

Northeastern Gulf of Mexico Chemical Oceanography and Hydrography Study

Annual Report: Year 3

Northeastern Gulf of Mexico Chemical Oceanography and Hydrography Study

Annual Report: Year 3

Editors

Ann E. Jochens Worth D. Nowlin, Jr.

Prepared under MMS Contract 1435-01-97-CT-30851 by Texas A&M University Department of Oceanography College Station, Texas 77843-3146

Published by

U.S. Department of the Interior Minerals Management Service Gulf of Mexico OCS Region

New Orleans November 2000

DISCLAIMER

This report was prepared under contract between the Minerals Management Service (MMS) and the Texas A&M Research Foundation. This report has been technically reviewed by the MMS, and it has been approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the MMS, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. It is, however, exempt from review and compliance with the MMS editorial standards.

REPORT AVAILABILITY

Extra copies of the report may be obtained from the Public Information Office (Mail Stop 5034) at the following address:

U.S. Department of the Interior Minerals Management Service Gulf of Mexico OCS Regional Office Public Information Office (MS 5034) 1201 Elmwood Park Boulevard New Orleans, Louisiana 70123-2394

Telephone: (504) 736-2519 or 1-800-200-GULF

CITATION

Suggested citation:

Jochens, A.E., and W.D. Nowlin, Jr., eds. 2000. Northeastern Gulf of Mexico Chemical Oceanography and Hydrography Study, Annual Report: Year 3. OCS Study MMS 2000-078, U.S. Dept. of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. 89 pp.

ACKNOWLEDGMENTS

This report would not have been possible without the contributions of a large number of people. Each NEGOM-COH principal investigator (PI) contributed portions of the text, many participated in the cruises and in data reduction and processing. The principal investigators, their affiliations, and their tasks are:

Worth D. Nowlin, Jr.	TAMU	Program Manager, PI for Task 3
Ann E. Jochens	TAMU	Deputy Program Manager, PI for Program
		Management and Task 2
Douglas C. Biggs	TAMU	Co-PI for Task 1
Norman L. Guinasso, Jr.	GERG/TAMU	Co-PI for Task 1
Matthew K. Howard	TAMU	Co-PI for Task 2
M. C. Kennicutt II	GERG/TAMU	Co-PI for Tasks 1 and 3
Robert O. Reid	TAMU	Co-PI for Task 3

Additionally, Dr. Steven F. DiMarco and Ms. Christina Bernal contributed to the authorship of this report.

To all who participated on the four NEGOM-COH cruises (N6, N7, N8, and N9), both ship's crew and scientific teams, we extend our great appreciation. We also thank the voluntary contributions of the scientists and students at University of Colorado (CU), University of South Florida (USF), University of Southern Mississippi (USM), as well as Texas A&M University (TAMU) who participated in these cruises. The science members, affiliations, and cruises are listed below.

Leila Belabbassi (TAMU; N6) Christina Bernal (TAMU; N6, N7, N8, N9) Dr. Doug Biggs (TAMU; N6, N7, N8, N9) Scott Birkhead (TAMU; N8) Marty Bohn (TAMU; N9) Ken Bottom (TAMU; N6, N7, N8, N9) Amy Bratcher (TAMU; N8) Greg Breed (TAMU; N9) Bob Brown (retired; N8) Yesim Buyukakis (TAMU; N6) Dr. Piers Chapman (TAMU; N6) Paul Clark (TAMU; N6, N7, N8, N9) Roland Clark (TAMU; N7) Robyn Conmy (USF; N7, N9) Dr. Carlos del Castilla (USF; N6, N8) Miranda Dettwyler (TAMU; N9) Kristie Elston (TAMU; N8) Yue Fang (TAMU; N8) Will Fletcher (TAMU; N9) Chad Fox (CU; N8) Mike Fredericks (TAMU; N6, N7, N8, N9) Bill Green (TAMU; N6, N7, N8) Dwight Gledhill (TAMU; N6) Dennis Guffy (TAMU; N6, N8, N9) Dr. Norm Guinasso (TAMU; N6, N7, N8, N9) Karie Holtermann (USM; N9)

vi

Alexey Ivanov (TAMU; N6, N7) Bill Kopesky (TAMU; N6) Lisa Lathem (TAMU; N9) Rob Masserini (USF; N7) Dr. Alexey Mishonov (TAMU; N8) Jeff Morin (TAMU; N6) Bisman Nababan (USF; N6, N7, N8, N9) Lucia Odriozola (USF; N9) Francisco Ollervides (TAMU; N6) Erik Quiroz (TAMU; N6, N7, N8, N9) Patrick Ressler (TAMU; N6) Emma Roscow (TAMU; N9) Rebecca Scott (TAMU; N7, N8) Laurie Sindlinger (TAMU; N9) Antoya Stovall-Leonard (USF; N8, N9) Ryan Thomas (TAMU; N7, N8) Toshi Uozumi (USM; N6) Lisa Vanderbloemen (USF: N8) Jennifer Waggoner (TAMU; N9) John Walpert (TAMU; N6, N7, N8, N9) Elise Waltman (TAMU; N6) Eddie Webb (TAMU; N6, N7, N8, N9) Xiang-Dong Xia (TAMU; N7)

Thanks go to those who helped prepare equipment and process the data on shore, including many named above, Bob Albers, Woody Lee, Dr. Yaorong Qian, and Ou Wang. Finally, thanks go to Dr. Joseph Yip for preparation of hourly surface wind and wind stress fields for the NEGOM field period and to Dr. Robert L. Leben, Colorado Center for Astrodynamics Research, University of Colorado, for production of the daily sea surface height anomaly fields from satellite altimeter data.

Ann E. Jochens Worth D. Nowlin, Jr.

ABSTRACT

The Northeastern Gulf of Mexico Physical Oceanography Program (NEGOM) is supported by the Minerals Management Service (MMS) of the U. S. Department of the Interior. Through a contract between MMS and the Texas A&M Research Foundation, several components of the Texas A&M University System are conducting the Chemical Oceanography and Hydrography study of NEGOM (NEGOM-COH). This report covers activities from July 1999 through August 2000. Data were collected from hydrographic and acoustic Doppler current profiler (ADCP) surveys conducted in the Gulf of Mexico over the continental shelf and upper slope between the Mississippi delta and Tampa Bay in water depths of 10 to 1000 m. Additionally, historical and concurrent data from other programs in this region were collected.

Four hydrographic/ADCP surveys, N6, N7, N8, and N9, were conducted with 98, 98, 101, and 98 hydrographic sampling stations and 89, 84, 78, and 75 expendable bathythermograph stations on respective cruises. Each survey also included continuous ADCP measurements along the cruise track. At each hydrographic sampling station continuous profiles were made of conductivity, temperature, pressure, downwelling irradiance, fluorescence, and light transmission. Up to twelve water samples were taken at each station and analyzed for dissolved oxygen and six nutrients: nitrate, nitrite, phosphate, silicate, ammonium, and urea. At approximately 60 stations on each cruise, water samples were filtered and analyzed for phytoplankton pigments at the surface, from the chlorophyll maximum determined from fluorescence, and from the low light regime immediately below the maximum. Pigments were determined using high performance liquid chromatography. At about 60 stations on each cruise, water samples were filtered and analyzed for particulate matter concentrations at surface, middle, and bottom water depths and for particulate organic carbon and particulate organic nitrogen concentrations at surface and bottom (N6) or chlorophyll maximum (N7-N9) water depths. Bottle salinity was measured routinely at the most inshore and offshore stations on each crossshelf line. Surface bucket salinity samples were taken in regions expected to have river water influences. The instrumentation as well as calibration and sampling procedures are described in this report. The collected data were subjected to stringent quality assurance/quality control procedures, which also are described.

On each cruise there were a number of complementary research programs. N6 had seven programs, including coring, bio-optical sampling, color dissolved organic material (CDOM) measurements, and flow cytometry sampling. There were five programs on N7, consisting of drifter deployments for MMS, bio-optical sampling, CDOM measurements, flow cytometry, and experimental measurements using a 38 kHz ADCP. On N8, ten complementary programs were pursued; the major ones were coring, a NASA over-flight for concurrent airborne and sea water flow-through bio-optical measurements, standard bio-optical and CDOM sampling, flow cytometry, benthic trawl samples, and 38 kHz ADCP measurements. Five complementary research efforts were accommodated on cruise N9, including bio-optical sampling, CDOM measurements, benthic trawls, and 38 kHz ADCP measurements. Graduate student training and research was conducted on all cruises for various academic institutions.

TABLE OF CONTENTS

		PA	<u>.GE</u>
ACK	NOWLE	DGMENTS	v
ABS	TRACT		vii
LIST	OF FIGU	URES	xi
LIST	OF TAB	BLES	xiii
ACR	ONYMS	AND ABBREVIATIONS	XV
1	EXECU	TIVE SUMMARY	. 1
	1.1	Introduction	. 1
	1.2	Field Data	. 1
	1.3	Third Annual Report	. 2
2	INTROL	DUCTION	. 5
	2.1	Overview of Cruise Schedule and Nomenclature	. 5
	2.2	Programmatic Changes	. 5
	2.3	Report Organization	. 6
3	DATA A	ACOUISITION	. 7
-	3.1	General Description of Surveys	. 7
		3.1.1 Cruise N6	. 7
		3.1.2 Cruise N7	. 15
		3.1.3 Cruise N8	. 23
		3.1.4 Cruise N9	. 31
	3.2	Instrumentation, Calibration, and Sampling Procedures	. 40
		3.2.1 Continuous Profiles	. 40
		3.2.2 Discrete Measurements	. 41
		3.2.3 Acoustic Doppler Current Profiler Measurements	. 42
		3.2.4 XBT Measurements	. 44
		3.2.5 Underway Measurements	. 45
	3.3	Summary of Field Data Collected	. 45
	3.4	Summary of Historical and Collateral Data Assembly	. 45
4	DATA (DUALITY ASSURANCE AND CONTROL	. 51
•	4.1	Continuous Profile Data	. 51
	4.2	Discrete Measurements	. 51
		4.2.1 Nutrients, Oxygen and Salinity	. 51
		4.2.2 Particulates	. 64
		4.2.3 Pigments	. 64
	4.3	Acoustic Doppler Current Profiler Measurements	. 64
		4.3.1 Standard ADCP Processing	. 65
		4.3.2 Ensemble Processing Procedure	. 65
		4.3.3 Results of OA/OC for N5 through N9	. 66
	44	XBT Measurements	. 68
	4.5	Underway Measurements	. 68
5	LITERA	TURE CITED	. 73
-			

LIST OF FIGURES

FIGUR	<u>RE</u>	PAGE
1.2.1	Station locations and cross-shelf line numbers for NEGOM	
	hydrographic/ADCP cruises and geographic locations in the study area	3
3.1.1	Station locations for cruise N6 conducted 15 – 28 August 1999	8
3.1.2	Station locations for cruise N7 conducted 12 – 25 November 1999.	17
3.1.3	Station locations for cruise N8 conducted 15 – 26 April 2000	24
3.1.4	Station locations for cruise N9 conducted 28 July – 8 August 2000	32
3.2.1	Locations of ADCP data for cruises N6, N7, N8, and N9.	43
3.2.2	Locations of near-surface, flow-through temperature, salinity, and	
	fluorescence data logged every 2 minutes on cruises N6, N7, N8, and N9	46
3.2.3	Locations of discrete samples filtered for calibration at sea of near-surface,	
	flow-through fluorometer data on cruises N6, N7, N8, and N9	47
4.1.1	Composite potential temperature-salinity diagram for stations from cruise	
	N5 (May 1999)	52
4.1.2	Composite potential temperature-salinity diagram for stations from cruise	
	N6 (August 1999)	53
4.1.3	Composite potential temperature-salinity diagram for stations from cruise	
	N7 (November 1999).	54
4.1.4	Composite potential temperature-salinity diagram for stations from cruise	
	N8 (April 2000)	55
4.1.5	Composite potential temperature-salinity diagram, using preliminary data,	
	for stations from cruise N9 (July/August 2000)	56
4.2.1	Phosphate versus nitrate for 1999 cruises N5 (spring), N6 (summer), and	
	N7 (fall)	57
4.2.2	Phosphate versus nitrate for 2000 cruises N8 (spring) and N9 (summer)	58
4.2.3	Frozen versus fresh nutrient concentrations (μM) from station 32 on	
	NEGOM cruise N8 (April 2000).	59
4.2.4	Frozen versus fresh nutrient concentrations (μM) from station 33 on	
	NEGOM cruise N8 (April 2000).	60
4.2.5	Ensemble upcast CTD salinity versus bottle salinity for cruises N5 through	
	N9	61
4.2.6	Dissolved oxygen versus upcast sigma-theta for 1999 cruises N5 (spring),	
	N6 (summer), and N7 (fall)	62
4.2.7	Dissolved oxygen versus upcast sigma-theta for 2000 cruises N8 (spring)	
	and N9 (summer).	63
4.5.1	Flow-through fluorometer calibration for cruise N6 (August 1999).	69
4.5.2	Flow-through fluorometer calibration for cruise N7 (November 1999)	70
4.5.3	Flow-through fluorometer calibration for cruise N8 (April 2000)	71
4.5.4	Flow-through fluorometer calibration for cruise N9 (July/August 2000)	72

LIST OF TABLES

		<u>PAGE</u>
2.1.1	Cruise identifiers and dates.	5
3.1.1	Times and locations for CTD stations on cruise N6.	10
3.1.2	Number of bottles sampled by variable on cruise N6.	12
3.1.3	Launch times and locations for XBT drops on cruise N6	14
3.1.4	Times and positions for CTD stations on cruise N7.	18
3.1.5	Number of bottles sampled by variable on cruise N7.	20
3.1.6	Launch times and locations for XBT drops on cruise N7	22
3.1.7	Times and positions for CTD stations on cruise N8.	26
3.1.8	Number of bottles sampled by variable on cruise N8	28
3.1.9	Launch times and locations for XBT drops on cruise N8	30
3.1.10	Times and positions for CTD stations on cruise N9.	34
3.1.11	Number of bottles sampled by variable on cruise N9.	36
3.1.12	Launch times and locations for XBT drops on cruise N9	38
3.2.1	Hydrographic equipment available on cruises N6, N7, N8, and N9	40
3.2.2	Bottle tripping locations.	41
3.2.3	Dates and quantity of 150 kHz ADCP data	42
3.2.4	ADCP configuration summary	44
3.3.1	Summary of data collection and scientific participation on NEGOM-COH	48
332	Complementary programs on NEGOM-COH hydrography surveys	40
341	Gulf of Mexico collateral data assembled in support of NEGOM-COH	49
<u> </u>	POC and PON from two denths at station 35 on NEGOM cruise N6	64
431	Complex regression statistics for GPS velocity versus bottom-track	01
1.5.1	velocity from 150 kHz ADCP data on cruises N5 through N9	65
4.3.2	Results of evaluation of 150 kHz ADCP data for external factors on	
	cruises N5 through N9 and number of data segments rejected	66

ACRONYMS AND ABBREVIATIONS

ADCP	acoustic Doppler current profiler
AVHRR	advanced very high resolution radiometer satellite
CCAR	Colorado Center for Astrodynamics Research
CTD	conductivity-temperature-depth
DGPS	differential global positioning system
GPS	global positioning system
HPLC	high performance liquid chromatography
NEGOM	Northeastern Gulf of Mexico Physical Oceanography Program
NEGOM-COH	NEGOM Chemical Oceanography and Hydrography Study
MMS	Minerals Management Service, U.S. Department of the Interior
NASA	National Aeronautics and Space Administration
OS	Ocean Surveyor
PAR	photosynthetically available radiation
PI	principal investigator
PM	particulate matter
POC	particulate organic carbon
PON	particulate organic nitrogen
QA/QC	quality assurance/quality control
RDI	RD Instruments, Inc.
R/V	research vessel
SAIL	Serial ASCII Interface Loop system
S/N	serial number
SSHA	sea surface height anomaly
TAMU	Texas A&M University
USF	University of South Florida
USM	University of Southern Mississippi
UTC	universal coordinated time
XBT	expendable bathythermograph probe

1 EXECUTIVE SUMMARY

1.1 Introduction

The Minerals Management Service (MMS) of the U.S. Department of the Interior supports the Northeastern Gulf of Mexico Physical Oceanography Program (NEGOM). NEGOM is divided into six study units, one of which is the Chemical Oceanography and Hydrography Study (NEGOM-COH). NEGOM-COH covers the east Louisiana-Mississippi-Alabama-west Florida continental shelf and upper slope from the Mississippi River delta to Tampa Bay in water depths of 10 to 1000 m. This report focuses on the third year of work of NEGOM-COH covering the period July 1999 through August 2000. It does not contain detailed syntheses or interpretation of data collected; those will be detailed in the Final Synthesis Report at the conclusion of the program.

The contract for NEGOM-COH was awarded to the Texas A&M Research Foundation on 30 September 1997. Through the contract, components of the Texas A&M University System, a combination of Texas institutions of higher learning and Texas state agencies dedicated to training, research, and extension, conduct the NEGOM-COH study. In addition to support from the MMS, financial backing for NEGOM-COH is provided by Texas A&M University (TAMU), a component of the System. TAMU is assisted in this program by a subcontract with Dr. Robert R. Leben of the University of Colorado.

The major objective of NEGOM-COH is to describe spatial and temporal distributions and variations of hydrographic variables, and the processes that contribute to them. It will be met through completion of a three-year field program of hydrographic/acoustic Doppler current profiler (ADCP) cruises in the spring, summer, and fall seasons, after which observations will be synthesized, interpreted, and reported to provide a more complete understanding of circulation and distribution of properties over the study area.

Program management is provided by Dr. Worth D. Nowlin, Jr., Program Manager, and Dr. Ann E. Jochens, Deputy Program Manager. Study tasks are:

- Task 1, Field Work and Data Collection
 - Dr. Douglas C. Biggs, Co-principal investigator (Co-PI)
 - Dr. Norman L, Guinasso, Jr., Co-PI
 - Dr. M. C. Kennicutt II, Co-PI
- Task 2, Data Reduction/Analysis and Synthesis Dr. Ann E. Jochens, Principal Investigator (PI) Dr. Matthew K. Howard, Co-PI
- Task 3, Information/Data Synthesis and Technical Reports Dr. Worth D. Nowlin, Jr., PI Professor Robert O. Reid, Co-PI Dr. M. C. Kennicutt II, Co-PI

1.2 Field Data

Four hydrographic/ADCP survey cruises were conducted in the report period: cruise N6 during 15–28 August 1999; cruise N7 during 13–25 November 1999; cruise N8 during 15–26 April 2000, and cruise N9 during 28 July–8 August 2000. Conductivity-temperature-depth (CTD) and bottle sampling were completed at 98, 98, 101, and 98 stations and expendable bathythermographs (XBT) were launched successfully at 89, 84,

78, and 75 stations. ADCP data were recorded continuously along track. The standard pattern of station locations and line numbers, as well as bathymetry and geographic locations, are shown in Figure 1.2.1.

At each CTD/bottle station, continuous profiles were made of conductivity, temperature, dissolved oxygen, downwelling irradiance, backscatterance, fluorescence, and percent light transmission. Up to 12 water samples were taken at each station and analyzed for dissolved oxygen and six nutrients: nitrate, nitrite, phosphate, silicate, ammonium, and urea. Typically at 60 stations, water samples were analyzed for phytoplankton pigments, particulate matter, and particulate organic carbon/particulate organic nitrogen. Bottle salinities were measured at the innermost and seawardmost stations of each cross-shelf line, as well as at supplemental stations for problem solving associated with bottle sampling. Surface bucket salinity samples were taken in regions expected to be influenced by river water. XBT stations were taken between cross-shelf CTD stations to increase the resolution of the temperature data to ~10 km. Near-surface temperature, salinity, and fluorescence were logged every two minutes while the ship was underway or stopped at stations. To calibrate the underway fluorescence, 101, 99, 99, and 101 underway water samples were analyzed for chlorophyll content. After collection, the data sets were processed for compliance with quality assurance and quality control (QA/QC) criteria.

On each cruise there were a number of complementary research programs. For cruises N6, N7, N8, and N9, there were seven, five, ten, and five complementary programs, respectively. The type of programs included coring, bio-optical sampling, color dissolved organic material measurements, flow cytometry sampling, experimental measurements using a 38 kHz ADCP, drifter deployments for MMS, a NASA over-flight for concurrent airborne and sea water flow-through bio-optical measurements, and benthic trawl sampling. Graduate student training and research was conducted on all cruises for various academic institutions, including TAMU, University of South Florida, University of Southern Mississippi, and University of Colorado.

1.3 Third Annual Report

This third annual report focuses on the data collection and processing activities of NEGOM-COH. It contains no detailed analyses of the data. Examples of products can be found in the first and second annual reports (Jochens and Nowlin, 1998 and 1999, respectively).

The NEGOM-COH Synthesis Report, in preparation, will contain discussions of all data analyses carried out. The final synthesis report is expected to be available from MMS about September 2001.

Figure 1.2.1. Station locations and cross-shelf line numbers for NEGOM hydrographic/ADCP cruises and geographic locations in the study area. Line numbers are given at the offshore end of the lines.

2 INTRODUCTION

The first annual report for NEGOM-COH detailed the program objectives, tasks, and participants, activities from October 1997 through June 1998, the data collection and processing for cruises N1 and N2, and the results of preliminary examination of the N1 data set (Jochens and Nowlin, 1998). The second annual report described the activities from July 1998 through June 1999 and included data acquisition on cruises N3, N4, and N5, and QA/QC and analysis for selected data from cruises N2, N3, and N4 (Jochens and Nowlin, 1999). This third annual report focuses on the period from July 1999 through August 2000 and includes information on data acquisition on cruises N6 through N9 and on QA/QC for data from cruises N5 through N9. Information on the NEGOM-COH program is provided on a publicly accessible web page on the internet at http://negom.tamu.edu/negom.

2.1 Overview of Cruise Schedule and Nomenclature

Four hydrographic/ADCP cruises were conducted aboard R/V Gyre during this report period. The cruises, their various designators, and their start and end dates are given in Table 2.1.1. The NEGOM ID is the shorthand identifier used in this report. The cruise ID number is the standard cruise identifier widely used in the U.S. oceanographic community. The first two characters are the year of the cruise, the third character is the ship identifier, G for Gyre, and the last two characters are the number of the ship's cruise for that year. Typical station locations and cross-shelf line numbers are shown in Figure 1.2.1.

Survey No.	Start Date	End Date	NEGOM ID	Cruise ID
6	15 August 1999	28 August 1999	N6	99-G-08
7	13 November 1999	25 November 1999	N7	99-G12
8	15 April 2000	26 April 2000	N8	00-G-04
9	28 July 2000	8 August 2000	N9	00-G-08

Table 2.1.1. Cruise identifiers and dates.

2.2 Programmatic Changes

For the first six cruises, particulate organic carbon samples were taken from the top and bottom Niskin bottles. There was little relationship found between particulate organic carbon values and the particulate matter concentrations or beam attenuation for the bottom samples. Therefore, for the final three cruises, samples were taken from the bottles at the surface and chlorophyll maximum.

Antheraxanthin was added to the suite of pigments determined by high performance liquid chromatography (HPLC) after equipment and an analytic standard became available for identification of this pigment. This occurred for N6 and subsequent cruises.

To better assess off-shelf currents and to make full use of the available ship time on cruise N8, line 2 was extended approximately 45 km offshore into a cyclonic eddy and an additional three CTD and three XBT stations were taken.

2.3 Report Organization

This is the third annual report of the NEGOM-COH study. It reports on: data-gathering efforts; equipment, measurement and analytical methodologies employed; and results of quality control procedures and results. Extensive results and syntheses of the information will be provided in the final Synthesis Report at the conclusion of the field work and analyses. Section 3 of the report details the acquisition of the chemical oceanography, hydrography, and ADCP measurements, as well as collateral data assembly. Section 4 discusses data processing efforts and data quality control methods and results. All times are reported in Universal Coordinated Time (UTC) unless stated otherwise.

Data acquisition activities for cruises N6, N7, N8, and N9 described here include a discussion of *in situ* sampling efforts and the instrumentation, calibration, and sampling procedures. Summaries of field data collection and collateral data assembly are given.

3.1 General Description of Surveys

From July 1999 through August 2000, four hydrographic/ADCP surveys (N6 through N9) were conducted aboard the *R/V Gyre*. A Sea-Bird SBE-911*plus* CTD was used on each cruise. CTD-Rosette stations were occupied on each cruise at nearly identical station locations. Test stations, at which all bottles were tripped in the salinity minimum water at ~700-800 m, were made to test instrumentation and equipment. XBT probes were launched between CTD stations. ADCP data were collected along the track. Navigation data and station locations were determined using a differential Global Positioning System (DGPS).

The surveys consisted of eleven lines of CTD and XBT stations perpendicular to the bathymetry (cross-shelf lines). The lines are numbered from 1 to 11 going from west to east (Figure 1.2.1). The naming convention for cross-shelf lines is:

First and second characters:	NEGOM cruise number (N6, N7, N8, or N9)
Third character:	L = Line
Fourth and fifth characters:	Line number (1 through 11)
Sixth character:	S = Sequence
Seventh and eighth characters:	Sequence number of station on the line
Ninth character:	C = CTD station type; $X = XBT$ station type

Stations on each cross-shelf line are numbered sequentially from innermost to outermost station regardless of station type. As an example, station N6L06S03C is the third station from the coast on line 6 and is a CTD station taken on cruise N6. On cruise N6, XBTs also were deployed between pairs of cross-shelf lines along portions of the 1000-m isobath. For these stations the third character is "X", denoting a segment between two cross-shelf lines; the fourth and fifth characters give the starting cross-shelf line number and the sixth and seventh give the ending cross-shelf line number. The eighth character is "M", denoting the station is midway between the two cross-shelf lines. In the tables below, where it is clear whether the station type is a CTD or an XBT, the ninth character is not included.

3.1.1 Cruise N6

The sixth NEGOM-COH hydrography cruise (N6) was conducted on the *R/V Gyre* during 15 - 28 August 1999. It was staged out of Galveston, TX, and returned to Panama City, FL. Dr. Douglas C. Biggs and Dr. Norman L. Guinasso, Jr., were co-chief scientists. One hundred CTD stations, including one test station (Station 000, N6TEST00) and one supplementary station (Station 00A, N6CORE00), were completed. The test station was located in deep water near Mississippi Canyon. The supplementary station was taken outside the NEGOM study area in about 35 m water depth west of the Mississippi River Delta. Eighty-nine successful XBT drops were made. The locations of the CTDs and XBTs and the cruise track are shown in Figure 3.1.1.

Figure 3.1.1. Station locations for cruise N6 conducted 15 - 28 August 1999. The cruise ran in order along lines 1, 2, 3, 4, 11, 10, 9, 8, 5, 6, and 7. The thick line shows the cruise track, which began at the location of the most seaward station on line 1.

 ∞

The cruise started at the seaward end of line 1 and completed the CTD/XBT stations along lines 1, 2, 3, and 4. Collecting XBT data, it then ran along the 1000-m isobath to the most seaward station on line 11. The cross-shelf CTD/XBT station sampling then resumed and was completed for lines 11, 10, 9, and 8. Due to illness, the cruise diverted to complete line 5 and then to evacuate the ill person via water taxi to Destin, FL. Lines 6 and 7 then were run to complete the cruise. Station number, date, time, location, water depth, and number of bottles tripped at each CTD station are given in Table 3.1.1.

Stations at which bottle samples were taken are summarized in Table 3.1.2. Nutrients and oxygen were measured from every Niskin bottle sampled. Salinity was measured at the inner-most and 1000-m isobath stations on each cross-shelf line, the test station, the supplemental station, and station 86 for a total of 25 stations. Surface bucket salinity samples were taken at 58 of the CTD stations in regions expected to be influenced by river water. Pigment samples were taken at the top, in the chlorophyll-maximum as estimated from the downcast fluorescence trace, and in the low light regime immediately below the chlorophyll-maximum at 60 stations. Total particulate matter (PM), particulate organic carbon (POC), and particulate organic nitrogen (PON) were measured from the shallowest and deepest bottles and, for PM, from a middle, "clear water" bottle at 60 stations. Duplicate POC/PON samples were taken at station 35.

The location, date, time, total water depth, and probe type of the XBT drops are given in Table 3.1.3. A 150kHz broadband ADCP was operated continuously along the track (Section 3.2.3). Flow-through near-surface temperature, conductivity, and fluorescence were logged every 2 minutes (Section 3.2.5). Surface samples were filtered and analyzed at 101 locations for chlorophyll a content to calibrate the flow-through fluorometer.

Seven complementary research efforts were accommodated on summer cruise N6. With ship support provided by the state of Texas, Mr. Jeff Morin, TAMU, took gravity/box core samples at the supplementary station and Mr. Dwight Gledhill, TAMU, took piston core samples at the test station. Both then assisted with NEGOM sampling for the remainder of the cruise. Mr. Bisman Nababan, from the remote sensing group of Dr. Frank Muller-Karger at the University of South Florida (USF), conducted irradiance casts and collected dissolved organic carbon data for comparison with SeaWiFS data. Dr. Carlos del Castilla, working for Dr. Paula Coble of USF, operated an underway Safire system to collect dissolved organic material fluorescence and absorbance data. Mr. Bill Kopesky collected samples for the flow cytometry program of Dr. Lisa Campbell, TAMU. Ms. Yesim Buyukates, graduate student of Dr. Dan Roelke of TAMU, participated in the cruise for purposes of looking at NEGOM data for her study of red tides. Two salinity samples were taken at each of three stations for Dr. Donald Shive of Muhlenberg College, Allentown, PA, for use in training chemistry students. Further information on these complementary research programs can be obtained from the scientists involved.

Station Number	Station Name	Date (UTC)	Time (UTC)	Latitude (°N)	Longitude (°W)	Depth (m)	No. of Bottles
00A	N6CORE00	17-AUG-1999	16:33:44	28.953063	-89.889853	37.	12
000	N6TEST00	18-AUG-1999	00:23:46	28.132920	-89.130395	1061.	11
001	N6L01S07	18-AUG-1999	09:03:07	28.662875	-88.900053	1004.	12
002	N6L01S05	18-AUG-1999	11:08:50	28.805220	-88.948680	500.	12
003	N6L01S04	18-AUG-1999	12:38:36	28.894520	-88.973960	205.	12
004	N6L01S03	18-AUG-1999	13:45:27	28.956055	-88.997812	97.	12
005	N6L01S01	18-AUG-1999	14:55:59	29.059043	-89.030423	19.	4
006	N6L02S00	18-AUG-1999	20:27:49	29.800647	-88.753902	15.	4
007	N6L02S01	18-AUG-1999	21:41:14	29.662818	-88.692392	19.	4
008	N6L02S03	18-AUG-1999	23:52:49	29.397653	-88.570245	58.	4
009	N6L02S05	19-AUG-1999	01:28:51	29.224697	-88.497543	111.	12
010	N6L02S06	19-AUG-1999	02:24:06	29.173675	-88.473805	189.	12
011	N6L02S08	19-AUG-1999	03:51:49	29.047793	-88.416757	493.	12
012	N6L02S10	19-AUG-1999	05:37:00	28.869780	-88.336602	999.	12
013	N6L03S10	19-AUG-1999	09:47:40	29.153288	-87.859850	999.	12
014	N6L03S09	19-AUG-1999	11:23:46	29.218220	-87.875755	459.	12
015	N6L03S08	19-AUG-1999	12:43:51	29.281913	-87.888493	207.	12
016	N6L03S07	19-AUG-1999	13:48:59	29.345993	-87.900927	98.	12
017	N6L03S05	19-AUG-1999	15:50:14	29.558238	-87.948152	42.	5
018	N6L03S03	19-AUG-1999	18:04:09	29.804197	-87.997625	36.	5
019	N6L03S01	19-AUG-1999	20:22:56	30.103062	-88.074298	21.	4
020	N6L03S00	19-AUG-1999	21:06:58	30.156823	-88.088667	12.	4
021	N6L04S00	20-AUG-1999	01:52:39	30.279632	-87.324707	13.	4
022	N6L04S01	20-AUG-1999	02:35:43	30.221458	-87.351032	19.	5
023	N6L04S03	20-AUG-1999	04:29:04	29.979590	-87.349012	29.	5
024	N6L04S05	20-AUG-1999	06:25:26	29.729037	-87.348882	80.	12
025	N6L04S07	20-AUG-1999	08:01:36	29.567942	-87.350190	110.	12
026	N6L04S08	20-AUG-1999	08:55:40	29.531815	-87.350138	213.	12
027	N6L04S10	20-AUG-1999	10:33:17	29.371678	-87.346672	511.	12
028	N6L04S12	20-AUG-1999	12:34:44	29.194363	-87.348157	987.	12
029	N6L11S18	21-AUG-1999	05:57:26	27.499055	-85.395352	996.	12
030	N6L11S16	21-AUG-1999	07:57:09	27.498827	-85.225350	755.	12
031	N6L11S14	21-AUG-1999	09:48:13	27.499177	-85.076073	496.	12
032	N6L11S12	21-AUG-1999	11:36:57	27.499573	-84.890750	300.	12
033	N6L11S10	21-AUG-1999	13:32:58	27.499237	-84.681222	201.	12
034	N6L11S08	21-AUG-1999	16:07:08	27.500280	-84.342913	100.	12
035	N6L11S06	21-AUG-1999	18:52:14	27.500453	-83.940733	58.	9
036	N6L11S04	21-AUG-1999	21:35:42	27.499728	-83.496557	43.	4
037	N6L11S02	22-AUG-1999	00:33:00	27.501252	-83.022510	22.	5
038	N6L11S01	22-AUG-1999	01:46:45	27.497312	-82.853122	13.	4
039	N6L10S01	22-AUG-1999	10:10:17	28.608993	-83.074212	12.	4
040	N6L10S03	22-AUG-1999	12:03:18	28.521138	-83.329595	20.	4
041	N6L10S05	22-AUG-1999	14:40:40	28.400475	-83.702083	32.	6
042	N6L10S07	22-AUG-1999	17:23:59	28.286815	-84.059065	39.	4
043	N6L10S09	22-AUG-1999	19:57:47	28.177022	-84.404055	60.	5
044	N6L10S11	22-AUG-1999	22:24:27	28.076480	-84.706150	102.	12
045	N6L10S13	23-AUG-1999	00:02:08	28.022188	-84.876767	200.	11
046	N6L10S15	23-AUG-1999	01:49:15	27.959797	-85.069868	313.	12
047	N6L10S17	23-AUG-1999	03:46:30	27.895870	-85.276100	495.	12
048	N6L10S19	23-AUG-1999	05:07:35	27.852303	-85.412990	655.	12
049	N6L10S21	23-AUG-1999	07:27:31	27.782912	-85.631008	994.	12

050 N6L09S21 23-AUG-1999 11:31:56 28.019132 -86.042420 979. 11 051 N6L09S17 23-AUG-1999 15:37:12 28.115022 -85.876547 682. 12 053 N6L09S15 23-AUG-1999 17:49:33 28.310348 -85.500443 304. 12 054 N6L09S13 23-AUG-1999 21:32:14 28.510907 -85.234182 162. 11 056 N6L09S05 24-AUG-1999 01:32:40 28.827333 -85.043788 98. 12 057 N6L09S05 24-AUG-1999 07:42:56 29.342655 -83.861285 20. 5 050 N6L08S01 24-AUG-1999 10:52:29 29.3623 -85.01942 2.5 4 061 N6L08S05 24-AUG-1999 10:17:41 28.42528 -85.719160 199. 12 065 N6L08S07 24-AUG-1999 00:17:41 28.82528 -85.719160 199. 12 066 N6L08S11 25-AUG-1999	Station Number	Station Name	Date (UTC)	Time (UTC)	Latitude (°N)	Longitude (°W)	Depth (m)	No. of Bottles
030 NoL09S121 23-AUC-1999 11.31.30 28.019122 -88.876547 682. 12 051 NoL09S17 23-AUC-1999 15.37.31 28.190858 +85.753908 502. 12 053 NoL09S13 23-AUC-1999 17.91.33 28.310348 +85.56043 304. 12 054 NoL09S11 23-AUC-1999 25.321 28.627353 +85.043788 98.12 057 NoL09S07 24-AUC-1999 04:34.46 29.10440 +84.693920 46. 6 058 NoL09S03 24-AUC-1999 07:42.56 29.342655 +83.861285 20. 5 060 NoL08S03 24-AUC-1999 19:61.747 29.602123 +84.780017 14. 4 062 NoL08S03 24-AUC-1999 21:052 29.238623 +85.01942 25. 4 064 NoL08S07 24-AUC-1999 21:073 +85.274593 40. 4 065 NoL08S07 24-AUC-1999 21:073 +85.274593	050	NGL 00821	22 AUG 1000	11,21,56	28 010122	86 042420	070	11
031 NoL09819 23-AUC-1999 15:37:12 28:110422 -03.8:00-447 082. 12 052 NoL09815 23-AUC-1999 15:37:31 28.100348 -85.550443 304. 12 053 NoL09811 23-AUC-1999 12:12:34 28.510907 -85.234182 162. 11 056 NoL09809 23-AUC-1999 01:32:44 28.510907 -85.234182 162. 11 056 NoL09805 24-AUC-1999 01:43:46 29.105440 -84.256075 27. 5 059 NoL08801 24-AUC-1999 09:41:40 29.491292 -83.625663 12. 4 061 NoL08801 24-AUC-1999 10:52 29.38623 -85.19942 25. 4 063 NoL08805 24-AUC-1999 12:05:22 29.203973 -85.274893 40 4 064 NoL08805 24-AUC-1999 12:17.22 28.4024 -85.21281 12:1 12 065 NoL08805 25-AUC-1999	050	NGL09521	23-AUG-1999	11:51:50	28.019132	-80.042420	919.	12
032 NoL09517 23-AUC-1999 17:47:31 28.190836 -53.75390 304. 12 054 NoL09513 23-AUC-1999 17:49:31 28.19758 -85.393618 200. 12 055 NoL09S11 23-AUC-1999 21:23:42 28.51007 -85.234182 162. 11 056 NoL09S07 24-AUC-1999 04:34:44 29.105440 -84.256075 27. 5 059 NoL09S03 24-AUC-1999 04:34:44 29.105440 -84.256075 27. 5 050 NoL09S03 24-AUC-1999 16:47:47 29.602123 -84.780017 14. 4 061 NoL08S03 24-AUC-1999 15:12 29.386823 -85.01942 25. 4 063 NoL08S07 24-AUC-1999 04:00:50 28.605627 -85.973177 308. 12 065 NoL08S13 25-AUC-1999 04:00:50 28.605627 -85.973177 308. 12 066 NoL08S17 25-AUC-1999	051	NGL09519	23-AUG-1999	15:45:12	28.113022	-83.8/034/	502.	12
033 NoL.09313 23-AUG-1999 17:47:33 22.3.10246 -83.30443 304. 12 055 N6L09S11 23-AUG-1999 21:12:34 28.510907 -85.234182 162. 11 056 N6L09S07 24-AUG-1999 21:32:34 28.510907 -85.234182 162. 11 057 N6L09S07 24-AUG-1999 01:35:40 28.839780 -84.693920 46. 6 058 N6L09S03 24-AUG-1999 04:43:46 29.105440 -84.256075 27. 5 060 N6L09S01 24-AUG-1999 10:512 29.36823 -85.019942 25. 4 061 N6L08S03 24-AUG-1999 12:05:22 29.203973 -85.274593 40. 4 063 N6L08S05 24-AUG-1999 10:51:22 29.203973 -85.274823 40. 4 064 N6L08S07 2-AUG-1999 01:74:1 28.82528 85.719160 199. 12 065 N6L08S11 2-AUG-1999 02	052	NGL09517	23-AUG-1999	13:37:31	28.190838	-05.755900	204	12
034 NoL09S15 23-AUC-1999 19:36:00 28.412738 -85.393618 200. 12 055 N6L09S09 23-AUG-1999 21:234 28.510907 -85.234182 162. 11 056 N6L09S07 24-AUG-1999 01:35:40 28.839780 -84.693920 46. 6 058 N6L09S05 24-AUG-1999 07:42:56 29.342655 -83.861285 20. 5 060 N6L09S01 24-AUG-1999 07:42:56 29.342655 -83.861285 20. 5 061 N6L08S01 24-AUG-1999 16:47:47 29.602123 -84.780017 14. 4 062 N6L08S07 24-AUG-1999 10:52 29.203973 -85.274593 40. 4 064 N6L08S07 24-AUG-1999 01:052 28.902973 -85.774593 40. 4 064 N6L08S07 25-AUG-1999 01:052 28.402348 -86.215092 496. 12 065 N6L08S11 25-AUG-1999 01:050	053	NoL09515	23-AUG-1999	17:49:33	28.310348	-85.500445	304. 200	12
053 NoL09S11 25-AUG-1999 21:12:34 28:310907 -85.234182 102. 11 056 N6L09S07 24-AUG-1999 01:35:40 28:839780 -84.693920 46. 6 058 N6L09S05 24-AUG-1999 01:43:46 29:105440 -84.256075 27. 5 059 N6L09S01 24-AUG-1999 09:41:40 29:491292 -83.625663 12. 4 061 N6L08S03 24-AUG-1999 19:01:52 29:386823 -85.019942 25. 4 062 N6L08S03 24-AUG-1999 11:747 29:60123 -84.780017 14. 4 062 N6L08S03 24-AUG-1999 21:05:22 29:203973 -85.274593 40. 4 064 N6L08S05 24-AUG-1999 01:17:41 28:82528 -85.571850 10:12 12:12 065 N6L08S13 25-AUG-1999 06:21:25 28:402348 -86:15092 496. 12 066 N6L08S17 25-AUG-1999 <t< td=""><td>054</td><td>N6L09S13</td><td>23-AUG-1999</td><td>19:30:00</td><td>28.412/58</td><td>-85.393018</td><td>200.</td><td>12</td></t<>	054	N6L09S13	23-AUG-1999	19:30:00	28.412/58	-85.393018	200.	12
050 N6L09S09 22-AUG-1999 22:33:21 28.02/33 -85.043/38 98. 12 057 N6L09S05 24-AUG-1999 04:43:46 29.105440 -84.693920 46. 6 058 N6L09S03 24-AUG-1999 07:42:56 29.342655 -83.861285 20. 5 050 N6L08S01 24-AUG-1999 10:47:47 29.602123 -84.76017 14. 4 061 N6L08S01 24-AUG-1999 11:05:22 29.203973 -85.274593 40. 4 062 N6L08S07 24-AUG-1999 21:05:22 29.203973 -85.274593 40. 4 064 N6L08S07 24-AUG-1999 11:7:41 28.82528 85.719160 199. 12 066 N6L08S11 25-AUG-1999 06:21:25 28.402348 -86.215092 496. 12 067 N6L08S13 25-AUG-1999 02:30:46 29.07748 -87.016148 708.122 067 N6L0SS17 25-AUG-1999 02:30:46	055	NOLU9511	23-AUG-1999	21:12:34	28.510907	-85.234182	102.	11
057 N6L09S07 24.AUG-1999 01:35:40 28.839780 -84.05920 40. 6 058 N6L09S05 24.AUG-1999 07:42:56 29.342655 -83.861285 20. 5 060 N6L09S01 24.AUG-1999 07:42:56 29.342655 -83.861285 20. 5 061 N6L08S01 24.AUG-1999 16:47:47 29.062123 -84.780017 14. 4 062 N6L08S05 24.AUG-1999 21:05:22 29.203973 -85.274593 40. 4 064 N6L08S07 24.AUG-1999 21:05:22 29.203973 -85.274593 40. 4 065 N6L08S07 24.AUG-1999 01:07:41 28.82528 -85.719160 199. 12 066 N6L08S11 25-AUG-1999 04:00:50 28.402348 -86.31562 98.12 12 066 N6L08S13 25-AUG-1999 02:30:46 29.050862 -87.200947 995.12 12 070 N6L05S17 25-AUG-1999 <	056	N6L09S09	23-AUG-1999	22:53:21	28.627353	-85.043/88	98.	12
058 N6L09S05 24-AUG-1999 04:43:46 29.105440 -84.2560/5 27. 5 060 N6L09S01 24-AUG-1999 09:41:40 29.491292 -83.61285 20. 5 060 N6L08S01 24-AUG-1999 10:47:47 29.602123 -83.7017 14. 4 061 N6L08S05 24-AUG-1999 10:522 29.203973 -85.274593 40. 4 063 N6L08S07 24-AUG-1999 11:7:41 28.825528 85.719160 199. 12 066 N6L08S13 25-AUG-1999 04:00:50 28.605627 -85.973177 308. 12 067 N6L08S13 25-AUG-1999 06:61.21 28.295305 -86.339145 72. 12 068 N6L08S17 25-AUG-1999 10:41:51 28.132228 -86.339145 72.1 12 067 N6L05S17 25-AUG-1999 0:30:46 29.050862 -87.101618 708.1 12 070 N6L05S13 26-AUG-1999 0	057	N6L09S07	24-AUG-1999	01:35:40	28.839780	-84.693920	46.	6
059 N6L09S03 24-AUG-1999 07/42:56 29.342655 -83.861285 20. 5 060 N6L09S01 24-AUG-1999 16:47:47 29.602123 -84.780017 14. 4 061 N6L08S03 24-AUG-1999 10:05:22 29.386823 -85.019942 25. 4 063 N6L08S05 24-AUG-1999 10:05:22 29.203973 -85.274593 40. 4 064 N6L08S07 24-AUG-1999 01:17:41 28.825528 -85.719160 199. 12 065 N6L08S11 25-AUG-1999 06:21:25 28.402348 -86.215092 496. 12 066 N6L08S15 25-AUG-1999 06:21:25 28.402348 -86.215092 496. 12 068 N6L08S17 25-AUG-1999 06:30:40 29.277745 -87.101618 708. 12 070 N6L05S13 26-AUG-1999 0:53:27 20.470788 -86.730562 998. 12 071 N6L05S07 26-AUG-1999	058	N6L09S05	24-AUG-1999	04:43:46	29.105440	-84.256075	27.	5
060 NbL08S01 24-AUG-1999 09:41:40 29:491292 -88:5266:5 12. 4 061 NbL08S03 24-AUG-1999 19:01:52 29:60213 -84:780017 14. 4 062 NbL08S03 24-AUG-1999 21:05:22 29:203973 -85:274593 40. 4 064 NbL08S07 24-AUG-1999 21:05:22 29:203973 -85:274593 40. 4 065 NbL08S07 24-AUG-1999 01:17:41 28:825528 -85:719160 199. 12 065 NbL08S11 25-AUG-1999 06:05:12 28:402348 -86:215092 496. 12 067 NbL08S15 25-AUG-1999 08:06:21 28:295305 -86:339145 672. 12 068 NbL08S17 25-AUG-1999 03:040 29:277745 -87:101618 708. 12 071 NbL05S15 25-AUG-1999 02:43:02 29:068477 -86:945093 263. 12 073 NbL05S09 26-AUG-1999	059	N6L09S03	24-AUG-1999	07:42:56	29.342655	-83.861285	20.	5
061 NcL08S01 24-AUG-1999 16:47:47 29.602123 -84.780017 14. 4 062 NcL08S05 24-AUG-1999 19:01:52 29.386823 85.019942 25. 4 063 NcL08S05 24-AUG-1999 21:05:22 29.203973 -85.274593 40. 4 064 NcL08S07 24-AUG-1999 01:17:41 28.825528 -85.719160 199. 12 065 NcL08S11 25-AUG-1999 04:00:50 28.605627 -85.973177 308. 12 066 NcL08S17 25-AUG-1999 06:21:25 28.402348 -86.315092 496. 12 067 NcL0SS17 25-AUG-1999 00:30:46 29.050862 -87.200947 995. 12 071 NcL0SS13 26-AUG-1999 02:43:02 29.40788 87.01618 708. 12 073 NcL0SS07 26-AUG-1999 03:59:41 29.72784 -86.435093 263. 12 074 NcL0SS07 26-AUG-1999	060	N6L09S01	24-AUG-1999	09:41:40	29.491292	-83.625663	12.	4
062 NbL08S03 24-AUG-1999 19:01:52 29:386823 -85.07942 25. 4 063 NbL08S05 24-AUG-1999 21:05:22 29:20373 85.274593 40. 4 064 NbL08S07 24-AUG-1999 21:22 29:20373 85.274593 40. 4 065 NbL08S07 24-AUG-1999 01:17:41 28.825528 -85.791177 308. 12 066 NbL08S13 25-AUG-1999 06:21:25 28.402348 -86.215092 496. 12 068 NbL08S17 25-AUG-1999 08:06:21 28.295305 -86.33062 998. 12 070 NbL05S17 25-AUG-1999 03:040 29.277745 -87.101618 708. 12 071 NbL05S11 26-AUG-1999 02:43:02 29.470788 -87.016340 480. 12 073 NbL05S01 26-AUG-1999 05:53:5 29.882902 -86.815920 199. 12 075 NbL05S03 26-AUG-1999 08:	061	N6L08S01	24-AUG-1999	16:47:47	29.602123	-84.780017	14.	4
063 N6L08S05 24-AUG-1999 21:05:22 29:203973 -85:527882 121 12 064 N6L08S07 24-AUG-1999 23:29:45 28.986182 -85.528882 121 12 065 N6L08S11 25-AUG-1999 04:00:50 28.605627 -85.57882 121 12 066 N6L08S13 25-AUG-1999 06:21:25 28.402348 -86.215092 496. 12 067 N6L08S17 25-AUG-1999 08:06:21 28.29305 -86.339145 672. 12 070 N6L05S17 25-AUG-1999 02:30:46 29.050862 -87.00947 995. 12 071 N6L05S13 26-AUG-1999 02:30:40 29.277745 -87.101618 708. 12 073 N6L05S013 26-AUG-1999 02:52:35 29.80247 -86.815920 199. 12 075 N6L05S05 26-AUG-1999 05:25:35 29.882902 -86.811590 147. 12 076 N6L05S05 26-AUG-1999	062	N6L08S03	24-AUG-1999	19:01:52	29.386823	-85.019942	25.	4
064 N6L08S07 24-AUG-1999 23:29:45 28.896182 -85.719160 199. 12 065 N6L08S11 25-AUG-1999 01:17:41 28.82528 -85.719160 199. 12 066 N6L08S11 25-AUG-1999 06:21:25 28.402348 -86.215092 496. 12 067 N6L08S17 25-AUG-1999 08:06:21 28.295305 -86.30562 998. 12 069 N6L08S17 25-AUG-1999 00:30:46 29.050862 -87.200947 995. 12 070 N6L05S15 25-AUG-1999 02:30:46 29.077745 -87.106340 480. 12 073 N6L05S11 26-AUG-1999 02:43:02 29.608477 -86.945093 263. 12 074 N6L05S07 26-AUG-1999 05:52:35 29.82902 -86.857707 27. 5 076 N6L05S03 26-AUG-1999 06:32:7 30.027678 -86.737165 99. 12 077 N6L05S03 26-AUG-1999	063	N6L08S05	24-AUG-1999	21:05:22	29.203973	-85.274593	40.	4
065 N6L08S09 25-AUG-1999 01:17:41 28.825528 -85.719160 199. 12 066 N6L08S11 25-AUG-1999 04:00:50 28.605627 -85.973177 308. 12 067 N6L08S15 25-AUG-1999 06:21:25 28.402348 -86.215092 496. 12 068 N6L08S17 25-AUG-1999 08:06:21 28.295305 -86.339145 672. 12 069 N6L0SS17 25-AUG-1999 20:30:40 29.277745 -87.101618 708. 12 071 N6L0SS11 26-AUG-1999 02:30:40 29.277745 -87.101618 708. 12 073 N6L0SS01 26-AUG-1999 02:43:02 29.608477 -86.945093 263. 12 075 N6L0SS07 26-AUG-1999 05:25:35 29.882902 -86.811590 147. 12 076 N6L0SS01 26-AUG-1999 06:3127 30.027678 -86.737165 99. 12 077 N6L0SS01 26-AUG-1999	064	N6L08S07	24-AUG-1999	23:29:45	28.986182	-85.528882	121.	12
066 N6L08S11 25-AUG-1999 04:00:50 28.605627 -85.973177 308. 12 067 N6L08S13 25-AUG-1999 06:21:25 28.402348 -86.215092 496. 12 068 N6L08S17 25-AUG-1999 08:06:21 28.295305 -86.339145 672. 12 069 N6L0SS17 25-AUG-1999 03:046 29.050862 -87.200947 995. 12 070 N6L0SS15 25-AUG-1999 03:040 29.277745 -87.101618 708. 12 073 N6L0SS11 26-AUG-1999 02:43:02 29.608477 -86.945093 263. 12 074 N6L0SS07 26-AUG-1999 05:25:35 29.82902 -86.811590 147. 12 076 N6L0SS03 26-AUG-1999 08:34:00 30.204820 -86.578790 19. 4 077 N6L0SS01 26-AUG-1999 15:10:19 30.17808 -85.883368 21. 4 080 N6L06S03 26-AUG-1999	065	N6L08S09	25-AUG-1999	01:17:41	28.825528	-85.719160	199.	12
067 N6L08S13 25-AUG-1999 06:21:25 28.402348 -86.215092 496. 12 068 N6L08S15 25-AUG-1999 08:06:21 28.295305 -86.339145 672. 12 069 N6L08S17 25-AUG-1999 10:41:51 28.132228 -86.530562 998. 12 070 N6L05S17 25-AUG-1999 20:30:40 29.277745 -87.101618 708. 12 071 N6L05S13 26-AUG-1999 00:59:02 29.470788 -87.016340 480. 12 073 N6L05S01 26-AUG-1999 02:43:02 29.608477 -86.945093 263. 12 074 N6L05S07 26-AUG-1999 05:53:27 30.027678 -86.737165 99. 12 075 N6L05S01 26-AUG-1999 10:02:41 30.365935 -86.57870 19. 4 079 N6L06S01 26-AUG-1999 15:10:19 30.178808 +85.883368 21. 4 080 N6L06S03 26-AUG-1999	066	N6L08S11	25-AUG-1999	04:00:50	28.605627	-85.973177	308.	12
068 NGL08515 25-AUG-1999 08:06:21 28:295305 -86.339145 672. 12 069 NGL08517 25-AUG-1999 10:41:51 28.132228 -86.530562 998. 12 071 NGL05S17 25-AUG-1999 20:30:46 29.050862 -87.200947 995. 12 072 NGL05S13 26-AUG-1999 02:43:02 29.470788 -87.016340 480. 12 073 NGL05S09 26-AUG-1999 02:43:02 29.608477 -86.945093 263. 12 074 NGL05S07 26-AUG-1999 05:52:35 29.882902 -86.811590 147. 12 076 NGL05S03 26-AUG-1999 06:53:27 30.027678 -86.737165 99. 12 077 NGL05S01 26-AUG-1999 16:46:53 30.18252 -86.078790 19. 4 079 NGL06S01 26-AUG-1999 16:46:53 30.018252 -86.178790 19. 4 079 NGL06S03 26-AUG-1999	067	N6L08S13	25-AUG-1999	06:21:25	28.402348	-86.215092	496.	12
069N6L08S1725-AUG-199910:41:5128.132228-86.530562998.12070N6L05S1725-AUG-199920:30:4629.050862-87.200947995.12071N6L05S1525-AUG-19990:59:0229.470788-87.01618708.12072N6L05S1126-AUG-19990:59:0229.470788-87.016340480.12073N6L05S1126-AUG-19990:59:0229.470788-87.016340480.12074N6L05S0926-AUG-19990:55:3529.882902-86.811590147.12075N6L05S0526-AUG-199906:53:2730.027678-86.73716599.12077N6L05S0326-AUG-199906:53:2730.027678-86.57879019.4079N6L06S0126-AUG-199915:10:1930.178808-85.8836821.4080N6L06S0326-AUG-199916:46:5330.018252-86.02142232.5081N6L06S0526-AUG-199922:01:5529.496432-86.470686204.12083N6L06S1126-AUG-199923:59:3429.310330-86.632468384.12084N6L06S1327-AUG-19990:59:5429.133015-86.787645498.12085N6L06S1327-AUG-19990:59:5429.133015-86.787340100.12086N6L06S1727-AUG-199901:59:5429.133015-86.7873401009.12087<	068	N6L08S15	25-AUG-1999	08:06:21	28.295305	-86.339145	672.	12
070N6L05S1725-AUG-199920:30:4629.050862-87.200947995.12071N6L05S1525-AUG-199923:00:4029.277745-87.101618708.12072N6L05S1326-AUG-199900:59:0229.470788-87.1016340480.12073N6L05S1126-AUG-199900:59:0229.470788-86.945093263.12074N6L05S0726-AUG-199900:525:3529.882902-86.811590147.12076N6L05S0526-AUG-199906:32:2730.027678-86.57716599.12077N6L05S0326-AUG-199906:32:2730.027678-86.57879019.4079N6L06S0126-AUG-199916:46:5330.018252-86.02142232.5081N6L06S0326-AUG-199915:10:1930.178808-85.88336821.4080N6L06S0326-AUG-199916:46:5330.018252-86.02142232.5081N6L06S0526-AUG-199918:25:3729.83597-86.16626047.5082N6L06S0726-AUG-199922:01:5529.496432-86.470868204.12084N6L06S1126-AUG-199921:59:5429.130315-86.632468384.12085N6L06S1527-AUG-199901:59:5429.130315-86.632468384.12086N6L06S1727-AUG-199905:46:0928.827077-86.9873401009.12 <td< td=""><td>069</td><td>N6L08S17</td><td>25-AUG-1999</td><td>10:41:51</td><td>28.132228</td><td>-86.530562</td><td>998.</td><td>12</td></td<>	069	N6L08S17	25-AUG-1999	10:41:51	28.132228	-86.530562	998.	12
071 N6L05S15 25-AUG-1999 23:00:40 29:277745 -87.101618 708. 12 072 N6L05S13 26-AUG-1999 00:59:02 29:470788 -87.016340 480. 12 073 N6L05S01 26-AUG-1999 02:43:02 29:608477 -86.945093 263. 12 074 N6L05S07 26-AUG-1999 03:59:41 29:725840 -86.885920 199. 12 076 N6L05S05 26-AUG-1999 05:53:27 30.027678 -86.737165 99. 12 077 N6L05S01 26-AUG-1999 10:02:41 30.365935 -86.557070 17. 5 078 N6L06S01 26-AUG-1999 15:10:19 30.178808 -85.883368 21. 4 080 N6L06S05 26-AUG-1999 18:25:37 29.83597 -86.16260 47. 5 082 N6L06S07 26-AUG-1999 20:01:55 29.496432 -86.470868 204. 12 084 N6L06S13 27-AUG-1999	070	N6L05S17	25-AUG-1999	20:30:46	29.050862	-87.200947	995.	12
072N6L05S1326-AUG-199900:59:0229.470788-87.016340480.12073N6L05S1126-AUG-199902:43:0229.608477-86.945093263.12074N6L05S0926-AUG-199903:59:4129.725840-86.885920199.12075N6L05S0726-AUG-199905:52:3529.882902-86.811590147.12076N6L05S0326-AUG-199906:53:2730.027678-86.73716599.12077N6L05S0326-AUG-199908:34:0030.204820-86.65570727.5078N6L05S0126-AUG-199915:10:1930.178808-85.88336821.4080N6L06S0326-AUG-199916:46:5330.018252-86.02142232.5081N6L06S0526-AUG-199918:25:3729.853597-86.16626047.5082N6L06S0726-AUG-199920:09:1029.682588-86.310030100.12083N6L06S1126-AUG-199923:59:3429.310310-86.632468384.12084N6L06S1527-AUG-199905:46:0928.827078-87.052560767.12085N6L06S1527-AUG-199905:46:0928.827078-87.052560767.12086N6L0751727-AUG-199911:17:5628.370637-86.9273401009.12089N6L0751327-AUG-199915:53:0028.701253-86.612705499.12 <t< td=""><td>071</td><td>N6L05S15</td><td>25-AUG-1999</td><td>23:00:40</td><td>29.277745</td><td>-87.101618</td><td>708.</td><td>12</td></t<>	071	N6L05S15	25-AUG-1999	23:00:40	29.277745	-87.101618	708.	12
073N6L05S1126-AUG-199902:43:0229:608477-86.945093263.12074N6L05S0926-AUG-199903:59:4129:72840-86.885920199.12075N6L05S0726-AUG-199905:53:5729.882902-86.811590147.12076N6L05S0326-AUG-199906:53:2730.027678-86.73716599.12077N6L05S0326-AUG-199908:34:0030.204820-86.65570727.5078N6L06S0126-AUG-199915:10:1930.178808-85.88336821.4080N6L06S0326-AUG-199915:10:1930.178808-85.88336821.4080N6L06S0526-AUG-199918:25:3729.853597-86.16626047.5081N6L06S0726-AUG-199922:01:5529.496432-86.470868204.12083N6L06S1126-AUG-199923:59:3429.310330-86.632468384.12084N6L06S1327-AUG-199901:59:5429.13015-86.789645498.12086N6L06S1727-AUG-199905:46:0928.827078-87.052560767.12087N6L06S1727-AUG-199905:46:0928.827073-86.9873401009.12088N6L06S1927-AUG-199915:53:0028.701253-86.612705499.12089N6L07S1727-AUG-199915:53:0028.701253-86.612705499.12	072	N6L05S13	26-AUG-1999	00:59:02	29.470788	-87.016340	480.	12
074N6L05S0926-AUG-199903:59:4129.725840-86.885920199.12075N6L05S0726-AUG-199905:25:3529.882902-86.811590147.12076N6L05S0526-AUG-199906:53:2730.027678-86.73716599.12077N6L05S0326-AUG-199908:34:0030.204820-86.65570727.5078N6L05S0126-AUG-199910:02:4130.365935-86.57879019.4079N6L06S0126-AUG-199915:10:1930.178808-85.88336821.4080N6L06S0326-AUG-199916:46:5330.018252-86.02142232.5081N6L06S0526-AUG-199910:02:1430.365935-86.16626047.5082N6L06S0726-AUG-199920:09:1029.682588-86.310030100.12083N6L06S0926-AUG-199922:01:5529.496432-86.470868204.12084N6L06S1127-AUG-199901:59:5429.130015-86.789645498.12085N6L06S1327-AUG-199905:96:2228.63437-87.201165994.12086N6L06S1727-AUG-199905:46:0928.827078-87.052560767.12087N6L07S1727-AUG-199911:7:5628.37037-86.9873401009.12089N6L07S1527-AUG-199913:54:3128.557317-86.72570668.12090<	073	N6L05S11	26-AUG-1999	02:43:02	29.608477	-86.945093	263.	12
075N6L05S0726-AUG-199905:25:3529.882902-86.811590147.12076N6L05S0526-AUG-199906:53:2730.027678-86.73716599.12077N6L05S0326-AUG-199906:53:2730.024820-86.6570727.5078N6L06S0126-AUG-199910:02:4130.365935-86.57879019.4079N6L06S0126-AUG-199916:46:5330.018252-86.02142232.5081N6L06S0526-AUG-199918:25:3729.853597-86.16626047.5082N6L06S0726-AUG-199920:09:1029.682588-86.310030100.12083N6L06S0726-AUG-199922:01:5529.910330-86.632468384.12084N6L06S1126-AUG-199923:59:3429.310330-86.632668384.12085N6L06S1527-AUG-199901:59:5429.133015-86.789645498.12086N6L06S1727-AUG-199905:46:0928.827078-87.052560767.12087N6L07S1727-AUG-199911:57:3028.70637-86.9873401009.12090N6L07S1527-AUG-199913:54:3128.557317-86.612705499.12091N6L07S1527-AUG-199913:54:3128.57317-86.612705499.12092N6L07S1327-AUG-199913:54:3128.57317-86.612705499.1209	074	N6L05S09	26-AUG-1999	03:59:41	29.725840	-86.885920	199.	12
076N6L05S0526-AUG-199906:53:2730.027678-86.73716599.12077N6L05S0326-AUG-199908:34:0030.204820-86.65570727.5078N6L05S0126-AUG-199910:02:4130.365935-86.57879019.4079N6L06S0126-AUG-199915:10:1930.178808-85.88336821.4080N6L06S0326-AUG-199916:46:5330.018252-86.02142232.5081N6L06S0526-AUG-199918:25:3729.853597-86.16626047.5082N6L06S0726-AUG-199920:09:1029.682588-86.310030100.12083N6L06S0926-AUG-199922:01:5529.496432-86.470868204.12084N6L06S1126-AUG-199901:59:5429.133015-86.632468384.12085N6L06S1327-AUG-199901:59:5429.133015-86.789645498.12086N6L06S1727-AUG-199905:46:0928.827078-87.02165994.12087N6L06S1727-AUG-199908:08:2128.653437-87.201165994.12088N6L07S1727-AUG-199911:17:5628.370637-86.612705499.12090N6L07S1327-AUG-199915:53:0028.701253-86.612705499.12091N6L07S01327-AUG-199915:53:0028.701253-86.612705317.120	075	N6L05S07	26-AUG-1999	05:25:35	29.882902	-86.811590	147.	12
077N6L05S0326-AUG-199908:34:0030.204820-86.65570727.5078N6L05S0126-AUG-199910:02:4130.365935-86.57879019.4079N6L06S0126-AUG-199915:10:1930.178808-85.88336821.4080N6L06S0326-AUG-199916:46:5330.018252-86.02142232.5081N6L06S0526-AUG-199918:25:3729.853597-86.16626047.5082N6L06S0726-AUG-199920:09:1029.682588-86.310030100.12083N6L06S0926-AUG-199922:01:5529.496432-86.470868204.12084N6L06S1126-AUG-199923:59:3429.310330-86.632468384.12085N6L06S1327-AUG-199901:59:5429.133015-86.789645498.12086N6L06S1527-AUG-199905:46:0928.827078-87.052560767.12087N6L06S1727-AUG-199908:08:2128.653437-87.201165994.12088N6L07S1727-AUG-199911:17:5628.370637-86.9873401009.12090N6L07S1327-AUG-199915:53:0028.701253-86.612705499.12091N6L07S0127-AUG-199918:11:0528.61955-86.422038382.12093N6L07S0727-AUG-199918:11:0528.61955-86.422038382.120	076	N6L05S05	26-AUG-1999	06:53:27	30.027678	-86.737165	99.	12
078N6L05S0126-AUG-199910:02:4130.365935-86.57879019.4079N6L06S0126-AUG-199915:10:1930.178808-85.88336821.4080N6L06S0326-AUG-199916:46:5330.018252-86.02142232.5081N6L06S0526-AUG-199918:25:3729.853597-86.16626047.5082N6L06S0726-AUG-199920:09:1029.682588-86.310030100.12083N6L06S0926-AUG-199922:01:5529.496432-86.470868204.12084N6L06S1126-AUG-199923:59:3429.31030-86.632468384.12085N6L06S1327-AUG-199901:59:5429.133015-86.789645498.12086N6L06S1527-AUG-199905:46:0928.827078-87.052560767.12087N6L06S1727-AUG-199905:46:0928.827078-87.052560767.12088N6L07S1727-AUG-199911:17:5628.370637-86.9873401009.12090N6L07S1327-AUG-199915:53:0028.701253-86.612705499.12091N6L07S1127-AUG-199915:53:0028.701253-86.6245705317.12092N6L07S0727-AUG-199912:11:0528.861955-86.245705317.12093N6L07S0727-AUG-199902:29:4929.010635-86.245705317.12<	077	N6L05S03	26-AUG-1999	08:34:00	30.204820	-86.655707	27.	5
079N6L06S0126-AUG-199915:10:1930.178808-85.88336821.4080N6L06S0326-AUG-199916:46:5330.018252-86.02142232.5081N6L06S0526-AUG-199918:25:3729.853597-86.16626047.5082N6L06S0726-AUG-199920:09:1029.682588-86.310030100.12083N6L06S0926-AUG-199922:01:5529.496432-86.470868204.12084N6L06S1126-AUG-199923:59:3429.310330-86.632468384.12085N6L06S1327-AUG-199901:59:5429.133015-86.789645498.12086N6L06S1527-AUG-199904:01:0528.984517-86.917517610.12087N6L06S1727-AUG-199905:46:0928.827078-87.052560767.12088N6L06S1927-AUG-199911:17:5628.370637-86.9873401009.12089N6L07S1727-AUG-199911:17:5628.370637-86.12705499.12090N6L07S1327-AUG-199915:53:0028.701253-86.612705499.12091N6L07S0127-AUG-199915:53:0028.701253-86.12705499.12092N6L07S0727-AUG-199920:29:4929.010635-86.422038382.12093N6L07S0727-AUG-199920:29:4929.010635-86.245705317.12<	078	N6L05S01	26-AUG-1999	10:02:41	30.365935	-86.578790	19.	4
080N6L06S0326-AUG-199916:46:5330.018252-86.02142232.5081N6L06S0526-AUG-199918:25:3729.853597-86.16626047.5082N6L06S0726-AUG-199920:09:1029.682588-86.310030100.12083N6L06S0926-AUG-199922:01:5529.496432-86.470868204.12084N6L06S1126-AUG-199923:59:3429.310330-86.632468384.12085N6L06S1327-AUG-199901:59:5429.133015-86.789645498.12086N6L06S1527-AUG-199904:01:0528.984517-86.917517610.12087N6L06S1727-AUG-199905:46:0928.827078-87.052560767.12088N6L06S1927-AUG-199908:08:2128.653437-87.201165994.12089N6L07S1727-AUG-199911:17:5628.370637-86.9873401009.12090N6L07S1327-AUG-199915:53:0028.701253-86.612705499.12091N6L07S1327-AUG-199915:53:0028.701253-86.612705499.12092N6L07S0127-AUG-199920:29:4929.010635-86.245705317.12093N6L07S0727-AUG-199920:29:4929.010635-86.245705317.12094N6L07S0727-AUG-199900:13:3829.298890-85.92100894.12 <t< td=""><td>079</td><td>N6L06S01</td><td>26-AUG-1999</td><td>15:10:19</td><td>30.178808</td><td>-85.883368</td><td>21.</td><td>4</td></t<>	079	N6L06S01	26-AUG-1999	15:10:19	30.178808	-85.883368	21.	4
081N6L06S0526-AUG-199918:25:3729.853597-86.16626047.5082N6L06S0726-AUG-199920:09:1029.682588-86.310030100.12083N6L06S0926-AUG-199922:01:5529.496432-86.470868204.12084N6L06S1126-AUG-199923:59:3429.310330-86.632468384.12085N6L06S1327-AUG-199901:59:5429.133015-86.789645498.12086N6L06S1527-AUG-199904:01:0528.984517-86.917517610.12087N6L06S1727-AUG-199905:46:0928.827078-87.052560767.12088N6L06S1927-AUG-199908:08:2128.653437-87.201165994.12089N6L07S1727-AUG-199911:17:5628.370637-86.9873401009.12090N6L07S1527-AUG-199913:54:3128.557317-86.612705499.12091N6L07S1327-AUG-199915:53:0028.701253-86.612705499.12092N6L07S0127-AUG-199920:29:4929.010635-86.245705317.12093N6L07S0727-AUG-199922:48:1629.207753-86.029408200.12094N6L07S0528-AUG-199900:13:3829.298890-85.92100894.12095N6L07S0328-AUG-199902:29:5629.499793-85.69304731.5 <t< td=""><td>080</td><td>N6L06S03</td><td>26-AUG-1999</td><td>16:46:53</td><td>30.018252</td><td>-86.021422</td><td>32.</td><td>5</td></t<>	080	N6L06S03	26-AUG-1999	16:46:53	30.018252	-86.021422	32.	5
082N6L06S0726-AUG-199920:09:1029.682588-86.310030100.12083N6L06S0926-AUG-199922:01:5529.496432-86.470868204.12084N6L06S1126-AUG-199923:59:3429.310330-86.632468384.12085N6L06S1327-AUG-199901:59:5429.133015-86.789645498.12086N6L06S1527-AUG-199904:01:0528.984517-86.917517610.12087N6L06S1727-AUG-199905:46:0928.827078-87.052560767.12088N6L06S1927-AUG-199908:08:2128.653437-87.201165994.12089N6L07S1727-AUG-199911:17:5628.370637-86.9873401009.12090N6L07S1527-AUG-199913:54:3128.557317-86.612705499.12091N6L07S1327-AUG-199915:53:0028.701253-86.612705499.12092N6L07S1127-AUG-199915:53:0028.701253-86.422038382.12093N6L07S0727-AUG-199922:48:1629.207753-86.029408200.12094N6L07S0727-AUG-199902:29:5629.499793-85.69304731.5095N6L07S0328-AUG-199902:29:5629.499793-85.69304731.5096N6L07S0128-AUG-199904:27:1229.686492-85.47868820.4 <tr< td=""><td>081</td><td>N6L06S05</td><td>26-AUG-1999</td><td>18:25:37</td><td>29.853597</td><td>-86.166260</td><td>47.</td><td>5</td></tr<>	081	N6L06S05	26-AUG-1999	18:25:37	29.853597	-86.166260	47.	5
083N6L06S0926-AUG-199922:01:5529.496432-86.470868204.12084N6L06S1126-AUG-199923:59:3429.310330-86.632468384.12085N6L06S1327-AUG-199901:59:5429.133015-86.789645498.12086N6L06S1527-AUG-199904:01:0528.984517-86.917517610.12087N6L06S1727-AUG-199905:46:0928.827078-87.052560767.12088N6L06S1927-AUG-199908:08:2128.653437-87.201165994.12089N6L07S1727-AUG-199911:17:5628.370637-86.9873401009.12090N6L07S1527-AUG-199913:54:3128.557317-86.772570668.12091N6L07S1327-AUG-199915:53:0028.701253-86.612705499.12092N6L07S1127-AUG-199918:11:0528.861955-86.422038382.12093N6L07S0727-AUG-199920:29:4929.010635-86.245705317.12094N6L07S0727-AUG-199902:29:4929.010635-86.029408200.12095N6L07S0328-AUG-199902:29:5629.499793-85.69304731.5097N6L07S0128-AUG-199904:27:1229.686492-85.47765820.4098N6L07S0028-AUG-199905:09:2529.735563-85.42749011.3 <td>082</td> <td>N6L06S07</td> <td>26-AUG-1999</td> <td>20:09:10</td> <td>29.682588</td> <td>-86.310030</td> <td>100.</td> <td>12</td>	082	N6L06S07	26-AUG-1999	20:09:10	29.682588	-86.310030	100.	12
084N6L06S1126-AUG-199923:59:3429.310330-86.632468384.12085N6L06S1327-AUG-199901:59:5429.133015-86.789645498.12086N6L06S1527-AUG-199904:01:0528.984517-86.917517610.12087N6L06S1727-AUG-199905:46:0928.827078-87.052560767.12088N6L06S1927-AUG-199908:08:2128.653437-87.201165994.12089N6L07S1727-AUG-199911:17:5628.370637-86.9873401009.12090N6L07S1527-AUG-199913:54:3128.557317-86.612705499.12091N6L07S1327-AUG-199915:53:0028.701253-86.612705499.12092N6L07S1127-AUG-199918:11:0528.861955-86.422038382.12093N6L07S0927-AUG-199920:29:4929.010635-86.245705317.12094N6L07S0727-AUG-199902:29:4929.010635-86.029408200.12095N6L07S0528-AUG-199902:29:5629.499793-85.69304731.5097N6L07S0128-AUG-199904:27:1229.686492-85.47868820.4098N6L07S0028-AUG-199905:09:2529.735563-85.42749011.3	083	N6L06S09	26-AUG-1999	22:01:55	29.496432	-86.470868	204.	12
085N6L06S1327-AUG-199901:59:5429.133015-86.789645498.12086N6L06S1527-AUG-199904:01:0528.984517-86.917517610.12087N6L06S1727-AUG-199905:46:0928.827078-87.052560767.12088N6L06S1927-AUG-199908:08:2128.653437-87.201165994.12089N6L07S1727-AUG-199911:17:5628.370637-86.9873401009.12090N6L07S1527-AUG-199913:54:3128.557317-86.72570668.12091N6L07S1327-AUG-199915:53:0028.701253-86.612705499.12092N6L07S1127-AUG-199918:11:0528.861955-86.422038382.12093N6L07S0927-AUG-199920:29:4929.010635-86.245705317.12094N6L07S0727-AUG-199902:29:4929.010635-86.029408200.12095N6L07S0528-AUG-199902:29:5629.499793-85.69304731.5097N6L07S0128-AUG-199904:27:1229.686492-85.47868820.4098N6L07S0028-AUG-199905:09:2529.735563-85.42749011.3	084	N6L06S11	26-AUG-1999	23:59:34	29.310330	-86.632468	384.	12
086N6L06S1527-AUG-199904:01:0528.984517-86.917517610.12087N6L06S1727-AUG-199905:46:0928.827078-87.052560767.12088N6L06S1927-AUG-199908:08:2128.653437-87.201165994.12089N6L07S1727-AUG-199911:17:5628.370637-86.9873401009.12090N6L07S1527-AUG-199913:54:3128.557317-86.72570668.12091N6L07S1327-AUG-199915:53:0028.701253-86.612705499.12092N6L07S1127-AUG-199918:11:0528.861955-86.422038382.12093N6L07S0927-AUG-199920:29:4929.010635-86.245705317.12094N6L07S0727-AUG-199922:48:1629.207753-86.029408200.12095N6L07S0528-AUG-199900:13:3829.298890-85.92100894.12096N6L07S0328-AUG-199904:27:1229.686492-85.47868820.4097N6L07S0128-AUG-199905:09:2529.735563-85.42749011.3	085	N6L06S13	27-AUG-1999	01:59:54	29.133015	-86.789645	498.	12
087N6L06S1727-AUG-199905:46:0928.827078-87.052560767.12088N6L06S1927-AUG-199908:08:2128.653437-87.201165994.12089N6L07S1727-AUG-199911:17:5628.370637-86.9873401009.12090N6L07S1527-AUG-199913:54:3128.557317-86.772570668.12091N6L07S1327-AUG-199915:53:0028.701253-86.612705499.12092N6L07S1127-AUG-199918:11:0528.861955-86.422038382.12093N6L07S0927-AUG-199920:29:4929.010635-86.245705317.12094N6L07S0727-AUG-199922:48:1629.207753-86.029408200.12095N6L07S0528-AUG-199900:13:3829.298890-85.92100894.12096N6L07S0328-AUG-199902:29:5629.499793-85.69304731.5097N6L07S0128-AUG-199904:27:1229.686492-85.47868820.4098N6L07S0028-AUG-199905:09:2529.735563-85.42749011.3	086	N6L06S15	27-AUG-1999	04:01:05	28.984517	-86.917517	610.	12
088N6L06S1927-AUG-199908:08:2128.653437-87.201165994.12089N6L07S1727-AUG-199911:17:5628.370637-86.9873401009.12090N6L07S1527-AUG-199913:54:3128.557317-86.772570668.12091N6L07S1327-AUG-199915:53:0028.701253-86.612705499.12092N6L07S1127-AUG-199918:11:0528.861955-86.422038382.12093N6L07S0927-AUG-199920:29:4929.010635-86.245705317.12094N6L07S0727-AUG-199922:48:1629.207753-86.029408200.12095N6L07S0528-AUG-199900:13:3829.298890-85.92100894.12096N6L07S0328-AUG-199902:29:5629.499793-85.69304731.5097N6L07S0128-AUG-199904:27:1229.686492-85.47868820.4098N6L07S0028-AUG-199905:09:2529.735563-85.42749011.3	087	N6L06S17	27-AUG-1999	05:46:09	28.827078	-87.052560	767.	12
089N6L07S1727-AUG-199911:17:5628.370637-86.9873401009.12090N6L07S1527-AUG-199913:54:3128.557317-86.772570668.12091N6L07S1327-AUG-199915:53:0028.701253-86.612705499.12092N6L07S1127-AUG-199918:11:0528.861955-86.422038382.12093N6L07S0927-AUG-199920:29:4929.010635-86.245705317.12094N6L07S0727-AUG-199922:48:1629.207753-86.029408200.12095N6L07S0528-AUG-199900:13:3829.298890-85.92100894.12096N6L07S0328-AUG-199902:29:5629.499793-85.69304731.5097N6L07S0128-AUG-199904:27:1229.686492-85.47868820.4098N6L07S0028-AUG-199905:09:2529.735563-85.42749011.3	088	N6L06S19	27-AUG-1999	08:08:21	28.653437	-87.201165	994.	12
090N6L07S1527-AUG-199913:54:3128.557317-86.772570668.12091N6L07S1327-AUG-199915:53:0028.701253-86.612705499.12092N6L07S1127-AUG-199918:11:0528.861955-86.422038382.12093N6L07S0927-AUG-199920:29:4929.010635-86.245705317.12094N6L07S0727-AUG-199922:48:1629.207753-86.029408200.12095N6L07S0528-AUG-199900:13:3829.298890-85.92100894.12096N6L07S0328-AUG-199902:29:5629.499793-85.69304731.5097N6L07S0128-AUG-199904:27:1229.686492-85.47868820.4098N6L07S0028-AUG-199905:09:2529.735563-85.42749011.3	089	N6L07S17	27-AUG-1999	11:17:56	28.370637	-86.987340	1009.	12
091N6L07S1327-AUG-199915:53:0028.701253-86.612705499.12092N6L07S1127-AUG-199918:11:0528.861955-86.422038382.12093N6L07S0927-AUG-199920:29:4929.010635-86.245705317.12094N6L07S0727-AUG-199922:48:1629.207753-86.029408200.12095N6L07S0528-AUG-199900:13:3829.298890-85.92100894.12096N6L07S0328-AUG-199902:29:5629.499793-85.69304731.5097N6L07S0128-AUG-199904:27:1229.686492-85.47868820.4098N6L07S0028-AUG-199905:09:2529.735563-85.42749011.3	090	N6L07S15	27-AUG-1999	13:54:31	28.557317	-86.772570	668.	12
092N6L07S1127-AUG-199918:11:0528.861955-86.422038382.12093N6L07S0927-AUG-199920:29:4929.010635-86.245705317.12094N6L07S0727-AUG-199922:48:1629.207753-86.029408200.12095N6L07S0528-AUG-199900:13:3829.298890-85.92100894.12096N6L07S0328-AUG-199902:29:5629.499793-85.69304731.5097N6L07S0128-AUG-199904:27:1229.686492-85.47868820.4098N6L07S0028-AUG-199905:09:2529.735563-85.42749011.3	091	N6L07S13	27-AUG-1999	15:53:00	28.701253	-86.612705	499.	12
093N6L07S0927-AUG-199920:29:4929.010635-86.245705317.12094N6L07S0727-AUG-199922:48:1629.207753-86.029408200.12095N6L07S0528-AUG-199900:13:3829.298890-85.92100894.12096N6L07S0328-AUG-199902:29:5629.499793-85.69304731.5097N6L07S0128-AUG-199904:27:1229.686492-85.47868820.4098N6L07S0028-AUG-199905:09:2529.735563-85.42749011.3	092	N6L07S11	27-AUG-1999	18:11:05	28.861955	-86.422038	382.	12
094N6L07S0727-AUG-199922:48:1629.207753-86.029408200.12095N6L07S0528-AUG-199900:13:3829.298890-85.92100894.12096N6L07S0328-AUG-199902:29:5629.499793-85.69304731.5097N6L07S0128-AUG-199904:27:1229.686492-85.47868820.4098N6L07S0028-AUG-199905:09:2529.735563-85.42749011.3	093	N6L07S09	27-AUG-1999	20:29:49	29.010635	-86.245705	317.	12
095N6L07S0528-AUG-199900:13:3829.298890-85.92100894.12096N6L07S0328-AUG-199902:29:5629.499793-85.69304731.5097N6L07S0128-AUG-199904:27:1229.686492-85.47868820.4098N6L07S0028-AUG-199905:09:2529.735563-85.42749011.3	094	N6L07S07	27-AUG-1999	22:48:16	29.207753	-86.029408	200.	12
096N6L07S0328-AUG-199902:29:5629.499793-85.69304731.5097N6L07S0128-AUG-199904:27:1229.686492-85.47868820.4098N6L07S0028-AUG-199905:09:2529.735563-85.42749011.3	095	N6L07S05	28-AUG-1999	00:13:38	29.298890	-85.921008	94.	12
097N6L07S0128-AUG-199904:27:1229.686492-85.47868820.4098N6L07S0028-AUG-199905:09:2529.735563-85.42749011.3	096	N6L07S03	28-AUG-1999	02:29:56	29.499793	-85.693047	31.	5
098 N6L07S00 28-AUG-1999 05:09:25 29.735563 -85.427490 11. 3	097	N6L07S01	28-AUG-1999	04:27:12	29.686492	-85.478688	20.	4
	098	N6L07S00	28-AUG-1999	05:09:25	29.735563	-85.427490	11.	3

Table 3.1.1. Times and locations for CTD stations on cruise N6 (continued).

Station No.	Station Name	Nutrient	Oxygen	Salinity	Bucket Salinity	Pigment	PM*	POC & PON*
00 4	NACODEOO	10	10	2	1			
00A	NOCUREUU	12	12	5	1			
000	N6TEST00	11	11	11	1	2	2	2
001	N6LUISU/	12	12	12	1	3	3	2
002	N6L01S05	12	12		l	3	3	2
003	N6L0IS04	12	12		1	4	3	2
004	N6L01S03	12	12		1	4	3	2
005	N6L01S01	4	4	4	1	3	3	2
006	N6L02S00	4	4	4	1	_	_	_
007	N6L02S01	4	4		1	3	3	2
008	N6L02S03	4	4		1			
009	N6L02S05	12	12		1	3	3	2
010	N6L02S06	12	12		1	4	3	2
011	N6L02S08	12	12		1	4	3	2
012	N6L02S10	12	12	12	1	3	3	2
013	N6L03S10	12	12	12	1	3	3	2
014	N6L03S09	12	12		1	3	3	2
015	N6L03S08	12	12		1	3	3	2
016	N6L03S07	12	12		1	3	3	2
017	N6L03S05	5	5		1			
018	N6L03S03	5	5		1			
019	N6L03S01	4	4		1	3	3	2
020	N6L03S00	4	4	4	ī	5	2	~
020	N6L 04500	4	4	4	1			
021	N6L 04S01	5	5	-	1	2	3	2
022	N6L04501	5	5		1	2	5	2
023	N6L 04505	12	12		1			
024	NGL 04507	12	12		1	3	3	2
025	NGL 04507	12	12			3	3	2
020	NGL 04510	12	12			3	2	2
027	NGL04S10	12	12	10		2	2	2
028	NOL04512	12	12	12		3	2	2
029	NOLIISIS	12	12	12		3	3	2
030	NOLIISIO	12	12			2	2	•
031	N6L11S14	12	12			3	3	2
032	N6L11S12	12	12					-
033	N6L11S10	12	12			3	3	2
034	N6L11S08	12	12		1	4	3	2
035	N6L11S06	9	9		1			6
036	N6L11S04	4	4		1	3	3	2
037	N6L11S02	5	5		1	2	3	2
038	N6L11S01	4	4	4	1			
039	N6L10S01	4	4	4	1			
040	N6L10S03	4	4		1	2	3	2
041	N6L10S05	6	6		1	2	3	2
042	N6L10S07	4	4		1	2	3	2
043	N6L10S09	5	5		1			
044	N6L10S11	12	12		1	3	3	2
045	N6L10S13	11	11			3	3	2
046	N6L10S15	12	12			-	-	_
047	N6L10S17	12	12			3	3	2
048	N6L10S19	12	12			-	-	-
040	N6L10S21	12	12	12		3	3	2
047	110210321	1 4	12	12		5	2	2

Table 3.1.2 Number of bottles sampled by variable on cruise N6. Blank = no sample.

Station	Station	Nutrient	Oxygen	Salinity	Bucket	Pigment	PM*	POC &
No.	Name				Salinity			PON*
050	N6L09S21	11	11	11		3	3	2
051	N6L09S19	12	12					
052	N6L09S17	12	12			3	3	2
053	N6L09S15	12	12					
054	N6L09S13	12	12			3	3	2
055	N6L09S11	11	11					
056	N6L09S09	12	12		1	3	3	2
057	N6L09S07	6	6		1	2	3	2
058	N6L09S05	5	5		1	2	3	2
059	N6L09S03	5	5		1	2	3	2
060	N6L09S01	4	4	4	1			
061	N6L08S01	4	4	4	1			
062	N6L08S03	4	4		1	2	3	2
063	N6L08S05	4	4		1			
064	N6L08S07	12	12		1	3	3	2
065	N6L08S09	12	12			3	3	2
066	N6L08S11	12	12					
067	N6L08S13	12	12			3	3	2
068	N6L08S15	12	12					
069	N6L08S17	12	12	12		3	3	2
070	N6L05S17	12	12	12		3	3	2
071	N6L05S15	12	12					
072	N6L05S13	12	12			3	3	2
073	N6L05S11	12	12			-		
074	N6L05S09	12	12		1	3	3	2
075	N6L05S07	12	12		1	-	-	
076	N6L05S05	12	12		1	3	3	2
077	N6L05S03	5	5		1	-	-	_
078	N6L05S01	4	4	4	1	2	3	2
079	N6L06S01	4	4	4	1	4	3	$\frac{1}{2}$
080	N6L06S03	5	5	•	1		5	2
081	N6L06S05	5	5		1			
082	N6L06S07	12	12		1	3	3	2
083	N6L06S09	12	12		1	3	3	2
084	N6L06S11	12	12			5	5	2
085	N6L06S11	12	12			3	3	2
085	N6L06S15	12	12	1		5	5	2
080	N6L06S13	12	12	I				
087	NGL00517	12	12	12		2	2	2
000	NGL00517	12	12	12		2	2	2
009	NOL07517	12	12	12		3	3	2
090	NGL07812	12	12			4	2	2
002	NGL07911	12	12			4	3	Z
092	NGL07500	12	12					
093	NOLU/509	12	12			2	2	2
094	NOLU/SU/	12	12		1	3	3	2
095	N6L07S05	12	12		1	5	3	2
096	N6L07S03	5	2		1	2	~	~
097	N6L07S01	4	4	-	1	2	3	2
098	N6L07S00	3	3	3	1			

Table 3.1.2 Number of bottles sampled by variable on cruise N6 (continued).

* POC = particulate organic carbon; PON = particulate organic nitrogen; PM = total particulate material

Total

Sequence Number	Station Name	Date (UTC)	Time (UTC)	Latitude (°N)	Longitude (°W)	Water Depth (m)	Probe Type
001	N6L01S06	18-AUG-1999	10.32.15	28 730737	-88 923875	775	Т7
002	N6L01502	18-AUG-1999	14.31.44	29.015817	-89 016952	54	T10
002	N6L02S02	18-AUG-1999	22.43.40	29 538170	-88 635763	30	T10
003	N6L02S02	19-AUG-1999	00.41.30	29 316070	-88 538018	64	T10
005	N6L02S07	19-AUG-1999	03.02.09	29 122648	-88 452140	286	T7
005	N6L02S07	19-AUG-1999	04.53.37	28 955443	-88 376955	200. 764	Т7
007	N6X0203M	19-AUG-1999	08.12.13	29.036410	-88 104570	1112	T7
008	N6L 03S06	19-AUG-1999	15.00.33	29 453058	-87 927990	62	T10
000	N6L03S04	19-AUG-1999	17:01:08	29 677448	-87 971885	40	T10
010	N6L03S02	19-AUG-1999	19.18.24	29 953342	-88 038065	25	T10
011	N6L03502	20-AUG-1999	03.32.37	30 102882	-87 350898	30	T10
012	N6L 04S04	20-AUG 1000	05:28:54	20.856562	-87 3500/8	70. 76	T10
012	N6L 04S06	20-AUG-1999	07.20.16	29.050502	-87.351025	40. 80	T10
013	N6L 04500	20-AUG 1000	00.55.35	29.050095	87 351757	356	T10
014	NGL 04511	20-AUG-1999	11.52.16	29.449095	87 350887	930. 814	T7
015	NOLU4511	20-AUG-1999	14.05.10	29.202023	-07.330007	014. 1011	17 T7
010	NGL 05817	20-AUG-1999	14:05:10	29.153622	-07.201000	000	1/ T7
017	NOLUSSI/	20-AUG-1999	14:42:52	29.054725	-87.203087	999.	1 / T7
019	NOAUSUOMI	20-AUG-1999	15:57:27	28.600143	-07.190792	970.	1 / T7
020	NOLUOS 19	20-AUG-1999	17:10:54	28.053150	-87.201557	1004.	1/ T7
021	NOAUOU/M	20-AUG-1999	18:22:44	28.491198	-8/.11/94/	1004.	1/
022	NOLU/SI/	20-AUG-1999	19:21:17	28.371050	-80.988298	1004.	1/
023	N6X0/08M	20-AUG-1999	20:39:34	28.260988	-86.759383	1004.	17
024	N6L08S17	20-AUG-1999	21:59:10	28.132252	-86.532263	1004.	
025	N6X0809M	20-AUG-1999	23:19:08	28.05/01/	-80.304250	1004.	
026	N6L09S21	21-AUG-1999	00:49:00	28.018963	-86.042978	976.	1/
027	N6X0910M	21-AUG-1999	02:15:59	27.902095	-85.819495	992.	1/
031	N6L10S21	21-AUG-1999	03:43:45	27.768318	-85.610183	1154.	17
033	N6X1011M	21-AUG-1999	04:43:51	27.648197	-85.495332	1008.	17
035	N6L11S17	21-AUG-1999	07:27:55	27.499743	-85.294338	836.	17
036	N6L11S15	21-AUG-1999	09:13:21	27.500162	-85.145767	624.	17
037	N6L11S13	21-AUG-1999	10:55:40	27.500100	-84.986097	391.	T7
038	N6L11S11	21-AUG-1999	12:45:21	27.498930	-84.791440	236.	T7
039	N6L11S09	21-AUG-1999	14:57:08	27.500353	-84.523513	140.	T10
040	N6L11S07	21-AUG-1999	17:31:03	27.499980	-84.159887	74.	T10
041	N6L11S05	21-AUG-1999	20:10:47	27.498963	-83.732930	50.	T10
042	N6L11S03	21-AUG-1999	23:06:33	27.500055	-83.249920	34.	T10
043	N6L10S02	22-AUG-1999	11:06:51	28.564000	-83.195000	17.	T10
044	N6L10S04	22-AUG-1998	13:28:14	28.456167	-83.528000	30.	T10
045	N6L10S06	22-AUG-1999	16:06:53	28.343208	-83.887577	40.	T10
046	N6L10S08	22-AUG-1999	18:51:35	28.228363	-84.240790	48.	T10
047	N6L10S10	22-AUG-1999	21:20:24	28.122778	-84.569115	74.	T10
048	N6L10S12	22-AUG-1999	23:18:02	28.048992	-84.799125	150.	T10
049	N6L10S14	23-AUG-1999	00:57:41	27.992635	-84.976133	248.	T7
050	N6L10S16	23-AUG-1999	02:47:34	27.930763	-85.167107	374.	T7
051	N6L10S18	23-AUG-1999	04:30:48	27.877480	-85.333083	586.	T 7
052	N6L10S20	23-AUG-1999	06:32:34	27.817543	-85.522470	791.	Т7
053	N6L09S20	23-AUG-1999	13:04:42	28.071937	-85.950745	804.	T7
055	N6L09S18	23-AUG-1999	15:06:50	28.157765	-85.811520	588.	T7
056	N6L09S16	23-AUG-1999	16:58:31	28.253977	-85.652872	380.	T7
057	N6L09S14	23-AUG-1999	18:51:16	28.360028	-85.478887	246.	Т7
058	N6L 09S12	23-AUG-1999	20:29:49	28,457780	-85.318993	180.	T10

Sequence Number	Station Name	Date (UTC)	Time (UTC)	Latitude (°N)	Longitude (°W)	Water Depth (m)	Probe Type
059	N6L09S10	23-AUG-1999	22.04.50	28 567043	-85 138688	130	T10
060	N6L09S08	24-AUG-1999	00.10.54	28.367613	-84 882418	52	T10
061	N6L09S06	24 AUG-1999	03.09.55	28 97 1995	-84 476187	34	T10
063	N6L09S04	24 AUG-1999	06.20.13	29 232880	-84 048080	26	T10
064	N6L 09S02	24-AUG-1999	08.49.53	29 427677	-83 728733	16	T10
065	N6L 08S02	24-AUG-1999	17:46:46	29 522655	-84 872518	16	T10
066	N6L08S04	24-AUG-1999	19.55.25	29.327688	-85 128325	28	T10
067	NGL 08504	24-AUG-1999	22.20.53	29.094632	-85 403573	20. 50	T10
068	N6L 08508	25-AUG-1999	00.20.33	29.094052	-85 628025	170	T10
060	N6L 08S10	25-AUG-1999	02:46:58	28.702430	-85 853997	254	T7
009	NGL 08S12	25-AUG-1999	05.21.44	28.710045	-86 104515	374	T7
070	NGL 08512	25-AUG 1000	07.27.35	28.490332	-86 27/125	568	т7
071	NGL 08514	25-AUG-1999	00.48.25	28.332110	86 / 36180	833	т7
072	NGL 05816	25-AUG 1000	09.48.25	20.214340	87 1/0327	826	17 T7
073	NGL05S10	25-AUG-1999	21.39.29	29.101302	-07.149327	620. 604	17 T7
074	NOLU5514	20-AUG-1999	00:01:34	29.374403	-67.030307	249	17 T7
075	NOLUSSIZ	20-AUG-1999	01:40:21	29.334427	-00.9/0903	240. 224	1 / T7
076	NGL05S10	26-AUG-1999	03:25:41	29.070997	-80.912042	170	17 T10
077	NOLUSSU8	20-AUG-1999	04:48:18	29.808423	-00.04/21/	170.	T10 T10
078	NGLUSSUG	20-AUG-1999	00:18:13	29.959827	-80.//388/	124.	T10 T10
079	N6L05S04	20-AUG-1999	07:49:14	30.112803	-80.700002	47.	T 10
080	N6L05S02	26-AUG-1999	09:24:26	30.292765	-80.013012	28.	110 T10
081	N6L06S02	26-AUG-1999	15:57:57	30.097510	-85.952/88	28.	110 T10
082	N6L06S04	26-AUG-1999	17:35:43	29.942333	-86.090112	40.	110
083	N6L06S06	26-AUG-1999	19:22:11	29.760362	-86.247053	68.	110
084	N6L06S08	26-AUG-1999	21:03:48	29.600773	-86.385437	134.	110
085	N6L06S10	26-AUG-1999	22:57:05	29.410407	-86.549257	290.	17
086	N6L06S12	27-AUG-1999	00:58:28	29.226358	-86.708507	442.	17
088	N6L06S14	27-AUG-1999	03:04:43	29.043020	-86.866280	554.	17
090	N6L06S16	27-AUG-1999	05:03:11	28.906617	-86.983492	698.	T7
091	N6L06S18	27-AUG-1999	07:15:57	28.741793	-87.125132	906.	17
092	N6L07S16	27-AUG-1999	13:01:05	28.464108	-86.880533	716.	T7
093	N6L07S14	27-AUG-1999	15:15:46	28.638195	-86.682493	574.	T7
094	N6L07S12	27-AUG-1999	17:13:13	28.784548	-86.513858	420.	T7
095	N6L07S10	27-AUG-1999	19:18:43	28.944783	-86.329412	338.	T7
096	N6L07S08	27-AUG-1999	21:53:19	29.120413	-86.127943	258.	T7
097	N6L07S06	27-AUG-1999	23:36:29	29.251550	-85.979040	158.	T10
098	N6L07S04	28-AUG-1999	01:19:32	29.387523	-85.822905	50.	T10
099	N6L07S02	28-AUG-1999	03:30:17	29.593492	-85.586598	28.	T10

Table 3.1.3 Launch times and locations for XBT drops on cruise N6 (continued).

Launches at missing sequence numbers were failures or deemed bad data during QA/QC or were where the counter erroneously advanced.

3.1.2 Cruise N7

The seventh NEGOM-COH hydrography cruise (N7) was conducted aboard the R/V Gyre during 12-25 November 1999 on two legs. Leg one, with an 18-member science party, was from Gulfport, MS, to St. Petersburg, FL, and consisted of the hydrographic sampling program for lines 1 through 11. Leg two, with a 4-member science party,

consisted of an ADCP run along the 1000-m isobath. Dr. Douglas C. Biggs and Dr. Norman L. Guinasso, Jr., were co-chief scientists. Ninety-nine CTD stations, including one test station, were completed and 84 successful XBT drops were launched. CTD and XBT locations and cruise track are shown in Figure 3.1.2. Station number, date, time, location, water depth, and number of bottles tripped at each CTD station are shown in Table 3.1.4.

The test station was taken approximately at the location of the most seaward CTD station on line 1. The cruise track started at this location and ran along the cross-shelf lines 1 through 11 in order. Due to weather-related time constraints, the 10-m isobath station on line 8 (station 58, N7LA8S01C) was moved to the 10-m isobath between line 7 and 8 and the innermost XBT station on line 8 was eliminated. The water sampling contingent of the science crew disembarked at St. Petersburg on 22 November 2000. Leg two began in St. Petersburg, FL, ran seaward along line 11 and then along the 1000-m isobath to line 1. The cruise ended at the completion of the 1000-m isobath ADCP run. XBTs were dropped along the 1000-m isobath at the ends of each cross-shelf line.

Stations at which bottle samples were taken are summarized in Table 3.1.5. Nutrient and oxygen concentrations were measured from every Niskin bottle depth sampled. Salinity was measured at all bottles only at the most shoreward and most offshore stations and at the test station for a total of 23 stations. Surface bucket salinity samples were taken at 81 stations with possible influence by river water. Pigment measurements were collected at the top bottle, the chlorophyll-maximum as determined by the downcast fluorescence trace, and the low light regime immediately below the chlorophyll-maximum at 59 stations. PM samples were taken from the top, mid-depth "clear water", and bottom bottles at 52 stations. POC and PON were measured from the top and chlorophyll-maximum bottles at 52 stations.

The location, date, time, total water depth, and probe type of the 84 successful XBT drops are listed in Table 3.1.6. ADCP data were collected continuously along the survey track (Section 3.2.3). Two ADCPs were operated. A 38 kHz ADCP was operated throughout the N7 cruise in water depths greater than ~40 m. A broadband 150 kHz ADCP was operated continuously from the beginning of the cruise to the shoreward end of line 10. The broadband ADCP then was replaced with a narrowband 150 kHz ADCP as part of a scheduled comparison between the narrowband and 38 kHz instruments. The broadband ADCP was reinstalled after the ship put into port prior to the final run on line 11 and the 1000-m isobath. Flow-through, near-surface temperature, conductivity, and fluorescence were logged every 2 minutes (Section 3.2.5) during Leg 1. Surface samples were filtered and analyzed for chlorophyll a content to calibrate the flow-through fluorometer at 99 locations.

Five complementary research efforts were accommodated on autumn cruise N7. Thirty ARGOS-tracked drifters were launched for Dr. James M. Price of MMS. Mr. Bisman Nababan, graduate student of Dr. Frank Muller-Karger at USF, and Ms. Robyn Conmy, graduate student of Dr. Paula Coble of USF, conducted irradiance casts and collected dissolved organic carbon data for comparison with SeaWiFS data and operated an underway Safire system to collect dissolved organic material fluorescence and absorbance data. Samples were collected for the flow cytometry program of Dr. Lisa Campbell, TAMU. A 38kHz ADCP, which samples to 500-1000 m, was operated by Dr. Guinasso in cooperation with RD Instruments (RDI) for a comparison with a 150 kHz ADCP, which samples to 100-200m. Further information on these complementary research programs can be obtained from the scientists involved.

16

Figure 3.1.2. Station locations for cruise N7 conducted 12 - 25 November 1999. The cruise ran along lines 1 through 11 in order. The thick line shows the cruise track, which began with at test station near the most seaward station on line 1. XBTs were deployed at the offshore ends of the lines at cruise end.

1 able 5.1.4. Thinks and locations for CTD stations on cruise N/	Table 3.1.4.	Times and locations for CTD stations on cruise N7.
--	--------------	--

Station No.	Station Name	Date (UTC)	Time (UTC)	Latitude (°N)	Longitude (°W)	Depth (m)	No. o Bottle
000	N7TEST00	13-NOV-1999	16:27:47	28.662690	-88.899048	1000.	12
001	N7L01S07	13-NOV-1999	18:28:53	28.662892	-88.900270	1002.	12
002	N7L01S05	13-NOV-1999	20:59:55	28.805990	-88.949197	504.	12
003	N7L01S04	13-NOV-1999	22:24:06	28.893882	-88.973517	207.	12
004	N7L01S03	13-NOV-1999	23:26:04	28.952613	-88,996395	106.	12
005	N7L01S01	14-NOV-1999	00:43:43	29.057675	-89.028092	21.	4
006	N7L02S00	14-NOV-1999	06:23:07	29.800955	-88,754447	15	4
007	N7L02S01	14-NOV-1999	07:33:18	29 661690	-88 691905	19	4
008	N7L02S03	14-NOV-1999	09:43:05	29.393505	-88 573053	58	6
009	N7L02S05	14-NOV-1999	11.13.32	29 22 52 52	-88 498328	110	12
010	N7L02S06	14-NOV-1999	12.13.09	29 172503	-88 473820	190	12
011	N7L02S08	14-NOV-1999	13.34.44	29.045738	-88 417888	493	12
012	N7L 02S10	14-NOV-1999	15:37:46	29.0457812	-88 330007	4 <i>55</i> . 0 5 0	12
012	N7L02510	14 NOV 1000	20.26.42	20.007012	-88.339902	930.	12
013	N7L03510	14-NOV-1999	20.20.42	29.149900	-87.800713	1032.	12
015	N7L03S09	14 NOV 1000	22.09.07	29.210973	-07.079403	455.	12
015	N7L03S08	14-INO V-1999	23.10.00	29.202740	-07.091930	201.	12
010	N7L03S07	15-NOV-1999	00:15:08	29.34/80/	-87.902333	95. 42	12
017	N7L03S03	15 NOV 1000	01:59:40	29.558000	-87.947050	43.	2
010	N7L03S03	15-NOV-1999	05:50:56	29.804208	-87.995943	3 <u>5</u> .	2
019	N7L03S01	15-NOV-1999	06:26:20	30.123222	-88.076577	19.	5
020	N7L03S00	15-NUV-1999	07:13:26	30.154995	-88.08/455	11.	4
021	N/L04500	15-NUV-1999	11:49:56	30.273440	-87.327028	11.	4
022	N/L04S01	15-NOV-1999	12:23:37	30.219653	-87.352223	22.	5
023	N/L04S03	15-NOV-1999	14:10:52	29.978493	-87.352708	30.	5
024	N/L04S05	15-NOV-1999	16:03:13	29.728818	-87.352553	75.	6
025	N/L04S07	15-NOV-1999	17:31:13	29.567372	-87.353410	104.	12
026	N/L04S08	15-NOV-1999	18:26:00	29.530210	-87.352177	177.	12
027	N7L04S10	15-NOV-1999	20:12:59	29.369450	-87.351455	508.	12
028	N7L04S12	15-NOV-1999	22:01:52	29.192213	-87.351393	1014.	12
029	N7L05S17	16-NOV-1999	00:15:35	29.054842	-87.204893	996.	12
030	N7L05S15	16-NOV-1999	03:10:45	29.273787	-87.104755	710.	12
031	N7L05S13	16-NOV-1999	05:49:12	29.465822	-87.013115	485.	12
032	N7L05S11	16-NOV-1999	07:58:38	29.605508	-86.946357	264.	12
033	N7L05S09	16-NOV-1999	09:52:18	29.721987	-86.888860	201.	11
034	N7L05S07	16-NOV-1999	11:51:12	29.879738	-86.812887	148.	11
035	N7L05S05	16-NOV-1999	13:33:11	30.028668	-86.738750	100.	8
036	N7L05S03	16-NOV-1999	15:15:05	30.205975	-86.655687	28.	5
037	N7L05S01	16-NOV-1999	16:35:59	30.366022	-86.579042	19.	4
038	N7L06S01	16-NOV-1999	20:48:08	30.177853	-85.881745	20.	4
039	N7L06S03	16-NOV-1999	22:29:30	30.019093	-86.024020	32.	5
040	N7L06S05	17-NOV-1999	00:01:10	29.852153	-86.168018	47.	6
041	N7L06S07	17-NOV-1999	01:31:46	29.685480	-86.312593	100.	12
042	N7L06S09	17-NOV-1999	03:24:35	29.500403	-86.474382	202.	12
043	N7L06S11	17-NOV-1999	05:26:05	29.314737	-86.633180	384.	11
044	N7L06S13	17-NOV-1999	07:36:32	29.133575	-86.789858	498.	12
045	N7L06S15	17-NOV-1999	09:34:22	28.979363	-86.923813	618.	12
046	N7L06S17	17-NOV-1999	11:37:47	28.826920	-87.053660	768.	12
047	N7L06S19	17-NOV-1999	13:53:40	28.652945	-87.202738	993.	12
048	N7L07S17	17-NOV-1999	17:21:39	28.373960	-86.985653	994.	12
049	N7L07S15	17-NOV-1999	20:04:10	28.556108	-86.769557	663.	12
050	N7L07S13	17-NOV-1999	22:10:06	28.702852	-86.611245	495.	12
051	N71 07011	19 NOV 1000	00.00.55	10 06/117	96 400 470	201	10

Station No.	Station Name	Date (UTC)	Time (UTC)	Latitude (°N)	Longitude (°W)	Depth (m)	No. of Bottles
052	N71 07800	18 NOV 1000	02.04.14	20.017605	96 247490	215	10
052	N7L07S09	10-INOV-1999	02:04:14	29.017003	-60.24/460	515. 100	12
053	N7L07S07	18 NOV 1000	04:15:07	29.207778	-80.029015	199.	12
055	N7L07S03	10-INOV-1999	03:28:40	29.298820	-83.922390	94.	12
055	N7L07S03	18 NOV 1000	07:40:54	29.499033	-83.093933	31. 21	4
050	N7L07S01	18-NOV-1999	10:26:47	29.080902	-85.479073	21.	4
057	N7L0/500	18-NOV-1999	10:30:47	29./3081/	-85.420038	11.	4
058	N7LA0501*	18-NOV-1999	15:20:25	29.510475	-85.101652	14.	4
059	N7L08505	18-NOV-1999	10:44:20	29.381810	-85.000883	25.	5
060	N7L08505	18-NOV-1999	18:56:47	29.206452	-85.273090	37.	4
061	N/L0850/	18-NOV-1999	21:07:20	28.986720	-85.526430	96.	11
062	N/L08S09	18-NOV-1999	22:58:56	28.824778	-85.719092	198.	12
063	N/LU8SII	19-NOV-1999	01:24:35	28.604627	-85.977277	308.	12
064	N/L08S13	19-NOV-1999	03:46:31	28.400655	-86.216298	498.	12
065	N7L08S15	19-NOV-1999	05:20:29	28.294923	-86.340587	675.	12
066	N7L08S17	19-NOV-1999	07:33:34	28.131185	-86.532438	1003.	12
067	N7L09S21	19-NOV-1999	11:39:46	28.018270	-86.044197	978.	12
068	N7L09S19	19-NOV-1999	14:09:02	28.118267	-85.879067	674.	12
069	N7L09S17	19-NOV-1999	16:01:32	28.192272	-85.753760	496.	12
070	N7L09S15	19-NOV-1999	18:15:23	28.309668	-85.563302	303.	12
071	N7L09S13	19-NOV-1999	19:55:53	28.411183	-85.396510	199.	12
072	N7L09S11	19-NOV-1999	21:38:51	28.508007	-85.235188	161.	12
073	N7L09S09	19-NOV-1999	23:20:50	28.627435	-85.045478	98.	12
074	N7L09S07	20-NOV-1999	02:06:28	28.839893	-84.695093	46.	5
075	N7L09S05	20-NOV-1999	05:08:13	29.105590	-84.256910	27.	4
076	N7L09S03	20-NOV-1999	08:14:55	29.341962	-83.861582	19.	4
077	N7L09S01	20-NOV-1999	10:03:39	29.492247	-83.626153	11.	4
078	N7L10S01	20-NOV-1999	16:52:21	28.610233	-83.073583	11.	4
079	N7L10S03	20-NOV-1999	18:37:31	28.518478	-83.332417	19.	4
080	N7L10S05	20-NOV-1999	20:56:26	28.400387	-83.701760	30.	4
081	N7L10S07	20-NOV-1999	23:16:58	28.284727	-84.059953	39.	5
082	N7L10S09	21-NOV-1999	01:35:22	28.176533	-84.403280	59.	6
083	N7L10S11	21-NOV-1999	03:37:03	28.077852	-84.708583	102.	12
084	N7L10S13	21-NOV-1999	04:52:35	28.023395	-84.879220	201.	12
085	N7L10S15	21-NOV-1999	06:26:51	27.961443	-85.074738	314.	12
086	N7L10S17	21-NOV-1999	08:12:22	27.897020	-85.278182	493.	12
087	N7L10S19	21-NOV-1999	09:47:59	27.853492	-85.413820	653.	12
088	N7L10S21	21-NOV-1999	11:51:28	27.783585	-85.632173	986.	12
089	N7L11S18	21-NOV-1999	15:02:43	27,499818	-85.394512	997	12
090	N7L11S16	21-NOV-1999	16:48:04	27.500225	-85.225898	751.	12
091	N7L11S14	21-NOV-1999	18:40:35	27.500603	-85.075908	496.	12
092	N7L11S12	21-NOV-1999	20:17:46	27.500210	-84.888698	296.	12
093	N7L11S10	21-NOV-1999	21:55:30	27.501265	-84.681113	200.	12
094	N7L11S08	22-NOV-1999	00:12:53	27.500410	-84.342758	100.	12
095	N7L11S06	22-NOV-1999	02:46:09	27,499500	-83,943988	58	5
096	N7L11S04	22-NOV-1999	05:40:45	27.500968	-83,498420	42	4
097	N7L11S02	22-NOV-1999	08:49.47	27.500712	-83.022935	21	4
098	N7L11S01	22-NOV-1999	10:09:04	27,497340	-82.854247	13.	4
							•

Table 3.1.4. Times and locations for CTD stations on cruise N7 (continued).

* N7LA8S01C (station 58) is on the 10-m isobath between lines 7 and 8, not on line 8 as usual for N7L08S01C.
| Station
No. | Station
Name | Nutrient | Oxygen | Salinity | Bucket
Salinity | Pigment | РМ | POC &
PON |
|----------------|-----------------|----------|--------|----------|--------------------|---------|----|---------------|
| 000 | N7TEST00 | 12 | 12 | 12 | | | | |
| 001 | N7L01S07 | 12 | 12 | 12 | | 3 | 3 | 2 |
| 002 | N7L01S05 | 12 | 12 | 12 | 1 | 3 | 3 | 2 |
| 003 | N7L01S04 | 12 | 12 | | 1 | 3 | 3 | $\frac{2}{2}$ |
| 004 | N7L01S03 | 12 | 12 | | 1 | 3 | 3 | 1 |
| 005 | N7L01S01 | 4 | 4 | 4 | 1 | 2 | 5 | 1 |
| 006 | N7L 02S00 | 4 | 4 | 4 | 1 | 2 | | |
| 007 | N7L 02S01 | 4 | 4 | т | 1 | 3 | 3 | 2 |
| 008 | N7L 02S03 | 6 | 6 | | 1 | 5 | 5 | 2 |
| 009 | N7L 02S05 | 12 | 12 | | 1 | | | |
| 010 | N7L 02S05 | 12 | 12 | | 1 | 3 | | |
| 011 | N7L 02508 | 12 | 12 | | 1 | 3 | 3 | 2 |
| 012 | N7L02500 | 12 | 12 | 12 | 1 | 3 | 3 | 2 |
| 012 | N7L02S10 | 12 | 12 | 12 | 1 | 3 | 3 | $\frac{2}{2}$ |
| 013 | N7L03S10 | 12 | 12 | 12 | 1 | 3 | 3 | $\frac{2}{2}$ |
| 015 | N7L03S09 | 12 | 12 | | 1 | 3 | 3 | 2 |
| 015 | N7L03S03 | 12 | 12 | | 1 | 3 | 2 | 2 |
| 010 | N7L03S07 | 12 | 12 | | 1 | 3 | 3 | Z |
| 017 | N7L03S03 | 5 | 5 | | 1 | | | |
| 010 | N7L03S03 | 5 | 5 | | 1 | 3 | 2 | 2 |
| 019 | N7L03S01 | 3 | 3 | 4 | 1 | 3 | 3 | Z |
| 020 | N7L03500 | 4 | 4 | 4 | 1 | | | |
| 021 | N7L04500 | 4 | 4 | 4 | 1 | 2 | 2 | 2 |
| 022 | N7L04501 | 5 | 5 | | 1 | 3 | 3 | 2 |
| 023 | N7L04505 | 5 | 5 | | 1 | | | |
| 024 | N7L04S05 | 0 | 0 | | 1 | 5 | 2 | 2 |
| 023 | N7L04507 | 12 | 12 | | 1 | 5 | 3 | 2 |
| 026 | N/L04508 | 12 | 12 | | l | 3 | 3 | 2 |
| 027 | N/L04S10 | 12 | 12 | 10 | l | 3 | 3 | 2 |
| 028 | N7L04S12 | 12 | 12 | 12 | l | 3 | 3 | 2 |
| 029 | N/L0551/ | 12 | 12 | 12 | l | 3 | 3 | 2 |
| 030 | N/L05515 | 12 | 12 | | I | | • | |
| 031 | N/L05S13 | 12 | 12 | | | 4 | 3 | 2 |
| 032 | N7L05S11 | 12 | 12 | | | | | |
| 033 | N/L05S09 | | 12 | | l | 3 | | |
| 034 | N7L05S07 | 11 | 11 | | 1 | _ | | |
| 035 | N7L05S05 | 8 | 8 | | 1 | 3 | | |
| 036 | N7L05S03 | 5 | 5 | | 1 | • | | |
| 037 | N7L05S01 | 4 | 4 | 4 | 1 | 2 | 3 | 2 |
| 038 | N7L06S01 | 4 | 4 | 4 | 1 | 1 | 3 | 1 |
| 039 | N7L06S03 | 5 | 5 | | 1 | | | |
| 040 | N7L06S05 | 6 | 6 | | 1 | | | |
| 041 | N7L06S07 | 12 | 12 | | 1 | 1 | 3 | 1 |
| 042 | N7L06S09 | 12 | 12 | | 1 | 3 | 3 | 2 |
| 043 | N7L06S11 | 11 | 11 | | 1 | | | |
| 044 | N7L06S13 | 12 | 12 | | | 3 | 3 | 2 |
| 045 | N7L06S15 | 12 | 12 | | | | | |
| 046 | N7L06S17 | 12 | 12 | | | | | |
| 047 | N7L06S19 | 12 | 12 | 12 | | 3 | 3 | 2 |
| 048 | N7L07S17 | 12 | 12 | 12 | 1 | 3 | 3 | 2 |
| 049 | N7L07S15 | 12 | 12 | | 1 | | | |
| 050 | N7L07S13 | 12 | 12 | | 1 | 3 | 3 | 2 |
| 051 | N7L07S11 | 12 | 12 | | 1 | | | |

Table 3.1.5 Number of bottles sampled by variable on cruise N7. Blank = no sample.

Station No.	Station Name	Nutrient	Oxygen	Salinity	Bucket Salinity	Pigment	РМ	POC & PON
052	N7L07S09	12	12		1			
053	N7L07S07	12	12		1	3	3	2
054	N7L07S05	12	12		1	3	3	2
055	N7L07S03	4	4		1	5	5	L
056	N7L07S01	4	4		1	3		
057	N7L07S00	4	4	4	1	•		
058	N7L08S01	4	4	4	1			
059	N7L08S03	5	5	•	1	3	3	2
060	N7L08S05	4	4		1	5	2	4
061	N7L08S07	11	12		Î	3	3	2
062	N7L08S09	12	12		1	3	3	$\frac{1}{2}$
063	N7L 08S11	12	12		1	5	5	2
064	N7L 08S13	12	12		1	3	3	2
065	N7L08S15	12	12		1	5	5	2
066	N7L 08S17	12	12	12	1	3	3	2
067	N7L09S21	12	12	12		3	3	2
068	N7L09521	12	12	12		5	5	2
000	N7L09517	12	12			3	3	2
009	N7L09317	12	12		1	3	5	Z
070	N7L 00S13	12	12		1	3	3	2
072	N7L09313	12	12		1	3	5	Z
072	N7L09311	12	12		1	2	2	r
073	N7L09509	12	12		1	2	2	2
074	N7L09507	3	3		1	2	2	2
075	N7L09503	4	4		1	1	2	1
070	IN/L09503	4	4	4	1	3	3	2
0770	N7L 10501	4	4	4	1			
078	N/L10501	4	4	4	1	2	2	2
0/9	N/L10803	4	4		1	2	3	2
080	N/L10505	4	4		1	2	3	2
081	N/L10S0/	5	5		l	2	3	2
082	N/L10S09	6	6		l			-
083	N7L10S11	12	12		1	3	3	2
084	N7L10S13	12	12		1	3	3	2
085	N7L10S15	12	12					-
086	N7L10S17	12	12			3	3	2
087	N7L10S19	12	12					
088	N7L10S21	12	12	12		3	3	2
089	N7L11S18	12	12	12		3	3	2
090	N7L11S16	12	12			_	_	_
091	N7L11S14	12	12		1	3	3	2
092	N7L11S12	12	12		1	c.	_	_
093	N7L11S10	12	12		1	3	3	2
094	N7L11S08	12	12		1	3	3	2
095	N7L11S06	5	5		1			
096	N7L11S04	4	4		1	3		
097	N7L11S02	4	4		1	3		
098	N7L11S01	4	4	4	1			
	Total	911	913	188	81	168	156	100

Table 3.1.5 Number of bottles sampled by variable on cruise N7 (continued).

Sequence Number	Station Name	Date (UTC)	Time (UTC)	Latitude (°N)	Longitude (°W)	Water Depth (m)	Probe Type
001	N7L01S06	13-NOV-1999	20.19.17	28 732722	-88 926232	734	Т7
002	N7L01502	14 NOV 1999	00.10.27	20.732722	-80 018363	55	T10
002	N7L01502	14-NOV-1999	08.30.46	29.015290	-88 635680	33.	T10
003	N7L02S02	14 NOV 1000	10.30.24	29.336743	-88 537800	52. 64	T10
004	N7L02S04	14 NOV 1000	12.56.21	29.310217	88 450052	204	T7
005	N7L02507	14-NOV 1000	12.50.21	29.122930	88 376845	294. 764	17 T7
000	N7L02S05	14-INO V-1999	14.33.30	20.955520	87 077575	60	T10
007	N7L03S00	15 NOV 1000	03:00:10	29.459005	87.927323	40	T10
008	N7L03S04	15-NOV-1999	05.00.10	29.063473	-07.974040	40. 24	T10
009	N7L03S02	15 NOV 1000	12.16.16	29.934318	-00.030900	24. 20	T10 T10
010	N7L04502	15-NOV-1999	15:10:10	30.102338	-87.330373	30. 46	T10 T10
011	N/L04504	15-NUV-1999	15:07:30	29.850/85	-87.330797	40.	T 10 T10
013	N7L04S06	15-NOV-1999	10:55:05	29.037300	-87.349833	82.	110
014	N/L04S09	15-NOV-1999	19:37:18	29.449278	-87.350915	301.	1/
015	N7L04S11	15-NOV-1999	21:35:00	29.253795	-87.349912	838.	1/
016	N7L05S16	16-NOV-1999	02:18:48	29.181378	-87.148928	826.	1/
017	N7L05S14	16-NOV-1999	04:58:19	29.377815	-87.056148	694.	17
018	N7L05S12	16-NOV-1999	07:14:28	29.534165	-86.978822	345.	17
019	N7L05S10	16-NOV-1999	09:13:08	29.671335	-86.913023	220.	T10
020	N7L05S08	16-NOV-1999	11:10:08	29.808158	-86.846675	166.	T10
021	N7L05S06	16-NOV-1999	12:55:38	29.960223	-86.774277	124.	T10
022	N7L05S04	16-NOV-1999	14:30:16	30.111228	-86.700307	48.	T10
023	N7L05S02	16-NOV-1999	15:57:07	30.283368	-86.617747	28.	T10
024	N7L06S02	16-NOV-1999	21:47:28	30.098900	-85.954642	30.	T10
025	N7L06S04	16-NOV-1999	23:14:22	29.941690	-86.089383	40.	T10
026	N7L06S06	17-NOV-1999	00:54:08	29.758407	-86.247870	68.	T10
027	N7L06S08	17-NOV-1999	02:30:55	29.598487	-86.381692	134.	T10
028	N7L06S10	17-NOV-1999	04:35:30	29.407623	-86.544470	284.	T7
029	N7L06S12	17-NOV-1999	06:45:49	29.225935	-86.708222	436.	Τ7
030	N7L06S14	17-NOV-1999	08:54:56	29.047407	-86.859042	560.	T7
033	N7L06S16	17-NOV-1999	10:57:35	28.892910	-86.986937	694.	T7
034	N7L06S18	17-NOV-1999	13:04:45	28.740768	-87.120828	835.	T7
036	N7L07S16	17-NOV-1999	19:04:42	28.469790	-86.873387	716.	T7
039	N7L07S14	17-NOV-1999	21:37:31	28.645062	-86.676505	584.	T7
040	N7L07S12	17-NOV-1999	23:24:02	28.784732	-86.514657	428.	T7
042	N7L07S10	18-NOV-1999	01:25:20	28.949132	-86.326033	346.	T7
044	N7L07S08	18-NOV-1999	03:25:17	29.122703	-86.125283	258.	T 7
045	N7L07S06	18-NOV-1999	05:03:16	29.259515	-85.966938	146.	T7
046	N7L07S04	18-NOV-1999	06:32:07	29.387545	-85.822733	49.	T10
047	N7L07S02	18-NOV-1999	08:46:58	29.591703	-85.585798	28.	T10
048	N7L08S04	18-NOV-1999	17:37:25	29.327398	-85.128333	26.	T10
049	N7L08S06	18-NOV-1999	20:05.15	29.093402	-85.402383	50.	T10
050	N7L.08508	18-NOV-1999	22:12:31	28.901622	-85.626098	170.	T10
051	N7L 08S10	19-NOV-1999	00:24:55	28,707173	-85.856067	258	T7
052	N7L 08S12	19-NOV-1999	02.48.54	28 497252	-86 103677	375	Ť7
052	N7L 08S14	19.NOV-1900	04.47.30	28 349655	-86 277893	579	T7
056	N7L08S16	19-NOV-1999	06:50:53	28.197165	-86.453415	819.	T7

T7

T7

T7

T7

T10

808.

578.

332.

246.

178.

Table 3.1.6 Launch times and locations for XBT drops on cruise N7.

057

059

060

061

062

N7L09S20

N7L09S18

N7L09S16

N7L09S14

N7L09S12

19-NOV-1999

19-NOV-1999

19-NOV-1999

19-NOV-1999 19-NOV-1999 13:27:00

15:29:01

17:31:29

19:16:55

20:58:57

28.073352

28.157055

28.253847

28.360322

28.458023

-85.950960

-85.809555

-85.652530

-85.478943

-85.319400

Number Name (UTC) (UTC) (°W) Depth	Туре
063 N7L09S10 19-NOV-1999 22:37:43 28.567215 -85.139172 129.	T10
064 N7L09S08 20-NOV-1999 00:40:07 28.723627 -84.882417 103.	T10
065 N7L09S06 20-NOV-1999 03:34:40 28.969807 -84.475163 36.	T10
066 N7L09S04 20-NOV-1999 06:49:31 29.230257 -84.051957 26.	T10
067 N7L09S02 20-NOV-1999 09:16:16 29.426018 -83.727403 17.	T10
068 N7L10S02 20-NOV-1999 17:41:30 28.563987 -83.195318 17.	T10
069 N7L10S04 20-NOV-1999 19:52:39 28.456228 -83.527585 26.	T10
070 N7L10S06 20-NOV-1999 22:08:34 28.342570 -83.881702 36.	T10
071 N7L10S08 21-NOV-1999 00:32:07 28.227327 -84.239238 50.	T10
072 N7L10S10 21-NOV-1999 02:44:52 28.122608 -84.568510 74.	T10
073 N7L10S12 21-NOV-1999 04:29:15 28.040252 -84.823017 164.	T10
074 N7L10S14 21-NOV-1999 05:45:48 27.992237 -84.976698 248.	T7
076 N7L10S16 21-NOV-1999 07:30:01 27.927988 -85.174098 402.	T7
077 N7L10S18 21-NOV-1999 09:09:12 27.877543 -85.333142 552.	T7
078 N7L10S20 21-NOV-1999 11:08:02 27.816452 -85.524130 794.	T7
079 N7L11S17 21-NOV-1999 16:20:31 27.500395 -85.294075 835.	T7
080 N7L11S15 21-NOV-1999 18:05:46 27.500225 -85.146202 634.	T7
081 N7L11S13 21-NOV-1999 19:50:43 27.498678 -84.957468 394.	T7
082 N7L11S11 21-NOV-1999 21:13:39 27.499958 -84.792195 236.	T7
084 N7L11S09 21-NOV-1999 23:12:08 27.500340 -84.516025 140.	T10
086 N7L11S07 22-NOV-1999 01:30:39 27.499808 -84.156487 72.	T10
087 N7L11S05 22-NOV-1999 04:12:06 27.500337 -83.733435 50.	T 10
088 N7L11S03 22-NOV-1999 07:21:59 27.490553 -83.251368 34.	T10
089 N7L11S18 24-NOV-1999 21:48:45 27.499648 -85.398903 996.	T7
090 N7L10S21 25-NOV-1999 00:07:57 27.786322 -85.634550 1000.	T7
096 N7L08S17 25-NOV-1999 05:38:29 28.131430 -86.532773 1005.	T7
097 N7L07S17 25-NOV-1999 08:40:06 28.371037 -86.988458 1004.	T7
098 N7L06S19 25-NOV-1999 10:56:49 28.647342 -87.195407 1000.	T7
099 N7L05S17 25-NOV-1999 13:35:45 29.054165 -87.205153 997.	T7
100 N7L04S12 25-NOV-1999 14:51:48 29.202367 -87.365348 1037.	T7
101 N7L03S10 25-NOV-1999 17:29:45 29.153342 -87.861518 998	T7
102 N7L02S10 25-NOV-1999 20:31:55 28.869717 -88.337332 997	T7
103 N7L01S07 25-NOV-1999 23:54:26 28.663202 -88.899552 997.	T7

Table 3.1.6 Launch times and locations for XBT drops on cruise N7 (continued).

Launches at missing sequence numbers were failures or deemed bad data during QA/QC or were where the counter erroneously advanced.

3.1.3 <u>Cruise N8</u>

The eighth NEGOM-COH hydrography cruise (N8) was conducted aboard the *R/V Gyre* during 15 - 26 April 2000. It was staged out of St. Petersburg, FL, and returned to Pascagoula, MS. Dr. Douglas C. Biggs and Dr. Norman L. Guinasso, Jr., were co-chief scientists. There were 102 CTD stations, including a test station, and 78 successful XBT launches. CTD and XBT locations and the cruise track are shown in Figure 3.1.3.

The cruise track began with the innermost station on line 11 and ran along lines 11 through 3, then 1, and 2. The test station was made after sampling on the most seaward

Figure 3.1.3. Station locations for cruise N8 conducted 15 - 26 April 2000. The cruise ran in order along lines 11, 10, 9, 8, 7, 6, 5, 4, 3, 1, and 2. The thick line shows the cruise track, which began at the location of the innermost station on line 11.

station on line 11 was completed. Three non-standard CTD and three non-standard XBT stations were added to extend line 2 approximately 45 km through a cold core eddy located over the upper slope. The station number, date, time, location, water depth, and number of bottles tripped at each CTD station are shown in Table 3.1.7.

Stations at which bottle samples were taken are summarized in Table 3.1.8. Nutrients and oxygen were measured from every Niskin bottle depth sampled. Duplicate sets of nutrient samples were taken and frozen at stations 32 and 33. Salinity was measured from all bottles at the most shoreward, most offshore, and test stations and from selected bottles at five diagnostic stations for a total of 28 stations. Pigment measurements were collected from the top bottle, the chlorophyll-maximum as determined by the downcast fluorescence trace, and the low light regime immediately below the chlorophyll-maximum at 60 stations. PM samples were taken from the top, mid-depth "clear water", and bottom bottles at 59 stations. POC and PON were measured from the top and chlorophyll-maximum bottles at 60 stations. Surface bucket salinity samples were taken at 68 CTD/XBT stations over the inner shelf to better define the freshwater gradients that might be associated with spring river discharge.

The location, date, time, total water depth, and probe type of the 78 successful XBT drops are listed in Table 3.1.9. Two ADCPs (38 kHz and 150 kHz) ran continuously along the track. Flow-through, near-surface temperature, conductivity, and fluorescence were logged every 2 minutes. Surface samples were filtered and analyzed at 99 locations for chlorophyll *a* content to calibrate the flow-through fluorescence.

Ten complementary research efforts were accommodated on spring cruise N8. Ryan Thomas, graduate student in geological oceanography at TAMU, and Scott Birkhead, geology undergraduate student at TAMU, took 32 gravity cores and 40 shipek-type grab samples (shallow water/sandy bottom) at selected stations after completion of CTD work. NASA conducted over-flights during the cruise to make airborne bio-optical measurements using Lidar and other instrumentation for Dr. Bob Swift (NASA) and Dr. Greg Mitchell (University of California-San Diego). As part of this effort, Lisa Vanderbloemen, graduate student of Dr. Frank Muller-Karger (USF), operated a Shipboard Laser Fluorometer and a Chelsea Fast Repetition Rate Fluorometer, which both sampled the flow-through surface water stream. She and Bisman Nababan, another USF graduate student of Dr. Muller-Karger, and Dr. Carlos del Castillo and Antoya Stovall-Leonard, post-doc and graduate student of Dr. Paula Coble (USF), conducted irradiance casts and collected dissolved organic carbon data for comparison with SeaWiFS data and operated an underway Safire system to collect dissolved organic material fluorescence and absorbance data. Samples were collected for the flow cytometry program of Dr. Lisa Campbell, TAMU. Surface whole phytoplankton samples were collected at daytime stations for Yesim Buyukates, graduate student of Dr. Daniel L. Roelke of TAMU, for her study of trigger mechanisms for blooms of possible harmful algae species. An otter trawl was pulled in three different locations on the west Florida shelf in water depths of 20 m, 25 m, and 55 m for Dr. Gil Rowe, TAMU, to provide shallow-water collections for comparison with deep water samples being collected as part of the MMS-sponsored Deep Gulf of Mexico Benthic study. Secchi disk depth readings were taken at stations during daylight. The 38kHz ADCP again was operated by Dr. Guinasso in cooperation with RDI for a comparison with the 150 kHz ADCP. Dr. Chad Fox, postdoc of Dr. Robert Leben of the Colorado Center for Astrodynamics Research, University of Colorado, participated as part of TAMU-CCAR cooperative analyses of ship and satellite altimeter data. Further information on these complementary research programs can be obtained from the scientists involved.

Station No.	Station Name	Date (UTC)	Time (UTC)	Latitude (°N)	Longitude (°W)	Depth (m)	No. of Bottles
001	N8L11S01	15-APR-2000	15:22:36	27.498613	-82.852110	11.	4
002	N8L11S02	15-APR-2000	16:40:21	27.501405	-83.022138	20.	4
003	N8L11S04	15-APR-2000	19:45:46	27.501668	-83,496660	42.	5
004	N8L11S06	15-APR-2000	22:46:43	27.501687	-83.944585	56.	5
005	N8L11S08	16-APR-2000	01.22.53	27 499530	-84 344237	101	12
006	N8I 11510	16-APR-2000	04.03.33	27 500972	-84 682873	200	12
007	N8I 11512	16-APR-2000	06:09:13	27 500233	-84 890083	297	12
007	N8I 11S14	16-APR-2000	08.18.54	27.500299	-85 076398	493	12
000	N8I 11516	16-APR-2000	10.06.41	27 501248	-85 225688	479	11
010	N8I 11518	16-APR-2000	12:46:53	27.301210	-85 397088	1006	12
000	N8TEST18	16-APR-2000	12:40:55	27.491665	-85 401368	1137	12
000	N8I 10S21	16-APR-2000	18.25.05	27.491005	-85 630590	979	12
012	N81 10510	16.APR.2000	21.41.33	27.765628	-85 412593	654	12
012	N8L 10517	16 APR 2000	21.41.33	27.051750	-85 276540	/80	10
013	NEL 10517	17 ADD 2000	02.25.10	27.057527	-85 073483	31/	11
014	NOL 10513	17-APR-2000	02.25.10	27.900322	-05.075405 94.979122	108	12
015	NOLIUSIS	17-APR-2000	04:33:33	28.023037	-04.0/0132	190.	12
010	NOLIUSII NOLIOSOO	17-APK-2000	00:33:19	28.077020	-04./00433	102. 50	12
017	N8L 10509	17-APK-2000	11.27.24	28.173070	-84.402100	30. 27	0
018	N8L10507	17-APK-2000	11:57:24	28.280303	-84.037472	57. 20	4
019	N8L10505	17-APR-2000	13:54:46	28.400088	-83.700188	30. 10	4
020	N8L10503	17-APR-2000	10:10:12	28.522152	-83.330008	19.	4
021	N8L10S01	17-APR-2000	18:09:56	28.608013	-83.072348	10.	4
022	N8L09S01	17-APR-2000	01:19:21	29.491948	-83.625337	10.	4
023	N8L09S03	18-APR-2000	03:19:22	29.343265	-83.859850	18.	4
024	N8L09S05	18-APR-2000	07:36:35	29.103283	-84.254505	27.	4
025	N8L09S07	18-APR-2000	11:05:28	28.835675	-84.695327	45.	5
026	N8L09S09	18-APR-2000	14:06:40	28.623618	-85.045740	98.	12
027	N8L09S11	18-APR-2000	16:29:54	28.502810	-85.234925	164.	12
028	N8L09S13	18-APR-2000	18:28:00	28.410238	-85.395443	199.	12
029	N8L09S15	18-APR-2000	20:29:44	28.308412	-85.560697	304.	12
030	N8L09S17	18-APR-2000	22:47:14	28.191940	-85.754313	495.	12
031	N8L09S19	19-APR-2000	00:51:03	28.118712	-85.875748	666.	12
032	N8L09S21	19-APR-2000	03:36:04	28.019367	-86.041962	971.	12
033	N8L08S17	19-APR-2000	08:31:14	28.132555	-86.532390	1003.	12
034	N8L08S15	19-APR-2000	12:00:17	28.293995	-86.341747	678.	12
035	N8L08S13	19-APR-2000	14:32:20	28.401742	-86.216342	497.	12
036	N8L08S11	19-APR-2000	17:58:17	28.608558	-85.977438	306.	12
037	N8L08S09	19-APR-2000	21:00:51	28.825823	-85.719617	197.	12
038	N8L08S07	19-APR-2000	23:19:46	28.987452	-85.528048	104.	12
039	N8L08S05	20-APR-2000	02:32:00	29.204387	-85.272990	37.	4
040	N8L08S03	20-APR-2000	04:43:20	29.403162	-84.995498	21.	4
041	N8L08S01	20-APR-2000	06:48:53	29.600187	-84.777725	12.	4
042	N8L07S00	20-APR-2000	12:48:41	29.738027	-85.428767	11.	4
043	N8L07S01	20-APR-2000	13:27:24	29.687317	-85.479662	19.	4
044	N8L07S03	20-APR-2000	17:12:22	29.500362	-85.694900	30.	4
045	N8L07S05	20-APR-2000	19:20:45	29.297947	-85.921085	94.	12
046	N8L07S07	20-APR-2000	20:45:14	29.208422	-86.028608	198.	12
047	N8L07S09	20-APR-2000	23:18:42	29.017553	-86.246555	313.	12
048	N8L07S11	21-APR-2000	01:38:34	28.862890	-86.423432	378.	11
049	N8L07S13	21-APR-2000	04:19:12	28.701672	-86.611742	495.	12
050	N8L07S15	21-APR-2000	07:05:32	28.558112	-86.770803	662.	12
051	N8L07S17	21-APR-2000	10:37:49	28.371175	-86.987520	1008.	12

Station No.	Station Name	Date (UTC)	Time (UTC)	Latitude (°N)	Longitude (°W)	Depth (m)	No. of Bottles
052	N8L06S19	21-APR-2000	14:52.14	28.651430	-87.203368	999	12
053	N8L06S17	21-APR-2000	18:41.18	28.823227	-87 049807	766	12
054	N8L06S15	21-APR-2000	21.30.07	28.983963	-86 914385	605	12
055	N8L06S13	21 APR-2000	23.52.43	20.202202	-86 786252	/03	12
055	N8L06S11	27-APR-2000	02:30:55	20 313750	-86.631267	380	12
057	N8L06S09	22-AI R-2000	02:30:35	29.515750	-86.051207	204	12
058	N81 06507	22-AI R-2000	09.17.50	29.499003	-80.470150	204.	12
058	N81 06505	22-AFR-2000	10.22.17	29.004000	-60.313012	99. 16	12
059	N8L00503	22-AFR-2000	10.33.17	29.655705	-60.107555	40.	0
061	NOLUUSUS	22-AFR-2000	12.21.25	30.019443	-00.023092	50. 10	4
062	NOLUUSUI	22-APR-2000	15:50:58	30.179972	-03.002000	19.	4
062	NOLUSSUI	22-APR-2000	18:27:43	30.364127	-86.5/62/8	18.	4
063	N8L05S03	22-APR-2000	19:54:05	30.201700	-86.650568	27.	4
064	N8L05505	22-APR-2000	21:27:13	30.027203	-86.739188	97.	12
065	N8L05S07	22-APR-2000	23:05:27	29.880793	-86.811628	147.	12
066	N8L05S09	23-APR-2000	00:49:12	29.722933	-86.885463	197.	12
067	N8L05S11	23-APR-2000	02:20:52	29.603747	-86.943705	266.	12
068	N8L05S13	23-APR-2000	04:04:07	29.465820	-87.012897	497.	12
069	N8L05S15	23-APR-2000	06:29:05	29.273863	-87.102320	713.	12
070	N8L05S17	23-APR-2000	09:06:12	29.053720	-87.203862	995.	12
071	N8L04S12	23-APR-2000	12:11:16	29.193778	-87.353577	1021.	12
072	N8L04S10	23-APR-2000	15:05:29	29.371743	-87.351477	497.	11
073	N8L04S08	23-APR-2000	17:13:06	29.532667	-87.349963	211.	12
074	N8L04S07	23-APR-2000	18:15:42	29.569273	-87.350700	108.	12
075	N8L04S05	23-APR-2000	20:14:26	29.730082	-87.349865	77.	12
076	N8L04S03	23-APR-2000	22:18:19	29.980355	-87.350057	26.	4
077	N8L04S01	23-APR-2000	23:59:38	30.222798	-87.349028	18.	4
078	N8L04S00	24-APR-2000	00:34:09	30.272813	-87.325970	9.	4
079	N8L03S00	24-APR-2000	05:55:28	30.156275	-88.091010	11.	4
080	N8L03S01	24-APR-2000	06:53:14	30.106373	-88.075713	19.	5
081	N8L03S03	24-APR-2000	09:32:13	29.803070	-87.996015	34.	5
082	N8L03S05	24-APR-2000	11:35:21	29.557057	-87.946453	42	5
083	N8L03S07	24-APR-2000	13:29:01	29.346312	-87.900237	95	12
084	N8L03S08	24-APR-2000	14.27.13	29 281675	-87 888892	211	12
085	N8L03S09	24-APR-2000	15:47:43	29 217805	-87 875533	499	12
086	N8L03S10	24-APR-2000	17.24.24	29 151123	-87 858395	1034	12
087	N8L01S01	25-APR-2000	02.43.34	29.060142	-89 029900	105 1.	4
088	N8L01S03	25-APR-2000	04.02.15	28.951987	-88 998362	101	12
089	N8L01S04	25-APR-2000	05:07:12	28.991907	-88.977922	205	12
090	N8L 01S05	25-APR-2000	06:31:34	28 805352	-88 951353	515	12
091	N8L 01507	25-APR-2000	08:53:14	28.660592	-88 901180	007	12
002	N8L02816	25-AI R-2000	16:44:50	28.000392	-88.901180	2206	12
092	N81 02514	25-AT K-2000	10.44.50	20.237003	-00.000713	2300. 020	12
093	NOL02014	23-AT K-2000	17.55.00	20.47/40/	-00.101103	707. 000	12
094	INOLUZOIZ	23-APK-2000	22:10:33	20.702412	-00.202010	787. 024	12
093	INOLUZOIU	23-APK-2000	23:39:38	20.024393	-00.31/340	924. 192	12
050	NOLU2508	20-APK-2000	05:12:02	29.04/250	-88.41/438	480.	12
097	INOLU2000	20-APK-2000	05:11:30	29.173472	-88.4/4350	187.	12
098	N8L02S05	20-APK-2000	06:34:10	29.224315	-88.497520	110.	12
099	N8L02S03	26-APR-2000	08:28:02	29.392788	-88.572327	57.	5
100	N8L02S01	26-APR-2000	10:41:31	29.662327	-88.693227	17.	4
101	N8L02S00	26-APR-2000	11:50:31	29.802500	-88.755347	13.	4

Table 3.1.7. Times and locations for CTD stations on cruise N8 (continued).

Station No.	Station Name	Nutrient	Oxygen	Salinity	Bucket Salinity	Pigment	РМ	POC & PON
001	N8I 11501	4	4	А	1			
002	N8L11507	4	4	Ŧ	1	2	3	2
002	NOL 11502	5	5		1	2	2	2
003	NOL 11504	5	5		1	2	5	2
004	NOLIISUU	12	12		1	2	2	2
005	NOL 11500	12	12		1	2	2	2
000	NeL 11510	12	12			3	3	2
007	N8L11S12	12	12			2	2	2
008	N8L11S14	12	12			3	3	2
009	N8LIISI6	11	11			2	2	
010	N8L11S18	12	12	12		3	3	2
000	N8TEST18	12	12	12				
011	N8L10S21	12	12	12		3	3	2
012	N8L10S19	12	12			_		
013	N8L10S17	10	10	10		3	1	1
014	N8L10S15	11	11					
015	N8L10S13	12	12			3	3	2
016	N8L10S11	12	12		1	3	3	2
017	N8L10S09	6	6		1			
018	N8L10S07	4	4		1	2	3	2
019	N8L10S05	4	4		1	2	3	2
020	N8L10S03	4	4		1	2	3	2
021	N8L10S01	4	4	4	1			
022	N8L09S01	4	4	4	1			
023	N8L09S03	4	4		1	2	3	1
024	N8L09S05	4	4		1	3	3	2
025	N8L09S07	5	5		1	3	1	2
026	N8L09S09	12	12		1	3	3	2
027	N8L09S11	12	12					
028	N8L09S13	12	12			3	3	2
029	N8L09S15	12	12					
030	N8L09S17	12	12			3	3	2
031	N8L09S19	12	12					
032	N8L09S21	24	12	12		3	3	2
033	N8L08S17	24	12	12		3	3	2
034	N8L08S15	12	12					
035	N8L08S13	12	12			3	3	2
036	N8L08S11	12	12	2				
037	N8L08S09	12	12			3	3	2
038	N8L08S07	12	12		1	3	3	2
039	N8L08S05	4	4		1			
040	N8L08S03	4	4		1	2	3	2
041	N8L08S01	4	5	6	1			
042	N8L07S00	4	4	4	1			
043	N8L07S01	4	4		1	2	3	2
044	N8L07S03	4	4		1			
045	N8L07S05	12	12		1		3	2
046	N8L07S07	12	12		1	3	3	2
047	N8L07S09	12	12					
048	N8L07S11	11	11					
049	N8L07S13	12	12			3	3	2
050	N8L07S15	12	12			-	-	_
051	N8L07S17	12	12	12		3		2

Table 3.1.8 Number of bottles sampled by variable on cruise N8. Blank = no sample.

Station No.	Station Name	Nutrient	Oxygen	Salinity	Bucket Salinity	Pigment	РМ	POC & PON
052	NOL OCC 10	10	10	10		2	2	2
052	N8L06519	12	12	12		3	3	Z
053	N8L06S17	12	12					
054	N8L06515	12	12		1	n	2	2
055	N8L06513	12	12		l	3	3	2
056	N8L06S11	12	12		l	2		2
057	N8L06S09	12	12		l	3	4	2
058	N8L06S07	12	12		l	3	4	2
059	N8L06S05	6	6		l			
060	N8L06S03	4	4		l		•	
061	N8L06S01	4	4	4	1	2	3	2
062	N8L05S01	4	4	4	1	2	3	2
063	N8L05S03	4	4		1	_	_	_
064	N8L05S05	12	12		1	3	3	2
065	N8L05S07	12	12		1	_	_	
066	N8L05S09	12	12		1	3	3	2
067	N8L05S11	12	12		1			
068	N8L05S13	12	12		1	3	3	2
069	N8L05S15	12	12		1			
070	N8L05S17	12	12	12	1	3	3	2
071	N8L04S12	12	12	12	1	3	3	2
072	N8L04S10	11	11		1	3	3	2
073	N8L04S08	12	12		1	3	3	2
074	N8L04S07	12	12		1	3	3	2
075	N8L04S05	12	12		1			
076	N8L04S03	4	4		1			
077	N8L04S01	4	4		1	2	3	2
078	N8L04S00	4	4	4	1			
079	N8L03S00	4	4	4	1			
080	N8L03S01	5	5		1	2	3	2
081	N8L03S03	5	5					
082	N8L03S05	5	5		1			
083	N8L03S07	12	12		1	3	3	2
084	N8L03S08	12	12		1	3	3	2
085	N8L03S09	12	12		1	3	3	2
086	N8L03S10	12	12	12	1	3	3	2
087	N8L01S01	4	4	4	1	2	3	2
088	N8L01S03	12	12		1	3	3	2
089	N8L01S04	12	12		1	3	3	2
090	N8L01S05	12	12		ī	3	3	$\frac{1}{2}$
091	N8L01S07	12	12	12	1	3	3	2
092	N8L02S16	12	12	2	•	Ũ	0	-
093	N8L02S14	12	12	$\tilde{2}$				
094	N8L02S12	12	12	2				
095	N8L 02S10	11	11	11	1	3	2	2
096	N8L02508	12	12	11	1	ž	ĩ	$\frac{2}{2}$
000	N8I 02506	12	12		1	a a	3	2
027	N81 02505	12	12		1	2	2	2
020	N8I 02503	5	5		1	2	5	2
100	N8I 02505	Л	<u>л</u>		1	2	2	2
100	N81 02501	-+ /	ч Л	Δ	1	2	5	2
101	Total	4 072	940 940	207	1 68	163	174	118
	rotai	712	747	207	00	105	1/4	110

Table 3.1.8 Number of bottles sampled by variable on cruise N8 (continued).

Sequence Number	Station Name	Date (UTC)	Time (UTC)	Latitude (°N)	Longitude (°W)	Water Depth (m)	Probe Type
	NOT 11002	15 A DD 2000	10.06.00	27 500042	92 250127	20	T10
001	N8L11503	15-APK-2000	18:00:22	27.500045	-85.250157	28.	110 T10
002	N&LIISUS	15-APR-2000	21:29:51	27.498655	-83./33028	46.	110
003	N8L11S07	16-APR-2000	00:16:49	27.499582	-84.159795	07.	110 T10
004	N8L11S09	16-APR-2000	02:58:05	27.500583	-84.526968	130.	110
005	N8L11S11	16-APR-2000	05:23:11	27.500065	-84.792275	227.	17
006	N8L11S13	16-APR-2000	07:37:36	27.500398	-84.986430	381.	T7
007	N8L11S15	16-APR-2000	09:28:54	27.500013	-85.146188	606.	17
008	N8L11S17	16-APR-2000	11:58:25	27.500232	-85.295007	815.	T7
009	N8L10S20	16-APR-2000	20:52:06	27.817333	-85.522750	791.	T7
010	N8L10S18	16-APR-2000	23:21:58	27.877490	-85.332907	586.	T7
011	N8L10S16	17-APR-2000	01:39:31	27.930895	-85.167003	401.	T7
012	N8L10S14	17-APR-2000	03:51:40	27.992205	-84.976165	262.	T10
013	N8L10S12	17-APR-2000	05:48:15	28.048842	-84.798845	144.	T10
014	N8L10S10	17-APR-2000	07:58:53	28.122340	-84.568752	70.	T10
015	N8L10S08	17-APR-2000	10:29:04	28.228300	-84.239902	45.	T10
016	N8L10S06	17-APR-2000	12:48:31	28.343113	-83.881952	32.	T10
017	N8L10S04	17-APR-2000	15:03:37	28.454860	-83.526827	21.	T10
018	N8L10S02	17-APR-2000	17:17:59	28.564300	-83.194052	12.	T10
019	N8L09S02	18-APR-2000	02:13:20	29.426017	-83.729467	13.	T10
020	N8L09S04	18-APR-2000	06:00:37	29.230162	-84.052062	22.	T10
021	N8L09S06	18-APR-2000	09:25:44	28.971020	-84.475747	31.	T10
022	N8L09S08	18-APR-2000	12:43:56	28.724955	-84.882792	48.	T10
023	N8L09S10	18-APR-2000	15:23:45	28.567443	-85.139260	129.	T10
024	N8L09S12	18-APR-2000	17:45:57	28.456313	-85.318972	175.	T10
025	N8L09S14	18-APR-2000	19:44:22	28.359738	-85.478803	240.	Т7
026	N8L09S16	18-APR-2000	21:55:08	28.250392	-85.652907	378.	Τ7
027	N8L09S18	19-APR-2000	00:14:29	28.153643	-85.815750	577.	T7
028	N8L 09S20	19-APR-2000	02.49.10	28 071435	-85 950790	795	Т7
020	N8L 08S16	19-APR-2000	11.01.15	28 214712	-86 435825	833	T7
020	N8L 08S14	19-APR-2000	13.55.25	28 352558	-86 274295	570	Т7
031	N8L 08S12	10 A PR 2000	16:41:33	28.496905	-86 104092	372	Т7
031	N8L08512	10 A DR 2000	10.41.33	28.710235	-85 853015	252	т7
032	NOLUOSIU NOLUOSIU	19-AFK-2000	17.43.30	28.710233	85 627845	165	T10
033	NOLUOSUO NOLUOSUO	20 A DD 2000	22.23.33	20.902703	-85.02784J	105.	T10 T10
034	NOLUOSUU NOLUOSUU	20-AFR-2000	00.41.30	29.094202	-03.402743	4J. 22	T10
033	NOLUOSU4	20-AFR-2000	05.57.19	29.327933	-03.120093	10	T10
030	NOLUOSUZ	20-APR-2000	14:24:00	29.333300	-04.007002	10.	T10 T10
037	N8L07S02	20-APK-2000	14:24:09	29.393310	-65.567012	23. 17	T10 T10
038	N8L07S04	20-APK-2000	18:21:07	29.387343	-03.023247	47.	T10 T10
039	N8L0/S06	20-APK-2000	20:14:49	29.251327	-85.979182	155.	T10 T10
040	N8L0/S08	20-APK-2000	22:11:54	29.119188	-80.130048	238.	110
041	N8L0/S10	21-APR-2000	00:44:50	28.944983	-86.330267	334.	1/
042	N8L07S12	21-APR-2000	03:20:48	28.784158	-86.514233	415.	1/
043	N8L07S14	21-APR-2000	06:09:17	28.635573	-86.682833	560.	1/
044	N8L07S16	21-APR-2000	09:33:22	28.464230	-86.881345	807.	17
045	N8L06S18	21-APR-2000	17:38:14	28.742460	-87.124993	845.	17
046	N8L06S16	21-APR-2000	20:48:23	28.911705	-86.978795	673.	Τ7
047	N8L06S14	21-APR-2000	23:03:39	29.048837	-86.861460	548.	T7
048	N8L06S12	22-APR-2000	01:38:24	29.226153	-86.707753	425.	T7
049	N8L06S10	22-APR-2000	04:17:01	29.409780	-86.546575	284.	T 7
050	N8L06S08	22-APR-2000	07:11:24	29.600795	-86.385448	129.	T10
051	N8L06S06	22-APR-2000	09:35:45	29.760275	-86.246170	62.	T10

Sequence Number	Station Name	Date (UTC)	Time (UTC)	Latitude (°N)	Longitude (°W)	Water Depth (m)	Probe Type
052	N8L06S04	22-APR-2000	11:37:50	29.942445	-86.089875	35.	T10
053	N8L06S02	22-APR-2000	13:12:36	30.099042	-85.954870	24.	T10
054	N8L05S02	22-APR-2000	19:12:05	30.278782	-86.618752	22.	T10
055	N8L05S04	22-APR-2000	20:44:28	30.110895	-86.700923	44.	T10
056	N8L05S06	22-APR-2000	22:22:02	29.959608	-86.774202	120.	T10
058	N8L05S08	23-APR-2000	00:11:23	29.798412	-86.851632	170.	T10
059	N8L05S10	23-APR-2000	01:47:00	29.670798	-86.913160	216.	T10
060	N8L05S12	23-APR-2000	03:30:07	29.530722	-86.980952	340.	T7
062	N8L05S14	23-APR-2000	05:40:40	29.369457	-87.059068	604.	T10
063	N8L05S16	23-APR-2000	07:59:20	29.181425	-87.147605	850.	T7
067	N8L04S11	23-APR-2000	14:23:22	29.282232	-87.350963	814.	T7
065	N8L04S09	23-APR-2000	16:33:57	29.450105	-87.351028	351.	T7
066	N8L04S06	23-APR-2000	19:38:58	29.657093	-87.349987	76.	T7
067	N8L04S04	23-APR-2000	21:27:21	29.857167	-87.351065	40.	T10
068	N8L04S02	23-APR-2000	23:13:10	30.103115	-87.350908	26.	T10
069	N8L03S02	24-APR-2000	08:15:13	29.954877	-88.030585	30.	T10
070	N8L03S04	24-APR-2000	10:40:16	29.678003	-87.971988	37.	T10
071	N8L03S06	24-APR-2000	12:34:47	29.452928	-87.927208	58.	T10
072	N8L01S02	25-APR-2000	03:14:34	29.015493	-89.016728	53.	T10
073	N8L01S06	25-APR-2000	08:13:36	28.730370	-88.923632	780.	T7
075	N8L02S15	25-APR-2000	18:37:57	28.402917	-88.133520	2178.	T7
076	N8L02S13	25-APR-2000	21:21:19	28.600458	-88.220243	1942.	T7
077	N8L02S11	25-APR-2000	23:38:18	28.773873	-88.295727	1352.	T7
078	N8L02S09	26-APR-2000	02:28:16	28.955883	-88.376738	764.	T 7
079	N8L02S07	26-APR-2000	04:40:07	29.123293	-88.451200	277.	T10
080	N8L02S04	26-APR-2000	07:46:09	29.316283	-88.537733	58.	T10
081	N8L02S02	26-APR-2000	09:46:02	29.540152	-88.636140	24.	T10

Table 3.1.9 Launch times and locations for XBT drops on cruise N8 (continued).

Launches at missing sequence numbers were failures or deemed bad data during QA/QC, or had no XBT launch although the counter advanced.

3.1.4 <u>Cruise N9</u>

The ninth NEGOM-COH hydrography cruise (N9) was conducted aboard the *R/V Gyre* during 28 July - 8 August 2000. It was staged out of Pascagoula, MS, and returned to Panama City, FL. Dr. Douglas C. Biggs and Dr. Norman L. Guinasso, Jr., were co-chief scientists. Ninety-nine CTD stations, including one test station, were completed and 75 successful XBT drops were made. CTD and XBT locations and the cruise track are shown in Figure 3.1.4.

The cruise track began with innermost station on line 1 and ran along lines 1 through 11 in order. The test station was made along the 1000-m isobath between lines 1 and 2. The station number, date, time, location, water depth, and number of bottles tripped at each CTD station are shown in Table 3.1.10.

Figure 3.1.4. Station locations for cruise N9 conducted 28 July - 8 August 2000. The cruise ran in order along lines 1 through 11. Station 6 was the test station. The thick line shows the cruise track, which began at the location of the most shoreward station on line 1.

Stations at which bottle samples were taken are summarized in Table 3.1.11. Nutrients and oxygen were measured from every Niskin bottle depth sampled. Salinity was measured at all bottles at the most shoreward and most offshore stations, the test station, and one station for diagnostic purposes for at total of 24 bottle salinity stations. Pigment measurements were collected from the top bottle, the chlorophyll-maximum as determined by the downcast fluorescence trace, and the low light regime immediately below the chlorophyll-maximum at 60 stations. PM samples were taken from the top, mid-depth "clear water", and bottom bottles at 60 stations. Surface bucket salinity samples were taken at 95 CTD stations to better define the freshwater gradients that might be associated with summer river discharge.

The location, date, time, total water depth, and probe type of the 75 successful XBT drops are listed in Table 3.1.12. Two ADCPs (38 kHz and 150 kHz) ran continuously along the track. Flow-through, near-surface temperature, conductivity, and fluorescence were logged every 2 minutes. Surface samples were filtered and analyzed at 101 locations for chlorophyll a content to calibrate the flow-through fluorescence.

Four complementary research efforts were accommodated on cruise N9. Mr. Bisman Nababan and Ms. Lucia Odriozola, graduate students of Dr. Frank Muller-Karger at USF, and Ms. Robyn Conmy and Ms. Antoya Stovall-Leonard, respectively, research assistant and graduate student of Dr. Paula Coble of USF, made bio-optic measurements and characterized the colored dissolved organic material (CDOM). They used a flow-through AC-9 fluorometer, tandem chlorophyll and CDOM fluorometry, and irradiance casts for the bio-optical measurements, and scanning spectrophometers and an underway Safire system to collect CDOM data. Four benthic trawls were conducted by Dr. Doug Biggs of TAMU over the outer continental shelf to provide shallow-water collections for comparison with deep water samples being collected as part of the MMS-sponsored Deep Gulf of Mexico Benthic study. The 38 kHz ADCP again was operated by Dr. Norman Guinasso and Mr. John Walpert of TAMU in cooperation with RDI for a comparison with the 150 kHz ADCP. Graduate student training and research was provided to Ms. Karie Holtermann, graduate student of Dr. Denis Wiesenburg of the University of Southern Mississippi, and to Ms. Emma Roscow, graduate student of Dr. Marcus Horning of TAMU-Galveston. Entering OCNG graduate students Laurie Sindlinger, Will Fletcher, Greg Breed, and Jennifer Wagonner also participated. Further information on these complementary research programs can be obtained from the scientists involved.

	0 16 4
	17 117 4
007 NOL01S01 25 Jul 2000 10.30.00 25.000200 05.05045	0 101 12
002 10201503 $22-501-2000$ $11.50.50$ 28.55500 -88.55500	3 209 12
003 10201304 23-Jul-2000 12.48.10 20.000000 -00.90933 004 N9L01S05 29-Jul-2000 14.00.20 28.805833 .88.94933	3 499 12
0.04 101201505 25-Jul-2000 14:00.20 20:003055 -00.54955 0.05 N9L01S07 29-Jul-2000 16:13:04 28.662000 -88.90033	3 1005 12
006 N9TEST00 29-Jul-2000 20:02:00 28:002000 -88:0035	7 952 12
000 101115100 25-Jul 2000 20.02.00 20.740570 -00.00055	7 992 12
008 N9L02S08 30-Jul-2000 00:57:47 29.047422 -88.41660	3 494 12
000 101202000 30-Jul-2000 00.37.47 25.047422 -00.47000	4 185 12
010 N9L02S05 30-Jul-2000 03:30:12 29 224691 -88 49691	105.12
010 102503 30-Jul-2000 05.50.12 25.224051 -00.45051	1 58 7
011 10202503 50501 2000 00.01.00 29.59732 00.5004 012 012 0	1 <u>5</u> 5 19 5
012 1012001 30 Jul 2000 00.13.01 25.001352 00.0005	0 16 4
013 102000 30-Jul-2000 07.51.51 27.000544 -00.73040	10.12
014 10205000 30 Jul 2000 15:51:52 50:155510 00:09157	3 22 6
016 N9L03S03 30-Jul-2000 16:39:03 29 800547 -87 99593	4 37 6
010 1010305 30-Jul-2000 10.59.05 29.000347 -01.9995	1 41 5
017 10205005 50-5012000 10.20.47 25.555505 -01.54025 018 NOL03807 30-1012000 20:47:42 29 342562 -87 00310	1 102 12
018 1020307 505u12000 20.47.42 25.542502 67.50315 019 N9L03S08 30-Jul-2000 21.42.43 29.280462 -87.89170	1 102. 12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	466 12
020 1020507 30-301-2000 22:45.57 25:217082 -07:07055	100.12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 088 12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 500. 12
025 NOL04S10 51-501-2000 05.50.50 29.571904 -07.55080	0 220 12
024 119204506 51-501-2000 07.56.28 29.552526 -67.54885	2 108 12
025 1020 1020 1020 1020 1020 1020 1020 102	2 100. 12 4 78 9
020 10204303 31-Jul-2000 10.04.48 29.729311 -87.55032	Q 31 5
027 N9L04503 51-501-2000 12:00:55 25:578704 -07:55224 028 N9L04501 31-Jul-2000 14:00:58 30.225126 -87.35087	6 18 A
029 N9L04S00 31-Jul-2000 14:41:51 30.279581 -87.32498	10.4
025 1021000 51-501 21-2000 14:41:51 50:275581 -07:52450	12 13. 4 18 1
030 10205801 51-541-2000 12:05:26 30:505455 -86:57480	10.4
031 10205005 31 Jul 2000 2022.54 50.204845 00.05590	20.5
032 1020505 51-501-2000 21:50:10 50:020404 -00:75002	147 12
0.0000 = 0.00000 = 0.00000 = 0.000000000	6 199 12
$035 \qquad \text{NOI} \ 05511 \qquad 01_4 \text{Aug} 2000 \qquad 01.02.00 \qquad 29.721792 \qquad 00.00011 \\ 035 \qquad \text{NOI} \ 05511 \qquad 01_4 \text{Aug} 2000 \qquad 04.06550 \qquad 29.606558 \qquad 86.9437/$	11 263 12
$035 \qquad 13205511 \qquad 01-Rug-2000 \qquad 04.00.50 \qquad 27.000556 \qquad -60.7457 = 0.0457 =$	1200.12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{72}{4}$ $\frac{491}{12}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107. 12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 985 12
0.000 N9L00017 01-Aug-2000 14:10:30 20:001140 -07:10790 040 N9L06S17 01-Aug-2000 16:32:23 28.827702 -87.05100	10 763 12
040 13200317 $01-Rug-2000$ $10.52.25$ 20.027702 -07.05105	0 611 12
041 N9L00313 01-Aug-2000 10.31.22 20.303727 -00.31071 042 N9L06S13 01-Aug-2000 20.32.27 29 134928 -86 78854	10 011. 12
0.42 NOL00513 01-Aug-2000 20:52.27 25:134520 00:7003	$\frac{11}{11}$ $\frac{12}{381}$ $\frac{12}{12}$
043 NOLOOSII 01-Aug-2000 22.55.50 25.514522 -00.05131 044 NOLOOSII 02-Aug-2000 00:30:36 29 503145 -86 47134	1 001. 12
$\frac{1}{10000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{10000} = \frac{1}{100000} = \frac{1}{1000000} = \frac{1}{100000000} = \frac{1}{10000000000000000000000000000000000$	08 98 10
$\frac{1}{1000007} = \frac{1}{1000007} = \frac{1}{100007} = \frac{1}{10007} = \frac{1}{100007} = \frac{1}{100007} = \frac{1}{100007} = \frac{1}{100007} = \frac{1}{10007} = \frac{1}{1$	0 00. 12 05 46 5
0.100 = 0.100005 = 0.2700 = 0.0000 = 0.0000 = 0.000000 = 0.000000 = 0.000000 = 0.000000 = 0.0000000 = 0.00000000	-5 -70. 5 86 - 37 - <i>4</i>
$\frac{1}{100000} = \frac{1}{1000000} = \frac{1}{10000000000000000000000000000000000$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{1}{1000001} = \frac{1}{1000001} = \frac{1}{10000000000000000000000000000000000$	6 12 <i>4</i>
$\frac{1}{1000} = \frac{1}{1000} = 1$	12.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
052 N9L07S05 02-Aug-2000 16:50:33 29.298428 -85.92054	10 92. 12

Station No.	Station Name	Date (UTC)	Time (UTC)	Latitude (°N)	Longitude (°W)	Depth (m)	No. of Bottles
053	N9L07S07	02-Aug-2000	18:13:39	29.206642	-86.027199	199.	12
054	N9L07S09	02-Aug-2000	20:26:44	29.016293	-86.247269	316.	12
055	N9L07S11	02-Aug-2000	22:24:15	28.862019	-86.423119	381.	12
056	N9L07S13	03-Aug-2000	00:28:00	28.700300	-86.611366	498.	12
057	N9L07S15	03-Aug-2000	02:23:23	28.556828	-86.774529	668.	12
058	N9L07S17	03-Aug-2000	04:45:49	28.370237	-86.987480	1007.	12
059	N9L08S17	03-Aug-2000	08:45:26	28.132650	-86.529839	995.	12
060	N9L08S15	03-Aug-2000	11:08:32	28.296984	-86.338554	671.	12
061	N9L08S13	03-Aug-2000	12:58:27	28.402109	-86.214615	496.	12
062	N9L08S11	03-Aug-2000	15:25:27	28.605288	-85.974167	308.	12
063	N9L08S09	03-Aug-2000	18:51:16	28.824873	-85.717896	197.	12
064	N9L08S07	03-Aug-2000	20:50:08	28.985283	-85.526047	112.	12
065	N9L08S05	03-Aug-2000	23:57:49	29.204578	-85.274460	42.	5
066	N9L08S03	04-Aug-2000	02:53:29	29.403296	-84.996284	21.	4
067	N9L08S01	04-Aug-2000	04:49:22	29.602659	-84.779228	13.	4
068	N9L09S01	04-Aug-2000	11:10:00	29.490488	-83.623428	11.	4
069	N9L09S03	04-Aug-2000	12:55:00	29.341192	-83.860985	19.	4
070	N9L09S05	04-Aug-2000	15:45:00	29.103357	-84.257545	27.	5
071	N9L09S07	04-Aug-2000	21:02:20	28.838102	-84.694618	46.	5
072	N9L09S09	04-Aug-2000	23:29:53	28.625866	-85.046471	99.	12
073	N9L09S11	05-Aug-2000	01:03:13	28.506580	-85.236557	164.	12
074	N9L09S13	05-Aug-2000	02:25:36	28.409250	-85.397507	202.	12
075	N9L09S15	05-Aug-2000	03:49:38	28.309015	-85.563095	306.	12
076	N9L09S17	05-Aug-2000	05:36:00	28.189022	-85.754547	506.	12
077	N9L09S19	05-Aug-2000	07:01:35	28.116503	-85.879028	677.	12
078	N9L09S21	05-Aug-2000	08:53:27	28.017967	-86.042618	988.	12
079	N9L10S21	05-Aug-2000	12:48:04	27.783567	-85.631584	992.	12
080	N9L10S19	05-Aug-2000	16:03:34	27.854818	-85.415482	655.	12
081	N9L10S17	05-Aug-2000	17:49:46	27.894672	-85.272484	491.	12
082	N9L10S15	05-Aug-2000	19:50:07	27.958378	-85.070610	314.	12
083	N9L10S13	05-Aug-2000	21:29:40	28.022945	-84.877510	199.	12
084	N9L10S11	05-Aug-2000	22:50:33	28.077909	-84.708313	101.	12
085	N9L10S09	06-Aug-2000	01:42:53	28.175903	-84.403267	59.	6
086	N9L10S07	06-Aug-2000	04:08:36	28.288713	-84.059280	38.	4
087	N9L10S05	06-Aug-2000	06:24:26	28.401600	-83.699265	31.	4
088	N9L10S03	06-Aug-2000	08:41:41	28.521595	-83.330879	20.	4
089	N9L10S01	06-Aug-2000	10:22:16	28.610165	-83.072899	12.	4
090	N9L11S01	06-Aug-2000	19:21:35	27.497105	-82.851501	12.	4
091	N9L11S02	06-Aug-2000	20:40:12	27.503393	-83.024452	22.	4
092	N9L11S04	06-Aug-2000	23:26:39	27.499905	-83.497421	42.	5
093	N9L11S06	07-Aug-2000	02:12:57	27.500595	-83.943855	57.	8
094	N9L11S08	07-Aug-2000	04:54:11	27.498529	-84.343376	101.	12
095	N9L11S10	07-Aug-2000	07:16:51	27.499632	-84.680130	200.	12
096	N9L11S12	07-Aug-2000	09:04:48	27.499872	-84.889435	297.	12
097	N9L11S14	07-Aug-2000	10:44:18	27.500814	-85.075706	494.	12
098	N9L11S16	07-Aug-2000	12:20:40	27.499393	-85.226158	755.	12
000	NOT 11010	07 Aug 2000	14.08.20	27 400550	85 305560	1003	10

Table 3.1.10. Times and locations for CTD stations on cruise N9 (continued).

Station No.	Station Name	Nutrient	Oxygen	Salinity	Bucket Salinity	Pigment	РМ	POC & PON
001	N9L01S01	4	4	4		2	3	1
002	N9L01S03	12	12			3	3	2
003	N9L01S04	12	12		1	3	3	$\frac{1}{2}$
004	N9L01S05	12	12		1	3	3	2
005	N9L01S07	12	12	12	-	3	3	2
006	N9TEST00	12	12	12		U	2	~
007	N9L02S10	12	12	12	1	3	3	2
008	N9L02S08	12	12	12	1	2	3	1
009	N9L02S06	12	12		1	$\frac{2}{2}$	3	1
010	N9L02S05	12	12		1	2	3	1
011	N9L02S03	7	7		1	2	5	1
012	N9L02S01	5	5		1	2	3	2
013	N9L02S00	4	4	4	1	L	5	2
014	N9L03S00	4	4	4	1			
015	N9L03S01	6	6	•	1	2	3	2
016	N9L 03S03	6	6		1	L	5	2
017	N9L03505	5	5		1			
018	N9L03S07	12	12		1	2	3	1
019	N9L03S08	12	12		1	$\frac{2}{2}$	3	1
020	N9L03500	12	12		1	$\frac{2}{2}$	3	1
020	NOL 03510	12	12	12	1	2	2	1
021	N9I 04S12	12	12	12	1	2	2	1
022	NOI 04510	12	12	12	1	2	3	1
023	NOL 04510	12	12		1	2	2	1
024	NOI 04507	12	12		1	3	3	2
025	NOL 04507	8	0		1	5	3	Z
020	NOI 04503	5	5		1			
027	NOL 04505	3	3		1	2	2	2
028	NOL 04500	4	4	4	1	3	3	2
029	NOL 05501	4	4	4	1	2	2	1
030	NOL 05502	4	4	4	1	2	3	I
031	NOL 05505	5	5		1	2	2	2
032	NOL 05507	11	11		1	3	3	2
033	NOL 05500	12	12		1	2	2	2
034	NOL 05511	12	12		1	3	3	2
035	NOL 05512	11	11		1	2	2	2
030	NOL OF S15	12	12		1	3	3	2
037	NOL 05S17	12	12	10	1	2	2	•
038	NOL OSSI /	12	12	12	1	3	3	2
039	NOL OCE 17	12	12	12	1	3	3	2
040	N9LUGS17	12	12		l			
041	N9L06515	12	12		l	2	2	•
042	N9L06513	12	12		l	3	3	2
043	N9L06STI	12	12		l	•	2	
044	N9L06S09	12	12		1	2	3	l
045	INALO2201	12	12		1	3	3	2
046	N9LU6SUS	2	5		ł			
047	N9L06S03	5	5		1	<i>.</i>	~	-
048	N9L06S01	4	4	4	1	2	3	2
049	N9L07S00	4	4	4	1	_		
050	N9L07S01	4	4		1	3	3	2
051	N9L07S03	4	4		1	-		
052	N9L07S05	12	12		1	3	3	2

Table 3.1.11. Number of bottles sampled by variable on cruise N9.

Station No.	Station Name	Nutrient	Oxygen	Salinity	Bucket Salinity	Pigment	РМ	POC & PON
053	N9L07S07	12	12		1	3	3	2
054	N9L07S09	12	12		1			
055	N9L07S11	12	12		1			
056	N9L07S13	12	12		1	2	3	1
057	N9L07S15	12	12		1			
058	N9L07S17	12	12	12	1	3	3	2
059	N9L08S17	12	12	12	1	3	3	2
060	N9L08S15	12	12		1			
061	N9L08S13	12	12		1	3	3	2
062	N9L08S11	12	12		1	_	-	_
063	N9L08S09	12	12		1	3	3	2
064	N9L08S07	12	12		1	3	3	2
065	N9L08S05	5	5		1	5	Ş	-
066	N9L08S03	4	4		1	1	3	1
067	N9L00503	4	4	4	1	1	5	1
068	N9L09S01	4	4	4	1			
060	NOI 00503	4	4	4	1	3	3	2
070	NOL OSOS	5	+ 5		1	3	3	$\frac{2}{2}$
070	N9L09305	5	5		1	3	3	2
072	NOI 00500	12	12		1	3	3	2
072	NOL OOS11	12	12		1	3	3	2
073	NOL 00513	12	12		1	2	2	2
074	NOL 00815	12	12		1	3	3	2
075	NOL 00517	12	12		1	2	2	2
070	NOL OOS 10	12	12		1	3	3	2
070	NOL 00521	12	12	10	1	2	2	2
070	NOL 10521	12	12	12	1	3	3	2
0/9	N9L10521	12	12	12	1	3	3	2
080	NOL 10517	12	12		l	2	2	2
081	N9L10517	12	12	10	1	3	3	2
082	N9L10515	12	12	12	l	2	2	2
083	N9L10S13	12	12		l	3	3	2
084	N9LIOSII	12	12		1	3	3	2
085	N9L10S09	6	6		1		-	
086	N9L10S07	4	4		1	2	3	2
087	N9L10S05	4	4		1	2	3	2
088	N9L10S03	4	4		1	2	3	2
089	N9L10S01	4	4	4	1			
090	N9L11S01	4	4	4	1		c	_
091	N9L11S02	4	4		1	2	3	2
092	N9L11S04	5	5		1	3	3	2
093	N9L11S06	8	8		1			
094	N9L11S08	12	12		1	3	3	2
095	N9L11S10	12	12		1	3	3	2
096	N9L11S12	12	12		1			
097	N9L11S14	12	12		1	3	3	2
098	N9L11S16	12	12		1			
099	N9L11S18	12	12	12	1	3	3	2
	Total	925	925	200	95	158	180	106

Table 3.1.11. Number of bottles sampled by variable on cruise N9 (continued).

Sequence Number	Station Name	Date (UTC)	Time (UTC)	Latitude (°N)	Longitude (°W)	Water Depth (m)	Probe Type
001	N9L01S02	29-Jul-2000	10.49.29	29.053000	-89 025833	22	T-10
002	N9L01S06	29-Jul-2000	15.11.48	28 730230	-88 923890	685	Ť-10
003	N9L 02S09	30-Jul-2000	00:06:01	28 956303	-88 376106	764	T-7
003	N9L02S07	30-Jul-2000	02:05:51	29 121590	-88 451164	285	T-7
005	N9L02507	30-Jul-2000	05:07:12	29.316860	-88 538124	63	T-10
005	NOL 02507	30 Jul 2000	07.17.50	29.510000	88 631/00	25	T 10
000	NOL 02502	30 Jul 2000	15.22.28	29.341777	-00.001409 99 020505	20	T 10
007	NOL 02504	30-Jul-2000	13.32.30	29.932791	-00.039303	29.	T-10
008	NOL 02504	30-Jul-2000	17:54:44	29.078033	-07.971723	57.	1-10 T 10
009	N9L03S00	30-Jul-2000	20:00:11	29.452007	-87.927238	60. 760	1-10
010	N9L04S11	31-Jul-2000	05:16:59	29.282431	-87.350838	/60.	1-/
011	N9L04S09	31-Jul-2000	07:00:37	29.450132	-87.350548	355.	1-7
012	N9L04S06	31-Jul-2000	09:31:29	29.657099	-87.351418	75.	T-10
013	N9L04S04	31-Jul-2000	11:08:26	29.857082	-87.351509	40.	T-10
014	N9L04S02	31-Jul-2000	13:05:36	30.103098	-87.352203	26.	T-10
015	N9L05S02	31-Jul-2000	19:46:22	30.283710	-86.620110	22.	T-10
016	N9L05S04	31-Jul-2000	21:11:08	30.111828	-86.700737	43.	T-10
017	N9L05S06	31-Jul-2000	22:43:11	29.960014	-86.773056	118.	T-10
018	N9L05S08	01-Aug-2000	00:18:57	29.808308	-86.846764	162.	T-10
019	N9L05S10	01-Aug-2000	03:33:09	29.670635	-86.911133	218.	T-7
020	N9L05S12	01-Aug-2000	05:03:52	29.533445	-86.977081	345.	T-7
021	N9L05S14	01-Aug-2000	07:03:34	29.374163	-87.055260	610	T-7
022	N9L05S16	01-Aug-2000	09.29.56	29 181023	-87 148331	826	Ť-7
023	N9L06S18	01-Aug-2000	15:47:16	28 742859	-87 125427	860	T-7
023	N9L06S16	01 - Aug - 2000	17.50.28	28 926500	-86 96/333	675	T-7
024	NOL 06514	01-Aug-2000	10.00.06	28.720300	86 021303	550	T 7
020	NOL 06812	01-Aug-2000	21.54.06	20.373321	-80.921303 86 707001	420	1-/ T 7
028	NOL 06S10	01-Aug-2000	21.54.00	29.22/102	-80.707001	430.	1-/ T 7
029	NOLOGEO	01-Aug-2000	23.32.23	29.410607	-00.349322	203.	T 10
030	NOL OCCOC	02-Aug-2000	01:41:28	29.000485	-80.383972	128.	T-10
031	NOL OCEOA	02-Aug-2000	05:11:12	29.739078	-80.243232	02.	1-10 T 10
032	N9L06504	02-Aug-2000	05:49:24	29.943398	-80.092522	35.	1-10
033	N9L06S02	02-Aug-2000	07:28:52	30.104774	-85.950233	25.	1-10
034	N9L07S02	02-Aug-2000	13:57:48	29.593307	-85.58//15	23.	1-10
035	N9L07S04	02-Aug-2000	16:01:38	29.387260	-85.823051	46.	T-10
036	N9L07S06	02-Aug-2000	17:42:49	29.249521	-85.976570	158.	<u>T-10</u>
037	N9L07S08	02-Aug-2000	19:24:41	29.120893	-86.129761	260.	T-10
038	N9L07S10	02-Aug-2000	21:36:19	28.944637	-86.329948	337.	T-7
039	N9L07S12	02-Aug-2000	23:36:36	28.784597	-86.512451	425.	T-7
040	N9L07S14	03-Aug-2000	01:38:47	28.634785	-86.686287	568.	T-7
041	N9L07S16	03-Aug-2000	03:49:45	28.463589	-86.880440	780.	T-7
042	N9L08S16	03-Aug-2000	10:20:16	28.214539	-86.435028	745.	T-7
043	N9L08S14	03-Aug-2000	12:25:46	28.352448	-86.273903	566.	T-7
044	N9L08S12	03-Aug-2000	14:22:02	28.496943	-86.103432	370.	Ť-7
045	N9L08S10	03-Aug-2000	16.47.27	28 710327	-85 853790	250	T-7
046	N9L08508	03-Aug-2000	19.55.38	28 908333	-85 633500	164	T-10
040	N9L08S06	$03_{-}Aug_{-}2000$	22.52.51	29.094513	-85 403000	45	T-10
048	NOL 08504	$0.4 - \Delta u_{\rm G} = 2000$	01.15.26	29.328314	-85 130066	22	T-10
040	NOI 08502	04-Aug-2000	01:15:20	20.520314	8/ 8867/0	10	T 10
049	NOI AOGO2	$04_{-}\Delta u_{-}^{-}2000$	11.52.07	29.5555501	-83 779714	10.	T. 10
050	NOI OOGOA	04-Aug-2000	11.30.07	27.420000 20.220202	-0J.120/14 81 050200	12.	T 10
051	INSLUSSU4	04-Aug-2000	14:15:04	29.230280	-04.032322	21.	1-10 T 10
052	INALOA200	04-Aug-2000	19:29:42	20.970110	-04.4/4/01	52.	1-10
053	IN9L09S08	04-Aug-2000	22:23:06	28.722008	-84.8/600/	4/.	1-10
054	N9L09S10	05-Aug-2000	00:22:53	28.567778	-85.138489	128.	1-10
055	N9L09S12	05-Aug-2000	01:52:34	28.457289	-85.319191	175.	1-10
056	N9L09S14	05-Aug-2000	03:13:56	28.359823	-85.478706	228.	T-10
057	N9L09S16	05-Aug-2000	04:54:49	28.239167	-85.678833	400.	T-7
058	N9L09S18	05-Aug-2000	06:30:44	28.152674	-85.814011	575.	T-7

Sequence Number	Station Name	Date (UTC)	Time (UTC)	Latitude (°N)	Longitude (°W)	Water Depth (m)	Probe Type
060	NOT 00520	05-Aug-2000	08-15-42	28 066885	-85 956367	790	Т-7
061	NOL 10520	05-Aug-2000	14.41.27	27.815557	-85 523293	749	T-7
062	NOI 10518	05-Aug-2000	17.14.04	27.013337	-85 332687	575	T-7
063	NOL 10516	05-Aug-2000	10.00.06	27.077342	-85 165604	385	T-7
064	NOL 10514	05-Aug-2000	20:51:47	27.920107	-81 977722	243	T-7
065	NOL 10512	05-Aug-2000	20.31.47	28.048607	84 800026	$\frac{2+3}{144}$	T-7
005	NOL 10512	05-Aug-2000	22.15.50	28.048007	84 560100	70	T_{-10}
000	NOL LOSOS	05-Aug-2000	23.50.08	28.122307	84 230801	10.	T 10
007	NOL 10506	06 Aug 2000	02.33.22	20.221191	02 001005	44. 29	T 10
008	NOL 10500	06 Aug 2000	03:17:30	20.342037	-03.0010UJ	30. 27	T-10
009	N9L10504	06-Aug-2000	07:30:13	20.430329	-03.32/4/3	27.	T-10
070	NOL 11502	06-Aug-2000	09:34:23	28.304222	-83.194909	15.	T-10
0/1	N9L11S03	06-Aug-2000	22:10:07	27.499140	-83.209090	29.	1-10 T 10
072	N9L11S05	07-Aug-2000	00:56:43	27.499735	-83./32/50	46.	I-10 T-10
073	N9LIIS07	07-Aug-2000	03:40:11	27.499660	-84.159904	66.	1-10
074	N9L11S09	07-Aug-2000	06:15:42	27.499928	-84.524269	140.	T - 10
075	N9L11S11	07-Aug-2000	08:25:29	27.500196	-84.791840	233.	<u>T-7</u>
076	N9L11S13	07-Aug-2000	10:07:51	27.500076	-84.985954	391.	T-7
077	N9L11S15	07-Aug-2000	11:47:39	27.499878	-85.146027	590.	T-7
078	N9L11S17	07-Aug-2000	13:28:02	27.499960	-85.295410	839.	T-7

Table 3.1.12 Launch times and locations for XBT drops on cruise N9 (continued).

Launches at missing sequence numbers were failures or deemed bad data during QA/QC (59), or had no XBT launch although the counter advanced (25 & 27).

3.2 Instrumentation, Calibration, and Sampling Procedures

Standard oceanographic instrumentation and sampling procedures were used to collect measurements on the NEGOM-COH cruises. Data taken at each station consist of five types—continuous profiles, discrete measurements, ADCP measurements, XBT profiles, and supplementary underway measurements. The equipment and data collection procedures for each were summarized in previous NEGOM-COH reports (Jochens and Nowlin, 1998, 1999). Below are given changes in methods or procedures and additional information on data collection. At the time of this report, processing of data from cruises N6, N7, and N8 was completed, but data processing for cruise N9 was in progress.

3.2.1 Continuous Profiles

Continuous profiles versus pressure were made of temperature, conductivity, downwelling irradiance (with a photosynthetically available radiation (PAR) sensor), transmissivity, fluorometry, optical backscatter, and, although not contractually required, dissolved oxygen. Instruments were mounted on the Rosette frame below the Niskin water bottles and Rosette system to provide unperturbed, obstruction-free flow of water to all instruments during the downcast. The various instruments were interfaced with the CTD, which transmitted data to the Sea-Bird SBE-11 deck unit for data logging and storage. The altimeter allowed the CTD package to be lowered to within 1-5 meters of the sea floor. Typically two sets of instruments were taken on each cruise to provide back-up instrumentation. This redundancy helped assure collection of complete data sets for each parameter. No major CTD equipment failure occurred on these cruises. The hydrographic equipment used on the cruises is listed in Table 3.2.1. Sensor specifications and methods were detailed in Jochens and Nowlin (1998).

Instrument Manufacturer			ntity	
	N6	N7	Ň8	N9
	_			_
Sea-Bird SBE-911 <i>plus</i>	2	2	2	2
Sea-Bird SBE-11	2	2	2	2
General Oceanics 12 place	2	2	1	1
Seabird Carousel 24 place			1	1
TAMU fabrication	2	2	1	1
Seabird			1	1
GO Lever Action, 10 liter	14	14	14	14
GO Standard, 10-12 liter	10	10	10	8
25-cm SeaTech 2000 m	2	2	1	1
Wetlabs 6000m CStar			1	1
Chelsea Instruments	2	2	2	1
SeaTech light scattering sensor	2	2	2	2
Biospherical QSP-200L	2	2	2	2
Datasonics PSA-900	2	2	1	2
Datasonics PSA-916 2500m			1	1
Sea-Bird SBE 13, Beckman	2	2	2	2
polarographic				
	Manufacturer Sea-Bird SBE-911 <i>plus</i> Sea-Bird SBE-11 General Oceanics 12 place Seabird Carousel 24 place TAMU fabrication Seabird GO Lever Action, 10 liter GO Standard, 10-12 liter 25-cm SeaTech 2000 m Wetlabs 6000m CStar Chelsea Instruments SeaTech light scattering sensor Biospherical QSP-200L Datasonics PSA-900 Datasonics PSA-916 2500m Sea-Bird SBE 13, Beckman polarographic	ManufacturerN6Sea-Bird SBE-911plus2Sea-Bird SBE-112General Oceanics 12 place2Seabird Carousel 24 place7TAMU fabrication2Seabird2GO Lever Action, 10 liter14GO Standard, 10-12 liter1025-cm SeaTech 2000 m2Wetlabs 6000m CStar2Chelsea Instruments2SeaTech light scattering sensor2Biospherical QSP-200L2Datasonics PSA-9002Datasonics PSA-916 2500m2Sea-Bird SBE 13, Beckman2polarographic3	ManufacturerQual N6N6N7Sea-Bird SBE-911plus2Sea-Bird SBE-112Qual Sea-Bird SBE-112Qual Seabird SBE-112Qual Seabird SBE-112Qual Seabird SBE-112Qual Seabird SBE-112Qual Seabird Carousel 24 place2TAMU fabrication2Qual Seabird2GO Lever Action, 10 liter14GO Lever Action, 10 liter14I414GO Standard, 10-12 liter1025-cm SeaTech 2000 m2Qual SeaTech light scattering sensor2Qual Datasonics PSA-9002Qual Sea-Bird SBE 13, Beckman2Qual Polarographic2	ManufacturerQuantity N6Quantity N7Sea-Bird SBE-911plus222Sea-Bird SBE-11222General Oceanics 12 place221Seabird Carousel 24 place11TAMU fabrication221Seabird1141414GO Lever Action, 10 liter141414GO Standard, 10-12 liter10101025-cm SeaTech 2000 m221Wetlabs 6000m CStar11010Chelsea Instruments222Biospherical QSP-200L222Datasonics PSA-900221Datasonics PSA-916 2500m122polarographic222

Table 3.2.1	Hydrographic	equipment	available on	cruises	N6, N	V7, N8,	and N9.
	1 0 1	1 1				, ,	

40

3.2.2 Discrete Measurements

Water samples for discrete measurements were collected from 10-liter Niskin bottles mounted on a General Oceanics Rosette sampler. Typically, four to 12 bottles per station were used. Bottles were tripped at the maximum CTD depth, the sea surface (~3 m), and the chlorophyll maximum as determined from the fluorescence profile by the CTD operator. Other bottles were tripped at the sigma-theta surfaces, when present, specified in Table 3.2.2. Some of these surfaces are associated with specific water masses brought into the Gulf by the Loop Current. The CTD operator had discretion to trip unused bottles to fill gaps in bottle spacing or to sample in interesting features in temperature, salinity, fluorescence, or percent transmission profiles. Extra bottles, when available, were taken at 20-m and 50-m depths for flow cytometry sampling. Generally, in water depths of 100 m or more, all 12 bottles were tripped regardless of availability of surfaces.

Discrete water samples were taken for nutrients (phosphate, silicate, nitrate, nitrite, ammonium, and urea) and dissolved oxygen at all stations and for PM, POC/PON, and phytoplankton pigments at approximately 60 stations on each cruise. The PM/POC/PON and pigment samples usually were taken from the same stations to facilitate integration and interpretation of data. For salinity, samples were measured at bottles from the inshore-most and offshore-most stations, from leaking bottles, and for stations with unplanned bottle trips. Salinity also was measured from surface bucket samples taken at each station located in regions under possible influence of river water.

Water samples were drawn and processed as soon as the CTD-Rosette system was brought on board. Analyses of dissolved oxygen, nutrients, and salinity were performed at sea. Samples for PM, POC/PON, and phytoplankton pigments were filtered at sea, and the filters returned for final processing onshore. Methods and analysis specifications are provided in previous NEGOM-COH annual reports (Jochens and Nowlin, 1998, 1999).

Trip Location	Comments				
Top Chlorophyll maximum Bottom Available σ _θ surfaces:	generally about 3-m depth as indicated by downcast fluorescence maximum generally 1 to 5 m above sea floor				
24.6 25.4 25.9	salinity maximum in Subtropical Underwater				
26.2 26.5 26.8	oxygen maximum in 18°C Sargasso Sea Water				
27.0 27.15 or 27.10 27.45 Other bottles if available	oxygen minimum in Tropical Atlantic Central Water salinity minimum in Antarctic Intermediate Water interesting features in downcast profiles or for spacing				

Table 3.2.2 Bottle tripping locations.

PON measurements were made on all NEGOM-COH cruises. Although not required by the contract, PON data are included in the master bottle data sets for each cruise. Methods of sample collection and analysis for the POC/PON filters are described in Jochens and Nowlin (1998, 1999). POC/PON filter samples for N6 through N9 were analyzed at the Virginia Institute of Marine Science.

3.2.3 Acoustic Doppler Current Profiler Measurements

ADCP measurements were made along track on cruises N6, N7, N8, and N9. Data were collected using a 150-kHz broadband ADCP (S/N 1183) for N6 through N8. A 150-kHz narrowband ADCP (S/N 355) was used on cruise N7 along lines 10 and 11 and on cruise N9. Also, an experimental Ocean Surveyor 38 kHz (OS-38) ADCP (S/N 8) was operated simultaneously with the 150 kHz ADCPs on N7, N8, and N9. All three ADCP instruments were manufactured by RD Instruments (RDI) of San Diego, CA. The OS-38 was on loan to the NEGOM-COH program by RDI for the purposes of side-by-side comparison with the 150 kHz instruments, beta-testing of data acquisition software, and instrument development. Figure 3.2.1 shows locations with data from the 150 kHz instruments, giving the general cruise tracks for collection of ADCP data. Dates of data collection and quantity of raw ADCP and navigation data are summarized in Table 3.2.3.

Accurate ship position data are crucial for useful shipboard ADCP data. Differential global positioning system (DGPS) position fixes were used when available. ADCP data processing, recording, and instrument control were done using the DOS-based RDI TRANSECT program during cruises N6, N8, and N9. The Windows-based RDI VMDAS program was the data acquisition software used on N7. Details on instrument specifications, mounting on the vessel, data processing, and associated navigation data are provided in Jochens and Nowlin (1998).

A Sperry gyrocompass was used to provide ship heading to the ADCP during cruise N6. The gyrocompass historically has provided a source of error when determining current velocity because of lag and directional sticking, thus leading to directional biases that have to be systematically corrected. Therefore, an AshTech ADU2 3DF positioning antenna array (S/N AD00251), installed on the *R/V Gyre* and capable of more accurate ship heading by utilizing DGPS fixes, was configured to provide ship heading directly to

Cruise	ADCP Start (UTC)	ADCP Stop (UTC)	Acquisition Program	Quantity of Data (Mbyte)	OS-38
N6	15 August 1999 19:33	28 August 1999 04:42	TRANSECT	401	no
N7	13 November 1999 03:30	24 November 1999 23:55	VMDAS	1007	yes
N8	15 April 2000 14:57	25 April 2000 12:56	TRANSECT	620	yes
N9	29 July 2000 02:56	08 August 2000 11:41	TRANSECT	586	yes

Table 3.2.3. Dates and quantity of 150 kHz ADCP data.

Figure 3.2.1. Locations of ADCP data for cruises N6, N7, N8, and N9.

43

the ADCP during cruises N7, N8, and N9. For N6, ship heading determined using the AshTech was saved in a separate file for post-cruise integration into the ADCP processing. The AshTech heading allows processing and QA/QC of data collected while on-station, accelerating/decelerating, and turning; these data were discarded on past cruises due to the unreliability of the gyro heading during these times.

The configurations recorded for the ADCP during each cruise are shown in Table 3.2.4. Configurations are basically identical for each cruise, except that bin sizes for the OS-38 are 40 m. This enhances continuity among the different cruises and simplifies analysis and interpretation. The number of velocity pings per ensemble was changed from 2 to 1 on N7 and subsequent cruises to enhance the ensemble processing procedures.

3.2.4 XBT Measurements

Expendable bathythermograph (XBT) profiles were obtained using Sippican, Inc., T7 and T10 probes. T10s operate to 200 m and were used at stations in water depths of 200 m or shallower. T7s operate to depths of 760 m and were used at other stations. The probe type for each XBT deployment which produced usable data, as well as the drop locations, are given in Tables 3.1.3 (N6), 3.1.6 (N7), 3.1.9 (N8), and 3.1.12 (N9). XBT deployment locations are shown in Figures 3.1.1 (N6), 3.1.2 (N7), 3.1.3 (N8), and 3.1.4 (N9). On N6, there were 89 successful XBTs out of 99 launches. On N7, there were 103 XBT launches of which 84 produced data. On N8, 81 XBTs were released, 78 returned good data. On N9, there were 75 successful XBTs out of 76 launches. Methods for deployment were detailed in Jochens and Nowlin (1998).

Parameter		Cruise		
· · · · · · · · · · · · · · · · · · ·	N6	N7	N8	N9
Instrument type	broadband	broadband	broadband	narrowhand
Frequency (kHz)	153.6	153.6	153.6	153.6
Transducer pattern	convex	convex	convex	concave
Depth cell length (m)	4	4	4	4
Number of depth cells	90	90	90	60
Segment time (minutes)	5	5	5	5
Time between pings (sec)	1	1	1	1
Velocity pings per ensemble	2	1	1	1
First bin depth (m)	14	14	14	14
Transmit pulse length (m)	4	4	4	4
Blank after transmit (m)	4	4	4	4
Navigation type	DGPS	DGPS	DGPS	DGPS
Data recorded	raw,	raw,	raw,	raw,
	navigation,	navigation,	navigation,	navigation,
	averaged	averaged	averaged	averaged

Table 3.2.4. ADCP configuration summary.

44

3.2.5 Underway Measurements

Near-surface (~3 m) temperature, conductivity, and fluorescence were logged every 2 minutes throughout cruises N6 through N9 using the Serial ASCII Interface Loop (SAIL) system on the *R/V Gyre*. These measurements continued and extended similar data logging during cruises N1 through N5 in the first and second field years. The fluorescence was calibrated to chlorophyll concentration by correlation with chlorophyll samples obtained from the flow through stream. The underway measurements are supplemental to the contractually required data discussed in Sections 3.2.1 through 3.2.4. However, these underway data are useful in fixing the location of river plumes and other confluence and frontal regimes. Details on sensors, logging procedures, calibration procedures, and QA/QC of underway measurements were given in the first annual report (Jochens and Nowlin, 1998). During the third year, data usually were logged from port of departure to port of return.

Raw data from each cruise generally are better than 95% complete along the cruise track. Locations of 2-minute data are shown in Figure 3.2.2. Breaks in the SAIL data logging are seen as gaps in the tracks in the figure. The causes of the longer hiatus periods were lock-up of computer systems and/or pump problems resulting in no flow to the main lab or sensors. Other down time during the four cruises was approximately 2 to 4 minutes per day when the SAIL data computer was backed up. Locations of discrete samples that were filtered and analyzed for chlorophyll for calibration of the flow-through fluorometer data are given in Figure 3.2.3.

3.3 Summary of Field Data Collected

A summary of the data collected and scientific participation on the three cruises conducted in this reporting period is given in Table 3.3.1. Samples taken at test or supplementary stations are not included in this tabulation. In addition, visiting researchers on each cruise collected complementary data for use in their individual research programs. Information relative to these complementary programs is given in Table 3.3.2 and described in section 3.1.

3.4 <u>Summary of Collateral Data Assembly</u>

To provide comparative information, historical data and physical oceanographic and ancillary data collected concurrently with the NEGOM-COH field program have been assembled. Historical data sets include hydrography and current measurements. These were summarized in Jochens and Nowlin (1998). Concurrent data sets were identified and assembled, including sea surface height anomaly (SSHA) from satellite altimeter, sea surface temperature from satellite Advanced Very High Resolution Radiometer (AVHRR) sensors, and ocean color from the SeaWiFS satellite. Ancillary data were acquired, including river discharge, surface wind speed and direction, air temperature, surface barometric pressure, frontal passages, and sea level. Using the surface meteorological observations and objective analysis, surface wind and wind stress fields were produced at one-hour intervals using objective analysis (see Figure 5.1.1 in Jochens and Nowlin, 1999, for an example). Table 3.4.1 shows the major concurrent and ancillary data sets assembled.

Figure 3.2.2. Locations of near-surface, flow-through temperature, salinity, and fluorescence data logged every 2 minutes on cruises N6, N7, N8, and N9.

Figure 3.2.3. Locations of discrete samples filtered for calibration at sea of near-surface, flow-through fluorometer data on cruises N6, N7, N8, and N9. Stars denote outlier points not used in the calibration.

Table 3.3.1	. Summary	of data c	ollection	and scie	ntific part	icipation	n on NE	GOM-C	COH
cruises. C	ruise duratic	on and tra	ck length	represe	nt port-to-	-port val	lues; the	cross-s	helf
track is app	roximately 2	2742 km.	Numbers	from tes	t/supplem	ental sta	tions are	e exclude	ed.

Description	N6 August 1999	N7 November 1999	N8 April 2000	N9 August 2000
	10	10	10	
Cruise duration (days)	13	13 2 (5 c b	12	
Cruise track (km)	3743*	3659°	2825°	3195°
Total hydrographic stations	100	99	102	99
CTD stations	98	98	101	98
Nutrient stations	98	98	101	98
Oxygen stations	98	98	101	98
Salinity stations	23	22	27	24
Pigment stations	60	59	60	60
Particulate matter stations	60	52	59	60
Particulate organic carbon stations	61	52	60	60
XBT drops (successful/total)	89/99	84/103	78/81	75/76
Nutrient samples	913	899	960	913
Oxygen samples	913	901	937	913
Salinity samples	175	176	195	188
Pigment samples	175	170	163	158
Particulate matter samples	180	156	174	180
Particulate organic carbon samples	126	100	118	106
Surface bucket salinity samples	58	81	68	95
Surface chlorophyll samples	101	99	99	101
Underway surface temperature and conductivity logging	2 min	2 min	2 min	2 min
Underway surface fluorescence	2 min	2 min	2 min	2 min
logging				
Total scientific party	23	18	24	23
NEGOM-COH scientists	13	14	13	15
Guest investigators on board	6	3	7	5
Students	10	7	12	11
Complementary studies	7	5	10	4

^a Galveston, TX, to Panama City, FL
^b Gulfport, MS, to St. Petersburg, FL; excludes ADCP run
^c St. Petersburg, FL, to Pascagoula, MS
^d Pascagoula, MS, to Panama City, FL

48

Description	N6	N7	N8	N9
Drifter launches		30		
Flow cytometry sampling	ves	ves	ves	
Bio-optical stations	~2 per day	~2 per day	~2 per day	~2 per day
Safire system sampling	ves	yes	ves	ves
Shipek-type grab cores	5	5	40	J = -
Gravity/box cores	4/2		32	
Piston cores	4			
38 kHz ADCP testing		ves	ves	ves
Altimeter-in situ data observers		5	1	5
Red tide observer	1			
Phytoplankton sampling			ves	
Salinity water samples for teaching	6		5	
Otter or benthic trawls			3	4
Secchi depth readings			yes	
NASA bio-optical over-flights			yes	

 Table 3.3.2 Complementary programs on NEGOM-COH hydrography surveys.

Table 3.4.1. Gulf of Mexico collateral data assembled in support of NEGOM-COH.

Data Type	Dates	Major Sources
Sea surface height anomaly fields (blended TOPEX/Poseidon and ERS-2 satellite altimeter product)	November 1997–August 2000; Daily	Dr. Robert L. Leben, Colorado Center for Astrodynamics Research, University of Colorado
Sea surface temperature fields (satellite AVHRR)	November 1997–August 2000; 7-day composites	Johns-Hopkins University, Applied Physics Laboratory
Sea surface ocean color fields (SeaWiFS)	Composites for periods of 9 NEGOM cruises	Dr. Frank Muller-Karger, University of South Florida
River discharge: Mississippi and rivers discharging into the northeast Gulf	1998 and 1999 water years; available data for 2000	U.S. Geological Survey
Meteorological: wind speed and direction, barometric pressure, air and sea surface temperature, relative humidity, dew point	November 1997–August 2000	National Data Buoy Center, various airports
Currents: current meter and moored ADCP	March 1997 through March 1999	Science Applications International Corp., NEGOM DeSoto Canyon Eddy Intrusion
Sea level	various	Study Conrad Blutcher Institute; NOAA National Ocean Service

4 DATA QUALITY ASSURANCE AND CONTROL

A summary of the results of data processing and quality assurance/quality control (QA/QC) processing for cruises N5 through N8 and preliminary results for cruise N9 are discussed in this section. The data processing and QA/QC methods for each type of data, together with results of QA/QC processing for November 1997 through June 1998, were presented in the first annual report (Jochens and Nowlin, 1998). Changes to those methods and a summary of the results of QA/QC processing for July 1998 through June 1999 were given in the second annual report (Jochens and Nowlin, 1999).

4.1 Continuous Profile Data

The composite plots of CTD temperature versus salinity for cruises N5 (spring 1999), N6 (summer 1999), N7 (fall 1999), N8 (spring 2000), and N9 (summer 2000; preliminary data) show good quality results for the continuous sensors (Figures 4.1.1 through 4.1.5). Note the seasonal differences for temperatures higher than 18°C and the lack of scatter and the tight fit below 18°C.

4.2 Discrete Measurements

4.2.1 Nutrients, Oxygen, and Salinity

Nitrate versus phosphate concentrations for cruises N5 – N7 (1999) and N8 – N9 (2000) are shown in Figures 4.2.1 and 4.2.2, respectively. The Redfield ratio of 16:1 for N:P is indicated by the line. Note that nitrate values are generally high relative to this ratio. The data pairs near phosphate of 1.45 μ M and nitrate of 13 μ M are from station N6CORE00C (station A on cruise N6), located west of the Mississippi River Delta at a depth of 32.4 m in a hypoxic region. Several nutrient data points are still under investigation, but many of the unusual points are from areas directly influenced by river discharge. Extremely high values of nitrate (>>33 μ M) and other nutrients occurred in association with river discharge on cruise N5; such data are not shown.

On cruise N8, duplicate nutrient samples were taken at stations 32, 33, and 95. One set was analyzed at sea, the duplicate was frozen and analyzed at a later time. The frozen samples from station 95 were bad, so the results were discarded. Comparisons of frozen and fresh sample analyses for the other two stations are shown in Figures 4.2.3 and 4.2.4.

The composite plot of bottle salinity versus CTD salinity for cruises N5 through N9 is shown in Figure 4.2.5. The overall agreement is good, as shown by the r^2 values of 0.94 or better for each cruise. Differences occurred mainly in regions with significant vertical gradients of salinity over the depth difference between the bottle sample and the deeper CTD sample, suggesting the same waters were not sampled. These were mainly at near-shore, shallow, river-influenced stations. Several points are still under investigation.

Dissolved oxygen concentration versus sigma-theta for cruises N5 – N7 (1999) and N8 – N9 (2000) are shown in Figures 4.2.6 and 4.2.7, respectively. The dissolved oxygen concentrations behaved as expected, with more variability in the less dense upper water than in the denser deep water. Note the oxygen minimum at about $\sigma_{\theta} = 27.15$ or 27.10 kg·m⁻³; this is associated with the Tropical Atlantic Central water mass. Note further the group of data at $\sigma_{\theta} \sim 25$ kg·m⁻³ and dissolved oxygen <1.4 mL·L⁻¹; these are in the hypoxic zone west of the Mississippi River Delta on N6 (N6CORE00C).

Figure 4.1.1. Composite potential temperature-salinity diagram for stations from cruise N5 (May 1999). Inset shows points with salinity less than 20.

Figure 4.1.2. Composite potential temperature–salinity diagram for stations from cruise N6 (August 1999). Inset shows points with salinity less than 20.

Figure 4.1.3. Composite potential temperature–salinity diagram for stations from cruise N7 (November 1999). Inset shows points with salinity less than 20.

Figure 4.1.4. Composite potential temperature-salinity diagram for stations from cruise N8 (April 2000). Inset shows points with salinity less than 20.

Figure 4.1.5. Composite potential temperature-salinity diagram, using preliminary data, for stations from cruise N9 (July/August 2000). Inset shows points with salinity less than 20.

Figure 4.2.1. Phosphate versus nitrate for 1999 cruises N5 (spring), N6 (summer), and N7 (fall). The line represents the Redfield ratio of N:P (16:1).

Figure 4.2.2. Phosphate versus nitrate for 2000 cruises N8 (spring) and N9 (summer). The line represents the Redfield ratio of N:P (16:1). N9 data are preliminary.

Figure 4.2.3. Frozen versus fresh nutrient concentrations (μ M) from station 32 on NEGOM cruise N8 (April 2000). There are 12 pairs each.

Figure 4.2.4. Frozen versus fresh nutrient concentrations (μ M) from station 33 on NEGOM cruise N8 (April 2000). There are 12 pairs each.

Figure 4.2.5. Ensemble upcast CTD salinity versus bottle salinity for cruises N5 through N9. Outliers generally are from stations with strong stratification caused by the influence of river discharge. N9 data are preliminary.

Figure 4.2.6. Dissolved oxygen versus upcast sigma-theta for 1999 cruises N5 (spring), N6 (summer), and N7 (fall).

Figure 4.2.7. Dissolved oxygen versus upcast sigma-theta for 2000 cruises N8 (spring) and N9 (summer). N9 data are preliminary.

4.2.2 Particulates

Examination of N2 PM data revealed a systematic error in the processing of blanks by one shift on the cruise. The 11 suspect blanks were deleted from the data set and PM concentrations were re-determined with the remaining 19 blanks. This correction ensures a more accurate estimate of PM from beam c_p derived from transmissometer data. Three bottles each were tripped at depths of ~1.5 m and ~54.6 m at station 35 on cruise N6 and analyzed for POC and PON. Results are shown in Table 4.2.1.

Pressure (db)	Depth (m)	$\mathbf{POC} \\ (\boldsymbol{\mu g \cdot L}^{-1})$	$\frac{PON}{(\mu g \cdot L^{-1})}$	Trans- missometer (V)		
2.571	1.6	32.20	4.36	4.414		
2.630	1.6	39.60	5.89	4.421		
2.479	1.5	36.57	5.54	4.422		
56.017	54.6	32.96	6.60	4.377		
55.967	54.6	22.45	5.65	4.379		
55.953	54.6	32.96	6.95	4.380		

Table 4.2.1. POC and PON from two depths at station 35 on NEGOM cruise N6.

For the NEGOM cruises, ratios of POC to PON usually ranged from about 4 to 8. For cruise N5, however, the ratios were unusually large, going from 2 to 14. The variability of the POC and PON concentrations for different depths were not out of the ordinary. The filter processing and analysis procedures used for N5 were the same as for all other cruises, and no analytical or processing errors were found.

4.2.3 <u>Pigments</u>

Because of availability of new detector equipment and an authentic standard to verify its presence, antheraxanthin was added to pigments measured by HPLC for cruises N6 through N9. HPLC analysis methods were described in Jochens and Nowlin (1998).

4.3 <u>Acoustic Doppler Current Profiler Measurements</u>

QA/QC processing of ADCP data was described in detail in Section 4 of Jochens and Nowlin (1998, 1999). A brief summary is given here, together with processing modifications and results for cruises N5 through N9.

ADCP and DGPS navigation data are recorded using one of two data acquisition programs, TRANSECT or VMDAS. TRANSECT records binary ADCP data, converts the data to engineering units, averages the data into five-minute or other user-defined segments, and converts the averaged data into ASCII format. The averaged data then are merged with the navigation data supplied by either the ship gyroscope or the AshTech DGPS antenna array. Standard processing was performed on TRANSECT-recorded data and was used on N5, N6, N8, and N9. VMDAS is an MS-Windows based program that

64

allows for more advanced averaging, merging, and visualization schemes than available with TRANSECT. As with TRANSECT, VMDAS records binary ADCP data and converts the data to engineering units. Ensemble processing was used on VMDAS-recorded data and merged ensembles, consisting of 4-6 seconds of data, with the navigation data from the AshTech antenna to produce current velocities. The velocities then are averaged to produce the five-minute data, which are output in ASCII format. Ensemble processing was used on N7. It also could be used on the raw TRANSECT data, but this was not done on the other NEGOM data.

4.3.1 Standard ADCP Processing

Current velocity is estimated by subtracting ship speed from the 5-minute averaged ADCP transducer velocities. Poor estimates of ship velocity will seriously degrade data quality. Therefore, good, reliable DGPS data are crucial for a quality shipboard ADCP data set. Ship velocity estimated by the ADCP bottom-tracking mode is used when good bottom track fixes are available, usually in water depths of less than 300 m. Calculated DGPS ship velocity is used when the ship is in deeper water. The subset of data with both bottom-track and navigation velocities is used to perform a directional calibration of the ADCP after the procedure of Joyce (1989). Complex regression statistics for bottomtrack versus DGPS navigation velocities and average DGPS ship speed for cruises N6 through N9 are summarized in Table 4.3.1. These show the regression angle and modulus fall within typical values of mean alignment error (1-2 degrees) and sensitivity error (1.00 to 1.04) for the *R/V Gyre*. After navigation data are merged with ADCP data, current data are inspected for additional problems and bad data segments are removed or flagged. Results of this step are summarized in Table 4.3.2. In standard processing, data collected while the ship is on-station, accelerating, decelerating, or turning sharply are discarded. These data are eliminated because ship velocity in these situations is not constant during the five-minute average and, therefore, when a constant velocity is assumed and removed, the resulting current velocity can have significantly large error.

4.3.2 Ensemble Processing Procedure

Ensemble processing begins with the raw ensemble data, which typically consist of 1-2 velocity pings and 1-2 bottom-track pings. Each ping is 2 seconds; the time for each

Description	N5	N6	N7	N8	N9
Stations for misalignment angle	1897	NA	1918	1615	2121
Sample size used	958	NA	1651	3380	10090
Clockwise regression angle (α)	-1.485678°	-0.4627°	2.246100°	-1.9792186°	-1.361789°
Regression modulus (bm)	1.002232	1.00278	1.013704	0.9853648	1.010795
Coherence parameter (ρ^2)	0.9190487	0.98127	0.9674937	0.9853648	0.9998852
Average GPS ship speed (cm·s ⁻¹)	443.44	NA	467.49	443.16	449.61

Table 4.3.1. Complex regression statistics for GPS velocity versus bottom-track velocity from 150 kHz ADCP data on cruises N5 through N9.

NA = Not Available

Table 4.3.2.	Results of evaluation of 150 kHz ADCP data for external factors on cruises
	N5 through N9 and number of data segments rejected.

Description		N6	N7	N8	N9
Total much on of a converte	2000	NT A	0(510	2040	0017
1 otal number of segments		NA	90512	3040	2917
Segments rejected for no navigation data		NA	415	85	53
Segments rejected for insufficient beams		NA	4174	0	20
Segments rejected for bottom-track depth too shallow		NA	2448	235	85
Segments rejected for slow ship speed ($< 100 \text{ cm s}^{-1}$)		NA	0	873	627
Segments rejected for fast ship speed (> 650 cm s ⁻¹)		NA	0	0	0
Segments rejected for % of good pings in first bin < 30	0	NA	481	0	3
Preliminary number of usable segments	2918	NA	88994	1847	2129
Segments rejected for bad navigation data	281	NA	0	0	0
Segments rejected for outliers	0	NA	0	0	157
Final number of usable segments	2637	NA	88994	1847	1972

NA = Not Available

ensemble is, therefore, typically 8 seconds. Aside from the duration of the data used (8 seconds versus five minute averages), ensemble processing is similar to standard processing. The input data are merged with the navigation data by removing an accurate estimate for the ship velocity, and the current velocity is estimated. The ensemble processing procedure also uses bottom-track and DGPS velocities to estimate the Joyce parameters described in Section 4.3.1. The current velocity data set then is averaged into five minute bins for processing with the final standard processing routines.

The advantage of ensemble processing is that it allows estimation of current velocities for those periods when the ship is drifting on station, turning, accelerating, or decelerating. Additionally, on occasion one or more ensembles in a segment had bad or unrealistic values that resulted in the removal of an entire 5-minute average segment. By quality controlling and discarding bad ensembles prior to averaging into five-minute bins, the data quality is substantially increased.

The success of the ensemble processing depends on reliable, accurate ship position and heading data at intervals of at most one second. This level of accuracy is impossible to achieve by the ship's Sperry gyrocompass. It is achievable with the AshTech ADU2 3DF positioning array, which collects high-precision pitch, roll, and heading information. Pitch and roll information also can be incorporated directly into the ADCP data stream, but this was not done for N7. Jochens and Nowlin (1999) includes additional specific aspects of the ensemble processing.

4.3.3 Results of QA/QC for N5 through N9

<u>Cruise N5</u>: The 150 kHz broadband instrument was returned to the manufacturer in December 1998 for complete refurbishment, repair, and upgrade of firmware. Prior to N5, it was installed on the R/V Gyre. Replacement transducer heads, however, were substituted in place of original heads, which had not been completely refurbished prior to the cruise. On-shore calibrations and diagnostics showed all transducers were functioning properly and within instruments tolerances. Diagnostics performed after installation aboard ship and while at sea also were passed. However, it was discovered early in the cruise that there was an unusually low percentage of "good" beam scans. While checking

backscatter intensities, it was further discovered that two of the four transducer heads were giving incoming signal intensities above normal. The problem persisted for a day or two, so the instrument was removed from it's housing and all transducer heads, leads, and connections were thoroughly cleaned. The strong signals remained.

A call to RDI while at sea led RDI engineers to believe that the stronger signal intensities were degrading the overall data quality. They believed the low percentage good values were due to the use of a data quality component of the TRANSECT software called the fish algorithm. The fish algorithm compensates for unusually strong signal intensities by assuming that strong backscatter is caused by the instrument passing over a school of fish. The algorithm then excludes these strong signals when determining current velocity. This is ordinarily not a problem because typically schools of fish only affect one beam at a time and three beams are left to produce the three-beam solution necessary for current velocity estimation. However, because two beams were affected, the instrument could not produce the three-beam solution and, therefore, produced a bad data indicator which led to the low percentage good values.

The RDI engineers believed that by turning off the fish algorithm, the data quality could be improved because the algorithm could no longer exclude any beams and both strong and weak transducer beams could be used to produce the three-beam solution for current velocity. The drawback was that when the transducer actually passed over a school of fish, the algorithm would not be on to compensate for it. Accordingly, the instrument was set to mode WM1, which turns off the fish-finder mode. We later learned, however, that the normal mode of operation for the ADCP is mode WM4, which is the mode recommended for moving platforms, and that mode WM1 is recommended only for use with stationary platforms.

Because the broadband penetration depth was nominally 120-130 m, RDI also suggested switching the broadband instrument into narrowband mode (WB1). This provided deeper penetration to 200 m, but increased the noise associated with a single ensemble. However, it was decided that the increased noise was less important than the added benefit of the deeper penetration. The switch to narrowband mode was made at the same time the fish algorithm was turned off. This occurred inshore of Line 11.

After cruise N7, it was determined that setting the instrument to narrowband mode (WB1) and turning off the fish-finder algorithm (WM1) were incompatible when the instrument was in water depths greater than 100 m. Therefore, data recorded during N5 after the inshore station at Line 11 and that are in water depths deeper than 100 m are considered suspect. Data are retained in the data set, with a warning included in the metadata. Heading information was given by the ship gyroscope and standard processing was used.

<u>Cruise N6</u>: The 150 kHz broadband instrument was refitted with the original, refurbished transducer heads for the N6 cruise. The instrument settings were set to the default values used during cruises N2 and N3, using the broadband mode and with the fish-finder mode on. The ADCP data recorded during N6 did not have any significant problems, and the data quality is good. Heading information was given by the ship gyroscope and standard processing was used.

<u>Cruise N7</u>: VMDAS was used to record and process the 150 kHz ADCP data while at sea on cruise N7. Unfortunately, the instrument settings included the WM1 and WB1 modes of operation. This again put the instrument in an incompatible mode similar to the

N5 cruise. During N7, this configuration was used for the entire cruise. Therefore, all data in water depths greater than 100 m are considered suspect. Data are retained in the data set; metadata warnings are given in the data file. VMDAS was determined not to play a roll in the corruption of these data. AshTech heading information was incorporated directly into the instrument during data acquisition and ensemble processing was used.

<u>Cruise N8</u>: Due to the problems encountered during N7, TRANSECT was used as the data acquisition software and standard processing was performed. This also preserved continuity with prior cruises that used the TRANSECT program for data acquisition. The 150 kHz instrument was configured to incorporate pitch and roll information, as well as heading, from the AshTech array into each ensemble. Including pitch and roll information improves data quality by reducing the error associated with each velocity estimate. It was determined during processing that the recorded ship velocity for each five-minute segment was in error. New ship velocities were than calculated from the DGPS fixes and substituted in each segment.

<u>Cruise N9</u>: The broadband 150 kHz ADCP was damaged prior to cruise N9; it was replaced with the narrowband 150 kHz ADCP. TRANSECT was used as the data acquisition software, and standard processing was performed. Navigation data from the AshTech antenna array was incorporated directly into the ADCP data stream. The problem associated with DGPS velocity errors that was encountered during N8 was fixed by correcting the input data stream to the ADCP. All ADCP navigation and instrument systems worked properly during this cruise. The data are thought to be of high quality.

<u>38 kHz Data:</u> Standard processing was performed on the 38 kHz Ocean Surveyor ADCP for cruises N6, N8, and N9; ensemble processing was used for N7. For cruises N6, N8, and N9, the 38 kHz data sets compared well with those of the 150 kHz for velocities in similar water depths and locations. The first bin for the 38 kHz was centered at 40 m. Each bin was 20 m. Thus, the 38 kHz provided data for water depths greater than approximately 50 m. Over deep water, data were collected to ~550 m while steaming and up to 1000 m while on station.

4.4 <u>XBT Measurements</u>

The QA/QC procedures for XBT measurements were detailed in Jochens and Nowlin (1999). The corrections for top and bottom cutoffs, outlier removal, and similar QA/QC actions for cruises N5 through N9 are recorded in the metadata of the file header. Additionally, for cruise N7, one XBT profile (N7L09S21X) originally thought to be good, was determined to be bad and consequently was removed from the data set.

4.5 <u>Underway Measurements</u>

Chlorophyll was computed using fluorescence obtained from the Turner Design model 10 flow-through fluorometer. The computed values generally agreed with the extracted chlorophyll to $\pm 0.1 \ \mu g \cdot L^{-1}$ or better in low chlorophyll, bio-optical Type II environments and to $\pm 0.5 \ \mu g \cdot L^{-1}$ or better in high chlorophyll, bio-optical Type I environments on each of cruises N6 through N9. Figures 4.5.1, 4.5.2, 4.5.3, and 4.5.4 summarize these calibration data for the summer and fall 1999 and the spring and summer 2000 cruises. Fluorescence-chlorophyll data that exceeded 3 standard deviations from the mean were excluded from the determination of the calibration curves. These outlier data are shown as triangles on the figures.

68

Figure 4.5.1. Flow-through fluorometer calibration for cruise N6 (August 1999). Triangles denote outliers not used in the correlation.

Figure 4.5.2. Flow-through fluorometer calibration for cruise N7 (November 1999). Triangles denote outliers not used in the correlation.

Figure 4.5.3. Flow-through fluorometer calibration for cruise N8 (April 2000).

Figure 4.5.4. Flow-through fluorometer calibration for cruise N9 (July/August 2000). Triangles denote outliers not used in the correlation.

5 LITERATURE CITED

- Jochens, A. E., and W. D. Nowlin, Jr. 1998. Northeastern Gulf of Mexico Chemical Oceanography and Hydrography Study between the Mississippi Delta and Tampa Bay, Annual Report: Year 1. OCS Study MMS 98-0060. U. S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. 126 pp.
- Jochens, A. E., and W. D. Nowlin, Jr. 1999. Northeastern Gulf of Mexico Chemical Oceanography and Hydrography Study between the Mississippi Delta and Tampa Bay, Annual Report: Year 2. OCS Study MMS 99-0054. U. S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA. 123 pp.
- Joyce, T. M. 1989. On in-situ 'calibration' of shipboard ADCPs. J. Atm. Ocn. Tech., 6, 169-172.

The Department of the Interior Mission

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; preserving the environmental and cultural values of our national parks and historical places; and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people by encouraging stewardship and citizen participation in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

The Minerals Management Service Mission

As a bureau of the Department of the Interior, the Minerals Management Service's (MMS) primary responsibilities are to manage the mineral resources located on the Nation's Outer Continental Shelf (OCS), collect revenue from the Federal OCS and onshore Federal and Indian lands, and distribute those revenues.

Moreover, in working to meet its responsibilities, the **Offshore Minerals Management Program** administers the OCS competitive leasing program and oversees the safe and environmentally sound exploration and production of our Nation's offshore natural gas, oil and other mineral resources. The **MMS Royalty Management Program** meets its responsibilities by ensuring the efficient, timely and accurate collection and disbursement of revenue from mineral leasing and production due to Indian tribes and allottees, States and the U.S. Treasury.

The MMS strives to fulfill its responsibilities through the general guiding principles of: (1) being responsive to the public's concerns and interests by maintaining a dialogue with all potentially affected parties and (2) carrying out its programs with an emphasis on working to enhance the quality of life for all Americans by lending MMS assistance and expertise to economic development and environmental protection.