar to the mean summer pattern. This remarkably different flow pattern is consonant with upcoast flow regularly seen in summer in response to upcoast wind components.

Discussion

Immediately following the entry of the "Storm of the Century" into the Gulf, the circulation patterns over the Texas-Louisiana shelf conformed to the expected flow pattern over the inner shelf. As the downcoast flow along the inner shelf of Texas intensified, the flow along the shelf break east of $96^{\circ} \mathrm{W}$ began to depart significantly from that expected from a consideration of the local wind field alone. It appears that the cyclonic ocean circulation pattern, the eye of which moved eastward with the eye of the atmospheric cyclone, evolved in response to the rapidly moving low pressure region associated with the atmospheric cyclone. Without some measure of the sea surface slopes, either by satellite altimetery or by bottom pressure measurements we are limited to speculation.

Satellite altimetry is not useful because the mean surface is not well known over the shelf and because the repeat cycle is too slow for the rapidly changing elevations we are interested in. Unfortunately, the LATEX A directional wave recorders were not in service during the storm's passage; their low-frequency pressure records would have been useful in determining the spatial patterns of sea surface elevation at least for the inner shelf. We are fortunate, however, to have access to water level records from several locations from the Conrad Blucher Institute at Texas A\&M University-Corpus Christi.

Figure B.2-10 shows the water level (mean removed) for stations at Sabine Pass and Galveston Pleasure Pier. These records show an increase in water level which peaked about the time the storm entered the Gulf. The increase appears to be part of the normal tidal cycle except the magnitude appears larger than normal. This enhanced amplitude is probably associated with the increased strength of the coastal current (Figure B.2-2). From 1200 UTC 12 March to about the time of the storm's landfall, water levels at Galveston and Sabine Pass drop to extremely low levels. This descent occurred during the time depicted in Figures B.2-3 through B.2-8. It appears water was moved from the coast. Following landfall, wind speeds in the Gulf began to decrease, and simultaneously, water levels began to rise. Figure B.2-8 represents conditions about an hour after landfall and an hour or so after water levels along the coast began to rise. The same changes as observed in the coastal sea level and inner shelf currents were seen in the circulation model discussed in Appendices K and G (though with amplitudes differing from those observed). The response of the shelf following the passage of the storm is complex and deserves further study.

Figure B.2-10. Water level measured during March 1993 at Sabine Pass and Galveston Pleasure Pier.

B. 3 Coastal upwelling off south Texas

Wind-driven coastal upwelling likely occurs annually along the south Texas coast. Its occurrence may be a factor contributing to, perhaps even limiting, biological productivity in local waters. To date little has been published on this topic.

Based on averages of meteorological and oceanographic station data and discrete infrared satellite imagery we present evidence of seasonal upwelling along the Texas coast and describe its spatial and temporal extent in broad descriptive terms. The episodic nature of upwelling will be shown through examination of selected time series of winds and currents collected during the LATEX A Program.

Data

The data for this analysis are summarized in Figure B.3-1. Meteorological and hydrographic data collected over several decades have been combined with data from the LATEX A field program. Meteorological data are from the climatology by Hellerman and Rosenstein (1983), from airport weather stations at Brownsville and Corpus Christi, Texas (1951-1960), and from NDBC buoy 42008 off Freeport, Texas (1978-1983). These are fully discussed in Cochrane and Kelly (1986). Data from PTAT2 at Port Aransas, Texas (1992-1994) were obtained from NDBC.

Nearshore temperature and salinity were recorded at the Brazos Santiago tide station near Brownsville, Texas, from 1958 to 1971. In slightly deeper water, temperature and salinity data were collected at two GUS III stations during repeat visits during 1963-1965. Horizontal contours of near surface temperature and salinity were generated from data collected across the entire south Texas shelf during the LATEX hydrography cruises in May and August of 1993 and 1994. Full vertical profiles of CTD data taken along line 7 during the same LATEX cruises were used to produce vertical sections. Currents, temperature, and salinity were measured continuously from April 1992 to December 1994 at moorings 1 and 2 (data from moorings 3 and 4 were not used). Offshore temperature conditions are characterized by bathythermograph data presented by Etter and Cochrane (1975). Infrared imagery from the NOAA/NOS Ocean Products division and from the Coastal Studies Institute at Louisiana State University complete the data set.

One consequence of the planet's rotation is that in the northern hemisphere winds produce a net transport in the upper water column (Ekman layer) that is 90° to the right of the wind direction. If such Ekman transport is offshore, it must be replaced by water upwelled from below. This water is usually cooler, more saline, and often has higher concentrations of nutrients than the water it replaces. Winds that favor upwelling are those that have an upcoast component; i.e., for this discussion, from Brownsville toward New Orleans. As a first step

Figure B.3-1. Basemap of the south Texas shelf showing the locations where data discussed were measured.
then, we examine the meteorological record for times when the alongshelf component of the wind is conducive to upwelling.

Monthly mean alongshore wind stress from the climatology prepared by Hellerman and Rosenstein (1983) for $26^{\circ}, 27^{\circ}$, and $28^{\circ} \mathrm{N}$ along the Texas coast (Figure B.3-2) shows that alongshelf components are stronger in the south than in the north. This is primarily a consequence of a coastline orientation that is nearly meridional at 26° and 27° and bends toward a more zonal orientation at $28^{\circ} \mathrm{N}$. In the south, the alongshore stress becomes upcoast during March or April, reaches maximum strength in late May to early June, and persists until September. In the north, near $28^{\circ} \mathrm{N}$, upcoast stress begins mid-May, peaks in July, and is downcoast after August. Examination of the monthly mean alongshore wind stress from station data at Brownsville, Corpus Christi, and off Freeport shows good agreement with the climatology.

Evidence that alongcoast currents over the inner shelf respond to alongshelf wind forcing has been presented throughout this report. Further support for the south Texas inner shelf is given in Table B.3-1. At moorings 1-3 (Figure B.3-1) the $10-\mathrm{m}$ currents were downcoast during April to early May in all three LATEX years. From late May through June they were upcoast two of three years. In July and early August currents were strongly upcoast in each year.

Near-surface mean temperatures for the outer shelf and off shelf are compared to inner shelf stations in Figure B.3-3. Offshelf stations, represented by the bathythermogram compilation of Etter and Cochrane (1975), show an annual cycle with a temperature maximum occurring in August. Nearshore stations follow the offshore warming trend closely until June when the inshore stations begin decreasing to local minima in July. This decrease is attributed to upwelling resulting from upcoast alongshelf wind components. After July, the inner station temperatures gradually increase but do not reach the offshore temperatures until midSeptember. Because the current meters were deployed 10 to 14 m below the surface they recorded lower temperatures than those at the surface throughout the year, but they also show a decrease in temperature in July. Although the winds are favorable to upwelling in April and May, cooling in the nearshore waters is not apparent in the monthly averages during these months. This may be due to stratification effects or to upwelling winds being more episodic and weaker in April than in June.

Salinities from the Brazos Santiago tide station and the GUS III cruises (Figure B.3-3 lower panel) increase from May through July or August, and then decrease until October. While increasing salinity is an expected consequence of upwelling, higher salinities can result from the advection of water from the south due to the seasonal reversal in the general circulation at this time of the year. Thus, salinity is not a definitive indicator of upwelling in this region.

Figure B.3-2. Monthly mean alongshore wind stress component near the coast based on Hellerman and Rosenstein (1983).

Table B.3-1. Six-week means of the alongshore component of currents ($\mathrm{cm} \cdot \mathrm{s}^{-1}$) at top current meters ($10-14 \mathrm{~m}$ depth) of moorings 1,2 , and 3 combined. Negative currents are downcoast. All table entries have been given equal weight in computing multi-year means.

	1992	1993	1994	Mean
8 Apr - 19 May	-0.65	-1.08	-8.09	-3.27
20 May - 30 Jun	$<5.52>_{3}$	-4.44	2.57	1.22
1 Jul - 11 Aug	$<4.80>_{3}$	$<4.76>_{2}$	6.72^{*}	5.43
12 Aug - 23 Sep	-5.11	$\langle 5.62\rangle_{2}$	-	0.26

[^0]

Figure B.3-3. Near-surface mean temperatures and salinities from various locations over the inner shelf and over the outer shelf and offshore.

Compelling evidence of upwelling along the Texas coast is seen in a sequence of AVHRR infrared satellite images taken in 1993 on 7 July, 1 August (shown in Figure B.3-4), and 18 August. They show a coastal cool band of water extending from $24^{\circ} \mathrm{N}$ to $28^{\circ} \mathrm{N}$ inshore of the $50-\mathrm{m}$ isobath, coldest in July and waning in early August but still evident in the midAugust image. Table B.3-2 shows the relative frequency of coastal cool bands based on a subjective analysis by John Cochrane (personal communication) of the infrared imagery charts supplied by NOAA/NOS for the months June-September of 1992-1994 (nine charts per month). There is a significant increase in the relative frequency of occurrence of coastal cool bands from June to July, decreasing in August in some years, and definitely less frequent in September. Contour plots of near-surface temperature taken from the LATEX hydrography cruises in early August 1993 and 1994 (Figure B.3-5) confirm that low temperatures exist along the coast and range from $26-27^{\circ} \mathrm{C}$ in the south to $29-30^{\circ} \mathrm{C}$ upcoast.

Evidence of upwelling can be seen in the vertical sections of potential density and temperature in Figure B.3-6. In May 1993, isopycnals of potential density anomaly (σ_{θ}) slope downward toward shore indicating that upwelling is not occurring; in fact, the reverse may be true. In August, the isopyenals and isotherms slope upward toward shore, consistent with upwelling. Shown in Figures B.3-7 and B.3-8 are corresponding fields of near-surface salinity and geopotential anomaly of the surface (3 db) relative to 400 db (calculated as described in Appendix H.1). The fields further describe these before and after upwelling situations.

Figure B.3-9 shows a six-month time series (April-September 1992) of 40-hr low-passed alongshelf wind stress from PTAT2 and alongshelf currents from the top meter on mooring 1 , with raw temperature and salinity series from the same current meter. One sees there is fair correlation between major upcoast wind events and episodes of upcoast currents. The most interesting effect is found in the temperature record, which gradually increases until mid-June when a sharp $6-7^{\circ} \mathrm{C}$ drop occurs and persists for about a month. During the same period salinity increases 4-5 PSU and remains relatively constant for some time. A similar pattern is seen in 1993 although it occurs near the beginning of July. Conductivity data for 1994 were not available, but the temperature record showed an analogous drop in late June.

Discussion

Mean wind stress is favorable for upwelling along much of the western boundary of the Gulf of Mexico between $20^{\circ} \mathrm{N}$ and $28^{\circ} \mathrm{N}$ from April through August. Available near surface temperature records, however, indicate that the episodic upwelling that surely occurs in April and May is too infrequent or weak to be discerned in the mean temperature records for those months. Available current measurements suggest a downcoast mean current for April and May, consistent with weak upwelling. Because the mean near surface salinity for June is markedly above the April and May means, and the mean alongshelf current then is weakly

Figure B.3-4. AVHRR image for 1 August 1993 showing a coastal cool band of surface temperatures along the south Texas coast.

Table B.3-2. Relative frequency of occurrence per month of coastal bands that are cooler by $2^{\circ} \mathrm{C}$ or more than the adjacent open Gulf and extend 4° or more in latitude along the western boundary. An entry of 0.33 , e.g., means that cool coastal bands were evident during a third of the month. Based on NOAA/NOS/OPC Oceanographic Features Analyses.

	June	July	August	September
1992	0.33	0.78	0.33	<0.11
1993	<0.11	0.89	0.44	0.22
1994	0.33	0.89	0.89	0.44
Mean	0.22	0.85	0.56	0.22

upcoast, June appears to be a transition month. Marked upwelling and an upcoast current are mean conditions for July and August on the basis of all types of data available.

In the latter half of June or in July of 1992, 1993, and 1994, the inner shelf mooring near $27^{\circ} \mathrm{N}$, after a moderate upcoast wind fluctuation, experienced a rapid $4-5^{\circ} \mathrm{C}$ drop in temperature, which persisted for more than a month in both 1992 and 1993, and with some short interruptions, also in 1994. Further investigation is needed on wind-current interrelation and particularly study of the end of sustained upwelling in late August or early September.

Figure B.3-5. Near-surface (1-3 m) temperature contours from CTD data collected on hydrography cruise (a) H06 in early August 1993 and (b) H09 in early August 1994. Isolated bands of relatively cool water, indicative of upwelling, were found near the surface along the south Texas coast both years.

Figure B.3-6. Vertical section of σ_{θ} along line 7 in early May and early August 1993 and temperature in August 1993.

Figure B.3-7. Near-surface ($1-3 \mathrm{~m}$) salinity contours from CTD data collected on hydrography cruise (a) H05 in early May 1993 and (b) H06 in early August 1993. High-salinity (> 36) is found throughout the water column as a result of advection of high salinity water from the south.

Figure B.3-8. Geopotntial anomaly of the surface relative to 400 db in (a) early May 1993 from CTD data collected on cruise H05 and (b) in early August 1993 from data collected on cruises H051 The flow is downcoast in May and upcoast in August following the change in prevailing winds.

Figure B.3-9. Filtered alongshore wind stress and currents (positive upcoast) with unfiltered temperature and salinity from mooring 1 top and PTAT2 for the period AprilSeptember 1992.

Appendix C: Effects of the Texas Flood of October 1994

The Texas flood of October 1994 was the worst recorded in 500 years of local history. Rainfall in southeast Texas for the four-day period 15-19 October ranged from 8 to 28 inches (Liscum and East 1995). A combination of meteorological events-residual atmospheric moisture over southeastern Texas associated with Hurricane Rosa and moisture drawn from the Gulf of Mexico by a low pressure system in the Rockies-spawned vigorous thunderstorms that resulted in severe flooding. The USGS states that historical peak streamflows were exceeded at 23 of 43 stations monitored in the area. The criteria for the 100 -year flood were met or exceeded at 19 of the 43 stations, and three streams crested from five to eleven feet above previous maxima. Twenty-three lives were lost, 38 counties were declared disaster areas, and the cost of government assistance came to $\$ 112.8$ million.

The resulting freshwater input to the shelf was substantial, as seen in the discharge of the Texas rivers for 18-28 October (Figure 2.3-5). Their combined flow on 19 October exceeded that of the Mississippi-Atchafalaya discharge and provided an extremely strong buoyancy signal on the Texas inner shelf. The single largest contribution came from the San Jacinto River, as described in Section 2.3, but the Brazos, Colorado, Lavaca, Neches, and Trinity Rivers contributed significant amounts as well. Of these six rivers, two discharge onto the shelf directly, the Brazos and the Colorado, and four discharge indirectly: the Neches through Sabine Pass, the Trinity and San Jacinto through Galveston Bay, and the Lavaca through Matagorda Bay. Both Galveston and Matagorda Bays lie behind barrier islands and peninsulas.

Consistent with the non-summer circulation pattern, currents along the inner shelf showed a strong and persistent downcoast surface flow during the period (Figure H.2-3 for October 1994). Hence, freshwater input to the inner shelf would have been transported downcoast and represented in the salinities recorded by the moored current meters to the south. Mooring 23 was offshore and slightly downshelf of the Brazos River discharge (Figure 1.2-1). It was the nearest meter to the large freshwater source provided by the San Jacinto. The current meter record shows (Figure C-1) a strong and recognizable decrease in the $10-\mathrm{m}$ salinity beginning around 20 October and continuing through 30 November, at which time it returned to pre-event levels. Associated with the decrease in salinity was a strong diurnal oscillation, which could be attributed to movement of a coastal current front back and forth over the meter. The salinity recorded at the next mooring seaward (24 top) did not show a similar pattern and remained relatively unchanged during this period. Given a mean alongshelf velocity of $20 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$, it should have taken approximately 12 days to travel the 213 km between mooring 23 and the next adjacent southern mooring 2 . (No salinity record is available for mooring 1 top for the period in question.) The mooring 2 top current meter, located well to the south of the Brazos River, recorded a rapid decrease in salinity beginning around

Figure C-1. Raw (dotted) and 40-hr low-pass (solid) salinity for mooring 23 at 10 m for October (top) and November (bottom) 1994. The peak river discharge occurs on 19 October 1994 (dashed).

27 October with diurnal oscillations (Figure C-2). This recording was similar to that of mooring 23 top, except that it did not persist as long.

LATEX hydrographic cruise H 10 was conducted two weeks after the flood, from 1-14 November 1994. Horizontal plots of salinity (Figure C-3) at $3 \mathrm{~m}, 12 \mathrm{~m}$, and the bottom show a significant amount of lower salinity water (≤ 30) remained along the Texas inner shelf and, in particular, off the mouth of the Brazos (line 5). This is in contrast to the November cruise of the previous year, H07, which showed higher salinities (≥ 30). The vertical sections of salinity (Figure C-4) for line 4, located south of Sabine Pass, line 5, located off the Brazos River, and line 6, off Matagorda Bay, show that the lower salinities occurred quite close to shore on line 4 and then spread across the shelf on the downshelf sections. These sections were compared with those from H07, when the Texas river outflow was inconsequential relative to the Atchafalaya input. The comparisons substantiate definite freshening of the nearshore salinity field by the extraordinary river discharge of 1994.

The AVHRR image (obtained from Nan Walker of the Coastal Studies Institute, LSU) for 20 October 1994 shows well defined plumes seaward of Galveston Bay and the Brazos and cold water in the Lavaca Bay. The image for the following day shows that the inner shelf from the Sabine Pass to the Lavaca Bay was colder than the previous day, indicating that cooler river water was flowing onto the shelf. The 6 November 1994 image clearly shows cold water on the inner shelf against the coast from Atchafalaya Bay to the Lavaca.

There were two full shelf LATEX A hydrographic surveys during the peak spring discharge of the Mississippi-Atchafalaya rivers: H05 (25 April-11 May 1993) and H08 (29 April-5 May 1994). Comparison of salinity contours over the inner shelf off Texas on lines 4,5 , and 6 for November 1994 cruise H 10 (Figure C-4) with those from the spring cruises H05 and H08 (Figures C-5 and C-6) shows that the 1994 Texas flood led to nearshore salinity distributions similar to those caused by the Mississippi-Atchafalaya spring discharge. The magnitude of the spring Mississippi-Atchafalaya is, of course, much larger than that of the 1994 Texas rivers, but the input occurred some 400 km upcoast.

Figure C-2. Raw (dotted) and 40-hr low-pass (solid) salinity for mooring 2 at 10 m for October (top) and November (bottom) 1994. The peak river discharge occurs on 19 October 1994 (dashed).

Figure C-3. Surface (3-m) (upper), 12-m (midle), and bottom (lower) salinity for LATEX A cruise H10 in November 1994.

Figure C-4. Contours of salinity in vertical sections for LATEXA cruise H10 (2-3 November 1994). Sections are from onshelf on the left to offshelf on the right.

Figure C-5. Contours of salinity in vertical sections for LATEX A cruise H05 (25 April11 May 1993). Sections are from onshelf on the left to offshelf on the right.

Figure C-6. Contours of salinity in vertical sections for LATEX A cruise H08 (23 April7 May 1994). Sections are from onshelf on the left to offshelf on the right.

Appendix D: Case Study of Eddy Vazquez

Of the Loop Current eddies noted during the LATEX field program, Eddy Vazquez (V) had the greatest impact on Texas-Louisiana shelf circulation. The evolution of Eddy V in the western Gulf of Mexico was studied using satellite altimeter data provided by CCAR. Hydrographic, current meter, drifter, XBT, and satellite AVHRR data corroborated interpretations based on altimeter data. Eddy V was an identifiable anticyclonic feature for a year, from September 1992 through September 1993. This section presents the evolution of Eddy V and discusses its influence on the Texas shelf circulation. Additional analyses of Eddy V and other eddies observed during the LATEX period are given in Berger et al. (1996).

Evolution of Eddy V. The track of drifter 2447, deployed by LATEX A at the 200-m isobath near $28^{\circ} \mathrm{N}, 92^{\circ} \mathrm{W}$ on 4 August 1992, traced the movement of Eddy V from September 1992 until the drifter failed in early February 1993 (Figure D-1). On deployment, the drifter was rapidly drawn over the shelf edge by Eddy U. It made one circuit in that eddy before moving into Eddy V in mid-September 1992. In September, Eddy V migrated westward along the $2000-\mathrm{m}$ isobath at the foot of the continental slope. Vukovich and Crissman (1986) consider this pathway to be the least common for Loop Current eddies moving into the western Gulf.

In October, Eddy V turned southward due to topographic steering between 93° and $94.5^{\circ} \mathrm{W}$, where the bottom shallows to the west (Figure 2.5.1-4). The shelf edge current velocities show east-west flow with no strong offshelf transport in the region at that time. This is evidence that the southward turning of Eddy V was not the result of veering by entrainment of shelf water, a suggested mechanism for eddy veering at this location (Lewis et al. 1989; but see Glenn and Ebbesmeyer 1993). The southwestward translation of Eddy V slowed briefly in mid-October as the eddy interacted with the remnant anticyclonic Eddy T_{n} (Figure 2.5.1-1). Eddy T_{n} then coalesced with Eddy V.

After it passed $94.5^{\circ} \mathrm{W}$ during November, Eddy V turned to the northwest and moved into the eddy graveyard, the northwest corner of the open Gulf. It remained there from November 1992 through March 1993 (Figures 2.5.1-4 and D-1). The presence of Eddy U to the southeast likely had prevented Eddy V from continuing westward through the deeper part of the Gulf, as had occurred with other eddies after veering southward (Lewis et al. 1989). While Eddy V was to the east of and moving past the shallowing topography, it had blocked the westward movement of Eddy U , which stalled, with its center around $24.5^{\circ} \mathrm{N}, 89.7^{\circ} \mathrm{W}$, in October. Eddy V's progress around the topography in November freed Eddy U to move westward. With Eddy V in the northwest corner, Eddy U did not move due west through the deep, central Gulf waters. Instead, Eddy U moved southwest to the Mexican slope. As Eddy U moved northward along the Mexican slope, the two anticyclones met in a series of encounters from November 1992 through March 1993.

Figure D-1. Track of LATEX A drifter 2447 from its deployment on 4 August 1992 to its failure on 6 February 1993. Circles are the locations at 2200 hrs (UTC) for each day.

In mid-March and April, Eddy V elongated north-south. The SSHA maps (Figures D-2 and $\mathrm{D}-3$) show this elongation was caused by interactions with Eddy U and with cyclones to the east and west. During the exchange with Eddy U, Eddy V gained mass, as indicated by the increasing areal extent and SSHA maximum of Eddy V and decreasing extent of Eddy U . Evidence of this is supported by the LATEX C drifter 2449, which moved out of Eddy U, where it had been since October 1992, into Eddy V (Figure D-2a). As the eastern cyclone elongated north-south, so did Eddy V, developing multiple SSHA maxima in the process (Figures D-2b and D-3a). The bulk of Eddy V and the eastern cyclone moved south, the direction of the strong flow between the two features. During this time, the SSHA maps suggest that Eddy V spun up a cyclone to its west. In May, as the elongation of Eddy V continued, the western cyclone strengthened (Figure D-3a). In regions adjoining Eddy V, the western cyclone moved water northward while the eastern cyclone moved water south. The two cyclones effectively eroded Eddy V, splitting it into north and south eddies, Eddy V_{n} and Eddy V_{s} (Figure D-3b). Once Eddy V was split, the east and west cyclones coalesced. The approximate diameters of Eddy V_{n} and Eddy V_{s} after the split were 150 km and 220 km , respectively (Figure D-3b; see also Figure H.1-7).

Temperature and salinity data from cruise H05 (25 April-11 May 1993) substantiate that Eddy V_{n} had the characteristics of a Loop Current eddy, confirming that Eddy V_{n} was split off Eddy V. Figure D-4 shows the potential temperature and salinity along the 200-m isobath from approximately $94^{\circ} \mathrm{W}$ to the southern edge of the survey area. By the deepening isotherms that are characteristic of anticyclonic eddies, the potential temperature shows the northern edge of Eddy V_{n} located approximately between $94.3^{\circ} \mathrm{W}$ and $95.9^{\circ} \mathrm{W}$ (from station 212 to between stations 206-207), and the cyclone extended between $27.5^{\circ} \mathrm{N}, 95.9^{\circ} \mathrm{W}$ and $26.3^{\circ} \mathrm{N}, 96.3^{\circ} \mathrm{W}$ (from between stations 206-207 to station 202). These locations compare well with those from the SSHA and geopotential anomaly data (Figures D-3 and H.1-7). The core of the salinity maximum associated with Eddy V_{n} at the shelf edge was greater than 36.6 at temperatures about $20^{\circ} \mathrm{C}$, which is indicative of the Subtropical Underwater water mass brought into the Gulf by Loop Current eddies (Elliott 1982).

After the split, Eddy V_{S} moved to the south where it interacted with the remnant of Eddy U and with cyclones to its north and south. This resulted in its east-west elongation (Figure D-5a), and, in June, its translation eastward across the central Gulf. Eddy V_{S} coalesced with an unnamed anticyclonic eddy, centered at about $23.5^{\circ} \mathrm{N}, 92^{\circ} \mathrm{W}$, that had formed in the course of an interaction between Eddy U and Eddy V in March 1993. During July and August 1993, Eddy V_{s} coalesced with Eddy W_{s} (the southern part of Eddy W that also had split into two parts) and ceased to be a separate, identifiable anticyclonic Loop Current eddy (Figure D-5b).

Eddy V_{n}, which abutted the north continental slope at about $94^{\circ} \mathrm{W}$ (Figure D-3b), moved west until it adjoined the north and west continental slopes off Texas between $95.5^{\circ} \mathrm{W}$ and $96.3^{\circ} \mathrm{W}$ (Figure D-5a). In June and July, Eddy V_{n} elongated to the northeast-southwest (Figure D-5); it developed into a peanut shape with two SSHA maxima (compare

Figure D-2. Sea surface height anomaly with respect to along-track corrected Rapp 95 mean surface, (a) TOPEX cycle 21, 9-19 April 1993 with the track of LATEX C drifter 2449 (line with solid circles) superimposed, and (b) TOPEX cycle 22, 19-29 April 1993. Both cycles include ERS-1 35-day repeat centered on the mid-point of the T/P cycle.

Figure D-3. Sea surface height anomaly with respect to along-track corrected Rapp 95 mean surface, (a) TOPEX cycle 23, 29 April to 9 May 1993, with the 10-day average 10-m currents, and (b) TOPEX cycle 24, 9-19 May 1993. Both cycles include ERS-1 35-day repeat centered on the mid-point of the T/P cycle. The track of LATEX A drifter 6938 (line with solid circles) is shown for the respective time periods of both cycles.

Figure D-4. Vertical section of (a) potential temperature (${ }^{\circ} \mathrm{C}$) and (b) salinity (solid lines) and $\sigma_{\theta}\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right.$; dashed lines) along the $200-\mathrm{m}$ isobath for the western shelf between $94^{\circ} \mathrm{W}$ and $96.3^{\circ} \mathrm{W}$ on cruise H05.

Figure D-5. Sea surface height anomaly with respect to along-track corrected Rapp 95 mean surface, (a) TOPEX cycle 26, 29 May to 7 June 1993, with the track of LATEX A drifter 6938 (solid line with circles) superimposed, and (b) TOPEX cycle 32,27 July to 6 August 1993. Both cycles include ERS-1 35-day repeat centered on the midpoint of the T/P cycle.

Figures H.1-8 and D-5b). It was surrounded by cyclonic circulation to its northwest and a cyclone to its southeast. At this time, Eddy W_{n}, moving westward, was located east of Eddy V_{n}, with a center at about $26.3^{\circ} \mathrm{N}, 91.5^{\circ} \mathrm{W}$.

The temperature and salinity data from cruise H 06 (26 July-17 August 1993) provide evidence that Eddy V_{n} still retained its Loop Current eddy character. The SSHA map (Figure D-5b), corroborated by the geopotential anomaly map (Figure H.1-8), shows that Eddy V_{n} encroached on the 200 -m isobath in two regions, at approximately $27.7^{\circ} \mathrm{N}, 95.3^{\circ} \mathrm{W}$ and $26.5^{\circ} \mathrm{N}, 96.3^{\circ} \mathrm{W}$. The vertical section of potential temperature along the $200-\mathrm{m}$ isobath at the shelf edge shows deepening isotherms in both these regions-stations 206 through 209 on the north and stations 197 through 203 on the west in Figure D-6a. The core of the salinity maximum at the shelf edge in both regions contained eroded remnants of high salinity water, including a small number of samples with salinities greater than 36.6 at about $20^{\circ} \mathrm{C}$ (Figure D-6b).

In August, Eddy V_{n} contracted northward, becoming more circular, and moved eastward along the north slope. At the end of August and in September (Figure D-7a), Eddy V_{n} lost most of its mass to Eddy W_{n}, and its remnant dissipated quickly. By late September 1993, Eddy V_{n} ceased to be a discernible anticyclonic Loop Current eddy (Figure D-7b).

Characteristics of Eddy V. The characteristics of Eddy V changed throughout its life. Many changes were responses to its interactions with bathymetry, other anticyclones in the area, and cyclones around it. The major events in Eddy V's life, given with TOPEX/ POSEIDON (T/P) cycles, are listed in Table D-1. Selected events are letter coded to correspond to the key in Figure D-8a, to relate the events to the graphs of shape, size, SSHA maxima, and strength. Table D-2 shows dates for each T/P cycle.

Shape: The shape of Eddy V changed throughout the course of its life, but was roughly elliptical. The characteristics of the ellipse were used to measure the size and shape of Eddy V through time. Taking the $4-\mathrm{cm}$ SSHA contour as the eddy boundary, the lengths of the major and minor axes of the ellipse were estimated and their ratio determined. The ratio indicates how circular or elongated the eddy was, a value of one being a circle. Figure D-8b presents this ratio by T/P cycle.

Extrema in the ratio reflect elongations and contractions of Eddy V. When Eddy V moved east or west, it generally elongated east-west. This occurred regardless of shallowing topography. For example, when Eddy V moved westward along the north slope in October 1992 and when Eddy V_{s} moved east across the deep waters of the central Gulf, they both were elongated east-west. These elongations likely were influenced by interaction with other anticyclonic and cyclonic eddies. The elongation of Eddy V in October 1992 occurred as it completed coalescing with Eddy T_{n} in T/P cycles 5-7. The elongation of Eddy V_{s} occurred as it interacted with cyclones to its north and south in cycles 26-28 and as it coalesced with the anticyclonic eddy at $23.5^{\circ} \mathrm{N}, 92^{\circ} \mathrm{W}$ (Figure D-5a). When Eddy V was not translating

Figure D-6. Vertical section of (a) potential temperature (${ }^{\circ} \mathrm{C}$) and (b) salinity (solid lines) and $\sigma_{\theta}\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right.$; dashed lines) along the $200-\mathrm{m}$ isobath for the western shelf between $94^{\circ} \mathrm{W}$ and $96.3^{\circ} \mathrm{W}$ on cruise H06.

Figure D-7. Sea surface height anomaly with respect to along-track corrected Rapp 95 mean surface, (a) TOPEX cycle 35, 26 August to 5 September 1993, and (b) TOPEX cycle 38, 25 September to 4 October 1993. Both cycles include ERS-1 35-day repeat centered on the mid-point of the T/P cycle.

Table D-1. Major events in the evolution of Eddy V. Code is keyed to Figure D-8a.

	Cycles	Code
Interaction with bottom topography		
V veers southward from $26.5^{\circ} \mathrm{N}$ to $26^{\circ} \mathrm{N}$ by topographic steering	2-5	
V affects spin up/spin down of northern cyclonic eddy at $92^{\circ}-94^{\circ} \mathrm{W}$	2-11	
V affects spin up/spin down of western cyclonic eddy	20-24	
Splitting of Eddy V		
Eastern extension develops from V via interaction with topography	5-7	
extension interacts with U and strengthens; V weakens	8-9	B
extension detaches from $\mathrm{U} \& \mathrm{~V}$; moves to $23.5{ }^{\circ} \mathrm{N}, 92^{\circ} \mathrm{W}$	10	
part splits off V; part consolidates with V; V strengthens	10-12	C
Southeastern extension develops on V via interaction of V with U	16-17	
extension interacts with U and strengthens; V weakens	16-17	D
extension detaches from U \& V ; moves to $23.5{ }^{\circ} \mathrm{N}, 92^{\circ} \mathrm{W}$	18	
extension coalesces with V_{S}	26-29	G
Northeast extension develops on V via interaction with U \& cyclones	17-23	E
V detaches from U and splits into two parts, V_{n} and V_{s}	24	F
Interaction with Eddy Triton		
Eastern remnant of T coalesces with U ; possible formation of V	ERS-1*	
T_{n} slows V westward translation	3	
V coalesces with $\mathrm{T}_{\mathrm{n}}, \mathrm{V}$ strengthens	2-6	A
Interaction with Eddy Unchained		
V splits off of U	2-3	
V blocks westward translation of U ; U stalled	2-5	
East extension of V meets U as U moves southwest; V weakens	8-10	B
V interacts with U to the south; V weakens	14-17	D
V interacts with U to the south; V strengthens	19	
V \& U interact; both split into north and south parts; V strengthens	21-24	E
V_{s} interacts with U and strengthens	24-25	
Interaction with Eddy Whopper		
V_{s} coalesces with W ; V_{s} ceases existence	30-31	G
V_{n} coalesces with $\mathrm{W} ; \mathrm{V}_{\mathrm{n}}$ ceases existence	34-37	J
Interaction with cyclonic eddies		
V elongated north-south by cyclonic eddies to the west and east	20-23	
Cyclonic eddies to the east and west enhance split of V	23-24	E
V_{n} exchanges water with shelf as part of cyclone-anticyclone pair	23-26	
V_{s} elongated east-west by cyclones to north \& south; moved east	26-28	
V_{n} elongated northeast-southwest by cyclonic eddies to northwest \& southeast \& by bottom topography; V_{n} weakens \& strengthens	26-32	H
V_{n} strengthens as cyclone to its east strengthens from W	32-34	I
V_{n} moves east as cyclone to its south strengthens	32-33	
V_{n} weakens as it interacts with cyclones and W	35-37	J

[^1]

Figure D-8. Properties of Eddy V by T/P cycle: (a) code to events in Table D-1, (b) ratio of major to minor axes, (c) SSHA maxima, (d) area of ellipse formed by major and minor axes, and (e) eddy strength index from SSHA maximum/average axial radius.

Table D-2. Dates of TOPEX/POSEIDON repeat cycles, including mid-point date.

Cycle No.	Dates of Cycle	Mid-point
1992		
2	3-12 Oct	7 Oct
3	12-22 Oct	17 Oct
4	22 Oct - 1 Nov	27 Oct
5	1-11 Nov	6 Nov
6	11-21 Nov	16 Nov
7	21 Nov-1 Dec	26 Nov
8	1-11 Dec	6 Dec
9	11-21 Dec	16 Dec
10	21-31 Dec	26 Dec
1993		
11	31 Dec 1992-10 Jan	5 Jan
12	10-20 Jan	15 Jan
13	20-30 Jan	25 Jan
14	30 Jan - 8 Feb	4 Feb
15	8-18 Feb	14 Feb
16	$18-28 \mathrm{Feb}$	24 Feb
17	$28 \mathrm{Feb}-10 \mathrm{Mar}$	5 Mar
18	10-20 Mar	15 Mar
19	20-30 Mar	25 Mar
20	30 Mar - 9 Apr	4 Apr
21	9-19 Apr	14 Apr
22	19-29 Apr	24 Apr
23	29 Apr - 9 May	4 May
24	9-19 May	14 May
25	19-29 May	24 May
26	29 May - 7 Jun	3 Jun
27	7-17 Jun	13 Jun
28	17-27 Jun	23 Jun
29	27 Jun - 7 Jul	2 Jul
30	7-17 Jul	12 Jul
31	17-27 Jul	22 Jul
32	27 Jul - 6 Aug	1 Aug
33	6-16 Aug	11 Aug
34	16-26 Aug	21 Aug
35	26 Aug - 5 Sep	31 Aug
36	5-15 Sep	10 Sep
37	15-25 Sep	20 Sep
38	25 Sep-4 Oct	30 Sep

significantly or interacting with other eddies, it generally consolidated and became more circular, as when Eddy V consolidated into the northwest corner during cycles 8-9. Other examples are Eddy V_{s} just after the split of Eddy V into two major parts (cycles 24-25; Figure D-3b) and Eddy V_{n} in August prior to joining with Eddy W (cycles 32-35; Figure D-7a). North-south elongations occurred generally when Eddy V interacted with Eddy U to the south. For examples, Eddy V elongated southward as it encountered Eddy U during cycles 14-17 and again as it interacted both with cyclones to its west and east and with Eddy U during cycles 19-22 (see Figure D-2). Eddy V_{n} elongated to the southwest and contracted several times as it interacted with the north and west slope and with cyclones to its northwest and southeast in cycles 26-32 (Figure D-5).

Size: The SSHA maxima and an estimate of the area of the ellipse were analyzed to determine how the size changed through time (Figures D-8c and d). In October, Eddy V's diameter was approximately 290 km (Figure 2.5.1-1). The eddy's size increased generally when it coalesced with remnant anticyclonic eddies, such as with Eddy T_{n}, or during some exchanges with other cyclonic or anticyclonic features. Eddy V's size decreased during several exchanges with Eddy U and when portions of the eddy were split off (Table D-1), such as occurred between cycles 5 and 17. From the plot of the area after the major split into two parts in cycle 24, Eddy V_{s} was comparable in size to Eddy V before the split and was much larger than Eddy V_{n}. After the split, Eddy V_{s} slowly decreased in size as it interacted with cyclones to its north and south until its coalescence with the southeast anticyclonic eddy and Eddy W (Figure D-5). Eddy V_{n} also underwent a series of size increases and decreases resulting from its interactions with cyclones and anticyclones in the region, keyed to Table D-1, until its terminal exchange with Eddy W in cycles 35 and 36.

Strength of Eddy V. The strength or intensity of an eddy is related to the horizontal gradient of the SSHA. The ratio of the SSHA maximum to an average axial radius, computed as half the average of the major and minor axes, was used as a qualitative index of eddy strength (Figure D-8e). Extrema in the eddy strength index also can be related to interactions of Eddy V with cyclones and anticyclones or to other events in the eddy's life (Table D-1).

Eddy V generally strengthened when other anticyclonic eddies joined with it, such as with Eddy T_{n} in cycle 5 , and it interacted with surrounding cyclonic eddies. The most significant example occurred during cycles 33-34, when Eddy V_{n} strengthened as the cyclones to its east and southeast were envigorated by Eddy W as that eddy broke off the Loop Current and moved west. In this case, energy was transferred between anticyclones through cyclones.

A significant cause of weakening in the eddy was the splitting off of parts due to encounters with cyclonic and other anticyclonic eddies. Small parts of Eddy V split off a number of times, resulting in decreases in its strength index (Table D-1 and Figure D-8e). One of many cases occurred during a period of intense interaction of Eddy V with Eddy U and cyclones in cycles 12 through 17. Parts of both Eddy V and Eddy U split off and both were diminished.

The parts then combined and moved to about $24^{\circ} \mathrm{N} 92^{\circ} \mathrm{W}$, forming an anticyclonic eddy that persisted until it joined with Eddy V_{S} (Figure D-5a).

The action of cyclonic eddies about the anticyclonic eddy also can weaken an eddy. This weakening is more gradual than when parts split off. Note, for example, that the strength of Eddy V_{s} decreased slowly during cycles 24 through 29. During this period, Eddy V_{s} interacted with cyclones to its north and south and elongated. Finally, the eddy's strength decreased during coalescence with another anticyclonic eddy, as when Eddy V_{n} interacted directly with Eddy W during cycles 35 and 36 . Eddy V_{n} was weakened substantially, suggesting that most of the mass and energy of Eddy V_{n} was taken up by Eddy W . The remainder of Eddy V_{n} then dissipated rapidly and was no longer a discernible anticyclone by cycle 38 in late September 1993 (Figure D-7b).

Influence of Eddy V on the Texas shelf circulation in April-May 1993. SSHA data show Eddy V_{n} encroached on the Texas shelf in April-May 1993 (Figures D-3b and Figure D-5a). They also show a cyclonic eddy spinning up to the west as Eddy V_{n} split off Eddy V and encroached on the shelf (Figures D-2 and D-3). As the current vectors on Figure D-3a show, this cyclone-anticyclone pair had a significant influence on the shelf circulation.

LATEX A drifter 6938 was deployed on 2 May 1993, at the 200-m isobath of the TexasLouisiana shelf just northeast of Eddy V_{n}. It moved immediately off the shelf at about $94^{\circ} \mathrm{W}$ into the east flank of Eddy V_{n} (Figure D-9); this showed that Eddy V_{n} was drawing water southward, off the shelf. The track of the drifter shows that $E d d y \mathrm{~V}_{\mathrm{n}}$ translated westward and encroached on the shelf edge throughout May. SSHAs indicate Eddy V_{n} had an approximate diameter of 140 km during this time. SSHAs show Eddy V_{n} decreased in size to about 100 km diameter in June and became elongated against the Texas shelf. The drifter left Eddy V_{n} to circulate in the cyclonic eddy located to the southeast of Eddy V_{n} (see Figure D-5a).

The influence of the cyclone-anticyclone pair is evident in the sea surface temperature (SST) image for 12 May 1993 (Figure D-10). The SSHA contours for the period 9-19 May 1993 are overlain on the SST image, and the anticyclonic and cyclonic eddies in the northwest corner are labeled for identification. The darker shades on the SST image indicate the warmer water of the anticyclones; the lighter indicate cooler water, such as found on the shelf. The warm waters of Eddy V_{n} moved onto the shelf at about $95.5^{\circ} \mathrm{W}$ by the northwestward flowing jet between Eddy V_{n} and the western cyclone. These warm waters then bifurcated to flow to the east along the northern periphery of Eddy V_{n} and to the southwest along the outer north and west sectors of the western cyclone. Cooler shelf waters were drawn off the shelf in two locations. One was at about $94^{\circ} \mathrm{W}$ where the eddy circulation turns southward offshelf. The other was at the southwestern side of the western cyclone, where its circulation turns eastward offshelf at about $26.5^{\circ} \mathrm{N}$ to $27^{\circ} \mathrm{N}$. Eddy V_{s}, south of the western cyclone, acted with the western cyclone to draw water offshelf at about $26^{\circ} \mathrm{N}$ to $26.5^{\circ} \mathrm{N}$.

Figure D-9. Track of LATEX A drifter 6938 from its deployment on 2 May 1993, until it left the Texas-Louisiana shelf on 30 August 1993. The track of drifter 6939 for May 1993 also is shown. Circles are locations at 2200 hrs (drifter 6938) and 2300 hrs (6939) in UTC each day. Triangles show locations of hydrographic stations on cruise H 05 for the vertical sections given in Figures D-4 and D-12.

Figure D-10. Satellite AVHRR sea surface temperature for 12 May 1993, with the sea surface height anomaly contours $(2 \mathrm{~cm})$. The anticyclonic Eddy V_{n} and Eddy V_{s} as well as two cyclones (WC and SEC) are labeled.

The salinity at the $3-\mathrm{m}$ depth indicates that water was being moved onto and off the shelf by the cyclone-anticyclone pair (Figure D-11). The waters of Loop Current Eddy V_{n}, which were higher in salinity than the surrounding waters, were those with salinity of 36 or more that encroached on the western shelf near $95^{\circ} \mathrm{W}$. Salinities greater than 34 extended onto the shelf at about $95.5^{\circ} \mathrm{W}$; they wrapped around the cyclone in a counterclockwise direction along the shelf edge and around Eddy V_{n} in a clockwise direction. This resulted from water being moved onto the shelf by the cyclone-anticyclone pair. The fresher waters of the shelf (<34) moved offshelf at the eastern side of Eddy $\mathrm{V}_{\mathrm{n}}\left(\sim 94^{\circ} \mathrm{W}\right)$ and at the southwestern side of the western cyclone $\left(26.5^{\circ} \mathrm{N}\right.$ to $\left.27^{\circ} \mathrm{N}\right)$, as in the SST image.

More significantly, the 3-m salinity contours indicate Eddy V_{n} and its associated cyclone influenced the circulation over much of the western shelf. Eddy V_{n} drew fresh water across

Figure D-11. Salinity at the 3-m depth on cruise H05, 25 April to 11 May 1993. Eddy V ${ }_{n}$ abuts the shelf edge in the region of high salinity (36) on the western shelf. Large circles are the locations of stations 138, 211, and 213 (west to east).
the shelf in a southeastward squirt from the inner shelf at about $95.5^{\circ} \mathrm{W}$. This shelf water moved along the northern periphery of Eddy V_{n} and then off the shelf at about $94^{\circ} \mathrm{W}$ on the eastern side of the eddy. The 34 salinity contour in this region denotes the boundary between the squirt and the eddy. The western cyclone also drew fresh water from the inner shelf across and off the shelf at about $27^{\circ} \mathrm{N}$. Thus, the near-surface salinity distribution portrays essentially the same picture of water movement as the near-surface temperature distribution.

The geopotential anomaly field and the $10-\mathrm{m}$ current vectors (Figure D-12) confirm the movement of water on and off the shelf that is suggested by the SST and 3-m salinity maps. The geopotential anomaly of 3 db relative to 400 db shows onshelf flow at about $95.5^{\circ} \mathrm{W}$ and offshelf flow at about $94^{\circ} \mathrm{W}$. The squirt is associated with the offshelf flow at about $94^{\circ} \mathrm{W}$. The geopotential anomaly map suggests offshelf flow associated with the southwest side of the western cyclone at 26 to $25.5^{\circ} \mathrm{N}$. The 10 -day average current vectors show strong, alongshelf, eastward flow of up to $50 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ associated with the northern periphery

Figure D-12. Geopotential anomaly of 3 db relative to 400 db from a composite of hydrographic data for LATEX A cruise H05 and AXBT data for LATEX C F08 and F09 (26 April to 18 May 1993). Mean current vectors for the ten-day period of T/P cycle 23 (29 April to 9 May 1993) are shown. Solid circles show locations of stations 138, 211, and 213 from cruise H05.
of Eddy V_{n} and southward alongshelf flow of about $15 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ associated with the western cyclone. The 10 -day average current vectors are for the period corresponding to the T/P cycle 23 period (29 April and 9 May 1993). To tie the SSHA map (Figure D-3a) with the in situ data presented here, the cycle 23 SSHA contours are overlain on the SST map (Figure D-10) and the current vectors also are shown on the T/P cycle 23 map (Figure D-3a).

Vertical sections of potential temperature, salinity, and σ_{θ} extend the picture of the seasurface features into the water column. Line 9 along the $200-\mathrm{m}$ isobath (Figure D-4) crossed the encroaching portions of both Eddy V_{n} and its paired western cyclone. The fresh water being drawn off the shelf is evident in the vertical salinity section (Figure D-4b). Stations 197 to 203 are on the southwest flank of the cyclonic eddy (see station locations, shown in Figure D-9). The shallow lens of low salinity (≤ 34) water in the upper $10-20 \mathrm{~m}$ was shelf water being moved offshelf in this region. Stations 210 to 212 are
located along the northeastern edge of Eddy V_{n}, in the region where the squirt of cooler, fresher shelf waters (Figure D-11) was drawn off by Eddy V_{n}. As the saltier water of Eddy V_{n} circled around its north edge and turned south, it mixed with the fresher waters of the shelf and formed a front that extended to the southeast. The resulting squirt had a salinity between 36 and 35 at stations 210 to 212 (Figure D-4b). This squirt extended to about 100 m depth, as indicated by the dip in the 36 salinity isopleth at these stations.

Line 5 is a cross-shelf transect with offshelf stations in the northern periphery of Eddy V_{n} (Figure D-13a; see Figure D-9 for the station locations). The isopycnals of the outer shelf region of line 5 slope downward offshelf, indicating the northeastward flow associated with the northern edge of Eddy V_{n} in that region. The pycnocline becomes vertical in the upper 25 m between stations 134 and 139 . This resulted from the meeting of the shelf and Eddy V_{n} waters. The deepest points of the σ_{θ} surfaces associated with the eddy tilt towards the shelf (e.g., see σ_{θ} of 24 through 26). The high salinity core (≥ 36.5) of the Subtropical Underwater, characteristic of anticyclonic Loop Current eddies, was present at the $150-200 \mathrm{~m}$ depth in Eddy V_{n}. The fresh water (≤ 34) drawn across the shelf by Eddy V_{n} extended from the inner shelf to the boundary region with Eddy V_{n} where the horizontal gradient of salinity, as well as σ_{θ}, steepened. The 36 salinity contour shows interleaving of fresher with saltier water centered at the 35-m depth; this is most clear at station 138 (the location of this station is identified relative to the 3-m salinity in Figure D-11 and relative to the geopotential anomaly field in Figure D-12).

Line 7 also is a cross-shelf transect (Figure D-13b; see Figure D-9 for the station locations). Its offshelf stations were located in the western cyclone. The western cyclone is evident in the section by the doming isopycnals, indicating southward flow in this region. Fresh water extended from the inner to the outer shelf in a layer about $10-20 \mathrm{~m}$ thick. This water was drawn across the shelf under the influence of the cyclone. Unlike the offshelf freshwater flow from Eddy V_{n}, however, there was no strong horizontal gradient of salinity between the offshelf and shelf waters.

Stations 138, 211, and 213 lie, from west to east, along the velocity squirt in Figure D-12. The interleaving indicated by the contours of salinity along line 5 (Figure D-13a) is evident in the potential temperature-salinity ($\theta-\mathrm{S}$) diagrams for these three stations (Figure $\mathrm{D}-14$). The stations fell along the front between the core of the squirt and Eddy V_{n} that is indicated by the 34 salinity contour (Figure D-11). The interleaving is evident in the peaks in the θ-S diagrams. All three stations have similar peaks, particularly at σ_{θ} of 24.25-24.5. As the σ_{θ} value increases between 24.5 and 25 , the potential temperature and salinity both decrease before peaking again. This decrease is less precipitous at station 213, which is offshelf and farther off the front (Figure D-11). Mixing occurs along the front between the high and low salinity waters.

Drifter 6938 (Figure D-9) showed that Eddy V_{n} moved westward during May. A time series showing the daily average current vectors at the nominal $10-\mathrm{m}$ depth over the western Texas-

Figure D-13. Vertical section of salinity (solid lines) and $\sigma_{\theta}\left(\mathrm{kg} \cdot \mathrm{m}^{-3}\right.$; dashed lines) along (a) line 5 and (b) line 7 of cruise H 05 .

Louisiana shelf every third day shows this westward movement affected the currents at the shelf edge (Figure D-15). In late April, the currents at the shelf edge exhibited the influence of the cyclonic-anticyclonic pair (April 21-30). There was relatively weak onshelf flow at mooring 6 (current jet between an anticyclone and cyclone), weak eastward flow at moorings 7 and 8 (anticyclone), and relatively strong southward flow at mooring 5 and 6 (cyclone). This pattern indicates that the cyclone was located closer to the shelf edge than the anticyclone. As Eddy V_{n} and its associated western cyclone moved farther onto the continental slope in early May, the currents at the shelf edge increased. Onshelf flow from the current jet between Eddy V_{n} and the cyclone moved from mooring 6 (May 3-6) to mooring 5 (May 9-18) to mooring 4 (May 21-24), thus tracing Eddy V_{n} moving west and the western cyclone moving south along the shelf edge.

The time series of temperature and salinity from moorings $4,5,6$, and 7 at the $100-\mathrm{m}$ depth also show that Eddy V_{n} moved to the west (Figure D-16). The $20^{\circ} \mathrm{C}$ isotherm depths show Eddy V_{n} had warmer water at $100-\mathrm{m}$ depth than surrounding waters (April-May 93 plot in Figure H.1-1). Most of the time, mooring 4 was influenced by the western cyclone. Its temperature consistently was $16-17^{\circ} \mathrm{C}$ and was cooler than the waters at the other moorings

Figure D-14. Potential temperature-salinity diagrams for (a) stations 138 and 211 and (b) stations 211 and 213 from cruise H05. Station locations are shown on Figures D-11 and D-13.

Figure D-15. Daily average current vectors at a nominal $10-\mathrm{m}$ depth over the western shelf for every third day between 21 April and 24 May 1993. The locations of moorings 4, 5, 6, and 7 (west to east) are indicated by the large circles on the plot for 21 April.

Figure $\mathrm{D}-16$. Time series of (a) temperature $\left({ }^{\circ} \mathrm{C}\right.$) and (b) salinity at 100 m from moorings 4-7 along the $200-\mathrm{m}$ isobath on the western shelf. Figures D-11 and D-13 show mooring locations.
(Figure D-16a). The vector time series in Figure D-15 show that the warmer water of Eddy V_{n} appeared first in the $100-\mathrm{m}$ temperature time series for mooring 7 , where the temperature increased from about $17^{\circ} \mathrm{C}$ around April 12 to $22^{\circ} \mathrm{C}$ about 10 May . This warm water appeared at mooring 6 about 6 May and at mooring 5 about 17 May . By the time the warm water appeared at mooring 5 , it no longer was detectable at mooring 7 . This pattern is consistent with the westward moving eddy.

The salinity time series at $100-\mathrm{m}$ depth (Figure D-16b) is complex but shows the influence of Eddy V_{n} and the western cyclone. The moorings show oscillating increases and decreases in salinity throughout the time series. Moorings 4,5 , and 6 were influenced by the western cyclone throughout the last half of April, while mooring 7 showed a higher salinity associated with the influence of saltier waters from Eddy V_{n}. In the first half of May, when Eddy V_{n} moved westward and farther onto the slope, it brought higher salinity water to moorings 6 and 5. These moorings were in the region where the current jet from the cyclone-anticyclone pair was impinging on the shelf. The complex pattern of salinity at these moorings reflects the changing degree of influence of the fresher water that the cyclone was bringing around and the saltier water that Eddy V_{n} was moving onto the shelf. The large increase in salinity at moorings 6 and 5 between 17 and 24 May occurred as Eddy V_{n} moved up against the entire Texas shelf edge at $27^{\circ} \mathrm{N}$.

The current vector time series and drifter tracks also show how the flows under various shelf regimes react to wind events. In early May, the winds over the western shelf generally were from the east-southeast. The alongshelf component of this wind was downcoast as far south as $27.2^{\circ} \mathrm{N}$, just south of the line 1 moorings. The resulting currents on the inner shelf were generally downcoast (e.g., 3, 6, and 9 May currents in Figure D-15). The currents at the shelf edge, however, responded to the cyclone-anticyclone pair, not the wind regime. About 11 May, there was a frontal passage marked by winds shifting from the north and then, by 12 May, from the south to southeast. The alongshelf component of the winds was upcoast, causing the currents over the inner shelf to flow upcoast (e.g., 12 May in Figure D-15). The currents at the shelf edge, however, continued to be driven by the cycloneanticyclone pair. The upcoast wind and current regime persisted until another frontal passage on 18-20 May. By 21 May, the alongshelf winds were downcoast along the western shelf to approximately $27.2^{\circ} \mathrm{N}$. The currents on the inner shelf returned to downcoast flow while currents at the shelf edge continued to respond to the eddies (compare 18,21, and 24 May in Figure D-15).

The wind driving of the inner shelf currents and cyclone-anticyclone driving of the outer shelf currents also is seen in the respective tracks of drifters 6938 and 6939 (Figure D-9). Drifter 6939 was deployed about 60 km north of drifter 6938; both were drogued at 9 m . Drifter 6938 was drawn into Eddy V_{n} whereas drifter 6939 remained on the shelf moving slowly in a northward direction. When the currents reversed due to the wind reversal about 10 May, drifter 6939 moved rapidly eastward or upcoast. Drifter 6938, however,
continued to move westward under the influence of the eddy. When the downcoast wind regime was reestablished about 21 May, drifter 6939 turned westward and moved downcoast; drifter 6938 continued to circulate in Eddy V_{n}. Two other drifters, deployed along $94^{\circ} \mathrm{W}$ at 12 km and 35 km north of drifter 6938, responded to the wind shift in a manner similar to drifter 6939. This sequence of events is evidence that the upper layer of the western inner shelf circulation is driven primarily by the wind regime and the outer shelf circulation is driven mainly by the anticyclonic eddy systems.

Eddy V_{n} influenced the suspended particulate matter, nutrient, and oxygen concentrations as well. These are discussed in Sections 5.1, 5.2, and 5.3 respectively.

Appendix E: A Volumetric Temperature-Salintty Census for the Texas-Louisiana Shelf

We developed a volumetric T-S census of the Texas-Louisiana shelf based on the ten hydrographic surveys of the region during the period May 1992 through November 1994. The complete set of T-S figures appears in a technical report by Li et al. (1996). The census includes coarse distributions by intervals of $1^{\circ} \mathrm{C}$ and 1 in salinity, and finer distributions by intervals of $1^{\circ} \mathrm{C}$ and 0.2 in salinity, for the entire shelf and for the eastern (east of $94^{\circ} \mathrm{W}$) and western half shelves, as allowed by the data distribution.

Montgomery (1958), Cochrane (1958), and Pollak (1958) introduced the volumetric T-S diagram as a quantitative tool for analyzing distributions of temperature and salinity in the world's oceans. The three authors identified water classes by intervals of temperature and salinity values and then calculated the volume of each class. From the plots they produced, the volume contributed to the whole by each class was easily determined, and the classes comprising 50 and 75 percent levels of the total volume were identified.

The data from which the first volumetric censuses were produced were sparse; e.g., Montgomery (1958), who examined the Atlantic, included only one station from the Gulf of Mexico in his calculations. No previous T-S census for the Gulf of Mexico has been published, but two master's theses have presented results of T-S studies of Gulf data. Wilson (1967) based his quantitative estimates of the different T-S classes on data obtained from the R / V Hidalgo cruise of February and March 1962, a survey of the entire Gulf of Mexico in 126 stations. A second thesis to examine the T-S distribution of the Gulf of Mexico is that of Ulm (1983). Confining his study to the Texas-Louisiana continental shelf, Ulm based his analysis on historical data from 1958 to the time of his study, plus 1951-1953 cruises of the M/V Alaska. His data consisted largely of information obtained during monthly surveys conducted from the R / V Gus III between January 1963 and December 1965. Ulm produced monthly volumetric T-S diagrams for the shelf and, separately, bimonthly diagrams for the west and east shelf (divided at $95^{\circ} \mathrm{W}$) regions of it. Following Montgomery (1958), Cochrane (1958), and Pollak (1958), he determined 50 and 75 percent contribution levels. Ulm also examined monthly-averaged volumetric distributions of temperature and salinity individually by month for the entire Texas-Louisiana shelf and for the western and eastern regions. He identified and followed modes of high and low volumes with given T-S values through time; he related them to river discharge and seasonal warming and drew seasonal inferences.

After determining volumetric T-S distributions for each of the ten LATEX A cruises for half-shelf and full-shelf regions as feasible, we used the results to prepare temporal distributions of the volume of water within distinct intervals of T and S, called univariate distributions of T and S over time. The unit used for volumetric T-S distributions and for univariate distributions is km^{3}. Both coarse- and fine-scale volumetric T-S distributions for
each cruise are presented in the technical report. Also in that report are T-S distributions averaged over all May, July-August, November, and February cruises; these may be taken as estimates of the four seasonal volumetric distributions for the eastern shelf and as estimates for spring, summer, and fall for the western and entire shelf regions. Finally, univariate distributions in time of T and S for the east, west, and entire shelf also are included in that technical report.

Methods

For the eastern half shelf, data from each cruise were used to calculate volumetric T-S distributions. For the western half and for the whole shelf, data from each of the last six hydrographic cruises ($\mathrm{H} 05-\mathrm{H} 10$) were used to produce volumetric T-S distributions.

Two sets of volumetric T-S distributions were generated. Classes of $1^{\circ} \mathrm{C}$ by 1 salinity unit were used for the entire range of salinity and temperature. These distributions allow an examination of all fresh water sampled. On a finer scale, classes of $1^{\circ} \mathrm{C}$ by 0.2 in salinity were used for salinities ranging from 34 to 37 . This salinity range encompasses the waters of the off-shelf Gulf of Mexico and shelf waters not directly influenced by river discharge.

For each cruise, a total volume for each T-S class was calculated over the study region. To accomplish this, the area of the study region or sub-region was divided into quadrangles of 15 ' latitude by 15 ' longitude (Figure E-1). Total volume for a T-S class is the sum of the volumes for that class under every quadrangle. For quadrangles that included bottom depths greater than 200 m only the upper 200 m of the water column was counted in the census. This decision was made because in the study region the shelf-slope break is near 200 m , and we did not wish to include the large volumes of deeper water seaward of the shelf edge but still within the quadrangles.

Temperature and salinity measured continuously with depth at each hydrographic station were binned in $0.5-\mathrm{m}$ depth increments. For a given T-S class, a measure was found of the vertical thickness over which the T-S class occurred. For most T-S classes, the total thickness was zero. The vertical thicknesses of each T-S class at each station were gridded to regularly distributed points, the four corners of the grid boxes. The gridding scheme used is called a nearest neighbor algorithm (Wessel and Smith, 1993). It assigns an average value to each grid point having one or more observed points within a given search radius around the grid point. The average value was computed as a weighted mean of all the observed points within a search radius of one degree latitude, using the weighting function

$$
\mathrm{w}(\mathrm{r})=\frac{1.0}{1.0+\left(\frac{3 \mathrm{r}}{\mathrm{R}}\right)^{2}},
$$

Figure E-1. The grid used for interpolation in the T-S census. Eastern and western shelves are separated at $94^{\circ} \mathrm{W}$.
where r is the distance (in degrees) between the grid point and an observation point, and R is 0.2°. The mean vertical thickness for each quadrangle was approximated by averaging the thicknesses at the four corners. Multiplying the mean thickness by the area of the quadrangle yielded the volume for a given T-S class under the quadrangle.

Cruises H08 through H10 did not survey along the $50-\mathrm{m}$ isobath. The method used to estimate volumes of water in each T-S class yielded a difference between the total volume for cruises H01-H07, which did include CTD stations along the $50-\mathrm{m}$ isobath, and for cruises H08-H10, which did not. The total volumes sampled in the census for the eastern shelf were approximately the same for cruises H01-H07 (ranging from 3799.5 to $3821.4 \mathrm{~km}^{3}$); this also was true for the western shelf portions of cruises H05-H07 (4078.9 to $4108.4 \mathrm{~km}^{3}$). However, the shape of the bottom in cross-shelf profile is convex, and, without a depth constraint at the $50-\mathrm{m}$ isobath, interpolation between stations produced a larger total volume for cruises $\mathrm{H} 08-\mathrm{H} 10$ without $50-\mathrm{m}$ isobath stations than for cruises $\mathrm{H} 01-\mathrm{H} 07$. To prepare time series of the variation of volumetric distributions of both T and S, we required approximately the same total volumes for each survey of the eastern shelf, and likewise for the western shelf. Different sample volumes for different cruises would affect the time series without physical cause. Therefore, the average volume for the eastern shelf for the first seven cruises was obtained. Then, for each of the last three cruises the volumes for each T-S class in the eastern shelf were multiplied by this average total volume and divided by the total volume for that specific cruise. In this manner, the total volume for each of the last three cruises was prorated to be equal to the average volume over the eastern shelf for the first seven cruises. The same procedure was performed for the western shelf region.

The T-S classes (e.g., $11^{\circ}-12^{\circ} \mathrm{C}$ and $35-36$) having the largest volumes were summed until 50% of the total volume sampled over the shelf or half-shelf was reached. Those T-S classes are indicated in the volumetric T-S distributions. Likewise, the most voluminous T-S classes were summed to total 75% of the total volume; they, too, are indicated.

Volumetric T-S relationships and their temporal variability

In this section we first describe the "seasonal" volumetric T-S distributions for the eastern shelf. Then we examine the univariate distributions of T and S for the period of observations (May 1992-November 1994) to characterize effects of the seasonal heating cycle, winddriven circulation, Mississippi-Atchafalaya river discharge, and offshore mesoscale rings on the T and S volumes over the Texas-Louisiana shelf.

For the eastern shelf there were three hydrographic cruises in May, July-August, and November, but only one in February. For each period, the volumetric T-S distributions for the eastern shelf were averaged as estimates of seasonal distributions. The spring, summer, and fall distributions are based only on data from three cruises in different years during the
middle of each season (Figures E-2 through E-4). The winter distribution is not likely to be representative because data from only one cruise are available.

Table E-1 shows the salinity and temperature ranges of the T-S classes comprising 50% of the total volume of waters considered for this study. The temperature modes point to the perennial presence of colder, deep water offshore and seasonal heating and mixing of the upper waters. At the 50% volume level, a two- or three-mode pattern for temperature is seen throughout the year except in May. The cold mode, which changes little, represents the deep water at the outer shelf; the warmer modes correspond to volumes higher in the water column, which are subject to seasonal heating, freshwater influx, and mixing.

While results at the 50% volume level present one picture, examination of the coarse-scale plots for each comparison period reflects a different temperature regime over all the salinity classes (Li et al. 1996). When the fresher, inshore T-S classes are included, the peaks in the May temperatures distributions are at temperatures of $21-22^{\circ} \mathrm{C}$. In August, inshore water was warmer ($28-32^{\circ} \mathrm{C}$). November temperatures in our study show evidence of a cooling trend, but are spread over a range $\left(18-24^{\circ} \mathrm{C}\right)$.

The May results for the eastern shelf (Figure E-2) show that, at the 50% level, the greatest contribution of volume to the shelf is from open ocean water-temperatures in a continuous range from $17-23^{\circ} \mathrm{C}$ in the coarse resolution, with salinity of $35.5-36.5$. The fine resolution results, omitting river-influenced waters, indicate the largest volumes lie between 15° and $23^{\circ} \mathrm{C}$, with salinity slightly more narrowly refined to 35.6 to 36.4 .

By August on the eastern shelf (Figure E-3), the 50% level of contribution has split into two modes for temperature and three for salinity in the coarse resolution. In the fine resolution image, both temperature and salinity are more confined, the temperature ranging from 14° to $23^{\circ} \mathrm{C}$ and salinity from 35.8 to 36.4

In November on the eastern shelf (Figure E-4), bimodal temperature and salinity results are evident in the coarse resolution image. Omitting the river-influenced waters, the 50% level in the fine resolution again illustrates the perennial dominance of the chillier, saltier open ocean.

Effects of wind-driven circulation and river discharge

The univariate distributions of S and T versus time over that part of the shelf east of $94^{\circ} \mathrm{W}$ are shown in Figure E-5. The contour lines for salinity show larger volumes of fresh waters over the eastern shelf in summer (cruises H02, H06, and H09) than in other seasons. Plotting the total volumes with salinity lower than 34 over the eastern shelf versus time (Figure E-6 upper) shows a peak for each summer cruise. We believe the mechanism responsible for

Figure E-2. Average volumetric T-S census for the shelf east of $94^{\circ} \mathrm{W}$, based on May cruises (H01, H05, and H08). Resolution is $1^{\circ} \mathrm{C}$ by $1(\mathrm{~S})$ (upper panel), and $1^{\circ} \mathrm{C}$ by 0.2 (S) (lower panel). The heavy (light) line encloses the largest classes whose total volumes just exceed 50% (75%) of the volume of the region. Margin totals are volumes for intervals of T and S. Dashed lines are isopleths of specific volume anomaly in $\mathrm{cl} \cdot \mathrm{t}^{-1}$.

Figure E-3. Average volumetric T-S census for the shelf east of $94^{\circ} \mathrm{W}$, based on July-August cruises (H02, H06, and H09). Resolution is $1^{\circ} \mathrm{C}$ by $1(\mathrm{~S})$ (upper panel), and $1^{\circ} \mathrm{C}$ by 0.2 (S) (lower panel). The heavy (light) line encloses the largest classes whose total volumes just exceed $50 \%(75 \%)$ of the volume of the region. Margin totals are volumes for intervals of T and S. Dashed lines are isopleths of specific volume anomaly in $\mathrm{cl} \cdot \mathrm{t}^{-1}$.

Figure E-4. Average volumetric T-S census for the shelf east of $94^{\circ} \mathrm{W}$, based on November cruises ($\mathrm{H} 03, \mathrm{H} 07$, and H 10). Resolution is $1^{\circ} \mathrm{C}$ by $1(\mathrm{~S})$ (upper panel), and $1^{\circ} \mathrm{C}$ by 0.2 (S) (lower panel). The heavy (light) line encloses the largest classes whose total volumes just exceed 50% (75%) of the volume of the region. Margin totals are volumes for intervals of T and S . Dashed lines are isopleths of specific volume anomaly in $\mathrm{cl} \cdot \mathrm{t}^{-1}$.

Table E-1. Temperature and salinity classes accounting for the most voluminous T-S classes comprising 50% of the volume of the eastern shelf. These are based on average T-S relations.

Month	Temperature	Salinity
May	$17-23$	$35-37$
July - August	$15-2329-30$	$32-37$
November	$16-1719-2023-26$	$35-37$

this pattern of variability is the seasonal circulation regime. The non-summer currents over the inner shelf are driven downcoast by prevailing downcoast components of winds over the shelf; the prevailing winds in summer have upcoast components and force upcoast flow over the inner shelf. The summer currents bring high salinity water upcoast as far as the central or eastern Texas shelf, and fresher water from the Mississippi and Atchafalaya rivers is dammed over the eastern half of the shelf. This results in the largest volumes of fresh water being over the eastern shelf in summer.

The univariate distributions of S and T versus time over the western shelf (west of $94^{\circ} \mathrm{W}$) are shown in Figure E-7. There the largest volumes of fresh water were found during the two May cruises (H 05 and H 08) and the smallest volumes during the two summer cruises (H06 and H09). Figure E-6 (lower) shows total volumes of waters with salinity less than 34 over the western shelf as a function of cruise. The situation is the reverse of that for the eastern shelf (Figure E-6 upper). Again we attribute this pattern to the seasonal circulation over the inner shelf. Generally, April is the month of highest river discharge. During that month, and May as well, the average flow over the inner shelf has a downcoast component. This flow transports the lower salinity waters downcoast, increasing the total volume of fresher waters over the western shelf and decreasing those volumes over the eastern shelf. During summer (see months of July-August in Figure E-6) the upcoast flow transports more saline water from off Mexico, resulting in the largest (smallest) volumes of salty (fresh) water over the western shelf during summer.

Another feature evident in Figure E-5 is the occurrence of relatively fresh waters with salinity less than 24 at the times of cruises H04, H05, H06, H08, and H09. Examining the 1992, 1993, and 1994 daily Mississippi-Atchafayala river discharges relative to the 64-year average (Figure 2.3-1), it is seen that the discharge was higher than average before each of these cruises except H09. Prior to the H09 cruise in August 1994, the discharge had been above average from February through May, though it decreased to below or near average at that time. Thus, as expected, increased river discharge results in low salinity water in the inner region of the eastern shelf. However, increased river discharge does not seem well correlated

Figure E-5. Volumetric distributions of water within indicated intervals of salinity (upper panel) and temperature (lower panel) versus time (center of cruise period) over the shelf east of $94^{\circ} \mathrm{W}$. Contours are in km^{3}.

Figure E-6. Volumes of water with salinity < 34 versus time (center of cruise period) over eastern (upper panel) and western (lower panel) shelf.

Figure E-7. Volumetric distributions of water within indicated intervals of salinity (upper panel) and temperature (lower panel) versus time over the Texas-Louisiana shelf west of $94^{\circ} \mathrm{W}$. Contours are in km^{3}.
with the total volume of fresh water on the eastern shelf, which is mainly controlled by the circulation regime.

Effects of annual heating

As expected because of seasonal heating, the univariate distributions of temperature versus time over the eastern and western shelves (Figures E-5 and E-7 lower) show that waters with highest temperatures were observed on the summer cruises (H02, H06, and H09). We examined the volumetric T-S distributions to determine the most voluminous temperature classes.

In the seasonal volumetric T-S distributions for the eastern shelf (Li et al. 1996), 50\% of the volume is encompassed by temperatures in a continuous interval for February and May, but in several intervals of temperature for July-August and November. From the volumetric T-S distributions for each cruise we noted the temperature intervals of the most voluminous T-S classes occupying 50% of the volumes of eastern and western shelves; the results are given in Table E-2. For May cruises there is either only one continuous temperature interval or there are two intervals separated by only 1°; thus, essentially there is only one interval of temperature encompassing the most frequently occurring T-S classes occupying 50% of the shelf volume during May. This also is the case for the one winter cruise. For July-August and November cruises, however, there are two or three distinct temperature intervals, except over the eastern shelf for July-August cruise H09 and November cruise H03. Moreover, the warmest and coldest such intervals on each cruise are separated by relatively large temperature differences $\left(3^{\circ}-11^{\circ}\right)$.

To understand the reason for this seasonal pattern, we examined vertical sections of T and S constructed from the LATEX CTD measurements along the $200-\mathrm{m}$ isobath (Figures 3.1-4 and 3.1-5). That section is representative of the waters with largest volumes over the shelf because the depths at the shelf edge are so much larger than elsewhere. In winter (February), cooling and surface mixing produce a relatively deep (order of 100 m) surface mixed layer, the most voluminous temperature class. Spring (May) heating of this relatively deep surface mixed layer results in the most vertically uniform temperature gradients of any season; the temperature classes of largest volumes are nearly adjacent. Continued spring and summer heating and light summer winds result in a shallow mixed layer and thermoclines with large gradients. This leads to temperature classes of large volumes separated by differences corresponding to the temperatures of thermoclines. Surface cooling and stronger fall winds cool and deepen the mixed layer, creating large volumes of surface and sub-thermocline waters, both with narrow temperature ranges.

Table E-2. Temperature intervals (in ${ }^{\circ} \mathrm{C}$) encompassing the most frequently occurring T-S classes occupying 50% of the volumes of the eastern (east of $94^{\circ} \mathrm{W}$) and western regions of the LATEX shelf for each hydrographic cruise.

		Eastern shelf	Western shelf
May	H01	$19-2122-23$	no data
	H05	$16-23$	$16-25$
	H08	$18-2223-24$	$16-21$
July - August	H02	$15-2229-30$	no data
	H06	$14-2528-30$	$16-1822-2428-30$
	H09	$14-23$	$14-17$ 18-21 28-29
November	H03	$23-25$	no data
	H07	$16-1723-26$	$17-1923-26$
February	H04	$16-1819-2025-27$	$15-1825-27$

Effects of anticyclonic rings near the shelf edge

Anticyclonic rings detached from the Loop Current, and their associated cyclonic eddies, are often found just offshore of the shelf break ($200-\mathrm{m}$ isobath). These Loop Current eddies have high salinity cores; maximum salinity in a vertical profile is associated with the core of the Subtropical Underwater (Wüst 1964). These rings have salinities above 36.7 near 200 m depth on detachment from the Loop Current (Nowlin 1972). Thus, the presence of these anticyclonic rings off the Texas-Louisiana shelf might be expected to affect the salinity of the shelf by transfer of waters between the rings and the shelf.

An example is given in Figure E-8 which shows temperature and salinity in vertical section along the 200-m isobath for cruise H06 (July-August 1993). During that cruise anticyclonic rings called Vazquez and Whopper were present near the shelf edge in the western and eastern shelf regions, respectively. At the time of the cruise, Vazquez was elongated northeastsouthwest and impinged on the shelf edge in two regions, centered near 50 km and 225 km , as can be seen by the depression of isotherms in these regions. The large ring Whopper appears to affect the shelf edge waters from about 350 to 600 km judging by the depression of isotherms over that region. Regions affected by Vazquez and Whopper are marked in the salinity section by values greater than 36.4 , and in the case of Whopper and one arm of Vazquez by salinities greater than 36.6.

We have found a clear correspondence between the presence of shelf water with salinity greater than 36.6 and the presence of anticyclonic eddies. Shown in Figure E-9 for each cruise are volumes of water over the shelf or sub-region with salinity greater than 36.6. In the western offshore Gulf, water with salinity higher than 36.6 must be contributed by these

Figure E-8. Temperature (${ }^{\circ} \mathrm{C}$; upper panel) and salinity (lower panel) in vertical section along the $200-\mathrm{m}$ isobath for cruise H06, from southwest on the left to east on the right.

Figure E-9. Volumes of water with salinity >36.6 over the Texas-Louisiana shelf as a function of time (center of cruise period). The presence at the shelf edge of anticyclonic rings detached from the Loop Current is indicated by the following: $\mathrm{S}=$ unnamed eddy south of the Mississippi Delta; V = Eddy Vazquez; $\mathrm{W}=$ Eddy Whopper; $\mathrm{X}_{\mathrm{e}}=$ eastern ring split from Eddy $\mathrm{eXtra} ; \mathrm{X}_{\mathrm{w}}=$ western ring split from Eddy eXtra; and $\mathrm{Y}=$ Eddy Yucatan.
anticyclonic eddies (Nowlin 1972). The dots in Figure E-9 indicate the presence of anticyclonic rings near the shelf edge during the LATEX cruise periods.

Conclusions

The circulation regime over the inner shelf strongly influences the volumetric distribution of salinity over both the eastern and western shelf. The discharge from the MississippiAtchafalaya rivers leads to low salinity waters (minimum salinities seen in the census) over the inner regions of both eastern and western shelves in spring. However, this discharge is not correlated with the total volume of fresh water over the eastern shelf. That volume is at a maximum in summer when the wind-driven circulation over the inner shelf is upcoast and maintains a surface layer of fresh water in that region. Over the western shelf, the volume of fresh water is at an annual maximum in spring and a minimum in summer. The spring maximum results from a combination of enhanced river discharge and downcoast flow; the summer minimum results from upcoast transport of salty water from off Mexico by the summer upcoast flow regime. Cochrane and Kelly (1986) discussed the effects of summer versus non-summer current regimes on the surface salinity and arrived at a similar qualitative result.

The annual cycle of heating and cooling and the wind mixing of surface layers principally control the distribution of the temperature versus time over this shelf. This leads to the most voluminous temperature classes exhibiting a continuous temperature range (from 15° to $24^{\circ} \mathrm{C}$) in winter and spring, but splitting into several modes, separated by the vertical temperature ranges of the thermoclines, in summer and fall.

The presence of anticyclonic rings near the shelf break seems well correlated with the presence of water saltier than 36.6 on the shelf. Salinities greater than 36.6 associated with the core of Subtropical Underwater are found near 200 m in anticyclonic rings detached from the Loop Current; salinities this great are not generally present at the Subtropical Underwater core outside rings in the western Gulf. Thus, we conclude that the interaction of Loop Current rings with the shelf results in the exchange of waters between the rings and the shelf.

Appendix F: Inertial and Superinertial Motions

F. 1 Deterministic tides

This appendix focuses on the description of the principal tidal current and sea surface height (SSH) constituents on the Texas-Louisiana shelf as measured by the LATEX A current meter array (DiMarco and Reid 1998). Eight principal tidal constituents were analyzed. The tidal current ellipses for each constituent were estimated from 81 current velocity time series at the 31 LATEX current meter locations (Section 1.2). Sea surface height tidal constituents were estimated using data recorded from five bottom-mounted pressure gauges. Discussed here are the time series and methods used to estimate the tidal constituents, the principal tidal currents, and the sea surface height tidal constituents.

It should be noted that the tidal estimates presented in this chapter represent the average tidal currents during the period April 1992 through November 1994. If they are to be used for tidal forecasting and prediction, a correction accounting for the nodal variation of the declination of the moon should be applied to these estimates.

Methodology

The principal tidal constituents were determined using the iterated least squares method of cyclic descent (Bloomfield 1976; DiMarco 1998). The phase and amplitude of four diurnal tidal periods ($\mathrm{O} 1, \mathrm{~K} 1, \mathrm{P} 1$, and Q1) and four semi-diurnal tidal periods (S2, M2, K2, and N2) were estimated from a 3 to $40-\mathrm{hr}$ band-passed filtered version of the current meter time series. The names, symbols, and periods of the eight principal tidal constituents analyzed are given in Table F.1-1.

Diurnal stratification of the surface layer during the summer season (June through August) enhances the excitation of strong oscillations of $24-\mathrm{hr}$ period and with amplitudes on the order of $20 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ at some locations on the Texas-Louisiana shelf (DiMarco et al. 1997). In addition, wind-driven inertial oscillations also contribute to the kinetic energy in the vicinity of the diurnal tidal constituents (Chen et al. 1996). The latitude of the moorings on the shelf defines a range of inertial periods of 24.4 hr at the north and 26.2 hr at the south. This inertial range includes the principal lunar (O1) tide (period $=25.82 \mathrm{hr}$) and is at slightly longer periods than the lunar-solar diurnal (K1) and principal solar diurnal (P1) tides, of tidal periods 23.93 and 24.07 hr , respectively. Because of the multiple sources for oscillating currents of near-diurnal periods, tidal extraction is not attainable by simply band-pass filtering the raw time series. However, using sufficiently long time series, the deterministic tides can be adequately separated from the randomly phased inertial (wind-driven) events by using a least squares harmonic analysis approach. The large amplitudes of the diurnal oscillations, however, will continue to contaminate the estimates for the diurnal constituents even in a

Table F.1-1. Periods of principal tidal constituents.

Symbol	Name	Period (solar hours)
	Semi-diurnal	
M2	principal lunar	12.42
S2	principal solar	12.00
N2	larger lunar elliptic	12.66
K2	luni-solar semi-diurnal	11.97
K1	Diurnal	
K1	luni-solar diurnal	23.93
O1	principal lunar diurnal	25.82
P1	principal solar diurnal	24.07
Q1	larger lunar elliptic	26.87

least-squares analysis. For this reason, the time series for June, July, and August are omitted from the analysis presented here. Tidal ellipses were constructed from the phase and amplitudes of the north-south and east-west components of each tidal current constituent (Godin 1972).

Principal tidal currents

The main tidal current constituents were found to be M2, S2, O1, K1, and P1. Together they account for an average of 92 percent of the total tidal variance estimated from the maximum amplitudes of the eight tidal current constituents. Maximum M2, K1, and O1 amplitudes were approximately the same order of magnitude and account for an average of 76 percent of the total near-surface tidal energy at the LATEX moorings. Figure F.1-1 shows contours of the percentage of total tidal energy for the eight analyzed tidal current constituents to total energy variance in the 8-40 hr energy band for the LATEX upper instruments (essentially at 10 m depths). At the shelf edge (along the $200-\mathrm{m}$ isobath), the tidal energy accounts for less than 10 percent of the total variance in the $8-40 \mathrm{hr}$ band of the energy spectrum. The percentage of tidal energy increases closer to shore and in the wider regions of the shelf. The percentage is greatest in the shallow region southwest of Atchafalaya Bay where it exceeds 40 percent. There is also a local maximum in this ratio at the upper meter at mooring 21 in the central shelf southeast of Galveston, which is attributed to low amounts of nontidal energy in the $8-40 \mathrm{hr}$ energy band.

Semi-diurnal tidal currents

The M2 tide dominated the semi-diurnal energy band (11 to 14 hr) of the energy spectrum at all station locations. A plan view of the M2 tidal current ellipses estimated from the upper current meter at each location is shown in Figure F.1-2. The current ellipses are generally

Figure F.1-1. Percentage of energy associated with eight principal tidal current constituents relative to total energy in $8-40 \mathrm{hr}$ energy band for upper instruments. Triangles represent current meter locations. Contour interval is 10\% (from DiMarco and Reid 1998).
oriented with major axes across the bathymetry lines at the shelf edge and are rotating anticyclonically. This figure provides qualitative verification of the tidal model of Reid and Whitaker (1981), particularly at the inner shelf and eastern region near Mississippi Canyon where the observed orientations and magnitudes agree with the model results for the same parameters.

Phase information is depicted as a dot on each tidal ellipse to signify the direction of the current vector at an arbitrary time (chosen to be 0000 UTC 7 April 1992). Together these dots essentially represent a synoptic snapshot of the tidal vectors. It has been shown in the model study by Reid and Whitaker (1981) that the sea surface height propagates cyclonically (counterclockwise) around the Gulf of Mexico basin with an amphidromic point north of the Yucatan peninsula. Quantitative interpretation of the phase is difficult because of the error associated with both the amplitude and orientation of the current ellipse. However, the phase of the M2 tidal currents provides qualitative verification of that model, in that there is

Figure F.1-2. M2 tidal current ellipses of upper current meters showing orientation of tidal current vector at 0000 UTC 7 April 1992 (dot) and least squares error estimates (shaded) (from DiMarco and Reid 1998).
a time lag between the M2 tidal vectors of the western stations relative to those in the east. The phase angle should be considered relative to a local bathymetric (along- and crossshelf) coordinate system.

Figure F.1-3 shows a vertical section along the 50-m isobath of the M2 tidal current. We see nearly vertical contours (barotropic) and maximum amplitudes at mid-shelf (Clarke and Battisti 1981). There is some evidence of shear at the top current meters of the inner-shelf particularly for the S 2 tide. The other semi-diurnal tidal constituents behave similarly along the $50-\mathrm{m}$ isobath.

Along the shelf break, an average of 19.4 percent of the total tidal variance was attributable to the M2 tide. This average percentage increased closer to shore to 24.0 for instruments along the $50-\mathrm{m}$ isobath, to 29.6 at approximately the $20-\mathrm{m}$ isobath, and to 31.2 at the shallowest mooring location of each cross-shelf mooring line. On average over the entire shelf, the M2 tidal current was 21.8 percent of the total tidal variance. The percentage of

Figure F.1-3. Vertical section of maximum M2 tidal current amplitude along $50-\mathrm{m}$ isobath. Contour interval is $1 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ (from DiMarco and Reid 1998).
total tidal variance due to the $\mathrm{S} 2, \mathrm{~N} 2$, and K 2 tides was generally less than 5 percent across the shelf.

Figure F.1-4 shows a cross section of the maximum M2 tidal current amplitudes of the cross-shelf line which follows the $92^{\circ} \mathrm{W}$ meridional line. The M2 tide shows little evidence of vertical shearing beyond the $50-\mathrm{m}$ isobath. The contours become more inclined in the shallower region near mooring 17 as bottom friction plays a larger role in the shallow water near the coast. This line is representative of the other cross-shelf lines at $92.5^{\circ} \mathrm{W}$ and $95.5^{\circ} \mathrm{W}$. The general pattern is slightly changed for the line along $94^{\circ} \mathrm{W}$, where there is a surface maximum at mooring 21 .

Diurnal tidal currents

We define the diurnal energy band ($22-28 \mathrm{hr}$) to contain the inertial periods found on the Texas-Louisiana shelf as well as the principal diurnal tidal periods. The two largest diurnal

Figure F.1-4. Vertical section of maximum M2 tidal current amplitude along $92^{\circ} \mathrm{W}$. Contour interval is $1 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ (from DiMarco and Reid 1998).
tidal current constituents on the shelf were found to be O 1 (period $=25.82 \mathrm{hr}$) and K 1 (period $=23.93 \mathrm{hr})$.

The O1 tidal component (period $=25.82 \mathrm{hr}$) ranges from 6 percent to 48 percent (average of 24.8 percent) of the total tidal variance making it on average the second largest tidal current component on the Texas- Louisiana shelf.

The O1 tidal ellipses of the LATEX upper current meters are shown in Figure F.1-5. The upper O1 tidal current ellipses are more circular than those found for the semidiurnal constituents and are clockwise rotating. At the four mooring locations (17, 19, 20, and 22) for which the upper current meter was at a depth of only three meters, maximum amplitudes are larger than for other moorings with the upper instrument at 10 m . This is an indication of the strong vertical shear generally found in the diurnal tidal constituents. The alignment of the tidal ellipses with respect to the bathymetry (when an orientation could be determined) are similar to that found in the semi-diurnal constituents, in that the semi-major axes of the

Figure F.1-5. O1 tidal current ellipses of upper current meters showing orientation of tidal current vector at 0000 UTC 7 April 1992 (dot) and least squares estimates (shaded) (from DiMarco and Reid 1998).
ellipses lie across bathymetric lines. Notable exceptions to this are again in the far east along $90.5^{\circ} \mathrm{W}$ where the ellipses run parallel to the bathymetry and moorings 23 and 24 where the ellipses are essentially parallel to the coast. The latter two moorings are located in a region where the shelf narrows.

The position of the O 1 current vector at the time chosen in Figure F.1-2 is also indicated by a dot on the tidal ellipses of Figure F.1-5. The phase angle relative to the local bathymetry is more uniform across the shelf than the phase of the M2 tidal current, particularly along the $200-\mathrm{m}$ isobath. The observed O 1 ellipses and uniformity of the phase provide further verification of the Reid and Whitaker model on the shelf, in that there is good qualitative agreement for the O 1 current ellipse magnitude, orientation, and phase.

Figure F.1-6 shows the maximum O1 tidal current at moorings along the $50-\mathrm{m}$ isobath. In contrast to the Figure F.1-3 (M2 tidal current), the contours run horizontally (nearly parallel to the bottom) with no indication of amplification by the wide regions of the shelf. There is

Figure F.1-6. Vertical section of maximum O1 tidal current amplitude along 50-m isobath. Contour interval is $1 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ (from DiMarco and Reid 1998).
little vertical structure of the O 1 tidal current along the $200-\mathrm{m}$ isobath. At moorings east of $93^{\circ} \mathrm{W}$, the maximum O 1 tidal current amplitudes are more barotropic and uniform with depth.

A vertical cross-section of the maximum O 1 tidal current amplitude along the $92^{\circ} \mathrm{W}$ meridian is shown in Figure F.1-7. Apparent in this figure are the horizontal contours representing significant vertical shear past $100-\mathrm{m}$ depth in the diurnal tidal currents. The shear is greatest near shore, as in the semi-diurnal cross-sections, but extends across the $100-\mathrm{m}$ isobath and close to the shelf edge. For moorings $1-4$, located at approximately $27.3^{\circ} \mathrm{N}$, the currents are more homogeneous throughout the water column. However, this figure (F.1-7) is representative of all the diurnal tidal current cross-shelf over the inner shelf east of $95.5^{\circ} \mathrm{W}$. Presented in Figure F.1-8 are the tidal current ellipses for the K1 tide. The K1 tidal component ranges from 3 percent to 75 percent (average 29 percent) of the total tidal variance and is, therefore, the largest tidal current component on the Texas-Louisiana shelf. At the midshelf and eastern shelf regions, the maximum K1 amplitudes are similar to those found for

Figure F.1-7. Vertical section of maximum O1 tidal current amplitude along $92^{\circ} \mathrm{W}$. Contour interval is $1 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ (from DiMarco and Reid 1998).
the O1 tidal current. The K1 tide shows similar shear along the $50-\mathrm{m}$ and more shear along $200-\mathrm{m}$ isobaths. As with the O1 tide, the phase of the K1 tide generally is uniform across the shelf.

The root mean square for all eight tidal current constituents of the upper current meters is shown in Figure F.1-9. The figure can be regarded as representing an equivalent amplitude of the average variance attributable to the eight principal tidal constituents. This figure shows that the tidal current amplitudes attributable to the principal tidal constituents are greatest at the wide central shelf regions between $91^{\circ} \mathrm{W}$ and $95^{\circ} \mathrm{W}$. Amplitudes decrease along the narrow shelf region in the west and bending southward. The largest amplitude is found near mooring 17 at the Atchafalaya Bay. The amplitude isopleths run essentially parallel to the bathymetry between the $50-$ and $200-\mathrm{m}$ isobaths. The variation of these amplitudes is primarily due to the combined effects of the wide shelf amplification processes of the semi-diurnal constituents, stratification, and bottom friction.

Figure F.1-8. K1 tidal current ellipses of upper current meters showing orientation of tidal current vector at 0000 UTC 7 April 1992 (dot) and least squares error estimat (shaded) (from DiMarco and Reid 1998).

Principal tidal sea surface heights

Sea surface heights were recorded at five mooring locations (moorings 1, 16, 17, 20, and 23 in Figure 1.2-1) using bottom-mounted pressure gauges (MiniSpec directional wave gauges). These gauges were positioned in water depths of 7 to 20 meters. The sea surface height tidal constituents were estimated from the pressure time series using the method of cyclic descent. Table F.1-2 summarizes the magnitude and phase for the five most energetic tidal constituents (M2, S2, K1, O1, and P1). The tidal phases of this table were determined using tables given by Shureman (1976).

From Table F.1-2, we see for the M2 tidal phase a lag between the western stations (1, 23, and 20) relative to stations in the east consistent with the tidal current ellipse and the model study of Reid and Whitaker (1981). This phase lag is also seen in the S2 tide. The phase for each of the diurnal constituents is essentially uniform across the shelf. Also evident is the

Figure F.1-9. Contour map of root mean square of eight principal tidal current maximum amplitudes for upper current meters. Contour interval is $1 . \mathrm{cm} \cdot \mathrm{s}^{-1}$ (from DiMarco and Reid 1998).
amplification of the semi-diurnal magnitudes at the mid-shelf locations, particularly at mooring 20.

The tidal amplitudes listed here compare well to historical values recorded at five locations (Capurro and Reid 1972) that were in close proximity to LATEX A mooring locations. For example, the tidal amplitudes for a station at $29.78^{\circ} \mathrm{N}, 93.35^{\circ} \mathrm{W}$ (near LATEX mooring 20) are $16,5,14$, and 13 cm , for the $\mathrm{M} 2, \mathrm{~S} 2, \mathrm{~K} 1$, and O 1 tides, respectively.

Table F.1-2. Magnitude and phase of major sea surface height tidal constituents at LATEX A tide gauge locations. Mooring 16 was easternmost on the Texas-Louisiana shelf; mooring 1 was westernmost.

Mooring	Name	Period (hr)	Magnitude (cm)	Phase (deg)
16	M2	12.42	2.5	172
17	M2	12.42	10.4	239
20	M2	12.42	17.0	265
23	M2	12.42	8.6	268
1	M2	12.42	8.0	260
16	S2	12.00	1.9	129
17	S2	12.00	3.1	218
20	S2	12.00	4.8	252
23	S2	12.00	1.7	245
1	S2	12.00	1.6	233
16	K1	23.93	15.8	15
17	K1	23.93	15.6	21
20	K1	23.93	16.4	28
23	K1	23.93	15.2	25
1	K1	23.93	15.8	25
16	O1	25.82	14.1	10
17	O1	25.82	14.9	14
20	O1	25.82	15.2	17
23	O1	25.82	14.5	16
1	O1	25.82	14.2	16
16	P1	24.07	4.38	35
17	P1	24.07	4.70	31
20	P1	24.07	4.40	27
23	P1	24.07	3.52	37
1	P1	24.07	4.01	46

F. 2 Non-deterministic 40-hr high-passed signals

This section addresses the non-tidal signals in the period band 3-40 hrs from the LATEX A current meter data. These signals include near-inertial motions and currents associated with internal gravity waves. (Note: the local inertial period varies from 24.2 to 26.4 hours over the domain of the shelf mooring array.) There also exists a strong thermally induced signal at $24.0-\mathrm{hr}$ period, particularly during the summer months. Unlike the tidal motions that are quite predictable, the non-tidal signals at periods lower than 40 hours are non-deterministic, with the possible exception of motions associated with storm surges, as in the Hurricane Andrew episode of August 1992 (Appendix B.1). The discussion below focuses on the large difference that exists between the near inertial motion in summer and nonsummer and the vastly different sensitivity of these motions to wind forcing on the Texas-Louisiana shelf.

Spectra of currents and winds

Chen et al. (1996) give evidence of inertial-like clockwise rotating motion in a period band of about 22 to 28 hrs based on the LATEX A current meter mooring data for the first 99 days (15 April to 22 July 1992) of the measurement program. Rotary spectra (Gonella 1972) for 10,100 , and 190 m depths at mooring 9 and the 10 m depth at moorings 2,15 and 21 based on hourly samples of 3-hr low-pass currents showed strong peaks for clockwise relative to counterclockwise rotation centered about 25 hours. Rotary spectra based on wind measurements at five meteorological stations across the shelf near $94^{\circ} \mathrm{W}$ show similar results for the same time period. One of the conclusions drawn from these preliminary results was that the energetic and ubiquitous occurrence over the Texas-Louisiana shelf of clockwise motion in the 22 - to $28-\mathrm{hr}$ band of current and of wind data is largely due to inertial motion in both the atmospheric and oceanic Ekman layers associated with sudden changes of pressure gradient accompanying frontal passages. More complete evidence presented in Section 4.5 and here, based on the 32 months of LATEX A mooring data, shows that the above conclusion was premature because of the small sample that included both spring and summer. However, the 32 -month data set does confirm that the rotary motions in the 22 - to 28 -hr band are predominantly clockwise, even after removing the reliable estimates of tidal signals discussed in section F.1.

Figures $4.5-5 \mathrm{a}$ and $4.5-5 \mathrm{~b}$ show autospectra by seasons of the alongshelf and cross-shelf components of gridded wind near mooring 23 and of the $10-\mathrm{m}$ current at that mooring, respectively, based on all 256 -hr non-overlapping segments available for the LATEX A sampling period. In contrast to the spectra presented in Chen et al. (1996) that were based on the spring and summer of 1992, these show striking differences between summer and all other seasons, particulary with respect to the very dominant peak in the summer wind spectra. For all other moorings we have obtained autospectra for gridded wind and top level currents for summer and non-summer months. Figures F.2-1 and F.2-2 show the auto-spectra for

Figure F.2-1. Auto-spectra of alongshelf (upper) and cross-shelf (lower) components of top level current (dashed) and gridded wind (solid) at mooring 22 by season with tide included, based on all 32 months of LATEX A data.

Figure F.2-2. Auto-spectra of alongshelf (upper) and cross-shelf (lower) components of top level current (dashed) and gridded wind (solid) at mooring 8 by season with tide included, based on all 32 months of LATEX A data.
wind and current for these two seasons for moorings 22 and 8 . These spectra are typical of all moorings at water depths near 50 and 200 m , respectively, while the spectra in Figure 4.5-5 are typical of all nearshore moorings. We emphasize that the peak in the summer wind spectra near the diurnal period is equally as energetic on the outer shelf as on the inner shelf. Although such a peak in the wind spectrum might be expected nearshore associated with coastal sea breeze (Hsu 1972), it is quite unlikely that a similar peak at shelfbreak locations could be due to the same mechanism.

Time domain analyses

Figure F.2-3 contrasts the 3 to 40-hr band-passed alongshelf current at the top level for mooring 22 during March 1994 with that for June 1994. The periods of largest oscillations (about $20 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$) in March follow frontal passages as detected in the wind data at mooring 22. A comparable sequence (not shown) for the band-passed cross-shelf current occurs but leads in phase. The June sequence shows maximum amplitudes of about $60 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ during periods of light winds at mooring 22 . The period of greatly diminished amplitude occurs following a frontal passage detected in wind measurements at coastal station SRST2. The mean period of the oscillations for the June 1994 sample is very close to 24.0 hrs and seems to be an illustration of thermally induced cycling (Price et al. 1986), in which large amplitude rotary currents of $24-\mathrm{hr}$ period can in exist in thin mixed layers typical of the summer season. The amplitude of the rotary current during weak wind regimes seems to be governed more by the heat flux than the competing effect of wind stress at the sea surface according to Price et al. (1986). However, during periods of occasional strong winds that deepen the mixed layer without adding much rotary momentum, the rotary current actually decreases.

Motivated by the evidence for a thermally-induced 24.0-hr signal in the June 1994 LATEX data, we carried out complex demodulation analysis (Bloomfield 1976) for the complete mooring 21 current meter data. Basically this allows one to obtain a time sequence of the amplitude for a very narrow band centered on 24.0 hrs . Figure F.2-4 shows the amplitude versus time over the 32 months of LATEX measurements at the top current meter of mooring 21 for the along- and cross-shelf $24-\mathrm{hr}$ current signal. The resulting amplitude sequences for both current components indicate nearly equal maximum values during the three summer months and especially in June of each year. The maximum June amplitude for the top current meter at mooring 21 is seen to be only about $8 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ compared with $60 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ for the top current meter at mooring 22 (Figure F.2-3). This is probably due to the shallower depth (3 m) for mooring 22 compared with 14 m for mooring 21 .

The evidence strongly suggests that the summer rotary currents are thermally induced 24.0hr period oscillations rather than inertial, whose period ranges from 24.2 to 26.4 hrs over the domain of the LATEX A moorings. They are produced in summer during a time when the subinertial winds are small and the water column is highly stratified. Price et al. (1986) provide very complete documentation as to the hourly evolution of thermal structure cycling

Figure F.2-3. Time sequences in March 1994 (upper) and June 1994 (lower) of 3-40 hr band-passed alongshelf current at top meter (3-m depth) of LATEX A mooring 22.

Figure F.2-4. Amplitude of 24-hr signal from complex demodulation of alongshelf (upper) and cross-shelf (lower) current meter at top meter ($14-\mathrm{m}$ depth) of mooring 21 for the entire 32 months of the LATEX A field measurements.
in the oceanic layer and a discussion of sensitivity of the rotary motion to heat exchange derived from scaling arguments. However, they offer no insight regarding the associated cycling in the neighboring atmospheric boundary layer. The most definitive model that comes very close to matching the summer LATEX data on $24-\mathrm{hr}$ rotary signals in wind and currents is that of Pandolfo (1969). This important contribution seems not to have recieved the recognition that it deserves in studies of the coupling of atmospheric and oceanic boundary layer dynamics driven by radiative heating and cooling.

Spatial distribution of the 40-hr high-passed variance

Chen et al. (1996) give plots of variance for the 22-28 hr band-passed currents for three cross-shelf vertical sections, based on the April-July 1992 sample of data. These show largest variance in the outer shelf region and in the near surface as should be expected, whether the excitation is thermally induced or wind-induced. Using the full 32 months of data from the top current meters of all moorings, we have constructed horizontal fields of variance (or energy) for different period bands with and without summer but with tidal energy removed. Figure F.2-5 shows the fields of total non-tidal energy for the $8-40 \mathrm{hr}$ band based on the 32 months of data with and without the summers. In the central and eastern Texas-Louisiana shelf the summers account for roughly half of the energy in this band. Figure F.2-6 shows similar plots for the narrower 22-28 hr "inertial" band, each of which contains about half of the energy of the corresponding $8-40 \mathrm{hr}$ band. In the upper panel of both figures, the bull'seye patterns centered at moorings 22 and 19 are due to the large summer signals that occur at those moorings, whose top current meter is at a depth of only 3 m . This feature is summer related, since it is not evident in the non-summer patterns shown in the lower panels of these figures.

The non-tidal energy of currents in the $22-28 \mathrm{hr}$ band for non-summer probably is associated with wind-induced near-inertial response of the shelf water as discussed by Chen et al. (1996). It increases from about $20 \mathrm{~cm}^{2} \cdot \mathrm{~s}^{-2}$ nearshore to about $40 \mathrm{~cm}^{2} \cdot \mathrm{~s}^{-2}$ at the shelf break. This may be compared with the tidal energy, which increases from about $10 \mathrm{~cm}^{2} \cdot \mathrm{~s}^{-2}$ at the shelf break to well over $60 \mathrm{~cm}^{2} \cdot \mathrm{~s}^{-2}$ in the nearshore central region of the Texas-Louisiana shelf (as inferred from Figure F.1-9). The thermally induced non-tidal energy in the 22-28 hr band for summer is at least equal to that for non-summer for all moorings except 19 and 22 , where it greatly exceeds that for non-summer.

Thus, in summary, the major contribution to the 40-hr high-pass kinetic energy nearshore is that due to tides, while on the outer shelf the major contribution is non-tidal wind-induced kinetic energy in non-summer but is non-tidal thermally induced kinetic energy in summer. The stated spatial patterns are findings based on the data. The association with causal mechanisms is our interpretation of the data in light of the prior studies of Pandolfo (1969), Price et al. (1986), and Chen et al. (1996).

Figure F.2-5. Contours of non-tidal energy $\left(\mathrm{cm}^{2} \cdot \mathrm{~s}^{-2}\right)$ in the $8-40 \mathrm{hr}$ band from top current meter at all moorings based on all 32 months of LATEX A data: (upper) including summer and (lower) excluding summers.

Figure F.2-6. Contours of non-tidal energy $\left(\mathrm{cm}^{2} \cdot \mathrm{~s}^{-2}\right)$ in the 22-28 hr band from top current meter at all moorings based on all 32 months of LATEX A data: (upper) including summer and (lower) excluding summers.

Appendix G: Comparison of Observed and Modeled Surface Gravity Waves

As one comparison of model results with observations, wind fields obtained from the NCEP and those generated by LATEX A (Section 2.1.1) were used in an ocean wave prediction model to determine a hindcast wave field on the Texas-Louisiana shelf. These results were compared to significant heights from three NDBC buoys and five bottom-mounted wave gauges (DiMarco et al. 1995a; DiMarco and Bender 1998). To calculate the wave field, the third generation ocean wave prediction model WAM (WAMDI Group 1988) was used. The WAM model is accepted as state-of-the-art and currently used by over a hundred research and operational sites worldwide.

Model description

The evolution of the energy in a wave field can be modeled by a spectral wave transport equation that balances the propagation of spectral wave energy against the physical processes that cause energy to be gained or lost. These physical processes have been typically described by three terms: wind forcing that adds energy to a wave spectrum; dissipation due to whitecapping and bottom friction that eliminates energy; and nonlinear wave-wave interactions that transfer energy among frequencies within the spectrum. WAM (WAve Model) represents the first concerted attempt to integrate the spectral wave transport equation without assuming an a priori form of the nonlinear wave-wave interaction term. The inclusion of resonant, third order, wave-wave interactions in a wave model represents a significant advance because these interactions determine the shape of the spectrum. Previous, second generation models assumed an a priori form for the spectral shape because computation of the wave-wave interaction required an excessive amount of computer time. The key to the WAM model lies in the Discrete Interaction Approximation, first proposed by Hasselmann et al. (1985); it is an approximation to the nonlinear wave-wave interaction terms that efficiently computes the interaction term. The inclusion of resonant, third order, wave-wave interactions in a wave model is highly desirable because it significantly improves the model's ability to predict wave spectra during rapidly changing winds, conditions that occur frequently on the Texas-Louisiana shelf due in part to numerous frontal passages. For a more detailed description of the physics and numerics in the WAM model, the reader is referred to WAMDI Group (1988).

The wave modeling community has extensively validated the WAM model for different regions and different events (Bender 1996). In December 1991, cycle 4 of the WAM model was released with modified physics that included dynamic coupling between winds and waves (Janssen 1989, 1991); this model was used to determine hindcast wave fields over the Texas -Louisiana shelf for part of the LATEX period.

Model setup

The transport equation was solved on a two-level nested domain to better represent the propagation of remotely generated swell onto the Texas-Louisiana shelf. As such, it required a wave model for the Gulf of Mexico to provide the boundary conditions for a finer grid model of the Texas-Louisiana shelf. The outer level model (the gulf domain) covered the Gulf of Mexico from 18° to $31^{\circ} \mathrm{N}$ and 98° to $80^{\circ} \mathrm{W}$ on a grid resolution of one degree. This provided a satisfactory representation of the swell arriving on the Texas-Louisiana shelf. The nested level model (the shelf domain) covered the Texas-Louisiana shelf from 26° to $30^{\circ} \mathrm{N}$ and from 98° to $89^{\circ} \mathrm{W}$ on a finer grid resolution of one quarter degree (Figure G-1).

The winds for the gulf domain were obtained from the medium-range weather forecasts disseminated by the National Weather Service. The winds were produced by the NCEP Global Data Assimilation System (GDAS) and Forecast System. The main component of the Forecast System is the NCEP Medium-Range Forecasting (MRF) model. Details of the MRF model appear in a document by the NMC Development Division (1988). The GDAS blends global weather observations at 6-hour intervals with previous MRF model forecasts to produce new initial conditions for the next model run. A detailed description of the GDAS is presented in Kanamitsu (1989) and Kanamitsu et al. (1991). The MRF model predicts winds, temperature, surface pressure, humidity, and precipitation during the integration, and has 18 levels in the vertical. Physical diagnostic parameters include precipitation, cloudiness, surface sensible and latent heat fluxes, surface stress, and others. These fields are known as the high-resolution GDAS data sets, or as the MRF final analysis cycle data set.

The LATEX A program purchased a subset of this data for the period April 1992 through December 1994, including zonal and meridional winds at $10-\mathrm{m}$ height on an 18×23 point grid that spans the Gulf of Mexico. These data are for four times daily ($0,6,12,18$ UTC). As part of the WAM preprocessing, these wind fields were bilinearly interpolated from the spectral grid they were generated on to the WAM-specified uniform 1° grid for the Gulf of Mexico. The wind fields were linearly interpolated in time to every hour by the WAM model.

The winds for the shelf domain were obtained from the LATEX gridded wind fields described in Section 2.1.1. They were hourly zonal and meriodional wind velocities at $10-\mathrm{m}$ height on a half degree grid. These winds were supplied directly to the WAM model. No interpolation in time took place.

The model was run with the standard parameter set supplied with the WAM cycle 4 code. These included 12 angle bins at every 15 degrees and 25 frequency bins from 0.0418 to 0.4114 Hz . The gulf domain was set up on a spherical grid, thereby accounting for the great

Figure G-1. WAM model domain showing the gulf domain (dotted lines) and the shelf domain (solid lines).
circle propagation of swell, with deep water propagation and no depth or current refraction. The source and propagation terms were integrated every twenty minutes to limit the Courant number to less than 0.3. Significant wave height and direction for the entire gulf and spectra at selected locations were saved after every six hours of integration.

The shelf domain was set up on a Cartesian grid, with shallow water propagation, bottom friction via the standard WAM parameter set, and depth refraction, but no current refraction. The source and propagation terms were integrated every five minutes to limit the Courant number to less than 0.3 . Significant wave height and direction for the shelf and spectra at selected locations were saved after every six hours of integration.

Model run

The model was run for the period of 1 April 1992 through 30 September 1992 on the Cray J90 supercomputer at Texas A\&M University, only the initial part of the LATEX field program. This period included the passage of Hurricane Andrew, 24-26 August 1992. Model output at specific locations was compared to observations. The data are from locations shown in Figure G-2; the model output was taken from the nearest gridpoints. The observations used in this comparison came from two sources, five bottom-mounted wave gauges maintained by LATEX A and three surface buoy records obtained from NDBC. The five LATEXA wave gauges were deployed along the Texas-Louisiana coast in depths ranging from 7 to 22 m . They consisted of four Coastal Leasing, Inc. MiniSpec directional wave gauges at moorings $16,17,20$, and 23 and one SeaData 635-8 non-directional wave gauge at mooring 1. The instruments recorded hydrostatic pressure and velocity. Because of inaccuracies in the MiniSpec pressure transducers during this comparison period, the velocity records were used to construct the significant wave heights. The attenuation of wave velocities is significantly affected by the water depth, which means that for meters in deep water the wave signal is lost in the noise. Therefore, each of the wave gauge records was post-processed with a uniform high frequency cutoff of 0.190 Hz (DiMarco et al. 1995a) to eliminate noise in the record. As a result, wave energy with frequencies higher than 0.190 Hz were discarded. In an environment dominated by long period swell, i.e., waves with a frequency less than 0.100 Hz , this would not be a problem, but long period waves are rare for the Gulf of Mexico (NDBC 1990). The three NDBC buoys at 42002, 42019, and 42020 are $3-\mathrm{m}$ discus buoys that ride the surface and record accelerations due to the wave motion. This information is processed into significant wave heights. The NDBC data provide a more reliable estimate of the wave heights than that estimated by the LATEX A wave gauges at the LATEX moorings.

Monthly-averaged significant wave heights for the Texas-Louisiana shelf are shown for for two representative months, May 1992 (Figure G-3) and August 1992 (Figure G-4). Sixhourly values of significant wave heights compared to observations are shown as time series

Figure G-2. Locations of LATEX A bottom-mounted wave gauges (moorings 1, 23, 20, 17 , and 16) and the NDBC wave buoys (42002, 42019, 42020).
in Figures G-5 through G-12. The average wave heights, the bias, and rms statistics are shown in Table G-1.

Discussion

Of particular interest is the positive bias for the wave gauges located in shallow water (moorings 1, 23, 20, 17, and 16) and the negative bias for the NDBC buoys located in deep water (42020, 42019, and 42002). As noted above, the five bottom-mounted wave gauges did not provide accurate estimates of the wave energy at frequencies higher than 0.190 Hz . Results from the WAM model suggest that a significant amount of energy occurs above 0.190 Hz , which would account for the positive bias. Hence, the wave gauges are, in fact, underreporting the actual wave heights. The NDBC buoys, on the other hand, show a negative bias, which indicates that the WAM model is underpre-dicting wave heights. We believe that, in general, wave heights are consistently underpredicted by WAM. There are a number of steps that could improve the model predictions, such as incorporating better propagation numerics or assimilating wave heights from the NDBC buoys-steps that are ongoing.

Figure G-3. Monthly averaged significant wave heights (m) for May 1992. Contour interval is 0.1 m .

Figure G-4. Monthly averaged significant wave heights (m) for August 1992. Contour interval is 0.1 m .

Figure G-5. Significant wave heights for WAM (dotted) vs. mooring 1 (solid).

Figure G-6. Significant wave heights for WAM (dotted) vs. mooring 16 (solid).

Figure G-7. Significant wave heights for WAM (dotted) vs. mooring 17 (solid).

Figure G-8. Significant wave heights for WAM (dotted) vs. mooring 20 (solid).

Figure G-9. Significant wave heights for WAM (dotted) vs. mooring 23 (solid).

Figure G-10. Significant wave heights for WAM (dotted) vs. NDBC buoy 42002 (solid).

Figure G-11. Significant wave heights for WAM (dotted) vs. NDBC buoy 42019 (solid).

Figure G-12. Significant wave heights for WAM (dotted) vs. NDBC buoy 42020 (solid).

Table G-1. Significant wave heights (cm) showing the average for the model and the data, the bias (defined as model minus data), and the rms of the bias.

Buoy	Model avg	Data avg	Bias	rms
mooring 1	73.6	59.3	+14.3	28.0
mooring 23	59.6	36.8	+22.8	27.4
mooring 20	49.6	29.6	+20.0	25.5
mooring 17	38.2	17.2	+21.0	25.9
mooring 16	51.0	32.7	+18.4	28.4
42020	80.6	99.2	-18.6	30.4
42019	68.6	94.1	-25.4	37.1
42002	72.0	85.2	-13.2	29.2

There is a clear alongshelf pattern seen in the six-month averaged wave heights (Figures G3 , G-4, Table G-1). This is consistently seen in both the model output and the observations, a fact that supports the use of the WAM wave model on the Texas-Louisiana shelf in spite of its prediliction to underpredict. The averaged wave heights along the shelf are largest on the western end of the Texas-Louisiana shelf and decrease toward the eastern end, with the exception of mooring 16 which was significantly affected by the passage of Andrew. A doubling of the wave heights from mooring 17 to mooring 1 , as well as the increase from 42019 to 42020 , strongly suggests that the average wind speeds must also double; that is, if the waves are generated by local winds and have little if any contribution from swell generated in the Gulf of Mexico. This premise is supported by the observed wind fields (see Section 2.1.2 and Figure 2.1-1) that show for the yearly averaged winds, the strongest $\left(\sim 4 \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)$ are in the west and the weakest ($\sim 1 \mathrm{~m} \cdot \mathrm{~s}^{-1}$) are in the northeast corner. However, there will always be episodic events (e.g., storms in the Gulf) that will contribute remotely generated swell to the shelf, but on the average the waves will be generated by local winds. Consequently, waves on the Texas-Louisiana shelf will rarely exceed a significant wave height of 3 m simply because large waves require a combination of high wind speeds and long open lengths of ocean over which to form. This finding is supported by long term NDBC buoy records that show that long period waves; i.e., swell with a period exceeding ten seconds, are rare for the Gulf of Mexico for all but the most extreme weather events (NDBC 1990).

The obvious exception to this is the passage of a hurricane. As shown in Appendix B.1, at 0100 UTC on 26 August 1992, the eye of Hurricane Andrew passed within 30 km of mooring 16. This MiniSpec recorded a peak significant wave height of 9.1 m before the record terminated. The velocity sensor of the MiniSpec failed to record meaningful data when the bottom-mounted frame holding the instrument was turned on its side by strong bottom currents (DiMarco et al. 1995b). However, because of the large amplitude waves present, it
was possible to use the pressure transducer to estimate the significant wave heights. This only occurred for a two-day period. The WAM model results for the nearest gridpoint to mooring 16 are significantly less than that and peak at 2.91 m at 1800 UTC 25 August 1992 (Figure G-6). At 1700 UTC, the MiniSpec record for mooring 16 shows a wave height of 3.62 m , and at 1900 UTC, 4.77 m . Model gridpoints farther to the west of mooring 16 show a model predicted significant wave height of 5.0 m . It is highly probable that the LATEX wind fields do not accurately portray the wind fields of Andrew; smoothing reduces the LATEX winds, especially during times of extreme winds and wind changes (documented in Section 4.5). During extreme weather events it is critical that the wind fields are accurately modeled if the predicted wave fields are to be accurate as well. It would be more appropriate, knowing such storm parameters as the minimum pressure, radius to maximum winds, etc., to construct a synthetic hurricane wind field, though we did not do that.

Acknowledgment

Time on TAMU's Cray J90 supercomputer was at no cost to MMS. We thank the Texas A\&M Supercomputer Advisory Committee for their research grant, awarded in November 1995, which allowed this work to be done.

Appendix H: Realizations of Current Fields

The LATEX and collateral data sets offer opportunities for various approaches to estimating the currents and shelfwide circulation over the Texas-Louisiana shelf. These range from approximations of the mean shear flow in the form of geopotential anomaly fields to direct current measurements using moored current meters or shipboard mounted acoustic Doppler current profilers. Presented in this appendix are fields of relative geopotential anomaly constructed from LATEX and collateral data and fields of monthly averaged currents from direct LATEX observations.

H. 1 Geopotential anomaly fields

Twelve maps of the depth of the $20^{\circ} \mathrm{C}$ isotherm and of geopotential anomaly for the sea surface ($3-\mathrm{m}$) were prepared using a combination of data from LATEX A, LATEX C, and GulfCet. Table H.1-1 presents the field operation nomenclature and the periods during which the observations were made. The LATEX A data were CTD temperature and salinity taken during ten hydrographic cruises. LATEX C data were AXBT profiles of temperature versus depth. GulfCet data were a combination of CTD temperature and salinity profiles and XBT temperature profiles. Combining these data sets allowed realizations of geopotential anomaly distributions extending over much of the shelf and past the continental slope into deeper water. Thus, eddies at the shelf edge and their relation to circulation over the shelf can be seen.

Combining temperature data from all sources, fields of isotherm depths for each observing period were obtained by objective analysis. The software used to produce these fields was the GMT (Generic Mapping Tools) software package (Wessel and Smith 1991); the objective analysis method in GMT is based on an extension of the minimum curvature method of gridding described by Smith and Wessel (1990). Gridded values were obtained at 15-minute separations in latitude and longitude and contoured.

Figure H.1-1 shows the depths of the $20^{\circ} \mathrm{C}$ isotherm for each of the twelve periods. The depths of isothermal surfaces at or near the $20^{\circ} \mathrm{C}$ isotherm have been shown to be excellent indicators of the presence, configuration, and strength of eddies in the Gulf of Mexico by Leipper (1970) and others. Also shown in Figure H.1-1 are 10-m current vectors averaged over each period of the hydrography and for the two preceding weeks.

In each of the first six periods pictured, an anticyclonic eddy was present offshore of the western shelf. In April-May and November of 1993, there is evidence in these temperature fields and current vectors for a cyclone west of the anticyclone. No data exists offshore of the western shelf for the December 1993 period, but, based on the available data, we can speculate that the situation was much like that in the previous month. Of the three periods in

Table H.1-1. LATEX A, LATEX C, and GulfCet field activities during each of 12 periods with common sampling.

Period	LATEX A Hydrographic cruise	LATEX C Field effort	GulfCet Cruise
15 Apr - 8 May 1992	H01	F01	01
1-11 Aug 1992	H02	F02 and F03	
5-21 Nov 1992	H03	F06 and F07	03
4-2 Jan 1993			
5-24 Feb 1993	H04	F08 and F09	
26 Apr - 18 May 1993	H05	F10 and F11	
26 Jul - 7 Aug 1993	H06	F12	
28 Oct - 22 Nov 1993	H07	F13 and F14	07
5-23 Dec 1993		F15 and F16	
23 Apr - 24 May 1994	H08	F17	
26 Jul - 14 Aug 1994	H09	H10	

1994, a distinct anticyclone was situated off the western shelf during the July-August case. For each case of an anticyclone in the west, currents over the shelf edge inshore from the eddy were upcoast - the strength appears to depend on the proximity of the eddy to the shelf edge. Also seen in the current vectors is evidence for onshelf (offshelf) flow across the shelf edge associated with the western (eastern) limb of the eddy.

No one pattern of circulation dominated off the eastern shelf. In August 1992, April-May 1993, August 1993, and November 1994, anticyclones were seen south of the eastern shelf, but they were not close enough to the shelf edge to appreciably affect the average currents during the period. It seems clear from these temperature and current distributions that the currents at the shelf edge are dominated by the offshore eddy field. Seldom are the currents seen to have the same along-shelf direction along the entire shelf edge. More detail regarding the flow near the shelf edge can be inferred from the patterns of geopotential anomaly for the twelve observing periods.

We examined two methods for obtaining geopotential anomaly from XBT/AXBT temperature profiles: use of a regional T-S relationship to estimate salinity from the temperature field and calculate density from temperature and resulting salinity; and use of a regional relationship of temperature to geopotential anomaly. That examination led us to use the T-S relationship. Because the T-S relations within and outside of a Loop Current eddy differ, a T-S relation fit to a combination of both types of data was selected. We estimate that the geopotential anomaly of the sea surface relative to 400 db produced by such an average T-S relation for waters off the Texas-Louisiana shelf can be in error by up to 5 dyn cm at the center of an anticyclone.

Figure H.1-1. Depth of $20^{\circ} \mathrm{C}$ isotherm (m) for twelve periods during 1992-1994 based on temperature data from LATEX A, LATEX C, and GulfCet. Specific field activities and dates of sampling are given in Table H.1-1. Vectors represent $10-\mathrm{m}$ current velocities at LATEX A moorings averaged over the sampling periods plus the preceding 14 days.

Figure H.1-1. Depth of $20^{\circ} \mathrm{C}$ isotherm (m) for twelve periods during 1992-1994 based on temperature data from LATEX A, LATEX C, and GulfCet. Specific field activities and dates of sampling are given in Table H.1-1. Vectors represent $10-\mathrm{m}$ current velocities at LATEX A moorings averaged over the sampling periods plus the preceding 14 days. (continued)

Anticyclonic eddies that separate from the Loop Current in the eastern Gulf of Mexico have property and current signals that extend to depths near 1000 m . By the time they reach the northwestern Gulf, their upper waters may have been altered by air-sea exchanges and mixing. Thus, we selected a relatively deep reference level (400 m) for our calculation of surface geopotential anomaly. We do not expect offshore isopycnals to be level at 400 m , but the upper 400 m of the water column contains most of the signal of the Loop Current-derived anticyclones as well as major cyclones present off the shelf

To obtain geopotential anomaly values at stations of less than 400-m depth, specific volume anomaly was interpolated along the bottom along lines of cross-shelf stations. Then geopotential anomalies were estimated by integration along the bottom from the $400-\mathrm{m}$ depth to the next shallowest station and then upward through the water column. The bottom value for that station was then used as a reference for the next shallowest station and the procedure repeated. This methodology, originated by Montgomery (1941), was clarified and used by Csanady $(1979,1981)$ among others. The condition that bottom potential density be uniform along an isobath ensures the value of geopotential anomaly so determined will be unique, i.e., independent of the path of integration. Density variation along isobaths can give rise to pycnobathic currents, which are not represented by the geopotential anomaly distributions so obtained.

Geopotential anomaly values at each station were objectively interpolated to obtain gridded values and then contoured by the same methods used to produce isotherm depths. The contoured fields for the twelve observing periods are shown in Figures H.1-2 through H.1-13.

Figure H.1-2. Geopotential anomaly (dyn cm) of sea surface relative to 400 db based on data collected during 15 April-8 May 1992.

Figure H.1-3. Geopotential anomaly (dyn cm) of sea surface relative to 400 db based on data collected during 1-11 August 1992.

Figure H.1-4. Geopotential anomaly (dyn cm) of sea surface relative to 400 db based on data collected during 5-21 November 1992.

Figure H.1-5. Geopotential anomaly (dyn cm) of sea surface relative to 400 db based on data collected during 4-21 January 1993.

Figure H.1-6. Geopotential anomaly (dyn cm) of sea surface relative to 400 db based on data collected during 5-24 February 1993.

Figure H.1-7. Geopotential anomaly (dyn cm) of sea surface relative to 400 db based on data collected during 26 April-18 May 1993.

Figure H.1-8. Geopotential anomaly (dyn cm) of sea surface relative to 400 db based on data collected during 26 July-7 August 1993.

Figure H.1-9. Geopotential anomaly (dyn cm) of sea surface relative to 400 db based on data collected during 28 October-22 November 1993.

Figure H.1-10. Geopotential anomaly (dyn cm) of sea surface relative to 400 db based on data collected during 15 April-8 May 1992.

Figure H.1-11. Geopotential anomaly (dyn cm) of sea surface relative to 400 db based on data collected during 1-11 August 1992.

Figure H.1-12. Geopotential anomaly (dyn cm) of sea surface relative to 400 db based on data collected during 5-21 November 1992.

Figure H.1-13. Geopotential anomaly (dyn cm) of sea surface relative to 400 db based on data collected during 4-21 January 1993.

H. 2 Monthly average LATEX current fields

Many fields of average current vectors were prepared for study. Here we present for the observation period, April 1992 through November 1994, fields of monthly average current vectors gridded at $0.25^{\circ} \times 0.25^{\circ}$ in latitude and longitude, with grid points at whole degrees. Selected as the basic data set were the $40-\mathrm{hr}$, low-pass time series of currents from the upper instrument at each mooring. Except for four instruments positioned at 3.5 m beneath the sea surface, most of those instruments were located about 10 m below the sea surface (see Table I-2 for average depths and current meter statistics).

A monthly vector average was obtained for each upper instrument having at least 10 days of $40-\mathrm{hr}$ low-pass current records in the month. Based on these averages at all mooring locations, a gridded field of vectors was obtained using the GMT software package. These fields for observed months in the calendar years 1992 through 1994 are shown in Figures H.2-1 through H.2-3, respectively. The patterns are quite consistent with those inferred from patterns of property distributions. They are presented as observed circulation fields and serve as reference material.

Figure H.2-1. Objectively analyzed 10-m currents from monthly averaged observations for 1992.

Figure H.2-1. Objectively analyzed 10-m currents from monthly averaged observations for 1992. (continued)

Figure H.2-2. Objectively analyzed 10-m currents from monthly averaged observations for 1993.

Figure H.2-2. Objectively analyzed 10-m currents from monthly averaged observations for 1993. (continued)

Figure H.2-3. Objectively analyzed 10-m currents from monthly averaged observations for 1994.

Figure H.2-3. Objectively analyzed $10-\mathrm{m}$ currents from monthly averaged observations for 1994. (continued) There were no LATEX observations for the month of December 1994.

Appendix I: Current, Temperatures,

 and Salinity StatisticsIncluded in the LATEX A field program were 37 moorings with current meters, wave gauges, meteorological buoys, and inverted echo sounders. These moorings provided a shelfwide network of current, temperature, and salinity time series. The instrumentation and field maintenance are reviewed in Section 1.2; Figure 1.2-1 shows the locations of the moorings and identifies the mooring numbers; Table 1.2-1 gives the locations, average water depths, and typical mooring configurations for each mooring. The current meter array initially consisted of 83 current meters. Even with spares, attrition reduced the number of meters in the water as the three-year field program ran its course. Details on instrumentation, data returns, and data processing are provided in the LATEX A data report on current meters (DiMarco et al. 1997).

Two cosine-Lanczos filters were used in processing LATEX A time series data: 3-hour low-pass and 40-hour low-pass. The design of the 3-hour kernels depended upon the time interval of the sampling of the instrument. These intervals ranged from 2-min sampling to 3-hr sampling. Table I-1 shows the kernel lengths for selected sampling intervals. The 3-hour low-pass filtering produced hourly data sets from all instrument types. Then, hourly time series of the 3-hour low-passed data were processed through a 40-hour low-pass cosineLanczos filter with a kernel of $96+1+96$. This filter effectively removed the inertial and superinertial signals, including the diurnal and semidiurnal tides, from the records. The response functions (relative power) for the filters used are given in the data report (DiMarco et al. 1997).

Many standard analyses were carried out on the current records, both in the course of quality control as well as during interpretation. Many of these are included in the data report (DiMarco et al. 1997). For each instrument the data report includes:

- Monthly time series of current vector stick plots, along- and cross-shelf current velocity components, sea temperature, and salinity of 3-hr and 40-hr low pass data.
- Spectral density plots by deployment of velocity components, temperature, salinity, and, for wave gauge sites, bottom pressure.
- Hourly bottom pressure by deployment at each wave gauge location.
- Current rose and joint distributions by deployment.
- Persistence distributions and statistics tables by deployment.

Table I-1. Kernel length for 3-hour low-pass cosine-Lanczos filters applied to time series data.

Sampling interval	Kernel length
1 hour	$8+1+8$
30 minute	$16+1+16$
15 minute	$32+1+32$
10 minute	$48+1+48$
5 minute	$96+1+96$
2 minute	$240+1+240$

- Basic statistics (mean, maximum, and minimum values and standard deviation) tables for
all current meter time series by two-week intervals.

Here we present some additional statistics of possible use to engineers, modelers, managers, or others dealing with structures, vessels, or oil spills over the Texas-Louisiana shelf. Two statistical compilations are offered: one based on the hourly data, the other based on the 40hr low-pass data.

Table I-2 lists current statistics based on the hourly 3-hr low-pass records. The information is organized by year and by month; i.e., the first page of the table gives all statistics for April, May, and June of 1992, the second page for July - September of 1992, etc. The leftmost column on each page lists all of the instruments originally deployed in numerical and depth order-" 01 t " designates the top instrument on mooring 1 ; " 03 m " designates the mid-depth instrument on mooring 3 ; and " $01 b$ " designates the bottom instrument on mooring 1. For each instrument and month the following information is given:

Symbol
h
N
$\|\bar{v}\|$
θ
$\|\bar{v}\|$
v_{M}

$\underline{\text { Statistic }}$
average instrument depth
number of hourly samples in monthly record
monthly vector average speed
monthly vector average direction
monthly scalar average speed
maximum speed in monthly record

When no data are available for a particular instrument in a particular month, $N=0$ and all statistical variables are set to -99. It should be noted that moorings $44-47$ constituted the wild card array, as mentioned in Section 1.2; these were removed early during the field program and their instruments used as spares. None were maintained after March 1993.

Table I-2. Current meter velocity statistics for 3-hr low-passed filtered data.

Table I-2. Current meter velocity statistics for 3-hr low-passed filtered data (continued).

Table I-2. Current meter velocity statistics for 3-hr low-passed filtered data (continued).

Table I-2. Current meter velocity statistics for 3-hr low-passed filtered data (continued).

Table I-2. Current meter velocity statistics for 3-hr low-passed filtered data (continued).

Table I-2. Current meter velocity statistics for 3-hr low-passed filtered data (continued).

Table I-2. Current meter velocity statistics for 3-hr low-passed filtered data (continued).

Table I-2. Current meter velocity statistics for 3-hr low-passed filtered data (continued).

Table I-2. Current meter velocity statistics for 3-hr low-passed filtered data (continued).

Table I-2. Current meter velocity statistics for 3-hr low-passed filtered data (continued).

Table I-2. Current meter velocity statistics for 3-hr low-passed filtered data (continued).

Of particular note in Table I-2 is that monthly maximum speeds in excess of $100 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ were recorded only ten times during the LATEX field period. Of these, seven were associated with the passage of Hurricane Andrew in August 1992 (see Appendix B.1), and two were associated with the Storm of the Century in March 1993 (see Appendix B.2). The remaining occurrence is associated with cyclogenesis in October 1992. The number of monthly maximum speeds greater than $90 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ more than triples to 33 occurrences. The largest monthly maximum speed recorded during LATEX was $162 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ at $10-\mathrm{m}$ depth on mooring 13 during Hurricane Andrew.

For each month and instrument, Table I-3 gives monthly averages of recorded temperatures and salinities, together with the number of samples used to perform each average. NT (Ns) and $\bar{T}(\bar{S})$ denote the number of samples of temperature (salinity) in a given month and the monthly mean temperature (salinity). As before, -99 means that statistics are not available because samples were lacking in that month. For Table I-3, the maximum (minimum) values of monthly averaged temperature and salinity are $30.8^{\circ} \mathrm{C}\left(7.5^{\circ} \mathrm{C}\right)$ and 36.7 (16.9), respectively.

Listed in Table I-4 for each instrument and month are maximum observed speeds (V_{M}), the direction associated with the maximum (θ), and the day of the month on which the maximum occurred. These are based on the 40 -hr low-pass records. Note that there were eleven occurrences of maximum speeds in excess of $80 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ after $40-\mathrm{hr}$ low-pass filtering. Of those, six are from locations associated with the eddy graveyard (see Section 2.5.1) near the vicinity of mooring 5 (Figure 1.2-1).

Table I-3. Current meter temperature and salinity statistics for 3-hr low-passed filtered data.

Table I-3. Current meter temperature and salinity statistics for 3-hr low-passed filtered data (continued).

Table I-3. Current meter temperature and salinity statistics for 3-hr low-passed filtered data (continued).

Table I-3. Current meter temperature and salinity statistics for 3-hr low-passed filtered data (continued).

Table I-3. Current meter temperature and salinity statistics for 3-hr low-passed filtered data (continued).

Table I-3. Current meter temperature and salinity statistics for 3-hr low-passed filtered data (continued).

Table I-3. Current meter temperature and salinity statistics for 3-hr low-passed filtered data (continued).

Table I-3. Current meter temperature and salinity statistics for 3-hr low-passed filtered data (continued).

Table I-3. Current meter temperature and salinity statistics for 3-hr low-passed filtered data (continued).

Table I-4. Current meter statistics: maximum speed and direction for 40-hr low-passed filtered data.

Table I-4. Current meter statistics: maximum speed and direction for 40-hr low-passed filtered data (continued).

Table I-4. Current meter statistics: maximum speed and direction for 40-hr low-passed filtered data (continued).

April 1993

May 1993

 June 1993
v_{M}

 August 1993
$y_{M} \quad v_{M}$

Table I-4. Current meter statistics: maximum speed and direction for 40-hr low-passed filtered data (continued).

Table I-4. Current meter statistics: maximum speed and direction for $40-\mathrm{hr}$ low-passed filtered data (continued).

Table I-4. Current meter statistics: maximum speed and direction for 40-hr low-passed filtered data (continued).

Appendix J: Comparisons of Currents Derived From adCP, Current Meter, and Hydrographic Observations

J. 1 Comparison of vertical shear from ADCP and hydrography

Oceanographers still rely heavily on traditional geostrophic current shear estimation based on observed density fields, even in coastal circulation regimes. Direct measurements of currents from survey vessels, particularly acoustic Doppler current profiler (ADCP) data, provide a means to verify the oceanographers' faith in geostrophic vertical shear. This issue is addressed here for the Texas-Louisiana shelf.

Using ADCP and CTD measurements made on LATEXA cruises H06 and H07 (July/August and November of 1993) at stations having a water depth greater than 120 m, Chen (1995) compared the vertical shear computed from ADCP data and the geostrophic shear obtained from CTD data to establish a common reference. Cruises H06 and H07 were selected as representative of summer and non-summer, respectively, and on the basis of good coverage with high quality ADCP data.

Here we first discuss the analysis methodology, then present some of Chen's (1995) results and an extension thereof. In contrast to other comparisons of ADCP and CTD-based shear, such as that of Kosro and Huyer (1986) for the California coastal region, the present analysis addresses the statistical distribution of correlation and of rms difference based on a sample ensemble of profile pairs of vertical shear in the upper 100 m . We follow with an analysis of the EOF decomposition of the ADCP and CTD-based vertical shear to gain some insight as to differences between these for the Texas-Louisiana shelf, and conclude with a summary of the important findings. Throughout this appendix we use the term "current shear" as synonymous with the phrase "profile of relative current" from which the vertical average in the case of ADCP, or reference in the case of CTD-derived profile, has been removed.

Data analysis and sample comparisons

For the $150-\mathrm{kHz}$ ADCP system used during the LATEX A cruises, vertical resolution is 4 m , with the uppermost measurement typically centered at 10 m depth. The comparison of ADCP and CTD-inferred shear was restricted to the depth range $10-98 \mathrm{~m}$, or 23 levels at ADCP data resolution. The spacing of CTD stations along the 200-m isobath for cruises H 06 and H 07 was about 20 km , allowing at most about eight ADCP vertical profiles between stations. For cross-shelf transects on the outer shelf (near 200 m water depth) the station spacing was only 5 km , allowing only one or two ADCP profiles between stations. The component of geostrophic current relative to 98 m normal to the line between adjacent CTD stations was computed from the thermal wind equation, based on density profiles at the adjacent stations and subsampled at levels common to the ADCP data. Components of ADCP velocity normal
to the line between adjacent CTD stations at a given level were averaged for all ADCP profiles available between those stations. The average ADCP profile thus obtained for the 23 levels was then demeaned, as was the associated normal component of the geostrophic velocity calculated from the CTD data at the adjacent stations.

In this way shear profiles based separately on ADCP and on CTD data, with zero mean over the 23 levels, were obtained for each CTD station pair having at least one usable ADCP profile in between. Shear profiles characterizing the cross-shelf flow were obtained from stations along the $200-\mathrm{m}$ isobath; profiles characterizing the alongshelf flow were obtained from the cross-shelf transects near 200 m . Figure J.1-1 shows the CTD stations from LATEX A cruises H06 and H07 used in this analysis. In the comparisons discussed below, it should be borne in mind that the cross-shelf shear profiles are based on averages over about 20 km , while alongshelf shear profiles are based on averages over only 5 km .

Figures J.1-2 and J.1-3 show sample comparisons of alongshelf and cross-shelf shear profiles for cruises H 06 and H 07 , respectively. These were deliberately selected as the best three profiles for both directions on each cruise; each profile pair looks qualitatively good regardless of direction or season. It will be shown below that despite the wide range in correlation for individual profile pairs, the good sample pairs illustrated in Figures J.1-2 and J.1-3 in fact represent the most probable (or typical) pairs.

Correlation and rms difference distributions

As a quantitative measure of the agreement of the profile pairs, the correlation coefficient (r) and root mean square difference (rms) were computed for each profile pair (Tables J.1-1 and J.1-2). From these tables it may be noted that the twelve sample profile pairs in Figures J.1-2 and J.1-3 have r values ranging from 0.88 to 0.99 and $r m s$ differences in the range 1.4 to $4.0 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$. Notice, however, that for other profile pairs, r ranges from large negative to large positive values, and the maximum rms difference is over $11 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$. The values of rms difference and of correlation coefficient based on sample profiles in Tables J.1-1 and J.1-2 were sorted in ascending order, regardless of direction or cruise, to produce the cumulative distributions shown in Figures J.1-4 and J.1-5.

The cumulative distribution of rms difference in ADCP and CTD-inferred shear (Figure J.1-4) represents an estimate of the probability that the rms difference has a value between zero and a given value on the abscissa. The difference of this distribution from unity is the probability of an rms greater than a given value on the abscissa; this is nearly a one-sided Gaussian distribution with standard deviation relative to zero rms of about 3.2 $\mathrm{cm} \cdot \mathrm{s}^{-1}$ as computed from the sample data. The derivative of this cumulative distribution, the probability density function (pdf), is thus nearly a Rayleigh distribution (Longuet-Higgins, 1952) with a mode near 3.2, while the median and mean based on the sample data are about 3.7 and 4.1 , respectively.

Figure J.1-1. CTD stations used in geostrophic computations from LATEX A hydrographic cruises: (upper) H06, 26 July-7 August 1993, and (lower) cruise H07, 7-21 November 1993.

Figure J.1-2. Comparisons of demeaned ADCP current shears (dashed) with CTD-inferred geostrophic shears (solid) for the summer cruise (H06). The upper row shows three profile pairs for the alongshelf component of these two shears. The lower row shows three profile pairs for the cross-shelf components. CTD station pairs are indicated for each profile pair.

Figure J.1-3. Comparisons of demeaned ADCP current shears (dashed) with CTD-inferred geostrophic shears (solid) for the fall cruise (H07). The upper row shows three profile pairs for the alongshelf component of these two shears. The lower row shows three profile pairs for the cross-shelf components. CTD station pairs are indicated for each profile pair.

Table J.1-1. List of rms differences ($\mathrm{cm} \cdot \mathrm{s}^{-1}$) and correlation coefficients (r) between ADCP and CTD-inferred geostrophic shears for each station pair during the summer cruise (H06).

Alongshelf component			Cross-shelf component		
stations	rms	r	stations	rms	r
$37-36$	3.8	0.95	$41-37$	5.1	-0.06
$39-38$	7.6	0.91	$42-41$	5.0	0.77
$40-39$	5.3	0.93	$43-42$	4.1	0.93
$47-48$	3.3	0.22	$44-43$	4.7	0.81
$48-49$	3.9	0.32	$45-44$	3.5	0.22
$50-51$	3.8	0.65	$46-45$	5.2	0.14
$84-83$	4.3	0.86	$50-46$	1.7	0.86
$85-84$	2.0	0.96	$90-89$	4.8	0.83
$86-85$	1.8	0.94	$91-90$	2.7	0.61
$96-97$	1.4	0.96	$92-91$	2.3	0.92
$97-98$	3.1	0.79	$93-92$	1.8	0.72
$98-99$	4.8	0.80	$94-93$	3.8	0.96
$134-135$	5.9	0.65	$95-94$	3.3	0.94
$135-136$	4.0	0.87	$197-199$	5.0	-0.03
$137-138$	6.2	0.96	$199-200$	3.6	0.92
$151-152$	4.6	0.99	$200-201$	6.2	-0.26
$152-153$	3.2	0.94	$201-202$	4.6	-0.58
$165-166$	7.2	-0.62	$202-203$	2.4	0.87
$166-167$	5.8	0.90	$203-204$	2.0	0.48
$167-168$	4.7	0.85	$204-205$	3.9	0.71
$168-169$	9.2	0.34	$205-206$	3.8	0.34
$169-170$	5.2	-0.55	$206-207$	2.8	0.96
$197-196$	7.0	0.94	$207-208$	5.4	-0.31
$198-197$	7.5	0.96	$208-209$	5.4	0.92
			$209-210$	2.6	0.98
			$210-211$	2.0	0.78

Table J.1-2. List of rms differences $\left(\mathrm{cm} \cdot \mathrm{s}^{-1}\right.$) and correlation coefficients (r) between ADCP and CTD-inferred geostrophic shears for each station pair during the fall cruise (H07).

Alongshelf component				Cross-shelf component		
stations	rms	r	stations	rms	r	
$60-59$	11.1	0.82	$65-64$	7.0	-0.76	
$63-62$	3.6	0.44	$66-65$	5.7	0.99	
$107-106$	2.3	0.58	$67-66$	7.5	0.97	
$108-107$	1.5	0.84	$68-67$	3.7	0.71	
$109-108$	2.9	0.53	$69-68$	2.7	-0.51	
$119-120$	3.0	0.86	$110-111$	1.4	0.39	
$120-121$	3.4	0.86	$114-110$	2.5	0.74	
$121-122$	2.0	0.97	$115-114$	1.4	0.88	
$170-169$	4.0	0.88	$116-115$	2.8	0.94	
$171-170$	3.4	0.88	$117-116$	2.8	0.93	
$172-171$	3.2	0.80	$118-117$	2.5	0.35	
$173-172$	6.5	-0.07	$224-225$	3.9	0.39	
$174-175$	2.1	0.44	$225-226$	1.5	0.99	
$175-176$	5.0	-0.47	$228-229$	3.2	0.76	
$188-189$	3.3	0.79	$229-230$	3.5	0.65	
$191-192$	7.6	0.89	$230-231$	4.3	0.42	
$192-193$	2.6	0.78	$231-232$	4.4	0.11	
$221-220$	4.5	-0.23	$232-233$	3.0	0.50	
$238-119$	2.9	0.04	$233-234$	3.7	0.71	
			$235-236$	3.2	0.22	
			$236-237$	3.8	-0.52	

Figure J.1-4. Cumulative distribution of rms difference between the demeaned ADCP and CTD-inferred vertical shears ($\mathrm{cm} \cdot \mathrm{s}^{-1}$) based on cruises H06 and H07. The left vertical scale is the probability P that the rms difference is less than given value x, while the right vertical scale give the probability that the rms is greater than \mathbf{x}.

The cumulative distribution of correlation coefficient for the profile pairs (Figure J.1-5) represents an estimate of the probability that r has a value between -1 and given value on the abscissa. For positive r values, this cumulative distribution is very nearly exponential and hence, its derivative (the pdf) is also nearly exponential. Thus, the most probable (mode) value of r is nearly 1.0 , while the median and mean based on the sample data are 0.78 and 0.57 , respectively. For an exponential pdf with mode of unity, the departure of the mean from unity (0.43 in the present case) is the e-folding scale for the distribution.

Of the many comparisons of ADCP and CTD-based vertical shear profiles in the literature, none give sufficient information to assess the distribution of r values for an ensemble of profile pairs as given here. In the analysis by Kosro and Huyer (1986) of survey data in coastal waters off northern California, the focus is primarily on horizontal current patterns at 30 m and 100 m based on ADCP data together with (CTD-based) geostrophic current relative to 500 m . They provide correlations of like components of velocity at 30 m relative to that at 100 m from the ADCP and CTD data. A correlation of 0.70 based on 67 sample pairs was found for survey data taken in 1981, and one of 0.87 based on 44 pairs from 1982

Figure J.1-5. Cumulative distribution of correlation (r) between the demeaned ADCP and CTD-inferred vertical shears based on cruises H06 and H07. The vertical scale is the probability P that the correlation r is less than given value x .
survey data. These correlations (averaging 0.77) are significantly higher than the mean of 0.57 computed from the ensemble of r values from the LATEX A data.

One conclusion that may be drawn from this contrast to the Kosro and Huyer values of r is that the correlation is quite sensitive to the method of analysis. As confirmation of this conclusion, sample estimates of correlation for $10-\mathrm{m}$ pairs based on LATEX A data show significantly larger values (order 0.8) than the mean (0.57) of the ensemble of profile r values shown in Figure J.1-5. Another conclusion is that the high r values based on the gross shear, like 30 m relative to 100 m , must be related to the findings of Figure J.1-5, which indicate a nearly exponential distribution of r, with a median value significantly higher that the mean and a mode near unity.

EOF analyses of shear profiles

To gain additional insight regarding the differences that exist between the ADCP and CTDbased vertical shear, an EOF analysis was applied to the LATEX A profile pairs. We first
carried out EOF analyses for ADCP current shear and CTD-based geostrophic shear individually and found that the results were very similar, including the structures of the eigenfunctions and the percentages of total variance contained in the first three modes. Therefore, we combined the covariance matrices for both cruises into a single covariance matrix for each component of shear and then performed the EOF analysis based on the composite matrices, each of size 23 by 23. Figure J.1-6 shows the first three eigenfunctions for the along- and cross-shelf components. The first EOF modes for both components account for about 77 percent of the total variance and have one zero crossing near the middle of the depth range. The first three modes account for about 95 percent of the total variance for each component. The EOF modal profiles of relative current components are based on a sample size of 180 , and the first three eigenvalues differ from one another by at least a factor of two. Using the North et al. (1982) sample variability relations, it can be shown that both the EOF eigenvalues and the associated modal profiles are reasonably stable estimates.

Using the common EOF modes for the given component of shear, we analyzed the amplitudes for the first three modes associated with each profile pair (ADCP and CTD-based shear). Here we discuss only the cross-shelf results of this analysis, they being typical of both. Figure J.1-7 shows plots of the amplitudes of the first three modes based on cross-shelf ADCP shear and for CTD-based shear versus distance along the $200-\mathrm{m}$ isobath, based on the summer cruise H06. Similar plots based on the fall cruise H07 are shown in Figure J.1-8. The correlation between the amplitudes for the first mode based on ADCP and CTD for both cruises is nearly 0.80 , while the second and third modes are characterized by correlations of order 0.4 and 0.2 , respectively, the latter being not significantly different from zero. The high correlation for the first EOF mode is comparable to what one gets using the method of correlation of the gross shear (upper level relative to lower level), as in the analysis of Kosro and Huyer (1986). In retrospect, this is what one should expect, since the dominant EOF modal shape is nearly a linear trend profile, as tacitly implied in the method of Kosro and Huyer.

Of course, the physical reason for the difference between ADCP and CTD-inferred vertical shear profiles lies in the ageostrophic effects contained in the ADCP direct measurements, plus any measurement error in either ADCP or CTD data. Of the ageostrophic effects included in the ADCP, frictionally-induced shear associated with the wind-induced upper Ekman layer could play a significant role. Another possible source of ageostrophic shear included in the ADCP data could be that associated with frequencies near and higher than the inertial frequency, namely inertial motion, baroclinic tidal motion, and internal waves. The near inertial motion is fairly energetic on the Texas-Louisiana shelf (Chen et al., 1996). Because of their smaller vertical scale, it is speculated that these ageostrophic effects show up more strongly in the second and higher EOF modes, and probably account for the very low correlations found for these modes.

Figure J.1-6. The first three EOF profiles of alongshelf (upper) and cross-shelf (lower) components derived from the composite covariance matrix based on ADCP and CTD-inferred shears based on cruises H06 and H07. The variance and the percentage of the total variance explained by each EOF mode is shown.

Figure J.1-7. The first three EOF modal amplitudes of the cross-shelf components of ADCP (dashed) and geostrophic (solid) shears as a function of arc distance along the 200 -m isobath from station 197 for the summer cruise (H06).

Figure J.1-8. The first three EOF modal amplitudes of the cross-shelf components of ADCP (dashed) and geostrophic (solid) shears as a function of arc distance along the $200-\mathrm{m}$ isobath from station 224 for the fall cruise (H07).

Summary

The ensemble of correlation coefficients r, computed for individual demeaned profile pairs based on ADCP shear and CTD-inferred geostrophic shear over the depth range $10-98 \mathrm{~m}$ at $4-\mathrm{m}$ resolution, have a nearly exponential cumulative distribution with mode, median and mean of about $1.0,0.78$, and 0.57 , respectively, for the Texas-Louisiana shelf near the $200-\mathrm{m}$ isobath. This exponential character of the distribution implies that a profile pair picked at random from the ensemble typically has high correlation. The difference between mode and mean (0.43) is essentially a measure of the e-folding scale of the exponential distribution. The median, which is close to 0.8 , seems to characterize the correlation from pairs of $10-\mathrm{mADCP}$ and geostrophic current relative to that at about 100 m . This is consistent with the correlation between the amplitudes of the first EOF mode derived from the ADCP and geostrophic shears. The differences that occur between the ADCP and geostrophic shear are probably due to the ageostrophic wind-induced Ekman shear and baroclinic near-inertial motion that is present in the ADCP data. These effects seem to be confined largely to the second and higher EOF modes of the shear profiles, since the correlations between the amplitudes for like modes derived from ADCP and geostrophic shear profiles are very small (order 0.4 or less). No attempt has been made to estimate the contribution to differences between ADCP and CTD-inferred shear based on measurement error. However, the statistics of rms difference, having nearly a Rayleigh distribution, could be useful in follow-on studies of this and other issues within the topic of geostrophic comparison.

J. 2 Comparison of current meter and ADCP velocities

A complete discussion of LATEX A ADCP data is contained in a data report by Bender and Kelly (1998). Using measurements obtained during nine LATEX A cruises (H03, M03, H04, H05, H06, H07, H08, H09, and H10), we compared ADCP-determined velocity to the velocity from the nearest current meter mooring. To make that comparison, we established three screening criteria: (1) the distance of closest approach between the ship as it recorded the profile and the location of the mooring had to be less than 10 km ; (2) the difference between the two sample times had to be less than or equal to 30 minutes; (3) the depth of the instrument had to be within a $4-\mathrm{m}$ depth bin of the Doppler current profile; and (4) the current meters had to be recording usable data when the ship steamed by the mooring.

Given these criteria, we found 2551 matches between current meters and associated ADCP velocity: 160 from cruise H03, 294 from M03, 238 from H04, 139 from H05, 416 from H06, 393 from H07, 349 from H08, 184 from H09, and 378 from H10. It should be noted that multiple matches could occur at each mooring location if there was more than one current meter in the vertical.

Figures J.2-1 and J.2-2 show examples of the comparisons for H06, where u is the zonal velocity and v is the meridional velocity. These comparisons present some of the best agreement between current meter and ADCP velocities of all nine cruises. As a quantitative measure of the agreement, we employed two separate statistical measures: the rms error based on the speed and a complex regression analysis to determine the average angle between the two velocities.

The rms difference between current meter speed and ADCP speed is given by

$$
\mathrm{rms}=\sqrt{\left\langle\left(\overline{\mathrm{u}}_{2}-\overline{\mathrm{u}}_{1}\right)^{2}\right\rangle},
$$

where $\overline{\mathrm{u}}_{1}$ is the current meter speed, $\overline{\mathrm{u}}_{2}$ is the ADCP speed, and $<>$ denotes the average over n matches. The rms difference does not provide any information about the difference in the angles between the ADCP and the current meter velocities. Complex linear regression analysis, on the other hand, yields the average angle between two sets of vectors as well as a measure of the regression modulus and coherence. The method presented here is further described in Vastano and Barron (1994) and Kundu (1976).

If u_{j} and v_{j} are the zonal and meridional velocity components, where $\mathrm{j}=1$ denotes the current meter velocities and $j=2$ the ADCP velocities, then it can be shown that the average angle between two sets of vectors is given by

Figure J.2-1. ADCP profile taken on 4 August 1993 at 1342 UTC (cruise H06) while passing mooring 4 at a distance of 1.2 km . Velocities for the surface meter (14 m) are marked with a circle and were recorded at 1330 UTC. Velocities for the middle meter (100 m) are marked with a square and were recorded at 1330 UTC. The right panels show the velocity vectors for the current meter (thick line) and the corresponding ADCP bin (thin line).

Figure J.2-2. ADCP profile taken on 31 July 1993 at 1854 UTC (cruise H06) while passing mooring 9 at a distance of 0.8 km . Velocities for the surface meter (15 m) are marked with a circle and were recorded at 1900 UTC. Velocities for the middle meter $(101 \mathrm{~m})$ are marked with a square and were recorded at 1900 UTC. Velocities for the bottom meter (191 m) are marked with a diamond and were recorded at 1900 UTC. The right panels show the velocity vectors for the current meter (thick line) and the corresponding ADCP bin (thin line).

$$
\alpha=\arctan \left(\frac{\left\langle u_{1} \mathbf{v}_{2}-\mathbf{u}_{2} \mathbf{v}_{1}\right\rangle}{\left\langle\mathbf{u}_{1} \mathbf{u}_{2}+\mathrm{v}_{1} \mathbf{v}_{2}\right\rangle}\right) .
$$

The parameter α is the counterclockwise regression angle of the $\mathrm{j}=2$ vectors relative to the $j=1$ vectors. It is effectively the phase of the ensemble of the vector pairs; e.g., if the angle of the current meter velocity vector was 30° and that of the ADCP velocity vector was 45°, then α would be -15°.

The regression modulus b_{m} is found by

$$
b_{m}=\frac{\left\langle u_{1} u_{2}+v_{1} v_{2}\right\rangle}{\left\langle u_{1}^{2}+v_{1}^{2}\right\rangle} \sec \alpha .
$$

It provides a measure of the gain or bias between the two vector sets; e.g., if the current meter velocity were $10 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ and the ADCP velocity were $20 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$, then b_{m} would be 2.0 .

The fraction of the variance of the $\mathrm{j}=2$ vector set explained by linear relation with the $\mathrm{j}=1$ vector set is given by ρ, and can be determined from

$$
\rho^{2}=b_{m}^{2} \frac{\left\langle u_{1}^{2}+v_{1}^{2}\right\rangle}{\left\langle u_{2}^{2}+v_{2}^{2}\right\rangle}
$$

The parameter ρ^{2} is effectively the square of the coherence; i.e., if all of the variance in the ADCP vectors were described by the current meter vectors, then ρ^{2} would be 1.0. However, any value above 0.5 is considered good. The ideal agreement between current meter velocities and ADCP velocities would yield $\alpha=0, \mathrm{~b}_{\mathrm{m}}=1.0$, and $\rho^{2}=1.0$. As will be seen, this is rarely even approached.

Figure J.2-3 shows the statistics, on a cruise by cruise basis, for every match between current meter and ADCP measurements that meets the requirements of distance, time, vertical position, and an operational current meter. Table J.2-1 shows the actual data. The ADCP speeds are clearly biased higher than the current meter speeds. The rms difference in speed averaged for all nine cruises is $12.30 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ (shown with a dotted line on Figure J.2-3), the regression angle α averaged for all nine cruises is -1.56°, the cruise-averaged regression modulus b_{m} is 0.835 , and the cruise-averaged variance fraction ρ is 0.483 (all shown with a dotted line). The variance fraction can be interpreted as a sensitive indicator of the goodness of the comparison. Using the average variance as the standard, there are three cruises (H 05 , H06, and H10) that are distinctly better than average, three cruises (H07, H08, and H09)

Figure J.2-3. Comparison statistics for all pairs that met the primary requirements. Panel (a) shows for each individual cruise the rms error (diamond), average current meter speed (asterisk), and average ADCP speed (square), as well as the cruise averaged rms error (dotted line). Panel (b) shows the counterclockwise regression angle, panel (c) the regression coefficient, b_{m}, and panel (d) the variance fraction or coherence squared. The sample size is in parenthesis.

Table J.2-1. ADCP-current meter comparison statistics $\leq 10-\mathrm{km}$ separation distance.

LATEX ID	Sample Size	Mean Speed $\mathrm{CM}, \mathrm{cm} \cdot \mathrm{s}^{-1}$	Mean Speed $\mathrm{ADCP}, \mathrm{cm} \cdot \mathrm{s}^{-1}$	r rms $\mathrm{cm} \cdot \mathrm{s}^{-1}$	Alignment Angle, α	Regression Modulus, b_{m}	Variance Fraction, ρ
H03	160	9.38	17.61	14.03	0.02	0.880	0.202
M03	294	14.96	15.81	11.36	-11.17	0.529	0.227
H04	238	11.80	12.96	8.14	-9.58	0.575	0.304
H05	139	20.05	25.40	13.42	-1.57	0.949	0.624
H06	416	20.22	25.79	12.95	2.75	1.075	0.747
H07	393	17.61	18.39	15.45	-2.95	0.569	0.326
H08	349	11.77	16.20	10.30	-2.50	0.803	0.430
H09	184	16.04	19.72	17.62	-11.38	0.853	0.370
H10	378	11.48	14.34	6.62	-1.10	0.993	0.635
All	2551	14.98	18.32	12.30	-1.56	0.835	0.482

that are slightly worse than average, and three cruises (H03, M03, and H04) that are distinctly worse than average. There appears to be no correlation between the sample size, shown in parentheses, and the statistical measures. The best comparison resulted for cruise H06. The rms speed difference is $12.95 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$, the regression angle α is 2.75°, the variance fraction ρ is 0.747 , and the regression modulus b_{m} is 1.075 .

The closer the distance between the current meter and the ADCP profile, the better the agreement becomes. Figure J.2-4 shows the comparison statistics for all pairs (no distinction is made for individual cruises) within the specified distance range between the ADCP and current meter. Reducing the distance between the ADCP profile and the current meter improves the agreement. The bias between current meter speed and ADCP speed is reduced; the rms difference in speed is greatly reduced; the cruise-averaged regression angle α is not greatly affected; and the cruise-averaged regression modulus b_{m} is slightly improved. The most dramatic improvement is seen in the cruise-averaged variance fraction ρ. It can be inferred that, over a long enough period of time, an ADCP and a current meter placed in the same location would produce the same values.

We show in Table J.2-2 the statistics on a cruise by cruise basis for each pair of current meter and ADCP measurements that met the requirements of time, vertical position, and an operational current meter, but were within 2 km rather than 10 km . Comparing with Table J.2-1, we see overall improvement for all cruises except M03 and H03.

As a result of this analysis, we can state with a high degree of confidence that except for M03, H03, and possible H04, the ADCP and the current meter are measuring the same thing. The fact that the statistics presented in Table J.2-1 for a $10-\mathrm{km}$ separation distance criteria are worse for some cruises (e.g., H04) than for other cruises (e.g., H10) should not

Figure J.2-4. Comparison statistics for all pairs within the specified distance range between ADCP and bottom current meters. Panel (a) shows for each distance the rms error (diamond), average current meter speed (asterisk), and average ADCP speed (square). Panel (b) shows the counterclockwise regression angle, panel (c) the regression coefficient, b_{m}, and panel (d) the variance fraction or coherence squared.

Table J.2-2. ADCP-current meter comparison statistics $\leq 2-\mathrm{km}$ separation distance.

LATEX ID	Sample Size	Mean Speed CM, $\mathrm{cm} \cdot \mathrm{s}^{-1}$	Mean Speed $\mathrm{ADCP}, \mathrm{cm} \cdot \mathrm{s}^{-1}$	rms $\mathrm{cm} \cdot \mathrm{s}^{-1}$	Alignment Angle, α	Regression Modulus, b_{m}	Variance Fraction, ρ
H03	19	9.50	14.80	8.95	19.48	0.869	0.326
M03	44	14.76	13.78	7.68	-11.85	0.607	0.358
H04	26	16.08	15.14	9.68	-2.21	0.719	0.589
H05	17	24.28	26.77	6.97	-6.94	1.010	0.840
H06	37	18.17	21.43	6.92	-1.38	1.103	0.919
H07	22	19.80	23.12	9.05	2.74	1.029	0.834
H08	43	12.88	17.02	8.83	2.99	0.939	0.638
H09	24	21.03	22.61	6.03	-12.80	1.061	0.929
H10	44	12.95	16.45	5.95	0.24	1.128	0.826
All	276	15.93	18.25	7.79	-3.21	0.961	0.731

necessarily be interpreted as the result of poor quality ADCP data. The differences could also be attributed to the presence of significant horizontal variations (with scales 10 km and less) in the velocity field. Those variations could be more pronounced during some cruises and would result in a poorer agreement when all the pairs within 10 km of a current meter are considered. However, as shown in Figure J.2-4 and Table J.2-2, decreasing the separation distance eliminates the effect of horizontal variations and shows a better agreement.

Appendix K: Wave Propagation Along the Shelf and Slope

This section addresses evidence for the existence of coastal trapped wave phenomena in the LATEX and collateral data on the Texas-Louisiana continental shelf or along the much steeper continental slope. We analyzed current, temperature, and salinity data from the LATEX A mooring array along the $200-\mathrm{m}$ isobath. Time domain plots show evidence of both downcoast and upcoast propagation of coherent features in alongshelf and cross-shelf currents and in temperature and/or salinity records, from one mooring to neighboring moorings. Considerable effort was made using spectral domain analysis of the current meter data along the $200-\mathrm{m}$ mooring array after the method of Hayashi (1979) in attempts to resolve transient signals into propagating and standing waves. An understanding of the results of such spectral domain analyses in terms of linear free wave theory is hampered either by the presence of forcing or by nonlinear current-wave interaction (Church et al. 1986a; Narayanan and Webster 1987, 1988). We, therefore, restrict the discussion of evidence for free wave propagation to only three, but very definitive, examples in the space-time domain. The first two are illustrations of free shelf wave propagation using moored current meter and water level data on the inner shelf. The third is an illustration of what we believe to be an example of solitonlike eddy propagation (Nakamoto 1989) seen in the $200-\mathrm{m}$ mooring array data along the Texas-Louisiana shelf and supported by the analyses discussed in Section 2.5. Eddies over the slope are essentially free (unforced) disturbances that are seen often. Free shelf waves are much more elusive, at least on the Texas-Louisiana shelf. This in no way implies, however, that locally wind-induced shelf waves are not present. Rather, it is the presence of the latter that masks the evidence of the free waves on the inner shelf.

Evidence of free shelf wave propagation

Initially, coherence and phase calculations were made between water level records (adjusted for local air pressure) at neighboring NOAA/NOS tide gauges along the Texas-Louisiana coast for the entire 32 -month period of the LATEX field program. The resulting phase differences showed upcoast propagation, i.e., opposite to that of free shelf wave propagation. We interpret this as resulting from the dominance of intermittent wind forcing over the inner shelf, associated with frontal outbreaks that affect the western region of the shelf first, thus causing a forced signal of response propagating upcoast. This prompted us to look for episodes in the time domain where local forcing was virtually absent in the downcoast region, but with wind forcing present in the eastern region of the shelf, thus producing shelf wave energy that subsequently propagated down coast. Current (1996) identified two clear illustrations of such episodes in the current meter data, supplemented by the collateral water level and sea surface air pressure data.

The first episode was that of a storm, produced by cyclogenesis centered near $27^{\circ} \mathrm{N}, 96^{\circ} \mathrm{W}$ on 11 March 1993, that rapidly intensified and moved to the east and then northeast, eventually becoming the "Storm of the Century" on the east coast. The effect of this storm on the Texas-Louisiana shelf was to produce very strong downcoast flow on the inner shelf of about 36 hours duration followed by medium strength upcoast flow (see Appendix B. 2 for a more complete description of this event). By 14 March, the alongshelf component of the winds were negligible in the region downcoast of the cross-shelf array of moorings 23,24 , and 25 and remained weak for several days. East of this array, an upcoast component of the wind persisted. Figure K-1 shows the alongshelf component of the currents at moorings 25 and 3 for the period during which the local forcing was minimal. Recall from Figure 1.2-1 that mooring 3 is downcoast of 25 . The model-simulated alongshelf flow (Current 1996) indicates that the model and data time lags (about 12 hrs) of identifiable features at mooring 3 relative to those at mooring 25 are comparable. The lag of 12 hrs is consistent with a propagation speed of about $420 \mathrm{~km} \cdot \mathrm{~d}^{-1}$ (or $5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$) for the first and dominant nondispersive shelf mode of the model. Since the observed data shows about the same time lag, and since there was little local wind forcing during the period 14-16 March, the observed response at mooring 3 is regarded as primarily due to downcoast free wave propagation of the signal from mooring 25. Similar evidence exists for mooring pairs 1,23 and 2,24 (not shown).

Hurricane Andrew in August 1992 provides further evidence for free shelf wave propagation on the inner Texas-Louisiana shelf. The eye of this hurricane made landfall near the eastern array of LATEX moorings on 26 August (see Appendix B. 1 for a discussion of winds, currents, and waves associated with this event). Much of the water level response (storm surge) was confined to a spatial scale comparable to that of the hurricane and governed primarily by gravitational restoring forces. The surprising thing is that the hurricane generated a significant topographic shelf wave response as well. This must have been produced by downcoast winds well in advance ($24-36 \mathrm{hrs}$) of Andrew's landfall. The disturbance propagated downcoast on the inner shelf far from any direct forcing and showed up very clearly in the $40-\mathrm{hr}$ low pass water level at Port Isabel as a rise and fall feature of about three-day time scale, with an amplitude of about 20 cm . It also appeared as a similar geostrophically consistent signal in the alongshelf currents (downcoast followed by upcoast) at moorings 24 and 2 (Figure K-2). As in Figure K-1, the shelf model simulation is also compared with the 40-hr low pass current records at the two moorings. Based on the observed data, the time lag at mooring 2 relative to mooring 24 is somewhat larger than for the 14 March 1993 event, however the distance between mooring pair 24, 2 is greater than for pair 25, 3. The model (Current 1996) is constrained to be nondispersive (i.e., restricted to very long waves), and the simulated signal cannot give as good a match for the observed as in Figure K-1 because of the relatively small spatial scale of the free wave produced by the hurricane. Thus, while simulation of observations in the downcoast region leaves room for improvement, the qualitative agreement in configurations leaves little doubt that we have captured another elusive free shelf wave in the observed data.

Figure K-1. Five-day time series in March 1993 of $40-\mathrm{hr}$, low-pass, observed (solid) alongshelf current for the middle level at mooring 25 (upper) and at the top level of mooring 3 (lower). The shelf model simulation of current for each mooring is also shown (dashed). Positive is upcoast.

Figure K-2. Five-day time series in August 1992 of $40-\mathrm{hr}$, low-pass, observed (solid) alongshelf current for the top level at mooring 24 (upper) and mooring 2 (lower). The shelf model simulation of current for each mooring is also shown (dashed). Positive is upcoast.

Evidence of solitonlike eddy propagation

The free waves discussed above are nearshore topographic coastal trapped waves (or shelf waves) whose dynamics are governed to first order by linear theory based on the vorticity equation. For sufficiently large alongshelf wave lengths, their energy as well as their phase propagates such that the land is to the right of the propagation vector in the northern hemisphere. We can detect these, when they occur, on the inner Texas-Louisiana shelf more readily than on the outer shelf, where energetic anticyclonic eddies are frequently present and mask the presence of the weaker seaward extension of the coastal trapped waves. In this section we address the propagation of closed energetic eddies along the continental slope. Their dynamics are strikingly different from the nondispersive long shelf waves in terms of sense of propagation.

It is well established that the energetic anticyclonic eddies in the western Gulf of Mexico are shed from the Loop Current and frequently drift along a southwestward path until they intercept the continental slope off Mexico, where the path then turns northwards (Vukovich and Crissman 1986). The dynamics governing the southwestward drift (in the northern hemisphere) of an energetic anticyclonic eddy was first addressed by Flierl (1979) and includes nonlinear self-advection as well as the westward drift associated with linear Rossby waves. When the Loop Current eddy reaches the Mexican continental slope, the planetary Rossby beta effect is replaced by the much greater topographic beta effect, which governs the propagation of linear coastal trapped waves. Along the Mexican continental slope the latter propagation tendency would be southwards. However, for sufficiently energetic eddies self-advection can dominate over the topographic beta effect and cause the path of propagation to turn northwards, trapping the eddy in the continental slope wave guide but going in the opposite direction to that of weak circulational features. A simple qualitative explanation for the northward tendency by self-advection is that the western side of the anticyclonic eddy gets compressed, thus strengthening the northward flow over the slope relative to the southward flow over the seaward side. The average net fluid velocity is then northwards. The quantitative treatment of the dynamics of an eddy trapped in a topographic wave guide is addressed by Nakamoto (1989), and a demonstration of the Vukovich and Crissman preferred path for a detached Loop Current eddy (from mid-Gulf to the Texas Bight slope region via the slope wave guide off Mexico) is given by Arango and Reid (1991) using an equivalent-barotropic, nonlinear, quasigeostrophic numerical model applied to the Gulf of Mexico.

The Texas Bight slope region is the distinct bend region of the 200 - to $1000-\mathrm{m}$ isobaths centered near $27^{\circ} \mathrm{N}, 96^{\circ} \mathrm{W}$. It seems to be a preferred terminal region (the "eddy graveyard") for detached Loop Current eddies, as discussed in Section 2.5 . The more recently spawned anticyclonic eddies can approach this region from the south as discussed above, or they can approach from the east or east-southeast, with centers in the very deep water. In the later spin down stage of life when an eddy's diameter and kinetic energy diminish, the evidence
gathered during the LATEX field program suggests that smaller eddies can be influenced in their propagation characteristics by the continental slope east of the Texas Bight. In particular, during the final stages of the life of Eddy Vazquez in late summer of 1993, this feature propagated to the east as seen in satellite altimeter data. Here we make use of the time series data from LATEXA moorings 6 to 9 along the 200-m isobath as verification and quantification of the propagational speed of this eddy.

Figure K-3 presents the time series of cross-shelf current from mid-July to mid-September 1993, at the top, middle, and bottom meters (where the data exist) for moorings $6,7,8$, and 9 , whose relative locations are respectively about $0,60,150$, and 220 km east of mooring 6. Reversals and near reversals are marked by circles for a nearly coherent feature seen in the top level for each mooring. The signal at the middle level almost mimics that of the top level for given mooring. Figure K-4 shows similar plots for the alongshelf current, but with circles denoting those times of maximum eastward flow at the top meter for each mooring. The times of maximum eastward flow tend to occur near the time of reversal (from offshelf to onshelf) of the cross-shelf flow at each mooring, as would be expected of an eastward propagating anticyclonic eddy whose center lies to the south of the line of moorings. This deduction is supported by the fact that the temperature time series (not presented) at the middle levels of each mooring show maximum temperature at about the time of reversal of the cross-shelf flow, as one would expect for a warm core ring. The average speed of eastward propagation of this eddy, as estimated from the two figures is about $12 \mathrm{~km} \cdot \mathrm{~d}^{-1}$ (or $14 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$). The feature seen in the time series data is assumed to be Eddy Vazquez in its final stages. The direction and speed of propagation are consistent with the theoretical deductions of Nakamoto (1989), suggesting that during the several weeks of its eastward propagation along the continental slope it had the characteristics of solitonlike eddy.

Closing interpretive comments

The examples discussed herein deal with disturbances in a topographic wave guide. The disturbances, whether wave-like or eddy-like, are basically governed by common physics: namely, approximate conservation of potential vorticity. One might argue, then, that the striking difference in the propagational characteristics of the near coastal shelf waves and eddies over the continental slope must be due to the latter being phenomena of high energy while the former are of low energy. But such an argument by itself offers no real physical insight. So, what is the real distinction between shelf waves, which prefer to propagate downcoast on the inner shelf, and anticyclonic eddies, which prefer to propagate upcoast in the outer continental slope wave guide?

We believe that the really important distinction is that the downcoast propagating shelf or coastal trapped waves have very little potential energy relative to kinetic energy. The baroclinic eddies on the other hand have very nearly equal partitioning of potential and

Figure K-3. Two-month time series in 1993 of $40-\mathrm{hr}$, low-pass, cross-shelf currents from moorings $6,7,8$, and 9 along the $200-\mathrm{m}$ isobath. Each panel displays current data (solid) relative to zero (dashed) at the top, middle, and bottom current meter. The vertical interval between dashed lines is $75 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ and onshelf flow is upwards relative to zero.

Figure K-4. Two-month time series in 1993 of $40-\mathrm{hr}$, low-pass, alongshelf currents from moorings $6,7,8$, and 9 along the $200-\mathrm{m}$ isobath. Each panel displays current data (solid) relative to zero (dashed) at the top, middle, and bottom current meter. The vertical interval between dashed lines is $75 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ and onshelf flow is upwards relative to zero.
kinetic energy. This latter characteristic is consistent with the preferred scale of a ring, namely a scale governed by the (deep water) first baroclinic radius of deformation. Nonlinear dynamics are responsible for providing the mechanism for locking into this preferred eddy scale. The closed configuration of the eddy, on the other hand, is responsible for allowing self-advection to be an effective mechanism for opposing the tendency for downcoast propagation. This interpretation is no doubt an over simplification of the physics but may be regarded as a first cut conceptual model.

The final interpretive comment addresses the question of why we do not see more evidence of free shelf waves propagating downcoast on the inner or outer shelf. Cross-spectral calculations of like current components between moorings show evidence of phase propagation upcoast as well as downcoast. In the presence of wind stress forcing at a shelfwide scale, the resulting time evolving circulation represents forced shelf wave phenomena. The phasing of these wind-driven disturbances at adjacent moorings is strongly dependent on the propagation of the forcing field, whose alongshelf component is often upcoast rather than downcoast as free waves. Also, the spatial scale of typical wind fields is such that forcing occurs essentially over the whole shelf. The ideal scenario where one should expect to see free shelf waves propagating downcoast is when the wind stress forcing is confined to a portion of the eastern shelf, which then allows energy to propagate out of that region toward the west. Hurricane Andrew is an example of such a scenario.

Appendix L: Model and Observations of Wind-Driven Circulation Over the Inner Shelf

In this appendix we compare the results of a subinertial wind-driven shelf model (Current 1996) with measured alongshelf currents and coastal water level data from LATEX A moorings and NOAA/NOS coastal tide gauges. We start with a narrative description of the wind-driven model as applied to the Texas-Louisiana shelf. While the domain of the model extends outwards to 250 m depth, it is the inner shelf (depths of $\leq 50 \mathrm{~m}$) where wind-forcing dominates, a region comprising well over half the total area of the model domain. Model development, tuning, and verification relied heavily on LATEX observations and collateral data including bathymetry, currents, coastal water level, and winds. Comparisons of model response to subinertial (40-hr low-pass) observations are made: (a) in the time domain, where quantification of model skill is assessed in terms of squared correlation and gain factor for a broad band of subinertial frequencies; and (b) in the frequency domain, where squared coherence, phase, and transfer function are employed as measures of skill. The frequency domain model-data comparison of currents is the counterpart of the purely empirical current-wind comparisons given in Section 4.5. We close the model-data comparisons with presentations of seasonal signals for alongshelf current and coastal water level. It is in the seasonal cycle that we see the most obvious effects of thermal and river discharge variations on the observed currents and water level, relative to the purely wind-driven model response.

The shelf mode model

The wind-driven shelf model we worked with is based essentially on the same physics as embodied in that of Mitchum and Clarke (1986), but incorporating boundary fitted coordinates, realistic bathymetry, and nonlinear bottom friction (Section 2.4). The physics governing free (unforced) coastally-trapped shelf waves is basically conservation of potential vorticity, in which planetary rotation and bottom slope play central roles as the basic restoring "force" in the presence of cross-shelf component of flow. As explained at the end of Appendix K, the physics that produce free or coastally trapped waves should be valid on the Texas-Louisiana shelf, even though the forcing is such as to make evidence of free shelf waves rare. Coastally trapped waves are forced by the torque (curl) associated with τ / h (wind stress divided by water depth), which for large scale wind systems can be approximated by the alongshelf component of τ / h^{2} multiplied by bottom slope as in Mitchum and Clarke (1986). The present model, however, employs a more exact torque forcing. The boundary fitted orthogonal grid shown in Figure L-1 defines the computational domain of the model, the seaward limit being along a smoothed version of the $250-\mathrm{m}$ isobath, and the open eastern boundary being at $90.5^{\circ} \mathrm{W}$, where LATEX current meter moorings $13,14,15$, and 16 were located. The grid was developed by Current (1996) using the power conformal transformation of Ives and Zacharias (1987). Grid separation distances range from 1.5 km to 8.4 km , with

Figure L-1. Boundary fitted, orthogonal, curvilinear grid designed for the Texas-Louisiana continental shelf. Grid dimensions are 297 x 40 . Mean grid separation distance is 2.8 km .
a mean of 2.8 km . The numerical model is implemented within the curvilinear coordinate grid, in which ξ and η (of uniform spacing) denote the alongshelf and cross-shelf coordinates, respectively.

The dependent variables defining the circulation field at any time (t) are the alongshelf (u) and the cross-shelf (v) components of current and the pressure anomaly (p) for given position on the shelf and elevation in the water column. Although the model employs a rigid lid, the equivalent water level anomaly can be obtained from the surface value of p. For given ξ, t the cross-shelf structure of each of the dependent variables is represented in terms of a linear combination of η, z-dependent (nearly) orthogonal modes as in Middleton and Wright (1990), but with an outer boundary condition of zero alongshelf flow.

Stability profiles and bathymetry are required for computation of coastally trapped wave modes. Mean stability profiles were computed by season from corresponding density profiles and used in approximating coastally trapped wave modes. Bathymetry was smoothed by application of a binomial filter, followed by a two dimensional polynomial fit to the filtered seafloor depth field. This fit was of sufficiently high order to preserve much of the variability in the seafloor depth field. Because h depends strongly on η but only weakly on ξ, the structure functions for u, v, p, and their associated eigencelerity c for given mode n are slowly varying alongshelf. This, in turn, implies minimal scattering of the transient coastal trapped waves.

The modal representation of the dependent variables share a common vector set of ξ, t-dependent amplitudes A_{n} whose governing equation has the following form:

$$
\begin{equation*}
\frac{\partial A_{n}}{\partial t}+c_{n} \frac{\partial A_{n}}{\partial \xi}=F_{n}-\sum_{n=1}^{N} A_{m} R_{m n}, \tag{L-1}
\end{equation*}
$$

where F_{n} and $R_{m n}$ are respectively the wind stress dependent forcing and the bottom stress dependent mode coupling matrix, while c_{n} is the free wave celerity for mode n. Because a nonlinear rendition of bottom stress (Section 2.4) is employed, $R_{m n}$ is a function of the entire vector set of A_{n}. The nonlinear coupling is treated in a semi-implicit manner in the numerical rendition of (L-1). East and north wind stress components over the shelf for a given time are represented versus ξ, η by a simple bilinear approximation, using available data from 15 meteorological moorings. Alongshelf and cross-shelf components of the wind stress (needed in evaluating F_{n}) force the model, and are found by rotation of coordinates at individual shelf locations.

Remote forcing effects enter the model domain at the upstream boundary $\left(90.5^{\circ} \mathrm{W}\right)$, where the conditions are entirely data driven. Hourly alongshelf components of flow at moorings 14,15 , and 16 were used to produce time varying upstream boundary conditions over the entire 32 -month LATEX observational period. The total number of modes N was taken as three in all comparisons presented below, which is consistent with the maximum number that can be computed at the upstream open boundary. Further details regarding the model, its sensitivity to N, and other parameters are available in Current (1996).

Time domain tuning and verification

Alongshelf currents at 12 moorings (those shown in Figure L-2 except 14, 15, and 16) were used in model tuning and verification. Adjusted water levels at six tide gauges (Little Bayou Cocodrie, LA, and Sabine Pass North, Galveston Pleasure Pier, Freeport, Rockport, and Port Isabel, TX; Figure L-2) were employed for model verification. The only parameter tuning carried out involved finding the optimal (shelfwide) value of the bottom drag

Figure L-2. Locations of 15 LATEXA moorings (circles) and 6 NOAA/NOS tide gauges (diamonds) used for model verification and dynamically driven upstream boundary conditions.
coefficient c_{b} (Section 2.4). The adopted wind stress drag coefficient parameterization is that of Hsu (1994), used here and elsewhere in this report (e.g., Section 2.1.2).

Model tuning employed five episodes of one-month length that were characterized by weatherband meteorological activity. These episodes were November 1992; March, June, and November 1993; and January 1994. Quantitative criteria for the tuning procedure included the squared correlation coefficient (r^{2}), a gain factor (m), and the bias (b). The gain and bias were obtained from a linear regression of data onto model (as in Mitchum and Clarke 1986),

$$
\begin{equation*}
u_{0}=m u_{m}+b, \tag{L-2}
\end{equation*}
$$

for which optimal parameters m and b were found by standard methods. Here, u_{m} is model alongshelf velocity and u_{0} is observed alongshelf velocity. Simulated alongshelf velocity averaged through the water column was selected as the representative model velocity (u_{m}) for tuning and verification at each of 12 inner shelf moorings. The predominantly barotropic nature of the circulation on the inner shelf suggested this simplification, although model velocities were available at the depths of individual current meters. Observed alongshelf currents (u_{0}) used in tuning and model verification were generally taken from the top current meter, which was deployed near the middle of the water column for coastal moorings in very shallow water. The middle current meter was used only for the outermost mooring on each cross-shelf line (Figure L-2); the bottom current meter was never used in tuning and verification. In summary, choice of current meter at a given mooring was intended to provide values of u_{0} that roughly corresponded to vertically averaged velocity.

The optimal value of c_{b} was found to be 0.00065 , based on maximum average r^{2} for the five selected tuning episodes. The associated optimum value of m was very close to unity.

For verification, the tuned model was run nonstop for the entire 32-month LATEX field observation period to predict current velocity and water level throughout the model domain. Comparison of these simulation results with observations was the primary means of model verification, and examples of these comparisons are presented in Figures L-3 and L-4. These figures span a time period that includes the March 1993 "Storm of the Century" (Appendices A. 1 and B.2) as well as Tropical Storm Arlene, an event of somewhat larger time scale during June 1993. Quantitative verification of model performance was based on evaluation of the squared correlation coefficient $\left(\mathrm{r}^{2}\right)$, gain (m), and bias (b). Recall that r^{2} is the squared correlation coefficient, and consequently, represents a measure of the fraction of the total variance in the data that is explained by the model. Gain and bias are obtained from the linear regression of data onto model results, as in Equation (L-2).

The entire 32-month model run produced squared correlation coefficients for model results versus observations at individual moorings and tide stations as plotted in Figure L-5.

Figure L-3. Direct comparison of simulated (thin) and observed (heavy) LATEX A JanuaryJune 1993 time sequences of alongshelf currents provide qualitiative model verification at inner shelf current meters at representative moorings.

Figure L-4. Direct comparison of simulated (thin) and observed (heavy) NOAA/NOS January-June 1993 time sequences of adjusted water level provide qualitiative model verification at inner shelf current meters at representative moorings.

Figure L-5. Spatial distribution of squared correlation between the 32-month simulated and observed alongshelf currents and water levels on the Texas-Louisiana shelf. Ellipses indicate NOAA/NOS tide gauges used for verification; boxes are LATEX moorings used for verification of currents.

Simulation for the wide eastern shelf proved to be more difficult than in downcoast regions where the shelf is narrower. A probable cause for the difficulties is that the bottom stress coefficient (c_{b}) may be generally different in upcoast than in downcoast regions, as suggested by results of a simpler pilot model application not reported here. In addition, mooring 20 is located very near to the downstream end of Sabine Shoals, a major topographic feature on the Texas-Louisiana shelf. The squared correlation of 0.29 at mooring 20 may be associated with nonlinear flow and scattering from Sabine Shoals that were not simulated by the model. We remind the reader that influences of the freshwater plume are not included in the model physics. Squared correlation coefficients for water level generally exceed those for alongshelf currents, although water level was not well predicted at Little Bayou Cocodrie, Louisiana. The model was designed to simulate inner shelf circulation well, and generally model skill is best at current meters near the coast. However, the model also simulates alongshelf currents reasonably well over the outer shelf. For example, a squared correlation of 0.47 and gain of 0.78 were produced for mooring 3 , located in 66 meters of water.

Squared correlation coefficients $\left(\mathrm{r}^{2}\right)$, gain (m), and bias (b), were also produced for each month from the 32 -month comparison of simulated and observed hourly alongshelf current velocities over all moorings. These statistics are presented in Table L-1. Table L-2 lists similar results for water level. Correlations for currents appear to be weakest in July and August, when winds are generally low and baroclinic effects are strong. Gain is high during July and August, indicating that the model also underestimates current observations. Correlation of simulated and observed current is highest and gain is near unity in December and January, when winter storms enhance the wind-driven, barotropic component of response. Correlation of modeled and observed coastal adjusted water level is low in July and August, consistent with the low correlation of simulated and measured currents during these months, discussed above.

Frequency domain verification

Bivariate spectral analyses, including squared coherence, phase, and transfer function, were computed for model results versus observations. These analyses were done separately at each of the 12 current meters and six tide gauges used for model verification, as illustrated in Figure L-6 for mooring 23. As a shelfwide measure of skill, 32-month coherence, phase, and transfer function were obtained from the combined set of alongshelf current observations at all 12 verification moorings (Figure L-7), as well as for the combined set of adjusted water level time series at all six verification tide gauges (Figure L-8). The full shelf analyses employed all hourly observations (of segment length sufficient to allow estimates at periods of 42 days or less) within the 32 -month field observation period and corresponding hourly simulation. The results of these analyses demonstrate encouraging performance of the model as a prognostic tool.

Table L-1. A 32-month comparison of simulated versus observed hourly alongshelf currents at 12 moorings on the Texas-Louisiana shelf produced these monthly squared correlation coefficients (r^{2}), gains (m), and biases (b).

	J	F	M	A	M	J	J	A	S	O	N	D	Mean
r^{2}	0.55	0.46	0.49	0.52	0.42	0.41	0.29	0.37	0.49	0.52	0.48	0.59	0.46
m	1.05	1.03	0.97	1.02	1.05	1.11	1.13	1.10	0.97	0.92	0.87	1.03	1.01
b	0.00	0.01	0.01	0.02	0.02	0.02	-0.04	-0.01	0.03	0.02	0.06	0.04	0.01

Table L-2. A 32-month comparison of simulated versus observed hourly water level time series at 6 tide gauges on the Texas-Louisiana coast produced these monthly squared correlation coefficients (r^{2}), gains (m), and biases (b).

	J	F	M	A	M	J	J	A	S	O	N	D	Mean
\mathbf{r}^{2}	0.56	0.56	0.58	0.49	0.65	0.67	0.49	0.46	0.55	0.47	0.59	0.61	0.55
m	1.22	1.45	1.34	1.21	2.09	1.63	1.60	1.18	1.52	1.21	1.40	1.49	1.44
b	0.08	0.04	0.05	0.04	0.01	0.00	-0.01	0.00	0.02	0.00	0.03	0.04	0.02

Because wind stress, currents, and water level were filtered using a $40-\mathrm{hr}$ low-pass Lanczos filter, useful information from the bivariate analysis is restricted to frequencies below the filter cutoff frequency. Model results were significantly coherent with observations throughout the weatherband and lower frequencies at nearly all individual locations. Phase shift is nearly zero and the model slightly underestimates the data at mooring 23 in low frequencies. In the weatherband, phase shift is small but mixed in sign. Coherence was restricted primarily to the lower frequencies at moorings 20 and 22, and the Little Bayou Cocodrie tide gauge. Mooring 19 predictions alone were not generally coherent with observations. Simulation in these wide shelf regions may be more difficult than elsewhere, due to the simplicity of the wind parameterization scheme and the sensitivity of the model results to wind forcing.

Combined squared coherence for simulated and observed alongshelf currents for the set of all 12 verification moorings during the 32-month run is provided in Figure L-7. Coherence exceeds the 95% significance level for all periods greater than 40 hours. Squared coherence in frequencies lower than the weatherband is fairly stable and ranges from 0.54-0.60. This range of values exceeds the squared correlation (the time domain analog of squared coherence) of 0.45 over all 12 moorings for the three-year period (Table L-1). Weatherband squared coherence ranges from 0.37-0.57, increasing with increasing period, and this range is consistent with the squared correlation. The coherence plots demonstrate that model

Figure L-6. Squared coherence, phase, and transfer function of simulated and observed alongshelf currents for mooring 23 during the 32 -month LATEX field observation period. Positive phase indicates that the data lead the model, and transfer function exceeding unity indicates that the model underestimates the data.

Figure L-7. Squared coherence, phase, and transfer function of simulated and observed alongshelf currents for the combined set of 12 verification moorings during the 32 -month LATEX field observation period. Positive phase indicates that the data lead the model, and transfer function exceeding unity indicates that the model underestimates the data.

Figure L-8. Squared coherence, phase, and transfer function of simulated and observed alongshelf currents for the combined set of six verification tide gauges during the 32-month LATEX field observation period. Positive phase indicates that the data lead the model, and transfer function exceeding unity indicates that the model underestimates the data.
performance is best at low frequencies and low weatherband frequencies, and coherence falls off fairly regularly with increasing frequency in the weatherband. Transfer function magnitudes are generally slightly greater than one at low frequencies, indicating that the model underestimates the data. The model slightly overestimates the data in the weatherband. Phase shift is nearly zero in the low frequencies, and is small but mixed in sign in the weatherband, validating the tuning of the friction coefficients. If the friction is too great, the phase could be expected to lag noticeably as in Church et al. (1986b). Transfer function magnitude and phase of model response with respect to alongshelf current observations appear to be good throughout weatherband and lower frequencies.

Figure L-8 shows the combined squared coherence for simulated and observed water level for the set of all six verification tide gauges during the 32-month run. Coherence exceeds the 95% significance level for all periods greater than 40 hours. Squared coherence in frequencies lower than the weatherband is fairly stable and ranges from 0.57-0.67. This range of values exceeds the squared correlation of 0.55 over all six tide gauges for the threeyear period, listed in Table L-2. Weatherband squared coherence ranges from 0.37-0.67, increasing with increasing period, and this range is consistent with the squared correlation. The squared coherence plots for simulation of water level confirm that model performance is best at low frequencies and low weatherband frequencies, and squared coherence decreases with increasing frequency in the weatherband. The transfer function is such that the model underestimates the data at low frequencies and at most weatherband frequencies. Phase shift is nearly zero in the low frequencies, and the model lags by 30° or less in the weatherband. The phase shift envelope is expected to narrow to zero as frequencies decrease, and in fact this is the case overall. Transfer function magnitude and phase of model response with respect to water level observations appear to be satisfactory throughout weatherband and lower frequencies. The transfer function magnitude for the combined set of tide gauges is greater than that for the combined set of current meters at all periods in excess of 40 hours.

Seasonal patterns

The present study supplements existing evidence confirming the existence of annual current and water level cycles described by Cochrane and Kelly (1986) and by Whitaker (1971), and, more importantly, provides a dynamical basis for the assertion that the annual cycle on the inner shelf is wind forced.

Figure L-9 shows the annual signal of coastal water level for the Texas-Louisiana shelf (adjusted for atmospheric pressure), based on Fourier fits of monthly averages for the 32 months of observed and model simulated values for the LATEX measurement period. Since observed water level has an arbitrary reference, here it is adjusted so as to have a yearly average equal to that derived from the model. The model-simulated water level has a

Figure L-9. Adjusted water level and its seasonal steric component. (Upper) Fourier fit of monthly means for simulated (dashed) and observed (solid) adjusted water level for the combined set of six tide gauges based on the 32-month LATEX field observation period. The observed signal is referenced so that the yearly average is equal to that simulated. (Lower) Two-component Fourier fit of four season steric water level determined from LATEX A and C cruise data at about $94^{\circ} \mathrm{W}$ near the $200-\mathrm{m}$ isobath. The fit has a standard error of 0.12 cm to the four points derived from averaging the times and the steric levels from three surveys for each of the four seasons. The annual mean has been removed from the steric levels.
shape very similar to that of the model-simulated alongshelf currents, as it should since that component of the flow is nearly geostrophic. However, the observed annual signal of water level differs significantly in shape from the model simulation.

The large contrast of the wind-driven model signal with that observed is certainly not unexpected, since it is known from the study of Whitaker (1971) that there is a very large thermally-induced range (order 13 cm) in water level even off the Texas shelf break. In fact, Whitaker found an essentially common annual signal of steric water level throughout the northern and western part of the Gulf of Mexico; in particular, near the shelf break off Cedar Keys, Pensacola, Eugene Island, Galveston, and Tampico. This signal was characterized by a single minimum close in time to the vernal equinox, and a single maximum near the autumnal equinox. The annual signal in coastal water level deduced from long-term tidal records (61 years) at Galveston is in striking contrast to that along the shelf break. In addition to the fall peak of 13.5 cm in coastal water level, there is a secondary peak of 5.2 cm in late spring coinciding with the time of the maximum freshwater discharge from the Mississippi and Atchafalaya Rivers. The primary minimum of -10.5 cm normally occurs in January with a secondary minimum of -4.4 cm in July. These were adjusted for atmospheric pressure and the reference is taken as the 61-year mean (Whitaker 1971). This characteristic signal, typical of the coastal tidal records along the Texas-Louisiana shelf, is perceived here to be due to the combination of thermally induced, wind-induced, and river-induced annual signals. The July minimum in coastal water level is regarded as due to (a) the combination of the geostrophic depression of coastal water level associated with the upcoast wind driven flow, and (b) the upcoast advection of salty and dense water from the southwestern region of the shelf.

During the period of the LATEX field measurements, the associated average annual signal of the coastal water level displayed the characteristic double maximum and double minimum features, but the amplitude of the semiannual part of the signal was smaller than normal (Figure L-9), presumably because of atypical river discharge during that period. To obtain a water level signal more suitable for comparison with that simulated by the wind-driven model, which has a minimal pressure anomaly signal offshore, the demeaned shelf break steric water level signal should be subtracted. This also implies that the resulting residual level at the coast is an index of the average cross-shelf slope, as it is in the model. The estimated thermal signal for the LATEX measurement period was deduced from the sea surface geopotential anomaly evaluated from seasonal hydrographic cruises at the shelf break for line 4 near $94^{\circ} \mathrm{W}$. Specifically, estimates of the mean steric level for winter, spring, summer, and fall were obtained from the data provided by a combination of 12 LATEX A and C surveys, three per season. A Fourier fit using the annual and semi-annual periods gives a representation of the annual thermal signal very similar to that of Whitaker (1971) but with a slightly smaller range (Figure L-9).

The resulting residual signal of observed coastal water level (after removal of the offshore signal) is plotted along with the wind forced model simulation signal in Figure L-10. Having suppressed the major annual thermal signal, the remaining difference between observational and simulated results may reflect that associated with the river-induced signal. More precisely, and with the caveat that the subtracted thermal signal is correct, this final residual could represent the freshwater discharge effect in the presence of advection.

Monthly means of currents from the 32 months of current data and model simulation thereof for the 12 verification moorings were employed to construct the model/data comparison for the annual signal presented in Figure L-10. This confirms the Cochrane and Kelly (1986) bimodal pattern of downcoast flow from September through May interrupted by upcoast flow in the summer on the inner Texas-Louisiana shelf. The wind-induced model simulation tracks the observed flow well, but underestimates the range (consistent with the results of the spectral transfer function at low frequencies, Figures L-7 and L-8). The effect of the annual thermal changes as discussed by Reid and Mantyla (1976) or of seasonal variations in river discharge (Oey 1995) may account for the larger range of the observed current signal compared with that predicted by wind forcing alone.

Figure L-10. Model/data comparison at seasonal periods for water level and alongshelf currents. (Upper) Comparison of the annual signal of the water level from the wind-forced model simulation (dashed) and the residual observed signal (solid) after subtracting the offshore steric water level signal. (Lower) Comparison of the annual signal of alongshelf current velocity from the model (dashed line) and from LATEX A data (solid line).

Appendix M: Estimates of Property Exchanges Between Shelf Subregimes Using Box Models

The LATEX A Technical Proposal offered a quantitative "box-type" model for the circulation, replacement and removal of water masses to provide "zero-order" estimates of alongshelf and cross-shelf exchanges into and out of specified volumes.

Introduction

The design of a box model is typically based on either hydrographic data or moored current meter data, but usually not both. Hydrographic data typically consist of temperature, salinity, nutrient, and oxygen measurements that are temporally limited to the times of the cruises. The spatial coverage in the vertical is extensive, usually every half meter, and the horizontal coverage is defined by the spacing between CTD stations, usually on the order of tens of kilometers. Geostrophic fluxes can be calculated from the thermal wind equations using data from adjacent CTD stations. Moored current meter data consists of horizontal velocity and often temperature and salinity. The vertical and horizontal coverage of the current meters, as compared to that of CTD stations, is much coarser; typically, vertical separation is at least ten meters and horizontal separation is on the order of hundreds of kilometers, but the temporal coverage is nearly continuous. However, the method of converting sparse, point-specific time series data into a flux across a face is error prone. The methods range from simply averaging the individual current meter velocities and multiplying by the area of the face to using some objective analysis routine to interpolate spatially.

Our box model is based primarily on data from the current meter moorings (velocity, temperature, and salinity), but it heavily utilizes hydrographic and ADCP data as well. As shown in Figure M-1, the current meter moorings coincide well with cruise tracks represented by a typical set of hydrographic stations from which we obtained concurrent hydrographic and ADCP data. This provided us with the opportunity to create a box model-four boxes for the inner shelf and four boxes for the outer shelf-that aligned with the cruise tracks and had current meters at all the box corners and along some box sides (Figure M-2). With this choice we were able to incorporate the spatially extensive temperature and salinity fields provided by the hydrographic data and the extensive spatial coverage of the horizontal velocity fields of the ADCP data into the box model.

The method used to convert temporally extensive but spatially limited current meter velocity data into flux estimates assumed that the dominant velocity pattern for a box side could be estimated independently using the ADCP data. We used EOFs (see Section 4.4.1 for a general description) to describe the inherent structure in the ADCP velocity fields. This approach takes advantage of the spatial extent of the ADCP velocity data, which is collected for bins typically $4-\mathrm{m}$ deep by not more than $1.5-\mathrm{km}$ long, to literally fill in the blanks between

Figure M-1. Locations of LATEX A current meter moorings (solid squares) over the Texas-Louisiana shelf. Typical locations of hydrographic stations (open circles) and river discharges (solid diamonds) are also shown.

Figure M-2. Designations of boxes and fluxes. The box sides follow cruise tracks of hydrographic stations as shown in Figure M-1.
sparse, point-specific current meter velocity data. (The actual bin length depended on the ship's speed as 5 -minute ensembles were collected; 1.5 km represents the largest expected distance based on a maximum possible ship speed of $5 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.) We used objective analysis to smooth the ADCP velocity data into a set of $4-\mathrm{m}$ deep by $10-\mathrm{km}$ long bins, averaged each available ADCP cruise, and then computed the individual velocity EOFs for the eighteen box sides. The shoreward sides of boxes 1-4 were taken as closed except for river discharge. We constructed the covariance matrix with a mean velocity of zero, rather than with a mean based on the ADCP data, because we anticipated using the current meter velocities to determine the amplitudes. Figure M-3 shows an example of the dominant mode EOF for the box sides g4 and g8.

The velocity for each bin was then estimated using

$$
\begin{equation*}
\widetilde{\mathrm{v}}(\mathrm{x}, \mathrm{z})=\sum_{\mathrm{n}=1}^{\mathrm{N}} \mathrm{E}_{\mathrm{n}}^{\mathrm{v}} \emptyset_{\mathrm{n}}^{\mathrm{v}}(\mathrm{x}, \mathrm{z}) \tag{M-1}
\end{equation*}
$$

where $\mathrm{E}_{\mathrm{n}}^{\mathrm{v}}$ are the amplitudes, $\varnothing_{\mathrm{n}}^{\mathrm{v}}$ are the two-dimensional eigenvectors, \tilde{v} is the estimated velocity, and N is taken to be 4 . The amplitudes were obtained by minimizing the error associated with fitting the EOF-estimated velocity to the current meter velocity data. Rather than fit each of the box sides independently, we imposed the additional constraint that the monthly averaged volume flux within a box be balanced, i.e., a net horizontal divergence of zero, so that the total error was given by

$$
\begin{equation*}
\mathrm{E}=\left\langle(\widetilde{\mathrm{v}}-\mathrm{v})^{2}\right\rangle+\lambda_{\mathrm{i}}\langle\Delta \mathrm{q}\rangle_{\mathrm{i}}, \tag{M-2}
\end{equation*}
$$

where $<>$ represents a sum over all possible realizations, v is the known velocity from current meters, $\Delta \mathrm{q}$ is the flux divergence for each box i , and λ_{i} is the Lagrangian multiplier. The first term on the righthand side represents the velocity fit, and the second the mass constraint. Once the amplitudes were obtained, it was a simple matter to use (M-1), integrate across a box side, and obtain the monthly averaged flux.

Estimations of the heat and freshwater fluxes then followed. We made the usual assumption that temperature and salinity were passive tracers transported by the volume flux, where the volume flux was estimated in the previous step. As we noted above, some, but not all, of the current meter moorings recorded temperature and salinity. This presented the same problem faced with sparse, point-specific velocity data. We assumed that the dominant pattern in the variability of the temperature and salinity for a box side could be estimated a priori from the hydrographic data. As in the case of the velocity field, we used EOFs to describe the dominant variance in the temperature and salinity fields. Similar to the volume flux, this approach takes advantage of the spatial extent of the hydrographic data to literally fill in the blanks

Figure M-3. ADCP normal velocity: EOF mode 1 for sides g4 and g8. The dotted line shows the actual bottom.
between sparse, point-specific mooring data. We used objective analysis to smooth the temperature and salinity data into a series of $4-\mathrm{m}$ deep by $10-\mathrm{km}$ long bins for each hydrographic cruise, averaged each hydrographic cruise, and then computed the individual temperature and salinity EOFs for the 18 box sides. We constructed the covariance matrix with a shelfwide mean temperature of $21.60^{\circ} \mathrm{C}$ and a mean salinity of 35.48 . Figure M-4 shows an example of the dominant mode temperature EOF for the box side corresponding to g 4 and g8, and Figure M-5 shows the corresponding dominant mode salinity EOF.

The temperature for each bin was then estimated using

$$
\begin{equation*}
\tilde{T}(x, z)=\sum_{n=1}^{N} E_{n}^{T} \mathscr{D}_{n}^{T}(x, z)+\bar{T}, \tag{M-3}
\end{equation*}
$$

where $\mathrm{E}_{\mathrm{n}}^{\mathrm{T}}$ are the amplitudes, $\emptyset_{\mathrm{n}}^{\mathrm{T}}$ are the two-dimensional eigenvectors, $\overline{\mathrm{T}}$ is the shelfwide mean temperature, and N is taken to be 4 . The salinity is estimated with

$$
\begin{equation*}
\widetilde{S}(x, z)=\sum_{n=1}^{N} E_{n}^{S} \boldsymbol{\emptyset}_{\mathrm{n}}^{\mathrm{S}}(\mathrm{x}, \mathrm{z})+\overline{\mathrm{S}} \tag{M-4}
\end{equation*}
$$

Figure M-4. Temperature variance: EOF mode 1 for sides g4 and g8. The dotted line shows the actual bottom.
where E_{n}^{S} are the amplitudes, $\emptyset_{\mathrm{n}}^{\mathrm{S}}$ are the eigenvectors, $\overline{\mathrm{S}}$ is the shelfwide mean salinity, and N is taken to be 4 . Each of the amplitudes was obtained by minimizing the error associated with fitting the EOF estimated temperature and salinity, (M-3) and (M-4), to the available mooring temperature and salinity data. The errors are defined as

$$
\begin{align*}
& \mathrm{E}^{\mathrm{T}}=\left\langle(\widetilde{\mathrm{T}}-\mathrm{T})^{2}\right\rangle \tag{M-5}\\
& \mathrm{E}^{\mathrm{S}}=\left\langle(\widetilde{\mathrm{S}}-\mathrm{S})^{2}\right\rangle \tag{M-6}
\end{align*}
$$

where T and S are the known temperature and salinity from the the current meter sensors.
The flux of freshwater was defined to be the salinity fraction transported by the volume flux,

$$
\begin{equation*}
\mathrm{q}_{\mathrm{f}}=\mathrm{A} \cdot \frac{\overline{\mathbf{S}}-\widetilde{\mathbf{S}}}{\overline{\mathbf{S}}} \cdot \mathbf{q} \tag{M-7}
\end{equation*}
$$

Figure M-5. Salinity variance: EOF mode 1 for sides g4 and g8. The dotted line shows the actual bottom.
where A is the area of a bin $\left(40,000 \mathrm{~m}^{2}\right), \mathrm{q}$ is the volume flux in $\mathrm{m}^{3} \cdot \mathrm{~s}^{-1}, \tilde{S}$ is the salinity as determined from the EOF fit, and $\overline{\mathrm{S}}$ is the shelfwide mean salinity of 35.48 . Because of this definition, the freshwater flux can be in the opposite direction of the volume flux if the observed salinity is greater than the mean. Because we assumed that salt was a passive tracer, it is physically unrealistic to expect a freshwater to flow against the volume flux. Hence, the freshwater flux should be interpreted in one of two ways. The first interpretation is the amount of freshwater needed to dilute a model ocean with a mean salinity of $\overline{\mathbf{S}}$ down to the observed salinity \tilde{S}; thus, when the real ocean is fresher than the mean, the salinity fraction is positive and the freshwater flux is in the same direction as the volume flux. The second interpretation is the amount of freshwater that would have to be removed to increase \bar{S} up to the observed salinity; when the real ocean is saltier than the mean, the salinity fraction is negative and the freshwater flux is against the volume flux. The first interpretation is more likely to occur on the inner shelf due to freshwater input from river discharge, and the second on the outer shelf when Loop Current rings with high salinities are adjacent to the shelf and cause freshwater to be drawn off.

The flux of heat was defined to be

$$
\begin{equation*}
q_{h}=A \cdot \rho C_{p} \cdot(\widetilde{T}-\bar{T}) \cdot q \tag{M-8}
\end{equation*}
$$

where A is the area of a bin, q is the volume flux in $\mathrm{m}^{3} \cdot \mathrm{~s}^{-1}, \tilde{T}$ is the temperature as determined from the EOF fit, $\overline{\mathrm{T}}$ is the shelfwide mean temperature of $21.60^{\circ} \mathrm{C}$, and $\rho \mathrm{C}_{\mathrm{p}}$, the heat capacity, is taken to be $4.04 \times 10^{6} \mathrm{~J} \cdot \mathrm{~m}^{3}$. Because we are using the shelfwide mean temperature as the reference temperature, it is possible to have heat flux opposite in direction to volume flux. An advective flux of heat against the volume flux indicates that the observed temperatures are less than the shelfwide mean, $\overline{\mathrm{T}}$, and heat would have to be transported to the box side to raise its temperature. If the observed temperature is greater than $\overline{\mathrm{T}}$, then heat would have to be transported with the volume flux to remove heat from the box side and cool the observed temperature down to the mean. For both freshwater and heat flux estimates, the reader should bear in mind that the results are simply a measure of the perturbation flux needed to adjust the real ocean to the mean conditions.

Model runs

The box model volume fluxes were determined for the 31 months from May 1992 through November 1994. They represent the monthly averaged flux, in cubic meters per second, determined by a fit of the EOF amplitudes to the monthly averaged, bridged 40 -hr low passed current meter records. The river discharges for 12 major Texas rivers, and the Calcasieu and Atchafalya in Louisiana, were included as shown in Figure M-1. The discharge of the Mississippi was not directly included in this model; it was assumed that the salinity recorded by the moorings along the eastern side of the box model (Figure M-2) would account for the presence of freshwater from the Mississippi. While we recognized that the salinity sensors were 10 m below the surface and probably would miss most of the freshwater, we relied on the fact that the patterns of salinity variability were based on hydrographic data taken to within 3 m of the surface and would include most of the freshwater. This is clearly supported by the dominant mode EOF for salinity on the eastern end of the box model (Figure M-5). Directly including the Mississippi discharge in the box model would be problematic for several reasons. First, it is difficult to determine what percentage of the discharge through the three major passes on the delta ends up on the Texas-Louisiana shelf, and secondly, whether it flows onto the inner or outer shelf. Moreover, the flow out of the delta can proceed eastward under the right wind conditions and thereby miss the Texas-Louisiana shelf entirely. For these reasons we did not directly include river discharge from the Mississippi. Finally, it should be emphasized that the divergence of volume flux for each box is exactly zero by design, while the divergence of freshwater and heat are not zero, but are products of the box model.

We first show five examples of the volume, freshwater, and heat fluxes on the Texas-Louisiana shelf: a summer month without ring impingement on the outer shelf; a summer month with ring impingement; a non-summer month without ring impingement; a non-summer month with ring impingement; and the month having smallest fluxes of any studied. We define a summer month as June, July, or August, when the component of the wind stress is downcoast, and non-summer as the remainder of the year when the wind stress component is upcoast.

Section 2.5.1 discusses Loop Current eddies during the LATEX period and gives a timetable showing when eddies were impinging on the shelf. The presence of rings dramatically affects the fluxes on the outer shelf, but generally has little impact on the inner shelf.

There is no summer month without the presence of an eddy adjacent to the shelf, but July 1994 shows the least impact (Figure H.1-1) on the outer shelf. The northern portion of Eddy eXtra affected the western shelf to some extent, but it helped to drive the flow upcoast; hence, we use this month as the example of a summer month without ring impingement. Figure M-6 shows uniform upcoast flux of volume, freshwater, and heat on the inner shelf and is consistent with our understanding of summer wind-driven circulation on the inner shelf. On the outer shelf, the flow of volume, freshwater, and heat are also consistent with the seasonal pattern, with one exception for the freshwater.

The example of a summer month with ring impingement, July 1993, was chosen because the northern portion of Eddy Vazquez was impacting the western shelf and Eddy Whopper the eastern shelf. Figure M-7 shows uniform upcoast flux of volume, freshwater (except the far western end), and heat on the inner shelf. This is consistent with our understanding of summer wind-driven circulation on the inner shelf and indicates that the inner shelf is unaffected by rings adjacent to the outer shelf. The flow on the outer shelf is not consistent with any seasonal pattern, but shows the impact of Eddy Whopper on the eastern shelf. Eddy Whopper appears to be drawing volume, freshwater and heat off the shelf, even though the $20^{\circ} \mathrm{C}$ isotherms (Figure H.1-1) appear to be parallel to the shelf break.

The example of a non-summer month without ring impingement on the outer shelf (February 1994, Figure M-8) shows uniform downcoast flux of volume and freshwater on the inner shelf, but upcoast flux of heat. The volume and freshwater fluxes are consistent with our understanding of the non-summer circulation pattern on the shelf, and the heat flux is consistent with a shelf that is losing heat to the atmosphere and would have to replenish it with a flow of heat from the south. The outer shelf flux of volume is uniformly downcoast, the flux of freshwater shows no consistent pattern, and the flux of heat is upshelf.

The example of a non-summer month with ring impingement on the outer shelf, January 1993, was chosen because Eddy Vazquez was adjacent to the western end of the shelf (see Figure H.1-1). Figure M-9 shows the same inner shelf flux pattern as the nonsummer month without ring impingement-uniform downcoast flux of volume and freshwater and upcoast flux of heat. On the outer shelf, the impact of Eddy Vazquez is seen to reverse the volume flux through box 6 to upcoast and possibly to affect the cross-shelf flux over the $200-\mathrm{m}$ isobath.

Finally we show August 1994 (Figure M-10) because it is the month with the least activity of any studied.

Figure M-6. Box model fluxes for July 1994, a summer month with minimal eddy activity. The upper panel shows the volume flux, the middle panel the fresh water flux relative to a salinity of 35.48 , and the lower panel the heat flux relative to a temperature of $21.6^{\circ} \mathrm{C}$.

Figure M-7. Box model fluxes for July 1993, a summer month with significant eddy activity. The upper panel shows the volume flux, the middle panel the fresh water flux relative to a salinity of 35.48 , and the lower panel the heat flux relative to a temperature of $21.6^{\circ} \mathrm{C}$.

Figure M-8. Box model fluxes for February 1994, a nonsummer month with no eddy activity. The upper panel shows the volume flux, the middle panel the fresh water flux relative to a salinity of 35.48 , and the lower panel the heat flux relative to a temperature of $21.6^{\circ} \mathrm{C}$.

Figure M-9. Box model fluxes for January 1993, a nonsummer month with average eddy activity. The upper panel shows the volume flux, the middle panel the fresh water flux relative to a salinity of 35.48 , and the lower panel the heat flux relative to a temperature of $21.6^{\circ} \mathrm{C}$.

Figure M-10. Box model fluxes for August 1994, the month with the smallest fluxes. The upper panel shows the volume flux, the middle panel the fresh water flux relative to a salinity of 35.48 , and the lower panel the heat flux relative to a temperature of $21.6^{\circ} \mathrm{C}$.

Volume flux

By examining each of the monthly volume fluxes for the entire period we were able to compile a set of four figures (Figures M-11 through M-14) that show the alongshelf volume flux on the inner and outer shelf and the cross-shelf flux over the $50-\mathrm{m}$ and $200-\mathrm{m}$ isobath.

On the inner shelf, represented by boxes 1 through 4 (Figure M-11), the direction of the alongshelf flux is essentially either upcoast or downcoast over the entire shelf. From August or September through May, the flux is downcoast, and in June through July or August it is upcoast. The strength of the flux, i.e., its magnitude, along the inner shelf varies from box to box and month to month, but it is strongly downcoast ($>0.25 \mathrm{~Sv}$) from October through February. Beginning in May, the downcoast flux begins to weaken so that by June the flux reverses direction to upcoast and remains so through July. The strength of this upcoast flux is markedly weaker than the downcoast flux seen the remainder of the year. August is a transition month back to downcoast flux to complete the yearly cycle. We can conclude that, on the inner shelf, the yearly averaged transport of volume is downcoast, from the Mississippi delta toward the Mexican border.

On the outer shelf, represented by boxes 5 through 8 (Figure M-12), the alongshelf flux can be very large, but it has no recognizable seasonal pattern. It appears to be controlled by the presence of eddies along the outer shelf (see Section 2.5 .1 for times when rings were adjacent to the shelf). In May, June, and July, there is a relatively uniform upshelf flux through all boxes except the most southerly.

The cross-shelf flux over the 50-m isobath from the inner shelf to the outer shelf (Figure M13) is typically weaker than the alongshelf fluxes and shows no discernible seasonal pattern. The strength of the flux is markedly stronger at the eastern end of the shelf than it is toward the western end, but it appears that the $50-\mathrm{m}$ isobath acts as an effective barrier to significant cross-shelf volume flux. This is particularly noticeable at the far western end, where fluxes on the outer shelf can be very strong (see July 1993, for example), yet the flux across the 50m isobath is at least two orders of magnitude smaller.

The cross-shelf flux over the $200-\mathrm{m}$ isobath (Figure M-14) is generally stronger than the outer shelf alongshelf fluxes and shows no discernible seasonal pattern. Unlike the crossshelf flux over the $50-\mathrm{m}$ isobath, the strength of the flux on the western end of the shelf is the same magnitude as that of the eastern end.

Freshwater flux

By examining each of the monthly freshwater fluxes for the entire period we were able to compile a set of four figures (Figures M-15 through M-18) that show the alongshelf freshwater

Figure M-11. Alongshelf volume flux on the inner shelf, relative to 0.5 Sv .

Figure M-12. Alongshelf volume flux on the outer shelf, relative to 0.5 Sv .

Figure M-13. Cross-shelf volume flux over the $50-\mathrm{m}$ isobath, relative to 0.25 Sv .

Figure M-14. Cross-shelf volume flux over the $200-\mathrm{m}$ isobath, relative to 0.75 Sv .

Figure M-15. Alongshelf freshwater flux on the inner shelf, relative to 0.1 Sv .

Figure M-16. Alongshelf freshwater flux on the outer shelf, relative to 0.1 Sv .

Figure M-17. Cross-shelf freshwater flux over the $50-\mathrm{m}$ isobath, relative to 0.10 Sv .

Figure M-18. Cross-shelf freshwater flux over the $200-\mathrm{m}$ isobath, relative to 0.10 Sv .
flux on the inner and outer shelf and the cross-shelf flux over the $50-\mathrm{m}$ and $200-\mathrm{m}$ isobath. We note that it is possible to have a freshwater flux that exceeds the volume flux; e.g., if the volume flux is the combination of an upcoast and downcoast component that are approximately equal but weakly downcoast, then, if the downcoast component is significantly fresher than the upcoast, the freshwater flux will be strongly downcoast and greater than the volume flux. This, in fact, occurred for the alongshelf flux between boxes 2 and 3 during May 1993.

On the inner shelf, represented by boxes 1 through 4 (Figure M-15), the direction of the alongshelf flux generally mirrors that of the volume flux, though there are distinct reversals between the direction of the volume flux and the freshwater flux. In general, from September through April the freshwater flux is downcoast, and from June to July it is upcoast. The strength of this upcoast flux is noticeably weaker than the downcoast flux seen during the remainder of the year. August is the transition month between upcoast and downcoast flux and shows little if any freshwater flux. This indicates that the observed salinity on the inner shelf is close to the shelfwide mean during August. We can conclude that, on the inner shelf, the yearly averaged transport of freshwater, like that of the volume flux, is downcoast, from the Mississippi Delta toward the Mexican border.

On the outer shelf, represented by boxes 5 through 8 (Figure M-16), the flux of alongshelf freshwater is significantly smaller than on the inner shelf. Apparently, the observed salinities of the box sides are nearly always equal to the mean shelfwide salinity, and the alongshelf freshwater flux on the outer shelf is almost nonexistent. This is somewhat surprising given the episodic appearance, and disappearnce, of rings adjacent to the shelf.

The cross-shelf flux over the $50-\mathrm{m}$ isobath (Figure M-17) indicates there are months when there is a siginifcant amount of freshwater being moved between the inner and outer shelf (e.g., May 1993) and months when there is very little (e.g., May 1994). There is no apparent correlation to the times when eddies are adjacent to the shelf.

Cross-shelf freshwater flux over the $200-\mathrm{m}$ isobath (Figure M-18) shows a nearly consistent reversal to that of the volume. This is merely an indication that the observed salinities along the $200-\mathrm{m}$ isobath are nearly always greater than the shelfwide mean. Consequently, freshwater is removed from the outer boxes to increase the mean salinity up to the observed. Of particular interest is July 1993, which shows a significant amount of freshwater flux leaving the outer shelf. As noted above, Eddy Whopper, adjacent to the eastern end of the shelf, had a significant impact during the LATEX period. Even the flux across the $50-\mathrm{m}$ isobath shows an offshelf flux of freshwater.

Though it was possible to use these freshwater fluxes to compute divergences based on the divergence of freshwater within each box, it was not done. The box model results are
unavailable because of two contributing factors: the known variance in the velocity fit and the use of month-long averages. Experience with fitting the current meter velocity to the EOF fields showed that the average variance was approximately $2.5 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$. Assuming that the monthly averaged velocities resulted in a net zero horizontal freshwater divergence, then a variance of $2.5 \mathrm{~cm} \cdot \mathrm{~s}^{-1}$ on each of the four sides with an area of $5,000,000 \mathrm{~m}^{2}$ would result in a divergence of $500,000 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}$. Over one month this would result in a unrealistic rise of 130 m . This problem can be alleviated by considering the entire shelf, in which case the maximum rise can be shown to be less than 4 m per month. Integrating the monthly averaged flux over the period of a month, while seemingly reasonable, merely compounds the error in the velocity fit. Nevertheless, we believe these freshwater fluxes to be qualitatively reliable as an estimate of the monthly averaged fluxes. Steps are being taken to improve the freshwater flux estimates so that meaningful divergences can be estimated.

Heat flux

By examining each of the monthly heat fluxes for the entire period, we compiled a set of four figures (Figures M-19 through M-22) that show the alongshelf heat flux on the inner and outer shelf and the cross-shelf flux over the $50-\mathrm{m}$ and $200-\mathrm{m}$ isobath.

On the inner shelf, boxes 1 through 4 (Figure M-19), the alongshelf flux shows a remarkable bimodal yearly pattern. From June through October, the heat flux pattern follows that of the volume flux and is consistent with the seasonal circulation pattern. However, beginning in November, the heat flux weakens dramatically and then reverses to upcoast from December through March, opposite to the volume flux. An advective flux of heat against the volume flux, while physically unrealistic, indicates that the observed temperatures on the inner shelf for these time periods are less than the shelfwide mean, and heat would have to be transported into the box to raise its temperature.

On the outer shelf, boxes 5 through 8 (Figure M-20), the alongshelf flux can be very large but in general it follows the volume flux. The cross-shelf flux over the $50-\mathrm{m}$ isobath (Figure M-21) is significantly weaker than the alongshelf fluxes and shows no discernable seasonal pattern. The cross-shelf flux over the $200-\mathrm{m}$ isobath (Figure M-22) is significantly stronger than the flux over the $50-\mathrm{m}$ isobath and shows many months in which the heat flux is opposite to the volume flux.

As for the freshwater fluxes, errors in the divergence of heat within each box result because the known variance in the velocity fit and the use of month-long averages. Nevertheless, we believe these heat fluxes to be qualitatively reliable as an estimate of the monthly averaged fluxes, and steps are being taken to improve the heat flux estimates.

Figure M-19. Alongshelf heat flux on the inner shelf, relative to $10^{13} \mathrm{~W}$.

Figure M-20. Alongshelf heat flux on the outer shelf, relative to $10^{13} \mathrm{~W}$.

Figure M-21. Cross-shelf heat flux over the $50-\mathrm{m}$ isobath, relative to $10^{13} \mathrm{~W}$.

Figure M-22. Cross-shelf heat flux over the $200-\mathrm{m}$ isobath, relative to $10^{13} \mathrm{~W}$.

References

Arango, H.G., and R.O. Reid. 1991. A generalized reduced-gravity ocean model. Atmo-sphere-Ocean. 29:256-287.

Bender, L.C. III. 1996. Modification of the physics and numerics in a third-generation ocean wave model. J. Atmos. Oceanic Technol. 13(3):726-750.

Bender, L.C. III, and F. Kelly. 1998. LATEX Shelf Data Report: Acoustic Doppler current proiler, May 1992 through November 1994. Texas A\&M University, Dept. of Oceanography, College Station, TX. 372 pp.

Berger, T.J., P. Hamilton, J.J. Singer, and R.R. Leben. 1996. Louisiana/Texas Shelf Physical Oceanography Program: Eddy Circulation Study, Final Synthesis Report. OCS Study MMS 96-0051. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. 324 pp.

Bloomfield, P. 1976. Fourier analysis of time series: An introduction, pp. 22-41 and 118150. John Wiley \& Sons, Inc. New York, NY. 258 pp.

Breaker, L.C., L.D. Burroughs, Y.Y. Chao, J.F. Culp, N.L. Guinasso, Jr, R.L. Teboulle, and C.R. Wong. 1994. The impact of Hurricane Andrew on the near surface marine environment in the Bahamas and the Gulf of Mexico. Weather and Forecasting. 9(4):542-546.

Caplan, P.M. 1995. The 12-14 March 1993 superstorm: Performance of the NMC Global Medium-Range Model. Bull. Amer. Meteor. Soc. 76:201-212.

Capurro, L.R.A., and J.L. Reid, eds. 1972. Contributions on the physical oceanography of the Gulf of Mexico, Volume II, Texas A\&M University, Oceanographic Studies. Gulf Publishing Co., Houston, TX. 288 pp.

Chen, C., R.O. Reid, and W.D. Nowlin Jr. 1996. Near-inertial oscillations over the TexasLouisiana shelf. J. Geophys. Res. 101(C2):3509-3524.

Chen, H.-W. 1995. Variability and structure of currents over the Texas-Louisiana shelf- a view from a shipboard acoustic Doppler current profiler. Ph.D. Dissertation. Texas A\&M Univ. College Station, TX. 117 pp .

Church, J.A., N.J. Freeland, and R.L. Smith. 1986a. Coastal-trapped waves on the east Australian continental shelf. Part I: Propagation of modes. J. Phys. Oceanogr. 16: 19291943.

Church, J.A., N.J. White, A.J. Clarke, H.J. Freeland, and R.L. Smith. 1986b. Coastal-trapped waves on the east Australian continental shelf. Part II: Model verification. J. Phys. Oceanogr. 16:1945-1957.

Clarke, A.J., and D.S. Battisti. 1981. The effect of continental shelves on tides. Deep-Sea Res. 28A:665-682.

Cochrane, J.D. 1958. The frequency distribution of water characteristics in the Pacific Ocean. Deep-Sea Res. 5:111-127.

Cochrane, J.D., and F.J. Kelly. 1986. Low-frequency circulation on the Texas-Louisiana continental shelf. J. Geophys. Res. 91:10,645-10,659.

Csanady, G.T. 1979. The pressure field along the western margin of the North Atlantic. J. Geophys. Res. 84(C8):4905-4914.

Csanady, G.T. 1981. Circulation in the coastal ocean, pp. 101-183. In Advances in Geophysics, Vol. 23. Academic Press. New York, NY. 279 pp.

Current, C.L. 1996. Spectral model simulation of wind driven subinertial circulation on the inner Texas-Louisiana shelf. PhD Dissertation. Texas A\&M University, Dept. of Oceanography, College Station, TX. 144 pp.

DiMarco, S.F. 1998. On the use of the method of cyclic descent to estimate principal tidal constituents. Texas A\&M University, Dept. of Oceanography, College Station, TX. Reference No. 98-1-T. 33 pp .

DiMarco, S.F., and L.C. Bender III. 1998. WAM4 model/data comparison in the NW Gulf of Mexico, pp. 334-341. Proceedings of Waves '98 Meeting, 30 Apr - 1 May 1998, Houston, TX. Amer. Soc. Civil Eng., New York, NY.

DiMarco, S.F., and R.O. Reid. 1998. Characterization of the principal tidal current constituents on the Texas-Louisiana shelf. J. Geophys. Res. 103(2):3093-3110.

DiMarco, S.F., A.E. Jochens, and M.K. Howard. 1997. LATEX Shelf Data Report: Current meters, April 1992 through December 1994; 10 volumes. Texas A\&M University, Dept. of Oceanography, College Station, TX.

DiMarco, S.F, F.J. Kelly, and N.L. Guinasso, Jr. 1995a. LATEX Shelf Data Report: MiniSpec directional wave gauges. Volume I: April 1992 through August 1993. Texas A\&M University, Dept. of Oceanography, College Station, TX. Reference No. 95-4-T. 331 pp.

DiMarco, S.F., F.J. Kelly, J. Zhang, and N.L. Guinasso, Jr.. 1995b. Directional wave spectra on the Louisiana-Texas shelf during Hurricane Andrew. J. Coastal Res. SI-21:217-233.

Dolan, R., and R.E. Davis. 1992. Rating northeasters. Mariners Weather Log. 36(1): 4-10.

Elliott, B.A. 1982. Anticyclonic rings in the Gulf of Mexico. J. Phys. Oceanogr. 12:12921309.

Etter, P.C., and J.D. Cochrane. 1975. Water temperature on the Texas-Louisiana shelf. Texas A\&M University Sea Grant Program, Mar. Adv. Bull. SG 75-604. 22 pp.

Flierl, G.R. 1979. Baroclinic solitary waves with radial symmetry. Dyn. Atmos. Oceans. 6:15-38.

Glenn, S.M., and C.C. Ebbesmeyer. 1993. Drifting buoy observations of a Loop Current anticyclonic eddy. J. Geophys. Res. 98:20,105-20,119.

Godin, G. 1972. The analysis of tides. University of Toronto Press, Toronto, Canada. 264 pp.

Gonella, J. 1972. A rotary-component method for analyzing meteorolgical and oceanograpic vector time series. Deep-Sea Res. 19: 833-846.

Grymes, J.M. III, and G.W. Stone. 1995. A review of key meteorological and hydrological aspects of Hurricane Andrew. J. Coastal Res. SI-21:6-23.

Hasselmann, S., K. Hasselmann, J.H. Allender, and T.P. Barnett. 1985. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys Oceanogr. 15:1378-1391.

Hayashi, Y. 1979. A generalized method of resolving transient disturbances into standing and traveling waves by space-time spectral analysis. J. Atmos. Sci. 36:1017-1029

Hellerman, S., and M. Rosenstein. 1983. Normal monthly wind stress over the world ocean and error estimates. J. Phys. Oceanogr. 13:1093-1104.

Hsu, S.A. 1994. On the incorporation of wave characteristics into drag coefficient formulation at sea, pp 237-238. Preprint: Second international conference on air-sea interaction, meteorology, and oceanography of the coastal zone, Lisbon, Portugal. Amer. Meteor. Soc., Boston, MA.

Hsu, S.A. 1993. The Gulf of Mexico-a breeding ground for winter storms. Mariners Weather Log. 37(2):4-11.

Hsu, S.A. 1988. Coastal Meteorology. Academic Press. San Diego, CA. 260 pp.
Hsu, S.A. 1972. Coastal air-circulation system: Observations and empirical model. Mon. Weather Rev. 98:487-509.

Ives, D.C., and R.M. Zacharias. 1987. Conformal mapping and orthogonal grid generation, pp. 1-10. AIAA/SAE/ASME/ASEE 23rd Joint Propulsion Conference, San Diego, CA.

Janssen, P.A.E.M. 1989. Wave-induced stress and the drag of airflow over sea waves. J. Phys. Oceanogr. 19:745-754.

Janssen, P.A.E.M. 1991. Quasi-linear theory of wind-wave generation applied to wave forecasting. J. Phys. Oceanogr. 21:1631-1642.

Johnson, G.A., E.A. Meindl, E.B. Mortimer, and J.S. Lynch. 1984. Features associated with repeated strong cyclogenesis in the western Gulf of Mexico during the winter of 198283, pp. 110-117. In Postprints, 3rd Conference on Meteorology of the Coastal Zone. Amer. Meteorol. Soc. Boston, MA.

Kanamitsu, M. 1989. Description of the NMC global data assimilation and forecast system. Weather and Forecasting. 4:335-342.

Kanamitsu, M., J.C. Alpert, K.A. Campana, P.M. Caplan, D.G. Deaven, M. Iredell, B. Katz, H.-L. Pan, J. Sela, and G.H. White. 1991. Recent changes implemented into the global forecast system at NMC. Weather and Forecasting. 6:425-435.

Kocin, P.J., P.N. Schumacher, R.F. Morales, Jr., and L.W. Uccellini. 1995. Overview of the 12-14 March 1993 superstorm. Bull. Amer. Meteor. Soc. 76:165-182.

Kosro, and Huyer. 1986. CTD and velocity surveys of seaward jets off northern California, July 1981 and July 1982. J. Geophys. Res. 91:7680-7690.

Kundu, P. J. 1976. Ekman veering observed near the ocean bottom. J. Phys. Oceanogr. 6:238-242.

Leipper, D.F. 1970. A sequence of current patterns in the Gulf of Mexico. J. Geophys. Res. 75(3):637-657.

Lewis, J.K., A.D. Kirwan, Jr., and G.Z. Forristall. 1989. Evolution of a warm-core ring in the Gulf of Mexico: Lagrangian observations. J. Geophys. Res. 94:8163-8178.

Li, Y., W.D. Nowlin, Jr., and M.E. Reap. 1996. LATEX Technical Report: A volumetric temperature-salinity census for the Texas-Louisiana continental shelf. Texas A\&M University, Dept. of Oceanography, College Station, TX. Reference No. 96-5-T. 44 pp .

Liscum, F., and J.W. East. 1995. Floods in southeast Texas, October 1994, pp 367-372. Proceedings of Texas Water '95, Texas section of the American Society of Civil Engineers, August 16-17, 1995, San Antonio, Texas. Amer. Soc. Civil Eng., New York, NY.

Longuet-Higgins, M.S., D.E. Cartwright, and N.D. Smith. 1963. Observations of the directional spectrum of sea waves using the motion of a floating buoy, pp. 111-131. In Ocean wave spectra, Proceedings of a conference held at Easton. Prentice Hall, Englewood Cliffs, NJ.

Lott, N. 1993. The big one! A review of the March 12-14, 1993 "Storm of the Century." Natl. Climatic Data Ctr Tech. Rpt 93-01. 5 pp.

Middleton, J.F., and D.G. Wright. 1990. Coastally trapped waves in a stratified ocean. J. Phys. Oceanogr. 20:1521-1527.

Mitchum, G.T., and A.J. Clarke. 1986. Evaluation of frictional, wind-forced long-wave theory on the west Florida shelf. J. Phys. Oceanogr. 16:1029-1037.

MMS. 1994. Hurricane Andrew's impact on natural gas and oil facilities on the outer continental shelf, Interim report as of November 1993. OSC Report/MMS-94-0031, U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.

Montgomery, R.B. 1958. Water characteristics of Atlantic Ocean and of world ocean. DeepSea Res. 5:134-148.

Montgomery, R.B. 1941. Transport of the Florida Current off Habana. J. Mar. Res. 4(3):198220.

Murty, T.S., G.A. McBean, and B. McKee. 1983. Explosive cyclogenesis over the northeast Pacific Ocean. Monthly Weather Review. 111:1131-1135.

Nakamoto, S. 1989. Solitonlike solutions in Loop Current eddies. J. Geophys. Res. 94: 14,567-14,574.

Narayanan, S., and I. Webster. 1988. Coastally trapped waves in the presence of a shelf edge density front. J. Geophys. Res. 93:14,025-14,031.

Narayanan, S., and I. Webster. 1987. Coastally trapped waves in the presence of a barotropic shelf edge jet. J. Geophys. Res. 92:9494-9502.

NDBC. 1990. Climatic summaries for the NDBC buoy and stations update 1. National Data Buoy Center Report, US Dept. of Commerce. Stennis Space Center, MS. 454 pp.

NMC Development Division. 1988. Documentation of the research version of the NMC medium-range forecasting model. NMC Development Division, Camp Springs, MD. 504 pp.

NOAA. 1996. Climate diagnostics bulletin, July 1996. Climate Prediction Center, W/NP52. NOAA/NWS/NCEP, NOAA Science Center. Washington D.C.

North, G.R., T.L. Bell, R.F. Cahalan, and F.J. Moeng. 1982. Sampling errors in the estimation of empirical orthogonal functions. Monthly Weather Rev. 110:699-706.

Nowlin, W.D., Jr. 1972. Winter circulation patterns and property distributions, pp. 3-52. In L.R.A. Capurro and J.L. Reid, eds. Contributions on the Physical Oceanography of the Gulf of Mexico. Gulf Publishing Co., Houston, TX.

Ochi, M.K. 1994. On hurricane-generated seas, pp. 374-387. In O.T. Magoon and J.M. Hemsley, eds. Ocean wave measurement and analysis. Amer. Soc. Civil Eng., New York, NY.

Oey, L.-Y. 1995. Eddy- and wind-forced shelf circulation. J. Geophys. Res. 100:8621-8637.
Pandolfo, J.P. 1969. Motions with inertial and diurnal period in a numerical model of the navifacial boundary layer. J. Mar. Res. 27:301-317.

Panofsky, H.A., and G.W. Brier. 1968. Some applications of statistics to meteorology. Penn. St. Univ. Press. University Park, PA.

Pollak, M.J. 1958. Frequency distribution of potential temperatures and salinities in the Indian Ocean. Deep-Sea Res. 5:128-133.

Price, J.F., R.A. Weller, and R. Pinkel. 1986. Diurnal cycling: Observations and models of
the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res. 91:8411-8427.

Quirox, R.S. 1983. The climate of the El Niño winter of 1982-83-a season of extraordinary climate anomalies. Monthly Weather Review. 111:1685-1706.

Reid, J.L., and A.W. Mantyla. 1976. The effect of the geostrophic flow upon coastal sea elevations in the northern North Pacific ocean. J. Geophys. Res. 81:3100-3110.

Reid, R.O., and R.E. Whitaker. 1981. Numerical model for astronomical tides in the Gulf of Mexico. Volume I: Theory and application. Texas A\&M Univ. College Station, TX. 115 pp.

Saucier, W.J. 1949. Texas-West Gulf cyclones. Monthly Weather Review. 77:219-231.

Schumann, S.A., J. Moser, G.A. Johnson, N.D. Walker, and S.A. Hsu. 1995. An overview of a strong winter low in the Gulf of Mexico, 12-13 March 1993. National Weather Digest. 20:11-25.

Shureman, P. 1976. Manual of harmonic analysis and predictions of tides. Coastal and Geodetic Survey special publ. 98, U.S. Dept. of Commerce, Washington DC.

Simpson, R.H., and H. Riehl. 1981. The hurricane and its impact, pp. 366-368. Louisiana State Univ. Press. Baton Rouge, LA.

Smith, W.H.F., and P. Wessel. 1990. Gridding with continuous curvature splines in tension. Geophysics. 55:293-305.

Stone, G.W., J.M. Grymes, III, K.D. Robbins, S.G. Underwood, G.D. Steyer, R.A. Muller. 1993. A chronologic overview of climatological and hydrological aspects associated with Hurricane Andrew and its morphological effects along Louisiana coast, U.S.A. Shore and Beach. 61(2):2-12.

Trenberth, K.E., and T.J. Hoar. 1996. The 1990-1995 El Niño - Southern Oscillation eventlongest on record. Geophys. Res. Lttrs. 23(1):57-60.

Uccellini, L.W., P.J. Kocin, P.M. Stokols, and R.A. Door. 1995. Forecasting the 12-14 March 1993 superstorm. Bull. Amer. Meteor. Soc. 76:183-199.

Ulm, W.F. 1983. A volumetric temperature-salinity census for the continental shelf of the northwestern Gulf of Mexico. MS Thesis. Texas A\&M University, Dept. of Oceanography, College Station, TX. 56 pp.

Vastano, A.C., and C.N. Barron Jr. 1994. Comparison of satellite and drifter surface flow estimates in the northwestern Gulf of Mexico. Cont. Shelf Res. 14(6):589-605.

Vukovich, F.M., and B.W. Crissman. 1986. Aspects of warm rings in the Gulf of Mexico. J. Geophys. Res. 91:2645-2660.

WAMDI Group: S. Hasselmann, K. Hasselmann, E. Bauer, P.A.E.M. Janssen, G.J. Komen, L. Bertotti, P. Lionello, A. Guillame, V.C. Cardone, J.A. Greenwood, M. Reistad, L. Zambresky, and J.A. Ewing. 1988. The WAM model-A third generation wave prediction model. J. Phys. Oceanogr. 18:1775-1810.

Wessel, P., and W.H.F. Smith. 1993. The GMT-SYSTEM version 2.1.4 technical reference and cookbook. Univ. of Hawaii, Honolulu/Scripps Inst. of Oceanography, UCSD. San Diego, CA. 70 pp .

Wessel, P., and W.H.F. Smith. 1991. Free software helps map and display data. Eos Trans. Am. Geophys. Union. 72:441, 445-446.

Whitaker, R.E. 1971. Seasonal variations of steric and recorded sea level of the Gulf of Mexico. MS Thesis. Texas A\&M University, Dept. of Oceanography, College Station, TX. 111 pp .

Wilson, R.J. 1967. Amount and distribution of water masses in February and March 1962 in the Gulf of Mexico. MS Thesis. Texas A\&M University, Dept. of Oceanography, College Station, TX. 54 pp.

Wüst, G. 1964. Stratification and circulation in the Antillean-Caribbean basins, Part 1. Columbia University Press. New York, NY. 54 pp.

Zhang, J., R.E. Randall, L. Chen, M. Ye, and J.K. Longridge. 1994. Nonlinear decomposition of a two-dimensional wave field, pp. 150-164. In O.T. Magoon and J.M. Hemsley, eds. Ocean wave measurement and analysis. Amer. Soc. Civil Eng., New York, NY.

Zhang, J., R.E. Randall, and C.A. Spell. 1992. Component wave interactions and irregular wave kinematics. J. Waterway, Port, Coastal, and Ocean Eng. 118(4):401-416.

The Department of the Interior Mission

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; preserving the environmental and cultural values of our national parks and historical places; and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people by encouraging stewardship and citizen participation in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

The Minerals Management Service Mission

As a bureau of the Department of the Interior, the Minerals Management Service's (MMS) primary responsibilities are to manage the mineral resources located on the Nation's Outer Continental Shelf (OCS), collect revenue from the Federal OCS and onshore Federal and Indian lands, and distribute those revenues.

Moreover, in working to meet its responsibilities, the Offshore Minerals Management Program administers the OCS competitive leasing program and oversees the safe and environmentally sound exploration and production of our Nation's offshore natural gas, oil and other mineral resources. The MMS Minerals Revenue Management meets its responsibilities by ensuring the efficient, timely and accurate collection and disbursement of revenue from mineral leasing and production due to Indian tribes and allottees, States and the U.S. Treasury.

The MMS strives to fulfill its responsibilities through the general guiding principles of: (1) being responsive to the public's concerns and interests by maintaining a dialogue with all potentially affected parties and (2) carrying out its programs with an emphasis on working to enhance the quality of life for all Americans by lending MMS assistance and expertise to economic development and environmental protection.

[^0]: <> A six-week mean for one of the moorings, identified by subscript, is missing.

 * Records ended 27 July.

[^1]: * 35-day repeat cycles during April-September 1992

