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WELCOME

Ann Scarborough Bull
Minerals Management Service

David Stanley
Beak International Incorporated

Offshore petroleum platforms are uniquely designed to span from the bottom of the ocean through
the wave-swept surface. From the beginning in 1947, platforms influenced the marine community
and resource utilization of the Gulf of Mexico region. Domestic energy development increased the
number of offshore platforms to the present level of over 4,000 structures in outer continental shelf
waters. Along with the expansion of hydrocarbon extraction over this period, harvest and
exploitation of fisheries resources also intensified. Prior to oil and gas development (1945 to 1950)
in the Gulf of Mexico, commercial landings of finfish and shellfish in Louisiana and Texas ranged
from 185 to 413 million pounds. As the petroleum industry expanded so did commercial fishery
catches from the Gulf, peaking in the mid-1980s at about 1,700 million pounds. The current
commercial landings are around 1,200 million pounds per year.

Offshore platforms and fisheries of the Gulf of Mexico continue to coexist. Over 90% of commercial
red snapper landings (approximately 4 million pounds per year) originate in Louisiana waters, and
while the exact amount harvested at petroleum platforms is unknown, it is known to be a significant
portion of the harvest. In addition to the commercial fishers frequenting offshore structures,
recreational fishers and SCUBA divers are common platform visitors. Surveys of recreational use
found that 70% of all fishers in coastal Louisiana utilized petroleum platforms as fishing
destinations and catches of anglers at these structures were the highest in the published scientific
literature.

The use of offshore structures by marine organisms and the utilization of these resources by
commercial and recreational fishers and SCUBA divers came long before scientific study of
platform communities. While recreational and commercial users may not have understood the
scientific relationship between the structures and species abundance, they were knowledgeable of
the resources at these sites. As the importance of these structures became evident, scientific
examination of how and why they impact the ecosystem in the Gulf of Mexico began.

Initially, research focused on possible impacts from the discharge of materials and the potential
harm from hydrocarbon spills. Much later the scientific community realized that the actual physical
presence of these structures could be affecting the abundance and distribution of marine organisms
in the region. This later issue has been the focus of recent research.

Through the lay and scientific knowledge gained over the past 40 years, the common perception is
that the 4,000 structures in the region constitute the largest artificial reef complex in the world. A
typical four-pile platform jacket (the underwater support structure of an offshore platform) provides
two to three acres of living and feeding habitat for thousands of underwater species. It is



4

hypothesized that artificial reefs and platforms improve and/or diversify habitat, increase resources,
modify the assemblages of organisms in the region, or concentrate existing resources. The placement
of these defacto reefs has impacted the regional marine community and, with assessments of the
assemblages, modeling of discharges, and research into the non-target use of these structures,
information exists as to the how and why these structures have impacted the marine ecosystem of
the region.

Despite the long-term relationship between the Gulf of Mexico and hydrocarbon production, a
compendium of the results from fisheries-related research does not exist. It is the goal of this
meeting to bring together 30 years of widely spread investigations from the offshore waters of the
Gulf of Mexico. Although we highlight the relationship between petroleum production and the
environment, we include studies well beyond the scope of that topic. The 48 presentations at this
meeting represent the culmination of research by academic, state, federal and private sector
scientists from all areas of the Gulf. A lesson learned from the sessions was that, while many issues
have been resolved for every question answered, new and important investigations result. Thus,
while this may be the first summary of the impact and relationship between offshore structures, the
marine ecosystem and fisheries, it will not be the last.

We acknowledge the efforts and guidance of the many people who contributed to the workshop and
this document. First, we would like to thank the Minerals Management Service (MMS) for
sponsoring the workshop and a large portion of the research presented. We would also like to thank
Ms. Debra Vigil (MMS), Ms. Anne O’Heren Jakob and Ms. Patricia Artega (University of New
Orleans) for the organization, logistics and managing both the workshop and this document. Finally,
we acknowledge the efforts of the authors and their efforts in the laboratory and field resulting in
a better understanding of our interaction with the marine environment of the Gulf of Mexico.

Ann Scarborough Bull, Ph.D.
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RIGS TO REEFS: A COOPERATIVE EFFORT AMONG
GOVERNMENT, INDUSTRY, AND ACADEMIA

Charles A. Wilson
Department of Oceanography & Coastal Sciences and

Coastal Fisheries Institute
Louisiana State University

Richard A. Kasprzak
Louisiana Department of Wildlife & Fisheries

This paper provides an introduction to Rigs-to-Reefs and associated research activity in the Gulf of
Mexico (GOM). Herein, we provide a summary of that activity with emphasis on Louisiana and
present some new information on the role and value of the cooperation between industry, academia,
and government in pursuit of science.

Most proponents of the Rigs-to-Reefs program know the story about the evolution of the oil and gas
industry offshore. It began in the early 1940s as technology and demand for hydrocarbon took the
United States into progressively deeper waters of the GOM and other parts of the world. The first
offshore structures were in the Ship Shoal area. These old wooden structures have since been
replaced by large steel towers, but even as early as the 1940s, the fishing value of this “new habitat”
was realized by local fishers.

By the late 1970s and early 1980s, several grass roots organizations and officials within the Minerals
Management Service (MMS) began to raise awareness of the pending loss of fishing hot spots that
fishers had come to enjoy. Then Secretary James Watt and Mr. Villere Reggio of the MMS began
to advocate the concept of Rigs-to-Reefs. Dr. Bob Ditton of Texas A&M, working with Mr. Reggio,
used platform-based volunteers to record the frequency of visits to platforms by fishers. They
showed up to 70% of the trips that venture beyond the Barrier Islands made use of platforms for
fishing activities. This information gave science its first insight into the fisheries’ value and the
economic importance of fish associated with oil and gas platforms (Ditton et al. 1984). 

In the early 1980s, Congressman John Breaux introduced the National Fishing Enhancement Act
(NFEA), which set into place mechanisms by which artificial reefs could be created. This new law
encouraged states to develop well-planned, well-organized artificial reef programs (Stone 1985).

In response to the NFEA and a local interest in preserving the oil and gas platforms to which people
had become accustomed, the Louisiana Artificial Reef Initiative began at Louisiana State University
(LSU) in cooperation with the Louisiana Department of Wildlife and Fisheries (LDWF). This ad hoc
group worked together to develop state legislation that became known as the Louisiana Fishing
Enhancement Act of 1986 and set into motion the first state supported “Rigs-to-Reefs” program. The
act addressed the long-term liability of state funding and called for the development of the State
plan. Later in 1986, a plan was developed by LDWF and LSU, which included input from identified
user groups (commercial, recreational, and industry) and regulatory agencies. Using exclusion
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mapping, the authors identified areas that were compatible with artificial reef development off
Louisiana, which led to the establishment of nine Planning Areas (Wilson et al. 1987).

Shortly after Louisiana’s efforts to develop a program, Texas set in motion a similar program, and
both states have been very active in turning platforms into reefs. By the end of 1999, 145 oil and gas
structures had been made into artificial reefs in the GOM (Table 1.1). Over the past 12 years,
activity has varied from year to year with as many as 30 platforms being emplaced in one year. At
this point, Rigs-to-Reefs programs are well entrenched within the industry; participants know whom
to call and know the process by which reef permitting and reef establishment takes place. 

Table 1.1. The number of platforms incorporated in Rigs-to-Reefs programs in the GOM compared
to numbers present by water depth from 1987-1999.

Water Depth
(ft)

Oil & Gas
 Structures

Structures
Removed

Artificial Reefs
Gulf of Mexico

0-20 330 230 0

21-100 2335 916 7

101-200 770 220 79

201-400 433 67 59

401+ 70 1 0

TOTAL 3938 1434 145

The public is fairly unaware, however, of the fact that depth limits the logistics of reef creation.
Some 10% of the platforms that have been retired since 1986 have made it into reef programs.
However, most of the platforms in water depths greater than 200 ft., (59 of 67) and nearly half (79
of 220) in water depths between 100 ft. and 200 ft. have been used in reef programs since 1986
(Table 1.1). Unfortunately, in water depths less than 100 ft., liability associated with clearance and
required navigation aids limits their utilization. Our prediction for the future is that there will be a
short-term hiatus in reef development due to new oil and gas recovery technology; however,
removal is inevitable. There are proponents within user groups that say we should keep all structures
in place.

Louisiana recently took a major step in preserving a very popular fish area by converting the
Freeport McMoran Sulfur Rig off Grand Isle, Louisiana, into an artificial reef. This large, unique
design incorporates the platform legs as anchors for the crossmembers and decking laid on the
bottom; a five-point lighting system provides constant navigational aids that are monitored and
maintained by LDWF. This new reef has been shown to harbor a great number of amberjack, cobia,
and mangrove snapper. It is a primary destination for many fishers fishing just offshore of the Grand
Isle area. 
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Figure 1.1. Distribution of Gulf of Mexico oil and gas platforms visited by scientists from 1985 –
2000. Symbols indicate either bird or fishery research.

Thanks to funds made available to this program through the Sportfish Restoration Act, the Artificial
Reef Trust Fund, and most recently the MMS Coastal Marine Initiative (CMI), we are now learning
a great deal about platforms and the associated life. Scientists at LSU, Texas A&M, and elsewhere
have explored around and under these platforms with divers, videos and hydroacoustic equipment.
For the first time ever, we can put fish numbers to platforms (Figure 1.1). We are now confident that
approximately 10,000-20,000 fish live around each operating platform in depths over 100 ft. and that
desired species such as creole fish, red snapper, and mangrove snapper are abundant. A simple
calculation of the density of red snapper around platforms in water depths of 70-250 ft. yields an
estimate of red snapper in excess of one million red snapper associated with these platforms alone.

This research has only been possible because of the cooperative attitude between industry, academia,
and government. Although funding has been available to conduct this research, it would not have
been possible had certain grass roots elements within the infrastructure of the industry been willing
to take a step (or leap of faith) in working out legal agreements to allow scientists to visit and
conduct research on platforms. Companies like Mobil, BP, Chevron, Amoco, Texaco, and Exxon
are just a few who helped pioneer cooperative agreements and set in motion what will probably
become one of the most successful cooperative research efforts ever.

A number of different researchers have benefitted from industry’s willingness to support research.
As an example of how important this cooperative research is, we offer the following summaries. Dr.
Bob Russell of the Center for Coastal Energy and Environmental Resources at LSU has been
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actively engaged in tracking the migration of birds across the northern GOM. He has documented
many new species-specific migrations; this research would not have been possible without industry
cooperation. Dr. Russell estimates that his three-year CMI-funded research effort (with 100% in
kind match from industry) would have required eight man-years of ship time. Species of interest
include Prothonortary Warblers, hummingbirds, and Peregrin Falcons. Not only have the sightings
of falcons off platforms dwarfed the previous estimates of population size, but Dr. Russell also
believes that the placement of platforms in the GOM has likely increased the survival of migrating
birds.

Another important example of industry cooperation that exemplifies long-term vision and
cooperation is WAVCIS. This program, established by Dr. Greg Stone of LSU’s Coastal Studies
Institute and the Department of Oceanography, depends upon oil and gas cooperators such as Paul
Broussard of Texaco to establish permanent sea-state monitoring stations on a gridwork of platforms
off Louisiana. These stations were designed and funded to serve as early warning systems for the
projection of tidal surge associated with hurricanes; they are also great aids to fishers heading
offshore. The information associated with this project is particularly important to organizations like
FEMA and even Baton Rouge’s Office of Emergency Preparedness. 

There is still more to come; the Minerals Management Service, through the Coastal Marine Initiative
at LSU, has launched a biotechnology initiative. Scientists are now proposing to study the plethora
of organisms associated with platforms that might be useful in biomedical research. Several projects
have already been funded to archive organisms, the results of which will be later targeted for
medical research.

One can understand the commitment that the oil and gas companies have made to research effort
by looking at a simple map of the Gulf showing where research has taken place. Figure 1.2
illustrates the different sites off Louisiana, Texas, Alabama, and Mississippi that serve on platform-
based research projects. Furthermore, Table 2 illustrates the value of that research. We estimate that
over 120 scientists and students have collectively made 400+ trips to platforms since 1985; they
spent a total of 22 platform man-years offshore, logged over 2,000 helicopter hours, and over 250
vessel days.  The applied research value (match used by researchers as in-kind support) of this
contribution exceeds $3,500,000. The real cost to duplicate such research platforms would be much
more,  considering that research vessels cost over $4,000 per day.

As scientists, we recognize that platforms are unique research stations for oceanography,
meteorology, and now even bird and medical research. We, as benefactors of this cooperation in the
name of science, pose the question, “What can we do to assure that this cooperation will continue
and grow?” We must ask industry, “What can we do to help them continue to make the corporate
commitment to supporting research activities?” The concept of “good corporate citizens” eventually
dwindles with fiscal reality. These potential research platforms are scattered throughout the world;
over 6,000 are currently in use. Future cooperation will not be just limited to the GOM. In addition,
our visions should not be limited to the continental shelf but should include deep water. As the
industry approaches the ocean basin, this cooperative research activity will become even more
valuable.
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Figure 1.2. Estimated number of fish around platforms and reef sites. Depth in meters (m) refers to
water depth of standing platforms. Wreck 93m refers to a drilling rig that sank during
a hurricane, Partial 100m refers to partial removal projects, both in 100m water depth,
and Toppled 100m refers to a platform toppled on its side.

Table 1.2. Estimates of research support and value provided by the GOM oil and gas industry. Data
were provided by Texas A&M and LSU scientists.

Number
of Trips

Platform 
Man Years

Helicopter
Hours

Vessel
Days

Research
Value

406 22.0 2,077 263 $3,600,000

38 Scientists
91 Students

RECOMMENDATIONS 

We encourage MMS to work with industry and interested academic entities to identify mechanisms
to encourage and reward industry for such risk-taking. Since they will incur the expense of
infrastructure support for research, there should be some incentives (tax credits, mitigation) to
continue or even increase industries’ desire to cooperate. As scientists, we want industry to continue
to be our partners, and it is only through active dialogue that we can ensure that this will continue.
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BRINGING TOGETHER NEW AND RECENT RESEARCH

Andrew J. Kemmerer
National Marine Fisheries Service

The ecosystem from the Texas mud flats and Louisiana wetlands to the reefs off Florida then to the
deeper waters of the shelf is truly unique. It supports a broad range of important industries.
Management or conservation strategies associated with this ecosystem simply always involve
uncertainty and risk; the question is how much risk we are willing to accept. We need to minimize
the risks, but at the same time we need to try to maximize the benefits.

After almost a decade of serving as a member of three different fishery management councils, all
at the same time, I am convinced that reasonable people can work together to achieve reasonable
solutions to complex environmental issues as long as these solutions have a firm footing in science.
Good science is key, but unfortunately it will never be quite good enough for some, so there will
continue to be controversy.

The Magnuson-Stevens Act provides the national framework for conserving and managing our
wealth of fishery resources. In 1996, the U.S. Congress acknowledged the importance of habitat in
achieving the full benefits from fishery resources when they enacted the Sustainable Fisheries Act
(SFA). One aspect of the SFA was to refine the focus of fisheries management by emphasizing the
need to protect fisheries habitat. Consistent with this emphasis, Congress required that fishery
management plans identified as “essential fish habitat” (EFH) those areas necessary to fish for their
basic life functions. EFH was defined as “…those waters and substrate necessary to fish for
spawning, breeding, feeding, or growth to maturity.” The areas that may be defined as EFH are
waters of the United States—that is, state and federal waters with the offshore boundary being the
outer limit of the Exclusive Economic Zone (EEZ). EFH only includes water, but indirectly involves
watersheds as well because actions there can affect the waters they drain into.

EFH, probably cannot be considered new any more, except on a relative basis, compared to some
of the other requirements of the Magnuson-Stevens Act. It is, however, controversial and I have
been asked to talk about it in the context of OCS oil and gas development. The effectiveness of EFH
depends on its reasonable application by reasonable people based on good science. The National
Marine Fisheries Service was sued on its implementation of EFH. It is a good topic and one I
struggled with over the last several years.

As most people here are well aware, most of the requirements of the Magnuson-Stevens Act are
being addressed through eight regional fishery management councils, as prescribed by the Act. The
exceptions are the highly migratory species including many of the sharks, billfishes, and tunas,
which are being handled by the Secretary of Commerce through the National Marine Fisheries
Service (NMFS). Congress imposed a deadline of October 1998 for EFH amendments to each of the
fishery management plans, and I believe that all but one of the EFH amendments has been
completed. However, the EFH amendments by three of the fishery management councils were only
partially approved. This approval included the amendments by the Gulf of Mexico Fishery
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Management Council. The problem with the Gulf Council’s amendments, which I had a part in
preparing, was that they did not fully address all managed species, mainly due to a lack of
information. NMFS is working with the affected councils and we hope that the deficiencies will be
corrected soon.

Overall, the work done by the fishery management councils to respond to the EFH requirements of
the Sustainable Fisheries Act was quite good, and I would strongly recommend that anyone dealing
with marine and estuarine waters get copies of the appropriate amendments. They contain a
tremendous amount of information consisting of maps, lots of tables, and good descriptive
summaries. A high priority for the agency is to get this information into GIS systems so it will be
even more useful and available. Already, this has been done for the New England, Pacific, and North
Pacific Councils.

The best way to conceptualize Essential Fish Habitat is that it is the habitat necessary for federally
managed fish species to complete their life cycles. Generally, EFH for any given fish species
constitutes only a portion of the total available habitat. Usually, this is between 50 and 70% of the
geographic range of a life stage of a managed species. However, once individual EFH designations
for all species in an area are overlaid, the mosaic of designations tends to be inclusive. That is, there
are few marine and estuarine areas in federal and state waters which are not EFH for something.
This designation has caused considerable controversy and has been a principal point of discussion
at a number of Congressional hearings. It is, however, something that should have been expected,
especially considering the number of species and life stages involved. Throughout U.S. waters, we
are talking about more than 700 species each with distinct life stages and habitat requirements.
Interestingly, each of the eight fishery management councils realized essentially the same result with
most of their waters being designated EFH.

At my last count, the Gulf ofMexico Fishery Management Council had seven fishery management
plans for reef fish, red drum, shrimp, coastal migratory pelagics, stone crab, spiny lobster, and coral
and coral reefs. In addition, the Secretary of Commerce, through the NMFS, has two plans including
billfish and highly migratory species such as the tunas and sharks. A substantial number of species
are represented by these plans, each with unique habitat requirements. A number of these species
occur in the Outer Continental Shelf (OCS) area and as a result, their habitat needs have to be
considered through the EFH provisions of the plans in any development of offshore oil and gas.

Because of the expected broad designations of EFH, a provision for designating habitat areas of
particular concern (HAPCs) was used to help focus EFH conservation priorities. These are areas
within EFH that provide extremely important ecological functions and/or are especially vulnerable
to degradation. This designation has caused controversy first because HAPCs were not specifically
mentioned in the Sustainable Fisheries Act and second because some want to limit EFH designations
to HAPCs, which was never the intent. The Gulf Council designated a number of areas in the Gulf
as HAPCs, including the familiar Flower Garden Banks off Texas and Louisiana. These areas tend
to be quite small and environmentally unique. The HAPC designation does not change anything not
already dealt with through an EFH designation, but it does raise a red flag for HAPC areas and for
this reason should help developers and managers alike to be especially careful when dealing with
these areas.



13

Establishing EFH designations was difficult for all of the councils mainly because there is not an
abundance of good habitat information for all managed species. The information tends to be spotty
and limited to the more popular species. To help deal with this problem, the EFH rule identified
information that could be used for the EFH designations at four levels. The first level, for example,
was for situations where information on the distribution of a species was all that was available,
compared to the fourth level where information on production rates by habitat was all that was
available. The North Pacific Council went a step further by defining a “zero” level of information
where even good distributional information was lacking and much of the spatial distribution of a
species had to be assumed. Fortunately, the Gulf Council did not have to go quite this far for their
managed species, for the most part, they were at least able to designate at the first, or distributional,
level. But once again, the Gulf Council’s EFH amendments were only partially approved because
they did not specifically address all managed species.

Probably the most serious misconception about EFH and the EFH rule is that it has created a new
bureaucracy replete with new regulations and requirements, a misconception being promoted by
some who know better. Except in the limited context of fishing effects on EFH, there is very little
regulatory policy about EFH that was not already in effect before the adoption of the Sustainable
Fisheries Act. Prior to EFH, federal agencies had to consult with the NMFS on actions that might
affect fisheries habitat under a host of authorities including the Magnuson-Stevens Act, the Clean
Water Act, the Fish and Wildlife Coordination Act, the National Environmental Policy Act (NEPA),
the Federal Power Act, the Endangered Species Act, and others. Indeed, NMFS was doing well over
10,000 consultations annually, with many of them being done in the Gulf of Mexico, prior to EFH.
The Fish and Wildlife Service, Environmental Protection Agency (EPA), and states provided similar
consultations, and this practice has continued. The major differences before and after EFH are that
now the consulting federal agency has to specifically focus on how their actions might affect
Federally managed species and their habitats, and very importantly, now the consulting agency must
respond in writing to the NMFS recommendations. If the agency disagrees with the NMFS advice,
they have to explain why. In other words, they do not have to accept the advice, only acknowledge
it, though the advice has been accepted over 80% of the time.

The Sustainable Fisheries Act requirement that federal action agencies have to consider how their
actions affect EFH does shift some of the burden from NMFS to the action agencies. So undoubtedly
this shift will increase the agencies’ work load (although one might argue that they should have been
doing this work before in their NEPA analyses). On the other hand, an even better argument is that
NMFS should be doing everything it can to minimize the burden to other federal agencies, which
is exactly what the agency has been trying to do.

Several approaches are outlined in the EFH rule that specifically address this issue of minimizing
the work load for federal agencies, including the NMFS. These are defined in the EFH rule; anyone
in EFH consultations should review them. The most common of these is establishment of a “finding”
between the action agency and NMFS. Usually a “finding” is at the district or regional level. A
finding is nothing more than an agreement between NMFS and the action agency that their existing
process, or their existing process with some agreed upon modification, is adequate to satisfy the
NMFS need for notification and information—that is, it provides the basic information for
consultation.
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Other approaches include completion of general concurrence or programmatic consultations. The
general concurrence consultation is the easiest, as it asks for a group of current or future similar
actions that may affect EFH, but which are likely to result in no more than minimal adverse effects
individually and cumulatively. Often, reporting requirements exist to allow NMFS to keep track of
what is going on, but most often, little or nothing else is required. The next level is the programmatic
consultation, which allows for a group of similar actions to be evaluated collectively and appropriate
recommendations provided. The best example of such consultations in the Gulf of Mexico is the one
done with the Minerals Management Service (MMS) late last year. This consultation addressed
pipeline rights-of-way, plans for exploration and production, and platform removal on the federal
Outer Continental Shelf It was done through an MMS-prepared EFH assessment, which was based
to a considerable extent on an analysis of past lease sales, MMS funded research, and past
interagency consultation activities. The programmatic consultation contains a number of agreed-
upon mitigation measures including the protection of live bottoms and a number of other bottom
features, elimination of the Flower Garden Banks from lease sales, oil spill response plans, and
control and removal of pollution. The consultation also includes exceptions for certain types of
activities for which individual consultations will continue to be required, as well as a five-year
review requirement and annual reports.

EFH offers a valuable tool to help protect and conserve habitat vital to the health and well being of
our fishery resources. It is especially important in the Gulf of Mexico because of the importance of
its fishery resources commercially and recreationally, and because of the multitude of other
industries which utilize the Gulf, all of which are important locally and nationally—oil and gas,
shipping, mining, recreation and many others.

Unfortunately, there remains a considerable opposition to EFH from some quarters. Until September
2000, I was unaware of a single instance where an EFH consultation or related requirement caused
an unreasonable delay in any given activity, such as dredging a channel or laying a pipeline. I
believe this is still the case. Yet, some congressional testimony and articles in the trade media
suggest that EFH is the end of any further coastal or offshore development. The data and
information indicate otherwise.

I mentioned at the outset the NMFS was sued over its implementation of EFH. The suit was filed
in 1999 by a consortium of environmental organizations. The suit challenged whether NMFS had
complied with the requirements of the Sustainable Fisheries Act when the agency approved, or
partially approved, the Essential Fish Habitat amendments. The suit specifically addressed effects
of fishing on EFH claiming that not enough was done to minimize these effects. The U.S. Court for
the District of Columbia recently upheld the agency’s approval of the EFH amendments because it
found the decision to approve was reasonable and consistent with the requirements of the Act. That
is the good news. The bad news is that the court also found that the Environmental Assessments, or
EAs, prepared for the amendments, were deficient under NEPA because they failed to examine a
broad enough range of alternatives in dealing with fishing effects. Based on this assessment, the
court issued an injunction prohibiting NMFS from enforcing the EFH amendments until the agency
performs a new and thorough EA or Environmental Impact Statement (EIS) for each amendment.
NMFS is currently evaluating the judge’s order to determine next steps.
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Should Gulf of Mexico oil and gas structures be considered essential fish habitat? The preamble to
the EFH rule notes that not all human-made structures should be considered essential fish habitat -
only those that meet the EFH criteria and are designated as EFH in an approved amendment. The
Gulf Council took a very broad approach in designating EFH, and unfortunately was not very clear
on this issue. And because of this broad approach and inclusive nature of the Council’s amendments,
one would have to assume that the oil and gas structures in the Gulf do constitute EFH under the
rule. However, I do not believe this necessarily means that all such structures should be considered
good and that NMFS will oppose any removal or modification. This scenario would not make sense.
What it probably means is that each instance of installation, removal, or significant modification will
have to be evaluated at least until more experience is gained and/or the Gulf Council provides
clarification. Overall, I do not see a significant problem. The EFH rule is designed to allow
reasonable people to make reasonable decisions. I am comfortable that this will happen with oil and
gas structures in the Gulf of Mexico.

The NMFS is still operating under an interim EFH rule mainly because the agency wanted to ensure
time for public comment, after some experience with the interim rule. Overall, the experience has
been good and the public comments fairly consistent; therefore, significant changes with the final
rule are unlikely.

Again, I wanted to thank the Minerals Management Services for the invitation to participate in the
conference.
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OCEAN POLICY

Mr. Roger McManus
U.S. Department of the Interior

One of the accomplishments of the Clinton administration was that it brought more attention to the
marine environment at a higher level within the Executive Branch than any other administration in
the history of the country. The possible exception would be the Johnson Administration in which
Vice President Humphrey and the Stratton Commission conducted the first and only comprehensive
review of national ocean policy. That review took place 30 years ago, and there is plenty of
information to suggest that we should be revisiting the issues studied by Stratton and issues that have
emerged since.

Earlier this year Congress passed the Oceans Act, which would do just that. The act provides
authority for establishing a second oceans Commission, which will have a similar mandate as the
Stratton Commission’s. It will have about 18 months to complete its work and make its
recommendations to the new President and Congress. 

The passage of the Oceans Act may be viewed as the conclusion of a national movement that started
several years ago when the growing need for reform in ocean resource management began to be
recognized. The beginning was the most recent historic reauthorization of the Magnuson Act and
the national media attention that focused on the problems facing America’s fisheries. Other
highlights included the celebratory years of the oceans and the coral reefs, the national Monterrey
conference and the significant preparatory work for it by the Heinz Center, the President’s Ocean
Task Force, and several White House initiatives including executive orders to protect coral reefs and
otherwise to improve the U.S. system of marine protected areas.

Many individuals and institutions have contributed to this progress. Especially important was the
leadership of the President’s Council on Environmental Quality, and within the Council, the work
of Ellen Athas. We all owe Ellen and CEQ a great deal for what they have accomplished. I should
highlight also the work of the Center for Marine Conservation in regard to the Oceans Act and
particularly Eli Weissman for garnering the heavy industry support that proved critical for final
passage.

There have yet been few significant real changes, however, in U.S. ocean policy during this period.
Among the most important was the reauthorization of the Magnuson Act, signifying a change in
Congress’s view of the law as a primarily constituent issue to one of national, natural resource
policy. NOAA is implementing the new changes to Magnuson; it will be a few years before we see
how well they are working.

Among other significant achievements in ocean policy reform was the Department of Defense’s
policy shift that promoted conservation of Right Whales on the east coast and established the
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Navassa Island National Wildlife Refuge and the red hind closure in the Caribbean. There is time
for more such significant action, but that time is running out.

The lack of real change is understandable when one considers that resistance to changes in current
ocean policy is powerful and entrenched. U.S. ocean policy is largely driven by national security and
international policy concerns. Natural resource management issues have been routinely considered
by the State Department and the Department of Defense as complications to their primary missions,
and they have resisted modifications to allow for routine examination of policy needs. 

That is why we have no cabinet-level mechanism to resolve marine policy issues for resource
management; all such matters are viewed at a national security level. If we are going to manage our
resources better, we must find the means to address the problems as they arise. In the absence of
such mechanisms, we fail to have transparent and public debate about the future of our oceans and
their resources. Energy policy has been a primary victim. Another has been the reconciliation of the
needs to maintain our fisheries and conserve marine biological diversity.

In a recent book on U.S. ocean policy, authors Biliana Cicin-Sain and Robert Knecht have noted that
“U.S. ocean policy is less than the sum of its parts.” They remind us that recent history has seen the
development of single-purpose legal authorities for marine management, but we now need a second
generation policy to guide us in establishing priorities and reconciling conflicts for a comprehensive
management regime. At the end of the Clinton Administration the United States still had no such
comprehensive plan for its Exclusive Economic Zone.

I am honored to be before such a distinguished group today. The Secretariat and the Secretary of the
Interior is very proud of you and MMS and the work you do for the Department and the country. I
am particularly pleased to take talk to marine scientists today.

Good science is essential to marine policy. We need more of your work and that of your colleagues
in and out of government.

Natural resource policy should be informed by the best science available. Nevertheless, there is a
widespread misconception that science can or should dictate policy. As we all know, we use science
to describe and predict how our natural world operates. Human political policy, however, is usually
based on a variety of factors including those that have nothing to do with science or what science
can tell us. Science does not tell us it is a good thing to take care of our environment; it can merely
inform us about the possible results of how we treat that environment. Science cannot tell us how
to be equitable or fair, what to value. We should let science off the hook where it cannot help us and
take responsibility for our philosophies and value judgments.

Unfortunately, policy makers do not approach science that way. They are not trained in scientific
method, and they often misunderstand how science can help them. Sometimes, policy makers even
intentionally misrepresent the role of science to advance their agendas. I was in a meeting recently
in which an administrator was questioning whether one proposed policy was “scientific,” at the same
time acknowledging that the hypothesis she advanced could not be proved. Of course, the issue
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being discussed was predominantly one of values, not which hypothesis was bearing out best under
experimental testing.

Ideally, of course, we need, particularly for purposes of government work intended to inform policy,
to design our observations and experimental designs to provide answers to carefully thought-out
questions, the answers to which are intended to directly influence policy choices. This happens all
too rarely.

In discussing the role of science in informing policy, I am going to take the opportunity to discuss
a policy problem that has resulted from inattention to some rather basic observational and
experimental information.

Every nation on the planet has the responsibility to help provide for the needs and quality of life for
people. Increasingly, we have recognized that responsibility includes embracing the obligation to
protect the environment. Many people, including myself, believe that obligation includes
responsibility to protect “wildness,” wild places and wildlife. Whether we protect them or not has
huge implications for this and future generations and for how we provide for people and protect the
planet.

The concept of sustainable use has evolved as a goal we can use to achieve both objectives through
balanced mechanism ensuring that our resource use satisfies our needs without undermining future
use. The underlying sustainable use assumption is that you do not have to choose: you can have your
cake and eat it too.

Sustainable use has done a lot of good. In practice, it has promoted environmentally sensitive
management, and the more of that the better. Most of the time, however, development for human
needs alters nature. You cannot have the intensive agriculture, transportation systems, and human
communities people need without making major changes to the sustainability of the natural
environment. You cannot have intensive harvest of timber or grazing or energy development without
significant changes to the sustainability of the natural environment. Such human activities do change
the abundance and diversity of wild living organisms, and they do alter ecological systems. With
respect to those values, in many cases changes are not for the better; they are almost always non-
sustainable.

Sustainable use is a fantasy. And, while it has been very useful in promoting environmental
protection, it belongs in the virtual museum of improbable theories such as perpetual motion.

I suggest that the scientific community in particular must contribute to the conversation about
developing a new paradigm for taking care of people and the planet. I propose that this paradigm
have three elements: 

1. That we subscribe to the notion that all human development be conducted in an
environmentally sensitive manner to maintain environmental quality (air, water, soil, noise,
etc.) That the resulting environmental standards be conducive to maintaining the quality of
life for humans and other life forms. 
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2. That we adopt a proactive strategy for meeting human needs. Already the amount of human
suffering resulting from the lack of basic necessities, clean and healthful living
environments, and the lack of opportunity for productive lives is intolerable. It is a human
tragedy, and a political and environmental powder keg. To the extent that in meeting those
needs, we provide for other life forms as well, that is good and right, but we will accept that
in meeting human needs we are going to sacrifice parts of the planet for ourselves.

3. That we adopt a proactive strategy for protecting wildness. With increasing human numbers,
the days when substantial global wilderness was protected by remoteness are fast receding.
We need to accelerate the protection of such places and their wildlife if we want them
present for future generations. That includes marine places and marine wildlife.

The last topic I want to raise with you is the future of MMS. MMS is an interesting institution. On
the one hand it is the Darth Vader for the environmental community. On the other it is widely
regarded as a professional organization producing practical and credible science and an effective
manager of public resources. MMS is the largest manager of public revenues from marine resources,
and ironically, notwithstanding the Service’s reputation among environmental organizations, it is
a chief source of national conservation funding.

As I noted before, ocean policy experts Biliania Cincin Sain and Robert Knecht have suggested that
we are at the beginning of second generation environmental law where we seek to establish priorities
and reconcile conflict among single uses of marine resources.

I believe MMS has a future as part of this second generation of new authorities. The Service has
taken a major step in this direction with its recent, significant initiatives in marine biotechnology.
I believe that within this century, marine biotechnology products will be the most economically
valuable products we take from the sea. Thanks to the leadership of you and your colleagues,
particularly Ken Turgeon, the Service is well positioned to take a major role in this future.

Here is one more example of what your future role could look like. The most prevalent offshore
structures in this country are navigational aids and oil and gas development structures, the latter
being the most significant in mass and complex in administration. A national debate is now
occurring over how to manage aquaculture structures. In the future, the challenge will be with
renewable energy structures. New uses for offshore structures will increase as they prove to be more
feasible for access to marine resources and as alternative to shore-based facilities. Besides the
authorities provided to MMS for managing oil and gas structures, the only major authority provided
for governing offshore structures is a 19th century law providing for the U.S. Army Corp of
Engineers to judge proposals pertaining solely to navigational concerns. We have a policy and legal
authority vacuum in the face of a clearly coming wave of proposals.

I believe we need a single agency to manage offshore structures, one agency to which a permittee
can apply, an agency to take the lead in NEPA compliance. I would suggest that the substantive
decisions should remain in the domain of the most appropriate agencies, but that conflict resolution
and final siting decisions be with the lead of one agency. I believe that agency should take charge
of collecting revenues for use of the public’s resources. I believe that in designating an agency to



20

take on these responsibilities, we should look to the agency that is most experienced with managing
such structures and most experienced with collecting large revenues from industrial users. I believe
MMS should be that agency.

I urge the MMS to start looking at its basic research and management program and consider what
its expanded role should be as the new oceans act commission starts its work and prepares its
recommendations for the next administration and Congress.
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ABSTRACT

The standing stocks and rates of heterotrophic metabolism of the benthos have been estimated in a
joint U.S./Mexican study at a site on the abyssal plain (3.65 km) of the western Gulf of Mexico
(GOM). Total densities and biomass of the principal size categories of the community (bottom
fishes, megafauna, macrofauna, meiofauna and bacteria) were low, as expected from similar studies
in other ocean basins. The total stock sizes, in terms of organic carbon, were lowest in the largest-
sized organisms and increased in importance as mean size decreased, with the greatest total
biomasses in the bacterial and meiofaunal fractions. The respiration rate of each of the above size
groups was estimated on the basis of mean size, abundance and temperature from established
allometric relationships in the literature. These estimates were incorporated into a carbon budget for
the benthic boundary layer at this site. The total organic carbon remineralization and burial
estimated from the model (10.4 mg C m-2d-1) was more than two times that estimated from the
oxygen consumption in a benthic chamber (ca. 4.0 mg C m-2d-1). A time-dependent numerical
simulation of carbon cycling was constructed from the budget to investigate potential effects of
variations in particulate organic carbon (POC) flux to the sea floor. 

INTRODUCTION

Abyssal plains constitute a significant proportion of the surface of the earth. Although generally
acknowledged as the ultimate sink of detritus from the continents, their biota has long been
considered sparse and depauperate. The abysso-benthic communities of the Sigsbee Deep in the
western GOM, known as one of the flattest surfaces on the deep ocean floor, are less well known
than many other abyssal plains, in spite of its modest depth (3.6 to 3.8 km) and proximity to the
United States and Mexico. Studies in the western basin of the gulf were initiated in the mid-1960s
by Willis E. Pequegnat and his graduate students. This work encompassed the continental slope, rise
and abyssal plain, including what is now well within be the Mexican Exclusive Economic Zone
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(EEZ). These expeditions aboard R/V ALAMINOS included the Caribbean, as well as the GOM.
Faunal groups studied from the deep gulf included the crustaceans (Pequegnat, L., 1970; Firth 1971),
echinoderms (Carney 1971; Booker 1971), molluscs (James 1972), and fishes (Bright 1968), among
others. Studies included both the megafauna and the macrofauna. Tabulation of fish gut contents
were intended to link the two (Rayburn 1975). Photographs of an “iron stone bottom” north of the
Yucatan Strait suggested deep bottom currents can be strong enough in the eastern Gulf to sweep
large areas free of unconsolidated sediments (Pequegnat 1972). The macrofauna appeared to be
grouped into assemblages that were distributed within zones down the slope onto the abyssal plain
(Kennedy 1976), but no justification was found for separating the abyssal plain fauna into
zoogeographic provinces by latitude or longitude.

Anchor dredge samples across the Sigsbee Deep and van Veen grabs from the northern continental
slope and shelf suggested that the deep benthos was depauperate in numbers and biomass, with
values below those in other ocean basins; the mean size of individual macrofauna was in general
smaller than in the Atlantic at similar depths (Rowe 1971, Rowe and Menzel 1971, Rowe, et al.
1974; Rowe 1983). A log-normal relationship between biomass and depth has been confirmed now
for numerous ocean basins (Rowe 1983), but the decline with depth in the gulf appeared to be
steeper than in most basins. The steep decline was attributed to the gulf’s low primary productivity.
 
The most extensive sampling of the sediment biota of the continental slope of the northern GOM
was conducted in the 1980s by LGL Ecological Research Associates, with support from the Minerals
Management Service of the Dept. of the Interior. This consisted of paired Gray-O’Hara or GOMEX
box cores (Boland and Rowe 1991), bottom survey camera lowerings and bottom trawling. The
stations studied included three transects down the continental slope off Texas, Louisiana and
Florida. This work stopped at depths just shy of 3 km and therefore did not extend out onto the
abyssal plain. The work on deep-water benthos at Texas A&M beginning in the 1960s up through
the MMS-supported studies of the 1980s has been reviewed in a concise summary by Pequegnat et
al. (1990). However, little information on the abyssal plain was included because the focus was on
the more recent studies of the northern continental slope. Other documentation of the studies of the
slope include reports to MMS (Gallaway 1988 and Gallaway et al. 1988) and a dissertation on the
polychaete annelid worms (Hubbard 1995). 
 
The Instituto de Ciencias del Mar y Limnologia (ICMyL) of the Universidad National Autonoma
de Mexico (UNAM) initiated extensive studies in the southern GOM with the acquisition of the deep
ocean research vessel JUSTO SIERRA. Mexican biologists are conducting studies of megafauna,
demersal fishes, macrofauna and meiofauna from the continental shelf down across the slope onto
the Sigsbee Abyssal Plain. Stable C and N isotopes have been used to infer pathways through a
benthic food chain (Soto and Escobar-Briones 1995). Deep water studies across the Cordilleras
Mexicanas or “Mexican Ridges” have identified regions that contain enhanced biomass under
surface water masses characterized by accelerated rates of primary production (Escobar-Briones and
Soto 1997; Escobar-Briones et al. 1999). Polychaetes dominated the infauna; they encountered a
mid-slope maximum in abundance similar to that described in the northern gulf (Pequegnat et al.
1990). The fauna could be partitioned into three groups that conformed to depth intervals of > 3 km,
between 1.5 and 3 km, and < 1.5 km. This contrasts with the view of Pequegnat et al. that the slope
in the gulf can be divided into 5 zones. 
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There are several reasons why the deep-living benthos of the gulf might not be similar to that in the
deep western North Atlantic. For example, their geologic histories are very different. The abyssal
plain of the western GOM began formation on the order of 100 x 106 ybp when the Yucatan
Peninsula separated from the North American continental plate to form the present deep basin
(Buffler 1978). Much of the abyssal plain is thought to have been formed by turbidity flows of fine-
grained material originating on the Mississippi Cone. Approximately one to two meters of pelagic
sediments have accumulated since the Holocene. The continental margin south of Texas and
Louisiana and along the western side of Yucatan are both underlain by salt deposits which form
diapiric structures pushing up through the pelagic sediments. Both areas have petroleum deposits
associated with the salt but the degree to which these extend out under the flat sediments of the
abyssal plain is not well-established. Cores from the Sigsbee Knolls in the NE central Sigsbee are
known to be characterized by oily sediments (Rezak et al. 1969).

The western gulf basin has maximum depths of 3.8 km, but this is separated from the Atlantic and
Caribbean by sill depths at 1.5 to 2.0 km stretching between the Yucatan, Cuba and Florida. This
could impede larval dispersal into the GOM at abyssal depths. The deep bottom water of the Sigsbee
Deep is slightly warmer (ca. 4.2oC) than equivalent depths in the Atlantic or Pacific. Thus, all else
being equal, the turnover of organic matter might be slightly faster in the deep gulf than at
equivalent depths in the Atlantic or Pacific Oceans. 

In 1997, a two-ship operation by Texas A&M and UNAM was conducted to add to general
knowledge of the deep gulf biota. The R/V GYRE met the R/V JUSTO SIERRA at a common
station (25°15' N. Lat. x 93°26' W. Long.) on the northern Sigsbee Abyssal Plain, at a depth of 3.65
km. The JUSTO SIERRA traveled up from Tuxpan, sampling along an east - west line across the
Mexican Ridges off Tampico (Escobar Briones et al. 1999), while the GYRE went due south out
of Galveston, directly to the site. According to Escobar-Briones et al. (1999), the sediments at this
site contain 3.8% sand,1.3% organic matter, and 0.17 mg m-3 Chl. a. The near-bottom water contains
6.0 mg L-1 oxygen and 34.8 psu of dissolved salts. As this site is well within the Mexican Exclusive
Economic Zone (EEZ), all sampling conducted from the GYRE was approved a priori by a suite of
Mexican federal agencies. This location in the deep gulf is of potential importance to the economies
of both countries because it lies between, and is potentially underlain by, plentiful offshore fossil
fuel resources (Vargas 1996). The joint study was a component of the longterm Memorandum of
Understanding between UNAM and TAMU. Its specific purpose was to gain a more comprehensive
understanding of community function at a common location in the deep benthic boundary layer of
the GOM. 

METHODS

A large-diameter version of the GOMEX or Gray-O’Hara box core (0.2 m2), as described by Boland
and Rowe (1991), was used to take relatively undisturbed bottom samples. These were subsampled
for meiofauna, bacteria and sediment pore water nutrient analyses with subcores of various
diameters. Plastic hypodermic syringes (20 ml) cut off to make small piston corers were used to
sample bacteria. They extended from the surface of the sediments down to a depth of 8 cm. These
were preserved in 2% formalin and sea water solution filtered through a 0.2 micrometer filter to
exclude contamination. A 20 cm long subcore for nutrient analysis was extruded from the bottom
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and sectioned at 5 cm intervals. The sections were squeezed through paper filters in a stainless steel
press powered with an hydraulic jack. Blanks were run to determine potential contamination by the
filters. Nutrients were analyzed with an AutoAnalyzer using standard colorimetric reactions. Just
prior to squeezing, the sediments on the top of each section were subsampled for bacteria using a
5 ml plastic hypothermic syringe corer. Two ml were taken at each level sampled. The bacteria
samples were stored at 4° C until return to Seattle, where they were analyzed. Approximately 20 ml
of surface mud was scooped with a single table spoon into a plastic bag and frozen for analyses of
organic and carbonate carbon concentrations. The remainder of each core was sieved through 0.25
and 1.0 mm mesh sieves for estimation of macrofauna species composition, abundance and biomass.

Following laboratory procedures described by Schmidt et al. (1998), the sediment bacteria were
diluted, treated with detergent and sonicated to remove the bacteria from sediment particles for more
even distribution on the counting filter. They were then stained with DAPI and counted under an
epifluorescent microscope.

The meiofauna were sampled by taking 5 replicates from each core with a 60 ml hypodermic syringe
barrel. These were preserved whole with 5% buffered formalin in sea water and Rose Bengal stain
aboard ship. Back in the laboratory these samples were sieved through 175 and 53 micrometer sieves
to remove as much sediment as possible and then sorted to major group using a dissecting
microscope. Lengths and diameters of the harpactoid copepods and nematodes were measured using
an ocular micrometer. Their volumes were calculated and used to estimate wet preserved biomass;
this was converted to carbon biomass from published conversion factors (Rowe 1983).
 
The macrofauna were sorted to major group in the laboratory using dissecting microscopes.
Individual organisms were removed from the samples and estimates were made of wet weight
biomass by direct weighing using a microbalance or by measuring individual lengths and widths to
determine volume. Organic carbon biomass was calculated from published wet weight to carbon
coversion factors for each of the major taxonomic groups (Rowe 1983). Following sorting to major
taxa and weighing, the animals were transferred to 70% ethanol. The polychaete fraction, which
constituted approximately 65% of the total macrofauna, was sorted to species. 

Total sediment community respiration was measured using a benthic lander containing a pair of
automatically operated benthic incubation chambers. The lander and its operation have been
described previously by Rowe et al. (1994; 1997). Two plexiglass incubation chambers contain
polarographic oxygen electrodes with internally recording data logger to monitor oxygen
concentrations within the chambers continuously. Oxygen consumption by the bottom and its
contained biota is calculated from the decline of oxygen within the chamber over time, the volume
of the chamber (7 l) and the area of the sea floor it covers (0.09 m2). It was deployed once at the
study site. 
 
Motile scavengers were sampled by attaching a baited trap to the bottom strut of the lander on the
opposite side from the chambers. The trap used was a commercially available minnow trap
constructed of a plastic cylinder 20 cm in diameter and 40 cm long. Each end of the cylinder was
an inward-facing funnel with a terminal hole measuring 2 cm in diameter. The trap was made of
square mesh measuring 5 mm on a side. The trap was baited with codfish tissue measuring 2 x 7 x
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7 cm. This muscle tissue had been frozen but was thawed before deployment. This bait was
protected within the trap in a 100 ml plastic jar into which 1 mm diameter holes had been punched
at 1 cm intervals. The purpose of this container was to allow “scent” from the fish flesh to escape
into the bottom water, but prevent the bait from being consumed. This internal container was wired
in place in the center of the cylinder. The trap was wired onto the bottom horizontal aluminum frame
of the lander so that it would be in contact with the sediment when deployed.

No direct quantitative estimate of sedentary megafauna or bottom fishes was made during the joint
study aboard GYRE and JUSTO SIERRA, but earlier work sampled these important size groups
(Pequegnat1983). The principal sampler used was a benthic “skimmer” equipped with an odometer
wheel to estimate area of sea floor covered (Pequegnat et al. 1970). The anterior “mouth” of the
skimmer measured 3 m wide by 1 m high. The anterior frame of the rigid, hour glass-shaped
structure was covered with1.25 cm galvanized wire mesh and its bulbous cod end was covered with
0.6 cm mesh. The original meter wheel data are available in the field notes taken aboard ship at the
time of sampling; distances travelled averaged several kilometers. The notes from Pequegnat’s work
aboard the R/V ALAMINOS are archived at Texas A&M University’s Department of
Oceanography.

Biomass was not measured in the earlier studies. However archived material enabled us to make size
and weight measurements on preserved specimens 30 years after capture. The material used by us
had been dried for storage (ophiuroid and asteroid echinoderms) or retained in 70% ethyl alcohol
(holothuroids). 

The information on the stock sizes and respiration rates of the biota tabulated in the joint study are
put together in a carbon budget to allow a comparison of how carbon is both stored and cycled
within an ecosystem. The respiration of the individual groups of metazoans was estimated
independently from known size and temperature relationships in the literature (Grant and
Schwinghamer 1987; Mahaut et al. 1995; Cruz Kaegi 1998). The rate constants for the size groups
were multiplied by total biomass per square meter to give conversion of organic matter to CO2. The
estimates of respiration for each size category were then used to partition the flow of organic matter
through the food web. Secondary production in the metazoans was assumed to be 10% of the
assimilated carbon (P/R=0.1). For the bacteria however it was assumed that the growth and
respiration are equal (P/R=1). This growth efficiency is somewhat higher than those in previous
studies of deep-sea sediment bacteria reviewed by Deming and Baross (1993), but is similar to
several of the measurements described in Relexans et al. (1996). Using a lower growth efficiency
(a lower P/R) would increase the carbon remineralization relative to biomass production that is
necessary to meet the organic carbon requirements up the food chain. This would increase the total
SOC, thus increasing the disparity between the model estimated SOC and the SOC measured by the
lander. 

Given the information generated on the respiration rates of each of the components above, along
with our assumptions concerning P/R, we calculated predator-prey exchanges required to maintain
steady state. This is a step-wise analysis that has been utilized previously on benthos in the
Demerara Abyssal Plain (Rowe and Deming 1985) and on the continental margin off NE Greenland
(Rowe et al. 1997). The resulting solutions for the predator-prey relationships are not unique, but
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are based on inferences about how the size classes are most likely partitioning their resources. The
POC input term was assumed to be the sum of the losses to respiration and burial because POC flux
has not been measured in the deep GOM. The simulation of the coupled equations of state for the
standing stocks is solved numerically using the software application program STELLA II.

RESULTS

Bacteria

The standing stocks of the size categories of the biota have been grouped together, in terms of
biomass and numbers per square meter, for comparison (Table 2.1). Bacteria densities (Figure1)
declined from the sediment-water interface into the sediments. The values in the 8 cm deep cores
had a mean value that approximated the mean value over the top 8 cm in the profile. The values in
Table 2.1 are a vertical integration to the bottom of the core. The variation around the mean is the
Standard Deviation of the mean of the 8 cm long cores. The “counting error” of similar studies
conducted on deep-sea sediments by this laboratory is approximately 22%. The biomass is the mean
value (Table 2.1) multiplied by a standard conversion factor for carbon per cell for deep-sea bacteria
(10-14 g C per cell, from Williams and Carlucci 1976) used previously in sediment bacterial biomass
estimates (Rowe and Deming 1985) .

Table 2.1. Standing stocks of benthic biota at 3.65 km depth site in the NW Gulf of Mexico. Values
in parentheses are numbers of replicates (n) and ± standard deviation. 

TAXON ABUNDANCES BIOMASS

Bacteria 6.9 x 108 cells/ml*
(n=5, ± 1.2 x108)

408 mg C m-2-20 cm

Meiofauna 2.87 x 105 ind. m-2

(n=25, ±8 x 104)
83 mg C m-2 
(n=25, ±22)

Macrofauna

Total

318 ind. m-2 (macrofaunal taxa)
490 ind. m-2 (meiofaunal taxa)
808 ind. m-2 

32.5 mg C m-2

(n=5, ±15.3 mg C m-2)

Megafauna**
(Asteroid Dytaster insignis (sea star)
and holothuroid Benthodytes typica
(sea cucumber))

10.5 ha-1 0.15 mg C m-2

Scavengers
(Eurythenes grillus, amphipod
crustacean)

21 per 20-hour trap deployment 

* Reported as per gram dry sediment in Figure 2.1; ‘per ml’ used for carbon budget (Figure 2.2).

** from Pequegnat, 1983
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Figure 2.1. Bacterial abundance (per gram dry sediment); and ammonium and nitrate concentrations
(micromoles) in sediment pore waters as a function of depth (cm) into the sediments.
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Pore Water Nitrate and Ammonium

The concentrations of nitrate and ammonium in the interstitial water have been plotted as a function
of depth into the sediments (Figure 2.1) along with the bacteria. The NH4

+ ranged from a low of 25
micromoles at 5 cm up to almost 200 micromoles at the deepest sample. The pattern with depth was
not smooth but erratic. By contrast, the NO3 declined smoothly from a high of 70 micromoles near
the sediment-water interface down to a minimum at the deepest sample, the inverse pattern of NH4

+,
as expected. The bacterial densities followed much the same pattern relative to sediment depth. The
patterns suggest that nitrification is occurring in the top few cm’s but denitrification is being utilized
in heterotrophic remineralization down to the bottom of the core.

Meiofauna

The mean density of meiofauna-sized organisms was 2.87 x 105 m-2 (s=+8 x 104, n=25). They were
composed primarily of nematodes, accompanied by harpacticoid copepods. Wet preserved weights,
based on volume, had means of 6.8 micrograms for the nematodes and 3.4 micrograms for the
harpacticoids. While it is not unusual for the nematodes to be numerically dominant, it is unusual
for them to be bigger than the crustaceans. Mean biomass was 82.9 mg C m-2 (s=+22, n=25), based
on conversion of the wet weights to carbon (Rowe 1983). 

Macrofauna

The mean macrofauna density was 318 indiv. m-2 (s=+159, n=5), composed of macrofauna taxa
(polychaetes (65%), molluscs (9%) and crustaceans (27%)). In addition, there were 490 ind. m-2

(s=147, n=5) belonging to meiofaunal taxa (harpacticoid copepods, nematodes and ostracods).
Biomass of all taxa retained by the 0.25 mm sieve was 32.5 mg C m-2(s =+15.3, n = 5). The mean
weight therefore was 0.05 mg C ind-1, based on the total of 808 ind. m-2, regardless of taxon. 
 
Out of a total of 146 individual polychaete annelids in the 5 cores, 96 different species were
encountered. Of these, 61 occurred only once. The highest number for any species was only 8
individuals, a paraonid, possibly Aedicira sp. Only four species out of the total occurred in more
more than one box core. Thus, each box core was almost entirely different from the others. The
mean H’(s) for the polychaetes of individual 0.20 m-2 cores was 2.78 (s=+0.32, n=5). The H’(s)
calculated with the samples lumped together was 4.03. 
 

Megafauna

The deep gulf summary by Pequegnat (1983) revealed that megafauna on the abyssal plain was
substantially reduced in both numbers and species compared to the continental slope. The
megafauna was dominated by the carnivorous sea star Dytaster insignis and the surficial deposit
feeding sea cucumber Benthodytes typica. Both of these species had wide bathymetric distributions
that extended well up onto the continental slope. Other, less abundant megafauna species were also
observed with some regularity. This included the brittle star Ophiomusium planum, which reached
high densities in isolated locations. Other species observed were the sea cucumber Psychropotes
semperiana and the penaeid crustacean Benthesicymus cereus/iridescens. A number of other large
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crustacean species were observed in these earlier studies, but it is not clear if they are living near the
bottom or were captured up in the water column (Nematocarcinus ensifer, for example). Information
on the fish populations in the Sigsbee Deep is meagre, with only 4 species listed by Pequegnat for
depths equivalent to or greater than our site. 

The sea star D. insignis, according to Pequegnat, had mean densities of approximately 5 per hectare
at depths of 3.6 km. B. typica reached similar values: from 4 to 7 individuals per hectare. Lower, less
reliable numbers were observed for the large crustaceans B. cereus/iridescens and Nematocarcinus
ensifer and the sea cucumber P. semperiana. It is not known if the crustaceans were caught on the
bottom or in the water column. 

The D. insignis had a mean dry weight of 2.88 g per individual (s=+2.2, n=11). Mean disk diameter
was 23.3 mm (s=+9, n=11). The holothurian B. typica individuals had been preserved in 70%
ethanol and their mean wet preserved weight was 4.04 grams per individual (s=+1.4, n=13). They
had a mean length of 6.6 cm (s=+1.1, n=13) and a diameter of 1.7 cm (s=+0.35, n=13). Thus, the
sea star had a mean dry weight of 14.4 g per hectare and the holothurian had a mean wet weight of
22.2 g wet preserved weight per hectare. The latter value would be equivalent to approx. 3.3 g per
hectare dry weight (Rowe 1983). The two species together would be equivalent to approximately
1.77x10-3 g dry weight m-2. 

Scavengers

In the baited trap, a single species was sampled: the cosmopolitan amphipod crustacean Eurythenes
grillus. A total of 21 were captured, ranging in size from 5 mm to 4 cm. The abundance in the trap
can be compared with other studies as a comparison, but no absolute estimates of abundance are
possible. The trap had been in the water for 20 hours. 
 

Sediment Community Oxygen Consumption (SOC)

Only one of the two oxygen electrode recorders functioned properly, and the decline in oxygen in
the chamber was equal to a value was 0.186 millimoles O2 m-2hr-1. This is equivalent to
approximately 4.0 mg C m-2d-1(as CO2)

The incubations were not completed because the lander left the bottom prematurely. [A backup
corrosive link dissolved more rapidly than predicted.] As a result, no syringe samples of chamber
water were taken at the end of the incubations. The oxygen demand estimate is based on the data
logged from the oxygen electrode.

DISCUSSION

Food Web Carbon Budget

The information above on stock sizes and respiration rates have been put together as a carbon budget
(Figure 2.2). The total stock size in the detrital organic carbon and bacteria compartment is the sum
of the measured carbon summed over a depth of 20 cm, plus the bacteria integrated to 20 cm. The
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first step in creating the budget is to calculate respiration rates and growth rates, based on allometric
relationships established in the literature (see Methods). Once the respiration and growth rates are
calculated for each size group, the trophic transfers are calculated from the steady state equations
by forward elimination. The input term is assumed to be the sum of all the loss terms (respiration
and burial). The mean rate was 10.4 mg C m-2d-1. 

The largest total stock sizes were located in the smaller organisms at the bottom of the food web.
The smallest size group, the bacteria, was almost an order of magnitude larger in total mass than the
other size groups. As mean organism size increased, total biomass decreased. Likewise, as size in-
creased, the metabolic rates decreased. In this particular budget, the microbiota have been lumped
with the detrital organic matter because it is not possible to separate the relative contributions of de-
tritus and bacteria in the food web. Almost 50% of the total input was remineralized by the microbial
component. A close second was meiofauna respiration. By comparison, the other respiration flows
were relatively low. Predation by the megafauna and the fishes was estimated to be extremely small
orders of magnitude lower than the fluxes that characterize the bacteria, meiofauna and macrofauna.

Burial of organic carbon was calculated from long-term rates of sediment accumulation.
Approximately one to two meters of Holocene pelagic sediments, composed primarily of foram
ooze, are spread over the entire Sigsbee Deep. Thus, the rate of accumulation is ca. 100 to 200 cm
per 13,000 years; at the time scales of our budget this is ca. 0.0115 cm y-1. Multiplying this by the
concentration in a 1 cm thick layer (22.4 g C m-2-cm) gives a burial rate of ca. 0.7 mg C m-2 d-1. This
is about 7% of the total estimated flux remineralized by the biota.

Deming and Baross (1993) reviewed the relationships between sediment bacteria and depth, organic
carbon and POC input. They found that the best predictor of total bacterial biomass was POC input.
Based on their regression we would estimate that the input of POC at our site would be
approximately 22 mg C m-2 d-1. These estimates can also be compared with values of Relexans et
al. (1996), who measured metabolic rates of sediment bacteria in 3 areas off NW Africa. They
introduced trace quantities of 14C labelled dissolved free amino acid (DFAA) mixtures at in situ
pressures and temperatures. Utilization rates increased from approximately 2 to 6 mg C m-2d-1 as a
function of biomass increases of 150 up to 650 mg C m-2-20 cm. Our biomass (ca. 408 mg C m-2-20
cm) would equate to approximately 3.7 mg DFAA-C m-2d-1 in their regression. This estimate
however does not include other compound classes (lipids and carbohydrates) presumed to be
available to the bacteria in the DOM pool.

A fair number of trawls have been taken across several other continental margins, thus making it
possible to compare densities and biomass of megafauna and fishes with the gulf. Lampitt et al.
(1986) for example plotted log10 biomass of total invertebrate megafauna as a function of depth in
the NE Atlantic. Their regression line predicts that 0.31 g wet weight m-2 should be encountered at
3.7 km depth. Haedrich et al. (1980) measured a wet preserved weight of ca. 0.08 g m-2 of fishes and
0.05 g m-2 of megafaunal invertebrates (echinoderms and crustaceans) between depths of 3.2 and
3.7 km in NW Atlantic, suggesting that the abundance and biomass of these groups is lower there
than in the east Atlantic. The lower value above is appreciably higher than our estimate in the gulf
(0.006 g wet preserved weight m-2= ca. 0.16 mg C m-2, Figure 2.2); thus, compared to the Atlantic,
the deep gulf appears to be relatively depauperate. 
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Figure 2.2. Conceptual model and carbon budget of the benthic food web on the western Sigsbee
Deep abyssal plain, at a depth of 3.65 km. Values in parentheses are the biomass of each
variable in (mg C m-2) integrated over a sediment depth of 20 cm. No values are given
for the fish because no data are available. Fluxes between boxes are flows of carbon in
units of mg C m-2 d-1.
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SOC has been measured at a site on the deep abyssal plain in the eastern gulf, and the rate measured
was approximately l.5 times what we measured (Hinga et al. 1979), which is within the usual
experimental error for this type of measurement. These two gulf values are in general near the low
end of comparable sites (Smith and Hinga 1983), being above the west Atlantic (Rowe et al. 1994),
but below the east Pacific (Jahnke and Jackson 1991; Smith 1992; Pilskalin et al. 1996) at
comparable depths. 

Total carbon residence time in both the living and non-living components can be estimated by
dividing the stock size by the flux rate. This gives residence times of 54 days for the living biota and
118 years for the detrital organic carbon, using the sum of the respiration rates based on the size and
temperature model. Based on the lander value, the residence times increase to 131 days for the biota
and 307 years for the non-living fraction because the lander value is less than half model estimates.

Time-Dependent Simulation

The carbon budget above can be put into a set of coupled time-dependent differential equations. The
input term can then be varied in order to investigate the responses of the stock sizes and the fluxes
to changes in the input term. The changes in the input might be natural temporal or spatial variability
or new perhaps alien sources of organic matter such as drilling mud, dredge spoils, etc. 
 
Each state variable (stock or box) is represented by a differential equation in which the concentration
(stock size) is equal to the flows (arrows) into the stock minus the flows out of the stock. At steady
state, the flows in (+) equal the flows out (-). Because these equations are coupled, they can be
solved simultaneously to estimate the size of each stock over time. Experiments can be run to
estimate the effects of changes in input, growth efficiencies, predation rates, etc., on the biomass of
each stock as a function of time. This includes transient storage as living biomass, transfer between
trophic levels and remineralization into metabolic CO2. A term is also included for long-term burial.
As in the budget above, all units for stocks are mg C m-2 and fluxes are mg C m-2-d-1. Equations for
each stock are

d[Macrofauna]/dt = Deposit feeding + Predation (on meiofauna) - Respiration (by
macrofauna)

d[Megafauna]/dt = Predation (on macrofauna) - Predation (by fishes) - Respiration
(by megafauna)

d[Meiofauna]/dt = Grazing - Predation (by macrofauna) - Respiration (by
meiofauna)

d[Sediment organics and Microbiota]/dt = Input of POC - Longterm burial - Deposit
feeding by macrofauna - Grazing by meiofauna - Respiration(by microbiota)

Initial conditions are defined as the mean values of the stocks represented in Table 2.1 and the boxes
in Figure 2.2. Respiration rates are parameterized as first order decay rates dependent on the size
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of the stock. Respiration constants, with units of d-1, are calculated by dividing the rate by the stock
size. 

Megafauna Respiration = [Megafauna] * kmegafauna respiration

Microbiota Respiration = [Sediment organics and microbiota] * kOC&microbes

Macrofauna Respiration = [Macrofauna] * kmacrofauna respiration

Meiofauna Respiration = [Meiofauna] * kmeiofauna respiration

The respiration rate constants were calculated by dividing the stock size into the flux. The values
follow:

kmegafauna respiration  = 0.0019 

kOC&microbes =0.01189 

kmacrofauna respiration =0.0169 

kmeiofauna respiration =0.0518 

The units are days (d-1). 

Fluxes attributable to trophic transfers such as predation, deposit feeding, etc., are first-order fluxes
that are functions of donar stock size and a coefficient (listed below) having units of days (d-1), as
follows:

Deposit feeding = [Sediment organics and microbes] * k1

Grazing = [Sediments organics and microbes] * k2

Predation of macrofauna on meiofauna = [Meiofauna] * k3

Predation of megafauna on macrofauna = [Macrofauna] * k4

Predation of fishes on megafauna = [Megafauna] * k5

with the following feeding rate coefficients:

k1 = 2.966E-4

k2 = 0.01159

k3 = 0.00482
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k4 = 1.23E-5

k5 = 1.91E-4

The largest stock size by far is the detrital carbon in the surficial 20 cm of sediment (approx. 400
to 500 g C m-2-20 cm; Figure 2.2). This is about what would be expected along any continental
margin, based on similar studies (Rowe et al. 1991). The widely-recognized problem with this stock
is that little quantitative information is available on what fraction of the pool can be utilized by the
heterotrophic biota. The assumption was made in earlier models that only a small fraction of the
stock is available, and in earlier models this small fraction was used in the calculation of the donar-
dependent rate constants. If the entire stock is used, then the rate constants are very small and the
effects of variations in the input term on community dynamics are very small. The large pool of
carbon effectively dampens the responses to variations in input. One alternative has been to assume
that the reactive carbon is found only in the top few centimeters of sediment (Khripounoff and Rowe
1985). At our site however nitrate declines continuously throughout the top 20 cm (Figure 2.1), thus
suggesting that degradation of organic matter is not limited to the surface but is continuing to depth
via denitrification (Christensen and Rowe 1984). In the models for our site a full spectrum of
possibilities was run, with the extremes being a pool of detrital carbon in which the entire stock
(400-500 g C m-2-20 cm) was reactive, albeit at extremely low rates, versus a condition in which
only the living carbon (the bacteria) in this stock was reactive. In the latter case the detritus is
effectively non-existent because it is completely unreactive or refractory. We present the results of
the latter extreme, in which the assumption is made that the standing stock of the reactive organic
matter is limited to living bacterial biomass (408 mg C m-2-20 cm). 

As in previous models (Rowe et al. 1997; Rowe 1998), a time-varying function has been used to
represent seasonal changes in primary production in surface waters. The POC input varies over a
365 day cycle from a minimum of 8.4 up to a maximum of 12.4 mg C m-2d-1 . The equation for the
input in the STELLA II code is the following: 

Rain of Organic Particles = IF(Seasonal Variation<0)THEN(8.4)ELSE(8.4+Seasonal
Variation*12.4)

where Seasonal Variation = Sine(pi*days/182.5). This means that during 6 months of the year the
rain into the bottom is 8.4 mg C m-2 d-1, whereas during other 6 months the rain follows a sine curve,
with a maximum of 12.4 mg C m-2 d-1.

Each standing stock has been plotted as a function of time (Figure 2.3). The results suggest that
organic matter input (mg C m-2-d-1) that varies on a seasonal basis will be reflected throughout the
food web. The largest variation is seen in the smallest animals, which also have the highest
respiration and feeding rates. The changes in the larger organisms are small by comparison. A lag
on the order of several weeks can be seen between organic matter in sediments and bacterial
biomass. The lag cascades through the food web such that the largest group, the megafauna, has
peak biomass values at the times when the organic matter in the sediments is lowest. Most of the
organic matter is recycled into CO2, rather than being transferred up the food chain. The mean input
of organic carbon needed to balance the simulated utilization [based on calculated respiration rates]
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Figure 2.3. Variations in biomass of the bacteria (top), meiofauna (middle), and macrofauna (bottom) as a function of time in
response to a seasonal input of organic matter (POC) from the water column. Units are mg C m-2.
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reflects values that might be encountered at equivalent depths along many continental margins
where similar studies have been conducted. 

The lags in response to the input of organic matter and the translation of lags along the food web
suggest that predicting the times of the year that highest biomass or greatest community respiration
rates will be encountered will not be simple. The works of Muller Karger et al. (1990) and Walsh
et al. (1989) have documented that highest plant biomass occurs in the winter when mixing is
greatest. Thus, according to our analysis, highest biomass and respiration values in deep water
would be encountered during the following summer.

Experiments have also been run to estimate the effects of constant step-like increases. These result
in a ramp up of all rates and biomass values with steady state being reached for each group at
various time periods. The smaller organisms reach steady state in relatively short periods (weeks to
months), but the larger organisms take months to years, depending on the increase in the input term.
This type of shift up could be used to investigate the effects of organic loading from alien sources
such as drilling mud, dredge spoils, etc. 
 
The model can be validated by measuring changes in biomass over time or by measuring respiration
rates. The lander incubation value can be regarded as an independent assessment of the combined
respiration of the organisms living within and on the sediments. In our single measurement, we
discovered that the mean rate of POC utilization predicted from the simulation is approximately 2.2
times higher than the direct measurements of sediment community respiration obtained using the
benthic lander at this site (9.7 vs. 4 mg C m-2d-1). Thus, the indirect estimates of respiration based
on mean biomass, total biomass and temperature need adjustment.
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Phytoplankton distribution and abundance in Gulf of Mexico (GOM) waters has been reviewed at
decadal intervals over the last 30 years, first by Bjornberg (1971), then by Iverson (in Iverson and
Hopkins 1981), and most recently by Vargo (in Vargo and Hopkins 1990). Most of the primary
literature these reviewers cited focused on the continental shelf. Moreover, Vargo, in particular,
noted that much of the information for his review came from studies conducted 10 to 20 years before
1990. In fact, data collected by expeditions in the 1960s and 1970s remain the basis for the general
paradigm that standing stocks and productivity of phytoplankton are both quite low seaward of the
shelf-slope break in the Gulf of Mexico. In the review for this Fish and Fisheries Workshop, we
support that description of the mean state but we also show that research carried out since 1987
indicates “hot spots” in primary production occur when/where nutrient availability is locally
enhanced, even in deepwater seaward of the shelf-slope break. 

In the late 1960s, Soviet scientists characterized the deepwater GOM as very low in standing
plankton biomass and with mean primary productivity of just 100-150 mg C m-2 d-1 (Koblenz-
Mishke et al. 1970). A few years later, extensive surveys of phytoplankton chlorophyll and primary
production that span the period 1964-1971 were summarized by El-Sayed (1972) in atlas format,
as averages within 2° squares of latitude and longitude. In the atlas, low values of primary
production (< 0.25 mg C m-3 h-1) are typical. When integrated from surface to base of the photic
zone, most 2° squares total < 10 mg C m-2 h-1. If there are on average 12 h of sunlight per day, this
rate is equivalent to < 120 mg C m-2 d-1 and so is in good agreement with characterization by
Koblenz-Mishke et al. Allowing for primary production to proceed 300 days a year in the GOM
because of its subtropical climate, this rate of primary productivity is < 36 g C m-2 y-1. As a
consequence, the deepwater GOM is usually placed at the low end of the estimated range of 50-160
g C m-2 y-1 that is generally accepted for the annual gross primary production in open-ocean
ecosystems (Smith and Hollibaugh 1993).

When essential plant nutrients are limiting, any process that increases the nutrient concentrations
available to the phytoplankton in the deepwater GOM will increase primary productivity. It is well
known that freshwater inputs carry high nutrient loads, but in the GOM these high nutrient inputs
are usually measurable only close-in to rivers and estuaries (Lohrenz et al. 1999). An exception
occurs, however, when surface currents set up off-shelf flow that carries the river water seaward past
the shelf-slope break and into deepwater. In mid-summer 1998, low salinity Mississippi River water
was entrained and wrapped clockwise around the periphery of a warm slope eddy that altimetry
showed was centered near 28.5°N, 87°W. A comparison of the salinity and chlorophyll fields shows
that surface chlorophyll concentrations in this river water exceeded 2 mg m-3 and that the patches



45

of highest surface chlorophyll corresponded spatially to the patches of lowest surface salinity. In
fact, NEGOM fieldwork documented similar situations in subsequent summers 1999 and 2000 and
GulfCet II fieldwork documented entrainment of low salinity “green water” and its transport off-
shelf in the previous summer 1997. We suggest entrainment and transport off shelf may be the rule,
rather than the exception, when/where a warm slope eddy is present in the NE Gulf.

Recently, Wiseman & Sturges (1999) reviewed some large and mesoscale motions that might
enhance the availability of nutrients for primary production. They pointed out that the high velocity
periphery of slope eddies (and other eddies) are regions of high vertical shear and thus might be
expected to be areas of nutrient upwelling as well as regions of nutrient-rich river water entrainment.
In fact, direct measurements of 14C uptake confirm that anomalous high primary production occurs
at stations in the high velocity periphery of warm slope eddies sampled west of the NEGOM field
area. Gonzalez-Rodas (1999), who summarized primary productivity measurements that he made
on six LATEX cruises, reported two prominent hot spots in deepwater primary production ( > 2.5
g C m-2 d-1) on these six cruises. In August 1993 and again in November 1994, productivity near
27.5°N and 92°W was 10-fold or more higher than typical for the oceanic Gulf over the upper
continental slope. In summer 1993, the northern edge of Loop Current Eddy (LCE)-W was
interacting with the continental margin between 91° and 93°W; the locally high shear there
apparently fueled a region of anomalously high deepwater primary production. This eddy had a
diameter of some 250 km; at the location where the productivity was measured, the geopotential
anomaly was about +20 cm and current speeds were about 60 cm sec -1 (see Table 5 in Gonzalez-
Rodas 1999). In fall 1994, the northern edge of another anticyclone, LCE-Y, was interacting with
the continental margin again between 91° and 92 °W. This eddy was even larger in diameter (320
km) and presented a geopotential anomaly of +36 cm (from Table 5 in Gonzalez-Rodas 1999).

The deepwater Gulf of Mexico has been considered a biologically impoverished ocean in terms of
zooplankton, ichthyoplankton, and micronekton as well as phytoplankton, since on average the
standing stocks of plankton and fish seaward of the shelf break are lower than those found in
temperate and higher latitude regions. Previous reviewers have reinforced this perception (e.g.
Hopkins, writing in Iverson and Hopkins 1981, and in Vargo and Hopkins 1990). 

However, relegating secondary production in the GOM to oligotrophic status is an
oversimplification, because standing stock levels are not uniformly low but are instead punctuated
by spatial and temporal variation greater than that found in most other oligotrophic oceans. This
variability may be manifested as spatial and temporal “hot spots” of increased biomass. For
example, Khromov (1969a, 1969b) reported that while zooplankton standing stocks in the tropical
oligotrophic Caribbean Sea were almost always low and did not exceed 10 ml wet displacement
volume (WDV) per 100 m3 in waters offshore of the shelf/slope break, GOM stocks exhibited more
seasonal, interannual, and spatial variability, with biomass levels as high as 35 ml WDV per 100 m3

(range < 5 - 35). Hopkins and Lancraft (1984), who compared integrated wet weight biomass of
zooplankton and micronekton in three tropical-subtropical oceans (Caribbean Sea near Puerto Rico,
Gulf of Mexico at 27°N x 86°W, and Pacific Ocean near Hawaii), found that GOM levels were the
highest in both categories (if large medusae were included in the micronekton total). Although more
recent studies of GOM biomass do generally reveal low standing stocks, reported estimates can vary
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by a factor of 10 or more from the minima within a given study (Biggs et al. 1988; Richards et al.
1993; Wormuth et al. 2000). 

Finally, the deepwater ichthyoplankton community includes the larvae of commercially important
species such as tuna, mackerel, billfishes, and swordfishes (Vargo and Hopkins 1990), and
commercial fisheries do exist for the adults in the Gulf of Mexico. The deepwater GOM is also
habitat for substantial populations of marine mammals, sea turtles, and seabirds (Davis et al. 2000).
The presence of sizeable populations of such apex predators in the deepwater GOM implies a
reliable supply of lower trophic level prey resources (Biggs et al. 1988) and suggests that underlying
physical processes allow “oases” of biological productivity to develop in the mostly oligotrophic
deepwater GOM.

We suggest that these deepwater “hot spots” of zooplankton, micronekton, and ichthyoplankton
occur when primary production is enhanced by coarse to mesoscale eddies, as described above.
Lamkin (1997) showed that larval fish were associated with the Loop Current and periphery regions
of companion cyclones and anticyclones, and recently Wormuth et al. (2000) documented that
deepwater cyclones had locally higher standing stocks of zooplankton and micronekton than did
LCEs. These features may not be revealed by coarse sampling or averaging of measurements across
large temporal and spatial scales. However, combining alternative techniques such as acoustical and
optical techniques with traditional direct sampling with nets can provide zooplankton-micronekton-
ichthyoplankton data with sufficient resolution to examine temporal and spatial trends in a manner
impossible with net sampling at single discrete locations. This capacity is also useful given the
growing amount of coarse to mesoscale oceanographic data available from satellites. A combination
of net, acoustical, and optical techniques appears to be the optimum way to study variations in
zooplankton and micronekton standing stock biomass, and such a unification of technologies will
lead to better understanding of the interaction of hydrography and ecology in the deepwater Gulf
of Mexico. 

In summary, expeditions in the 1960s and 1970s are the basis for the general paradigm that standing
stocks and productivity of phytoplankton are both low (< 0.1 mg chl m-3; < 150 mg C m-2 d-1)
seaward of the shelf-slope break in the Gulf of Mexico. The present review supports this description
of the mean state (stable state) but also shows “hot spots” in primary production (> 2 g C m-2 d-1)
occur when/where nutrient availability is locally enhanced seaward of the shelf-slope break (Biggs
and Ressler, in review). Fundamental nutrients-phytoplankton-zooplankton (NPZ) food chain theory
(summarized by Lalli and Parsons 1997) forecasts that enhanced primary production, if sustained,
will support increased zooplankton, ichthyoplankton, and micronekton production. Available
evidence from the GOM is that deepwater “hot spots” that are temporally persistent have higher
stocks of zooplankton and micronekton, even when the specific locations of such “oases” are
spatially variable along the continental margin. Continued study and assessment of plankton and
micronekton within these “hot spots” is warranted, since these organisms ultimately serve as food
for higher trophic level predators, including commercially important fish species, federally protected
marine mammals, and seabirds.
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ABSTRACT

Fish aggregating devices (FADs) have recently been utilized around the world and have been shown
to have large effects on fish and fisheries, particularly tunas and tuna fisheries. Other pelagic fish
species also are aggregated and impacted by FADs. Fishery problems and potential problems have
been identified with FADs, primarily increased relative catch of smaller/younger fish and potential
changes in distribution and migration. FADs also can have positive effects, primarily making fishing
more effective and efficient. Important and valuable commercial and recreational fisheries have been
established by deployment of FADs. The offshore oil and gas industry in the Gulf of Mexico (GOM)
recently has been expanding into deep waters of the outer continental shelf and slope where petro-
leum structures have the potential to act as FADs. A project is being conducted by the U.S.
Geological Survey – Biological Resources Division (USGS-BRD) in collaboration with the Minerals
Management Service (MMS) to assess and anticipate potential impacts of increased numbers of
deepwater petroleum structures on highly migratory fish species in the GOM. Preliminary review
of scientific literature on FADs suggests that processes and factors involved in fish aggregation by
objects are complex and that the current scientific understanding of FADs is insufficient for predic-
tion of the potential fish aggregating impacts of deepwater petroleum structures in the GOM. Al-
though present understanding of FADs suggests that deepwater structures are likely to have measur-
able impacts, direct research and study may be needed to assess fully and to estimate such impacts.

INTRODUCTION TO THE IN-PROGRESS PROJECT

The project described below is designed to assist the MMS in assessing the degree to which
petroleum structures in deep waters of the northern GOM may function as FADs and thus may result
in biological impacts on highly migratory species (HMS) and other pelagic fish species in the Gulf.
The project was described at the Gulf of Mexico Fish and Fisheries: Bringing Together New and
Recent Research workshop to disseminate information about project’s existence and its goals, to
contact other GOM fishery scientists and managers, and to involve, in our ongoing work, those with
pertinent information and experience.

WHAT ARE FADs?

The term fish aggregating device (FAD) is usually applied to two categories of floating objects that
attract and aggregate fish. The first is comprised of floating objects that are moored or anchored,
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while the second consists of those objects that are free drifting. The functioning of the two
categories of FADs, in terms of aggregating fish, is similar, but may be different because of many
factors by which the two types of FADs are inherently different. A complete discussion of FADs
is beyond the scope of this paper. In this paper, we focus on deepwater FADs and associated pelagic
fish species, although FADs in coastal waters may function differently and attract different species.
The following summary is presented to provide context and perspective for our current project. 

The use by fishermen of objects to attract and aggregate fish probably extends back to ancient times.
The earliest FADs were probably anchored, floating rafts of bamboo, locally called payaws, that
were traditionally deployed by artisanal fishermen in the Philippine Islands in the early 1900s
(Anderson and Gates 1996). Payaws were commercialized around 1975, when purse seiners began
to set nets around them (Dickson 1999). The use of anchored FADs similar to payaws soon spread
throughout the region and around the world. Recent moored FADs are constructed of man-made
materials and are often highly engineered. They have been used particularly in oceanic island
nations, where they can be deployed in depths shallow enough for mooring, yet be close to deep
pelagic environments. In places like Hawaii, where there currently are 52 FADs moored at locations
around the island state, FADs are used by both commercial and recreational fishermen (Higashi
1994; Holland 1999). Moored FADS are also widely used in the Mediterranean (D’Anna,
Badalamenti and Riggio 1999). With the exception of experimental midwater FADs studied in
coastal waters (Klima and Wickham 1971; Whickham and Russell 1974) and experimental moored
FADs on the NW coast of Cuba, which were successful in aggregating skipjack tuna (Martin 1999),
the GOM  is probably the only large area in which deepwater FADs have not been purposely
utilized.

The other category of FADs, free-floating objects, has become exceedingly important over the last
decade. Tuna fisheries, particularly purse seine fisheries, like those in the eastern tropical Pacific,
have taken advantage of the propensity of tunas to aggregate around floating objects. Originally,
such fisheries caught tunas from around natural objects like logs or even dead marine mammals.
In the Pacific, a large part of the purse seine landings were taken by setting on pods of dolphins,
to which tunas, for still unknown reasons, are attracted and aggregate. Because of concerns about
mortality of dolphins and the advent of so called “dolphin-safe” tuna, the eastern Pacific tuna fleet
shifted away from setting on dolphins and began to concentrate on natural “logs” starting around
1992. At the same time, fishermen began to deploy artificial objects in the open ocean in order to
aggregate tunas (Lennert-Cody, Garcia and Hall 1999). Recently, man-made drifting FADs
technology has become very sophisticated, and some FADs even have radio transmitters, echo
sounders (for detecting schools of tuna) computers (for storing echo sounding data and controlling
radio transmissions to fishing vessels), underwater lights, and satellite tracking (Fonteneau et al.
1999).

The use of FADs (natural and man-made) has accelerated to the point that in 1998, 55% of the
eastern Pacific tuna purse seine effort was expended in setting on schools around FADs or logs
(Tillman 1999). Exact catch statistics are difficult to obtain, but because catch success is much
higher around floating objects, it is clear than the largest part of the eastern Pacific tuna catch
presently comes from around FADs.
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1 Euorpean Union press release, 20 October 1999. http://europa.eu.int/ com/ fisheries/news_corner/press/info65-en.htm.

2Gary Matlock, NOAA, National Marine Fisheries Service, U.S. House of Representatives, House Resources
Subcommittee testimony, 15 July 1999.

FISH SPECIES ASSOCIATED WITH FADS

The fish species that are attracted and aggregated by FADs in deepwater environments are primarily
pelagic species. They can be further subdivided into highly migratory species (HMS) and coastal
pelagic species.

The term HMS is used by the National Marine Fisheries Service to include tunas, marlins, swordfish
and certain pelagic sharks (NMFS 1999). The most important group of fish associated with FADs
are the tunas, particularly skipjack (Euthynnus pelamis), yellowfin (Thunnus albacares), and to a
lesser extent, bigeye (Thunnus obesus) tuna (Freon and Misund 1999). Marlins are considered to
associated with FADs (Hall et al. 1999), and in places like Hawaii and Australia, moored FADs are
favored areas for recreational billfishing. Swordfish, however, have not been reported to be
aggregated by FADs. Several species of sharks have been noted to associate with FADs. Other
oceanic, migratory species (not included in the NMFS HMS definition) such as dolphin
(Coryphaena hippurus) (Leonart et al. 1999) and wahoo (Acanthocybium solandri) (Hall et al. 1999)
are known to associate with FADs.

There are many other species of fish that associate with FADs that can be classified as coastal
pelagics—species that are usually found in coastal and continental shelf environments. They include
several carangids, particularly scads (Decapterus sp.) and amberjacks (Seriola sp.) (D’Anna,
Badalamenti, and Riggio 2000; Deudero et al. 2000). Most of these species or groups and others
(e.g., cobia, Rachycentron canadium; king mackerel, Scomberomorus cavalla) are abundant in the
GOM and may be affected by FADs (Franks 1999). 

PROBLEMS WITH FADS 

Unfortunately, several issues or potential problems are connected with FADs. The first is that tunas
caught from around FADs tend to be much younger and smaller than those caught from free-
swimming schools. This is particularly true for yellowfin tuna. Polovina (1991) was one of the first
to point out this problem. He noted that the Philippines tuna fisheries around payaws resulted in an
over 20 times increase in landings, but that over 90% of the tunas caught around those FADs are less
than one year old. He pointed out that reductions in size at entry result in very substantial reductions
in yield estimates made from standard yield models. This problem is well recognized today.
Fonteneau et al. (1999) recently concluded that the current massive use of FADs in worldwide tuna
fisheries is “probably an unsafe fishing mode which needs to be limited to reasonable biological
levels.” In the European Union – Japan High Level Fisheries Consultations, 14-15 October 1999,
the parties expressed their differences in opinions about the use of FADs and discussed developing
a joint research program aimed at improving selectivity of FADs.1 The International Commission
for the Conservation of Atlantic Tunas (ICCAT), because of concern about the high take of
juveniles, has issued recommendations for restrictions on the use of FADs.2
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There are other potential problems with FADs. One concern is whether FADs might disrupt normal
movement and aggregation patterns (Kleiber and Hampton 1994). How such changes might impact
stocks, through effects such as changes in spawning area and resultant effects on larval survival and
recruitment are largely speculative at the present time. A related potential general problem is that
of increased catchability of fish associated with FADs and the resultant impact on population
dynamics and stock status. Also, fishing around FADs may result in increased bycatch, because of
simultaneous aggregation of non-target species (Hall et al. 1999). Conflict between user groups
(e.g., between hook-and-line fishermen and purse seiners) is a common, practical problem (Anon.
1982).

POTENTIAL POSITIVE EFFECTS OF FADS

Some of the very same issues that, under some circumstances, might be considered to be problems
can be viewed positively under different circumstances. The main advantage of FADs is that they
do aggregate fish and make them easier to catch than if they were dispersed widely in an oceanic
environment. Similarly, the same factors that result in aggregation of species that may be considered
to be unwanted bycatch in commercial fisheries (e.g., billfishes), under some circumstances can be
viewed by recreational fishermen as highly positive, because they enhance opportunities for offshore
gamefishing.

FADs, including GOM petroleum structures, might even be able to contribute to reduction of the
important problem of commercial bycatch of billfish and undersize swordfish. This could take place
through longline fisheries shifting to fishing around FADs, where tunas are more concentrated
relative to billfish and juvenile swordfish. Also, they may shift their fishing techniques to utilization
of gears (e.g., vertical longlines; or shorter, more-frequently hauled horizontal longlines) that may
significantly reduce bycatch and bycatch mortality (less mortality when fish are on the line for
shorter periods (Berkeley and Edwards 1998)). A situation has been described for the
Mediterranean, where seasonal shift to fishing for dolphin (Coryphaena hippurus) around FADs
could reduce longline catch of juvenile swordfish (Cannizzaro et al. 1999). 

Presence of FADs can make commercial and recreational fishing much more dependable, and often
more economical, because less time and fuel is expended searching for fish, and because smaller
vessels can be used to fish around FADs located close to shore. It is for those kinds of reasons that
moored FADs have been deployed so widely around the world. 

DEEPWATER PETROLEUM ACTIVITIES IN THE GULF OF MEXICO

A major development in offshore petroleum exploration and production in the GOM has occurred
recently. It is detailed it in a recent MMS publication titled Deepwater Gulf of Mexico: America’s
Emerging Frontier (Baud et al. 2000). The following discussion is summarized from that
publication.

MMS defines “deepwater” as water deeper than 1,000 ft. Over the latter part of the last decade, three
factors have come together to result in expansion of petroleum industry activities into deep water:
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1. discovery that deepwater wells often had enormously high flow rates and, therefore, great
economic return;

2. technological advances, including development of new types of structures that are able to
be used in deeper water, and the use of subsea well completions in deeper water; and 

3. economic incentive arising from the passage of the Deepwater Royalty Relief Act of 1995
in the U.S. Congress.

Deepwater petroleum production has expanded to the point that by 1999, deepwater production
exceeded that of all the shallow water. Because of this expansion, the number of permanent,
deepwater structures in the GOM has currently grown to 27 platforms in 1,000 ft or deeper, with
another 24 platforms in depths between 500 and 1,000 ft. The number of deepwater platforms is
increasing rapidly. 

In view of the large number of deepwater structures of various types that are expected to be
deployed in the next few years, MMS convened the Workshop on Environmental Issues Surrounding
Deepwater Oil and Gas Development (Carney 1997). One of the results from that workshop was that
MMS wisely identified the potential for deepwater petroleum structures to function as FADs. 

PROJECT DESCRIPTION

The U.S. Geological Survey, Biological Resources Division accepted the task of assisting MMS in
assessing this potential situation in which deepwater structures might act as FADs. The project is
in progress and is described briefly below.

The major elements of the project include:

1. survey of existing literature and information on FADs and related topics,
2. synthesis of FADs literature and available information,
3. survey of existing literature on HMS and other important pelagic fish species that potentially

could be impacted by FADs in the GOM,
4 synthesis of HMS literature and available information, and 
5. synthesis of FADs and HMS best available information into conclusions and

recommendations.

We are conducting this work by the following main approaches:

1. comprehensive search of existing literature (published and gray, including international and
foreign language references) on FADs,

2. development of a computerized, searchable, bibliographic data base, including annotations
and key words created directly for the GOM FADs issue,

3. comprehensive search of existing literature on GOM HMS and other potentially impacted
pelagic fish species, and

4. development of a HMS bibliographic data base similar to that for FADs.
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Additionally, we have organized a technical session and expert panel discussion (to be held at the
22-25 February 2001 Midyear Meeting of the Southern Division of the American Fisheries Society
in Jacksonville, FL) on deepwater structures and FADs. The goals of the session and panel
discussion are to obtain new or unpublished information, bring in researchers with expertise in
FADs from other regions, integrate appropriate fishery management agencies into the process, and
to develop a broad-based consensus of expert opinion about the potential importance of the issue
and about the needs for additional information and research.

PRELIMINARY FINDINGS – FADS
 
We have found that there is a very large and diffuse body of literature and information on FADs.
Desurmont (1996) listed 134 references in a bibliography of FADs-related literature. The literature
has grown recently, and currently we have over 500 technical references in our bibliographic
database. We also have found several hundred secondary references that are of some, but not first
order, pertinence to FADs, or which have other biological/environmental issues pertinent to
deepwater structures as their subject. The secondary references will be collected opportunistically,
but exhaustive collection and compilation is beyond the scope of this project. 

Despite this large body of literature, a good scientific understanding of why fish aggregate around
objects has yet to be developed. It seems that the literature has so far only begun to dissect the
problem, and that there has been little progress in synthesizing and understanding the phenomenon
of fish aggregation around FADs. This is not surprising, because this is a very complex issue that
is logistically and technically difficult to study.

Kingsford (1999) recently reviewed and listed 19 factors that may affect the affinity of fish for
FADs, and he suggested that they could be the basis of testable hypotheses. We added 13 additional
(20-32) factors. The factors are:

  1. Availability of food
  2. Availability of juvenile fish
  3. Presence of conspecifics (spawning, cannibalism, density effects)
  4. Presence of other species (competition, predation, potential prey)
  5. Availability and nature of shelter (FAD design)
  6. Substrate for undergoing behavioral change
  7. Day versus night
  8. Predation (by residents and vagrants)
  9. Intraspecific and interspecific competition
10. Larval/juvenile drift to “suitable” areas
11. Disturbance, natural (e.g., storms) and anthropogenic (e.g., boat noise)
12. Proximity to shore
13. Location and time (due to larval supply and movements of fishes)
14. Water quality and visibility
15. Design of FADs
16. Size of FADs. (For floating FADs, there seems to be a complicated relationship for medium

size objects (1-6 m max dimension), there seems to be little or no relationship between fish
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density and size, while smaller and larger objects are less attractive (Hall et al. 1992;
Akishige et al. 1996).)

17. Cluster of FADs
18. Soak time of FADs
19. Combination of pelagic and benthic FADs
20. Visibility of structure (visual reference)
21. Shadow and other natural lighting effects
22. Artificial lighting
23. Movement of moored FADs
24. Oceanographic conditions (currents, and vertical structure of T/S/DO, Langmuir circulation,

potential for upwelling due to structure)
25. Hydrodynamics (vorticity and current fields induced by structure)
26. Visual appearance of FADs (color/patterns/reflectivity)
27. Spatial distribution of FADs (density/nearest neighbor/orientation relative to bathymetry)
28. Anchored versus drifting FADs
29. Species behavior and habitat utilization patterns [intranatants (<0.5 m away), extranatants

(0.5-2.0 m), circumantants (up to 5 –7 nmi) (Fedorayako 1992)
30. Movement of drifting FADs (current or wind)
31. Marine mammals (especially dolphins) presence (association with objects developed through

previously developed association with marine mammals)
32. Sea state (can affect fish’s ability to detect objects by visual or auditory mechanisms, can

affect other factors such as local availability of prey)

It is clear that this list is in no way exhaustive. Very few of these many factors have ever been
rigorously studied.

Similarly, Freon and Misund (1999) reviewed and listed the major hypotheses explaining the
association between fish and floating objects. They included:

1. Concentration of food supply hypothesis (Kojima 1956).
2. Schooling companion hypothesis (Hunter and Mitchell 1967).
3. Substitute environment hypothesis (Hunter and Mitchell 1967).
4. Cleaning station hypothesis (Gooding and Magnuson 1967).
5. Shelter from predator hypothesis (Suyehiro 1952; Soemarto 1960; Gooding and Magnuson

1967).
6. Spatial reference hypothesis (Klima and Wickham 1971).
7. Comfortability stipulation hypothesis (Batalyants 1992).
8. Generic-log hypothesis (and related hypotheses) (Hall 1992).
9. Meeting point hypothesis (Soria and Dagorn 1992; Dagorn 1994, Freon and Misund 1999).

However, after more than three decades of work on this issue, there still is little or no agreement as
to which hypotheses are valid and as to which of them may apply jointly under different
circumstances. Perhaps only one of these has been generally discounted. The concentration of food
hypothesis has been found to be unlikely to explain aggregation of fish like yellowfin tuna around
FADs. Buckley and Miller (1994) found that the diets of FADs associated yellowfin tuna showed
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little differences betweens non-FADs yellowfin and pre-FADs yellowfin, and Holland, Brill and
Chang (1990) found that movements of yellowfin around FADs indicated that they fed away from
the FADs. Additionally, hydroacoustic surveys have found that the biomass of prey-size fish is
almost always insufficient to support the biomass of predator-size fish normally associated with
FADs (Josse, Bach and Dagorn 1998). Other than the food supply hypothesis being discounted, the
reasons for fish association with FADs remains very uncertain. Factors involved in attractiveness
of floating objects have not been determined. Hall et al. (1992) concluded that as long as objects
were at least one meter in minimum dimension they could not detect significant differences in the
number of fish aggregated to the object. In view of this uncertainty, it seems unlikely that these
factors, hypotheses and the general state of understanding of fish-FADs interactions are adequate
to assess or predict the degree to which various types of deepwater petroleum structures are likely
to act as FADs for various pelagic fish species in the GOM. 

PRELIMINARY FINDINGS – GULF OF MEXICO HMS

Yellowfin tuna are abundant in the GOM. An extensive Japanese longline fishery operated in the
GOM between 1963 and 1981, before leaving the GOM due to severe reductions in CPUE (Wilson
1988). These declines may have been attributable to factors other than the stock being fished down,
such as shift in migratory path, poor year classes, or other unknown factors (Wilson 1998). In any
event, the declines suggest that yellowfin tuna stocks in the GOM can be substantially impacted.
Recently, U.S. longliners have continued to harvest yellowfin tuna from the Gulf, with landings in
1998 totaling 3,784,786 lb with dockside value of $9,263,471 (Table 1). Yellowfin tuna accounted
for 93% of the catch (lb) and 94% of the value of the total tuna catch (including wahoo) from the
GOM in 1998. For all of these reasons, yellowfin tuna should be considered the primary species in
any considerations of FADs effects of deepwater structures.

Surprisingly, GOM skipjack tuna landings are very small, amounting to only slightly over one
thousand pounds landed on the Florida Gulf coast. However, Sakagawa (1986) suggested that the
GOM appeared to be a promising area for development of new skipjack tuna fisheries. Experimental
FADs deployed on the NW coast of Cuba have been found to be effective in aggregated harvestable
concentrations of skipjack, that were caught on pole and line (Martin 1999). Therefore, the extent
to which skipjack tuna are likely to be aggregated and affected by GOM deepwater petroleum
structures is an open question.

The GOM is the only known spawning area for the western Atlantic stock of bluefin tuna (Thunnus
thynnus) (Mather, Mason and Jones 1995). Because its stock status may be precariously low (Safina
1993), even small effects on bluefin tuna could be important. Although bluefin tunas have not been
reported to highly attracted by FADs in other parts of the world, it may be notable that in the western
Atlantic, there is a population of bluefin off of Cape Hatteras, N.C. that seem to aggregate near
wrecks, where they are caught in large numbers (most released) by recreational anglers. The
question as to whether bluefin tuna might be attracted to GOM deepwater structures, and hence
might change migration, and spawning patterns is speculative but is worth consideration.
Additionally, any aggregation could result in increased bycatch of bluefin by fisheries targeting
other species.
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Table 2.2 Landings of tunas and wahoo from the Gulf of Mexico in 1998 (Source: NMFS).

 Florida Louisiana Texas

 “Species” Pounds Value Price Pounds Value Price Pounds Value Price

Tuna,
Albacore

NR  5,838 $ 3,079 $0.53 NR

Tuna,
Bluefin

2,871 $7,316 $2.55 26,868 $113,605 $ 4.23 NR

Tuna, Little
Tunny

119,169 $35,829 $0.30 108,221 $39,241 $ 0.36 NR

Tuna,
Yellowfin

523,708 $1,233,885 $2.36 2,958,087 $7,338,444 $2.48 302,991  $691,142  $2.28

Tunas,
Misc.

 12,627 $23,555 $1.87

Tuna,
Bigeye

9,677 $24,569 $2.54  19,634 $71,281 $3.63 NR

Tuna,
Blackfin

 27,701 $27,015 $0.98  46,011 $22,425 $0.49 6,424 $5,864  $0.91

Wahoo  37,554 $67,699 $1.80  137,983 $143,740 $1.04 NR

NR – None Reported.

Given the unresolved status of FADs science, and given the fact that there are already 27 deepwater
structures in the GOM and a total of 51 structures in depths over 500 ft, one reasonable conclusion
may be that direct study around existing and future structures is the best and perhaps only way to
assess the degree to which deepwater structures will affect fish. Many methods and approaches have
been used to study fish association with FADs, and most could be adapted to GOM deepwater
structures. Previous studies can be categorized (with examples of each type of study) as follows:

1. Tagging: Hunter and Mitchell (1968); Itano and Holland (1999).
2. Hydroacoustic survey: Stanley and Wilson (1996); Bach et al. (1998); Josse, Dagorn and

Bertrand (1999); Josse, Bertrand and Dagorn (1999).
3. Telemetry, acoustic tracking: Holland, Brill and Chang (1990): Klimley and Holloway

(1996); Marsac, Cayre and Conand (1996); Marsac and Cayre (1998); Brill et al. (1999).
4. Telemetry, network of automated acoustic receivers: Klimley and Holloway (1996).
5. Fishery dependent methods, including recreational catch surveys: Love and Westphal

(1990); Stanley and Wilson (1990 &1991); Cillaurren (1994).
6. Fishery independent hook-and-line fishing CPUE: Friedlander, Beets, and Tobias (1994).
7. Experimental net fishing: Massuti, Morales-Nin and Deudero (1999).
8. Modeling: Hilborn and Medley (1989); Kleiber and Hampton (1994); Daghorn, Bach and

Josse (1997); Sibert and Holland (1999).
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Kingsford (1999) makes a strong case for sampling before and after to determine the impact of
FADs. This may be something to consider in view of the potential extensive and intensive
deployment of deepwater oil and gas structures in the GOM. In a few years, once petroleum
structures are abundant throughout deepwater areas of the northern Gulf, it may be too late to
directly estimate their effects, because conditions prior to introduction of deepwater structures will
not be able to be estimated.

PRELIMINARY CONCLUSIONS

Based on existing scientific knowledge of FADs and fish attraction, it is not reasonable to discount
the possibility that deployment of large numbers of petroleum structures in the GOM will have
significant and substantial impacts on HMS. Conversely, the state of knowledge is not adequate to
determine or predict that large effects will in fact occur, to estimate the extent to which they will
occur, or to predict what species will be affected. However, the existing knowledge does clearly
show that FADs can have large effects on fish and fisheries.

With this in mind, and the growing number of deepwater structures in the GOM, the preliminary
conclusion is that the situation will probably have to be assessed by direct study of existing and
future structures. There are several research approaches that have been used productively to study
FADs and that could be applied to deepwater oil and gas structures. It is likely that adequate
understanding will require a combination of several of these approaches.
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ABSTRACT

The continental shelf of the northwestern Gulf of Mexico includes an array of submerged hard-banks
and reefs in addition to a great concentration of offshore petroleum platforms that provide
significant vertical and structural relief in an otherwise level landscape, and are defined as
“topographic highs”. This study investigates the habitat use of shelf-edge topographic highs by
wide-ranging sharks and rays occurring in the northwestern Gulf of Mexico. Three topographic
highs (East and West Flower Garden Banks and the High Island A-389A offshore production
platform) located near the shelf-edge (200 m isobath) were visited from July 1992 through April
1998. Underwater surveys on SCUBA were conducted to gather information on the species
composition, abundance, life history stages, sexes, and social groups of elasmobranchs occurring
at the study sites. Thirteen species were identified that include Ginglymostoma cirratum (nurse
shark), Rhincodon typus (whale shark), Galeocerdo cuvier (tiger shark), Carcharhinus falciformis
(silky shark), Carcharhinus obscurus (dusky shark), Carcharhinus perezi (Caribbean reef shark),
Carcharhinus plumbeus (sandbar shark), Sphyrna lewini (scalloped hammerhead), Dasyatis
americana (southern stingray), Aetobatis narinari (spotted eagle ray), Mobula hypostoma (lesser
devil ray), Mobula tarapacana (sicklefin devil ray), and Manta birostris (manta ray). These species
form three assemblages (winter, summer, and resident) at the Flower Garden Banks. Carcharhinus
falciformis was the only species found utilizing the High Island platform throughout the year. Data
gathered in this study show the Flower Garden Banks function as nursery areas, adult feeding areas,
and possibly as a mating area to these elasmobranch species, while the High Island platform
functions as a secondary nursery area to C. falciformis. Seasonal movements relative to other habitat
areas in the region are also modeled for the sharks and rays observed at shelf-edge topographic
highs.
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ABSTRACT

The whale shark (Rhincodon typus) occurs in the northern Gulf of Mexico though little is known
regarding the behavior and ecology of the largest living fish species. Whale shark sightings amassed
in three independent surveys conducted from the air, sea surface, and underwater, were compiled
with historic sightings and analyzed using geographic information system technology (ArcView).
Sightings data show whale sharks utilize neritic (< 200 m isobath) and oceanic (> 200 m isobath)
waters of the northern Gulf during warmer months (June thru November), however, during colder
months (December thru May) whale sharks chiefly utilize oceanic waters. The majority of sightings
are located in neritic and oceanic waters out to the 2000 m isobath, between Pensacola, Florida and
Brownsville, Texas. The greatest concentration of sightings occurs south of Louisiana and southeast
of Texas in the vicinity of the shelf edge (200 m isobath) where sampling effort is considered
greatest. No sightings were made within the hypoxic zone located south of Louisiana and Texas
during months that hypoxic conditions are known to exist. Solitary sightings were common,
however, 18 % of sightings were of aggregated animals, the largest aggregation consisting of 30
whale sharks. Aggregations occur in the vicinity of shelf-edge banks during August and September
when mass spawning events occur at the Flower Garden Banks, the northernmost hermatypic
tropical coral reefs located on the continental plate of North America. Aggregations also occur along
the shelf-edge and seaward in the vicinity of the Loop Current frontal boundary, indicating that
whale sharks may optimize their foraging effort in areas where plankton is often known to be
abundant.



67

POTENTIAL CONFLICTS BETWEEN DEEPWATER FISHING AND
OIL AND GAS OPERATIONS IN THE GULF OF MEXICO

David B. Snyder
Luis Lagera

Continental Shelf Associates, Inc.

Peter Arnold
Mandeville, LA

LeRay de Wit
Concord, CA

George H. Burgess
Florida Museum of Natural History

University of Florida

Chris Friel
Florida Marine Research Institute

INTRODUCTION

The fishing and offshore energy industries have coexisted amicably for many years in shelf waters
of the northern Gulf of Mexico (GOM). Recently, the offshore energy industry in the GOM has
shifted its interest beyond the shelf and into deeper waters (>200 m). This is evidenced by over
3,800 active leases and about 50 development/production facilities in water depths greater than 200
m. Existing and future structures represent new and evolving technology that could interact with
deepwater (bluewater) fisheries. All phases of industry-geophysical surveys, exploratory drilling,
development/production, and abandonment-could interact with current deepwater fishing practices.
In the northern GOM these practices include trapping for golden crab, trawling for royal red shrimp,
bottom longlining for groupers, snapper, and tilefishes, and surface longlining for sharks, swordfish,
and tunas. 

The potential for interactions between bluewater fishing and deepwater energy industry was raised
as a primary concern by a fisheries subcommittee during a recent deepwater workshop (Carney,
1998) sponsored by the Minerals Management Service (MMS). In 1999, Continental Shelf
Associates, Inc. was awarded a contract to investigate this problem for MMS. The project team
consists of independent consultants with experience in fisheries, oil and gas technology, space-use
problems, and Geographical Information Systems (GIS). 

OBJECTIVES

We are assessing actual and potential interactions between the two industries through the following
objectives:



68

• Determine bluewater fishing endeavors and practices and deepwater outer continental shelf
(OCS) energy development activities;

• Describe and map bluewater fishing and deepwater OCS energy development activities;

• Describe current GOM and relevant worldwide interactions and predict future situations that
may occur in the GOM between bluewater fishing and deepwater OCS energy development
activities; and

• Recommend proactive mitigation measures for MMS and for the fishing and OCS energy
industries.

METHODS

The first two objectives are being addressed by gathering descriptive information and "mappable"
data from a variety of sources for the two industries. Past and current information on the OCS
energy industry will be obtained from MMS data sets that contain active leases, filed Plans of
Exploration (POEs), existing development facilities, and existing pipelines. Existing facility
descriptions will come from filed Development Operations Coordination Documents (DOCDs) or
POEs, U.S. Coast Guard files, and industry operators. Descriptions of exploratory drilling rigs will
come from various drilling rig contractors. Future OCS activity will be projected from the MMS
data sets that include active leases with filed POEs or DOCDs, announced discoveries with filed
POEs or DOCDs, and future pipelines. In addition, an analysis of lease bonuses paid on existing
leases will be made to determine which lease block received high bids. 

The bluewater commercial fishing industry will be described from data obtained from National
Marine Fisheries Service (NMFS) data sets. Several data sets will be examined, including the
longline logbook data set, the shrimp data set, and the reef fish logbook data set. These data sets
provide varying levels of spatial resolution, ranging from latitude/longitude (degrees and minutes)
to large scale (kms) NMFS statistical grids. Catch and effort information will be extracted from the
data sets to characterize spatial and temporal patterns in the northern GOM. Species composition
and life history characteristics will be described for primary deepwater fisheries species.

Current domestic conflicts are being gathered from U.S. Coast Guard, Fishermen's Contingency
Fund, and California Fisheries Liaison Office. Information on international interactions will be
compiled from a variety of sources including Canada-Nova Scotia Offshore Petroleum Board,
Fisheries and Offshore Consultative Group (North Sea), and United Kingdom Offshore Operators
Association Compensation Fund. 

RESULTS

The most common facilities used in deepwater operations are fixed platforms, semi-submersible
floating production systems, compliant towers, tension leg platforms, spars, and subsea completions
(Figure 2.4). The spatial preclusion of seafloor or water column by these facilities depends upon the
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Figure 2.4. Deepwater production systems in the Gulf of Mexico.

type of mooring system used and the water depth. For example, catenary moored systems cover
much greater portions of the seafloor than do tension leg systems. 

Presently there are about 3,800 active leases in waters greater than 200 m deep, with approximately
50 platforms currently operating in these water depths. Areas with the future activity are in
Mississippi Canyon, Green Canyon, Garden Banks, and Viosca Knoll lease block areas. Of the 3,800
leases, about 800 received bonus bids exceeding $1 million. With the exception of Corpus Christi
and Port Isabel, where there has been little if any drilling success to date, all OCS areas with less
than 60 leased blocks are either relatively small in overall extent in the deepwater study area or have
experienced legal constraints on leasing. The remaining eight areas have hundreds of leased blocks
each. In most of these areas, between approximately 3 and 6 percent of leased blocks received bonus
bids in excess of $500 per acre. Interestingly, these include both the relatively nearshore area of East
Breaks and Green Canyon, as well as the more distant and deeper water areas of Alaminos Canyon,
Atwater Valley, Keathley Canyon, and Walker Ridge. In fact, the two bluewater blocks which
received bonus bids in excess of $5,000 per acre are of recent vintage (1998) and are in water depths
of approximately 1,500 and 3,000 m. In the Garden Banks area, which saw the first development
in over 600 m, and Mississippi Canyon, which boasts several developments beyond 900 m, twice
the percentage of leases received bonus bids in excess of $500 per acre. 

Current deepwater fishing practices in the northern GOM include trapping for golden crab; trawling
for royal red shrimp; bottom longlining for groupers, snappers, and tilefishes; and surface longlining
for sharks, swordfish, and tunas. The areal extent of these fisheries varies greatly, from widespread
to localized. The royal red shrimp fishery appears to be concentrated in the area south of
Alabama/Mississippi corresponding to statistical grid 10, with minimal effort expended in areas off
the Florida Keys and Texas. Golden crab trapping is most prevalent off of southwestern Florida and
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Figure 2.5. Spatial distribution of surface longline sets made in the Gulf of Mexico during 1998
(Source: National Marine Fisheries Service longline logbook data 1999).

the Florida Keys, with very few fishers actually participating in this fishery. There is some
speculation that the deepwater crab fishery will expand in the future. The bottom longline fishery
occurs near the shelf break, and is legislatively mandated to remain offshore of the 102 m depth
contour. Most effort by reef fish permit holders for deepwater groupers and tilefishes occurs
offshore of west Florida; however, appreciable effort has been expended offshore of Louisiana and
Texas as well. The pelagic longline fishery is widespread in the open GOM (Figure 2.4). Of these
gear types, the pelagic longline presents the greatest possibility for interactions or space-use
conflicts.
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ABSTRACT

In response to an U.S. Department of Commerce Aquaculture Policy, the Gulf of Mexico Offshore
Aquaculture Consortium (OAC) was formed to create a collaborative, Gulf-wide, interdisciplinary
research and development program to generate primary scientific data and conduct studies in marine
policy, ocean environmental, marine biology and ocean engineering aspects of offshore aquaculture
(www.masgc.org/offshoreconsortium.html). Permission has been provided to moor a 600 m3 Ocean
Spar Sea Station (OSSS) in U.S. federal waters near a Chevron gas platform off the coast of
Mississippi (29o 58.649'N, 88o 36.297'W). To decrease user conflicts, unintentional damage and
vandalism to grow-out systems, a currently producing gas platform was chosen as the site for the
consortium’s experimental offshore aquaculture operation. The OSSS is not attached to the gas
platform but is moored to the continental shelf on a single-point mooring (SPM) and allowed to
move in a ‘watch circle’ near the Chevron platform. Although providing no investment, Chevron
is a cooperator to the project as a field observer to structural damage and provides passive navigation
protection. Increased liabilities and dependence on oil and gas operations exist with integration of
these industries. An alternative solution to design and manufacture a lift-boat specifically for
offshore aquaculture operations has been proposed to alleviate offshore aquaculture logistics. An
aquaculture lift-boat would eliminate oil and gas liability issues, create complete independence for
the offshore aquaculture operations, and compares economically to integration strategies of
aquaculture with the oil and gas industry. From a preliminary analysis of options, the OAC research
team has concluded that for offshore aquaculture to succeed in the Gulf of Mexico (GOM): (1) an
OSSS design will be required; (2) cobia may be the best candidate species; and (3) a lift-boat
strategy may be most appropriate to alleviate offshore logistics, and is economically comparable to
aquaculture integration with the oil and gas industry.
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INTRODUCTION

Aquaculture is expanding rapidly in freshwater environments, land-based recirculation facilities,
coastal bays and fjords, and, more recently, in the exposed open ocean. Freshwater expansion is
limited in the U.S. due to the quantity of freshwater resources required for inland aquaculture and
declining groundwater resources of many U.S. areas (Postel 2000). U.S. aquaculture expansion will
likely be limited either to ponds, lakes or reservoirs, or require development of high-cost
recirculation technologies (Ebeling 2000).

Expansion of coastal aquaculture, both land-based and net pen culture in protected bays and fjords,
is also limited. Unlike other regions of the world, such as Norway, Scotland, Chile and Canada, the
U.S. lacks unpopulated bays and fjords that allow expansion of coastal aquaculture, with the
exception of Alaska where commercial fish culture is currently prohibited. Rapid increase of the
nation’s coastal population has formed mega-cities, creating increased pollution and stress to the
environment, all of which limit coastal aquaculture expansion (Edwards 1989). In addition, currently
used U.S. coastal areas will eventually have bottlenecks to future expansion of net pen aquaculture
due to threats of self-pollution by the aquaculture facility (Lumb 1989). As a result, it has been
recognized that perhaps the most appropriate option for expansion of U.S. aquaculture production
is in the open ocean environment within the exclusive economic zone (EEZ). This area has fewer
user conflicts and provides a consistent flow of high quality water for successful aquaculture
operations. In addition, offshore waters may buffer fluctuating temperatures and have more stable
salinities than inshore waters (Waldemar Nelson International Inc., 1997). However, offshore
operations will require large infusions of knowledge, research, capital and logistic support to ensure
success.

On 10 August 1999, the U.S. Department of Commerce approved an Aquaculture Policy to promote
the development of an environmentally sustainable and economically feasible aquaculture industry
with a vision:

“To assist in the development of a highly competitive, sustainable aquaculture
industry in the United States that will meet growing consumer demand for aquatic
foods and products that are of high quality, safe, competitively priced and are
produced in an environmentally responsible manner with maximum opportunity for
profitability in all sectors of the industry.” (U.S. Department of Commerce
Aquaculture Policy 2000)

Specific DOC objectives, by 2025, are to

• Increase the value of domestic aquaculture production from the present $900 million
annually to $5 billion, which will help offset the $6 billion annual U.S. trade deficit in
seafood.

• Increase the number of subsequent jobs in aquaculture from the present estimate of 180,000
to 600,000.
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• Develop aquaculture technologies and methods both to improve production and safeguard
the environment, emphasizing where possible, those technologies that employ pollution
prevention rather than pollution control techniques.

• Develop a Code of Conduct for responsible aquaculture by the year 2025 and have 100
percent compliance with the code in federal waters.

• Double the value of non-food products and services produced by aquaculture to increase
industry diversification.

• Enhance depleted wild fish stocks through aquaculture, thereby increasing the value of both
commercial and recreational landings and improving the health of our aquatic resources.

• Increase exports of U.S. aquaculture goods and services from the present value of $500
million annually to $2.5 billion.

This long-term approach for aquaculture development, spanning a minimum of three generations
of operators and researchers, will require adherence to the principles of sustainability (Goodland and
Daly 1996). Sustainable development of aquaculture will ensure that an economically and
environmentally sound industry exists for future generations. In addition, development of new
sustainable aquaculture industries will require appropriate levels of market access, high product
demand and supportive government agencies with goal-oriented research (Aarset 1999).

MARINE AQUACULTURE OPERATIONS

Marine aquaculture may be classified into four categories according to the degree of protection
afforded the operation by the site characteristics (Table 3.1). Land-based operations pump the water
to tanks, on-shore, thereby being protected from storm surges and adverse weather conditions. These
operations require large capital investments in infrastructure and are restricted by coastal
development to the extent that future land-based operations may be focused only on hatchery and
processing facilities to complement open ocean grow-out facilities. Similarly, coastal aquaculture
sites are located in protected, remote bays or fjords, away from populated areas and presumably
anthropogenic sources of pollution associated with coastal communities.

In coastal aquaculture, as in the oil and gas industry, farm workers typically rotate in shifts, upwards
of a week, living on-site throughout. Farm workers have their quarters in a cabin either floating on
the water near the cages or on-shore in line-of-sight of the cage flotilla. This close proximity to the
cages and fish stock provides security against losses to vandalism, theft, predators, or adverse
weather. Most logistical issues have been overcome with barges designed to hold large quantities
of feed, regular site visits to change crew and replenish fuel and food, and constant communication
maintained through VHF/UHF radios or cellular telephone. Site protection to the cages allows farm
operators to perform necessary tasks, such as multiple daily feeding, net changing, size grading and
stock sampling, with minimal dependence on mechanization. Such aquaculture does not require the
same degree of infrastructure as more exposed sites.
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Table 3.1. Comparison of marine aquaculture strategies as categorized by degree of exposure
operation to natural oceanographic and storm events.

Location Advantages Disadvantages

Land-based Facility - Control water quality
- Isolation of operation from

populated areas not required
- Complete protection from storm

surges

- Limited space
- Expensive capital investment

Coastal
Environments
(protected bays and
fjords)

- Less capital investment
- Protected from much of the

natural elements
- Surveillance possible with

minimal investment

- Possible self-pollution
- Limited space for expansion
- Isolation more desirable to be

free of anthropogenic coastal
pollution

- User conflicts exist close to
shore

Exposed Sites - Utilizing environment
previously unexploited

- Consistent and high quantity
water supply

- Visual protection still possible
from nearby land

- Exposed to destructive natural
elements

- Limited space near-shore
- User conflicts exists close to

shore
- Increased infrastructure

necessary with increased
exposure

- Rely more on mechanization

Offshore Sites - Decreasing user conflicts with
increasing distance from shore

- Very consistent water supply
- Large potential for industry

expansion

- Truly exposed with no
protection from either side

- Increased capital costs
associated with increased
technology and mechanization

- Large investments require to
ensure economic feasibility

- Complete isolation from shore
bases with no land in sight

A simple move of the farm to a more exposed environment increases the logistical demands of the
operation. Land is still not far away but the degree of exposure increases the risk of storm damage
to the cage infrastructure and complicates routine farming operations. The aquaculturist must now
rely more heavily on mechanization to allow feeding at set times during the day. Routine operations,
taken for granted in protected sites, now becomes a substantial chore. Exposed sites, not far from
a land base, still enjoy the luxury of visual observation of the cages and stock, and quick response
time to emergency situations that are not present in the offshore environment.
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Offshore aquaculture operations have all the logistical challenges of both remote coastal and
exposed aquaculture but at an escalated scale. In such instances, the degree of exposure from all
directions is substantial, with the farm being truly exposed to any and all natural elements. Operators
require large infrastructure to produce fish in quantity for economic feasibility. In addition, excellent
husbandry practices are required to ensure a stress free, healthy stock that is growing in a uniform
fashion. Routine operations such as medication and size grading may be impermissible in this
exposed offshore environment. Finally, because of the extreme remote conditions, offshore
aquaculture will require innovative technologies to allow appropriate levels of feeding, long-distance
communication in the absence of cellular phone coverage, and carefully planned levels of response
to emergency situations.
 

U.S. Open Ocean Aquaculture Development

Truly open ocean aquaculture in highly exposed sites some distance from shore is still a pioneering
enterprise throughout the world. To allow open dialogue and promote international development of
open ocean aquaculture, three symposia have been dedicated to issues and advancements associated
with the development of a sustainable open ocean aquaculture industry. A fourth meeting is set to
convene in St. Andrews, New Brunswick, Canada, 18-19 June 2001 <http://www-org.usm.edu
/~ooa/ooa_iv.html> (Table 3.2).

Table 3.2. Open Ocean Aquaculture (OOA) Symposia allowing open dialogue and promotion of
international development of open ocean aquaculture.

Symposium Themes Locations Major Discussions References

Open Ocean Aquaculture Portland, Maine,
U.S.A.

Engineering, Prospects and
Challenges for Industry

Polk (1996)

Charting the Future of
Ocean Farming

Maui, Hawaii,
U.S.A.

Technological, Biological,
Policy and Industry Successes

Helsley
(1998)

Joining Forces with Industry Corpus Christi,
Texas, U.S.A.

Alternative Uses of Oil and
Gas Platforms and Candidate
Species

Stickney
(1999)

Taking Open Ocean
Aquaculture to a Commercial
Reality

St Andrews,
New Brunswick,
Canada

Policy, Environmental,
Engineering and Candidate
Species

To convene
17-20 June
2001

In addition to these international open ocean aquaculture symposia, two regional open ocean
aquaculture projects have been implemented to develop an environmentally sustainable and
economically feasible industry. The University of New Hampshire is currently involved in an open
ocean demonstration project to develop and commercialize aquaculture off the coast of New
Hampshire near the Isles of Shoals. This project is an integrated, multidisciplinary effort covering
biology, oceanography, engineering, sociology, economics, outreach and education (Bucklin and
Howell 1999; Bub 2000). A comparable research project has been implemented in Hawaii and has
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successfully grown Pacific threadfin (Polydactylus sexfilis) to a market size off the south shore of
Oahu (Helsley 2000).

In 1999, a third U.S. regional open ocean aquaculture research program was implemented in the
GOM. This program resulted in the formation of the Gulf of Mexico Offshore Aquaculture
Consortium (OAC) <http://www.masgc.org/oac>, creating a collaborative, Gulf-wide interdiscipli-
nary research and development plan to ensure sustainable—economic, social and environmental—
development of an open ocean aquaculture industry for the GOM.

The Gulf of Mexico and Open Ocean Aquaculture

In most aquaculture development projects throughout the world, it has been fairly easy to
accomplish the mere task of raising fish to a marketable size. However, in almost all cases,
sustainable development of these industries, without environmental concerns and threats of self-
pollution, have been nearly non-existent. In most cases, environmental and management decisions
have been based upon primary scientific data collected from other regions of the world or models
in an attempt to describe and predict impacts. The OAC plans not only to develop an economically
feasible open ocean aquaculture sector, but also to defend the sustainability of the industry based
on primary scientific data, collected throughout its development and subsequent commercialization,
from the GOM. Primary data collection and industry development will be performed using a
proactive approach from the outset, learning from mistakes made by previous aquaculture
development elsewhere, and in consultation with all GOM stakeholders, regardless of their
perspective.

As with other U.S. regions, the GOM has comparable bottlenecks to development and expansion
of coastal aquaculture. The GOM is the seventh largest marine area in the world and may be
considered a very productive eutrophic sea, described as the “fertile fisheries crescent” (Gunter
1963). This productivity increases the assimilative capacity of the water, thereby reducing the
environmental impacts associated with aquaculture effluents from offshore farms. In addition,
numerous indigenous species to the GOM have been identified as candidate species for aquaculture
with excellent grow-out and market potential characteristics, including red drum (Sciaenops
ocellatus), red snapper (Lutjanus campechanus), cobia (Rachycentron canadum), and greater
amberjack (Seriola dumerili). Numerous criteria are used to select candidate species for aquaculture,
including the growth rate to a market size. A growth performance index (M’ ; Longhurst and Pauly
1987), using L4 and K values from wild stock literature for each of these species in the northern
GOM provide favorable growth attributes for economically feasible grow-out (Table 3.3). With the
subtropical growing conditions, fingerlings for all of these species are anticipated to reach a
consumer-driven market size within a 1-2 year grow-out cycle, increasing the economic feasibility
of open ocean aquaculture ventures in the GOM.

The offshore GOM area appropriate for aquaculture may be very limited. Water depths between 30-
50 m are most desirable. Depths in this range are considered adequate to sink the cages in an attempt
to avoid hurricane damage but remain within safe diving limits to inspect mooring and connections.
Use of remote operated vehicles (ROV) may be economically feasible for such inspections,
extending the water depth (Willoughby 1999). To keep within 30-50 m, much of the GOM is
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Table 3.3. Growth performance index (M’)a calculated from cited L4 (cm) and K values for
potential aquaculture species indigenous to the northern Gulf of Mexico. Values shown
in parentheses are standard errors.

Species Sex L4444 (cm) K MMMM’ Source

Rachycentron
canadum

male 117.07
(2.808)

0.432
(0.046)

3.77 Franks et al. (1999)b

female 155.50
(3.514)

0.272
(0.017)

3.82

Lutjanus
campechanus

combined 95.0
(1.35)

0.175
(0.005)

3.20 Nelson and Manooch
(1982)c

Sciaenops ocellatus combined 91.8
(2.1)

0.422
(0.023)

3.55 Doerzbacher et al.
(1988)d

Seriola dumerili combined 127.2
(N.P)e

0.227
(N.P.)

3.57 Manooch and Potts
(1997)f

a  M’ = log10K + 2log10L4 (Longhurst and Pauly 1987)

b  Cobia were caught from northeastern Gulf of Mexico within the recreational hook-and-line
   fishery and aged with sagittal otoliths (male N=170; female N=395)

c  Red snapper were caught in the commercial hook-and-line fishery off Louisiana and aged 
   with scales (N=403)

d  Tagged red drum returns from recreational and commercial fishery off Texas and growth
   determined from tag and release measures (N=2010)

e  N.P. = not provided

f  Greater amberjack captured from headboats operating in the Gulf of Mexico from Naples,
   Florida, to Port Aransas, Texas and aged with sagittal otoliths (N=340)

excluded from open ocean aquaculture, and may be as far as 40 km from land. In addition to
limitations associated with desirable depth, some areas of the GOM are prone to experience seasonal
hypoxia (Rabalais et al. 1994, 1996). Although this hypoxic layer is generally restricted to the lower
one-third of the water column, large cages or submerged operations may be impacted. An additional
layer commonly experienced in GOM waters is the nepheloid layer developed from resuspension
of fine sea-floor sediment generated from bottom turbulence (Shideler 1981). Little is known of this
layer’s impact on fish health or its seasonal extent in much of the GOM.

Complete hurricane avoidance is unlikely in the northern GOM. However, it may be possible to
decrease hurricane impacts to aquaculture ventures by sinking cages to avoid such storms. With this
strategy comes the risk of exposing the fish stock to larger sediment resuspension that may
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anchor

chain rope

Figure 3.1. Representation of the Gulf of Mexico Offshore Aquaculture Consortium Ocean Spar Sea
Station and single-point mooring (SPM) design.

subsequently irritate the gills, create secondary bacterial infections and result in mass mortality
(Sherk et al. 1974, Brown 1993) and subsequent economic loss to the operation. Finally, much of
the GOM has long supported both commercial and recreational fishing. User conflicts must be
carefully considered and dealt with to ensure success of a future open ocean aquaculture industry.
All of these issues limit appropriate sites for open ocean aquaculture in the GOM to some degree.
 

THE GULF OF MEXICO OFFSHORE AQUACULTURE
CONSORTIUM RESEARCH PLAN

A site was chosen in 26 m of water approximately 35 km off the coast of Mississippi, in federal
waters (29o 58.649'N, 88o 36.297'W). This distance logistically separates the OAC from the
previously discussed U.S. open ocean aquaculture initiatives by extending operations outside the
sight of land from the aquaculture site. This site is adjacent to a Chevron gas platform, placing the
cage within the minerals lease. During the first year, both the cage and environment will be
monitored to determine the movement and behavior of the cage in the local oceanographic
conditions and to ensure that the selected site is somewhat appropriate for successful aquaculture.

An Ocean Spar Sea Station (OSSS) was chosen for the experimental cage to sustain high energies
in the offshore environment (Loverich and Gace 1998). The OSSS is 600 m3 volume that is retained
by its rigid structure and netting. Recent open ocean aquaculture projects have opted to use the more
common submerged grid mooring system for exposed, open ocean applications (Fredriksson et al.
2000). To decrease mooring costs, system complexity and potential environmental impact, the OAC
OSSS will be moored to the Outer Continental Shelf (OCS) on a single-point mooring (SPM)
(Figure 3.1; Goudey et al. in press). This cage/mooring configuration will be subsequently
monitored with GPS and current meter units to determine the degree of motion with ambient
oceanographic conditions. Specific environmental monitoring will determine the seasonal influence
on the nepheloid layer and hypoxia, and the impact of hurricanes and storm surges on sediment
resuspension. Following this first year of baseline research, one of the candidate species summarized
in Table 3.3 will be stocked in the cage and grown to a market size. It is apparent that this first year
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is not an aquaculture project, but focused more as an oceanographic and environmental study. Table
3.4 lists the agencies and permits required for Year 1 (oceanographic) and leading into Year 2
(aquaculture) OAC research.

Table 3.4. Permits acquired to deploy an aquaculture cage on a single-point mooring (SPM) in Gulf
of Mexico federal U.S. waters and conduct Year 1 oceanographic research (upper portion
of table) and potentially necessary for Year 2 aquaculture research (lower portion of
table).

Agency Permit/Letter

U.S. Coast Guard Private Aids to Navigation CG-2554

Gulf of Mexico Fisheries Management
Council

Letter of Support

U.S. Army Corps of Engineers Nationwide Permit

National Marine Fisheries Service Letter of Acknowledgment

U.S. Environmental Protection Agency National Pollutant Discharge
Elimination System (NPDES)

National Marine Fisheries Service Exempted Fishing Permit (EFP)

MS Department of Environmental
Quality

Letter of Acknowledgement

MS Department of Marine Resources Coastal Zone Consistency

The OAC cage and Chevron platform are perhaps extended to the outer limit of a relationship with
the current leasing and permitting system imposed on the offshore oil and gas (O&G) industry. In
the absence of models and a legal framework to acquire and maintain a Marine Aquaculture Zone
(MAZ), the relationship consists of the cage having passive protection from nearby marine vessels
and limited visual surveillance to prevent vandalism and storm damage. For Chevron, the benefits
of cooperating with the OAC in this project are minimal, and in fact, their participation might best
be viewed as altruistic. This leads us to pose the questions: would such a relationship exist if this
project were at a commercial scale? and what would it entail? We see four specific scenarios to the
development of offshore aquaculture in the GOM, each with its own set of advantages and
disadvantages (Table 3.5).

INTEGRATION OF OFFSHORE OIL/GAS PLATFORMS AND CAGE AQUACULTURE

With the presence of around 4,000 oil and gas structures in the GOM, it would seem that the use of
the existing platform structures (removing single-well caissons due to lack of appropriate space)
would offset most of the logistic limitations of isolated offshore aquaculture. These platforms could



82

Table 3.5. Comparison of scenarios for integration of oil and gas (O&G) platforms in the
development of offshore aquaculture in the Gulf of Mexico.

Offshore
Aquaculture

Operations Strategy Advantages Disadvantages

O&G Invest into and
Integrate Offshore
Aquaculture Within
Operations

- Increase economic potential of
O&G structure

- Leasing modifications required
- Current platform design will not

allow mooring offshore cages to
the structure and not designed
for safe aquaculture operations

- Future platform design criteria
modified for safe operations

- Potential interference with O&G
operations

Offshore Aquaculture
Investors Lease
Abandoned O&G
Structures

- Offset costs associated with
structure removal

- O&G industry not direct investors
to offshore aquaculture

- Current platform design will not
allow mooring offshore cages to
the structure and not designed
for safe aquaculture operations

- O&G industry will still have
liability issues: 
1. Maintenance of aids to

navigation
2. Structural integrity of the

structure for its life
3. Injuries or property damage

associated with the structure
- O&G original operator may be

responsible for removal if new
operator neglects removal

Near O&G Platform
but as a Separate
Operation

- No transfer of ownership
required

- Passive protection to the cage
facility

- Visual surveillance offered to
vandalism and storm damage

- No benefits of platform to the
aquaculture operator as a ‘shore-
base’

- Potentially interfere with O&G
operations

- O&G operator potentially liable
for aquaculture mortality near its
structure

Lift-boat within
Marine Aquaculture
Zone

- Eliminates all O&G concerns to
aquaculture

- Specifically designed for
aquaculture operations

- Avoids storm impact

- Increased user conflicts if
competing for new space with
traditional use
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provide a stable work base to conduct the day-to-day operations required for an aquaculture venture.
In addition, they could provide deck space for feed storage, lodging for farm workers, necessary
utilities and communications, surveillance against vandalism and storm damage, and passive
protection from other, more traditional, users of the GOM. However, such platforms are built well
above the water column to protect them from storm surges and are designed to last for years
following the expected life of an oil and gas well, approximately 25 years, with 100-year storm
manufacture criteria. With such obvious benefits to the aquaculture sector, is this a logical
integration of two industries? What could be some of the potential constraints to prevent such an
industry ‘marriage’?

Investment by Oil and Gas Companies

Of course, the OAC is not the first organization to attempt offshore aquaculture in the GOM, and
with this, we are not the first to realize existing oil and gas structures could be a valued asset to
expansion of an industry (Stickney 1999). Following placement of a structure on the OCS, it may
also be readily available for alternative uses to enhance the economic potential and offset the costs
of design, construction and deployment. These costs, dependent on the size and water depth, could
range from $10-30 million (Chambers 1998). With the prospects of large economic returns
associated with the economies of scale of offshore aquaculture, such an integration could become
enticing. Previously trained oil and gas employees could also become trained aquaculturists, armed
with advanced technologies and innovation for successful farm production.

Such visions for integration have several constraints to overcome before attaining commercial
reality. Current leasing mechanisms within the Minerals Management Service (MMS) authorize
companies to explore for, develop, produce and transport oil and gas from the OCS. The
involvement of aquaculture will complicate such a lease and add several new layers to this program
in the form of additional approvals required from several other regulatory agencies (Table 3.4).
Platform design would also have to be altered substantially for safe operations as a fish farm facility.
Current designs are appropriate to hold and conduct necessary operation for successful oil and gas
production in a safe and responsible manner. Aquaculturists will require modifications for
deployment of boats, personnel and feed on a regular operational basis. In addition, structures will
have to be modified to provide sufficient deck space for storage of large quantities of feed and work
boats. Current structures are also designed for very specific vertical and horizontal loads that would
have to account for additional stresses associated with mooring cages and net pens to the structure.
An alternative approach, of course, would be to moor the cage system to the OCS as the OAC has
done. However, aquaculture benefits associated with decreased costs for expensive mooring systems
required for holding the cages on the OCS in a very exposed and harsh environment are now absent.
In addition, mooring systems to the OCS may be limited to within 50 m depth to ensure safe diving
limits are adhered to. Finally, aquaculture operations may interfere with routine oil and gas
operations for which the structures are primarily intended.

Use of Abandoned Oil and Gas Structures

A second scenario for use of existing structures for offshore aquaculture involves abandoned
structures from the oil and gas industry. Within one year of production completion, oil and gas
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operators are required to remove the production equipment and return the site to pre-production
conditions. Such an endeavor in 30-50 m depth averages about $1 million. These costs may be offset
somewhat may acquiring a permit to drop the platform in its place to create an artificial reef, or
those with excellent structural integrity may be hauled to another oil or gas field and reused.
Aquaculture investors could view these costs and regulations as a reason to lease the existing
structure where it is and maintain it as an aquaculture facility. In this case, cages may still not be
attached to the structure due to increased loads associated with its movement and drag.

For the oil and gas company, issues of liability are paramount in this scenario. Although the
structure may be used by another operator, the original company is still liable for maintenance of
aids to navigation and structural integrity of the structure for the life of the facility. In addition, the
original operator may be held liable for all injuries or property damages arising from the offshore
structure except in cases where gross negligence or willful misconduct by the injured party could
be proven, regardless of whether the oil and gas company is actively operating the structure or not.
Finally, in instances where the structure may be sold to an offshore aquaculture investor, the original
oil and gas company is responsible for structure removal if the new operator fails to do so upon
completion of their work. The MMS has implemented a Supplemental Bonding Program requiring
an oil and gas operator to post a bond to offset the cost of abandonment liability of the lease
including structure removal (Kruse 1999). For a future to exist for the use of oil and gas abandoned
structures for offshore aquaculture, the original oil and gas company would have to be released from
its responsibility for structure removal. However, it has yet to be determined whether aquaculture
investors could afford the cost of such bonds from the outset.

Neighboring but Separate Operations

To offset issues regarding transfer of ownership and future status, a third scenario may be utilized
in that the aquaculture investor moors its cage systems near an existing oil and gas company
structure. A comparable situation exists between the OAC cage and the Chevron platform. In this
instance, the benefits for the aquaculture operation would be passive protection from abundant
vessel traffic in the GOM and perhaps surveillance from vandalism and storm damage as discussed
above. However, operating near an oil and gas platform does not benefit the aquaculture operation
by providing an offshore working and storage platform. As previously discussed, the oil and gas
company may not wish to store feed or house aquaculturists on the platform to eliminate liability
risks. In addition, such associations may become unsafe and interfere with the day-to-day operations
of the oil and gas operators, or vice versa, and decrease the time spent for the aquaculture operations
(Wilson and Stanley 1999). Finally, the operating oil and gas company could be held liable for any
tainting, mortality, or other loss of the caged fish stock associated with their operations.

Following this exhaustive list of liabilities and hurdles associated with a relationship between the
oil and gas industry and offshore aquaculture, one has to wonder whether such a future could exist.
Is there another option for the development of offshore aquaculture?
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Figure 3.2. Hypothetical illustration of a lift-barge potentially designed for offshore aquaculture
operations (courtesy of Dennis Good, Goodstreak Marine, Slidell, LA).

ALTERNATIVE SOLUTIONS TO OFFSHORE AQUACULTURE
LOGISTICAL CHALLENGES

How is an offshore aquaculture industry to develop without an accessible working platform to serve
as a ‘shore-base’? One such alternative is the creation of a Marine Aquaculture Zone (MAZ) with
a lift-boat, specifically designed for aquaculture operations, as its focal point (Figure 3.2). A lift-boat
strategy would alleviate all concerns associated with aquaculture and the oil and gas industry and
does not introduce any new technology to the GOM. A lift-boat would be designed, with
environmentally sustainable criteria, to create a safe working platform for offshore aquaculture.
Such a barge could possess sufficient living quarters for the workers, deck space for feed storage
and a crane capable of lowering and raising a farm work boat and feed. In addition, power could be
supplied with a hybrid system of wind turbines, and photovoltaic cells and wastes could be collected
and disposed of on-shore to minimize the risks of tainting or losing the fish stock. Regular
operational mode would see the lift-boat jacked-up from the water surface, perhaps to 7 m height,
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to provide a stable working platform. In severe stormy or hurricane conditions, workers would sink
the cages before raising the lift-boat legs and moving to shore.

A concept involving future offshore aquaculture and MAZs cause some concern to other user
groups. Such user groups may include recreational boaters and fishers, traditional wild fishers and
even the oil and gas industry by preventing access to future oil and gas fields. Most use conflicts
may simply be avoided through active dialogue and careful planning and consideration of all
stakeholders. Lift-boats and associated MAZs may be placed in the same zone of a previous
minerals rights lease immediately following removal of the oil and gas structure. This alleviates
concerns from the oil and gas sector as this area has been exploited for its mineral value. In addition,
during operation, the previous oil and gas structure would have prevented successful wild
commercial fisheries. With its immediate replacement by offshore aquaculture, this new industry
is not removing currently utilized and precious space from wild fishers. Finally, following structure
removal, recreational fishers lose a large and valued fish aggregating device (FAD). However,
replacement by offshore aquaculture and a lift-boat will essentially continue the presence of this
valued FAD effect. A strategy could be negotiated whereby recreational fishers could fish near the
lift-boat while respecting the operations of the aquaculturist and not vandalize the cages.

SELECTION OF THE MOST APPROPRIATE OFFSHORE
AQUACULTURE STRATEGY

A list of associated expenses is provided in Table 3.6 to compare the economic environment for each
of the proposed offshore strategies. Such a simplistic analysis is warranted at this time with the
current state of factual knowledge associated with offshore aquaculture operations and the grow-out
of the candidate species considered. With the exception of red drum, knowledge of the biological
aspects – nutrition, stocking density, food conversion ratio, feed quantity, etc. – and feasibility of
raising each of these candidate species is currently limited. In addition, each of these species,
including red drum, has minimal collected data regarding offshore grow-out and associated costs
and returns at a commercial scale. Finally, several of these species either have closed fisheries or
no commercial value and a minimum commercial size limit above the anticipated market demand
size. These factors will alter the expected revenue for an aquaculture product—harvested at a
consumer derived size, of the highest quality possible, and at the time of the highest market
demand—thereby fetching premium prices. Throughout OAC research development, costs and
returns associated with offshore aquaculture will be carefully documented and extrapolated to a
commercial scale to gain better insight of the economic feasibility of commercial offshore
operations.

With increased independence from the oil and gas industry and decreased liabilities (Table 3.5) and
a comparable expense list to the oil and gas investment strategy (Table 3.6), perhaps use of the
‘alternative’ lift-boat solution to the logistical challenges may indeed be the most desirable route for
industry development. This notion is based on the independence of the ‘alternative’ solution, without
the liabilities associated with the oil and gas industry and specific design for the needs of offshore
aquaculture operations. To further substantiate use of a lift-boat, an economic comparison revealed
that each of these strategies, with the exception of using an abandoned oil and gas structure, appear
somewhat comparable with respect to the level of investment required. Direct investment by the oil
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Table 3.6. Simplistic outline of potential expenses experienced for each of the offshore aquaculture
strategies outlined in Table 3.4.

Offshore Aquaculture Strategy
O&G

Investment
Abandoned
Structure

Separate
but Nearby

Aquaculture
Lift-boat

Capital Expenses
Platform Abandonment Bond 1,500,000
Platform Refurbishment 500,000 500,000
Lift-boat Manufacture 1,000,000
Large Work Boata 500,000
Small Service Boats 100000 100,000 100,000 100,000
Cages (6 x 3000 m3) + mooring systems 600000 600,000 600,000 600000

Total Capital Expenses 1,200,000 2,700,000 1,200,000 1,700,000
Operating Expenses
Supply Boat Runs 150,000 150,000 750,000b 150000
Feedc 315,000 315,000 315,000 315,000
Crewd 315,000 315,000 400,000 315000
Maintenance (platform + equipment) 200000 200,000 100,000f 200000
Insurance (4% of revenueg) 72,000 72,000 72,000 72,000

Total Operating Expensesh 1,052,000 1,052,000 1,637,000 1,052,000
Contingencies (10% of operating costs) 105,200 105,200 163,700 105,200

TOTAL EXPENSES 2,357,200 3,857,200 3,000,700 2,857,200

a It is assumed that the strategy of being near a current structure would purchase a large work boat due
to increased dependency on it. Other strategies would contract this service out on a weekly basis.

b The strategy of being near a structure but operating from a land-base would require numerous more
trips to the cage, upwards of 3 times per week for security and maintenance operations.

c Quantity of feed delivered is based on a food conversion ratio of 2:1 remaining constant throughout
the grow-out cycle and total growth per year of 450,000 kg, regardless of species, and multiplied by
a feed cost of $350 ton-1.

d Crew is typically calculated from annual salaries of a manager ($75,000), supervisor ($50,000 x 2),
and farm crew ($35,000 x 4).

e More salary would be required for supply boat crew annual salaries of captain ($50,000) and deck
hand ($35,000).

f Fewer maintenance costs required in the absence of a platform to maintain.
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g Revenue is based upon an estimated ex-vessel price of $4.00 kg-1 of 450,000 kg from the 6 x 3000
m3 cages with a stocking density of 25 kg m-3. Other assumptions include 100% survival and constant
growth giving a 1-year grow-out cycle for each of the species.

h Total Operating Expenses are exempt of additional anticipated expenses, such as office rental,
personnel and supplies, that are considered identical regardless of the strategy used and therefore
not required for this simplistic economic illustration.

and gas company into the aquaculture sector has the greatest economic merit. However, this is
dependent on the degree of interference caused by aquaculture to the oil and gas operations for
production. With a reasonable cost of investment and operations and increased independence, design
and manufacture of a lift-boat specifically for offshore aquaculture seems to be most desirable.

CONCLUSIONS

In the 21st century, offshore aquaculture will be required to grow the necessary biomass of fish to
meet global consumer demands for seafood. This new industry will require substantial efforts,
research, collaboration, and investment to become a commercial reality. Enormous logistical
challenges are present for aquaculture operations with increasing distance from shore. For the GOM,
an obvious solution to such challenges could include the use of currently operating, abandoned, or
future oil and gas structures. However, an aquaculture logistics solution involving the oil and gas
industry will require substantial modifications in both the design of the offshore structure and the
permitting mechanism to allow fish grow-out with oil and gas production. An alternative solution
to enormous offshore aquaculture logistics is the design of a lift-boat for safe aquaculture operations.
A lift-boat would alleviate potential constraints associated with oil and gas industry liabilities and
independence of the aquaculture venture. In addition, following the simplistic economic analysis,
design and manufacture of a lift-boat specifically for offshore aquaculture may be considered
economically comparable to the offshore aquaculture strategies involving the oil and gas industry.
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TEXAS ARTIFICIAL REEF PROGRAM 2000 REVIEW

J. Culbertson
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ABSTRACT

In 1989, the 71st Legislature of Texas directed Texas Parks and Wildlife to develop a State Artificial
Reef Plan to create and enhance reef fish habitat offshore of Texas. The Texas Artificial Reef Plan
provides guidance and flexibility to allow for changes in policy as new information is presented or
becomes available. The goals of the Texas Artificial Reef Plan are to enhance the fishery resources
biologically, commercially, and recreationally. The Program utilizes a ten-person citizen advisory
committee, representing major interest groups in the Gulf of Mexico to create new sites, evaluate
material donations, and minimize user conflicts.

One of the main criteria for the Program is to actively pursue complex, stable, and durable structures
in a form as close to their current form as possible. Oil and gas platforms are the primary reef
building material of choice, since they already serve as artificial reefs in the Gulf of Mexico and also
meet the material criteria of the Program. The Texas Program promotes the use of "partially
mechanically removed" structures to minimize damage to the benthic communities attached to the
structure, and to minimize loss of reef fish from the use of explosives when toppling structures in
place to create artificial reefs. These standing structures allow the maximum biological profile to
remain higher in the water column and still meet safe navigational clearances.



93

RIGS-TO-REEFS FROM AN OPERATOR’S VIEWPOINT

Dave Dougall
Agip Petroleum Co.

ABSTRACT

Oil and gas platforms offshore of the U.S. presently number around 4,000 and some date as far back
as the 1950s. As these structures come to the end of their economic lives, they must be
decommissioned. Since 1988, decommissioning of platforms has occurred at a rate of 100 to 150
per year.

This paper reviews the alternatives available to owners of offshore oil and gas structures for
retirement of these structures and examines the attractiveness of donating those structures to an
artificial reef program.

BACKGROUND

Oil and gas development in the Gulf of Mexico (GOM) began in the 1930s in the tidal lands of
Louisiana. The first oil well out of sight of land was placed in 1947 in about 18 feet of water. Since
then, technology has more or less continuously improved, and development has continued to move
farther from shore and into deeper water. GOM oil and gas platforms are located from shoreline to
200 miles from land and in water depths near 5,000 feet. Figure 3.3 provides insight into the
distribution of platforms in the GOM. This map shows the relatively high density of structures on
the broad shelf area off the coast of Louisiana and Texas. 

Although deepwater drilling and development are currently the focus of substantial attention in the
GOM, the vast majority of existing platforms are located in relatively shallow water (see Figure 3.4).
These are the older sites and, therefore, the locations where most of the removal activity will occur
over the next several years.

DECOMMISSIONING

Steel platforms generally have a useful life of 10 to 30 years; productive oil and gas reservoirs, of
course, may be substantially less: Thus, the need to remove oil and gas structures. 

Oil and gas platforms represent a substantial liability to the owner, in terms of removal cost and
potential damage claims. Removal costs may range into the tens of millions of dollars, depending
on a number of circumstances, such as water depth, platform location, size, complexity, and market
for reclaimed equipment and structure at the time of removal. Damage claims may arise from
personal injury, environmental damage, or property damage. These liabilities are only relieved upon
complete removal of the platform or the transfer of ownership to another responsible party.
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Figure 3.3. Platform distribution in the northern Gulf of Mexico.

Generally speaking, platforms offshore of the U.S. must be removed within 12 months after lease
production ceases. Present requirements specify that companies must permanently plug and abandon
all the wells, sever all wellheads, casings, pilings, and any other obstructions to a depth at least 15
feet below mudline, remove everything from the lease, and then verify that the site is clean either
by having an independent contractor trawl 100% of the area (twice) or by conducting a sonar survey,
the choice depending on circumstances. Either way, the survey is precisely prescribed, and a written
report must be submitted.

A review of MMS records from 1986 through 1998 shows that a total of 1,255 structures were
removed during that period (an average of 116 per year). Figure 3.5 depicts the distribution of
platforms removed by water depth and confirms that most of the platform removals are from shallow
water. (The spike in 1993 is a reflection of damages caused by hurricane Andrew in August 1992,
and the spike in 1997 of a large removal program by one of the major operators).
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RIGS-TO-REEFS

Current rules and liability considerations generally encourage complete removal of platforms at the
end of their useful lives. Top deck structures and equipment are often removed and reused
elsewhere, with remaining decks, equipment, and jacket brought to shore, cut up, and recycled as
scrap. Some offshore structures, however, are donated to the rigs-to-reefs program. These programs
are managed by state agencies to take advantage of the reef-like ecosystems fostered by these
offshore oil and gas structures.

The northern GOM seafloor is predominately mud and sand, with relatively little hard bottom or
natural reef areas. Oil and gas platforms have long been recognized as havens for fish and are
favorites for recreational and commercial fishermen and divers as well. The hard surfaces of
platform members provide attachment for a variety of invertebrates such as barnacles, corals,
sponges, mussels, and anemones. They also provide cover for smaller species of fish. These
structures create ideal communities, supporting populations of reef fish such as snapper and grouper,
and attract transient species like mackerel and shark.

Particularly active rigs-to-reefs programs are in waters offshore of Louisiana and Texas and are
managed by the Louisiana Department of Wildlife & Fisheries and the Texas Parks & Wildlife
Department. These programs include:

• Planning for areas where placement of artificial reef materials are encouraged or excluded.

• Technical evaluation of the configuration the structure will have after it is in place on the
bottom. Of particular concern is adequate clearance above the structure for vessel traffic;
generally at least 85 feet are required. The platform and all piping and equipment left on
board must be thoroughly cleaned and certified by a qualified third party.

• Funding procedures for management of the program and purchase and maintenance of
marker buoys. The owner of the structure provides a comparison of costs associated with the
reefing proposal versus the alternative of transport to shore and disposition. The owner then
makes a monetary donation to the program in the amount of 50% of the estimated savings.

• Transfer of ownership of the structure to the state. The program includes a permit program
and execution of a formal transfer of ownership. Transfer of ownership relieves the previous
owner of further liability.

As indicated above, oil and gas structures generally must be severed below the mud line. However,
beginning in 1987, the state program managers, in consultation with MMS and the U.S. Coast
Guard, began actively to consider and approve “partial removal” of platforms under some
circumstances. In this procedure, the topsides are removed and either placed on the bottom or
transported offsite for reuse elsewhere, and the jacket is cut off at an agreed water depth necessary
to assure vessel traffic safety. Leaving the jacket members partially in place maximizes the amount
of available attachment surface remaining within the depth of biological activity.
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BENEFITS & LIMITATIONS

Donation of all or part of platforms that are no longer of use is a win/win for everyone.

• Conversion of the structure to an artificial reef decreases that expense that would be involved
in complete removal.

• The owner/operator is released from further liability from the structure.

• A rich habitat area is retained for the benefit of fishing, diving and species propagation.

Given the obvious benefits of donating structures into the rigs-to-reefs program, it would seem that
every decommissioned structure would go into the program. Yet the majority of structures are
removed. As discussed above, by far most of the structures removed are from relatively shallow
water, too shallow to provide the clearance required for safe navigation.

CONCLUSION

Given the number and age of oil and gas structures in the GOM, platform removal activity will
continue to be substantial in the foreseeable future. Wherever feasible, reuse of structures as
artificial reefs is an economic and beneficial alternative to removal and transport to shore.

David A. Dougall is Manager of Environmental Affairs & Safety for Agip Petroleum Company,
with drilling and production operations in the Gulf of Mexico. Mr. Dougall’s background includes
environmental consulting on risk assessments, compliance audits and permitting. His background
also includes corporate and field assignments for a major oil company, including several years
coordinating permitting and compliance efforts in California. He received his M.S. in environmental
science and B.S. degree from the University of Oklahoma. He is a registered professional engineer.
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THE ARTIFICIAL REEF DEBATE: ARE WE ASKING THE WRONG QUESTIONS? 

Robert L. Shipp
Department of Marine Sciences
University of South Alabama

In the last several decades, and especially the last five years, an enormous amount of literature has
been published on artificial reef ecology (e.g., Fifth International Conference on Aquatic Habitat
Enhancement, Bulletin of Marine Science 55: 265-1360, 1994; Special Issue on Artificial Reef
Management, Fisheries 22:17-36, 1997; Bortone 1998; Technology and Management of Artificial
Reefs: An Update, Gulf of Mexico Science 16:31-105, 1998). Although numerous aspects of the
issue have been addressed in these works, such as materials of construction, critical minimum size
of area, and rates of recruitment, the one persistent question that appears to dominate all the synoptic
treatises is do reefs simply attract fishes (and other organisms), or is an actual increased production
of biomass attributable to reefs (Bohnsack 1989; Bohnsack et al. 1997)?

The relevance of this question seems obvious. If the former is true, then reefs may be detrimental
to fish populations, making certain species easier to harvest, thus accelerating the decline of stressed
stocks. This opinion is held by many workers, at least in certain instances (Bohnsack et al. 1997;
Grossman et al. 1997; Lindberg 1997). Therefore, the utility of reefs as a management tool is
discouraged and deemed counterproductive. With the latter hypothesis, increased biomass
productivity is generally regarded as a positive, and unless the productive benefits are overwhelmed
by increased fishing activity, artificial reefs are viewed as a viable and positive management tool.

The current status of the debate seems to have reached a partial “resolution” of sorts, with the
general acceptance that much depends on location. The general agreement seems to be that in areas
with little natural hard bottom, reefs may be beneficial in providing habitat that is limited (Grossman
et al. 1997; Bortone 1998). But in areas where abundant hard bottom is available, thus habitat is not
limiting, placement of additional reefs is, at best, neutral and, perhaps, counterproductive.

ATTRACTION VS PRODUCTION: DOES IT REALLY MATTER?

Although I do not disagree with this consensus, I think it fails to address the attraction vs production
question. For what we really see in the location solution is not that production is necessarily
increased where hard bottom is limited but that there is a fundamental modification of habitat. And
with this, there is a concurrent transformation of biota. For instance, in a flat sandy mud
environment such as is found in the north central Gulf of Mexico shelf, placement of artificial reefs
displaces a fish fauna dominated by small benthic species with larger reef-related forms. A net
change in fish biomass may or may not occur, but does that really matter from a management
perspective? I am not so naïve that I don’t realize that for many workers the production aspect really
means production of desirable reef species (Grossman et al. 1997), but to many, it is a matter of
production per se. Hard bottom is thought to support primary and secondary production, with the
successional sequence of encrusting organisms, increased refuge habitat for prey species, and actual
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increase in biomass the result (Carter et al. 1985; Pamintuan et al. 1994: also see Stone et al. 1979;
Bohnsack 1989; Lindberg 1997).

THE ALABAMA SHELF: A CASE STUDY

For a case study, I will use the expansive flat inner shelf of the north central Gulf of Mexico off
Alabama. A large portion (4,000 km2 ) has been prepermitted for placement of artificial reef
structure. This area has been previously referenced and its history and current fishery status are well
documented (Szedlmayer and Shipp 1994; Minton and Heath 1998). 

Because this is probably the largest unified artificial reef site in the United States, and possibly in
the world, it lends itself well to this discussion,. During the decade of the 1970s, before
establishment of the 4000 km2+ reef area, we conducted a series of trawling surveys on this portion
of the shelf. The study, designated SAMERI (South Alabama Marine Environmental Resource
Investigation) included nearly 100 trawl samples, of 15-min tow time, with a 30-foot semi balloon
trawl, at 15 fathoms. The sampling was conducted over 3 years. Although the detailed seasonal and
spatial variation and species composition are beyond the scope of this commentary, the fish faunal
elements were dominated by relatively diminutive soft bottom species, reflecting the near total lack
of hard bottom in the area. The few reef species collected were juveniles or subadults (e.g., red
snapper, Lutjanus campechanus ).

The trawled species are almost exclusively of no current economic importance. The dominant
groups are flounders and other flatfishes, cusk-eels, sea robins, and small species of sea basses. The
flounder species all mature at very small sizes (maximum of 200 mm) and are not exploited. The
cusk-eels are a dominant faunal component, primarily fossorial diurnally, but are important prey
species when they forage nocturnally. The other species are also too small to have any commercial
value other than as minor components of the ground fish harvest. All of these species have extensive
ranges over the entire Gulf of Mexico shelf, and many also on the United States Atlantic coast, thus
are in no danger of any imaginable substantial stock depletion.

This trawled bottom now is contained mostly within the heart of the reef permit area. Approximately
20,000 artificial structures have been placed there, constructed of various materials (Minton and
Heath 1998). Included are 100 decommissioned army tanks, cement bridge rubble resulting from
hurricane damage, thousands of buses and automobiles, prefabricated cement modules, and a variety
of other structures. Early in the program, little restraint was placed on materials for reef deployment,
and thousands of reef sites have been removed or destroyed by hurricanes and other natural events.
Nevertheless, because of recent more stringent regulations on reef materials, many thousand likely
remain.

When reef structure is placed in these areas, the reef biota is in sharp contrast to the preexisting
fauna. Previous to the reef building effort, few reef fishes were taken off the Alabama shelf (Minton
and Heath 1998). Although historically Mobile was considered a major market for red snapper, these
fish were harvested primarily from Pensacola southeastward to Tampa (McEachran and Fechhelm
1998) or from the Campeche Banks off Mexico (Albert King, pers. comm.). But Schirrippa (1998)
reported that recently more than a third of recreationally caught red snapper from the Gulf of Mexico
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came from off Alabama, although this area represents less than 5% of the U.S. Gulf shelf. Similar
statistics are provided by the 1993-96 Southeast Area Monitoring and Assessment Program
(SEAMAP). Thus, the ichthyofauna of a quarter of a century ago has been transformed from an
economically depauprate biomass to one supporting an industry, which, according to Minton and
Heath (1998), is valued at 60 million dollars annually. Has the total biomass increased? We don’t
know. Does it matter in terms of management decisions? I think the citizens of Alabama’s coastal
communities would offer a strong negative. 

RESEARCH NEEDS

Other questions are relevant, even if those regarding absolute biomass changes are not. If, in fact,
there is some dependence on surrounding forage species for the reef residents, this would eventually
become limiting to the carrying capacity of the reefs. Bioenergetic studies to address carrying
capacity are strongly warranted and, in fact, are currently under way in the Alabama setting (James
Cowan, pers. comm.). Likewise, if these large areas do approach maximum carrying capacity, or if
these micro population concentrations centers are disturbed or even destroyed, do the reef residents
move to nearby or even more distant sites, thus becoming de facto emigration resources for other
areas? This latter question was partially answered by Watterson et al. (1998) for the Alabama stocks.
Their data strongly indicated hurricane impacts on the reef structures off Alabama resulted in near
unidirectional migration of red snappers eastward, with many tagged fish from Alabama taken off
the Florida panhandle as far east as Apalachee Bay.

ARTIFICIAL REEFS AS MARINE SANCTUARIES

The issue of marine reserves or marine protected areas (MPAs) is emerging rapidly as a possible
management tool for marine fish stocks. Several papers have addressed this issue recently
(Bohnsack 1994, 1998). The South Atlantic Fishery Management Council is considering creating
reserves in habitat not currently used by fishers. Such a decision seems well founded on the basis
of the Alabama experience. And the success of such an action is not likely to depend on whether
artificial reefs attract fish or actually produce biomass.

SUMMARY

The production-attraction debate has become central to much of the discussion of the utility of
artificial reefs as management tools. This debate seems to have little relevance in areas where
natural hard bottom is sparse or lacking. Rather, in these areas, biomass transformation from “less
valuable” to “more valuable” species is indicated. Nevertheless, in my experience, the preeminence
of the production-attraction issue has often clouded the issue and reflected negatively on artificial
reef benefits. Care should be taken that this debate be clearly reserved for habitats where additional
hard bottom may be of little or no value because of recruitment limitations.
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ARTIFICIAL REEFS: HABITAT FOR MARINE RESOURCES-NATIONAL POLICY?

Ronald R. Lukens
Gulf States Marine Fisheries Commission

THE NATIONAL FISHING ENHANCEMENT ACT AND PLAN IMPLEMENTATION

The National Fishing Enhancement Act of 1984 (Act) established artificial reef development as a
national priority. In doing so, it made a case for the positive benefits from creating habitat for
fisheries and established a number of broad guiding principles that are expected to positively impact
the way in which artificial reefs are developed. The Act directed the U.S. Army Corps of Engineers
(COE) to institute a permitting and regulatory framework within which artificial reefs would be
developed. In addition, the Act mandated that the National Marine Fisheries Service (NMFS)
develop the National Artificial Reef Plan (1985) (Plan), intended to establish national standards and
provide broad national guidance for creating regional and state plans for artificial reef development.
Implementation of the Act and the Plan resulted in a permit and regulatory program under the COE
dredge and fill program. The sole authority provided to the NMFS was development of the Plan,
which was completed one year after enactment of the Act in 1985. True implementation, however,
occurred at the state level, evidenced by the magnitude of artificial reef development activity
undertaken by state programs over the last 16 years, including development of state artificial reef
plans.

IMPETUS FOR NATIONAL PLAN REVISION

Why should the Plan be revised? The Plan itself calls for periodic revisions, recognizing that
progress, including plan development, research, and data collection, would reveal new and better
ways to conduct programs. Such progress has been evident through the variety and frequency of
research and policy publications, periodic international conferences, and regional and local meetings
dealing with all aspects of artificial reef development and management. In addition, since the mid
1980s, the Gulf and Atlantic States Marine Fisheries Commissions have been providing a regional
forum for state artificial reef programs to come together to work on regional and national scope
issues. Finally, the recognition that artificial reefs are tools for fisheries management has contributed
to the need to re-evaluate our current national guidance and policies for artificial reefs.

The combination of these and other factors led the Gulf, Atlantic, and Pacific States Marine
Fisheries Commissions to request from the NMFS in 1996 that the states, through the Commissions,
be given the responsibility to take the lead in revising the Plan. In December 1996, the NMFS
agreed, and by letter encouraged the states to begin revising the Plan. Through a series of meetings,
some sponsored by the NMFS and some sponsored by the Commissions, the revision was completed
in December 1998. Soon thereafter, the three Interstate Marine Fisheries Commissions submitted
the document to the NMFS for consideration to replace the 1985 Plan and establish new national
policy on artificial reef development and management. In addition, the three Interstate Marine
Fisheries Commissions adopted the document as interstate policy, entitling the document Coastal
Artificial Reef Planning Guide (1998).
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REVISED NATIONAL PLAN

During the process of revising the Plan, the states and commissions recognized the high quality of
the work done by the original plan writers, such that much of the original Plan is embodied in the
revision. Of significance, the National Standards were established by the Act and continue as the
broad principles under which all other policies and recommendations are established. Those
National Standards are as follow:

• enhance fishery resources to the maximum extent practicable;
• facilitate access and utilization by US recreational and commercial fishermen;
• minimize conflicts among competing uses of waters covered under this title and the

resources in such waters;
• minimize environmental risks and risks to personal health and property; and
• be consistent with generally accepted principles of international law and not create any

unreasonable obstruction to navigation.

While the first National Standard admonishes us to “enhance fishery resources,” the primary focus
of artificial reef programs over the past 16 years, and prior, has been enhancing fishing success
through the creation of known locations where fish would be accessible. The revision places a
greater emphasis on the habitat implications of artificial reef development. It should be noted that
the revision does not diminish enhancement of fishing success as an important goal of artificial reef
development, but rather elevates the importance of the habitat implications.

The original plan established four criteria that should be considered when determining the kinds of
materials that should be used in artificial reef development. Those criteria include the following:

1. function-effective habitat for marine organisms;
2. compatibility-compatible with the marine environment;
3. durability and stability- materials should be able to withstand the marine environment for

a desired length of time and remain stable on the bottom where placed; and
4. availability-readily available for use.

These criteria were deemed generally to be applicable, with the exception of “availability.” While
it is important that materials be readily available for use by artificial reef programs, it is inaccurate
to think of availability as a criteria for consideration of using a material, since if it is not available,
it will not be used. The revision has deleted “availability” as a criterion, while continuing to
recognize the importance of availability of suitable materials. In addition, the revision splits
“durability” and “stability,” because it was determined that, while the two are associated, they are
significantly different and should be treated separately. For example, a material can be quite durable
and be inherently unstable in salt water, such as an automobile tire. Conversely, it is possible for a
material to lack durability and yet be relatively stable.

As described above, materials used to create artificial reefs constitute an important programmatic
issue. In recent years, the issue of materials selection has also become quite controversial. Many
have heard the criticisms that artificial reef programs are nothing more than waste disposal
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programs. Years ago, that criticism had a kernel of truth in it; however, more recently state programs
have strived to move to materials that follow the established criteria. The original Plan went to great
lengths to identify selected materials and describe their attributes. Today, the variety of materials
has increased to the point that it would be unwieldy to continue to address them all within the text
of the Plan. As a result, the revision incorporates, by reference, the document entitled Guidelines
for Marine Artificial Reef Materials (1997), developed by the Gulf and Atlantic States Marine
Fisheries Commissions. That document is currently under revision.

One of the most important issues addressed in the revision is qualifications for holding an artificial
reef permit. Currently, under the COE permitting program, any citizen of the United States can
request and receive an artificial reef permit by following established procedures and showing proof
of liability coverage. Unfortunately, the liability criterion has not been applied in most cases;
consequently, individuals with no capability to withstand a liability suit have been granted permits.
In addition, a fishing organization may be able to qualify, but could easily disband well before the
life expectancy of the reef they build has run its course. Who then is liable? This issue has not been
addressed. The revision recommends that the COE issue permits only to the state agency with
responsibility to manage marine resources. The drafters consider this appropriate because the state
agency 1)is legislatively authorized to exercise stewardship responsibility over marine resources,
2)can ensure compatibility with fishery management planning, and 3)can assume liability for the
life of the artificial reef. The language in the Act does not allow the COE to make this a requirement;
however, its appearance in the revision elevates it as an important issue that the COE should
consider and identifies it as an issue that should be addressed in any future amendments of the Act.

Mitigation has continued to be an issue that involves artificial reef development. Many cases have
emerged in which artificial reefs have been proposed as a way to mitigate for the destruction of
dissimilar habitats. The revision attempts to put in perspective the position of the states in this
regard, stating that if mitigation is to be considered necessary, it should be in kind/in place. The
revision recognizes that this cannot always be done; consequently, the revision strongly recommends
caution when applying artificial reefs as mitigation. For example, an offshore, high salinity artificial
reef should not be acceptable as mitigation for the loss of estuarine marsh.

The revision recommends that the COE require project objectives as a part of the permitting process.
All artificial reef projects should have well defined objectives that are consistent with fishery
management objectives. In addition, in order to determine of projects are successful in meeting
stated objectives, baseline evaluation and monitoring should be conducted, with follow-up
evaluation and monitoring to assess the change brought about by the project. The revision
recognized the importance of specifying compliance monitoring and performance monitoring, as
found in the original Plan. Compliance monitoring is required assure that program activities do not
significantly vary from permit requirements. Performance monitoring, while not required by most
permits, is equally important in determining whether stated objectives are being met, and equally
importantly to assess the overall impact of artificial reef development.

The revision emphasizes the importance of recognizing that artificial reefs should be fishery
management tools. Artificial reefs can be used to restore damaged habitats or can be used to enhance
habitats for selected species. There have been many discussions recently about using artificial reefs
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to establish sanctuaries, or marine protected areas, as a way of addressing the criticism that
establishing a no-take area penalizes the citizenry by taking away reef areas historically open to
commercial and recreational fishing. In addition, we have many examples of using artificial reefs
as special management areas in which effort control and spatial and use conflict management
measures can be applied.

As mentioned above the draft Plan revision was submitted to the NMFS in late 1998. The draft has
undergone internal review by NMFS, and has been reviewed by the relevant federal agencies.
Currently, NOAA General Counsel is holding approval of the document until the new administration
has had an opportunity to evaluate its impact on federal fisheries policy. The next step is to publish
the document in the Federal Register and get public comment. It is not known when this might take
place.
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ABSTRACT

Marine protected areas (MPAs) placed appropriately provide promising options for the management
of exploited populations by protecting critical habitat, community structure and function, and
spawning populations. They also provide the unique opportunity to experimentally evaluate the
effects of anthropogenic impacts (particularly fishing) on the biotic and physical components of
ecosystems. Recently (19 June 2000), the Gulf of Mexico Fishery Management Council established
two MPAs in the northeastern Gulf of Mexico (GOM). The impetus for establishing these reserves
was strong evidence of fishing-induced changes in the demographics (especially changes in sex
ratio) of several economically important reef fish species. Herein, we discuss proposed construction
of two gas pipelines that would run through both MPAs. We are particularly concerned about the
effects of construction on essential fish habitat (EFH) both within and outside of the reserves. The
pipeline contractors must accurately show the degree of impact from construction activities. We
suggest that the ecological impact study provided by one of the pipeline construction companies has
not adequately shown this impact. Further, we find that in both cases, pipeline construction would
destroy critical habitat, compromise the ecological structure and function of resident biotic
communities, and undermine an otherwise unique opportunity to evaluate fishing effects on shelf-
edge reef fish populations.

We recommend that the pipelines be rerouted to areas outside of the reserves, and that particular
attention he paid to avoid live-bottom and high-relief habitat to the extent possible. We recommend
that new environmental impact studies be done to provide more realistic profiles of habitat. Further,
we suggest that a team of scientists develop for the Federal Energy Regulatory Commission (FERC)
and the Mineral Management Service (MMS) a standardized format for conducting such studies so
that valid comparisons can be made among different projects and different areas.

INTRODUCTION

Concern over extreme demographic changes in gag (Mycteroperca microlepis) populations of the
southeastern United States—including declines in the proportion of males, declines in the size and
age structure of spawning groups (Coleman et al. 1996, McGovern et al. 1998), and the apparent
occurrence of inbreeding (Chapman et al. 1999)—prompted the Gulf of Mexico Fishery
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Proposed Pipeline
Routes:
Buccaneer
Gulfstream

Figure 4.1. Map of Florida and shelf waters showing the location of Madison-Swanson,
Steamboat Lumps, and Oculina MPAs and the proposed routes for Buccaneer
and Gulfstream gas pipelines.

Management Council to recommend closing portions of the west Florida shelf edge (50-120 m
depths) to fishing. On 19 June 2000, the National Marine Fisheries Service officially established two
marine protected areas (MPAs) in gag spawning habitat, known as the Madison-Swanson MPA and
the Steamboat Lumps MPA (Figure 4.1). The two areas combined cover over 200 nm2 and will
remain closed for a period of four years. 

Studies within the newly-formed Madison-Swanson and Steamboat Lumps MPAs and associated
control sites are already underway by scientists at a number of different state, federal, and academic
institutions. These studies include side-scan sonar and multibeam mapping, ROV (remotely operated
vehicle) video transect work, and studies of the community and behavioral ecology of resident
populations. Because the whole intent of MPAs is to exclude as many confounding anthropogenic
effects as possible, the reserve and control sites are being monitored to evaluate recovery from
fishing effects. 
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Gas pipelines proposed to transit the northeastern GOM from Mobile Bay, Alabama, to near Tarpon
Springs, Florida, could cross both MPAs. We reviewed the draft environmental impact statements
that describe the potential effects of construction on Outer Continental Shelf (OCS) habitat. We
were particularly interested in the extent to which construction could disrupt the integrity of critical
shelf-edge habitat and the evaluation of fishing effects in these regions. We first describe the
pipeline construction process, as outlined by the construction companies—Buccaneer Gas Pipeline
Company and Gulfstream Natural Gas System—and then critique those portions of the Draft
Environmental Impact Statements (DEIS) provided by each company’s subcontracting firm,
Continental Shelf Associates (CSA) for Buccaneer, and Sea Byte, Inc., for Gulfstream. The intent
of this paper is to provide recommendations to these companies and to future oil and gas
construction projects on the OCS.

SHELF-EDGE REEF FISH POPULATIONS: A BRIEF REVIEW 

Most of the economically-important reef fish species of the southeastern United States are
overfished (Coleman et al. 2000). Many of them are protogynous hermaphrodites—fish that change
sex from female to male—and a great many of them co-occur in shelf-edge habitat (Koenig et al.
2000). Among the factors hindering effective management of these species are poor catch records,
poor collective memories of the historical state of fished populations, inadequate records of the
unfished condition (Jackson 1997), and a lack of political will to implement appropriate
management practices. 

The reductionist approach of single-species management compounds this problem because it
typically limits inquiry to the population dynamics of one stage in the life cycle of an exploited
species (the adults). It rarely considers other stages (larvae, juveniles, subadults) that are equally
important to population persistence and ignores the fact that exploited species form part of a
complex interacting ecosystem. 

The Magnuson-Stevens Fishery Management and Conservation Act of 1996 (NMFS 1996) provided
for substantive changes to this approach by suggesting that EFH and ecosystem-level processes are
important components of effective fisheries management. Admittedly, the definition of EFH is
broad—defined in the act as “those waters and substrate necessary to fishes for spawning, breeding,
feeding, or growth to maturity” (NMFS 1996). But the mandate is clear that EFH must be protected
and that potentially adverse effects on EFH from fishing and non-fishing activities (which would
include pipeline construction or other oil and gas-related activities) must give way to actions that
encourage habitat conservation. 

One important step toward management in the framework of ecological realities is the use of MPAs
(NMFS 1999, NRC 2000, Bulletin of Marine Science 2000). MPAs not only provide the opportunity
to observe reef fish population parameters and community structure in an unfished state, but they
also provide opportunities to experimentally evaluate the effects of fishing on specific behaviors,
demographics, ecological interactions, and habitat. For example, an MPA allows evaluating the
extent to which fishing that targets gag spawning aggregations selects for males and disrupts the sex
change process. 
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Of particular interest in the GOM are the shelf-edge (50 – 120 m depth) reefs of west Florida, reefs
that have been fished for over 100 years (Camber 1955). As important as these areas are, neither the
direct nor the indirect effects of fishing on habitat or the associated reef communities have been
evaluated. Direct effects of fishing, in addition to removal of targeted species, include mechanical
damage to habitat due to mobile fishing gear, trapping, and anchoring. Indirect effects include
trophic cascades resulting from the removal of top-level predators (Hughes 1984, Hughes et al.
1987) and potential habitat loss resulting from removal of species that act as geologic agents
(Scanlon et al. in review, Coleman and Williams in review). One need look no further than the
EORR (Experimental Oculina Research Reserve) MPA off central east Florida (Figure 4.1) for an
example of extensive fishing-induced habitat destruction and the effects on benthic communities
(Koenig et al. 2000). 

Gag spawning aggregations occur in these shelf-edge regions from the eastern GOM to North
Carolina (Koenig et al. 1996, McGovern et al. 1998, Koenig et al. 2000). Yet, the area in the
northeastern Gulf between latitudes 280 and 290 30' N at depths ranging from 50 to 120 m is
considered both the gag population center of abundance and the heart of the commercial fishery
(Schirripa et al. 1999). Many other economically important reef fish species also spawn in this
region, including scamp (Mycteroperca phenax), red grouper (Epinephelus morio), gray snapper
(Lutjanus griseus), red snapper (Lutjanus campechanus), vermilion snapper (Lutjanus
rhomboplites), red porgy (Pagrus pagrus), and others (Coleman et al. 1996, Koenig et al. 2000).
Thus, locating MPAs in this region is particularly important. 

PROPOSED PIPELINES ON THE WEST FLORIDA SHELF

Buccaneer’s proposed pipeline is approximately 411 miles long. It passes through roughly 200 miles
of critical shelf-edge habitat (but see comments below), including some 12 miles in the southwest
portion of the Madison-Swanson MPA. Gulfstream’s proposed pipeline is approximately 420 miles
long, crosses roughly 59 miles of shelf-edge habitat (~53 miles on the west Florida shelf edge and
~6 miles on the Alabama shelf-edge), 3.5 miles of which are in the northeast corner of the
Steamboat Lumps MPA (Figure 4.1). The Buccaneer pipeline is in somewhat shallower water than
the one proposed by Gulfstream. 

Pipeline occurring at depths less than about 61 m must be buried in the substrate. This is an
expensive process with destructive effects on habitat. Pipeline occurring at depths greater than 61
m is neither buried nor anchored to the bottom. However, this does not mean that construction is a
low-impact process at those depths. In order for the 1.0 m diameter pipeline to maintain a smooth
sigmoidal shape as it is laid from the barge to the seafloor, the barge must be secured in place by 12
anchors, eight forward of the barge and four aft. Each anchor measures about 5 x 6 m and weighs
at least 13 tons. The anchors are distributed radially from the barge by cables 7.6 cm in diameter;
the anchors and cables together cover a swath approximately one nautical mile wide. The barge
progresses along the pipeline route by drawing in the fore anchor cables, letting out the aft anchor
cables, and subsequently repositioning the anchors for another round. This action is repeated twice
within each mile, such that there are 24 anchor strikes per mile.
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The extent of the habitat damage caused by this process is related to the compounded effects of
anchor-cable sweep (the extent to which anchor cables contact the bottom), anchor drag, and sea-
state. The anchor-cable sweep is greatest near the anchors as the barge is drawn forward due to the
considerable catenary in the cable line. When cables sweep the bottom, they act like trawls or
dredges, but with far greater force, literally raking away all habitat structure. Anchor strikes affect
less area than cable sweep, but an increased sea state will likely increase the damaging effects of
both. Neither company has considered the effects of sea state. 

Each company was responsible for conducting photo-video surveys along portions of the proposed
route and then comparing those videos to geophysical data (side-scan sonar imagery and seismic
reflection profiles) to determine the degree of relationship between the two. The MMS required that
the photo documentation surveys be conducted at depths shallower than 100 meters, even though
the proposed pipelines would cross habitat at greater depths. In the side-scan sonar data, dark,
medium, and light areas correspond to the acoustic properties of the seafloor. For example, a hard
rocky bottom would produce a dark image, and a soft-grained, sediment-covered bottom would
produce a light image. However, other factors (e.g., small-scale roughness of the seafloor, angle of
slope, and state of compaction of sediments) also affect the acoustic properties of the seafloor, and
hence complicate the interpretation of the acoustic image produced. 

CRITIQUE OF ESTIMATED IMPACTS TO SHELF-EDGE HABITAT.

Because we are most interested in the effects of construction on habitat important to reef fish, we
confine our comments to estimates of hard-bottom (carbonate rock either exposed or covered by a
thin veneer of sediment), and specifically “live-bottom” (hard-bottom with sessile epifauna)
coverage made by Sea Byte, Inc., (for Gulfstream) and CSA (for Buccaneer). 

 The ground-truthing exercises conducted by Sea Byte at both shelf (15 – 50 m) and shelf-edge (50
– 100 m, the greatest depth required by MMS for habitat delineation) depths revealed: (1) that areas
with light acoustic reflectivity had 15% live-bottom coverage, (2) that areas with moderate
reflectivity had 21% live-bottom coverage, and (3) that areas with dark reflectivity had 53% live-
bottom coverage. Although the percentage of live-bottom increased with the degree of
reflectivity—that is, the lower the reflectivity, the lower the percentage of live-bottom—the
relationship was a poor indicator of the presence of live-bottom. For instance, when similar studies
were conducted inshore by Seabyte (1999), they found a high degree of correlation between dark
reflectivity and the presence of live-bottom. This was not the case on the OCS. Based on that
finding, Sea Byte decided that the geophysical data did not adequately represent the extent of live-
bottom in the OCS. Thus, they relied upon a series of parallel photo-video transects made along the
entire pipeline route (to 100 m depths), interpolating the extent of live-bottom between the transects.
This approach provided nearly 100% coverage of the proposed impact area and gave more realistic
estimates of live-bottom coverage.

The proposed route of the pipeline relative to shelf-edge habitat is ambiguous in the documents
prepared for Buccaneer by CSA. In fact, the documents provide three different proposed pipeline
paths relative to depth: one in which the pipeline appears to be shallower than the 100 meter isobath
over all of its length (CSA 1999, 2000a), one in which it deeper than 100 m in several places (CSA



114

2000b), and yet a third in which the 300 ft. (91 m) isobath and the 100 m (328 ft.) isobath are
indistinguishable (CSA 2000c). If the first route is correct, then the pipeline route covers about 200
miles in shelf-edge depths. If the second route is correct, then it covers about 100 miles. For
purposes of discussion, we used the first map presented in the series for evaluation. This choice was
completely arbitrary because the maps are so confusing.

Continental Shelf Associates, Inc., (Buccaneer) performed photo-video documentation surveys over
75 miles of the shallower pipeline route across the west Florida shelf (from shore to about 50 m
depths). However, they only surveyed about 8% (15 of the nearly 200 miles) of the route through
the more critical shelf-edge habitat, sampling only six sites, four of which were clustered in a 20-
mile segment midway along that line and none of which were deeper than 100 m. Unlike Sea Byte,
CSA found, as stated in their summary, an “exceptionally high degree of correlation” between the
geophysical data and their photo-documentation of live-bottom (CSA 1999) and that the geophysical
data, if anything, overestimated the amount of live-bottom (CSA 2000a). 

This interpretation by CSA is in part due to their assumption that live-bottom only occurred in
geophysically-determined hard-bottom habitat. However, closer examination of their maps shows
that the correlation—much like that found by Sea Byte—is not particularly good for predicting how
much live-bottom exists in an area. Live-bottom exists to some extent in all geophysically-
determined zones. For instance, in one segment (plot 4 of segment 2 on shelf edge habitat in CSA
1999), live-bottom was found in video transects in “light” areas (not identified in the map legend,
but presumably sediments ranging in texture from silty to fine or medium grained sand, based on
the text), while very little live-bottom is found in “dark” areas, 

We found interpreting CSA’s maps difficult because the terminology in the text and the maps was
unclear. For instance, the self-contradictory phrase “carbonate (limestone) sediment” is used
repeatedly. Limestone, by definition, is a rock, not a sediment. One can only guess what this term
is meant to describe, because it is not defined in the map legend or in the text. Furthermore, the map
legend contains a number of units (e.g., “exposed carbonate (limestone) sediment,” “sediment
veneer over carbonate (limestone) sediment,” “sand covering carbonate (limestone) sediment with
scattered outcrops,” “exposed carbonate (limestone) sediment with areas of outcrops and sand
pockets,” and “scattered outcrops”) which appear to have considerable overlap, are ambiguous or
contradictory, are contrary to common geological usage, and are never defined. As a result, these
maps are of little use either for delineating or for quantifying benthic habitats. 

Considering CSA’s inadequate photo coverage of the shelf-edge habitat and the apparently low
concurrence between the geophysical patterns and their photo-documentation data, we consider that
their report grossly underestimates the extent of shelf-edge live-bottom coverage. Although it is not
unreasonable to quantify biotal coverage and sessile invertebrates potentially impacted, it is more
important to determine construction impacts to the actual habitat, regardless of the density (or biotal
coverage) of the individual benthic species. For example, CSA’s (2000c) quantitative survey states
that about 8% of the construction route is live-bottom habitat, but that only 12.5% of that is covered
by sessile invertebrates. They have interpreted this to mean that 1% (.08 x .125) of the live-bottom
habitat would be destroyed. We caution that the emphasis should be placed on the areal coverage
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of the habitat, and not on the areal coverage of the individual organisms. The latter leads to an
erroneous perception that vastly underestimates the impact on habitat of pipeline construction.

DISCUSSION AND RECOMMENDATIONS

Considerable concern exists among scientists and conservationists about the rate of habitat loss
worldwide. In fact, habitat loss is considered the primary reason for declines in biodiversity
(Wilcove and Wilson 2000). The litany of agents responsible for the declines include water
diversion projects, hydropower dams, agricultural practices, and urbanization. To these can be added
habitat destruction caused by mobile fishing gears—trawls and dredges—which have devastated
many low-relief live-bottom habitats (Dayton et al 1995, Auster et al. 1996, Watling and Norse
1998). There is strong interest in monitoring these effects and limiting them to the extent possible.
Pipeline construction is just one more effect that should be closely evaluated. Such construction is
not constrained in the same way that mobile fishing gear is because (1) it can affect areas typically
inaccessible to trawls; and (2) it has the potential through sheer force of impact to cause far more
damage to habitat, reducing high relief structure to rubble. 

We are very concerned by the methods used to delimit habitat in the reports of proposed pipeline
construction in the northeastern GOM. The reason that accurate estimates of different habitat types
are so critical is that these numbers are used to evaluate the extent of damage caused by pipeline
construction. For purposes of these studies, the MMS applied the “low-relief live-bottom
stipulation,” which is that those applying for oil and gas leases conduct photo-documentation
surveys of the sea floor within the project area only at depths of 100 m or less (Gulfstream 2000).
The MMS considers live-bottom to be “seagrass communities or those areas which contain
biological assemblages consisting of sessile invertebrates (such) as sea fans, sea whips, hydroids,
anemones, ascidians, sponges, bryozoans, or corals living upon and attached to naturally-occurring
hard or rocky formations with rough, broken, or smooth topography; or areas whose lithotope favors
the accumulation of turtles, fishes, and other fauna.” No surveys are required in areas of greater
depth. 

We find the depth restriction of 100 m not only arbitrary, but exclusive of a number of important
types of marine habitat. Of particular concern are exclusions of deep-water reef fish habitat and coral
and sponge communities. For instance, important reef fish habitat exists at depths greater than 100
m, including essential habitat for tilefish Lopholatilus chamaeleonticeps, blueline tilefish
Caulolatilus microps, Warsaw grouper Epinephelus nigritus, snowy grouper E. niveatus, speckled
hind E. drummondhayi, and yellowedge grouper E. flavolimbatus (Parker and Mays 1998). All four
of the groupers are considered at risk of extinction by the American Fisheries Society (Musick et
al. 2000), and two of them—Warsaw grouper and speckled hind—are now considered threatened
(Coleman et al. 2000), thus requiring special management attention. Extensive live-bottom (65%
coverage) exists at depths of 120 to 160 m off the southwest Florida shelf (Phillips et al. 1990).
Further, beds of the deep-water coral Lophelia pertusa (= L. prolifera) occur in water depths of 439
to 512 m some 40 miles east of the Mississippi delta. Similar banks off Norway and the Faeroe
Islands, which support enormously diverse biota, have suffered tremendous losses (Roberts 1997).
Although little is known of these habitats—or perhaps because so little is known—they should be
quantified in estimates of habitat impacts from oil and gas construction projects. Thus, we
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recommend that photo-documentation surveys include all depths at which any oil and gas activities
are to occur. 

The most significant source of habitat damage during pipeline construction is due to anchor cable
sweep. Buccaneer (2000) estimated the damage to range from one to one-and-a-half acres per anchor
strike, or about 24 to 36 acres per construction mile. Gulfstream (2000), on the other hand, estimated
that habitat damage would be on the order of 114 acres per construction mile at depths ranging from
61 m (200 ft) to 100 m (328 ft). It would be much greater at shallower depths because the lower
angle of the anchor cable causes more of it to touch the bottom.  Thus, the two estimates of habitat
damage due to cable sweep differ three- to nine-fold, depending on the construction depth. The
estimated area of damage provided by Gulfstream is more realistic because it is based on
engineering considerations (e.g., sweep features of each anchor cable and relationship to depth) and
historical observations.   

How could these companies, running parallel analyses along parallel routes, come to such disparate
conclusions about the relationship between the geophysical data and photo ground-truthing, in
estimating anchor-cable sweep damage, and in estimating habitat coverage? Further, why did both
companies choose routes that went specifically through marine protected areas? 

We found it difficult to make comparisons between the habitat quantification documents provided
by the two pipeline construction companies because the methodologies used were not standardized.
In fact, CSA did not even follow standard survey or statistical methodologies, making comparisons
impossible in most cases.  To avoid problems of interpretation, we recommend that a team of
scientists develop standard methods and terminology for use by the FERC and the MMS.
Subcontractors should also be required to provide statistically-sound error values in their estimates
of areal habitat coverage.

It is unclear why both Buccaneer and Gulfstream chose pipeline routes that transit MPAs. They
either were wholly unaware of the Gulf Council’s July 1999 recommendation that these sites be set
aside as MPAs or they categorically chose to ignore these boundaries. Regardless which of these
scenarios is true, there is little doubt that significant damage in critical habitat would occur and
experimental studies of reef fish reproductive behavior and the effects of fishing on habitat and
ecosystem function would be compromised. If the boundaries of these MPAs are not respected a rare
opportunity to evaluate fishing effects might be lost. Thus, we recommend that oil and gas
construction projects hold MPAs as sacrosanct and avoid all anthropogenic disruption.

MPAs likely will form an important component of future fisheries management plans. To wit, on
26 May 2000, President Clinton signed an Executive Order calling for the expansion of the system
of MPAs throughout the United States (Federal Register vol. 65, no. 105, pp. 34909-34911). The
intent is to “(a) strengthen the management, protection, and conservation of existing marine
protected areas and establish new or expanded MPAs; (b) develop a scientifically based,
comprehensive national system of MPAs representing diverse U.S. marine ecosystems, and the
nation’s natural and cultural resources; (c) avoid causing harm to MPAs through federally
conducted, approved, or funded activities” (italics ours). This Executive Order sets the tone for
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future conservation of living marine resources. Our respect for these resources and the MPAs that
contribute to their sustainability translates into a respect for future generations.
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ABSTRACT

The North Sea rigs-to-reefs debate has moved forward with the creation of a multi-stakeholder
steering group to oversee development of independent research. Given the sharp division in stake-
holder opinion, this group represents a proactive approach to assessing the potential for the
formation of reefs using redundant oil and gas platforms. This paper examines the historical
approach to the concept adopted by major North Sea stakeholders against a background of political
landmarks including the 1995 Brent Spar incident. It examines in detail the reaction of fishermen
to calls for offshore and nearshore reefs, noting in particular the importance of liability, loss of
access, and safety concerns. The fishing industry remains neutral about the benefits of inshore reefs;
the industry remains, however, committed in opposition to offshore reef creation, especially when
combined with a no fishing policy.  The environmental group Greenpeace is opposed to any rigs-to-
reefs initiative, seeing this as a means by which offshore operators can circumvent the OSPAR
Decision 98/3, which requires complete removal of offshore installations. The importance of cost
and the existence of willing reef beneficiaries are highlighted as important to the acceptance and
success of a nearshore rigs-to-reefs venture. Offshore reef creation faces numerous political hurdles.
The importance of a genuine stakeholder dialogue to integrate scientific and political thinking and
avoid the recurrence of an event similar to the Brent Spar, is stressed, the paper concluding that
fishermen hold the key to the success of rigs-to-reefs ventures in the North Sea, their co-operation
and participation essential in the promotion of a concept that has for so long been promoted to them.

INTRODUCTION

The potential for the ‘rigs-to-reefs’ concept to be implemented in the North Sea has always been a
source of contention between scientific, environmental, fishing and offshore sectors. In the wake
of the Brent Spar incident, the concept has come under increasing scrutiny from all stakeholders.
The investigative effort has not been a proactive one amid the more general debate on North Sea
abandonment and sea disposal, but instead a reactionary link among all stakeholders on an issue that
has not been thoroughly evaluated and that is shrouded in suspicion and mistrust.

This concept’s applicability in a North Sea context has been subject to scientific appraisal and
speculation over the past two decades (ICIT 1991; Picken 1992; Side 1992; Aabel et al. 1997; Baine
1995, 1998; Soldal et al. 1999) showing that fish are attracted to platforms, although only with
cautiously mooted biomass estimates (ICIT 1991; Soldal et al. 1999; Picken et al. 2000). Thorough
programs of scientific research have been promoted to bridge the gaps in knowledge (Aabel et al.
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1 Guidelines and Standards for the Removal of Offshore Installations and Structures on the Continental Shelf and in the
Exclusive Economic Zone (developed in response to Article 60(3) of the 1982 United Nations Law of the Sea
Convention).

2 Oslo Commission Guidelines for the Disposal of Offshore Installations at Sea 1991, OSPAR Convention for the
Protection of the Marine Environment of the Northeast Atlantic 1992, UK Petroleum Act 1987, UK Food and
Environment Protection Act 1985.

1997); however, scientific research to date does not induce the confidence needed to justify the
initiation of a rigs-to-reefs program (in any form) against a background of political scepticism.

Many of the social and political issues inherent in the North Sea rigs-to-reefs debate have been
ignored or devalued, much to the dismay of fishermen who see these issues as important as and per-
haps more crucial than any program of scientific research. The concerns of fishermen regarding any
form of sea disposal of offshore platforms, for example, have been publicly stated since the early
1970s, yet these concerns are often ignored in contemporary limited scientific evaluation of a
conceptual abandonment option. Indeed, such a concept if it were to proceed would have significant
ramifications for fisheries and environmental management throughout the north-east Atlantic region.

This paper addresses the socio-political issues involved in the debate, concentrating on the relation-
ship between Scottish fishermen (through the Scottish Fishermen’s Federation [SFF]) and offshore
operators. Information here is from direct contact with stakeholder representatives and output from
working groups and workshops. This primary research is supplemented by the analysis of published
literature on abandonment and environmental management, stakeholder policies and legislation. The
paper ends with a discussion of the present status of the rigs-to-reefs debate in the North Sea.

FISHERMEN, OFFSHORE OPERATORS AND THE GOVERNMENT –
A HISTORICAL PERSPECTIVE

With the emergence of petroleum activity in the North Sea in the early 1970s, it was recognized that
fishermen would be inconvenienced. The government, however, assured the fishing industry that
once the oil companies had completed their operations, all installations would be removed and the
seas returned to the fishermen in the condition in which the oil industry had found them. The 1958
Geneva Convention on the Continental Shelf backed this assurance, and fishermen accepted it (Allan
1986, 1992, 1994).

As the years passed, however, the fishing industry looked on with mounting concern, as assurance
of complete removal began to evaporate. The industry was informed that complete removal might
not be possible for reasons including cost, the technical plausibility of complete removal operations,
and the perceived uncertainty of future legislation regulating the abandonment of offshore oil and
gas installations. In response, the fishing industry maintained its argument that promises had been
made as to the complete removal of installations and that those promises should be kept.

The development of the International Maritime Organisation’s 1989 Guidelines1 and other inter-
national and UK legislation2 gradually led to the general acceptance of toppling and partial removal
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as abandonment options. The fishing industry, while committed to complete removal, believed it
had been forced into instigating a damage limitation exercise. Accordingly, the fishing industry
proposed that it would press for six minimum safeguards (Allan 1994) in the event of a case-by-case
approach to abandonment. In summary, these address the witnessing of removal operations by the
fishing industry; debris clean-up operations; confirmation of debris clearance by side-scan and trawl
operations; regular inspection of abandonment sites; establishment of a compensation fund by the
government for loss of access to fishing grounds; and establishment of an additional compensation
fund for specific gear losses/vessel damage caused by oil debris.

A shift in SFF policy on abandonment, however, occurred in 1994, the main determinant being the
cost to the UK taxpayer of abandonment operations (ICIT 1994). This policy was developed before
the Brent Spar incident and before the “Westhaven” tragedy. In the UK, the percentage of total
abandonment costs borne by the state is estimated to be in the region of 50-70%. From available
estimates of total costs of partial and complete removal of North Sea installations ICIT (1994)
concludes that the government may be able to make savings in the region of £1.25-1.75 billion in
tax revenue if partial removal is adopted as the main abandonment route. There is, therefore, an
obvious economic incentive in considering partial removal options compared with complete
removal. ICIT (1994a) further considers the implications of the above savings in a wider remit
involving the likely cost to fishermen of installations remaining partly in place, namely through loss
of access and damage to fishing gear. In doing so the study utilizes the compensation criterion
suggested by the economists Kaldor (1939) and Hicks (1939), which in summary suggests that a
project is only worthwhile if the financial gain is able to compensate those who lose out from the
project, thus ensuring that no one is worse off as a result of the project (the study notes that the
Kaldor-Hicks principle does not take account of any moral obligation). In this instance ICIT (1994)
postulates that “it is highly unlikely that the cost of loss of access or future losses of gear by
fishermen would exceed £1.25 billion,” the estimated (lower) cost of requiring complete rather than
permitting partial removal. Include the original assurance by the government that the structures
would be entirely removed, the prospect that certain areas of the seabed will be unavailable to the
fishing industry and the potential for damage to fishing gear that may result from the migration of
debris as the partially abandoned structures degrade, it seems reasonable to conclude that by
operating a program of partial removal as opposed to complete removal the government and offshore
operators are set to gain financially to the detriment of the fishing industry. It therefore seems
reasonable that the fishing industry would expect compensation not only from the offshore
operators, but also from the government, bearing in mind that they both gain financially from the
situation. 

Despite the strong moral argument for complete removal of offshore installations, the SFF have no
wish to see the majority of abandonment (complete removal) costs being met by the taxpayer in the
form of lost revenues from Petroleum Revenue and Corporation Tax (ICIT 1994). Whereas
previously the SFF sought complete removal and nothing else, their change in policy recognizes the
financial burden to the taxpayer and accordingly establishes a number of objectives that recognize
partial removal as a possibility. These are:
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• To minimize risk to fishermen, to their vessels and gear and to minimize the areas of the
seabed that will be lost to fishing in perpetuity as the result of the abandonment of partially
removed structures.

• To ensure adequate compensation to fishermen for any damages or losses incurred as a result
of the abandonment of partially removed structures and to seek the establishment of simple
mechanisms for such settlements.

• To ensure that fishermen, government, the offshore industry and the public understands the
reasons for its change in policy. 

A number of principles have also been established to guide all aspects of this policy (ICIT 1994)
including:

a) The “Polluter Pays Principle”

In this instance the premise is that any costs to the fishermen should be recovered from the
polluter. This policy will depend upon the transfer of liability for abandonment; if to the
government then it should accept responsibility for compensation; however, if not then the
polluter pays principle should apply.

b) Compensation for damage and loss should be in accordance with the “General Principle of
Strict Liability” and should be adequate and no more than adequate

In this instance a call is made for the avoidance of costly and lengthy court actions for claims
in favor of a “formal arrangement…for the consideration of such claims that accords with
the principles of strict civil liability” where the incident has occurred in areas where fishing
is legal. Any encroachment of the safety zone, for example, should not be dealt with in this
manner.

c) That equity between the present and all future generations of fishermen should be a guiding
principle

Any compensation accepted for loss of access in perpetuity must be accepted on behalf of
fishermen now and of fishermen of the future.

FISHERMEN, ARTIFICIAL REEFS, LOSS OF ACCESS AND SAFETY 

It is difficult to glean the attitude of fishermen about the prospects of an artificial reef created from
an abandoned offshore facility without the politics of offshore abandonment in general clouding the
issue. It is also apparent that fishermen’s actions often do not reflect their words, unsurprising in
view of the very contentious nature of the issues involved.
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At the 1994 conference on “Managing the Environmental Impacts of Decommissioning and
Abandonment Offshore,” Aberdeen, a representative from the Scottish Fishermen’s Federation,
made the following statement:

“We are also somewhat bemused and amused to hear of suggestions that toppled
platforms may become artificial reefs. The main experiences of these have been in
warm climates. The North Sea is totally different in climatic and fishing terms.
However, it is fair to state that one or two Constituent Association members of the
SFF have been prepared to co-operate with artificial reef projects targeted for
nearshore locations.”

This statement is fairly representative of North Sea fishermen’s views on artificial reefs. They do
not recognize any potential benefits from offshore reef creation, whereas in certain situations they
may see some value in placing a reef nearshore. This view reflects recognition of the general
concept of artificial reefs and is not specifically geared towards dismantled offshore installations.
The formation of nearshore reefs has readily identifiable benefits in its nearshore location, most
notably easier accessibility for nearshore fishermen and the greater potential for targeting specific
resources such as lobster and crab. Fishermen also recognize the role that artificial reefs may play
in conservation of nearshore resources, in providing safe havens and/or the exclusion of mobile
fishing gear from an area. Artificial reefs exist in Poole Bay, England and Torness, Scotland, and
have two general points in common: (1) they were both constructed from waste material, and (2)
they were both research-orientated. The Poole Bay artificial reef has shown distinct fisheries
enhancement properties particularly in relation to lobster populations (Jensen and Collins 1995);
however, the program of research has been discontinued on the Torness reef (Todd et al. 1992).
Picken (1992) and Picken et al. (2000) also refer to the attempts to place a reef in the Moray Firth,
Scotland. In 1987, a potential project entitled SPARE (Scottish Pilot Artificial Reef Experiment)
was developed by Aberdeen University with the support of the Scottish Fishermen’s Federation and
the Scottish White Fish Producers Association to research the use of redundant mud modules as
artificial reefs with particular emphasis on the fisheries implications. The project, however, did not
proceed because funds were not sufficient. Aberdeen University is presently still pursuing, with the
support of the same fisheries organizations, the possibility of placing a high-profile steel reef to
mimic the potential effects of placement of dismantled parts of offshore installations nearshore. The
support of fishermen is therefore available for such experimental projects.

The situation becomes confusing when we take a closer look at offshore reef creation. There is very
little support from fishermen for offshore reef deployment. Their doubt in any benefits to fish or
fishermen is normally expressed in response to comparisons between the North Sea and the Gulf of
Mexico, in particular the differences in fishing activity and environmental and climatic factors.
There is a valid argument against such comparison, but the available information from North Sea
studies indicates quite strongly that fish are attracted to offshore installations (ICIT 1991; Picken
1992; Side 1992; Aabel et al. 1997; Baine 1995, 1998; Soldal et al. 1999). This information should
provide a basis for analyzing the prospects of offshore reef creation in the North Sea. Fishermen
have also been known deliberately to fish close to offshore installations and along pipeline routes
to take advantage of what they know is a fish aggregation response to their presence. Picken et al.
(2000) quote one example of the financial benefits associated with such aggregation in the North
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3 OSPAR Decision 98/3 on the Disposal of Disused Offshore Installations 1998

Sea, when “a fishermen was fined £8,000 for repeatedly fishing within the 500m zone around
platforms, during which time over £200,000 worth of fish were caught.”

Fishermen are aware of the fish aggregating properties of offshore installations in the North Sea.
Their distinct opposition to the formation of offshore artificial reefs, however, is based more on
safety and political considerations, and represents a defiant opposition to the offshore industry.
Fishermen also see offshore artificial reef creation as a potential excuse or additional reason offshore
operators could use in their arguments for partial abandonment or toppling of individual
installations. The fact that the structures do attract fish does not help their situation, and has
probably been recognized as such for many years. 

Reef creation, especially offshore, has the same issues of liability associated with partial removal
and toppling, such as loss of access and potential damage to fishing gear and personnel from impact
on abandonment residues. If a platform is toppled or partially removed, the government has
proposed that a 500m “no fishing zone” remain in place for safety purposes (Select Committee
1996). This proposal was made in advance of the recent OSPAR Decision [July 1998]3, but is still
of relevance in certain scenarios. During the operational lifetime of platforms, fishermen were
excluded from the 500m safety zones, and in the instance of partial removal they will have lost
access in perpetuity to such prescribed zones. The government and offshore operators do not
consider the loss of access claim to be proven (ICIT 1994). The SFF stated to the Select Committee
of 1996 “Where the SFF believes it reasonable it will pursue a claim on behalf of present and future
generations of fishermen for adequate compensation for the loss of access to fishing grounds in
perpetuity…Any settlement will be made into a fund established on the principle of equity for all
fishermen of present and future generations.” The United Kingdom Offshore Operators’ Association
(UKOOA), however, did not favor compensation for loss of access, stating, “we do not see from our
admittedly non-fishing background the problem with the North Sea as being lack of access; we see
the problem as being lack of fish.” The Committee, in its conclusions, agreed with the government
and offshore operators that loss of access was not proven, going so far as to state that “some fishing
free areas, however small, may help to protect dwindling fish populations; in the North Sea the
decline of fish populations is a serious concern.”

It is very difficult to prove the ‘loss of access’ argument, as noted by ICIT (1994). This difficulty
results from the variability of fisheries that are natural systems and the associated variation in
fishermen’s earnings as a result of these fluctuations, but also skill, market price and level of effort.
ICIT (1994) identify that the only possible way of proving ‘loss of access’ is through a process of
argument, related to:

1. the occupation of different grounds by fish throughout a season; these variations are known
to fishermen who then utilize their knowledge to fish grounds which yield the greatest catch
per unit effort;

2. the fact that no loss of earnings will occur through no lack of access; 
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3. the fact that loss of access to an entire fishing ground will result in loss of earnings
represented by the loss of catch associated with this ground; and

4. postulations surrounding the grey area that lies between points two and three, which suggests
that loss of earnings correlates with the proportion of grounds lost.

One of the major arguments against the ‘loss of access’ claims is that fish move and fishermen
merely need to redirect their effort. The problem with this argument is that although an equivalent
level of catch may be achieved, there may be an increase in effort expended to achieve it, with
fishermen thus fishing at a net loss compared with the situation where there is no ‘loss of access.’
If fishermen expend the same level of effort, it can equally be maintained that there may be a
reduction in catch which again results in a net loss compared with the situation where there is no
‘lack of access.’ ICIT (1994) do, however, warn that given the natural fluctuations that occur in
fisheries, it is again very difficult to relate loss of earnings to ‘loss of access’ and that a “substantial
loss of access would have to occur before this was demonstrable…,” there always existing the
possibility that in some years natural fluctuations will be responsible for loss of earnings.

Other arguments against the ‘loss of access’ claim (ICIT 1994) include the following:

• fishermen achieve their EC quotas so there is no loss of catch. This argument becomes
invalid in light of the above discussions regarding effort;

• platform remains provide a ‘reef effect’ and are a gift either through conservation promise
or aggregation properties. However, fishermen are skeptical of this notion, believing that
fishing such areas, if legal, would present increased risk to personnel and equipment.
Secondly, any aggregation may also be viewed as removing fish from surrounding fishery
and this constitutes an argument for loss of access; and

• platforms create obstacles to fishermen but also provide potential breeding and nursery areas
for fish stocks that have a conservation value which will ultimately benefit the fishermen.
They may provide additional sustainability to a fishery in the same way that prohibition
areas do, but the scale and degree to which this would occur is subject to much speculation,
particularly given the small areas that will exist around platforms.

The SFF also argued to the Select Committee (1996) that compensation was due for damage to
fishing gear and boats and injury or death as a result of offshore installations and associated
residues. The government believes this to be a matter for affected parties and owners. The SFF also
reiterated the difficulty in proving that such debris was responsible for any damage and that it
preferred the establishment of a simple mechanism to deal with compensation. The Select
Committee (1996) agreed with the government that it was a matter for affected parties and owners;
however, it did “agree in principle with the claims for compensation by fishermen.”

The basis for such claims is the ‘polluter pays principle’ and relates to the two situations whereby
such damages and losses occur in areas where fishing remains lawful and those areas where fishing
is illegal, i.e. within the 500m safety zones that are likely to be established upon abandonment. 
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With the government refusing to accept liability for abandonment residues, the operator becomes
responsible for any damages or losses occurring in areas outside the safety zone, and under the
general principles of strict liability, fishermen need only prove the cause of damage. Compensation
would be sought, therefore, if previous assurances regarding the risk of movement of residues
outside the safety zone were found to be wanting in practice (ICIT 1994). The pursuit of such a
compensation claim through the courts is generally seen as an unfavorable option, both in the
attendant publicity to offshore operators and in the likely event that the cost to fishermen would be
grossly disproportionate to the damage. This explains the preferred establishment of a simple
mechanism to deal with such claims, a mechanism, which at its simplest would involve the provision
of compensation by the operator where such damage is shown to be attributable to abandonment
residues. In the event that no one operator is found attributable such a claim would be best directed
to a collective operator’s fund handled by UKOOA.

Regarding claims for damage within a 500m safety zone, a different process would apply, as fishing
within such zones would be illegal and the vessel skipper would be subject to prosecution.  There
are possible defenses of safety zone infringements, including adverse weather conditions, but it is
highly unlikely that a claim would be pursued by fishermen for damage incurred as a result of
infringement especially if a compensatory mechanism was in place for loss of access.  Such a claim
would therefore need to be pursued through the courts.

A compensation fund for fishermen was established in 1975 by UKOOA for loss and damage to gear
arising from the presence of non-attributable oil-related debris. This fund also provides for loss of
fishing time as a result of any such damage depending upon the circumstances. When the debris is
attributable to a specific operator, the claim is made directly to the oil company; however, where
non-attributable the claim is made to the fund which is administered by fishing industry
representatives. The average number of claims settled between 1975 and 1990 by the fund was 90%.
In general, the greatest portion of claims is for damage to gear. The value of claims increased from
£15,000 in 1976 to £193,000 in 1990, although much of this can be related to inflationary factors.
Average settlement was approximately £2,000 per claim. No known examples of settled claims
arising from safety zone infringement exist (ERT 1993). 

The safety risk posed to fishermen by the presence of abandonment residues is perhaps best
envisaged when we consider the events surrounding the “Westhaven” tragedy in March 1997 (Side
1999). Four fishermen died after the fishing vessel “Westhaven” capsized while trying to free itself
after its trawl boards slipped under a gap between the seabed and the pipeline running from the Piper
field to Flotta oil terminal in Orkney. The incident, which occurred 100 miles northeast of Aberdeen,
has raised a number of questions regarding the risks posed to fishermen by free-standing areas of
pipeline (spanning). Fishermen called for a wide-ranging review of oil safety in the North Sea after
a sheriff’s inquiry into the disaster, even though the sheriff concluded that no one was to blame for
the tragedy. The sheriff’s recommendations included the initiation of talks between the HSE and oil
and fishing industries on fishing vessel safety around pipelines. Although this was an incident
involving a North Sea pipeline, it is relevant to the issues discussed here, as an indication of the level
of potential risk posed to fishermen from the presence of a structure abandoned at sea.
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OSPAR DECISION 98/3

On 20 June 1995, Shell UK decided to abandon its plans for the deepwater disposal of the Brent
Spar. The proposed deepwater disposal operation, vindicated by the completion of a Best Practicable
Environmental Option statement as required by UK law, had become “untenable” against a
background of activity by environmental activists. Three years were to pass, seeing a moratorium
on the disposal at sea of decommissioned offshore installations, before agreement was reached on
Decision 98/3 under the auspices of the Oslo and Paris Commissions. It entered into force in
February 1999 and is representative of a hardening attitude towards marine pollution and sea
disposal in the northeast Atlantic by member states. Decision 98/3, as we will see however, still
leaves much open to debate, and has perhaps served to focus even greater attention on the option of
rigs-to-reefs.

The preamble to the decision contains an affirmation that disposal should be governed by the
precautionary principle, which takes into account potential effects on the environment; and the
recognition that reuse, recycling or final disposal on land will generally be the preferred option for
the decommissioning of offshore installations. 

In definition, the decision describes a disused offshore installation as “an offshore installation, which
is neither: 

a. serving the purpose of offshore activities for which it was originally placed within the
maritime area, nor

b. serving another legitimate purpose in the maritime area authorised or regulated by the
competent authority of the relevant Contracting Party”

Point (b) of this definition means that an offshore platform which, upon the end of its productive
life, is utilized for some other legitimate purpose (such as an artificial reef), is not classified as a
disused offshore installation and would therefore not be subject to this decision. The OSPAR
Convention 1992 under Article 8, becomes the relevant guiding legislation, requiring that the
contracting party must authorize any placement of a disused installation or pipeline in the maritime
area for a purpose other than that for which it was originally designed or constructed. Such
authorizations is required to be in accordance with relevant applicable criteria, guidelines and
procedures adopted by the Commission, with a view to preventing and eliminating pollution.

The Oslo and Paris Commissions have taken a much stronger position on sea disposal than was
previously envisaged. Although an alternative reuse is still possible, sea disposal in any other form
is tightly restricted. Point 2 of the decision states that “The dumping, and the leaving wholly or
partly in place, of disused offshore installations within the maritime area is prohibited.” Derogation
is possible (Annex 1) provided that the competent authority of a relevant contracting party is
satisfied that an assessment procedure (Annex 2) has provided “significant reasons why an
alternative disposal is preferable to reuse or recycling or final disposal on land.” Categories of
alternative disposal are listed as:
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4 A precursor to OSPAR Decision 98/3

• all or part of the footings of a steel installation in a category listed in Annex 1 (i.e. weighing
more than ten thousand tons in air), placed in the maritime area before 9 February 1999;

• a concrete installation in a category listed in Annex 1 (i.e. gravity based concrete
installations, floating concrete installations) or constituting a concrete anchor base; and

• any other disused offshore installation, when exceptional and unforeseen circumstances
resulting from structural damage or deterioration, or from some other cause presenting
equivalent difficulties, can be demonstrated.

The Brent Spar incident has added a new dimension to the decision-making process of
abandonment, that of the power of public opinion; there is a growing view within Europe that the
North Sea should not be used as a ‘dump’ by the offshore oil and gas industry. The decision strongly
indicates that sea disposal has become the least favored option, and will only be allowed to proceed
in the strictest of circumstances. Given this legislative shift towards complete removal, it is not
impossible that the offshore industry and government may well see artificial reefs as a potential
“solution” (Baine 1998), a viable alternative use that will involve little extra expenditure over the
partial removal/toppling options, a situation more pronounced in the creation of an offshore reef.
Indeed, even if there were not a shift towards complete removal, the management of partially
removed/toppled structures such as artificial reefs may well provide a way of alleviating the fears
of those against partial removal and toppling, particularly as abandonment is now fixed in the public
eye. It is difficult to envision the situation where such a change in tactics by the operators and
government will be viewed as genuine, and not just as a cost efficient means of disposal under a
different guise. The ‘dumping in a different guise’ perception is an argument that will almost
certainly be used in the event of reef creation by its opponents. This was highlighted at the Oslo and
Paris Commission/s 1996 Working Group on Sea-Based Activities (SEBA) meeting when
Greenpeace International informed SEBA of the possibility of artificial reefs becoming a “tactic to
circumvent OSCOM Decision 95/14,” even though the OSPAR Convention 1992 clearly states in
Article 1 (g ii) that ‘dumping’ does not include: “placement of matter for a purpose other than the
mere disposal thereof, provided that, if the placement is for a purpose other than that for which the
matter was originally designed or constructed, it is in accordance with the relevant provisions of the
Convention.” This perception is unfortunate, as the option of artificial reef creation is a viable one.
Kjeilen et al. (1995), for example, well in advance of the Brent Spar incident, studied the possible
deployment of the Odin platform, in the Norwegian sector of the North sea, as an artificial reef. 

In a debate held in March 1997 hosted by the Institution of Civil Engineers (Press Release, 13 March
1997) artificial reefs were on the agenda with the motion, “In the search for sustainability,
abandoned oil platforms are an enhancement to the sea bed,” being passed by delegates 27 to 23
with 4 abstentions. What was remarkable about this debate was that in response to the argument that
a small number of designated reef sites may help in offsetting the decline in North Sea fish stocks,
the Greenpeace representative stated that they were in favor of measures to improve North Sea fish
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stocks and they were not “averse to the utilization of cleaned structures in designated areas but
oppose toppling platforms in situ.” 

This opposition clearly reiterates Greenpeace’s argument that reef creation may well become an
excuse for toppling, which they would view merely as ‘dumping in a different guise.’ However, it
does lend some weight to the argument of utilizing decommissioned structures or parts thereof as
nearshore artificial reefs or indeed in a specially designated area of the North Sea, similar to the
designated reef zones in the Gulf of Mexico. Greenpeace International, in collaboration with
SustainAbility, also developed the “Beyond Sparring” project, a consultation exercise that aimed
to help in the process of formulating an Integrated Removal Strategy (IRS) for oil and gas
installations (SustainAbility 1997).  The lack of participation from the oil and gas industry in this
consultation exercise is notable. Other primary stakeholders were identified as engineering
contractors, local authorities and environmental campaigners. In the consultation document the
authors note the growing perception that offshore sea disposal “whether involving in-site toppling
or by another name (e.g. rigs-to-reefs) – is politically and socially unacceptable.” This position is
very much in contrast to the comments highlighted above. The “Beyond Sparring” project did not
aim to debate the merits of onshore vs. offshore disposal but instead began from the standpoint of
developing onshore re-use and recycling options, bringing all stakeholders together to discuss the
development of a more environmentally, economically and socially sound approach to onshore
disposal. The lack of interest from the oil and gas industry, however, led to Greenpeace’s handing
control of the project early in 1998 to what was perceived as a more neutral organization, the
European Commission. 

The Oslo and Paris Commission’s meeting at Sintra, Portugal which discussed the disposal of
disused installations as one item of a wide-ranging agenda, has been viewed as an historic meeting.
In general, all parties agreed to strive towards zero concentrations of man-made hazardous
substances and artificial radioactive substances in the marine environment. A cessation of
discharges, emissions and losses has a delivery year of 2020. The agreement has been welcomed by
such “green” oriented countries as Denmark and Sweden, and Greenpeace has seen the agreement
as a ‘vindication of decades of campaigning’ (Anon 1998). Indeed, in a press release dated 23 July
1998, Greenpeace stated that it was confident that the decision means no installation will be dumped
and no footings will remain. In the wake of Decision 98/3, Anon (1998) indicates that only 41
stumps of platforms will now even be considered to be covered by the derogation. The UK oil and
gas industry has expressed concern at the deal which it said “appeared to have been based on
political expediency.” Thus, while the OSPAR Decision’s exclusion of legitimate re-uses of offshore
installations from the definition of a “disused offshore installation” leads the way for the
consideration of artificial reef creation as a perfectly viable and legal proposition, the spirit of the
recent Sintra meeting suggests that implementing such a re-use option would require an exceptional
degree of political maneuvering to win acceptance from the remaining members of the Commission
through the procedural and consultation process prescribed in Annexes 2 and 3 of OSPAR Decision
98/3. 
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NEARSHORE AND OFFSHORE REEF CREATION FOR COMMERCIAL FISHERIES 

The common issue of liability remains one of the largest stumbling blocks in the pathway towards
any rigs-to-reefs initiative. The issue of liability (and ownership) in the event of damage caused by
abandonment residues to other sea users, most notably fishermen is a contentious one. As noted in
the 1989 IMO Guidelines and Standards, legal title to installations and structures that have not been
completely removed must be unambiguous, and responsibility for maintenance and liability for
future damages must be clearly established. More recently, OSPAR Decision 98/3 in its
preliminaries acknowledges that the national legal and administrative systems of the relevant
contracting parties need to make adequate provision for establishing and satisfying legal liabilities
in respect of disused offshore installations.

As discussed by Side et al. (1993), UKOOA’s position as highlighted in the Fourth Report of the
House of Commons Select Committee (Select Energy Committee 1991) is that the government
should assume liability. This position relates to the probable influencing of operator’s borrowing
power by such a continued liability, the practicality of such a long-term risk and the possible
sidelining of environmental factors when considering disposal options. The Select Committee
agreed, recommending that the offshore industry “set up a fund to indemnify the government against
civil claims and to cover legal and administrative costs” (Side et al. 1993). The government,
however, was not prepared to act as “defendant in perpetuity.” Liability is certain, therefore, to rest
with the operators with the establishment of an abandonment fund into which all UKOOA members
pay.  Mr Eggar, however, addressing the House of Lords Select Committee on the Decommissioning
of Oil and Gas Installations (Select Committee 1996), indicated that the government did not have
a “closed mind on this” but that “we have not seen any compelling reasons as to why they [offshore
operators] should not retain that responsibility.” The Select Committee (1996) in its conclusions and
recommendations, acknowledging that installation remains may survive in the sea for hundreds of
years, noted that if an operator and partners were to disappear then no-one would be responsible for
liability. Also acknowledging the existence of problems associated with quantifying liability in
perpetuity for a structure, the Committee recommended further discussion between government and
the offshore industry on this matter. In Norway, the government will undertake ownership of an
abandoned installation with remuneration for such liability being supplied by the licensee
(Petroleum Committee 1993).

In the event of reef creation, a third possibility arises: the transfer of liability to the reef
beneficiaries. This is more likely to occur with respect to nearshore reef creation, or a designated
offshore site managed by a specific body, as reef beneficiaries or managers will need to be clearly
defined before such a placement occurs. In this instance, the user or manager could assume
ownership with the offshore operator providing some remuneration in lieu of any possible future
liability. This is unlikely to occur with offshore reef creation by toppling in situ (unless in a
designated reef area) as there are no readily identifiable reef beneficiaries who would wish to
assume such liability. In the present climate it is extremely doubtful that commercial fishermen
would consider such a move. 
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Nearshore Reef Creation

Steering away from scientific validation, the placement of any artificial reef for nearshore fisheries
management begs the question of its need, in line with existing and potential future management
options, restrictions and goals. The real benefits will accrue in a habitat-limited fishery where an
increase in biomass may result; through the combination of reef placement and a program of stock
enhancement whereby the reef provides suitable additional habitat to support the potential increase
in exploitable biomass; and where the reef helps as a central area to remove individuals from a
fishery, acting as a reservoir or safe haven, helping to mitigate against over-pressurized fisheries.

In a nearshore UK context, the main fisheries of concern will be those for shellfish such as the
European lobster and edible crab, although one must not forget the recreational fin-fishing industry.
In many studies it has been shown that bottom reefs are the most appropriate for these shellfish
species (e.g. Jensen and Collins 1995) with the provision of adequate space for shelter. The use of
offshore platforms in this context is debatable, particularly with respect to lattice jackets, and one
would again acknowledge the merits of utilizing reefs consisting of e.g. concrete blocks which can
be designed and placed in an optimum way to meet the specific needs of the management situation.
One example of this use of artificial reefs is a proposal to deploy blocks of stabilized quarry
aggregate by-product (from Argyll, Scotland) with cement and fly ash in the creation of an artificial
reef for research and, amongst other possible options, the future management of the local lobster
fishery (Wilding and Sayer 1997).

A nearshore rigs-to-reefs initiative will require a beneficiary who is willing to assume ownership
and liability for the structure. This is amplified by its location, the costs of nearshore reef creation
needing to be at most equal to the cost of onshore disposal (otherwise donation of the structure to
a rigs-to-reefs scheme by an offshore operator has little benefit to operator in comparison with
onshore disposal). The risk of interaction with other sea users also increases in a nearshore context.
Without a beneficiary, a rigs-to-reefs project will have no grounds on which to proceed. The demand
for a nearshore reef and a demonstration of potential environmental and socio-economic benefits
will also be central to:

• its identification as a BPEO (as required by UK law) for the abandonment of a particular
structure;

• the agreement of OSPAR Contracting Parties of its acceptability; and

• the counteracting of any environmental campaign opposed to the use of an offshore structure
as the reef.

Nearshore reef creation does not produce as strong a response from environmental groups and
fisheries representatives as offshore reef creation does. Greenpeace has expressed its opposition to
nearshore reef creation. Although they do not condemn nearshore reef creation in general, they
condemn the use of high-grade steel in their construction, which they maintain would be more
appropriately brought onshore for reuse and recycling.
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Offshore Reef Creation

The only potential purpose of an offshore rigs-to-reefs program is in a fisheries management
context, be it to enable fish aggregation for a sustainable gear-specific fishery or as a conservation
area where fishing is prohibited. There are obvious cost saving incentives for offshore operators
through such an abandonment route, however, fishermen and environmental campaigners strongly
oppose to this option, and the prospects for formation of an offshore artificial reef be it toppled in
situ, moved to a designated site or utilized in combination with a no fishing policy, are not good.

In terms of an individual offshore rigs-to-reefs scenario or small cluster of reefs, such a proposition
faces the following political hurdles, the first being most critical:

• an offshore reef is seen as an impediment and danger to fishermen and their fishing methods,
not a benefit, and even if there is a marginal fishery benefit, the risk posed to safety would
far outweigh these in the overall picture;

• opposition to the concept from fishermen which would almost certainly prevent the adoption
of the concept as the BPEO in a given situation(s) and which ultimately could be used by
other contracting parties to the OSPAR Convention 1992 as a significant reason for not
proceeding;

• opposition to the concept from environmental organizations, most notably Greenpeace, who
see artificial reefs as a “weak link” in abandonment legislation, which could set dangerous
precedents for industrial waste disposal. They also see the rigs-to-reefs option as a panacea
for the offshore industry’s abandonment problems, undermining its responsibility to clean
up its own waste;

• opposition to the concept from contracting parties to the OSPAR Convention who will view
this plan as being in conflict with the spirit of the Sintra agreement; and

• lack of a beneficiary (both the fishing and environmental sectors are opposed to offshore reef
creation) and therefore potential transfer of liability.

A no-fishing area (sanctuary) to help conserve stocks in combination with a rigs-to-reefs program
is also faced by the following hurdles:

• opposition from fishermen centering on:
(i) opposition to the mere presence of a no-fishing zone, never mind the combined

instance;
(ii) the implications for the North Sea fishing industry as it is an area that supports a

mixed fishery; and
(iii) the general imposition of another damaging set of regulations and level of

bureaucracy;
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• opposition from Greenpeace and OSPAR Contracting Parties (many of which are members
of the EU) to the rigs-to-reefs aspects of the scheme;

• the impracticalities that will exist as a result of the maze of international, EU and national
legislative and administrative procedures that will be required, including the integration of
such a concept within the Common Fisheries Policy;

• lack of sufficient scientific data to justify the use of reefs when a closed zone to fishing may
be enough;

• lack of a beneficiary and therefore transfer of liability;

• difficulty of enforcement; and

• problems with the decommissioning of such a scheme if ineffective or unworkable; or
indeed, if successful, there is the question of access provision and whether the reefs should
be removed or left in place.

STAKEHOLDER DIALOGUE

The International Association of Oil and Gas Producers (OGP), formerly the E & P Forum, initiated
stakeholder dialogue in 1997 to take into account broader interests when shaping future research
initiatives. A workshop held in Brussels in 1997 saw the participation of European fisheries industry
representatives, non-governmental research institutes, offshore industry, environmental interest
groups, EU administration, governmental research bodies and departments, all working together to
identify key issues and questions that need to be addressed in determining the potential for rigs-to-
reefs in the North Sea (Environment Council 1997). Prioritized questions under the heading of
“social and political aspects” were:

• What are the criteria for [determining] success of artificial reefs?

• How can the objectivity and independence of the research be assured?

• How can we measure direct and indirect benefits compared with other options?

• How could we have rigs-to-reefs without setting a precedent for general dumping?

• How can we ensure that the dialogue continues with all parties and active participation in
existing regulatory processes and management issues?

• Who would own artificial reefs and who would be responsible or liable in perpetuity?

The second point above is of particular note. There has been mistrust over some of the scientific
research as a result of the relationship between main academic rigs-to-reefs proponents and the oil
industry. As a result of the workshop, an independent rigs-to-reefs “steering group” was formed,
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whose main task is to assess the potential for rigs-to-reefs in the North Sea and to guide ongoing
independent research into need and suitability. The steering group is composed of members from
the fishing industry, academia, research institutions, environmental groups and the European
Commission, who report back to those workshop attendees who expressed a wish to remain in the
dialogue process.

The steering group designed the study process to examine the rigs-to-reefs concept and choose the
most appropriate organization to undertake the research. The OGP’s only input is through funding.
The study process is composed of three stages. Stage one sets two parallel questions: What are the
management, environmental and economic needs of the United Kingdom’s eastern and Norway’s
eastern seaboards (including nearshore and offshore waters)? What functions might artificial reefs
be able to perform in the North Sea context? This research has been completed (Baine and Kerr
2000), and the Steering Group is reviewing the results to determine to what extent the deliverables
identified in the answer to the second question meet the needs identified in the answers to the first,
compared to the other management options available (stage two). If the steering group finds
sufficient evidence to justify further investigation, two more parallel questions will be investigated
(stage three). Firstly, can redundant offshore installations be reused as artificial reefs and if so, at
what cost, and how could the attendant legal, political and environmental issues be resolved?
Secondly, how else might the benefits of artificial reefs be achieved, using what materials, involving
what issues and at what cost? 

At present, therefore, there is a way forward in the rigs-to-reefs debate, one that involves all
stakeholders, although Greenpeace has distanced itself from the steering group. Greenpeace has
declined to join on the basis that the outcome appears, in their eyes, to have been predetermined,
with little quality discussion on whether or not the concept should have been considered any further
before defining research strategies. Their stand embraces the precautionary principle; however,
given that UK waters already feature artificial reefs constructed from waste material, combined with
the informed assumption that any North Sea rigs-to-reefs program will never approach the levels
witnessed in the Gulf of Mexico and the fact that stringent legislative control would be imposed,
there must be scope for Greenpeace to enter the dialogue.

CONCLUSION

The implications of the Brent Spar incident are still being resolved with the emergence of a
landmark OSPAR Decision on abandonment. Although more focused, the future of North Sea
abandonment is still not entirely clear, with the possibility of derogation, the uncertainty over the
disposal of concrete installations, and the momentum that has gathered concerning the rigs-to-reefs
debate. The rigs-to-reefs concept is by no means a trivial one and requires further close examination,
but this can only be achieved through discussion, negotiation and proactive participation from all
the stakeholders involved. Firstly this discussion will enable an integration of scientific and social
thinking, admittedly on a controversial subject, but nonetheless a valid one. An opportunity exists
to comprehensively to examine the deployment of steel lattice jackets (waste material) as a fisheries
management tool in the North Sea. The success of such ventures in the Gulf of Mexico does not
ensure a similar outcome in the North Sea, but it does provide food for thought. Secondly, the
discussion will help us avoid recurrence of the Brent Spar incident. The relationship between science
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and political motivation is central to the rigs-to-reefs debate; a trusted independent and authoritative
evaluation has to be the preferred goal.

There is no doubting the attractiveness of the rigs-to-reefs concept to offshore operators and the
opposition of a major environmental group. It is fishermen, though, who are the most likely to be
directly affected by the implications of current abandonment legislation. The possibility of steel
platform footings and concrete installations remaining behind on the seabed will entail further
consultation on loss of access and potential damage to fishermen and their gear. Fishermen may well
feel aggrieved at the historical chain of events that resulted in an about-face on the promise of
complete removal. They may well feel that the latest OSPAR Decision 98/3 has gone some way to
alleviate those grievances, but has it gone far enough? Fishermen find themselves in the midst of
contention. They strive for complete removal, yet still find themselves represented on bodies such
as the rigs-to-reefs steering group, an indication of their willingness to participate in dialogue but
also recognition of the instability of their situation. Greenpeace may be pleased with the direction
that the OSPAR Decision has taken, the offshore industry may be dismayed, but it is fishermen who
still require clarification of the future. It is the very nature of this position that provides them with
the key to the success of any rigs-to-reefs venture in the North Sea. Their co-operation and
participation is essential in the promotion of a concept that has been for so long promoted to them.
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ABSTRACT

The purpose of this research project, performed under a Minerals Management Service contract, was
to estimate demand, expenditures, and economic impact associated with recreational fishing and
diving near GOM-based oil and gas structures and artificial reefs created from such structures. The
primary research approach involved a series of sample surveys during 1999 of recreational
fishermen and divers along the Gulf coast including the states of Alabama, Mississippi, Louisiana,
and Texas. Because detailed species information was collected, results are available on target
species and catch. The results of the surveys of recreational fishermen and divers strongly indicated
that the availability of oil and gas structures as well as artificial reefs created from such structures
are extremely important to the coastal counties of the Gulf states. Of the 4.5 million recreational
fishing trips estimated in the Gulf states from Alabama through Texas in 1999, 21.9% were within
300 feet of an oil or gas structure. Of the 83,780 estimated diving trips, 93.6% were within 300 feet
of such a structure. The economic activity associated with these visits was substantial. According
to the analyses performed, there were $172.9 million in direct expenditures during 1999 associated
with recreational visits to oil and gas structures in the Gulf states plus another $640.0 million in
annual equipment-related expenditures. The total economic output in coastal areas associated with
recreational fishing and diving near oil and gas structures in the Gulf was $324.6 million, including
$164.1 million in the value added component and employment estimated at 5,560 full-time
equivalents.

INTRODUCTION

Oil and gas structures, and artificial reefs created from such structures, have proven to provide
shelter and contribute food for benthic, demersal, and pelagic fish. The nearly 5,000 such structures
located in the Gulf of Mexico (GOM) probably constitutes the largest assemblage of artificial reefs
in the world. These structures have influenced the behavior of fishermen as well as fish. To facilitate
decision-making about the future of older structures, MMS contracted for this study of recreational
fishermen and divers. 

This research addressed three study objectives. The first was to assess recreational demand for
fishing and diving associated with offshore oil and gas-related structures and with artificial reefs
resulting from the “rigs-to-reef” programs in Texas, Louisiana, Mississippi, and Alabama. The



145

second objective was to assess the economic impacts resulting from this recreational demand on the
economies of Texas, Louisiana, Mississippi, and Alabama. The last objective was to analyze the
incremental expenses associated with recreational fishing and diving that would not have been
incurred if anglers had no offshore structure fishing or diving opportunities. Although it was not
specifically an objective of the research, information was obtained from recreational fishermen on
their target species and actual catch. These results are also provided in this paper.

The study area covered the states of Alabama, Mississippi, Louisiana, and Texas for the period
January through December of 1999. Recreational activities covered by the project included private
boat fishing, charter boat fishing, party boat fishing, and recreational diving in GOM waters.

METHODS

The data collection methodology for meeting these objectives combined in-person interviewing of
recreational fishermen and divers in the field with follow-up telephone interviewing from a central
dialing facility. The research design involved two basic data collection methods. The first was in-
person field interviews in which trained data collectors stationed along coastal areas of the GOM
visited predetermined boat launch sites and conducted interviews with fishermen and divers as they
returned from the day’s activities. The in-person field interviews were conducted with private boat
fishermen, charter boat fishermen, party boat fishermen, and divers. The second method involved
a telephone follow-up interview to collect detailed expenditures information from qualified
respondents identified during the field interviewing.

The field interviews were used to estimate the proportion of fishing and diving trips taken near
GOM oil and gas structures or artificial reefs created from such structures. The follow-up telephone
interviews were used to estimate trip-related costs and capital expenditures associated with
recreational fishing and diving. 

A key methodological issue was that of converting proportions and mean values per individual
recreational fishing and diving trip into total estimates of demand and economic impact. Such
estimates require knowledge of the total number of fishing and diving trips taken. The approach in
this study was not to attempt to make such estimates of total demand as part of this project, but to
rely on estimates developed independently by the National Marine Fisheries Service (NMFS) of the
U.S. Department of Commerce. The NMFS conducts an annual survey of marine recreational fishing
in Alabama, Mississippi, and Louisiana with sample sizes considerably larger than the level of effort
available for the MMS study. The NMFS survey is referred to as the Marine Recreational Fishery
Statistics Survey (MRFSS) and has been conducted in the GOM since 1980. In addition, Texas
conducts its own survey of recreational fishing, and NMFS incorporates the Texas data into its own
estimates. The approach taken in this study, therefore, was to rely upon estimates of total fishing
trips and numbers of participants provided by NMFS and to apply those estimates to the results of
the 1999 MMS data collection to meet the project objectives. 

Trip expenditure data were collected during follow-up phone interviews with oil and gas structure
users who were engaged in recreational fishing from private boats, charter or party boats, or who
participated in recreational diving. Average trip expenditure data for oil and gas structure users were
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combined with estimates of the total number of trips to oil and gas structures to produce estimates
of the annual expenditures associated with trips near oil and gas structures for each mode of fishing
or diving in the four GOM states. 

Annual equipment expenditure data were also collected during the follow-up phone interviews with
oil and gas structure users. These data were extrapolated by multiplying the average expenditures
for each mode and state times the estimated number of participants using oil and gas structures.
Because equipment expenditures may not be solely related to trips to oil and gas structures, the
expenditure and corresponding impact estimates may overstate the economic activity generated by
fishers and divers who participated in trips near oil and gas structures. 

Trip and equipment data were evaluated to estimate the economic impact in coastal counties of each
state. 

RESULTS

The first objective of the study was to estimate demand by recreational fishermen and divers
associated with oil and gas structures in the GOM and with artificial reefs constructed from such
structures. These demand estimates were generated by combining results of the field survey with
data obtained from the National Marine Fisheries Service MRFSS. Overall, it is estimated that a
total of 980,264 fishing trips were taken within 300 feet of an oil or gas structure or an artificial reef
created from such structures during 1999 out of a total of 4,484,080 marine recreational fishing trips
in the Gulf from Alabama through Texas. In addition, there were 83,780 dive trips near oil and gas
structures out of a total of 89,464 dive trips taken from Alabama through Texas.

A total of 6,845 interviews were obtained in the field with private boat fishermen as they returned
from their fishing trips. Analysis of data for these respondents indicated that, overall, the proportion
of private boat trips taken within 300 feet of oil or gas structures was 20.2%. That is, of the 4.1
million private boat fishing trips taken in these states during 1999, 823,075 were within 300 feet of
an oil or gas structure. This information is shown separately by state in Table 4.1.

Table 4.1. Total estimated private boat fishing trips near oil and gas structures.

State Total Trips

Proportion of Trips
Near Oil/Gas
Structures

Trips Near Oil/Gas
Structures

Alabama 505,635          .414             209,333         
Mississippi 507,545          .197             99,986         
Louisiana 2,067,076          .166             343,135         

Texas 986,250           .173             170,621         
Total 4,066,506          .202             823,075         
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A total of 1,287 interviews were obtained in the field with charter boat fishermen as they returned
from their fishing trips. Analysis of data for these respondents indicated that, overall, the proportion
of charter boat trips taken within 300 feet of oil or gas structures was 32.3%. That is, of the 298,023
charter boat fishing trips taken in these states during 1999, 96,337 were within 300 feet of an oil or
gas structure. This information is shown separately by state in Table 4.2.

Table 4.2. Total estimated charter boat fishing trips near oil and gas structures.

State Total Trips

Proportion of Trips
Near Oil/Gas
Structures

Trips Near Oil/Gas
Structures

Alabama 71,394           .210              14,993            
Mississippi 49,426           .217              10,725            
Louisiana 73,770           .231              17,041           

Texas 103,433           .518              53,578           
Total 298,023           .323              96,337           

A total of 378 interviews were obtained in the field with party boat fishermen as they returned from
their fishing trips. Analysis of data for these respondents indicated that, overall, the proportion of
party boat trips taken within 300 feet of oil or gas structures was 50.9%. That is, of the 119,551
party boat fishing trips taken in these states during 1999, 60,852 were within 300 feet of an oil or
gas structure. This information is shown separately by state in Table 4.3.

Table 4.3. Total estimated party boat fishing trips near oil and gas structures.

State Total Trips

Proportion of Trips
Near Oil/Gas
Structures

Trips Near Oil/Gas
Structures

Alabama 15,386           .000             0           
Mississippi 0           —              0           
Louisiana 7,913           1.000            7,913           

Texas 96,252           .550            52,939           
Total 119,551           .509            60,852           

A total of 150 interviews were obtained in the field with divers as they returned from their trips.
Analysis of data for these respondents indicated that, overall, the proportion of dive trips taken
within 300 feet of oil or gas structures was 93.6%. That is, of the 89,464 dive trips taken in these
states during 1999, 83,780 were within 300 feet of an oil or gas structure. This information is shown
separately by state in Table 4.4.
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Table 4.4. Total estimated dive trips near oil and gas structures.

State Total Trips Proportion of Trips
Near Oil/Gas
Structures

Trips Near Oil/Gas
Structures

Alabama 11,124           .489             5,440           
Mississippi 11,166           1.000             11,166           
Louisiana 45,476           1.000            45,476           

Texas 21,698           1.000            21,698           
Total 89,464           .936            83,780           

The second objective of the study was to assess the total economic impact associated with
recreational fishing and diving. Trip expenditure data were collected during follow-up phone
interviews with oil and gas structure users who were engaged in recreational fishing from private
boats, charter or party boats, or who participated in recreational diving. Average trip expenditure
data for oil and gas structure users were combined with estimates of the total number of trips to oil
and gas structures to produce estimates of the annual expenditures associated with trips near oil and
gas structures for each mode in the four GOM states. Trip and equipment data were evaluated to
estimate the economic impact in coastal counties of each state. 

Overall, the survey accounted for a total of $172.9 million in trip related costs for fishing and diving
near oil and gas structures in the Gulf states from Alabama through Texas. Of this number, $13.2
million were trip expenditures for diving with the balance of $159.7 million associated with trip
expenses for recreational fishing.

Annual equipment expenditure data were also collected during the follow-up phone interviews with
oil and gas structure users. These data were extrapolated by multiplying the average expenditures
for each mode and state times the estimated number of participants using oil and gas structures.
Because equipment expenditures may not be solely related to trips to oil and gas structures, the
expenditure and corresponding impact estimates may overstate the economic activity generated by
fishers and divers who participated in trips near oil and gas structures.

The survey accounted for a total of $640.0 million in equipment costs associated with recreational
fishing and diving activities by those who visited oil or gas structures in the Gulf states from
Alabama through Texas during the survey year. Of this number, $0.6 million was equipment
expenditures for diving with the balance associated with equipment expenditures for recreational
fishing.

The expenditure data, distributed according to whether the respondent lived in coastal or noncoastal
areas and according to the location of the expenditure, were then used in the IMPLAN (Impact
analysis for PLANning) input-output modeling framework to produce estimates of economic
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impacts generated by oil and gas structure users in each state. These impacts include total output,
employment, and personal income (value added) effects in the coastal regions of each state.

This analysis (Table 4.5) indicated that there was a total of $324.6 million in economic output in
coastal counties of the Gulf region associated with fishing and diving activities near oil and gas
structures during the year. The value added component of this number was $164.1 million, with
employment estimated at 5,560 full-time equivalents.

Table 4.5. Total economic impact of combined annual trip and equipment expenditures for fishing
and diving near oil/gas structures in coastal counties by state and mode.

State Mode
Economic

Output (in$)
Value Added

(in $)
Employment

(in FTEs)

Alabama private 42,644,863 17,771,068 609.1
charter 16,853,979 7,860,816 343.0
party 0 0 0.0,
dive 287,090 205,600 7.0

TOTAL 59,785,933 25,837,848 959
Louisiana private 119,975,000 55,735,257 1,822.5

charter 3,149,849 1,507,707 75.5
party 1,431,121 722,706 35.5
dive 10,367,078 6,928,205 249.3

TOTAL 134,923,108 64,893,875 2,183
Mississippi private 24,651,800 14,743,784 459.9

charter 4,630,674 2,924,368 116.6
party 0 0 0.0
dive 2,981,544 1,908,667 56.6

TOTAL 32,264,018 19,576,820 633
Texas private 67,882,962 39,657,080 1,167.6

charter 20,783,038 9,637,829 435.2
party 8,944,989 4,473,820 182.2
dive 0 0 0.0

TOTAL 97,610,989 53,768,348 1,785

Gulf Region TOTAL 324,584,048 164,076,527 5,560
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The third major objective was to estimate incremental expenses associated with recreational fishing
and diving that would not have been incurred if anglers had no offshore structure fishing or diving
opportunities. In order to estimate this incremental effect of oil/gas structures on angler expenditures
in the GOM region, it is necessary to account statistically for the variety of factors that may
influence these decisions. In evaluating incremental effects, it is important to recognize that
statistical procedures can only establish an association between expenditures and fishing near oil/gas
structures; they can not determine causation.

The sample data indicated that the difference in annual trip and equipment expenditures between
users and nonusers of oil and gas structures was $3,232 per angler across the Gulf region. After
correcting for nonnormality in the distribution of expenditures and self-selection in the choice of
fishing sites, predicted values from a selection model indicated that the difference in expenditures
between the two groups was much smaller. The predicted average expenditures for users were
$4,691 with a 95% confidence interval of $4,198 to $5,183. For non-users, predicted average
expenditures were $3,159 with a 95% confidence interval of $2,721 to $3,597. The resulting
difference of $1,532 per angler is the most reliable estimate of the difference in annual expenditures
between users and non-users of oil and gas structures across the GOM region.

Respondents were asked to provide information on the particular species of fish they were targeting
during their fishing trips. There were important differences observed in the results for those who
fished near oil and gas structures and those who did not. As shown in Table 4.6, those fishing near
oil and gas structures were somewhat more likely to report they were fishing for Red Snapper and
King Mackerel. Those not fishing near such structures were more likely to list Spotted Seatrout and
Red Drum as their target species.

Table 4.6. Target species for fishermen.

Fishing Near Oil/Gas Structure Not Fishing Near Oil/Gas Structure

Target Species Percent Target Species Percent

Spotted Seatrout 29.6 Spotted Seatrout 45.8

Red Snapper 28.1 Red Drum 26.8

King Mackerel 20.3 Southern Flounder 7.6

Cobia 5.1 Sand Seatrout 2.3

Red Drum 4.9 Spanish Mackerel 2.3

Information was also obtained on actual catch of fish by the respondents. These data are reported
separately for those who fished near oil and gas structures in Tables 4.7 through 4.10. In general,
it can be observed that the particular species caught were somewhat different for those fishing near
structures, but the numbers of total fish caught were relatively comparable.



151

Table 4.7. Average catch per trip for selected species: Private boats in Alabama.

Species Near Structure Not Near Structure

Silver Seatrout 1.85 2.26

Red Snapper 0.98 1.08

S. Mackerel 1.18 0.64

Red Drum 0.69 0.21

Bluefish 2.26 0.20

Total 12.02 7.51

Table 4.8. Average catch per trip for selected species: Private boats in Mississippi.

Species Near Structure Not Near Structure

Red Snapper 2.78 0.24

K.Mackerel 1.04 0.01

Cobia 0.38 0.02

Spotted Seatrout 0.37 1.80

Sand Seatrout 0.32 6.01

Total 6.95 10.88

Table 4.9. Average catch per trip for selected species: Private boats in Louisiana.

Species Near Structure Not Near Structure

Spotted Seatrout 5.80 5.99

Red Snapper 1.49 0.01

Sand Seatrout 0.99 0.71

Red Drum 0.77 1.86

Hardhead Catfish 0.59 1.01

Total 12.79 13.40



152

Table 4.10. Average catch per trip for selected species: Private boats in Texas.

Species Near Structure Not Near Structure

Red Snapper 5.05 0.34

K.Mackerel 0.77 0.04

Atlantic Spadefish 0.22 0.00

Spotted Seatrout 0.19 2.55

Sand Seatrout 0.08 1.77

Total 8.23 8.43

DISCUSSION

The results of the surveys of recreational fishermen and divers strongly indicated that the availability
of oil and gas structures as well as artificial reefs created from such structures are extremely
important to the coastal counties of the Gulf states. Of the 4.5 million recreational fishing trips
estimated in the Gulf states from Alabama through Texas in 1999, 21.9% of them were within 300
feet of an oil or gas structure. Of the 83,780 estimated diving trips, 93.6% were within 300 feet of
such a structure.

The results also indicated that multiple structures were generally visited during these recreational
trips. On average, more than two structures were visited per trip, with the total annual structure-
visits estimated at 2.2 million annually.

The economic activity associated with these visits was substantial. According to the analyses
performed, there were $172.9 million in direct expenditures during 1999 associated with recreational
visits to oil and gas structures in the Gulf states plus another $640.0 million in annual equipment-
related expenditures. The total economic output in coastal associated with recreational fishing and
diving near oil and gas structures in the Gulf was $324.6 million, including $164.1 million in the
value added component and employment estimated at 5,560 full time equivalents.

An analysis of the incremental value of oil and gas structures for recreational activities indicated that
the typical angler who visited such structures spent more than those who did not. The most reliable
estimate is that anglers who visited oil and gas structures spent an additional $1,532 annually.
 
In summary, it can be concluded as a result of this study that there is substantial recreational activity
associated with the presence of oil and gas structures in the GOM from Alabama through Texas and
these activities have a substantial economic impact. Several issues are raised by these findings:
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• Because the presence of oil and gas structures is important to recreational fishing and diving
in the Gulf, consideration should be given to assuring the continued availability of at least
some of these structures across the range of the Gulf Coast area, even after they are no
longer used for oil or gas extraction.

• Decisions on structure removal must take into account the effects on recreational activities
and the economic value they represent. It is uncertain how fishermen and divers would
respond to the removal of oil and gas structures that are targets of frequent visits. If
participants simply went to other locations, then the impact would be minimal. The decision
to fish and dive at other places, however, may be a complex one involving such factors as
distance from shore, size of structure, number of other participants at the location (i.e.,
crowdedness), and availability of acceptable alternatives (both at other structures and at
nonstructure locations). It is possible that structure removal would result in reduced demand
with a corresponding negative economic impact.

• Fishing and diving occur at oil and gas structures in large part because of the availability of
marine life near such structures. While beyond the scope of the present study and not
included in this report, preliminary indications from the surveys indicated that fishing
success, particularly for preferred species, near oil and gas structures was at least equal to
and in many cases greater than at other locations. There is, therefore, the question of the
effect on marine life of the removal of structures that have been in place for decades. It is
likely that any loss of marine life, or at least a reduction in its density such that fishing or
diving is no longer rewarding, would have a negative impact on recreational fishing and
diving coupled with the loss of economic value associated with those activities.

• The process by which fishermen and divers select the specific oil and gas structures to visit
is not understood. Both the incremental value which was established in this research and the
fact that fishermen and divers visit multiple structures on each trip suggest that there is a
decision process which underlies the selection of particular structures for recreational
activities. If a decision about removal of a specific structure is being considered, it would
be extremely useful to have in hand a set of variables which are known to be associated with
structure recreational usage. These might include such elements as ease of access, distance
from shore, distance from boat launch sites, water depth, size and configuration of structure,
history of “success” at the site, perceptions of safety, availability of recreational alternatives,
and site popularity. Without an understanding of the variables that affect participants’
decisions to use a particular site, decisions on structure removal cannot fully take into
account the needs of recreational fishermen and divers.

• It is important that government and private interests develop and utilize decision-making
processes for structure removal that include consideration of the needs of recreational
fishermen and divers. Fishing and diving interests across the Gulf should be kept informed
about the processes of structure removal and given opportunity to participate in such
decisions. There is considerable potential for local opposition to removal of popular fishing
and diving sites, especially if there are no alternatives available.
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• Additional research may be required to answer questions raised by the current study:

- How many oil and gas structures can be removed in a particular area without resulting
in a decline in the number of recreational fishing and diving trips being taken?

- Which of the existing structures, if any, are most frequently visited by fishermen and
divers for their recreational activities?

- What are the characteristics of the most preferred structures?

- In the event of selective removal of oil and gas structures, how will the behavior of
fishermen and divers change? Will they shift to other available structures, to
nonstructure locations, or withdraw from the activity?
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ABSTRACT

Seafloor mapping of shelf-edge habitats in the northeastern Gulf of Mexico (GOM) demonstrates
how sidescan-sonar imagery, seismic-reflection profiling, video data, geologic mapping, sediment
sampling, and understanding the regional geologic history can enhance, support, and guide
traditional fisheries research and management. New data from the Madison-Swanson and Steamboat
Lumps Marine Protected Areas (MPAs) reveal complex benthic habitats consisting of high-relief
calcareous pinnacles, low-relief karstic hard-bottom, rocky outcrops several kilometers in length,
and variable thickness of fine-grained and apparently mobile coarse-grained sediments. Our data
also show that certain fish alter the landscape by clearing sediment from hard-bottom areas (e.g.,
red grouper, Epinephelus morio) and by burrowing extensively in fine-grained sediment (e.g.,
tilefish, Lopholatilus chamaeleonticeps).

The seafloor imagery and geologic maps show that (a) sea-level fluctuations played a dominant role
in the development of the present day regional geology and (b) habitats (and benthic communities)
are closely tied to geologic character. Understanding the geological setting allowed for efficient and
representative sampling of the biology. The geologic data can be used to set meaningful boundaries
for fishery reserves and to help predict habitats in areas that are not well mapped. This
interdisciplinary work added value to traditional research disciplines by providing management with
integrated tools to make better decisions.

INTRODUCTION

Why should marine biologists and fishery managers care about sidescan-sonar mosaics, geologic
maps, and the geologic history of a region? They should care because fishery resources do not exist
in a vacuum. Habitat is crucial to the viability of the resource, and geology is the framework within
which the habitat exists. Many modern marine geology tools, techniques, and interpretations have
great value to fisheries management, but they are often overlooked by scientists trained in non-
geological specialties. Our work in the northeastern GOM shelf-edge habitats demonstrates how
sidescan-sonar imagery, seismic-reflection profiling, geologic mapping, and understanding the
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regional geologic history can enhance, support, or guide traditional fisheries research and
management.

TOOLS OF MARINE GEOLOGY

Some commonly used marine geological research tools (such as sidescan-sonar, multibeam
bathymetry, seismic reflection profiling, and sediment sampling) are directly useful to marine
biologists and fishery managers.

Sidescan-Sonar

Sidescan-sonar systems use sound to provide aerial-photograph-like acoustic imagery swaths of the
seafloor. When collected, processed and mosaicked properly, these systems are perhaps the most
useful geologic tool for fisheries management and research. There are many types of sidescan-sonar
systems with varying resolutions and optimized for a variety of water-depth ranges. In each case,
a trade-off must be made between resolution and the area covered in a given amount of time. For
habitat mapping in shelf-edge areas (water depths 50 to 150 meters), we have found systems such
as the SIS 1000***** and the EdgeTech DF1000* to be a good compromise. In about seven days, these
instruments can cover a 100-square-mile area with enough overlap of adjacent swaths for
mosaicking. They can resolve features such as boulders and burrows as small as 1 meter across.
Elongate features, such as trawl marks, also show even if they are less than a meter across, because
they are long in one dimension.

Repeated sidescan-sonar surveys can show changes in seafloor character and habitat. This technique
can be used to monitor changes in the areal extent of certain types of habitat after an event such as
a storm or closure to fishing. These surveys are also useful in assessing impact from human
activities such as bottom trawling or waste disposal.

Multibeam Bathymetry

Multibeam bathymetry systems collect swaths of water-depth data, which can be used to create
bathymetric contour maps. Like sidescan-sonar systems, multibeam systems are available in a wide
variety of resolutions and for various water-depth ranges. These data can be used for three-
dimensional renderings of seafloor morphology. Software has been developed for some multibeam
systems to allow creation of backscatter maps, similar to sidescan-sonar imagery, as well as depth
contour maps. Backscatter gives information about the seafloor that is not contained in the depth
information, such as hardness, sediment texture, and surface roughness. Multibeam data can be
much more expensive to collect than sidescan-sonar and sometimes requires a dedicated ship. We
have not collected multibeam data in the northeastern GOM, but proposals are pending to do so in
the near future.

Seismic-Reflection Profiles
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Seismic-reflection profilers provide a cross-sectional view of the seafloor and the sediment and rock
layers beneath it. Higher-frequency sound sources result in higher-resolution profiles; lower-
frequency sources penetrate more deeply into the substrate but provide less resolution. Seismic
profiles reveal the shapes of and relationships between past seafloor environments. This information
is invaluable to understanding the geologic history of a region. It also has direct utility to habitat
studies because it allows us to map the thickness of unconsolidated sediment. In the eastern GOM,
for example, this is important because hard-bottom habitat can be exposed or buried by variable
amounts of mobile sediment, thereby changing the distribution of habitats through time.

Sampling

Sediment sampling can be carried out remotely from a ship with a grab sampler or directly by divers
or submarine. Representative sediment or rock samples must be collected from a study area to
adequately characterize a habitat. Sampling is also a critical “ground truth” for interpreting sidescan-
sonar data. Differences in sediment composition and texture and the presence and roughness of rock
outcrops are among the factors that can affect the intensity of backscatter signal in sidescan-sonar
data. These factors also have a direct effect on the biological community that will inhabit an area.

Putting It All Together: Mapping

Although mapping is not, strictly speaking, a “tool,” maps produce visualizations that are used to
further our understanding of the geologic history of an area. Mapping of the surficial geology of the
seafloor is done by combining interpretation of the sidescan mosaics and seismic profiles with
analyses of sediment and rock samples and observations from ROV or submarine. These maps
provide, for example, the areal extents of sediment of different compositions and hard-bottom
habitats, and are valuable for determining percentages of various habitat types as well as for setting
the boundaries of fishery management reserves. 

GEOLOGIC HISTORY AS A FISHERY MANAGEMENT TOOL

While the utility of the traditionally “geologic” tools discussed above for fishery management
applications is straightforward, fisheries managers may not understand why the geologic history of
a region is important. Beyond the direct uses to fisheries management discussed here these types of
geologic data can be used to provide an understanding of the geologic evolution of an area through
time. Although fisheries management is rooted in the present and affects the future, the past can be
a valuable key to more effective and less expensive management.

A Case History

In March 2000, we collected sidescan-sonar data in the Madison and Swanson MPA and the
Steamboat Lumps MPA and in 1997 in an intervening area we call Twin Ridges. In each case the
sidescan swaths overlap, providing continuous coverage. Using near-real-time processing and
mosaicking techniques developed at the USGS Woods Hole Field Center (Danforth 1997; Danforth
et al. 1991, Paskevich 1992 and 1996), digital mosaics were available within 24 hours to use for fish
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sampling and siting of video observations. This information provided for more accurate positioning
of the ship, saved time, and most importantly, allowed selection of specific habitat types for station
work.

Using these sidescan-sonar data in conjunction with seismic-reflection profiles, sediment and rock
samples (which give information about past environments of deposition and age) and direct or video
observations, we are now reconstructing the evolution of the shelf-edge habitats through time. We
discovered several long arcuate rocky ridges in 60 to 90 meters of water (Scanlon 2000). Previous
work (Locker et al. 1996) has shown that about 15,000 years ago sea level was 80 meters lower than
it is today. This sea level history has played an important role in the evolution of the West Florida
continental shelf (e.g., Doyle and Holmes 1985; Hine et al. 1988; Hine 1997; Mullins et al. 1988;
Roberts et al. 1999). We interpret our rocky ridges to be the lithified remains of paleo-beaches,
called beachrock, from this sea level lowstand (Scanlon 2000; Thieler et al. 1999). Seaward of the
beachrock outcrops, we found limestone pinnacles, which may be built on drowned patch reefs. The
beachrock and the limestone pinnacles differ not only in the chemical composition of the rocks
themselves and the surrounding sediments derived from them but also in the morphology of the
outcrops. Beachrock is cemented sandstone and tends to occur in tabular slabs with widely spaced
cracks and crevices. The limestone pinnacles are composed of agglomerations of numerous species
of coral and algae and the remains of many sessile and encrusting benthic organisms. The limestone
has dissolved and has been bored by clams and other organisms. These outcrops are replete with
nooks and crannies and holes of all sizes and shapes.

Each of these two rock types (beachrock and pinnacle limestone) afford distinct types of habitat and
can be expected to support distinct benthic communities. Gag (Mycteroperca microlepis) and scamp
(Mycteroperca phenax ) are known to spawn near high-relief outcrops at the edge of the present
continental shelf (Coleman et al. 1996; Koenig et al. 2000). We do not yet know whether they prefer
beachrock or limestone pinnacle sites, but our on-going studies should reveal this. These beachrock
and limestone pinnacle sites are distinctive features associated with changes in sea level and are
expected to be widespread in the GOM near the shelf edge. By understanding the geologic history,
we will be able to predict where the preferred type of outcrop will be found in areas that have not
been well mapped.

In our study areas, we noted that fine-grained sediments correlate with areas shown by the sidescan
data to be extensively pitted by fish burrows (presumed to be made by tilefish, Lopholatilus
chamaeleonticeps). Inexpensive sediment grab sampling could be used to map the extent of the
habitat of this food fish. We also mapped areas using sidescan-sonar data and verified by video
where holes have been excavated under small boulders and sediment has been cleared from small
(a few meters square) hard-bottom areas, presumably by the red groupers (Epinephelus morio) we
observed occupying some of the excavations. Here, a heavily targeted commercially valuable fish
species (E. morio) is acting as a geologic agent and creating a habitat that is attractive to numerous
other species. Repeated sidescan surveys of this area would readily show whether the recent closure
of the area to fishing results in an increase in the areal extent or density of this type of habitat.

By understanding the geologic history of the region, we are now able to make reasonable predictions
about where particular habitats are likely to occur in less well-mapped parts of the eastern GOM.
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We can also estimate the quantities and areal extents of modern habitats which we know evolved
from particular ancient environments by comparison with modern environments that are similar to
the ancient ones. These estimations are useful for making management decisions. For example, if
we know that an economically important fish species spawns only around beachrock outcrops in a
certain water depth, and that a sea level stillstand occurred at that depth for a long enough time to
produce beachrock, and we know the width of beachrock in modern environments, then we can
estimate the areal extent of beachrock outcrops in the region in question. If protection of this fish’s
spawning habitat is needed, a rational management decision could be made, based on the geologic
history, to create reserves encompassing a certain percentage of the estimated habitat.

CONCLUSIONS

Modern marine geologic tools and maps are directly useful to marine biologists, ecologists, and
fisheries managers. Imagery data can be used to choose sampling and study sites and to document
changes in areal extents of habitats. These data are also valuable for setting meaningful boundaries
for fishery reserves. Seismic-reflection data show thicknesses of unconsolidated sediments and
provide information about the character of the sediment-water interface. Sediment or rock
composition can be correlated with species assemblages.

Even more powerful for fisheries management is understanding the geologic history of a region.
This understanding can be used to predict where certain benthic communities may exist or where
they could be successfully restored. Understanding the geologic history also allows us to make
realistic estimates of the areal extents of certain types of habitat in unexplored areas.

“Multi-disciplinary,” “inter-agency,” and “cooperative” are popular buzzwords and we are
encouraged to use them in our research plans. Although we may agree that since the environment
is naturally “multi-disciplinary,” it makes sense to study it in a multi-disciplinary way, sometimes
it is not so clear whether there is any real benefit to our research in doing so. In our work in the
northeastern GOM, interdisciplinary collaboration has greatly enhanced our research and provided
management with tools to make better decisions. Traditional organization of institutions by
discipline often separates potential collaborators, but the benefits of cross-disciplinary research are
well worth the necessary extra effort. In the case of marine geology and fish ecology/fisheries
management, the benefits are real and can result in better management practices.
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ABSTRACT

Exposure to ethylene glycol, which is used in the production of crude petroleum, may not be
immediately lethal to fishes, but may affect individual fish through reduced growth, reproduction,
and survival. Florida pompano are common in the Gulf of Mexico (GOM) where petroleum
production platforms or transport pipelines occur, putting them at risk of exposure in the event of
a spill or leakage. Using Blazka-type respirometers, the critical swimming performance of juvenile
Florida pompano was evaluated before and after exposure to a 3.0% ethylene glycol concentration
in 30 ppt sea water at 25 °C. The mean critical swimming speed (Ucrit) was reduced by 14% in
treatment fish from 96.0 ± 1.13 cm s-1 (9.4 ± 0.17 BL s-1) in the pre-exposure trial to 83.0 ± 3.45 cm
s-1 (8.0 ± 0.26 BL s-1) in the post-exposure trial. The Ucrit of control fish increased by 5%. A
considerable amount of variability was observed between pre- and post-exposure performance of
individuals, suggesting varying degrees of individual tolerance. 

INTRODUCTION

Marine fishes face an array of risks that affect their ability to perform in ecological situations. The
effects of factors producing direct mortality in populations, such as fishing, are often easier to
quantify than factors producing sublethal impacts within a population. Sublethal impacts, while not



170

producing direct mortality, may affect the growth, reproduction, and survival of individuals, which
may have implications on population dynamics. Quantifying sublethal effects at the individual level
is an important step in predicting how a species may respond ecologically to these impacts. 

One possible sublethal impact to marine fisheries is the use of additives in the production of
deepwater petroleum resources. With the development of new petroleum production technologies,
oil and gas is now being produced from waters greater than 305 m (1,000 ft) in the GOM (Minerals
Management Service, www.gomr.mms.gov). The continuing expansion of petroleum exploration and
drilling into deeper reaches of the GOM introduces a new array of risks of environmental impacts
on marine fishes, and creates a pressing need for the ecological evaluation of new practices and
chemicals used in this industry. 

The possible effects of ethylene glycol, a deepwater petroleum additive, on fishes in the marine
environment have yet to be assessed. Ethylene glycol is used in petroleum production and transport
to prevent the formation of gas hydrates. Gas hydrates occur when water molecules crystallize
around one or more guest molecules, such as helium, chlorine, or carbon dioxide, which are often
present in natural gas. As the gas is pumped through deepwater pipelines changes in pressure and
temperature can facilitate the formation of these hydrates, potentially clogging the pipeline
permanently. One process used to inhibit hydrate formation requires large quantities of ethylene
glycol, which decrease the hydrate stability and lower the temperature of hydrate formation
(Anonymous 1996).

The environmental effects of ethylene glycol have been widely studied in relation to its use as an
antifreeze and coolant for automobiles and as a deicing agent for bridges and runways (Barber
1999). The LC50 of ethylene glycol, the concentration estimated to kill half of a group of organisms
in a pre-determined amount of time, has been reported for various fresh and brackish-water
organisms (Greene and Kocan 1997, Abdelghani et al. 1989, Pillard 1995). The toxicity of ethylene
glycol to fish has been assessed on only a few species, including rainbow trout (Oncorhynchus
mykiss) and fathead minnow (Pimephales promelas) (Greene and Kocan 1997), bluegill sunfish
(Lepomis macrochirus) (Abdelghani et al. 1989), and goldfish (Carassius auratus) (Bridie et al.
1979). Effects of ethylene glycol exposure have not been assessed for any marine fishes. 

This is the first study to evaluate sublethal effects of ethylene glycol on marine fish. Non-lethal
exposure levels can lead to important effects, which are often measured by diminished performance
(Sprague 1971). Sublethal exposure of fish to contaminants can cause a stress response due to an
altered physiological condition, such as impeded oxygen transfer across the gills. A fish under stress
exhibits a diminished ability to function normally, which suggests potential death or decreased
reproduction of an individual, possibly leading to a declining population (Heath 1995). 

The use of performance indicators to evaluate sublethal effects assumes that the ability to perform
normal life functions has been impaired (Schreck 1990). 

It is important to note the difficulty in using sublethal effects seen at the individual level to
extrapolate effects at the population level (Rose et al. 1993). Mortality can be highly dynamic in fish
populations, and high levels of individual mortality from an episodic event, such as a contaminant
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spill, may not necessarily have a significant effect at the population level (Houde 1989). Using
individual-based modelling, Rose et al. 1993 found that chronic exposures to contaminants were
more likely to affect recruitment of striped bass than episodic exposures. It was also found, however,
that episodic exposures could potentially have a greater impact if they occurred at or shortly after
a spawning peak. 

Swimming performance has been used as a performance indicator in many studies to assess
sublethal effects of contaminants (Beaumont et al. 1995, Heath 1995, Nikl and Farrell 1993).
Reduced swimming performance of individuals has ecological significance through a reduced ability
to avoid predators and catch prey. Vulnerability to predation is dynamic and could be increased by
exposure to contaminants, due to effects on swimming speed, perception, and behavior. In an active
species, such as Florida pompano, Trachinotus carolinus, a reduction in swimming speed may not
necessarily reduce the likelihood of contact between predator and prey, but may effect the chances
of escape once contact is made. For example, exposure may cause abnormal schooling behavior of
a fish, thereby triggering a strike by a predator. 

There is still much to learn about the effects of low-level exposure of marine organisms to
petroleum-related contaminants. Most studies have concentrated on the mortality effects associated
with major oil spills (Peterson et al. 1996, Howarth 1991, Kennicutt et al. 1996). Some studies have
been conducted, however, regarding low-level exposures of fishes to petroleum or to areas where
production platforms occur. Histological changes have been shown to occur in the gills of fishes
surrounding oil production platforms (Grizzle 1986). The effects of exposure to crude oil on
maximum swimming speed of coho salmon (Oncorhynchus kisutch) have also been examined
(Thomas and Rice 1987). 

The Florida pompano was chosen to assess acute and sublethal effects of ethylene glycol because
it occurs in the vicinity of transport pipelines and deepwater wells in the GOM. Florida pompano
is a marine fish of economic importance found in Atlantic and GOM waters from Massachusetts to
Brazil (Hoese and Moore 1977). Juveniles are abundant in and near the surf zone during summer
months. Adults can be found in inshore and offshore waters; however, it is unclear where spawning
occurs (Gilbert 1986). The Florida pompano is a fast-swimming fish that could move quickly
through an area containing sublethal levels of leaked or spilled contaminants. The short-term
exposure of Florida pompano to contaminants such as ethylene glycol may have long-term
consequences for individuals.

The goal of this study was to assess the sublethal effects of ethylene glycol on juvenile Florida
pompano by comparing individual swimming performance before and after exposure to a sublethal
concentration of ethylene glycol. This study found that the mean swimming performance was
reduced by 14% in individuals following a 24 h exposure to a 3.0% concentration of ethylene glycol.
These results provide valuable information on the possible ecological consequences of a low-level
spill or leakage of ethylene glycol into the environment.
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METHODS

Respirometer Design

Three Blazka-type swimming respirometers were used in simultaneous swimming performance
tests. Each respirometer consisted of two concentric acrylic cylinders, with the inner cylinder having
an inside diameter of 20.32 cm. The volume of each respirometer was 104 L, and the maximum
water velocity was 1 m s-1. Water flow within the cylinder was generated by a propeller at one end
of the inner cylinder and was controlled by a variable-speed DC motor. A plastic honeycomb grid
was placed at each end of the inner cylinder to contain fish and encourage laminar flow.

Each respirometer was individually calibrated to find the relationship of RPM (revolutions per
minute) to water velocity in the flume (cm s-1) using video analysis of particles moving through the
inner cylinder. The regression relationship between RPM and water velocity (cm s-1) was determined
independently for each respirometer, and was used to solve for RPM at each desired water velocity
used in the swimming trials. 

Swimming Performance

Swimming performance before and after sublethal exposure to ethylene glycol was measured and
compared for individual fish (Kolok et al. 1998). In order to keep track of individuals, 21 juvenile
pompano (23.1 g ± 4.73 SD; 102.8 mm FL ± 6.21 SD) were tagged 11 weeks before the start of the
experiment. After anaesthetizing the fish with MS-222, a scheme of colored latex marks (Northwest
Marine Technology,Inc.) was applied by injection to the dorsal, caudal, and anal fins of each
individual. The fish were held following injection in a 5,000 L recirculating seawater system.

Several days prior to the experiment, the tagged fish were randomly separated into groups of three,
to be swum simultaneously in the three respirometers. Two of seven groups were randomly
designated as the ‘control’ groups, and the remaining five groups were designated as ‘treatment’
groups. Each group was randomly assigned to one of seven 60 L holding tanks, which were
connected as a recirculating system with a total volume of 550 L. The holding system was equipped
with a biofilter and UV sterilizer to maintain water quality. Salinity in the holding system was
maintained at 30 ± 1 ppt, and temperature was maintained at 25 ± 1 /C using 200 W aquarium
heaters in each tank. Each holding tank was individually aerated with an air stone. Amquel®
(HOCH2SO3Na) was added to the holding system to control the ammonia level if it rose to 0.5 ppm.
Each group of three fish was fed 0.25 g of 45% protein pellet feed daily, and uneaten feed and waste
were siphoned daily from each tank.  

The daily protocol for the swimming experiment ensured identical fasting, holding, and acclimation
periods for each group of fish, and required 16 days (Table 5.1). This protocol allowed for a 17 h
acclimation period to the respirometers following exposure and a 41 h fasting period (i.e., 24 h
exposure and 17 h acclimation) before pre- and post-exposure swimming trials. Sham exposures
were carried out in the same manner as actual exposures except for the addition of ethylene glycol.
All fish were sham exposed before the first swimming trial, and only the two control groups were
sham exposed before the second swimming trial. Each exposure was carried out in one of three
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Table 5.1. Daily schedule for swimming performance tests.

Protocol for swimming performance trials
Day 1 At ~ 1600 h, Group 1 fish were placed in the exposure tank for 24 h at 25

/C and 30 ppt for fasting and sham exposure. 
Day 2 At ~ 1600 h, Group 1 fish were placed in the respirometers for acclimation

(~17 h) at 5 cm s-1 in recirculating mode.
At ~ 1600 h, Group 2 fish were fasted and sham exposed.

Day 3 At ~ 0900 h, recirculating mode was terminated and the pre-exposure
swimming test of Group 1 fish was begun.
Group 1 fish were returned to their assigned holding tank for five days.
At ~1600 h, Group 2 fish were placed in the respirometers for acclimation.
At ~1600 h, Group 3 fish were fasted and sham exposed.

Day 4 Repeat: Pre-exposure swimming test of Group 2, acclimation of Group 3,
and sham exposure of Group 4.

Day 5 Repeat: Pre-exposure swimming test of Group 3, acclimation of Group 4,
and sham exposure of Group 5.

Day 6 Repeat: Pre-exposure swimming test of Group 4, acclimation of Group 5,
and sham exposure of Group 6.

Day 7 Repeat: Pre-exposure swimming test of Group 5, acclimation of Group 6,
and sham exposure of Group 7.

Day 8 Repeat: Pre-exposure swimming test of Group 6 and acclimation of
Group 7.
At ~ 1600 h, Group 1 fish were fasted and exposed in a 3.0% ethylene
glycol solution. 

Day 9 Repeat: Pre-exposure swimming test of Group 7, acclimation of Group 1,
and exposure of Group 2.

Day 10 Repeat: Post-exposure swimming test of Group 1, acclimation of Group 2,
and exposure of Group 3.

Day 11 Repeat: Post-exposure swimming test of Group 2, acclimation of Group 3,
and exposure of Group 4.

Day 12 Repeat: Post-exposure swimming test of Group 3, acclimation of Group 4,
and exposure of Group 5.

Day 13 Repeat: Post-exposure swimming test of Group 4, acclimation of Group 5,
and exposure of Group 6.

Day 14 Repeat: Post-exposure swimming test of Group 5, acclimation of Group 6,
and exposure of Group 7.

Day 15 Repeat: Post-exposure swimming test of Group 6 and acclimation of
Group 7.

Day 16 Repeat: Post-exposure swimming test of Group 7.
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round fiberglass tanks, filled to 60 L with sea water at a salinity of 30 ppt. The temperature of each
exposure tank was maintained at 25 ± 1 /C with a 200 W aquarium heater and the water was aerated
with two air stones. Treatment groups were exposed to a 3.0% ethylene glycol solution before the
second swimming test. To achieve the appropriate concentration, a volume of 1800 ml of ethylene
glycol was added and the tank volume was adjusted up to the 60 L mark. A water sample was col-
lected from the exposure tank at the beginning and end of each exposure period. All exposed fish
were placed in a bucket of clean sea water for several minutes before being placed in the
respirometers.

During the 17 h acclimation period, the three respirometers were connected to a larger recirculating
system that included a UV sterilizer and biofilter. The entire swimming system was housed in a 25
/C temperature-controlled room. The total recirculating volume of the system was about 765 L.
Following exposure, each fish was placed in one of the respirometers for the acclimation interval
at a velocity of 5 cm s-1. Before the start of each swimming trial, each respirometer was cleared of
bubbles and sealed. Each fish was tested in the same respirometer for the pre-exposure and post-
exposure swimming trials. 

The experimental protocol tested for changes in the swimming performance of individuals before
and after exposure to ethylene glycol by determining pre- and post-exposure critical swimming
speeds (Ucrit) for each individual. During swimming, the velocity of each respirometer was increased
by 10 cm s-1 every 10 min, with no rest interval between steps. The swimming test was terminated
when the fish could no longer continue swimming and made contact with the back grid for about
2-4 s. 

A pre- and post-exposure Ucrit value was calculated for each fish according to the equation described
by Brett (1964):

Ucrit = ui + (ti/tii x uii),

where ui is the highest velocity maintained for the prescribed period, uii is the velocity increment,
ti is the time that the fish swam at the fatigue velocity, and tii is the prescribed period of swimming.
All fish, which failed to fatigue after 10 min of swimming at the respirometer’s maximum speed
(100 cm s-1), were assigned a Ucrit value of 100 cm s-1. The Ucrit values were expressed in terms of
cm s-1 and body lengths per second (BL s-1).

Although water quality was monitored in the chambers during each swimming trial, equipment
problems resulted in the loss of dissolved oxygen data measured at the end of each velocity interval.
A YSI Tele-Thermometer probe was used to continuously record temperature from one of the
respirometers. After each post-exposure swimming test, the fish were anaesthetized with MS-222,
and weights and fork lengths were measured.
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RESULTS

Swimming Performance

A 14% reduction in swimming performance was observed in fish exposed to 3.0% ethylene glycol
(Table 5.2, Figure 5.1). The mean (± SE) critical swimming speed of treatment fish was 96.0 ± 1.13
cm s-1 (9.4 ± 0.17 BL s-1) in the pre-exposure trial and 83.0 ± 3.45 cm s-1 (8.0 ± 0.26 BL s-1) in the
post-exposure trial. The mean (± SE) critical swimming speed of control fish was 94.1 ± 3.42 cm
s-1 (9.2 ± 0.17 BL s-1) in the pre-exposure trial, and 98.2 ± 1.28 cm s-1 (9.6 ± 0.23 BL s-1) in the sham
post-exposure trial. These values are somewhat conservative because the fish (11 out of 21) that did
not fatigue after 10 min of swimming at 100 cm s-1 were assigned a Ucrit value of 100 cm s-1. 

There was considerable individual variation between pre- and post-exposure performance. Of the
15 treatment fish, only one individual showed an increase in Ucrit of 1.38 BL s-1 following exposure.
This change in Ucrit, however, was greater in magnitude than the reductions of nine of the other 14
treatment fish. The reduction in performance for all other treated fish ranged from 0.24 to 4.42 BL
s-1, with a mean value (± SE) of 1.5 ± 0.36 BL s-1. Of the six individuals in the control group, two
individuals slightly improved their performance by 0.58 and 0.25 BL s-1, and one individual greatly
improved its performance by 2.07 BL s-1. The fourth control fish slightly decreased its performance
by 0.31 BL s-1, and the final two individuals out swam the respirometers in both the pre- and post-
trials.

DISCUSSION

A 24 h exposure to a 3.0% concentration of ethylene glycol was found to reduce the swimming
performance of individual juvenile Florida pompano in this study by a mean of 14%. Changes in the
performance of control fish were not meaningful, but mean performance did increase slightly by 5%.

While mean critical swimming speed of the treatment group was found to decrease following
exposure, there was considerable individual variation in performance detected in both the treatment
and control groups. A common method in swimming performance studies looking at sublethal
effects of toxicants has been to compare mean performances of control and treatment groups, an
approach that does not address within-group variation. An experimental design that addresses
within-group variation is useful because swimming performance of individual fish has been shown
to be repeatable over time (Kolok 1992, Kolok et al. 1998, Reidy et al. 2000). In a study involving
the exposure of fathead minnows to a contaminated sediment, Kolok et al. (1998) found that a
reduction in the mean post-exposure swimming performance varied widely between individuals,
with two-thirds experiencing only minor reductions and the remaining fish becoming almost unable
to perform. 

The variation between individuals in the present study suggests that some fish may have a higher
threshold of tolerance to ethylene glycol toxicity. Many studies have estimated threshold values for
fish exposed to contaminants by testing swimming speed at a range of exposure concentrations (Nikl
and Farrell 1993, Peterson 1974). Because this study tested fish at only one concentration of
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Table 5.2. Weight (g), fork length (mm), pre-exposure Ucrit and post-exposure Ucrit (cm s-1, BL s-1)
for treatment and control Florida pompano.

Pre–exposure 
Ucrit

Post-exposure 
Ucrit

Treatment Fish Weight (g) FL (mm) cm s-1 BL s-1 cm s-1 BL s-1

1 26.26 109 84.98 7.80 100 9.17
2 23.4 104 94.2 9.06 82.05 7.89
3 20.13 99 100 10.10 63.65 6.43
4 21.9 102 93.67 9.18 74.55 7.31
5 36.75 116 100 8.62 94.43 8.14
6 19.93 97 93.45 9.63 63.55 6.55
7 20.51 97 90.6 9.34 88.3 9.10
8 16.1 91 94.95 10.43 54.72 6.01
9 22.25 104 100 9.62 87.75 8.44
10 21.27 102 93.75 9.19 87.43 8.57
11 19.25 96 100 10.42 80.4 8.38
12 26.54 105 95.92 9.14 93.42 8.90
13 28.28 110 100 9.09 93.47 8.50
14 21.77 104 97.73 9.40 85.58 8.23
15 21.44 108 100 9.26 95.13 8.81

Mean 23.05 102.93 95.95 9.35 82.96 8.03
SE 1.26 1.65 1.13 0.17 3.45 0.26

Control Fish Weight (g) FL (mm) cm s-1 BL s-1 cm s-1 BL s-1

1 18.14 96 86.85  9.05 92.37 9.62
2 23.94 104 100 9.62 96.73 9.30
3 22.2 103 100 9.71 100 9.71
4 18.19 94 80.53 8.57 99.98 10.64
5 28.17 106 97.35 9.18 100 9.43
6 29.24 111 100 9.01 100 9.01

Mean 23.31 102.33 94.12 9.19 98.18 9.62
SE 1.94 2.59 3.42 0.17 1.28 0.23
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Figure 5.1. Mean Ucrit (BL s-1) of Florida pompano before and after a 24 h exposure to 3.0%
ethylene glycol (treatment), and before and after sham exposure (control).

ethylene glycol, it is not possible to calculate a mean threshold value for this species. Nevertheless,
we can assume from the biological meaningful reduction in swimming speed that the threshold is
at or below the 3.0% ethylene glycol concentration (53% of the estimated LC50 for slightly smaller
fish).
 
There are several ways in which toxicants, such as ethylene glycol, may cause a reduction in the
swimming performance of fishes. Jones (1971) proposed several possible factors, including an
inability to exchange enough oxygen at the gills, an inability to deliver enough oxygen to the tissues,
and an inability to remove metabolic products or to activate enzymic processes. A reduction in the
ability to transfer oxygen across the gills would effectively decrease the scope for active metabolism
of the fish, thereby reducing the fish’s capacity for sustained swimming activity. It is unclear from
this study whether gill damage was a direct influence on the reduction in swimming performance
of exposed individuals, due to the use of MS-222 before sacrifice. 

Due to the nature of ethylene glycol, the reduction in swimming performance seen in this study may
have been due to the buildup of metabolic products. Studies on mammals have shown that ethylene
glycol is sequentially oxidized in the liver (Chou and Richardson 1978) and involves several
metabolites, with glycolate (glycolic acid) playing a major role in ethylene glycol toxicity. The
increased cost of maintenance to remove these metabolites effectively increases the basal
metabolism, thereby reducing the capacity for activity. Therefore, the reduced Ucrit of the exposed
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fish in this study may have been a direct result of the increased metabolic costs to remove toxic
metabolites.

The LC50 values reported in other studies (Table 5.3) on ethylene glycol exposure in fish are
generally considered to reflect relatively low toxicity. Fish would be most likely to be exposed to
these concentrations in the event of highly localized, large-scale releases into the environment.
Marine releases of considerable magnitude, however, have been reported. For example, 13,523 L
(3,570 gal) of ethylene glycol leaked into the GOM from an underwater pipeline in June of 1998
(U.S. Coast Guard, National Response Center, Report # 444025). This study shows that sublethal
effects can be manifested after only a short exposure (24 h) to large releases of ethylene glycol. Fish
are more likely to be exposed for a short-term due to the relatively rapid biodegradation of ethylene
glycol. Bio-oxidation of ethylene glycol in the laboratory was 39% in 5 days and 96% in 20 days
(Conway et al. 1983). Dissipation of the chemical in the marine environment would be expected to
be even more rapid. Other factors affecting the toxicity of ethylene glycol must also be considered,
such as additive or synergistic effects when combined with other chemicals. The toxicity of ethylene
glycol was found to increase in fish when sublethal levels of thiram, a component of an agricultural
seed-protectant, were present (Greene and Kocan 1997), and when it was combined with other
chemicals in a deicing agent (Pillard 1995).

Table 5.3. Estimated LC50 values for several fish species exposed to ethylene glycol.

Reference Species Mean Size (g)
Test

Duration LC50 (%)
Abdelghani et

al. 1990
Bluegill sunfish

(Lepomis macrochirus)
0.85 ± 0.60 96 h 2.75

Pillard 1995 Fathead minnow
(Pimephales promelas)

(# 7 days old) 96 h 7.29

Greene and
Kocan 1997

Fathead minnow 0.10 ± 0.01
0.13 ± 0.01

96 h
96 h

6.83
6.95

Rainbow trout
(Oncorhynchus mykiss)

0.71 ± 0.20
1.50 ± 0.50

96 h
96 h

6.08
5.65

Kay 2000 Florida pompano
(Trachinotus carolinus)

7.98 ± 3.20 24 h 5.63

There are several recommendations that can be made for future research in light of this study. First,
the effects of ethylene glycol on the gills need to be examined without the use of the anaesthetic,
MS-222, which may confound the results. It would also be useful to determine if a shorter exposure
than our target concentration, 3.0% ethylene glycol, has significant effects on the gill structures or
swimming performance of Florida pompano. The effects of a short exposure to a lethal
concentration of ethylene glycol, using a range of exposure periods, could also be evaluated. Finally,
by studying the effects of exposure on feeding and growth, more information would be obtained
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regarding the ecological implications of ethylene glycol exposure on juvenile Florida pompano at
the population level (Rose et al. 1993).  

In summary, we have shown that a marine fish can experience reduced performance when exposed
to sublethal levels of ethylene glycol. The implications of these results include adverse effects on
the ability to perform in ecological situations. While normal cruising speeds of Florida pompano are
not near the high critical swimming speeds observed in this study, the capacity for burst swimming
and endurance are undoubtedly reduced, directly affecting the efficiency of prey capture and
predator avoidance. Understanding sublethal effects such as these is important for the accurate
prediction of the impacts of habitat and environmental changes on fish populations.
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ABSTRACT

The Texas continental shelf in the Gulf of Mexico is a dynamic region influenced by winds, river,
and offshore currents. The shelf is composed of terriginous sediment that contains varying amounts
of silt and clay. There is a persistent bottom layer of turbid water, a nepheloid layer, which appears
to be derived from both local resuspension of fine sediment and advection in the bottom boundary
layer from coastal sources. Approximately 4000 petroleum production platforms are located in the
Gulf of Mexico with many lying on the shelf where the nepheloid layer is persistent. Offshore
platforms act as artificial reefs, providing critical habitat on large submerged surfaces for
recruitment and settlement of larval sessile organisms. The biofouling community could be directly
related to fisheries associated with platform structures. The purpose of this study is to determine
significant differences caused from the presence of the nepheloid layer in the structure of biofouling
communities on four Texas coastal petroleum platforms. Photographic transects and biomass
samples will be used to describe the biofouling community. Data loggers will be used to record
temperature and light attenuation parameters. Turbidity and physiochemical properties of water will
be sampled in the vicinity of the data loggers. All data will be used to create a model associating
turbidity with the biofouling community of Texas coastal platforms where a nepheloid layer is
persistent for much of the year.
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ABSTRACT

The abundance of Blenniidae on platforms in the northern Gulf of Mexico may be substantially
underestimated. Previous studies have reported the abundance of blenny species on platforms to
range between 0.6 fish and 16 fish m-2. In this study, we used visual surveys to quantify densities
of four blenny species (Hypsoblennius invemar, Hypleurochilus multifilis, Parablennius marmoreus,
and Scartella cristata) on two gas platforms 14 to 24 km southeast of Dauphin Island, Alabama in
July and August 1999. Our mean Blenniidae densities were substantially higher than those in
previous accounts. Densities of all four species decreased as depth increased from 3 m to 18 m: 10
fish m-2 to 1 fish m-2 (H. invemar), 23 fish m-2 to 6 fish m-2 (H. multifilis), 6 fish m-2 to 2 fish m-2 (P.
marmoreus), and 89 fish m-2 to 0 fish m-2 (S. cristata). Blenny length distributions were estimated
using three 51 mm total length (TL) categories. Eighty percent of H. invemar, 74% of H. multifilis,
49% of P. marmoreus, and 47% of S. cristata were < 51 mm TL. Blennies occupy crevices and
cavities, so, the fouling community on the platform pilings was sampled to predict why blennies <
51 mm TL were so abundant. We measured the abundance of fouling organisms such as barnacles,
mollusks, and sponges that can affect the availability of crevices and cavities. Abundance of the
large barnacle Balanus tintinabulum decreased significantly as depth increased from 3 m to 18 m
(χ2 = 15, p < 0.05), substantially affecting local relief and hence habitat available to blennies.
However, B. tintinabulum abundance was not useful for predicting the abundance of H. multifilis
(r2 = 0.04, p > 0.05) and P. marmoreus (r2 = 0.07, p > 0.05). Balanus tintinabulum abundance did
account for 48% (p < 0.05) of H. invemar and 81% (p < 0.05) of S. cristata variability. The
community structure of non-game fishes, like Blenniidae, can be used to estimate the ecological
success of artificial structures as reefs.
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ABSTRACT

Oil and gas platforms are effective in attracting recreationally- and commercially-important fishes,
but whether these structures contribute to new fish biomass is still debatable. To ascertain the habitat
enhancement value of petroleum platforms, information on supply, distribution, and spatial
variability of larval fishes associated with these structures is needed. We sampled ichthyoplankton
at three petroleum platforms in the northern Gulf of Mexico: Green Canyon 18 (230 m depth),
Grand Isle 94 (60 m depth), and South Timbalier 54 (20 m depth). Fish larvae and juveniles were
collected within the structures (passive plankton net and light-trap fished at depth and near-surface)
and immediately downstream of the platforms (light-trap floated downstream at surface). Overall,
mean light-trap catch per unit efforts (CPUEs) were significantly higher in surface samples,
particularly within the platform, than in sub-surface samples (clupeiforms excluded). Mean plankton
net densities for surface samples were significantly lower than sub-surface samples at two platforms
(clupeiforms excluded). Distributional differences were observed for many species within and
around the platforms. Few taxa were found only in off-platform samples (4 at Green Canyon, 6 at
Grand Isle, and 12 at South Timbalier). Some pelagic species, e.g., Caranx crysos and C.
hippos/latus (Green Canyon) and Euthynnus alletteratus (Grand Isle and South Timbalier) generally
had higher CPUEs in surface waters downstream from the platforms. Several species were collected
only at depth, particularly mesopelagic and benthic taxa, e.g., Chlorophthalmus agassizi (Green
Canyon), Robia legula (Grand Isle), and Ophidion robinsi (South Timbalier). Other taxa
predominantly found at depth included Mugil cephalus (Green Canyon), Symphurus spp. (Grand
Isle), and Ariomma spp. (South Timbalier). Few differences were observed between Shannon-
Weiner diversity indices calculated by gear and location, with the exception of sub-surface light-trap
samples, which were significantly lower in diversity at two platforms.
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ABSTRACT

The fisheries aggregation value of oil and gas platforms in the continental shelf waters of the
northern Gulf of Mexico (GOM) is well recognized, but the assessment of early life stages
associated with these structures has not been adequately addressed. Ichthyoplankton assemblages
were sampled at three offshore platforms: Green Canyon 18 (GC 18; 230 m depth, shelf slope);
Grand Isle 94 (GI 94; 60 m depth, mid-shelf); and South Timbalier 54 (ST 54; 20 m depth, inner
shelf) with passive plankton nets and light-traps and at a coastal rock jetty (Belle Pass; 3-5 m depth)
with a light-trap and a plankton pushnet. Family richness was highest at GC 18 (52), followed by
GI 94 (43), ST 54 (42), and Belle Pass (41). At the genus level, richness was highest at Belle Pass
jetty (127), followed by GI 94 (114), ST 54 (86), and GC 18 (82). At all sites, clupeiforms
dominated samples, comprising 59-97% of the total catch. Gobiids and blenniids dominated the reef-
associated fish assemblages at all sites. Other relatively common reef-associated fish were serranids
and lutjanids (GC 18), pomacentrids and opisthognathids (GI 94), Rhomboplites aurorubens (ST
54), and Lutjanus griseus and L. synagris (Belle Pass). The ichthyoplankton assemblages sampled
at each site were relatively dissimilar, based on Schoener’s Index of Niche Overlap, with the highest
index value for any two sites being 0.45 for GI 94 and ST 54 (0-1 scale; clupeiforms excluded). No
significant difference was observed between mean Shannon-Weiner diversity indices calculated for
plankton net samples at each site. For light-trap samples, diversity was lowest at GC 18,
significantly higher at GI 94, and then decreased inshore. Canonical correlation analyses indicated
that temperature and salinity explained most of the variation in larval abundance for some dominant
taxa at the platforms, while at Belle Pass jetty, dissolved oxygen and turbidity were also important
environmental variables.

INTRODUCTION

The GOM yields about 40% of the U.S. commercial fish landings (NOAA/NMFS 1993) and
supports 33% of the country’s recreational fishery (Essig et al. 1991; Van Voorhies et al. 1992). The
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region also possesses the vast majority of the nation’s coastal wetlands. Louisiana alone has over
3.8 million acres (>40% of the nation’s total), but these areas are disappearing at an alarming rate,
i.e., Louisiana land loss represents 60-80% of the nation’s total annual coastal wetland loss (Boesch
et al. 1994). The continual loss of GOM estuarine and wetland habitats that serve as the nursery
grounds for a large number of commercially- and recreationally-important fisheries makes
knowledge of the potential nursery function of other habitats critical. Habitat issues have received
increased attention lately, in part due to the Essential Fisheries Habitat Provisions added to the
Federal Sustainable Fisheries Act of 1996 that facilitate the long-term protection of waters and
substrate necessary to fish for spawning, breeding, feeding or growth to maturity (USDOC 1996).

The introduction and proliferation of offshore oil and gas structures in the northern GOM has
undoubtedly affected the marine ecosystem. There are approximately 4,000 oil and gas structures
in the federal waters of the GOM. The central and western GOM is dominated by a mud/silt/sand
bottom with little relief or hard bottom habitat. Parker et al. (1983) reported only 2,780 km2 of
natural available reef in the central and western GOM. Although Gallaway (1998) calculated that
oil and gas platforms in the northern GOM provided 11.7 km2 (or 4.0%) of the total “reef” habitat,
the fact that platforms represent vertical artificial substrate that extends from the bottom to the
surface (photic zone), regardless of location and depth, increases their significance. Since fish
populations are usually limited by available energy, recruitment, or habitat, it is important to
determine whether platforms: 1) provide critical habitat for early life history stages; 2) serve as new
or additional spawning habitat; and 3) influence energy flow through the ecosystem by aggregating
prey.

Oil and gas platforms can enhance fisheries by providing attachment substrate for habitat-limited
sessile invertebrates, thereby creating food and habitat for reef-dependent species that are
trophically-dependent on sessile and motile invertebrates associated with reefs (Gallaway 1981;
Bohnsak and Sutherland 1985; Stephan et al. 1990; Bohnsak 1991). Since reef fish assemblages are
among the most diverse and taxonomically rich in the aquatic biosphere (Sale 1991), platform
communities may significantly enhance biodiversity. In addition, oil and gas structures may offer
refugia for species which are trophically-independent of the biofouling community (i.e., reef-
associated species; Choat and Bellwood 1991), but are ecologically-important resident, seasonal,
or transient members of the hard substrate fish community (Gallaway et al. 1980). The extensive
range (latitudinally and longitudinally) of this artificial substrate may also serve as migratory routes
for tropical and subtropical species.

The adult fish communities around natural and artificial reefs are fairly well known (Seaman and
Sprague 1992; Rooker et al. 1997; Stanley and Wilson, 2000) and the fisheries aggregation value
of oil and gas structures is well-recognized in the GOM (CDOP 1985). Despite research efforts,
however, biologists still disagree over the paradigm of whether these artificial reefs (e.g., platforms)
contribute significantly to new fish production or simply attract and concentrate existing fish
biomass(Pickering and Whitmarsh 1997; Bortone 1998). Existing data on adult fishes support both
sides of the debate (Stone et al. 1979, Alevizon et al. 1985). Bohnsak (1989) theorized that reef
effects fall along a continuum between attraction of existing organisms and production, with
increased productivity occurring for reef-dependent species in areas of limited hard substrate habitat.
Since the central and western GOM has little natural reef habitat, we believe that the contribution
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of artificial reefs to existing reef habitat has enhanced reef fish populations, but the overall or net
impact of this augmentation is not known, especially when corrected for increased fishing mortality
associated with platforms (Stanley and Wilson 1990).

Few baseline ecological ichthyoplankton studies within the oil field have been published (Finucane
et al. 1979a; Finucane et al. 1979b; Bedinger et al. 1980), and none have been published that focus
upon platform infrastructure. The Southeastern Area Monitoring and Assessment Program’s
(SEAMAP) and the National Marine Fisheries Service’s (NMFS) Gulf-wide fisheries surveys, and
the Minerals Management Service Louisiana-Texas (MMS LATEX) Physical Oceanography
Program have not sampled in the immediate vicinity of oil and gas platforms because of the
conservative navigation/safety requirements of their ships. Thus, fisheries-independent assessment
of the abundance of fish life stages within and immediately around these platforms and the role they
might play as essential fisheries habitat is not being adequately addressed in federal waters where
such structures exist. Clearly, additional information is needed on the early life history stages of
fishes associated with petroleum platforms.

ACROSS-SHELF ICHTHYOFAUNAL ZONATION

Gallaway et al. (1980) and Gallaway (1981) reviewed previous descriptions of invertebrate and
vertebrate faunal assemblages from the northcentral GOM’s continental shelf and characterized
differences largely upon different bottom types (fluvial/terrigenous sediments west of the
Mississippi River Delta and carbonaceous sediments to the east), circulation patterns, and related
hydrographic conditions. Climatic differences were also acknowledged as having an important role
in determining faunal distributions, since the inner shelf waters of the northern GOM are warm and
subtropical in the eastern GOM and along the southwestern coast near the Mexican border, but are
warm-temperate from just east of the Mississippi River Delta to Matagorda Bay, Texas (Parker
1960). Reef fish fauna are generally less tolerant of the lower water temperatures that can occur in
the more inshore areas during winter in the northern GOM (Chittenden and McEachran 1976).
Along with temperature, topographical relief is another major factor contributing to the distribution
of reef fish. Although topographical relief is described as extensive throughout the GOM (Bright
et al. 1974), it is also disjunctly distributed, thus potentially isolating reef fish populations. Several
authors attempted to classify shelf ichthyofaunal assemblages based on depth zones and invertebrate
distributions. Defenbaugh (1976), for example, used macroinvertebrate data from trawls to describe
three primary depth zones (4-20 m, 20-60 m, and 60-120 m). In his review, however, Gallaway
(1981) adopted the zonation description of Chittenden and McEachran (1976) who observed that
the distribution of major shrimp species (white shrimp grounds, 3-22 m depth and brown shrimp
grounds, 22-110 m depth) matched quite closely the distribution of sediment types and used this
information, along with bathymetry, to divide demersal fish assemblages into three different zones
characterized primarily by depth.

Table 5.4 summarizes reef or structure-associated fish for Gallaway’s (1981) analysis of previous
studies that addressed demersal and pelagic adult fish off Texas (Chittenden and McEachran 1976)
and adult reef species off Louisiana, including both artificial and natural reefs (George and Thomas
1974; Gallaway et al. 1979; Shinn 1974; Sonnier et al. 1976). Distinct transitions in species
assemblages can be seen in the reef species when analyzed across depths. Overall, the outer shelf
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Table 5.4. Summary of the commonly observed adult fish assemblages associated with natural
reefs or offshore oil and gas platforms by depth zones as reported in Gallaway et al.
(1980) and subsequently modified by Gallaway (1981).  Taxa were reported from
these depth zones as being affiliated with natural reefs (N) or artificial reefs (A).

Ichthyofaunal Assemblage

Gallaway et al. (1980)

Taxa Coastal
(3-27 m)

Offshore
(27-64 m)

Blue Water or Tropical
(>64 m)

Gallaway (1981)

                                       Inner Shelf
(White Shrimp Ground)

(3-20 m)

Intermediate Shelf
(Brown Shrimp Ground)

(20-60 m)

Outer Shelf
(Tropical)
(>60 m)

Serranidae

  Epinephelus spp.
  (grouper spp.)

N

  Epinephelus itajara
  (jewfish)

A

  Epinephelus nigritus
  (warsaw grouper)

A

  Mycteroperca spp.
  (grouper spp.)

N

  Paranthias furcifer
  (creole-fish)

N, A

Pomatomidae

  Pomatomus saltatrix
  (bluefish)

A A

Rachycentridae

  Rachycentron canadum
  (cobia)

A

Carangidae

  Caranx crysos
  (blue runner)

A A N, A

  Caranx hippos
  (crevalle jack)

A

  carangid spp.
  (jack spp.)

A A N

  Selene setapinnis
  (moonfish)

A

  Selene vomer
  (lookdown)

A A

  Seriola rivoliana
  (almaco jack)

N, A

Lutjanidae

  Lutjanus campechanus
  (red snapper)

 A N
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Ichthyofaunal Assemblage

Gallaway et al. (1980)

Taxa Coastal
(3-27 m)

Offshore
(27-64 m)

Blue Water or Tropical
(>64 m)

Gallaway (1981)

                                       Inner Shelf
(White Shrimp Ground)

(3-20 m)

Intermediate Shelf
(Brown Shrimp Ground)

(20-60 m)

Outer Shelf
(Tropical)
(>60 m)

  Lutjanus synagris
  (lane snapper)

A A

  Rhomboplites aurorubens
  (vermilion snapper)

N

Haeumulidae

  Haeumulon melanurum
  (cottonwick)

N

Sparidae

  Archosargus probatocephalus
  (sheepshead)

A A

Kyphosidae

  Kyphosus sectatrix
  (Bermuda chub)

A

Ephippidae

  Chaetodipterus faber
  (Atlantic spadefish)

A A

Chaetodontidae

  butterflyfish spp. A N

Pomacanthidae

  Holacanthus tricolor
  (rock beauty)

A

  pomacanthid spp.
  (angelfish spp.)

A N, A

Pomacentridae

  damselfish spp. A N, A

Cirrhitidae

  Amblycirrhitus pinos
  (redspotted hawkfish)

A

Sphyraenidae

  Sphyraena barracuda
  (great barracuda)

A A

Labridae

  Bodianus rufus A
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Ichthyofaunal Assemblage

Gallaway et al. (1980)

Taxa Coastal
(3-27 m)

Offshore
(27-64 m)

Blue Water or Tropical
(>64 m)

Gallaway (1981)

                                       Inner Shelf
(White Shrimp Ground)

(3-20 m)

Intermediate Shelf
(Brown Shrimp Ground)

(20-60 m)

Outer Shelf
(Tropical)
(>60 m)

  (Spanish hogfish)

Decodon puellaris
 (red hogfish)

A

 Clepticus parrai
 (creole wrasse) 

N, A

Scaridae

  parrotfish spp. N

Blenniidae

   blenny spp. A

Acanthuridae

  surgeonfish/tang spp. A A

Balistidae

  Balistes capriscus
  (gray triggerfish)

A A

(>60 m depth) reefs appear to be more speciose, followed by the mid-shelf (20-60 m) and then the
inner shelf (3-20 m). More tropical taxa are present on the outer shelf reefs, such as haemulids,
labrids, and scarids, and similar taxa occurred on both natural and artificial reefs. There was some
overlap between reef species on the outer shelf and mid-shelf (chaetodontids, pomacanthids, and
pomacentrids), but the previously mentioned tropical taxa are replaced by more temperate reef
species, such as serranids, Archosargus probatocephalus, pomatomids, and rachycentrids. Also, taxa
that are common on artificial reefs on the mid-shelf are generally common on the inner shelf as well.
In general, Caranx crysos and other jacks were noted as being relatively common reef-associated
species in each zone.

Few studies have attempted to compare the ichthyofaunal assemblages specifically associated with
oil and gas platforms in the northcentral GOM across wide depth zones, and the information that is
available primarily concerns adult fishes and not their early life history stages. Sonnier et al. (1976)
surveyed oil and gas platforms (18-55 m depth) as well as inshore (37-59 m) and offshore (110-155
m) reefs off Louisiana and described the offshore reefs as being more speciose than inshore reefs
or platforms. This greater offshore reef species richness was primarily due to the presence of
southern Gulf-Caribbean taxa (e.g., butterflyfishes, parrotfishes, and cleaning gobies) and taxa
common to reefs in the northwestern GOM off Texas. The authors suggested that the lower
temperatures that occur at the inshore reefs and platforms are a limiting factor in the number of
species, particularly tropicals, which inhabit inshore reef habitats. As one progressed inshore, the
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tropical fauna was replaced by more temperate reef fish species, including Archosargus
probatocephalus, Selene vomer, and Lutjanus griseus (Sonnier et al. 1976). Twelve species,
including tropicals such as Cantherhines macrocerus, Melichthys niger, and Diodon holocanthus,
were found only at the platform sites. 

ICHTHYOPLANKTON ASSOCIATED WITH OIL AND GAS PLATFORMS

We are aware of only one study that investigated the ichthyoplankton community found in proximity
to petroleum platforms. Finucane et al. (1979b), using bongo and neuston nets, sampled within 30-
90 m of two oil platforms and two satellite (well) jackets in 17 m of water within the Buccaneer Oil
Field, approximately 50 km south southeast of Galveston, Texas. Two far-field, control sites were
also sampled for comparison. Three 2-day cruises (13-14 July 1977; 13-14 October 1977; and 20
and 22 February 1978) collected 15,711 fish larvae, primarily engraulids, sciaenids, and bothids.
Analyses were limited, but species richness was found to be greatest at the platform sites in July and
October and at the satellite structures in February. Overall, of the 68 taxa identified to genus, 38
were associated exclusively with at least one of the structure sites, while another 29 were found near
both structure sites and control sites. Dominant taxa at the platform sites included unidentified
engraulids (26.1%), Anchoa spp. (8.8%), Cynoscion spp. (7.3%), and Syacium spp. (5.9%).
Dominant taxa at the satellite stations were once again unidentified engraulids (32.5%) and Anchoa
spp. (13.4%), along with Micropogonias undulatus (11.2%), Cynoscion spp. (5.5%), and
unidentified clupeids (5.4%). No dominant taxa list was reported for the far-field stations. Based on
eggs and larval abundance, the petroleum field was determined to be an active spawning area for
anguilliforms, callionymids, clupeids, sciaenids, scombrids and soleids, but reef fish eggs and larvae
were not abundant. Noteworthy reef or structure-associated taxa collected during the survey include
Etelis oculatus, Lutjanus campechanus, Centropristis spp., Diplectrum spp., and Serraniculus
pumilio, although Etelis oculatus and Diplectrum spp. were also collected in the far-field control
sites. 

While the Buccaneer Oil Field study did attempt to address larval fish assemblages near petroleum
structures, all of the sites with structure were within a 5 km radius from each other, and all sites,
including the controls, were in 17 m of water, not allowing for any comparisons of different
community regimes across depth zones or large geographic areas. Also, sampling in the oil field
study was limited to only three 2-day cruises. While our study has no replicate platforms within the
Gallaway’s (1981) depth zones, all three zones were sampled intensively, allowing for at least a
preliminary characterization of ichthyoplankton assemblages associated with these artificial habitats
across the continental shelf.

OBJECTIVES

This study focused on three main objectives. The first was to provide much-needed information on
the role that oil and gas platforms (hard substrate habitat) may play as nursery/recruitment grounds
and/or refugia for postlarval and juvenile fish, which could contribute to fish production. Secondly,
we wished to respond to specific requests for more basic biological information on reef fish, e.g.,
larval, postlarval, and juvenile taxonomy, seasonality, lunar periodicity, distribution (vertical and
across shelf), and relative abundance. Finally, as a long-term objective, we wished to evaluate the
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ecological significance that this artificial habitat building, which has occurred on an unprecedented
scale in the northcentral GOM, may have had on the early life history stages of fish. These
objectives were accomplished by collecting a wide variety of taxa and sizes utilizing two sampling
techniques, light-trap methodology and more traditional techniques (i.e., passive horizontal and
hauled vertical plankton net collections). These methodologies complemented each other, since nets
effectively sample yolk-sac, larval, and some postlarval fishes, whereas light-traps sample
photopositive species at overlapping and larger sizes to give us more complete estimates of sizes
(cohorts or inferred ages) and developmental/early life history stages present (Gregory and Powles
1988; Choat et al. 1993). An integral part of this study, therefore, was the development of an
effective sampling strategy and its subsequent evaluation for collecting larval fish for the first time
within and immediately around platform infrastructure (Hernandez and Shaw this volume).

Data collection and analyses focused on three offshore oil and gas platforms in the northcentral
GOM and at a low-salinity, coastal rock jetty environment, which provided a far-field, non-platform
site, end-member that was equally complex structurally and represented another artificial, reef-like,
hard-substrate habitat. The resultant analyses and synthesis of these efforts and ongoing sampling
efforts east of the Delta (Figure 5.2) are intended to build a practical characterization and synthesis
leading to a much broader understanding of platform ecology and pertinent environment issues over
a larger geographic region. 

MATERIALS AND METHODS

Study Areas

Two pilot studies at oil and gas platforms off the Louisiana-Texas border were conducted, one at
Mobil’s West Cameron (WC) 352 during November 1991-August 1992 and the other at Mobil’s WC
71D in July 1994 (Figure 5.2). West Cameron 352 is located along the Louisiana/Texas border
(28°59'35"N, 93°30'15"W) in about 20 m of water. West Cameron 71D is located off western
Louisiana (29°37.30' N, 93°10.54' W) in approximately 12 m of water. These exploratory studies
were followed by sampling along a transect west of the Mississippi River Delta with site selection
for platforms based upon the work of Gallaway et al. (1980), Gallaway (1981), and Continental
Shelf Associates (1982), who reported that nekton communities around platforms could be
categorized by water depth in the northern GOM. Three communities were characterized: a coastal
assemblage (water depths <27m), an offshore assemblage (water depths 27 to 64 m), and a
bluewater/tropical assemblage (water depths >64m). The platforms selected and the jetty site
encompass all three zones. Mobil’s Green Canyon (GC) 18, which lies in about 230 m of water on
the shelf slope (27°56'37"N, 91°01'45"W), was sampled monthly during new moon phases over a
two- to three-night period during July 1995-June 1996. Mobil’s Grand Isle (GI) 94B, which lies in
approximately 60 m of water at mid-shelf (28°30'57"N, 90°07'23"W), was sampled twice monthly
during new and full moon phases over a three-night period during April-August 1996. During May,
extra samples during the first-quarter and third quarter moon phases were collected, but due to
inclement weather, full-moon collections were cancelled. Exxon’s South Timbalier (ST) 54G, which
lies in approximately 20 m of water on the inner shelf (28°50'01"N, 90°25'00"W), was sampled
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Figure 5.2. Sites sampled during and before the course of the study. Open squares are sites of the oil and gas platforms and
coastal jetty sampled during the course of this study. Solid squares represent sites sampled previously during pilot
studies. Open circles represent sites of ongoing sampling for future comparisons.
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twice monthly during new- and full-moon periods during April-September 1997. All platforms had
very similar structural complexity. GC 18 was a very large six pile (column or leg) production
platform, while GI 94 and ST 54 were eight pile production platforms. The stone rubble jetties (2-3
m depth) at the terminus of Belle Pass, a major shipping channel near Fourchon, Louisiana (N 29
03.90, W 90 13.80), were also sampled over a two-night period in 1997 simultaneously with the
sampling of ST 54. The two jetties are approximately 91 m apart and run in a general north-south
direction. The east jetty is approximately 335 m long and the west jetty is approximately 305 m
long. Depths along the jetties ranged from 3-5 m. 

Sampling Procedure

Collections were made at WC 352 within the platform structure during seven sampling periods
between November 1991 and August 1992. All sampling commenced and terminated at least one
hour after sunset and before sunrise, respectively. Each sample was obtained by deploying a
modified quatrefoil light-trap (Hernandez and Shaw this volume) for 10 to 15 minutes, although two
35-minute samples were also collected. Samples were taken concurrently at depths of 1 m (surface)
and 18 m (subsurface) from February-May 1992 only. Surface samples were obtained by lowering
a trap with flotation into the water. Subsurface samples were collected by lowering a trap without
flotation along a stainless steel cable guideline tethered to the bottom. 

Samples were collected at WC 71D over three consecutive nights (21-24 July 1994). All sampling
commenced or terminated at least one hour after sunset and before sunrise. Three light-trap designs,
a modified quatrefoil, a Doherty trap (Doherty 1987), and a cylindrical design (an acrylic model
modified from Riley & Holt (1993), were deployed off a stainless steel cable guideline within the
platform structure. Sampling depths included 1 m (surface) and 8.5 m (night 3 only). In addition,
six vertical plankton haul samples (202- m mesh, 60-cm diameter net) were collected during night
2. The net, mounted on a rigid frame and attached to the central cable, was lowered to the bottom
(effective depth = 8.5 m) and raised at approximately 1 m/s after a five-minute interval to allow the
water column to restabilize. A set of samples included one sample by each of the three light traps,
and there were six sets made each night, except for night 3 when four sets were made near the
surface and four sets were taken at depth. On night 2 only, a vertical net tow was added to each set.
The order of the trap (or vertical net tows) collections was randomized within each set as was the
case with all subsequent platform sampling. 

Sampling protocols for GC 18, GI 94, and ST 54 were similar. At GC 18, eleven monthly sampling
trips were taken over a three-night period coinciding with new moon phases from July 1995-June
1996, with the exception of the month of December (adverse weather). New moon phases were
targeted at this platform because they have been associated with the peak recruitment periods of
many reef-associated fishes (Johannes 1978; Robertson et al. 1988). All sampling began one hour
after sunset and was completed one hour before sunrise. The major sampling station for each
platform was located in the internal central region along a stainless steel, small-diameter guidewire
(monorail) tethered to the first set of the platform’s underwater, cross-member, support structures.
At this central station, replicate trap collections (N = 2) were taken three times each night at near-
surface (1-2 m depth) and at a depth between 15 and 23m, depending upon the individual platform’s
underwater configuration of the first set of cross-member supports. Subsurface samples were
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collected by lowering a trap without flotation. Light-traps were deployed for 10-minute periods.
Passive, horizontal plankton net collections were taken three times at both depths during each night
at the central station using a metered (General Oceanics flowmeter model 2030 with slow velocity
rotor), 60-cm diameter, 333µm mesh net dyed dark green. The nets had a vane (to help orient into
the current) which was fixed to a gimbled attachment on the net ring, which allowed the net to be
set and retrieved closed for the at-depth deployment. In addition, three collections each night were
made with a floating light-trap that was tethered and free-drifted away (off-platform) from the
platform (approximately 20 m) on the down-current side of the platform. For light-traps sampled
at depth or off-platform, the trap was deployed with the light off, fished with the light on, and then
retrieved with the light off.

Temperature (°C) and salinity (ppt), turbidity (NTU), and current speed and direction were
determined during each set using either a Data Sonde 3 Hydrolab or an Inter Ocean S4 Current
Meter. During each set, a vertical plankton net (20-cm diameter, 63-µm mesh) which was held
rigidly to the guidewire by a frame, was lowered codend first to the bottom of the monorail, left at
depth for 5 minutes for water column restabilization, and then hauled to the surface at approximately
1m/s to ascertain macrozooplankton biomass as a measure of food availability. The samples were
returned to the lab where they were dried in an oven for 24 h at 60°C and then weighed to determine
the dry weight biomass (g/m3). Also, surface water samples were collected during each set to
determine total suspended sediments, an estimate of turbidity. Water samples were later filtered in
the lab through a pre-weighed, microfiber filter (1.2 µm), dried in an oven for 24 h at 60°C, and
weighed to determine the suspended sediment load (g/500 ml). Both the macrozooplankton biomass
and suspended sediment (turbidity) estimates were used in the canonical correlation analyses (see
below).

At GI 94, a total of 11 sampling trips were taken, and samples were collected twice monthly during
new and full moons for three consecutive nights from April-August 1996 (the peak recruitment
period for most reef associated species in the northern GOM). Sampling at GC 18 and GI 94,
therefore, overlapped monthly from April-June 1996. In May, additional sampling trips were
scheduled to coincide with the first and last quarter moon phases, but the full moon trip was
cancelled due to adverse weather conditions. At ST 54 sampling also occurred twice monthly from
April-September 1997 (eight trips total), during new and full moon periods. Sampling effort was
modified at GI 94 and ST 54 to obtain one (rather than two) replicate subsurface and surface
collection per gear, and one off-platform light-trap collection per set, with still three sets taken per
night.

Samples were collected twice monthly (new and full moon phases) over two-night periods at the
Belle Pass jetties from April-September 1997 (11 trips total) simultaneously with the sampling of
ST 54. For sampling purposes, the sides of the two, north-south oriented channel jetties were labeled
as East Exterior (EE), East Interior (EI), West Interior (WI), and West Exterior (WE). A total of four
sampling stations, one on each side of each jetty, were located approximately at jetty mid-points and
were identified during sampling by distinct rock outcroppings that were sprayed with fluorescent
paint. Two sets of samples were taken each night. A set included a light-trap and a bow-mounted,
pushnet sample at each of the four stations. The order of stations sampled within each set was
chosen using a random number table. Light-traps were equipped with a submersible battery that was
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secured to the top of the light-trap with bungee cords. At each station, a buoyed mooring was used
to suspend the light-trap approximately 1 m below the surface as close to the jetty as possible, which
was usually within 2 m of the surface-exposed rocks. Light-traps were allowed to fish for 10
minutes. A bow-mounted pushnet (1 m x 1 m, 1,000 :m mesh net dyed green) was pushed at
approximately 1 m/sec just below the surface along the edge of the jetty for 3-5 minutes, depending
upon the density of plankton. A General Oceanics flowmeter (large rotor) was used to determine the
volume of water filtered. Subsurface salinity (ppt), temperature (°C), dissolved oxygen (% saturation
and mg/l), and turbidity (NTU) were measured at each station during each set using a DataSonde
3 Hydrolab and Multiprobe Logger.

All samples collected at WC 352 and WC 71D were preserved in 5% formalin and later changed
over to ethanol. Samples collected at GC 18 and GI 94 were preserved in ethanol and had the ethanol
changed over again within 12-18 hours. Samples collected at ST 54 and Belle Pass were fixed in 4%
buffered formaldehyde and changed over to ethanol within 8-12 hours. Fish were removed from all
samples, enumerated, measured under a dissecting microscope with the aid of an ocular micrometer,
and identified to the lowest taxonomic level possible using primarily the taxonomic classification
of Robins et al. (1991). Large samples were split using a Folsom plankton splitter (Van Guelpen et
al. 1982). In the event that the number of fish in a sample or a split was greater than 50 for any
single species, the largest, smallest and a random subsample of 50 individuals were measured.
Preflexion larvae were measured to the end of the notochord (NL) and all postflexion larvae,
juveniles, and adults were measured to the posterior end of the vertebral column (SL). Light-trap
samples were standardized to catch-per-unit-effort (CPUE) of fish per 10 min. Plankton net and
pushnet samples were standardized to the number of fish per 100 m3 (density). This core sampling
schedule formed the basis of our sampling protocols at all other platforms. Sea states, adverse
weather, transportation delays and platform safety concerns often forced us to suspend some sample
collections. Only 7 subsurface plankton net collections were taken at ST 54 (April 7-8) because of
problems with the monorail rigging. Similar gear problems reduced the number of subsurface net
samples collected at GC 18. Table 5.5 summarizes the number of samples collected by trip, gear
type, and depth/location for the WC 352 and WC 71D pilot studies and for GC 18, GI 94, ST 54,
and Belle Pass.
 

Analyses of Data

Data collected at GC 18, GI 94, ST 54, and Belle Pass were used in all analyses where possible. Data
collected in the pilot studies (WC 352 and WC 71D) are included here only in community structure
analyses. Also, due to the very large numbers of clupeiform (Clupeidae and Engraulidae) fishes
collected, particularly in light-trap samples, some analyses were run with and without these taxa,
since these fish are seldom the taxa of interest in studies of hard-substrate habitats and their
abundances tend to overwhelm the trends of other taxa (Choat et al. 1993). All ANOVA, Tukey’s
Studentized Range Tests, and canonical correlations were run with SAS version 6.12 (SAS 1989).

Schoener’s Index of Niche Overlap (Schoener 1970) was calculated for all sites by combining fish
collected by all gears within each site as an indication of the community similarity between sites.
Only fish identified to at least the genus level were used in the similarity analyses. Since this type
of analysis can be heavily influenced by large abundances of a single species, it was done both with
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Table 5.5. Number of samples collected at each site by date, gear type, and depth/location. No lunar
phase information was recorded for West Cameron 352.  (Lunar phases: N, new moon;
F, full moon; 1, first quarter; 3, last quarter)

Vertical
Net

Subsurface
Net

Surface
Net

Subsurface
Light-trap

Surface
Light-trap

Off-platform
Light-trap

Pushnet

West Cameron 352

    Nov 21-22 23

    Dec 16 1 5

    Feb 7-9 8 12

    Mar 24-25 4 12

    Apr 9-10 7 13

    May 26-27 9 13

    August 4-6 15

    Totals 29 93

West Cameron 71D

    Jul 21-23 (F) 6 12 48

    Totals 6 12 48

Green Canyon 18

    Jul 26-29 (N) 0 9 18 18 5

    Aug 25-28 (N) 0 12 18 18 9

    Sep 24-25 (N) 0 12 12 12 6

    Oct 23-25 (N) 9 9 18 18 9

    Nov 21-23 (N) 9 9 18 17 9

    Jan 19 (N) 3 3 6 6 3

    Feb 17-18 (N) 5 5 10 6 4

    Apr 15-18 (N) 0 0 0 0 15

    May 17-20 (N) 2 9 5 5 18

    Jun 18-21 (N) 13 16 14 13 9

    Totals 41 84 119 113 87

Grand Isle 94

    Apr 16-18 (N) 6 6 4 8 8

    Apr 26-29 (1) 18 18 18 18 18

    May 10-12 (3) 10 12 12 12 12

    May 17-20 (N) 18 18 18 18 18
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Vertical
Net

Subsurface
Net

Surface
Net

Subsurface
Light-trap

Surface
Light-trap

Off-platform
Light-trap

Pushnet

    May 24-26 (1) 12 13 12 13 11

    Jun 14-17 (N) 18 18 18 18 18

    Jun 28-Jul 1 (F) 17 17 13 12 13

    Jul 12-15 (N) 17 17 15 13 16

    Jul 29-Aug 1 (F) 11 13 11 12 12

    Aug 12-15 (N) 16 17 15 17 17

    Aug 26-29 (F) 18 19 18 18 18

    Totals 161 168 154 159 161

South Timbalier 54

    Apr 7-8 (N) 7 7 5 6 8

    May 5-8 (N) 0 15 0 16 12

    May 20-23 (F) 0 18 12 18 10

    Jun 4-5 (N) 0 6 6 6 5

    Jun 20-21 (F) 0 8 6 9 9

    Jul 3-5 (N) 0 5 7 7 3

    Aug 17-20 (F) 0 13 4 12 14

    Sep 3-5 (N) 0 10 9 10 0

    Totals 7 82 49 84 61

Bell Pass

    Apr 4-7 (N) 9 9

    Apr 21-23 (F) 8 8

    May 5-7 (N) 16 16

    May 20-22 (F) 16 16

    Jun 3-5 (N) 16 16

    Jun 20-21 (F) 8 8

    Jul 3-5 (N) 16 15

    Jul 19-21 (F) 12 15

    Aug 1-3 (N) 15 14

    Aug 18-20 (F) 16 16

    Aug 31-Sep 2 (N) 16 16

    Totals 148 149
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and without the most dominant taxa at each site included. At times, the sampling efforts differed
temporally between sites (Table 5.5), so the samples used for comparisons were limited to only those
months where samples were collected for both sites in a pairing. For example, all comparisons with WC
71D were done using only July samples from the other sites. Comparisons between the WC 352 and three
across-shelf sites (GI 94, ST 54, and Belle Pass) were done using only April and May samples. Compari-
sons with WC 352 and GC 18 were done using samples from November, December, April, and May.
Only April-August samples were used to compare GC 18 to GI 94, ST 54, and Belle Pass. Full data sets
were used in comparisons between GI 94, ST 54, and Belle Pass. Shannon-Weiner diversity indices
(Magurran 1988) were calculated for each sample collected at GC 18, GI 94, ST 54, and Belle Pass.
Differences in mean diversity between sites were analyzed with ANOVA models using gear as a main
effect. Post-ANOVA tests (Tukey’s Studentized Range, (=0.05) were used to determine which sites were
significantly different. Only fish identified at least to genus level were included in the diversity analyses.

Canonical correlations were used to determine relationships at each site between plankton net or pushnet
densities or light-trap CPUEs for dominant taxa and environmental variables. For GC 18 and GI 94, log-
transformed densities of the top 15 taxa (excluding clupeiforms) collected in subsurface and surface
plankton nets combined were analyzed along with temperature, salinity, macrozooplankton biomass, and
total suspended sediments (turbidity). The same analyses were performed for log-transformed CPUEs of
the top 15 taxa collected in subsurface and surface light-traps. Occasionally more than 15 taxa were
analyzed for light-trap data due to ties in the ranking of CPUEs. For ST54, the same analyses were
performed, but only surface plankton net data were used because very few subsurface plankton net
samples were collected at this site (Table 5.4). For Belle Pass, the same analyses were performed, but
included Hydrolab measurements of turbidity and dissolved oxygen, and did not include total suspended
sediments or macrozooplankton biomass estimates. The importance of an environmental variable was
based on the magnitude of its correlation with the environmental variate, with the sign of the correlation
indicating if the variable was directly (positively) or inversely (negative) related to the variate. A species
was considered to be related to the variate if the absolute value of the interset correlation was greater than
0.387 (i.e., the variate predicted 15% or more of the species variation within the model).

RESULTS

A total of 67 families were represented in our plankton net and light-trap collections from the three
platform sites (Tables 5.6–5.9). The number of families represented in passive plankton net collections
decreased from 45 at GC 18 (shelf slope) to 40 at GI 94 (mid-shelf) and 34 at ST 54 (inner shelf). In
contrast, the number of families represented in light-trap collections was fairly consistent, from 37 at GC
18 and GI 94 to 34 at ST 54. 

Overall Abundances and Seasonality

A total of 5,057 fish were collected at GC 18 over the course of the year. Light-traps and plankton nets
collected 1,114 and 3,943 fish, respectively, with a total mean plankton net density of 74.6 fish/100 m3 and
a total mean light-trap CPUE of 2.06 fish/10 min. Plankton nets collected fish from 45 different families,
15 of which were not collected with light-traps (Table 5.6). Light-traps collected fish from 37 different
families, seven of which were only collected with (i.e., unique to) light-traps. Plankton nets collected fish
from 64 taxa (identified at least to genus level), 25 of which were not collected with light-traps, while
light-traps collected fish from 59 taxa with 18 being unique to light-trap collections. Clupeiform fishes,
primarily unidentified engraulids, Opisthonema oglinum, Anchoa nasuta/hepsetus, and Engraulis eurystole
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Table 5.6. Total plankton net density (fish/100 m3) and light-trap CPUE (fish/10 min) for fish
collected at Green Canyon 19 with standard error (SE), rank, percent of total catch (%),
and months collected for each taxa.  (N) indicates taxa collected only with plankton nets.
(L) indicates taxa collected only with light-traps.  For ranks, tied values received the
mean of the corresponding ranks.  ‡ indicates a  value <1.00%.

Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

Osteichthyes  

  Unidentified Feb, Apr, Jun, Jul,
Aug, Sep, Oct, Nov

0.85 (0.39)
23 ‡

4.93 (2.73)
6 (1.54)

0.08 (0.04)
7 (3.27)

0.02 (0.01)
41.5 ‡

0.26 (0.16)
4 (8.36)

Elopiformes  

  Elopidae  

    Elops saurus (N)
    (ladyfish)

Oct 0 (0) 0.35 (0.35)
35 ‡

0 (0) 0 (0) 0 (0)

Anguilliformes

  Unidentified
  (eel)

Jul, Oct, Nov 1.57 (0.72)
13 ‡

4.32 (2.46)
9 ‡

<0.01 (0.01)
28.5 ‡

0.02 (0.01)
41.5 ‡

0.01 (0.01)
40.5 ‡

  Moringuidae

    Neoconger  mucronatus
    (ridged eel)

Oct 0.21 (0.21)
52 ‡

0 (0) 0 (0) <0.01 (0.01)
55 ‡

0 (0)

  Muraenidae

    Unidentified
    (moray eel)

Jun, Jul, Aug,
Sep, Oct

0.02  (0.02)
85  ‡

0 (0) <0.01 (0.01)
28.5 ‡

0.03 (0.02)
33 ‡

0.02 (0.02)
25 ‡

  Ophichthidae

    Unidentified
    (snake eel)

Jul, Oct, Nov 1.09 (0.71)
19 ‡

2.87 (1.27)
11 ‡

0 (0) 0.05 (0.02)
22 (1.06)

0 (0)

    Myrophis punctatus (L)
    (speckled worm eel)

Feb 0 (0) 0 (0) 0 (0) <0.01 (0.01)
55 ‡

0 (0)

    Ophichthus gomesi (L)
    (shrimp eel)

Jul 0 (0) 0 (0) <0.01 (0.01)
28.5 ‡

0.03 (0.03)
33 ‡

0 (0)

  Congridae

    Unidentified (L)
    (conger eel)

Jul 0 (0) 0 (0) 0 (0) 0.03 (0.02)
33 ‡

0 (0)

Clupeiformes

  Unidentified
  (herring/anchovy)

Jul, Sep 1.08 (0.92)
20 (1.08)

0 (0) 0 (0) 0 (0) 0.01 (0.01)
40.5 ‡

  Clupeidae  

    Brevoortia patronus
    (gulf menhaden)

 Jan, Feb, Nov 1.12 (0.55)
18 ‡

2.44 (1.21)
12 ‡

0 (0) 0.03 (0.02)
33 ‡

0.02 (0.02)
25 ‡
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

    Etrumeus teres (N)
    (round herring)

Jan, Feb 1.16 (1.05)
16 ‡

0.19 (0.19)
42.5 ‡

0 (0) 0 (0) 0 (0)

    Harengula jaguana
    (scaled sardine)

Jul, Aug 0.06 (0.04)
71 ‡

0 (0) <0.01 (0.01)
28.5 ‡

0.15 (0.06)
11.5 (3.01)

0 (0)

    Opisthonema oglinum
    (Atlantic thread herring)

Jul, Aug, Sep 39.41
(16.26)

1 (38.40)

0 (0) 0.11 (0.06)
4 (4.73)

0.42 (0.11)
3 (8.51)

0.28 (0.11)
2.5 (8.73)

  Engraulidae

    Unidentified
    (anchovy)

Feb, Jun, Jul, Aug,
Sep Oct, Nov

39.21
(12.21)

2 (24.32)

57.18
(26.10)

1 (53.90)

0.46 (0.11)
2 (20.00)

0.51 (0.15)
1 (10.28)

0.28 (0.13)
2.5 (8.73)

    Anchoa spp. (L)
    (anchovy spp.)

Jul 0 (0) 0 (0) 0.07 (0.07)
8 (2.91)

0 (0) 0 (0)

    Anchoa mitchilli
    (bay anchovy)

Jul 0.03 (0.03)
79 ‡

0 (0) 0 (0) 0.15 (0.12)
11.5 (3.01)

0 (0)

    Anchoa nasuta/hepsetus (L)
    (longnose/striped anchovy)

Jul, Aug, Sep, Nov 0 (0) 0 (0) 0.80 (0.31)
1 (34.91)

0.22 (0.12)
8 (4.43)

0.16 (0.10)
8 (5.09)

    Engraulis eurystole
    (silver anchovy)

Jun, Jul, Aug,
Sep, Oct

0.34 (0.30)
42 ‡

8.63 (8.63)
5 (9.45)

0.15 (0.04)
3 (6.55)

0.25 (0.11)
5 (5.14)

0.02 (0.02)
25 ‡

Stomiiformes

  Gonostomatidae

    Cyclothone braueri Jan, May, Jun,
Jul, Oct, Nov

1.01 (0.65)
21 ‡

3.05 (1.55)
10 ‡

0 (0) 0.23 (0.21)
7 (4.61)

0 (0)

    Diplophos taenia (N) Nov 0.29 (0.29)
44.5 ‡

0.41 (0.41)
31 ‡

0 (0) 0 (0) 0 (0)

Aulopiformes

  Chlorophthalmidae

    Chlorophthalmus agassizi (N)
    (shortnose greeneye)

Jun, Nov 0 (0) 0.70 (0.61)
24 ‡

0 (0) 0 (0) 0 (0)

  Scopelarchidae

    Scopelarchoides spp. (N)
    (pearleye spp.)

Jan 0.03 (0.03)
80 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Synodontidae

    Unidentified
    (lizardfish)

Jan, May, Jul, Oct 0.27 (0.16)
46 ‡

0.61 (0.61)
26 ‡

<0.01 (0.01)
28.5 ‡

<0.01 (0.01)
55 ‡

0 (0)

    Saurida brasiliensis
    (largescale lizardfish)

<0.01
(<0.01)

92 ‡

0 (0) 0.03 (0.02)
12.5 (1.09)

0.20 (0.14)
9 (4.08)

0 (0)
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

     Synodus synodus
    (red lizardfish)

Jun 0.29 (0.29)
44.5 ‡

0 (0) 0 (0) 0.03 (0.02)
33 ‡

0 (0)

    Trachinocephalus myops
    (snakefish)

Sep, Oct 0.10 (0.10)
63 ‡

0 (0) 0 (0) 0.04 (0.02)
25 ‡

0.03 (0.02)
19 (1.09)

  Paralepidae

    Unidentified (N)
    (barracudina)

Nov 0.26 (0.26)
47 ‡

0.41 (0.41)
31 ‡

0 (0) 0 (0) 0 (0)

    Paralepis atlantica (L)
    (duckbill barracudina)

Jul 0 (0) 0 (0) 0.02 (0.01)
18 ‡

0 (0) 0 (0)

    Lestrolepis intermedia (L) Jul 0 (0) 0 (0) 0.02 (0.02)
18 ‡

0 (0) 0 (0)

Myctophiformes

  Myctophidae

    Unidentified
    (lanternfish)

Jan, Feb, Apr, May,
Jun, Jul, Sep, Nov

0.83 (0.45)
24 ‡

0.31 (0.22)
36 ‡

0.03 (0.02)
12.5 (1.09)

0.04 (0.02)
27.5 ‡

0.17 (0.06)
7 (5.45)

Gadiformes

  Unidentified (N) Sep, Oct 0.19 (0.15)
55 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Bregmacerotidae

    Bregmaceros cantori
    (codlet)

Jan, May, Aug,
Sep, Oct

1.80 (0.88)
11 (1.08)

2.42 (1.21)
13 ‡

0.03 (0.02)
11 (1.45)

<0.01 (0.01)
55 ‡

0.05 (0.02)
15.5 (1.45)

  Merluccidae

    Unidentified (L)
    (whiting)

Nov 0 (0) 0 (0) 0 (0) <0.01 (0.01)
55 ‡

0 (0)

  Ophidiidae

    Unidentified (N)
    (cuskeel)

May <0.01
(<0.01)
89.5 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Lepophidium spp.
    (cusk-eel spp.)

Aug, Sep, Oct 0.43 (0.27)
37 ‡

1.30 (0.94)
17 ‡

0.02 (0.01)
18 ‡

0 (0) 0.01 (0.01)
40.5 ‡

  Bythitidae

    Unidentified
    (brotula)

Oct, Nov 0.33 (0.23)
43 ‡

0.41 (0.41)
31 ‡

<0.01 (0.01)
28.5 ‡

<0.01 (0.01)
55 ‡

0.01 (0.01)
40.5 ‡

Lophiiformes  

  Unidentified  May, Aug <0.01
(<0.01)

92 ‡

0 (0) 0 (0) <0.01 (0.01)
55 ‡

0 (0)
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

Gobiesociformes

  Gobiesocidae

    Gobiesox strumosus (L)
    (skilletfish)

Jul 0 (0) 0 (0) 0 (0) 0.08 (0.08)
16 (1.60)

0 (0)

Atheriniformes

  Exocoetidae

    Unidentified
    (flyingfish)

Jun, Aug, Sep 0.63 (0.40)
31 ‡

0.27 (0.20)
38 ‡

0 (0) 0 (0) 0.01 (0.01)
40.5 ‡

    Cypselurus cyanopterus (L)
   (margined flyingfish)

Jul 0 (0) 0 (0) 0 (0) <0.01 (0.01)
55 ‡

0 (0)

    Cypselurus furcatus/heterurus (L)
    (spotfin/Atlantic flyingfish)

May 0 (0) 0 (0) 0 (0) 0 (0) 0.01 (0.01)
40.5 ‡

    Parexocoetus brachypterus (L)
    (sailfin flyingfish)

Jul 0 (0) 0 (0) 0 (0) 0.04 (0.02)
27.5 ‡

0 (0)

Beryciformes

  Holocentridae

    Holocentrus spp.
    (squirrelfish)

Jun 0.18 (0.10)
56 ‡

0 (0) 0 (0) 0.07 (0.04)
18 (1.42)

0.11 (0.05)
11 (3.64)

  Melamphaidae

    Melamphaes spp. (N) Jan, Jun 0.05 (0.04)
73 ‡

0 (0) 0 (0) 0 (0) 0 (0)

Scorpaeniformes

  Unidentified (N) Oct 0.24 (0.17)
48 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Scorpaenidae

    Unidentified (N)
    (scorpionfish)

Oct 0.08 (0.08)
68 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Scorpaena spp. (N)
    (scorpionfish spp.)

Jun, Aug 0.09 (0.07)
67 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Triglidae

    Prionotus spp. (N)
    (searobin)

May 0.01 (0.01)
87.5 ‡

0 (0) 0 (0) 0 (0) 0 (0)

Perciformes  

  Unidentified  Jan, May, Jun, Jul,
Aug, Sep, Oct

2.60 (1.27)
9 (1.11)

1.48 (0.64)
16 (1.23)

0.09 (0.05)
5.5 (4.00)

0.03 (0.02)
33 ‡

0.02 (0.02)
25 ‡
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

  Serranidae

    Unidentified
    (sea bass/grouper)

Jan, Jun, Oct, Nov 0.22 (0.14)
50 ‡

1.86 (1.28)
15 ‡

0 (0) <0.01 (0.01)
55 ‡

0 (0)

    Anthinae
   (sea perch)

Apr, May, Jun, Nov 0.46 (0.19)
34 ‡

0.38 (0.23)
33 ‡

0 (0) <0.01 (0.01)
55 ‡

0.02 (0.02)
25 ‡

    Epinephelinae (N)
    (grouper)

May, Jun 0.41 (0.23)
38 ‡

0.23 (0.13)
39 ‡

0 (0) 0 (0) 0 (0)

    Grammistinae (N) Jun 0 (0) 0.14 (0.10)
48 ‡

0 (0) 0 (0) 0 (0)

  Priacanthidae

    Unidentified (N)
    (bigeye)

May, Jun 0.10 (0.07)
64 ‡

0.08 (0.08)
53 ‡

0 (0) 0 (0) 0 (0)

    Priacanthus spp. (L)
    (bigeye/glasseye spp.)

Jun 0 (0) 0 (0) 0 (0) <0.01 (0.01)
55 ‡

0 (0)

Apogonidae

    Unidentified (N)
    (cardinalfish)

May <0.01
(<0.01)
89.5 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Apogon spp. (N)
    (cardinalfish spp.)

May <0.01
(<0.01)

92 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Pomatomidae

    Pomatomus saltatrix (L)
    (bluefish)

Sep, Oct 0 (0) 0 (0) 0 (0) 0 (0) 0.05 (0.03)
15.5 (1.45)

  Echeneidae

    Unidentified (N)
    (remora)

Jun 0.14 (0.10)
59.5 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Carangidae

    Unidentified (N)
    (jack)

May, Jun, Jul 0.41 (0.28)
39 ‡

0.23 (0.16)
40 ‡

0 (0) 0 (0) 0 (0)

    Caranx spp.
    (jack spp.)

May, Jun 0 (0) 0.07 (0.07)
56 ‡

0 (0) 0 (0) 0.01 (0.01)
40.5 ‡

    Caranx crysos
    (blue runner)

Jun, Jul, Aug, Sep 2 75 (1.30)
8 ‡

0.56 (0.49)
27 ‡

<0.01 (0.01)
28.5 ‡

0.24 (0.08)
6 (4.79)

0.30 (0.10)
1 (9.45)

    Caranx hippos/latus
    (crevalle/horse-eye jack)

May, Jun, Jul,
Aug, Oct

1.89 (0.65)
10 (1.85)

4.45 (1.62)
8 (4.31)

<0.01 (0.01)
28.5 ‡

0.08 (0.03)
16 (1.60)

0.22 (0.06)
5 (6.91)

    Chloroscombrus chrysurus
    (Atlantic bumper)

Jun, Jul, Aug, Sep 0.57 (0.24)
33 ‡

0 (0) 0 (0) 0.03 (0.02)
33 ‡

0 (0)



Table 5.6. (continued)

205

Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

    Decapterus punctatus
    (round scad)

Jun, Jul 0.03 (0.03)
77.5 ‡

0 (0) <0.01 (0.01)
28.5 ‡

<0.01 (0.01)
55 ‡

0 (0)

    Elagatis bipinnulata
    (rainbow runner)

May 0.19 (0.12)
54 ‡

0 (0) 0 (0) 0 (0) 0.01 (0.01)
40.5 ‡

    Selar crumenopthalmus (N)
    (bigeye scad) 

May, Jun 0.02 (0.02)
86 ‡

0.19 (0.19)
42.5 ‡

0 (0) 0 (0) 0 (0)

    Selene vomer (N)
    (lookdown)

Sep 0.24 (0.24)
49 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Seriola spp.
    (jack spp.)

May, Jun, Aug, Oct 0.11 (0.06)
62 ‡

0.44 (0.36)
28 ‡

0 (0) <0.01 (0.01)
55 ‡

0 (0)

    Trachurus lathami
    (rough scad)

Jan, Feb, Apr, May 0.12 (0.07)
61 ‡

0.19 (0.19)
42.5 ‡

0 (0) <0.01 (0.01)
55 ‡

0.02 (0.02)
25 ‡

  Coryphaenidae

    Coryphaena equiselis (N)
    (pompano dolphin)

May 0.01 (0.01)
87.5 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Coryphaena hippurus (N)
    (dolphin)

Jun, Sep 0.09 (0.07)
65 ‡

0.09 (0.09)
51 ‡

0 (0) 0 (0) 0 (0)

  Lutjanidae

    Unidentified
    (snapper)

Feb, May 0.04 (0.04)
76 ‡

0.03 (0.03)
58 ‡

0 (0) 0 (0) 0.01 (0.01)
40.5 ‡

    Lutjanus spp.
    (snapper spp.)

Jun 0.14 (0.10)
59.5 ‡

0.19 (0.19)
42.5 ‡

0 (0) <0.01 (0.01)
55 ‡

0 (0)

    Lutjanus apodus/vivanus (L)
    (schoolmaster/silk snapper)

Jul 0 (0) 0 (0) 0 (0) 0.02 (0.01)
41.5 ‡

0 (0)

    Lutjanus campechanus (L)
    (red snapper)

Sep 0 (0) 0 (0) 0 (0) 0.02 (0.02)
41.5 ‡

0 (0)

    Pristipomoides aquilonaris (N)
    (wenchman)

Jun, Oct 0.91 (0.71)
22 ‡

1.95 (0.88)
14 (2.16)

0 (0) 0 (0) 0 (0)

    Rhomboplites aurorubens (N)
    (vermillion snapper)

Jul 0.05 (0.05)
72 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Gerreidae

    Eucinostomus spp. (L)
    (jenny/mojarra spp.)

Jun, Jul, Sep 0 (0) 0 (0) 0 (0) 0.05 (0.02)
22 (1.06)

0.10 (0.07)
12 (3.27)

  Sparidae

    Unidentified (N)
    (porgy)

May 0 (0) 0.07 (0.07)
56 ‡

0 (0) 0 (0) 0 (0)

    Lagodon rhomboides (N)
    (pinfish)

Jan 0.17 (0.14)
57 ‡

0.38 (0.38)
34 ‡

0 (0) 0 (0) 0 (0)
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

  Sciaenidae

    Cynoscion arenarius
    (sand seatrout)

Jul, Aug 1.51 (0.66)
14 (2.09)

0 (0) 0 (0) 0.04 (0.02)
25 ‡

0 (0)

    Leiostomus xanthurus
    (spot)

Jan 0 (0) 0 (0) 0 (0) 0 (0) 0.01 (0.01)
40.5 ‡

    Micropogonias undulatus
    (Atlantic croaker)

Oct 0.45 (0.23)
35 ‡

0.30 (0.30)
37 ‡

0.02 (0.01)
18 ‡

<0.01 (0.01)
55 ‡

0.02 (0.02)
25 ‡

    Sciaenops ocellatus
    (red drum)

Sep 4.11 (1.92)
5 (3.70)

0 (0) 0 (0) <0.01 (0.01)
55 ‡

0 (0)

  Mullidae

    Unidentified (L)
    (goatfish)

Jun 0 (0) 0 (0) 0 (0) 0 (0) 0.01 (0.01)
40.5 ‡

    Upeneus parvus (L)
    (dwarf goatfish)

Apr 0 (0) 0 (0) 0 (0) 0 (0) 0.01 (0.01)
40.5 ‡

  Ephippidae

    Chaetodipterus faber (N)
    (Atlantic spadefish)

May, Jul 0.05 (0.04)
74 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Chaetodontidae

    Unidentified (N)
    (butterfly fish)

Jun 0.03 (0.03)
77.5 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Pomacentridae

    Pomacentrus spp. (L)
    (damselfish spp.)

Jun, Jul 0 (0) 0 (0) 0.02 (0.01)
18 ‡

0.14 (0.08)
13 (2.84)

0.03 (0.03)
19 (1.09)

  Mugilidae

    Mugil cephalus
    (striped mullet)

Jan, Feb, Oct, Nov 8.27 (4.58)
3 ‡

32.05
(15.62)
2 (5.54)

0 (0) 0.04 (0.02)
25 ‡

0.14 (0.06)
9.5 (4.36)

  Sphyraenidae

    Sphyraena guachancho
    (guaguanche)

Jun, Jul 0.44 (0.39)
36 ‡

0.08 (0.08)
53 ‡

0 (0) 0.03 (0.03)
33 ‡

0.01 (0.01)
40.5 ‡

  Scaridae

    Unidentified
    (parrotfish)

Aug, Oct, Nov 3.01 (1.35)
7 ‡

16.31 (5.64)
3 (3.08)

<0.01 (0.01)
28.5 ‡

0.06 (0.03)
19.5 (1.24)

0 (0)

  Blenniidae

    Unidentified
    (blenny)

May, Jun, Jul,
Sep, Oct

0.34 (0.19)
41 ‡

0.98 (0.98)
19 ‡

0.06 (0.06)
9.5 (2.55)

0.17 (0.15)
10 (3.37)

0.01 (0.01)
40.5 ‡
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

    Hypsoblennius invemar
    (tessellated blenny)

Jun, Oct 0 (0) 0.08 (0.08)
53 ‡

0 (0) 0 (0) (0.01)
40.5 ‡

    Ophioblennius atlanticus
    (redlip blenny)

Jun, Oct 0.65 (0.47)
29 ‡

0 (0) 0 (0) <0.01 (0.01)
55 ‡

0.01 (0.01)
40.5 ‡

  Callionymidae

    Foetorepus agassizi (N)
    (spotfin dragonet)

Aug 0.05 (0.03)
75 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Paradiplogramus bairdi (N)
    (lancer dragonet)

Aug (0.02)
84 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Gobiidae

    Unidentified
    (goby)

Jan, Feb, Apr, Jun,
Jul, Aug, Oct Nov

4.63 (1.78)
4 (2.02)

11.08 (3.87)
4 (4.41)

0.09 (0.04)
5.5 (4.00)

0.44 (0.40)
2 (8.87)

0.05 (0.02)
15.5 (1.45)

  Microdesmidae

    Microdesmus spp. (N)
    (wormfish spp.)

Jun, Aug 0.03 (0.03)
83 ‡

0.75 (0.52)
23 ‡

0 (0) 0 (0) 0 (0)

    Microdesmus lanceolatus (N)
    (lancetail wormfish)

Jun, Jul, Aug 0.65 (0.41)
28 ‡

0.15 (0.11)
47 ‡

0 (0) 0 (0) 0 (0)

    Microdesmus longipinnis
    (pink wormfish)

Jul (0.06)
70 ‡

0 (0) 0 (0) (0.03)
22 (1.06)

0.02 (0.02)
25 ‡

  Scombridae

    Unidentified
    (mackerel)

May, Jun, Jul,
Aug, Sep

1.75 (1.01)
12 (2.73)

0.75 (0.75)
22 ‡

0 (0) (0.01)
41.5 ‡

(0.01)
40.5 ‡

    Acanthocybium solandri
    (wahoo)

Jun 0 (0) 0.09 (0.09)
49.5 ‡

0 (0) 0 (0) 0 (0)

    Auxis spp.
    (mackerel spp.)

May, Jun, Aug,
Sep, Oct

1.41 (0.42)
15 (1.99)

0.94 (0.50)
20 ‡

0.02 (0.01)
18 ‡

0.40 (0.13)
4 (8.16)

0.14 (0.04)
9.5 (4.36)

    Euthynnus alletteratus
    (little tunny)

May, Jun, Jul,
Aug, Sep, Oct

0.65 (0.25)
30 ‡

0.09 (0.09)
49.5 ‡

0 (0) 0.06 (0.02)
19.5 (1.24)

0.18 (0.08)
6 (5.82)

    Scomberomorus cavalla
    (king mackerel)

Aug 0.09 (0.07)
66 ‡

0 (0) (<0.01)
(0.01)
28.5 ‡

0.02 (0.02)
41.5 ‡

(0.03)
19 (1.09)

    Scomberomorus maculatus
    (Spanish mackerel)

Jul, Aug 0.75 (0.42)
26 ‡

0 (0) 0 (0) 0.02 (0.01)
41.5 ‡

0 (0)

    Thunnus spp.
    (tuna spp.)

May, Jun (0.02)
82 ‡

0.17 (0.12)
46 ‡

0 (0) (0.01)
41.5 ‡

(0.01) 40.5 ‡

    Thunnus thynnus (N)
    (bluefin tuna)

Jun (0.07)
69 ‡

0.18 (0.18)
45 ‡

0 (0) 0 (0) 0 (0)

  Stromateidae
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

    Ariomma spp.
    (driftfish spp.)

Apr, May 0.77 (0.52)
25 (2.16)

0.44 (0.36)
29 ‡

0 (0) 0 (0) 0.02 (0.02)
25 ‡

  Nomeidae

    Cubiceps pauciradiatus (N)
    (bigeye cigarfish)

May 0.03 (0.03)
81 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Peprilus burti
    (gulf butterfish)

Jan, Jun, Aug,
Oct, Nov

0.72 (0.34)
27 ‡

1.05 (0.64)
18 ‡

0.02 (0.01)
18 ‡

0.03 (0.02)
33 ‡

0.05 (0.03)
15.5 (1.45)

  Tetragonuridae

    Tetragonurus atlanticus (N)
    (bigeye squaretail)

Nov 0.20 (0.20)
53 ‡

0 (0) 0 (0) 0 (0) 0 (0)

Pleuronectiformes

  Bothidae

    Unidentified
    (lefteye flounder)

Jul, Oct, Nov 0.59 (0.59)
32 ‡

0.81 (0.81)
21 ‡

<0.01 (0.01)
28.5 ‡

0 (0) 0 (0)

    Bothus spp.
    (flounder spp.)

May, Sep, Oct, Nov 0.17 (0.17)
58 ‡

0 (0) 0.02 (0.01)
18 ‡

0 (0) 0.01 (0.01)
40.5 ‡

    Citharichthys spilopterus
    (baywhiff)

Feb, Oct, Nov 1.14 (0.92)
17 ‡

4.85 (1.98)
7 (1.44)

0 (0) <0.01 (0.01)
55 ‡

0 (0)

    Etropus crossotus
    (fringed flounder)

Aug, Nov 0.39 (0.39)
40 ‡

0 (0) 0 (0) 0 (0) 0.01 (0.01)
40.5 ‡

    Monolene sessilicauda (L)
    (deepwater flounder)

Feb 0 (0) 0 (0) 0 (0) 0 (0) 0.02 (0.01)
40.5 ‡

    Syacium spp.
    (flounder spp.)

Jul, Aug, Sep 0.22 (0.12)
51 ‡

0 (0) 0.02 (0.01)
18 ‡

0.08 (0.05)
16 (1.60)

0.02 (0.01)
40.5 ‡

  Soleidae

    Symphurus spp.
    (tonguefish spp.)

Feb, Jul, Aug,
Sep, Oct

3.03 (1.16)
6 (2.02)

0.70 (0.70)
25 ‡

(0.05)
9.5 (2.55)

0.10 (0.04)
14 (1.95)

0.07 (0.03)
13 (2.18)

Tetraodontiformes

  Tetraodontidae

    Sphoeroides spp. (N)
    (puffer spp.)

May 0 (0) (0.07)
56 ‡

(0) 0 (0) 0 (0)
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Table 5.7. Total plankton net density (fish/100 m3) and light-trap CPUE (fish/10 min) for fish
collected at Grand Isle 94 with standard error (SE), rank, percent of total catch (%), and
months collected for each taxa.  (N) indicates taxa collected only with plankton nets.  (L)
indicates taxa collected only with light-traps.  For ranks, tied values received the mean
of the corresponding ranks.  ‡ indicates a value <1.00%.

Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

Osteichthyes

  Unidentified Apr, May, Jun, July,
Aug

0.92 (0.60)
19 ‡

0.78 (0.41)
23 (1.31)

0.28 (0.26)
10 (1.13)

0.13 (0.10)
22 ‡

1.12 (0.94)
9 (4.55)

Anguilliformes

  Unidentified (N)
  (eel)

Jun 0.07 (0.07)
69 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Muraenidae

    Unidentified
    (moray eel)

May, Jun, Jul 0.07 (0.05)
71 ‡

0.44 (0.23)
33 ‡

<0.01 (<0.01)
49 ‡

0 (0) 0 (0)

  Ophichthidae

    Unidentified
    (snake eel)

Jun, Jul, Aug 0.10 (0.05)
55 ‡

0.69 (0.35)
26 ‡

0.04 (0.02)
26.5 ‡

0.02 (0.01)
51 ‡

0 (0)

    Ophichthus spp.
    (snake eel)

Aug 0 (0) 0 (0) 0 (0) 0.03 (0.02)
46.5 ‡

0 (0)

    Ophichthus gomesi (N)
    (shrimp eel)

Jun (0.01)
98 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Nettastomatidae

    Hoplunnis macrurus (L)
    (freckled-pike conger)

May 0 (0) 0 (0) 0 (0) (<0.01)
61.5 ‡

0 (0)

Clupeiformes

  Unidentified
  (herring/anchovy)

Apr, May, Jun, Jul,
Aug

2.38 (2.14)
12 ‡

0.05 (0.04)
69 ‡

<0.01 (<0.01)
58 ‡

<0.01 (<0.01)
81.5 ‡

0 (0)

  Clupeidae

    Unidentified
    (herring)

Apr, May, Aug 0 (0) 0.52 (0.37)
30 ‡

0 (0) (<0.01)
61.5 ‡

0 (0)

    Brevoortia patronus (L)
    (gulf menhaden)

Apr 0 (0) 0 (0) <0.01 (<0.01)
49 ‡

0 (0) 0 (0)

    Etrumeus teres
    (round herring)

Apr 0.08 (0.06)
66 ‡

0.23 (0.16)
44 ‡

(0.01)
32 ‡

0.03 (0.02)
46.5 ‡

(<0.01)51.5
‡

    Harengula jaguana
    (scaled sardine)

Apr, Jun, Jul, Aug 0.61 (0.27 )
25 ‡

0.31 (0.31)
38.5 ‡

0.06 (0.02)
21 ‡

0.69 (0.18)
18 ‡

0.68 (0.15)
11 (2.76)

    Opisthonema oglinum
    (Atlantic thread herring)

Apr, Jun, Jul, Aug 70.99 (35.34)
2 (15.81)

4.81 (1.97)
5 (2.20)

1.26 (0.85)
6 (4.99)

6.04 (1.23)
8 (4.07)

4.11 (1.11)
1 (16.66)

    Sardinella aurita
    (Spanish sardine)

Apr, Jul, Aug 0.08 (0.06)
67 ‡

0.16 (0.16)
54 ‡

0 (0) 0.04 (0.02)
41.5 ‡

0 (0)
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

  Engraulidae

    Unidentified
    (anchovy)

Apr, May, Jun, Jul,
Aug

232.66
(44.32)

1 (62.01)

66.92
(17.27)

1 (24.74)

0.41 (0.09)
7 (1.64)

0.55 (0.12)
20 ‡

0.96 (0.17)
10 (3.92)

    Anchoa spp.
    (anchovy spp.)

Apr, May, Jun, Jul,
Aug

14.23 (8.25)
3 (3.55)

1.21 (0.73)
21 ‡

0.18 (0.17)
15 ‡

0.02 (0.01)
51 ‡

<0.01
(<0.01)

64 ‡

    Anchoa hepsetus
    (striped anchovy)

Aug 0 (0) 0 (0) 0.10 (0.08)
16.5 ‡

0.70 (0.49)
16 ‡

0.50 (0.47)
12 (2.04)

    Anchoa mitchilli
    (bay anchovy)

Jun, Jul, Aug 6.24 (2.37)
6 (1.89)

2.70 (1.03)
11 ‡

0.37 (0.18)
8 (1.46)

1.89 (0.83)
10 (1.27)

0.47 (0.23)
14 (1.91)

    Anchoa nasuta
    (longnose anchovy)

Aug 0 (0) 0 (0) 7.80 (6.15)
1 (30.96)

11.10 (5.93)
4 (7.47)

1.31 (0.70)
6 (5.30)

    Anchoa nasuta/hepsetus
    (longnose/striped anchovy)

Apr, May, Jun, Jul,
Aug

5.64 (2.80)
8 (1.87)

4.59 (1.69)
7 (3.14)

2.73 (0.52)
3 (10.88)

30.11 (12.33)
2 (20.27)

1.45 (0.53)
5 (5.86)

    Anchoviella perfasciata
    (flat anchovy)

Aug 0 (0) 0 (0) 0 (0) 0.07 (0.07)
33.5 ‡

0.09 (0.09)
24 ‡

    Engraulis eurystole
    (silver anchovy)

Apr, May, Jun, Jul,
Aug

1.93 (1.90)
13 ‡

2.43 (1.12)
12 (1.15)

5.72 (1.41)
2 (22.79)

38.79 (13.81)
1 (26.12)

1.25 (0.48)
7 (5.08)

Stomiiformes

  Gonostomatidae

    Cyclothone braueri (N) Apr, Jul 0.02 (0.02)
94 ‡

0.11 (0.08)
60 ‡

0 (0) 0 (0) 0 (0)

    Vinciguerria nimbaria (L) Apr 0 (0) 0 (0) 0 (0) <0.01 (<0.01)
81.5 ‡

0 (0)

Aulopiformes

  Synodontidae

    Unidentified Apr, May, Jun, Jul,
Aug

0.22 (0.08)
40 ‡

2.11 (0.56)
15 (1.05)

0.10 (0.03)
16.5 ‡

0.90 (0.39)
14 ‡

0.12 (0.06)
21 ‡

    Saurida brasiliensis
    (largescale lizardfish)

Apr, May, Jun, Jul,
Aug

0.81 (0.22)
21 ‡

4.77 (1.26)
6 (4.86)

1.97 (0.42)
5 (7.84)

3.35 (0.51)
9 (2.27)

0.50 (0.14)
13 (2.01)

    Saurida normani (L)
    (shortjaw lizardfish)

Apr, May 0 (0) 0 (0) 0 (0) (<0.01)
61.5 ‡

0 (0)

    Saurida normani/brasiliensis (L)
    (shortjaw/largescale lizardfish)

May 0 (0) 0 (0) 0 (0) <0.01 (<0.01)
81.5 ‡

0 (0)

    Saurida suspicio (L)
    

May 0 (0) 0 (0) 0 (0) <0.01 (<0.01)
81.5 ‡

0 (0)

  Synodus spp.
  (lizardfish spp.)

May, Jun  0 (0) 0.03 (0.03)
72.5 ‡

 <0.01
(<0.01)

49 ‡

 0.06 (0.06)
37.5 ‡

0.04 (0.03)
35.5 ‡
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

   Synodus foetens
  (inshore lizardfish)

Apr, May, Jun, Jul,
Aug

0.64 (0.26)
24 ‡

2.12 (0.77)
14 (1.20)

 0.20 (0.06)
12 ‡

 22.11 (5.24)
3 (14.92)

0.20 (0.05)
19 ‡

   Synodus poeyi
  (offshore lizardfish)

Apr, May, Jun, Jul,
Aug

0.17 (0.13)
47 ‡

1.35 (0.44)
17 ‡

 0.34 (0.09)
9 (1.36)

 9.98 (1.78)
5 (6.74)

0.13 (0.28)
8 (4.57)

   Synodus synodus (L)
  (red lizardfish)

 May 0 (0) 0 (0) 0 (0) (<0.01)
61.5 ‡

0 (0)

  Trachinocephalus myops (L)
  (snakefish)

 Apr, May, Jun, Aug 0 (0) 0 (0) 0 (0) 0.08 (0.03)
30.5 ‡

<0.01
(<0.01)

64 ‡

  Paralepidae

  Unidentified (N)
  (barracudina)

 May 0.03 (0.03)
88 ‡

0 (0) 0 (0) 0 (0) 0 (0)

   Lestrolepis intermedia
  

May, Jun, Aug 0 (0) 0.15 (0.11)
56 ‡

 (0.01)
32 ‡

<0.01 (<0.01)
81.5 ‡

0 (0)

   Lestrolepis spp. (L)
  (barracudina spp.)

Aug  0 (0) 0 (0) <0.01 (<0.01)
49 ‡

 0 (0) 0 (0)

Myctophiformes

 Unidentified (N)
 

 Jun 0 (0) 0.21 (0.21)
48 ‡

0 (0) 0 (0) 0 (0)

  Myctophidae

  Unidentified
  (lanternfish)

Apr, May, Jun, Jul,
Aug

 0.09 (0.05)
60 ‡

0.75 (0.41)
25 ‡

 0.03 (0.02)
28 ‡

 0.05 (0.02)
40 ‡

0.06 (0.02)
29.5 ‡

 Gadiformes

 Bregmacerotidae

  Bregmaceros cantori Apr, May, Jun, Jul,
Aug

1.59 (0.42)
16 ‡

16.67 (3.00)
3 (15.06)

 2.18 (1.02)
4 (8.68)

 0.06 (0.02)
35.5 ‡

0.03 (0.02)
38.5 ‡

 Ophidiiformes

 Ophidiidae

  Unidentified
  (cusk-eel)

May, Jun, Jul  0.31 (0.13)
35 ‡

0.21 (0.21)
48 ‡

 0 (0) <0.01 (<0.01)
81.5 ‡

0 (0)

   Lepophidium spp. (N)
  (cusk-eel spp.)

Jul  0 (0) 0.13 (0.13)
58.5 ‡

 0 (0) 0 (0) 0 (0)

  Lepophidium profundorum (N)
  (fawn cusk-eel)

Jun  0.03 (0.02)
84 ‡

 0.23 (0.21)
45 ‡

 0 (0) 0 (0) 0 (0)

  Lepophidium staurophor (N) May, Jun, Aug 0.09 (0.06)
59 ‡

0 (0)  0 (0) 0 (0) 0 (0)

  Ophidiinae Type A (N)
  (cusk-eel spp.)

Jun  0 (0) 0.02 (0.02)
80 ‡

 0 (0 ) 0 (0) 0 (0)

  Ophidion nocomis May, Jun 0 (0) 0.05 (0.05)  0.01 (<0.01)  0 (0) 0 (0)
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

68 ‡ 37 ‡

   Ophidion nocomis/selenops
  (cusk-eel spp.)

May 0.09 (0.06)
63 ‡

0.31 (0.23)
38.5 ‡

 0 (0) <0.01 (<0.01)
81.5 ‡

0 (0)

   Ophidion selenops (N)
  (mooneye cusk-eel)

May, Jun  0 (0) 0.19 (0.14)
50 ‡

 0 (0) 0 (0) 0 (0)

Lophiiformes

 Caulophrynidae

  Robia legula (N) Jul  0 (0) 0.09 (0.08)
61 ‡

 0 (0) 0 (0) 0 (0)

Atheriniformes

 Exocoetidae

  Unidentified
  (flyingfish)

Jun  0.14 (0.07)
51 ‡

0.07 (0.07)
64.5 ‡

 0 (0) 0 (0) 0 (0)

  Cypselurus spp.
  (flyingfish spp.)

May, Jun  0 (0) 0.07 (0.07)
64.5 ‡

 0 (0) <0.01 (<0.01)
81.5 ‡

<0.01
(<0.01)

64 ‡

   Cypselurus cyanopterus (L)
  (margined flyingfish)

Jul  0 (0) 0 (0) 0 (0) <0.01 (<0.01)
81.5 ‡

0 (0)

 Beryciformes

 Holocentridae

  Holocentrus spp.
  (squirrelfish spp.)

May, Jun, Jul  0.18 (0.08)
44 ‡

0 (0)  0.01 (<0.01)
40 ‡

 0 (0) <0.01
(<0.01)

64 ‡

 Scorpaeniformes

 Scorpaenidae

  Unidentified (N)
  (scorpionfish)

May, Jun  0.01 (0.01)
95 ‡

0.16 (0.16)
54 ‡

 0 (0) 0 (0) 0 (0)

  Scorpaena spp.
  (scorpionfish spp.)

May, Jul, Aug  0 (0) 0.45 (0.34)
32 ‡

 0 (0) 0.01 (<0.01)
61.5 ‡

0 (0)

  Triglidae

  Unidentified (N)
  (searobin)

Jul  0.01 (0.01)
99 ‡

0 (0)  0 (0) 0 (0) 0 (0)

  Prionotus spp.
  (searobin spp.)

Apr  0.21 (0.11)
42 ‡

0.09 (0.09)
62 ‡

 0 (0) <0.01 (<0.01)
81.5 ‡

0 (0)

 Perciformes

   Unidentified Apr, May, Jun, Jul,
Aug  

 1.74 (0.69)
15 ‡

2.22 (0.76)
13 (1.41)

   0.05 (0.02)
24.5 ‡

   0.09 (0.05)
27 ‡

0.04 (0.02)
34 ‡   

    Serranidae           
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

     Unidentified (N)
    (seabass/grouper)

Apr, May, Jun    0.08 (0.05)
68 ‡

0.16 (0.13)
52 ‡

   0 (0)   0 (0) 0 (0)   

     Anthinae
    (sea perch)

May    0.17 (0.09)
46 ‡

0.35 (0.24)
36 ‡

   0 (0)   0.01 (<0.01)
61.5 ‡

0 (0)   

      Epinephelinae
    (grouper)

May, Jun    0.07 (0.04)
72 ‡

0 (0)    0 (0)   0.03 (0.01)
43 ‡

0 (0)   

      Grammistinae (N) Jun, Jul   0.04 (0.03)
80 ‡

0.01 (0.01)
81 ‡

   0 (0)   0 (0) 0 (0 )   

     Serraninae
    (sea bass)

Apr, May, Jun, Aug    0.36 (0.14)
31 ‡

0.95 (0.33)
22 ‡

   <0.01
(<0.01)

49 ‡

   0.08 (0.03)
30.5 ‡

0 (0)   

    Priacanthidae           

       Priacanthus   spp. (N)
    (bigeye/glasseye spp.)

May    0 (0) 0.03 (0.03)
74.5 ‡

   0 (0)   0 (0) 0 (0)   

   Pomatomidae           

     Pomatomus saltatrix
      (bluefish)

Apr, May   0.08 (0.06)
65 ‡

0 (0)    0 (0)   0.01 (<0.01)
61.5 ‡

0 (0)   

    Rachycentridae           

       Rachycentron canadum   (N)
    (cobia)

May, Jun, Jul    0.14 (0.07)
52 ‡

0.02 (0.02)
78 ‡

   0 (0)   0 (0) 0 (0)   

   Carangidae           

     Unidentified
    (jack)

Jun, Jul    0.17 (0.11)
45 ‡

0.03 (0.03)
72.5 ‡

   0 (0)   0 (0) <0.01
(<0.01)

64 ‡

        Caranx   spp. (N)
    (jack spp.)

Jun    0.16 (0.09)
49 ‡

   0 (0) 0 (0) 0 (0) 0 (0)     

     Caranx crysos
      (blue runner)

Jun, Jul, Aug   1.14 (0.41)
17 ‡

0.62 (0.43)
28 ‡

   0.04 (0.03)
26.5 ‡

   0.08 (0.03)
30.5 ‡

0.08 (0.02)
25 ‡   

      Caranx hippos/latus
      (crevalle/horse-eye jack)

May, Jun, Jul, Aug   0.50 (0.31)
27 ‡

0 (0)    <0.01
(<0.01)

49 ‡

   0.11 (0.03)
24 ‡

0.09 (0.03)
23 ‡   

        Chloroscombrus chrysurus
      (Atlantic bumper)

Jul, Aug   1.00 (0.34)
18 ‡

0.29 (0.18)
40 ‡

   <0.01
(<0.01)

49 ‡

   0.01
(<0.01)
61.5 ‡

0.02 (0.01)
44.5 ‡   

      Decapterus punctatus   (L)
    (round scad)

Apr, May, Jul, Aug    0 (0)   0 (0) 0 (0)   0.06 (0.02)
35.5 ‡

<0.01
(<0.01)

64 ‡

      Oligoplites saurus   (N)
    (leatherjack)

Jul    0.16 (0.12)
48 ‡

   0 (0) 0 (0) 0 (0) 0 (0)    

    Selar crumenopthalmus (N)
    (bigeye scad)

Jun, Jul 0.34 (0.15)
34 ‡

0.13 (0.13)
58.5 ‡

0 (0) 0 (0) 0 (0)
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

    Selene vomer (N)
    (lookdown)

Jun, Jul 0.01 (0.01)
96 ‡

0.05 (0.03)
70 ‡

0 (0) 0 (0) 0 (0)

    Seriola spp. (N)
    (jack spp.)

May 0.03 (0.03)
85 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Seriola dumerili/rivoliana (L)
    (greater amberjack/almaco jack)

May, Jun 0 (0) 0 (0) <0.01 (<0.01)
49 ‡

0 (0) 0.02 (0.01)
44.5 ‡

    Seriola fasciata (L)
    (lesser amberjack)

May 0 (0) 0 (0) 0 (0) <0.01 (<0.01)
93 ‡

0 (0)

    Trachinotus carolinus (L)
    (Florida pompano)

Jun 0 (0) 0 (0) 0 (0) 0 (0) 0.01 (<0.01)
51.5 ‡

    Trachinotus falcatus/goodei (L)
    (permit/palometa)

May 0 (0) 0 (0) 0 (0) 0.03 (0.02)
46.5 ‡

0 (0)

    Trachurus lathami
    (rough scad)

Apr, May 0.04 (0.04)
82 ‡

0.15 (0.10)
57 ‡

0.02 (0.01)
32 ‡

0.06 (0.03)
37.5 ‡

0.01 (<0.01)
51.5 ‡

  Coryphaenidae

    Coryphaena equiselis (L)
    (pompano dolphin)

May 0 (0) 0 (0) 0 (0) 0 (0) <0.01
(<0.01)

64 ‡

    Coryphaena hippurus
    (dolphin)

May, Jul 0.03 (0.03)
86.5 ‡

0 (0) 0 (0) 0 (0) <0.01
(<0.01)

64 ‡

  Lutjanidae

    Unidentified
    (snapper)

May, Jun, Jul 0.09 (0.05)
61 ‡

0.06 (0.06)
67 ‡

<0.01 (<0.01)
49 ‡

<0.01 (<0.01)
81.5 ‡

0 (0)

    Lutjanus spp.
    (snapper spp.)

May, Jun, Jul 0.67 (0.24)
22 ‡

0.02 (0.02)
78 ‡

0 (0) 0.01 (<0.01)
61.5 ‡

0.01 (0.01)
51.5 ‡

    Lutjanus campechanus
    (red snapper)

May, Jun, Jul 0.02 (0.02)
93 ‡

0 (0) 0 (0) 0.02 (0.02)
49 ‡

0 (0)

    Rhomboplites aurorubens
    (vermilion snapper)

May, Jun, Jul 0.40 (0.25)
30 ‡

0.37 (0.21)
35 ‡

0.20 (0.06)
13 ‡

0.07 (0.03)
33.5 ‡

<0.01
(<0.01)

64 ‡

  Gerreidae

    Eucinostomus spp.
    (jenny/mojarra spp.)

May, Jun, Jul, Aug 0 (0) 0 (0) <0.01 (<0.01)
49 ‡

<0.01 (<0.01)
81.5 ‡

0.02 (0.01)
41 ‡

  Sparidae

    Unidentified
    (porgy)

Apr, May 0.04 (0.04)
83 ‡

0 (0) 0 (0) 0.01 (<0.01)
61.5 ‡

0.02 (0.01)
44.5 ‡

    Calamus spp. (L)
   (porgy spp.))

May 0 (0) 0 (0) 0 (0) <0.01 (<0.01)
81.5 ‡

0 (0)

  Sciaenidae
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

    Unidentified (N)
    (drum spp.)

Aug <0.01
(<0.01)
100 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Cynoscion arenarius
    (sand seatrout)

Apr, May, Jul, Aug 3.12 (1.11)
11 ‡

1.25 (0.88)
19 ‡

<0.01 (<0.01)
49 ‡

0 (0) 0.01 (<0.01)
51.5 ‡

    Menticirrhus spp. (N)
    (kingfish spp.)

Aug 0.15 (0.11)
50 ‡

0.63 (0.63)
27 ‡

0 (0) 0 (0) 0 (0)

    Stellifer lanceolatus (N)
    (star drum)

Aug 0.09 (0.09)
64 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Mullidae

    Unidentified
    (goatfish)

Apr, May, Jul 0.25 (0.14)
38 ‡

0 (0) <0.01 (<0.01)
49 ‡

<0.01 (<0.01)
81.5 ‡

0.05 (0.02)
32 ‡

    Mullus auratus (L)
    (red goatfish)

Apr, May 0 (0) 0 (0) 0 (0) 0 (0) 0.06 (0.02)
27 ‡

    Pseudupeneus maculatus (L)
    (spotted goatfish)

Apr, May 0 (0) 0 (0) 0 (0) 0 (0) 0.06 (0.03)
28 ‡

    Upeneus parvus (L)
    (dwarf goatfish)

May, Jun 0 (0) 0 (0) 0 (0) (<0.01)
61.5 ‡

0.38 (0.09)
15 (1.58)

  Chaetodontidae

    Unidentified (N)
    (butterflyfish)

May 0.02 (0.02)
91 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Pomacentridae

    Unidentified (L)
    (damselfish)

May, Jun 0 (0) 0 (0) <0.01 (<0.01)
49 ‡

(<0.01)
61.5 ‡

0.01 (0.01)
51.5 ‡

    Abudefduf saxatilis (L)
    (sergeant major)

May, Jun, Aug 0 (0) 0 (0) 0 (0) 0 (0) 0.03 (0.02)
38.5 ‡

    Abudefduf taurus (L)
    (night sergeant)

May 0 (0) 0 (0) 0 (0) (<0.01)
61.5 ‡

0 (0)

    Chromis spp.
    (chromis spp.)

May, Jun 0.29 (0.29)
37 ‡

0 (0) (<0.01)
37 ‡

0.37 (0.13)
21 ‡

0.06 (0.02)
31 ‡

    Pomacentrus spp.
    (damselfish spp.)

May, Jun, Jul, Aug 0.09 (0.05)
62 ‡

0.03 (0.03)
74.5 ‡

0.07 (0.02)
20 ‡

0.12 (0.03)
23 ‡

0.30 (0.14)
16 (1.28)

  Mugilidae

    Mugil curema (L)
    (white mullet)

May, Jun 0 (0) 0 (0) 0 (0) (<0.01)
61.5 ‡

(0.01)
41 ‡

  Sphyraenidae

    Sphyraena borealis (L)
    (northern sennet)

May 0 (0) 0 (0) 0 (0) (<0.01)
61.5 ‡

0 (0)

    Sphyraena guachancho
    (guaguanche)

Jun, July, Aug 1.83 (0.60)
14 ‡

0 (0) 0 (0) (<0.01)
61.5 ‡

(<0.01)
57 ‡
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

  Labridae

    Unidentified
    (wrasse)

May, Aug 0.05 (0.05)
78 ‡

0.16 (0.16)
54 ‡

0 (0) <0.01 (<0.01)
81.5 ‡

0 (0)

  Opisthognathidae

    Unidentified
    (jawfish)

Apr, May, Jun 0.46 (0.14)
28 ‡

0.48 (0.33)
31 ‡

0 (0) 0.63 (0.20)
19 ‡

0.06 (0.02)
29.5 ‡

    Opisthognathus spp. (N)
    (jawfish spp.)

May 0.05 (0.05)
77 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Opisthognathus aurifrons
    (yellowhead jawfish)

May 0.06 (0.06)
76 ‡

0 (0) 0 (0) 0.03 (0.02)
44 ‡

0 (0)

    Opisthognathus lonchurus (N)
    (moustache jawfish)

May 0.10 (0.10)
58 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Blenniidae

    Unidentified
    (blenny)

Apr, May, Jun, Jul,
Aug

4.73 (3.95)
9 (1.53)

1.22 (0.69)
20 ‡

0.05 (0.04)
24.5 ‡

0.69 (0.21)
17 ‡

0.04 (0.03)
33 ‡

    Hypsoblennius hentz/ionthas (L)
    (feather/freckled blenny)

May, Jun, Jul 0 (0) 0 (0) 0.02 (0.01)
29 ‡

1.76 (0.57)
11 (1.21)

0.04 (0.01)
37 ‡

    Hypsoblennius invemar
    (tessellated blenny)

Apr, May, Jun, Jul 0.04 (0.04)
81 ‡

0 (0) 0.08 (0.03)
18 ‡

6.33 (1.77)
7 (4.32)

3.58 (0.67)
2 (14.55)

    Ophioblennius atlanticus (N)
    (redlip blenny)

Aug 0.42 (0.42)
29 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Parablennius marmoreus
    (seaweed blenny)

Apr, May, Jun 0.02 (0.02)
92 ‡

0 (0) 0.19 (0.04)
14 ‡

7.20 (1.06)
6 (4.87)

1.62 (0.35)
4 (6.61)

    Scartella/Hypleurochilus
    (blenny spp.)

Apr, May, Jun, Jul 0.06 (0.04)
74.5 ‡

0.21 (0.15)
46 ‡

<0.01 (<0.01)
49 ‡

1.14 (0.24)
12 ‡

0.11 (0.03)
22 ‡

  Callionymidae

    Unidentified (N)
    (dragonet)

Jul 0.03 (0.03)
86.5 ‡

0 (0) 0 (0) 0 (0) 0 (0)

Gobiidae

    Unidentified Apr, May, Jun, Jul,
Aug

5.75 (0.80)
7 (1.77)

10.73 (1.76)
4 (8.53)

0.21 (0.06)
11 ‡

0.05 (0.02)
39 ‡

(<0.01)
51.5 ‡

    Bollmannia communis (L)
    (ragged goby)

Jun 0 (0) 0 (0) 0.01 (0.01)
37 ‡

0 (0) 0 (0)

    Gobionellus oceanicus
    (highfin goby)

Jun, Aug 0.03 (0.03)
89 ‡

0 (0) 0 (0) <0.01 (<0.01)
81.5 ‡

0 (0)

  Microdesmidae

    Microdesmus spp. (N)
    (wormfish spp.)

Apr, May, Jun, Jul 0.30 (0.11)
36 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Microdesmus lanceolatus Apr, May, Jun, Jul, 0.89 (0.18) 0.77 (0.31)           (0.01) <0.01 (<0.01) (<0.01)
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

    (lancetail wormfish) Aug 20 ‡ 24 ‡             32 ‡ 81.5 ‡ 51.5 ‡

    Microdesmus longipinnis (N)
    (pink wormfish)

Apr, May, Jul 0.53 (0.18)
26 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Trichiuridae

    Gempylus spp. (N)
    (snake mackerel spp.)

Jul 0 (0) 0.02 (0.02)
78 ‡

0 (0) 0 (0) 0 (0)

    Trichiurus lepturus
    (Atlantic cutlassfish)

Apr, May, Jun, Jul,
Aug

0.35 (0.13)
33 ‡

0.26 (0.13)
43 ‡

0.05 (0.02)
22.5 ‡

0.01 (0.01)
61.5 ‡

<0.01
(<0.01)

64 ‡

  Scombridae

    Unidentified
    (mackerel)

May, Jun, Jul, Aug 0.10 (0.06)
56 ‡

0.43 (0.29)
34 ‡

(<0.01)
37 ‡

0.10 (0.08)
25 ‡

0.04 (0.01)
35.5 ‡

    Auxis spp.
    (mackerel spp.)

Apr, May, Jun, Jul,
Aug

6.61 (2.32)
5 (1.69)

1.26 (0.79)
18 ‡

0.02 (0.01)
32 ‡

0.76 (0.19)
15 ‡

0.24 (0.06)
18 ‡

    Euthynnus alletteratus
    (little tunny)

May, Jun, Jul, Aug 4.55 (1.05)
10 (1.39)

4.10 (1.06)
8 (3.09)

0.08 (0.03)
19 ‡

0.92 (0.17)
13 ‡

2.83 (0.62)
3 (11.54)

    Katsuwonus pelamis
    (skipjack tuna)

May 0.06 (0.04)
74.5 ‡

0 (0) 0 (0) 0.08 (0.03)
30.5 ‡

0 (0)

    Scomber japonicus (L)
    (chub mackeral)

Apr 0 (0) 0 (0) 0 (0) 0 (0) 0.02 (0.02)
44.5 ‡

    Scomberomorus cavalla
    (king mackerel)

May, Jun, Jul, Aug 0.13 (0.06)
54 ‡

0.07 (0.04)
66 ‡

<0.01 (<0.01)
49 ‡

0.09 (0.03)
26 ‡

0.27 (0.11)
17 (1.11)

    Scomberomorus maculatus
    (Spanish mackerel)

Jun, Jul, Aug 0.36 (0.14)
32 ‡

0.21 (0.21)
48 ‡

0 (0) 0.04 (0.02)
41.5 ‡

0.17 (0.05)
20 ‡

    Thunnus spp. (L)
    (tuna spp.)

Aug 0 (0) 0 (0) 0 (0) 0 (0) 0.01 (0.01)
51.5 ‡

    Thunnus thynnus (L)
    (bluefin tuna)

May 0 (0) 0 (0) 0 (0) 0.01 (0.01)
61.5 ‡

0 (0)

  Stromateidae

    Ariomma regulus (L)
    (spotted driftfish)

Aug 0 (0) 0 (0) 0 (0) <0.01 (<0.01)
81.5 ‡

0 (0)

    Centrolophus medusophagus
    (brown ruff)

Apr 0 (0) 0.32 (0.26)
37 ‡

0 (0) <0.01 (<0.01)
81.5 ‡

<0.01
(<0.01)

64 ‡

    Peprilus burti
    (gulf butterfish)

Apr, May 0.07 (0.05)
70 ‡

0.04 (0.04)
71 ‡

<0.01 (<0.01)
49 ‡

0.03 (0.02)
46.5 ‡

0.02 (0.01)
41 ‡

    Peprilus alepidotus (N)
    (harvestfish)

May, Jul, Aug 0.21 (0.11)
43 ‡

2.79 (1.72)
10 ‡

0 (0) 0 (0) 0 (0)

Pleuronectiformes

  Unidentified (N) Aug 0.01 (0.01) 0.08 (0.08) 0 (0) 0 (0) 0 (0)
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

  (flounder) 97 ‡ 63 ‡

  Bothidae

    Unidentified
    (lefteye flounder)

Apr, May, Jul 0.06 (0.05)
73 ‡

0.17 (0.13)
51 ‡

<0.01 (<0.01)
49 ‡

0 (0) 0 (0)

    Bothus spp. (L)
    (flounder spp.)

May 0 (0) 0 (0) 0 (0) <0.01 (<0.01)
81.5 ‡

0 (0)

    Citharichthys spilopterus
    (bay whiff)

Apr, May, Jul 0.05 (0.04)
79 ‡

0.28 (0.20)
41 ‡

0 (0) 0 (0) <0.01
(<0.01)

64 ‡

    Cyclopsetta spp. (N)
    (flounder spp.)

Jun, Jul 0.10 (0.08)
57 ‡

0.53 (0.47)
29 ‡

0 (0) 0 (0) 0 (0)

    Engyophrys senta (N)
    (spiny flounder)

Jul 0 (0) 0.02 (0.02)
76 ‡

0 (0) 0 (0) 0 (0)

    Etropus crossotus
    (fringed flounder)

Apr, May, Jun, Jul,
Aug

0.65 (0.19)
23 ‡

1.79 (0.54)
16 (1.57)

(<0.01)
37 ‡

<0.01 (<0.01)
81.5 ‡

(<0.01)
51.5 ‡

    Syacium spp.
    (flounder spp.)

Apr, Jun, Jul, Aug 0.25 (0.12)
39 ‡

3.78 (1.14)
9 (2.82)

0 (0) 0.02 (0.01)
51 ‡

<0.01
(<0.01)

64 ‡

  Soleidae

    Achirus lineatus (N)
    (lined sole)

Jun, Jul 0.21 (0.08)
41 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Symphurus spp.
    (tonguefish spp.)

Apr, May, Jun, Jul,
Aug

6.79 (1.18)
4 (1.69)

17.00 (3.82)
2 (14.49)

0.05 (0.02)
22.5 ‡

0.08 (0.02)
28 ‡

0.07 (0.03)
26 ‡

Tetraodontiformes

  Balistidae

    Unidentified (N)
    (leatherjacket)

Jul 0.03 (0.03)
90 ‡

0 (0) 0 (0) 0 (0) 0 (0)

Tetraodontiformes

  Tetraodontidae

    Sphoeroides spp.
    (puffer spp.)

Apr, May, Jun, Jul 0.14 (0.07)
53 ‡

0.28 (0.22)
42 ‡

0 (0) <0.01 (<0.01)
81.5 ‡

0 (0)
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Table 5.8. Total plankton net density (fish/100 m3) and light-trap CPUE (fish/10 min) for fish
collected at South Timbalier 54 with standard error (SE), rank, percent of total catch (%),
and months collected for each taxa.  (N) indicates taxa collected only with plankton nets.
(L) indicates taxa collected only with light-traps.  For ranks, tied values received the
mean of the corresponding ranks.  ‡ indicates a value <1.00%.

Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

Osteichthyes

  Unidentified Apr,  May 3.93 (3.66)
12 ‡

0 (0) 0 (0) 0.50 (0.50)
6 (1.20)

0 (0)

Albuliformes

  Albulidae

    Albula vulpes (L)
    (bonefish)

Apr 0 (0) 0 (0) 0 (0) (0.01)
42 ‡

0 (0)

Anguilliformes

  Unidentified
  (eel)

Jun 0 (0) 0 (0) 0 (0) 0 (0) 0.02 (0.02)
50 ‡

  Muraenidae

    Unidentified (L)
    (moray eel)

Jun 0.43 (0.41)
40 ‡

0 (0) 0 (0) 0 (0) 0.02 (0.02)
50 ‡

  Ophichthidae

    Unidentified
    (snake eel)

Apr, May, Jun 0.20 (0.18)
52 ‡

0 (0) 0 (0) <0.01 (0.01)
50 ‡

0.02 (0.02)
50 ‡

Clupeiformes

  Unidentified (N)
  (herring/anchovy)

May 1.92 (1.92)
17 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Clupeidae

    Brevoortia patronus (L)
    (gulf menhaden)

Apr 0 (0) 0 (0) 0 (0) 0 (0) 0.02 (0.02)
50 ‡

    Etrumeus teres (N)
    (round herring)

Apr 0.04 (0.03)
68 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Harengula jaguana
    (scaled sardine)

Apr, May, Jun, Jul 1.27 (0.50)
24 ‡

0 (0) 0 (0) 0.56 (0.17)
5 (1.29)

0.55 (0.22)
8 (1.43)

    Opisthonema oglinum
    (Atlantic thread herring)

Apr, May, Jun, Jul 3689.84 (1964.23)
1 (96.56)

0 (0) 0.35 (0.14)
3 (7.05)

23.26 (9.41)
1 (54.60)

25.53 (7.93)
1 (66.71)

    Sardinella aurita
    (Spanish sardine)

Apr 0.03 (0.03)
74 ‡

0 (0) 0 (0) 0 (0) 0.02 (0.02)
50 ‡

  Engraulidae

    Unidentified Apr, May, Jun, Jul 146.75 (39.54) 10.73 (7.58) 0.13 (0.06) 1.13 (0.53) 0.90 (0.20)
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

    (anchovy) 2 (1.49) 2 (46.38) 5 (2.90) 4 (2.71) 4 (2.36)

    Anchoa spp.
    (anchovy spp.)

May 0.61 (0.61)
31 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Anchoa hepsetus (L)
    (striped anchovy)

Jun 0 (0) 0 (0) 0 (0) (0.01)
42 ‡

0 (0)

    Anchoa mitchilli
    (bay anchovy)

Apr, May, Jun, Jul 4.23 (1.61)
11 ‡

0 (0) 0.04 (0.03)
13 ‡

0.38 (0.13)
9 ‡

0.31 (0.17)
11 ‡

    Anchoa nasuta (L)
    (longnose anchovy)

May, Jun 0 (0) 0 (0) 0 (0) 0.06 (0.04)
21 ‡

     (0.03)
       33 ‡

    Anchoa nasuta/hepsetus
    (longnose/striped anchovy)

Apr, May, Jun, Jul 2.27 (0.77)
16 ‡

0 (0) 0.57 (0.20)
2 (11.62)

9.89 (3.63)
2 (23.74)

3.66 (1.49)
2 (9.57)

    Anchoviella perfasciata (N)
    (flat anchovy)

Apr 0.02 (0.02)
77.5 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Engraulis eurystole
    (silver anchovy)

Apr, May, Jun, Jul 0.22 (0.15)
49 ‡

0 (0) 0 (0) 0.26 (0.07)
11 ‡

(0.02)
33 ‡

Stomiiformes

  Gonostomatidae

    Cyclothone braueri (N) Apr 0.10 (0.06)
60 ‡

0 (0) 0 (0) 0 (0) 0 (0)

Aulopiformes

  Synodontidae

    Unidentified (L)
    (lizardfish)

Apr, May 0 (0) 0 (0) 0 (0)      (0.01)
      42 ‡

0.02 (0.02)
50 ‡

    Saurida brasiliensis (L)
    (largescale lizardfish)

May, Jun 0 (0) 0 (0) (0.03)
9.5 (1.24)

0.06 (0.03)
21 ‡

0.08 (0.03)
26.5 ‡

    Saurida suspicio (L)
    

May 0 (0) 0 (0) 0 (0) 0 (0)      (0.02)
       50 ‡

    Synodus foetens
    (inshore lizardfish)

Apr, May, Jun 0.21 (0.14)
50 ‡

0.26 (0.26)
11 (1.45)

2.88 (1.55)
1 (58.51)

3.16 (1.25)
3 (7.60)

0.27 (0.10)
12 ‡

    Synodus poeyi
    (offshore lizardfish)

Apr, May 0.23 (0.19)
48 ‡

0 (0) 0 (0) 0 (0) 0.02 (0.02)
50 ‡

Myctophiformes

  Myctophidae

    Unidentified
    (lanternfish)

Apr, Jul 0.24 (0.13)
47 ‡

4.09 (3.52)
4 (4.35)

0 (0) 0 (0)       (0.2)
      33 ‡

Gadiformes
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

  Bregmacerotidae

    Bregmaceros cantori
    (codlet)

Apr, May 1.85 (0.66)
20 ‡

0.26 (0.26)
11 (1.45)

0.06 (0.03)
9.5 (1.24)

     (0.01)
       42 ‡

0.10 (0.05)
24 ‡

  Ophidiidae

    Lepophidium spp.
    (cusk-eel spp.)

Apr, May 0.41 (0.41)
42.5 ‡

0 (0) 0 (0) 0 (0)      (0.02)
       50 ‡

    Lepophidium staurophor (L) Apr 0 (0) 0 (0) 0 (0) 0 (0) 0.02 (0.02)
50 ‡

    Ophidion spp. (N)
    (cusk-eel spp.)

Apr (0.03)
72 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Ophidion nocomis/selenops
    (cusk-eel spp.)

May 3.09 (1.77)
13 ‡

0 (0) 0.02 (0.02)
18.5 ‡

0 (0) 0 (0)

    Ophidion robinsi (L)
    (cusk-eel spp.)

May 0 (0) 0 (0) 0.02 (0.02)
18.5 ‡

0 (0) 0 (0)

    Ophidion selenops (L)
    (mooneye cusk-eel)

May 0 (0) 0 (0) 0.02 (0.02)
18.5 ‡

(0.01)
42 ‡

0 (0)

  Bythitidae

    Unidentified (N)
    (brotula)

May 0.41 (0.41)
42.5 ‡

0 (0) 0 (0) 0 (0) 0 (0)

Gobiesociformes

  Gobiesocidae

    Gobiesox strumosus
    (skilletfish)

Apr, May 0.03 (0.03)
69.5 ‡

0 (0) 0 (0) 0.06 (0.04)
21 ‡

0.03 (0.02)
36 ‡

Atheriniformes

  Exocoetidae

    Unidentified (N)
    (flyingfish)

Apr 0.03 (0.03)
71 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Cypselurus spp. (N)
    (flyingfish spp.)

Apr 0.03 (0.03)
69.5 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Cypselurus cyanopterus (L)
    (margined flyingfish)

Jun 0 (0) 0 (0) 0 (0) 0 (0)       (0.02)
        50 ‡

    Cypselurus furcatus (L)
    (spotfin flyingfish)

May 0 (0) 0 (0) 0 (0) 0 (0) 0.02 (0.02)
50 ‡

  Atherinidae

    Unidentified (N)
    (silverside)

Apr 0.29 (0.20)
45 ‡

0 (0) 0 (0) 0 (0) 0 (0)
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

    Membras martinica (L)
    (rough silverside)

Jun 0 (0) 0 (0) 0 (0) 0.02 (0.02)
32 ‡

0 (0)

Gasterosteiformes

  Syngnathidae

    Syngnathus spp. (N)
    (pipefish spp.)

Apr 0.03 (0.03)
74 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Syngnathus louisiana (N)
    (chain pipefish)

Apr 0.02 (0.02)
80.5 ‡

0 (0) 0 (0) 0 (0) 0 (0)

Scorpaeniformes

  Scorpaenidae

    Scorpaena spp.
    (scorpionfish spp.)

Apr, Jun 0 (0) 0.26 (0.26)
11 (1.45)

0 (0) 0.02 (0.02)
32 ‡

0.02 (0.02)
50 ‡

  Triglidae

    Prionotus spp.
    (searobin spp.)

Apr 0.58 (0.26)
36 ‡

0 (0) 0 (0) 0.01 (0.01)
42 ‡

0.02 (0.02)
50 ‡

Perciformes

  Unidentified Apr, May, Jun, Jul 10.47 (3.57)
6 ‡

14.29
(14.29)

1 (10.14)

0 (0) 0.02 (0.02)
32 ‡

0.16 (0.07)
17.5 ‡

  Serranidae

    Unidentified (N)
    (seabass/grouper)

Apr 0.06 (0.06)
65 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Epinephelinae (N)
    (grouper)

Apr          (0.03)
            74 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Serraninae
    (seabass)

Apr, May 0.34 (0.24)
44 ‡

0 (0) 0 (0) (0.01)
42 ‡

0 (0)

  Priacanthidae

    Priacanthus spp. (L)
    (bigeye spp.)

May 0 (0) 0 (0) 0 (0) 0 (0) 0.02 (0.02)
50 ‡

  Carangidae

    Unidentified (N)
    (jack)

Apr, Jun 0.43 (0.28)
41 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Caranx crysos (L)
    (blue runner)

May, Jun, Jul 0 (0) 0 (0) 0.02 (0.02)
23.5 ‡

(0.03)
19 ‡

0.24 (0.08)
14 ‡

    Caranx hippos/latus
    (crevalle/horse-eye jack)

May, Jun, Jul 2.70 (2.44)
14 ‡

0 (0) 0 (0) 0.04 (0.02)
26.5 ‡

0.61 (0.25)
6 (1.60)
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

    Chloroscombrus chrysurus
    (Atlantic bumper)

May, Jun, Jul 30.00 (11.03)
4 ‡

0 (0) 0.02 (0.02)
18.5 ‡

0.09 (0.04)
17 ‡

0.11 (0.06)
22 ‡

    Decapterus punctatus
    (round scad)

Apr, May, Jun 0.02 (0.02)
77.5 ‡

0 (0) 0 (0) 0.02 (0.02)
32 ‡

0.02 (0.02)
50 ‡

    Oligoplites saurus (N)
    (leatherjack)

Jun 0.48 (0.37)
37 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Selar crumenopthalmus (L)
    (bigeye scad)

May 0 (0) 0 (0) 0 (0) 0 (0) 0.02 (0.02)
50 ‡

    Selene spp. (N)
    (moonfish/lookdown spp.)

May 0.61 (0.61)
31 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Seriola spp. (L)
    (jack spp.)

Apr 0 (0) 0 (0) 0 (0) (0.01)
49 ‡

0 (0)

    Trachinotus carolinus (L)
    (Florida pompano)

May 0 (0) 0 (0) 0 (0) 0 (0) 0.03 (0.03)
33 ‡

    Trachurus lathami
    (rough scad)

Apr, May 0.02 (0.02)
80.5 ‡

0 (0) 0 (0) (0.05)
18 ‡

0.02 (0.02)
50 ‡

  Lutjanidae

    Unidentified (N)
    (snapper)

Jul 0.17 (0.17)
54.5 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Lutjanus spp. (N)
    (snapper spp.)

May, Jul 0.61 (0.45)
31 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Lutjanus campechanus
    (red snapper)

May, Jun 0.61 (0.61)
31 ‡

0 (0) 0 (0) 0 (0) 0.02 (0.02)
50 ‡

    Rhomboplites aurorubens
(L)
    (vermilion snapper)

May, Jun 0 (0) 0 (0) 0.12 (0.07)
6 (2.49)

0 (0) 0 (0)

  Gerreidae

    Unidentified (L)
    (jenny/mojarra)

May 0 (0) 0 (0) 0 (0) 0 (0) (0.02)
50 ‡

  Haemulidae

    Unidentified (N)
    (grunt)

May 0.61 (0.61)
31 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Sparidae

    Unidentified (N)
    (porgy)

Apr 0.14 (0.14)
58 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Calamus spp. (N)
    (porgy spp.)

Apr 0.10 (0.10)
61 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Sciaenidae
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

    Unidentified
    (drum)

Apr, May, Jun            (0.15)
             57 ‡

0 (0) 0 (0) 0.02 (0.02)
32 ‡

0.02 (0.02)
50 ‡

    Bairdiella chrysoura
    (silver perch)

Jun 0.12 (0.12)
  59 ‡

0 (0) 0 (0) 0 (0) 0.02 (0.02)
50 ‡

    Cynoscion arenarius
    (sand seatrout)

Apr, May, Jun, Jul 42.16 (8.56)
3 ‡

7.99 (3.21)
3 (21.74)

(0.04)
7 (2.07)

0.42 (0.11)
8 (1.03)

0.56 (0.13)
7 (1.47)

    Larimus fasciatus (N)
    (banded drum)

Apr 0.05 (0.04)
66 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Menticirrhus spp.
    (kingfish spp.)

Apr, May, Jun, Jul 1.45 (0.36)
22 ‡

0 (0) 0 (0) 0 (0) (0.02)
33 ‡

    Stellifer lanceolatus (N)
    (star drum)

Apr 0.44 (0.25)
39 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Mullidae

    Upeneus parvus (L)
    (dwarf goatfish)

Apr 0 (0) 0 (0) 0 (0) 0 (0) 0.02 (0.02)
50 ‡

  Ephippidae

    Chaetodipterus faber (N)
    (Atlantic spadefish)

May, Jul 0.86 (0.39)
25 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Pomacentridae

    Abudefduf saxatilis (L)
    (sergeant major)

May 0 (0) 0 (0) 0 (0) 0 (0) 0.10 (0.07)
24 ‡

    Pomacentrus spp. (L)
    (damselfish spp.)

May 0 (0) 0 (0) 0 (0) 0 (0) 0.02 (0.02)
50 ‡

  Mugilidae

    Mugil cephalus (L)
    (striped mullet)

Apr 0 (0) 0 (0) 0 (0) 0 (0) 0.02 (0.02)
50 ‡

    Mugil curema (L)
    (white mullet)

May 0 (0) 0 (0) 0 (0) (0.01)
42 ‡

0.05 (0.04)
29.5 ‡

  Sphyraenidae

    Sphyraena borealis (L)
    (northern sennet)

May 0 (0) 0 (0) 0 (0) (0.01)
42 ‡

0 (0)

  Labridae

    Unidentified (L)
    (wrasse)

Jun 0 (0) 0 (0) 0.02 (0.02)
18.5 ‡

0 (0) 0 (0)

  Scaridae

    Unidentified (N)
    (parrotfish)

Apr (0.02)
77.5 ‡

0 (0) 0 (0) 0 (0) 0 (0)
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

Blenniidae

    Unidentified
    (blenny)

Apr, May, Jun, Jul 2.47 (0.90)
15 ‡

1.10 (1.10)
6 (1.45)

0.02 (0.02)
18.5 ‡

0.09 (0.03)
16 ‡

0.08 (0.05)
26.5 ‡

    Hypsoblennius hentz/ionthas
    (feather/freckled blenny)

Apr, May, Jun 0.17 (0.17)
54.5 ‡

0 (0) 0 (0) 0.21 (0.08)
12 ‡

0.48 (0.22)
9.5 (1.26)

    Hypsoblennius invemar
    (tessellated blenny)

Apr, May, Jun 0.61 (0.61)
31 ‡

0 (0) 0 (0) 0.11 (0.05)
15 ‡

0.48 (0.19)
9.5 (1.26)

    Parablennius marmoreus
    (seaweed blenny)

May, Jul 0.20 (0.20)
53 ‡

0 (0) 0 (0) 0 (0) 0.02 (0.02)
50 ‡

    Scartella/Hypleurochilus
    (blenny spp.)

Apr, May, Jun, Jul 1.89 (1.29)
19 ‡

0 (0) 0.06 (0.03)
9.5 (1.24)

0.49 (0.26)
7 (1.17)

0.16 (0.08)
17.5 ‡

  Eleotridae

    Dormitator maculatus (N)
    (fat sleeper)

Apr 0.02 (0.02)
77.5 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Gobiidae

    Unidentified
    (goby)

Apr, May, Jun, Jul 29.96 (12.71)
5 ‡

1.41 (0.96)
5 (4.35)

0.06 (0.03)
9.5 (1.24)

0.03 (0.02)
28 ‡

0.23 (0.08)
15 ‡

  Microdesmidae

    Microdesmus spp.
    (wormfish spp.)

Apr, Jul 0.58 (0.43)
35 ‡

0 (0) 0 (0) 0.01 (0.01)
42 ‡

0 (0)

    Microdesmus lanceolatus
(N)
    (lancetail wormfish)

Jun, Jul 1.28 (0.86)
23 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Trichiuridae

    Trichiurus lepturus
    (Atlantic cutlassfish)

Apr, May, Jun 0 (0) 0.52 (0.52)
8.5 (2.90)

0.18 (0.07)
4 (3.73)

0.01 (0.01)
42 ‡

0 (0)

  Scombridae

    Unidentified (N)
    (mackerel)

Apr, Jul 0.25 (0.18)
46 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Auxis spp.
    (mackerel spp.)

May, Jun, Jul 0 (0) 0 (0) 0 (0) 0.02 (0.02)
32 ‡

0.26 (0.17)
13 ‡

    Euthynnus alletteratus
    (little tunny)

May, Jun, Jul 0.47 (0.27)
38 ‡

0 (0) 0.02 (0.02)
23.5 ‡

0.37 (0.23)
10 ‡

1.08 (0.47)
3 (2.82)

    Scomberomorus cavalla
    (king mackerel)

Apr, May, Jun, Jul 5.39 (3.15)
10 ‡

0 (0) 0.04 (0.03)
13 ‡

0.05 (0.04)
24 ‡

0.10 (0.05)
24 ‡

    Scomberomorus maculatus
    (Spanish mackerel)

Apr, May, Jun, Jul 6.56 (2.09)
9 ‡

0 (0) 0 (0) 0.18 (0.06)
13 ‡

0.81 (0.18)
5 (2.11)
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Taxa Months Collected Surface
Net

Bottom
Net

Bottom
Light-trap

Surface
Light-trap

Off-platform 
Light-trap

Density (SE) Density (SE) CPUE (SE) CPUE (SE) CPUE (SE)

Rank (%) Rank (%) Rank (%) Rank (%) Rank (%)

  Stromateidae

    Ariomma spp. (N)
    (driftfish spp.)

Apr 0.05 (0.04)
67 ‡

0.52 (0.52)
8.5 (2.90)

0 (0) 0 (0) 0 (0)

    Peprilus burti
    (gulf butterfish)

Apr, May 1.65 (1.23)
21 ‡

0 (0) 0.02 (0.02)
18.5 ‡

0.14 (0.05)
14 ‡

0.13 (0.05)
20.5 ‡

    Peprilus alepidotus
    (harvestfish)

Apr, May, Jul 1.92 (0.77)
18 ‡

0 (0) 0.04 (0.03)
13 ‡

0.04 (0.02)
26.5 ‡

0.15 (0.06)
19 ‡

Pleuronectiformes

  Bothidae

    Unidentified (N)
    (lefteye flounder)

May 0.81 (0.81)
26 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Citharichthys spilopterus
    (bay whiff)

Apr, May, Jun 0.21 (0.13)
51 ‡

0 (0) 0 (0) 0 (0) 0.05 (0.04)
29.5 ‡

    Cyclopsetta fimbriata (L)
    (spotfin flounder)

May 0 (0) 0 (0) 0 (0) 0 (0) 0.02 (0.02)
50 ‡

    Etropus crossotus
    (fringed flounder)

Apr, May, Jun 7.59 (2.94)
8 ‡

0.89 (0.89)
7 (1.45)

0 (0) 0.05 (0.02)
24 ‡

0.13 (0.06)
20.5 ‡

    Syacium spp. (L)
    (flounder spp.)

May 0.61 (0.61)
31 ‡

0 (0) 0 (0) 0 (0) 0 (0)

  Soleidae

    Unidentified
    (sole)

Jun, Jul 0.06 (0.06)
63.5 ‡

0 (0) 0.02 (0.02)
18.5 ‡

0 (0) 0 (0)

    Achirus lineatus
    (lined sole)

Apr, May, Jul 0.16 (0.10)
56 ‡

0 (0) 0 (0) 0.02 (0.02)
32 ‡

0 (0)

    Gymnachirus spp. (N)
    (sole spp.)

May 0.09 (0.09)
62 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Trinectes maculatus (N)
    (hogchoker)

Apr, May 0.70 (0.42)
27 ‡

0 (0) 0 (0) 0 (0) 0 (0)

    Symphurus spp.
    (tonguefish spp.)

Apr, May, Jun, Jul 8.84 (3.84)
7 ‡

0 (0) 0 (0) 0.01 (0.01)
42 ‡

0.06 (0.04)
28 ‡

Tetraodontiformes

  Tetraodontidae

    Sphoeroides spp.
    (puffer spp.)

Apr, May, Jun 0.06 (0.06)
63.5 ‡

0 (0) 0 (0) 0.05 (0.03)
24 ‡

0.21 (0.12)
16 ‡

    Sphoeroides parvus (L)
    (least puffer)

Apr 0 (0) 0 (0) 0 (0) 0.01 (0.01)
42 ‡

0 (0)
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Table 5.9. Total mean light-trap CPUE (fish/10 min) and pushnet density (fish/100 m3) for fish
collected at Belle Pass with standard error (SE), rank, percent of total catch (%), and
months collected for each taxa.  For ranks, tied values received the mean of the
corresponding ranks.  ‡ indicates a value <1.00%.

Taxa Months Collected Light-trap Pushnet

CPUE (SE)
Rank (%)

Density (SE)
Rank (%)

Osteichthyes

  Unidentified Apr, May, Jun, Jul, Aug 0.14 (0.06)
17 ‡

1.23 (0.65)
20 ‡

Elopiformes

  Elopidae

    Elops saurus
    (ladyfish)

Apr, May, Jun, Jul, Aug <0.01 (<0.01)
48 ‡

0.22 (0.06)
36 ‡

    Megalops atlanticus
    (tarpon)

Aug 0 (0) 0.03 (0.01)
60 ‡

Anguilliformes

  Unidentified
    (eel)

Apr, May, Jun, Jul, Aug <0.01(<0.01)
48‡

0.17(0.08)
41‡

  Ophichthidae

    Unidentified
    (snake eel)

Apr, May, Jun 0.03(0.02)
31‡

0.03(0.03)
57‡

    Bascanichthys spp.
    (sooty/whip eel spp.)

Jun, Jul, Aug 0 (0) 0.13(0.03)
44‡

    Myrophis punctatus
    (speckled worm eel)

Apr, May, Jun, Jul 0.04(0.02)
28‡

0.64(0.31)
27‡

    Ophichthus gomesi
    (shrimp eel)

Jul 0 (0) 0.15(0.07)
42‡

    Ophichthus melanoporus
    (blackpored eel)

Aug 0 (0) <0.01(<0.01)
82‡

  Congridae

    Paraconger caudilimbatus
    (margintail conger)

Jun 0 (0) <0.01(<0.01)
82‡

Clupeiformes

  Unidentified
  (herring/anchovy)

May, Jun, Jul, Aug 0.01(<0.01)
41‡

10.85(3.88)
5(2.05)

  Clupeidae

    Unidentified
    (herring)

Apr, May, Aug 0.07(0.04)
22‡

2.48(1.42)
13‡

    Brevoortia spp.
    (menhaden spp.)

Apr, Aug 0.15(0.08)
16‡

2.77(2.09)
11‡

    Brevoortia patronus
    (gulf menhaden)

Apr, May, Jun, Jul, Aug 0.04(0.03)
27‡

0.60(0.37)
29‡
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Taxa Months Collected Light-trap Pushnet

CPUE (SE)
Rank (%)

Density (SE)
Rank (%)

    Harengula jaguana
    (scaled sardine)

May, Jun, July, Aug 1.12(0.36)
4‡

0.53(0.10)
30‡

    Opisthonema oglinum
    (Atlantic thread herring)

May, Jun, July, Aug 0.28(0.12)
11‡

0.40(0.10)
32‡

  Engraulidae

    Unidentified
    (anchovy)

Apr, May, Jun, Jul, Aug 16.33(7.07)
2(13.47)

138.43(21.12)
2(27.74)

    Anchoa hepsetus
    (striped anchovy)

Apr, May, Jun, Jul, Aug 0.73(0.24)
6‡

1.30(0.50)
18‡

    Anchoa mitchilli
    (bay anchovy)

Apr, May, Jun, Jul, Aug 95.80(37.97)
1(79.07)

153.25(33.48)
1(38.23)

    Anchoa nasuta
    (longnose anchovy)

May, Jun, Jul, Aug 0.24(0.08)
13‡

0.18(0.06)
38‡

    Anchoa nasuta/hepsetus
    (longnose/striped anchovy)

Apr, May, Jun, Jul, Aug 0.64(0.22)
7‡

1.90(0.45)
15‡

Siluriformes

  Ariidae

    Arius felis
    (hardhead catfish)

May, Jul 0 (0) 0.09(0.06)
48‡

    Bagre marinus
    (gafftopsail catfish)

Jul, Aug 0 (0) 0.10(0.08)
46‡

Aulopiformes

  Synodontidae

    Unidentified
    (lizardfish)

May 0 (0) <0.01(<0.01)
88‡

    Synodus spp.
    (lizardfish spp.)

Apr, May 0 (0) 0.02(0.02)
61‡

    Synodus foetens
    (inshore lizardfish)

Apr, May, Jun, Jul, Aug 0.15(0.04)
15‡

0.93(0.14)
23‡

  Paralepidae

    Paralepis atlantica
    (duckbill barracudina)

Apr 0 (0) <0.01(<0.01)
90‡

Gadiformes

  Ophidiidae

    Unidentified
    (cuskeel)

Apr 0 (0) <0.01(<0.01)
89‡

    Lepophidium spp.
    (cusk-eel spp.)

Jun 0 (0) <0.01(<0.01)
108‡

Gobiesociformes

  Gobiesocidae
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    Gobiesox strumosus
    (skilletfish)

Apr, May, Jun, Jul, Aug 0.47(0.13)
10‡

1.55(0.25)
16‡

Atheriniformes

  Exocoetidae

    Unidentified
    (flyingfish)

May, Jun 0 (0) 0.01(<0.01)
80‡

    Cypselurus spp.
    (flying fish spp.)

Jun <0.01(<0.01)
48‡

0 (0)

    Hyporhamphus
unifasciatus
    (silverstriped halfbeak)

May, Jun, Jul, Aug <0.01(<0.01)
48‡

0.04(0.01)
55‡

Atherinidae

    Unidentified
    (silverside)

Apr, May, Jun, Jul, Aug 0 (0) 0.18(0.08)
40‡

    Membras martinica
    (rough silverside)

Apr, May, Jun, Jul, Aug 1.30(0.56)
3(1.09)

0.98(0.22)
21‡

    Menidia beryllina
    (inland silverside)

May 0 (0) 0.02(0.02)
66‡

Gasterosteiformes

  Syngnathidae

    Hippocampus erectus
    (lined seahorse)

Jun 0 (0) <0.01(<0.01)
99‡

    Syngnathus spp.
    (pipefish spp.)

Apr, May, Jun, Jul, Aug <0.01(<0.01)
48‡

0.09(0.03)
49‡

    Syngnathus louisiana
    (chain pipefish)

Jul 0 (0) <0.01(<0.01)
111‡

Scorpaeniformes

  Triglidae

    Prionotus spp.
    (searobin spp.)

Jun 0 (0) <0.01(<0.01)
110‡

    Prionotus roseus
    (bluespotted searobin)

Jul 0 (0) <0.01(<0.01)
101‡

    Prionotus tribulus
    (bighead searobin)

Jul 0 (0) <0.01(<0.01)
94‡

Perciformes

  Serranidae

    Epinephelinae
    (grouper spp.)

Apr 0 (0) <0.01(<0.01)
97‡

  Rachycentridae

    Rachycentron canadum
    (cobia)

May 0 (0) <0.01(<0.01)
86‡
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Rank (%)

Density (SE)
Rank (%)

  Carangidae

    Unidentified
    (jack)

0 (0) 0.02(0.02)
62‡

    Caranx spp.
    (jack spp.)

Aug 0 (0) 0.64(0.26)
28‡

    Caranx hippos/latus
    (crevalle/horse-eye jack)

Jun, Jul, Aug <0.01(<0.01)
48‡

0.09(0.04)
47‡

    Chloroscombrus chrysurus
    (Atlantic bumper)

Jun, Jul, Aug 0.05(0.02)
23‡

0.28(0.15)
35‡

    Oligoplites saurus
    (leatherjack)

Aug <0.01(<0.01)
48‡

0.02(<0.01)
71‡

    Selene vomer
    (lookdown)

Jul 0 (0) <0.01(<0.01)
98‡

    Selene setapinnis
    (Atlantic moonfish)

Jul 0 (0) <0.01(<0.01)
104‡

  Lutjanidae

    Lutjanus griseus
    (gray snapper)

Jun, Jul, Aug 0 (0) 0.03(0.01)
59‡

    Lutjanus synagris
    (lane snapper)

Jul, Aug 0.01(<0.01)
38‡

0.07(0.02)
51‡

    Lutjanus spp.
    (snapper spp.)

Aug <0.01(<0.01)
48‡

0 (0)

  Gerreidae

    Unidentified
    (jenny/mojarra)

May, Jun, Aug 0.02(0.01)
34‡

0.19(0.07)
37‡

    Eucinostomus spp.
    (mojarra/jenny spp.)

Jun, Aug <0.01(<0.01)
48‡

0.02(0.01)
70‡

  Haemulidae

    Unidentified
    (grunt)

Jul 0 (0) <0.01(<0.01)
102‡

  Sparidae Apr, May

    Unidentified
    (porgy)

0 (0) 0.02(0.01)
63‡

    Sparidae Type B
    (porgy spp.)

May 0 (0) 0.02(<0.01)
68‡

  Sciaenidae

    Unidentified
    (drum)

May, Jun, Jul, Aug 0.02(0.01)
34‡

2.54(0.96)
12‡

    Bairdiella chrysoura
    (silver perch)

Apr, May, Jun, Jul, Aug 0.12(0.08)
19‡

3.07(0.73)
10‡

    Cynoscion arenarius Apr, May, Jun, Jul, Aug 0.59(0.28) 40.74(8.02)
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    (sand seatrout) 9‡ 4(7.85)

    Cynoscion nebulosus
    (spotted seatrout)

Apr, May, Jun, Aug 0.01(<0.01)
38‡

0.85(0.21)
24‡

    Cynoscion
nebulosus/arenarius
    (spotted/sand seatrout)

Jul 0 (0) 0.01(0.01)
74‡

    Menticirrhus spp.
    (kingfish spp.)

Apr, May, Jul, Aug 0.03(0.01)
29‡

0.51(0.09)
31‡

    Menticirrhus
americanus/littoralis
    (gulf/northern kingfish)

Jun, Aug 0 (0) 0.02(0.01)
64‡

    Micropogonias undulatus
    (Atlantic croaker)

Apr, Jul 0 (0) 0.04(0.02)
56‡

    Pogonias cromis
    (black drum)

May 0.01(<0.01)
38‡

0.74(0.21)
26‡

    Sciaenops ocellatus
    (red drum)

Aug <0.01(<0.01)
48‡

1.29(0.59)
19‡

    Stellifer lanceolatus
    (star drum)

Apr, Jun, Jul 0 (0) 0.05(0.02)
54‡

  Mullidae

    Unidentified
    (goatfish)

May 0 (0) <0.01(<0.01)
87‡

  Ephippidae

    Chaetodipterus faber
    (Atlantic spadefish)

Jun, Aug 0 (0) 0.05(0.02)
52‡

  Mugilidae

    Mugil cephalus
    (striped mullet)

Apr 0 (0) <0.01(<0.01)
97‡

    Mugil curema
    (white mullet)

Apr, May, Jun 0 (0) 0.02(<0.01)
69‡

  Polynemidae

    Polydactylus octonemus
    (Atlantic threadfin)

Aug 0 (0) <0.01(<0.01)
93‡

  Labridae

    Unidentified
    (wrasse)

Apr 0 (0) 0.01(<0.01)
77‡

  Scaridae

    Sparisoma spp.
    (parrotfish spp.)

Apr 0 (0) 0.01(<0.01)
72‡

  Uranoscopidae

    Unidentified Jun 0 (0) <0.01(<0.01)
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    (stargazer) 92‡

  Blenniidae

    Unidentified
    (blenny)

May, Jun, Jul, Aug 0.02(0.01)
35‡

0.03(0.02)
58‡

    Chasmodes spp.
    (striped/Florida blenny)

Apr 0 (0) <0.01(<0.01)
100‡

    Hypleurochilus
bermudensis
    (barred blenny)

Aug 0 (0) <0.01(<0.01)
95‡

    Hypsoblennius spp.
    (blenny spp.)

Jul 0 (0) <0.01(<0.01)
104(<.1.00)

    Hypsoblennius
hentz/ionthas
    (feather/tessellated blenny)

Apr, May, Jun, Jul, Aug 1.04(0.27)
5‡

1.95((0.45)
14‡

    Scartella cristata
    (molly miller)

Apr, May, Jun, Jul, Aug 0.03(0.02)
31‡

0.34(0.08)
33‡

  Eleotridae

    Unidentified
    (sleeper)

Jun, Jul, Aug 0.01(<0.01)
38‡

0.02(0.01)
67‡

    Eleotridae Type A
    (sleeper spp.)

Jun, Aug <0.01(<0.01)
48‡

0.18(0.06)
39‡

    Dormitator maculatus
    (fat sleeper)

Apr, May, Jun, Jul, Aug 0.12(0.06)
18‡

0.96(0.34)
22‡

  Gobiidae

    Unidentified
    (goby)

Apr, May, Jun, Jul, Aug 0.03(0.01)
31‡

0.81(0.23)
25‡

    Bathygobius soporator
    (frillfin goby)

Jun, Jul 0 (0) 0.01(<0.01)
76‡

    Evorthodus
lyricus/Gobionellus
boleosoma
    (lyre goby/darter goby)

Jun, Jul, Aug 0 (0) 0.01(<0.01)
78‡

    Gobionellus oceanicus
    (highfin goby)

Apr, May, Jun, Jul, Aug 0.11(0.06)
20‡

8.82(2.13)
6(1.97)

    Gobiosoma spp.
    (goby spp.)

Apr, May, Jun, Jul, Aug 0.26(0.18)
12‡

1.48(0.43)
17‡

    Gobiosoma bosc
    (naked goby)

Apr, May, Jun, Jul, Aug 0.59(0.16)
8‡

46.88(7.88)
3(10.64)

    Microgobius spp.
    (goby spp.)

May, Jun, Jul, Aug 0.04(0.03)
26‡

4.17(1.30)
9(1.05)

  Microdesmidae

    Microdesmus longipinnis
    (pink wormfish)

Jun, Jul, Aug 0.05(0.02)
24‡

0.14(0.04)
43‡
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  Trichiuridae

    Unidentified
    (snake mackerel)

May 0 (0) <0.01(<0.01)
91‡

    Trichiurus lepturus
    (Atlantic cutlassfish)

Apr, Jul 0 (0) 0.01(<0.01)
79‡

  Scombridae

    Unidentified
    (mackerel)

May, Jun 0 (0) 0.01(<0.01)
73‡

    Scomberomorus spp.
    (mackeral spp.)

Aug <0.01(<0.01)
48‡

0 (0)

    Scomberomorus maculatus
    (Spanish mackeral)

May, Aug 0 (0) <0.01(<0.01)
83‡

  Stromateidae

    Peprilus alepidotus
    (harvestfish)

Jun, Jul, Aug 0 (0) 0.01(<0.01)
75‡

    Peprilus burti
    (gulf butterfish)

Apr 0 (0) <0.01(<0.01)
85‡

Pleuronectiformes

  Bothidae

    Unidentified
    (lefteye flounder)

Apr, Jun 0 (0) 0.02(0.01)
65‡

    Citharichthys spp.
    (whiff/sanddab spp.)

Apr, May, Jun, Jul, Aug 0.08(0.03)
21‡

6.53(1.02)
7(1.49)

    Citharichthys spilopterus
    (bay whiff)

Jul 0 (0) <0.01(<0.01)
81‡

    Etropus crossotus
    (fringed flounder)

Jul 0 (0) <0.01(<0.01)
104‡

  Soleidae

    Achirus lineatus
    (lined sole)

Jun 0 (0) <0.01(<0.01)
84‡

    Trinectes maculatus
    (hogchoker)

May, Jun, Jul, Aug 0 (0) 0.07(0.02)
50‡

  Cynoglossidae

    Symphurus spp.
    (tonguefish spp.)

Apr, May, Jun, Jul, Aug 0.05(0.02)
25‡

5.66(0.89)
8(1.27)

    Symphurus plagiusa
    (blackcheek tonguefish)

Jul 0 (0) <0.01(<0.01)
106‡

Tetraodontiformes

  Balistidae

    Monacanthus hispidus
    (planehead filefish)

Jun 0 (0) <0.01(<0.01)
110‡
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  Tetraodontidae

    Unidentified
    (puffer)

May, Jun 0 (0) 0.05(0.02)
53‡

    Sphoeroides spp.
    (puffer spp.)

Apr, May, Jun, Aug 0.01(<0.01)
38‡

0.12(0.04)
45‡

    Sphoeroides parvus
    (least puffer)

Apr, May, Jun, Jul, Aug 0.17(0.06)
14‡

0.34(0.08)
34‡

dominated the total catch for both gear types, particularly the plankton nets where these fishes
comprised 65% and 71% of the total numerical catch for subsurface and surface plankton net
collections, respectively. Gobies, scarids, and Mugil cephalus were among the most common non-
clupeiform fishes in the plankton net collections. While the subsurface light-trap collections were
also dominated by clupeiforms (72%), other coastal pelagic taxa such as Caranx crysos, C.
hippos/latus, Euthynnus alletteratus, and Auxis spp. were common in the surface and off-platform
light-trap collections. 

At GI 94, a total of 45,754 fish were collected with light-traps collecting 31,353 fish and plankton
nets collecting 14,401 fish. The total mean plankton net density was 69.6 fish/100 m3 and the total
mean light-trap CPUE was 26.2 fish/10 min. Plankton nets collected individuals from 40 different
families, six of which were not collected by light-traps (Table 5.7). Light-traps sampled fish from
37 families, only three of which were not sampled by plankton nets. Plankton nets collected fish
from 83 taxa (identified at least to the level of genus), 26 of which were not collected in light-traps,
while light-traps collected fish from 90 taxa, 31 of which were not sampled with plankton nets.
Clupeiforms dominated the total catch (66%). The most common taxa collected included Anchoa
spp., A. nasuta, Engraulis eurystole, and Opisthonema oglinum. Among the most common non-
clupeiform fishes were synodontids (primarily Synodus foetens and S. poeyi), blenniids
(Hypsoblennius invemar and Parablennius marmoreus), and scombrids (Auxis spp. and Euthynnus
alletteratus).

At ST 54, a total of 97,697 fish were collected, with light-traps collecting 6,116 fish and plankton
nets collecting 91,583 fish (Table 5.8). Total mean plankton net density was 166.0 fish/100 m3 and
total mean light-trap CPUE was 0.6 fish/10 min. Due to problems with deploying the subsurface net
at this site (Table 5.5), the plankton net catch is almost exclusively from the surface. The plankton
nets collected fish from 34 families, eight of which were unique. Light-traps also collected fish from
a total of 34 families, eight of which were not collected with plankton nets. The plankton nets caught
fish from 59 taxa (identified to genus), 19 of which were unique. Light-traps caught fish from 65
taxa, 27 of which were not in plankton net collections. Overall, clupeiforms, primarily clupeids,
dominated the collections at ST 54, comprising 97% of the total catch for both gear types combined.
The only gear and location not dominated by clupeiforms was the subsurface light-traps, in which



235

Synodus foetens was the most common taxon. Of the non-clupeiform fishes collected, sciaenids,
synodontids, carangids, and scombrids were dominant.

At the Belle Pass jetties, the light-trap and pushnet collected 17,949 fish and 111,854 fish,
respectively, with a total mean pushnet density of 136.7 fish/100 m3 and a total light-trap CPUE of
4.6 fish/10 min. Catches by both gear types were dominated by clupeiform fishes that comprised
95.3% of the light-trap total catch and 68.3% of the total pushnet catch (Table 5.9). The pushnet
collected fish from 41 families with 85 taxa identifiable to at least genus. Non-clupeiform taxa
collected by the pushnet that comprised over 1% of the total catch included Gobiosoma bosc,
Cynoscion arenarius, Gobionellus oceanicus, Citharichthys spp., Symphurus spp., and Microgobius
spp. Overall, the light-trap collected fish from 21 families with 42 taxa identifiable to at least the
genus level. Only one non-clupeiform species, Membras martinica, comprised over 1% of the total
light-trap catch. The pushnet collected fish from 20 families and 44 taxa unique to this gear type.
All families and all but three taxa that were sampled with the light-trap were also collected by the
pushnet.

Reef-dependent and reef-associated fish (Choat and Bellwood 1991) made up a relatively small
percentage of the total plankton net and light-trap collections (with clupeiforms removed from the
total catch) at the three platforms (Table 5.10). At GC 18, these groups of fish comprised 18% and
32% of the plankton net and light-trap collections, respectively. Dominant groups included gobiids,
scombrids, and carangids. At GI 94, reef-dependent and reef-associated fishes comprised 10% of
the plankton net catch and 17% of the light-trap catch. Blenniids were prominent in both plankton
net and light-trap collections, as well as gobiids (plankton nets) and scombrids (light-traps). At
ST54, these fishes comprised less than 1% of the plankton net collections and only 8% of the light-
trap collections. Carangids (particularly Chloroscombrus chrysurus), gobiids, and scombrids
dominated plankton net collections, while scombrids and blenniids dominated light-trap collections.
At Belle Pass, reef-dependent and reef-associated fishes comprised approximately 15% and 2% of
pushnet and light-trap collections. Samples by both gears were dominated by gobiids and blenniids,
particularly Gobiosoma bosc and Hypsoblennius hentz/ionthas.

In general, trends in seasonality were consistent for taxa collected at the different sites across the
shelf (Tables 5.6–5.9). Many groups (e.g., clupeiforms, carangids, and scombrids) were present
throughout the sampling periods for GI 94, ST 54, and the Belle Pass jetty, and throughout the
spring-summer at GC 18. At GC 18, the only site that included fall and winter sampling, few taxa
were represented solely during these months, including Etremeus teres (January-February),
Diplophos taenia (November) and Mugil cephalus (October-November and January-February),
among others. 
 

Similarity and Diversity of Ichthyoplankton Assemblages

Schoener’s Index of Niche Overlap values range from 0 (no similarity) to 1 (identical taxonomic
compositions). Of the 14 comparisons between the six sites (i.e., the three platforms and jetty along
the transect and the two pilot studies), the Belle Pass jetty, with values ranging from 0.01-0.07, and
WC 352 (inner shelf), with values ranging from 0.01-0.16, differed the most from the other sites
(Table 5.11). Inexplicably, from the geographical or depth points of view, the most similar sites
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Table 5.10. Total plankton net density (fish/100m3), pushnet density (fish/100m3), and light-trap
CPUE (fish/10 min) for reef-dependent (RD) and reef-associated (RA) families of
fish collected at each site with standard error (SE).  Densities calculated for the
platforms include both surface and subsurface samples.  CPUEs calculated for the
platforms include surface, subsurface, and offplatform samples.  † indicates a value
<0.01.

Green Canyon Grand Isle South Timbalier Belle Pass

Taxa Ecology Plankton net
density

(SE)

Light-trap
CPUE
(SE)

Plankton net
density

(SE)

Light-trap
CPUE
(SE)

Plankton net
density

(SE)

Light-trap
CPUE
(SE)

Pushnet
density

(SE)

Light-trap
CPUE
(SE)

Anguilliformes

  Muraenidae RA

    Unidentified
    (moray eel)

0.01
0.01

0.02
0.01

0.25
0.12

†
†

0.40
0.38

0.01
0.01

Beryciformes RA

  Holocentridae

    Holocentrus spp.
    (squirrelfish spp.)

0.12
0.07

0.06
0.02

0.09
0.04

0.01
†

Perciformes

  Serranidae RA

    Unidentified
    (seabass/grouper)

0.75
0.43

0.12
0.07

0.05
0.05

    Anthinae
    (sea perch)

0.43
0.15

0.01
0.01

0.25
0.12

†
†

    Epinephelinae
    (grouper)

0.35
0.16

†
†

0.03
0.02

0.01
†

0.03
0.03

†
†

    Grammistinae 0.05
0.03

0.03
0.02

    Serraninae
    (sea bass)

0.65
0.18

0.03
0.01

0.31
0.22

0.01
0.01

  Priacanthidae RA

     Unidentified
     (bigeye)

0.09
0.06

†
†

    Priacanthus spp.         
    (bigeye/glasseye spp.)

0.02
0.02

0.01
0.01

  Apogonidae
    Unidentified
    (cardinalfish)

RA 0.01
0.01

    Apogon spp.
     (cardinalfish spp.)

0.01
0.01

  Rachycentridae RA

    Rachycentron canadum
    (cobia)

0.08
0.04

†
†
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Green Canyon Grand Isle South Timbalier Belle Pass

Taxa Ecology Plankton net
density

(SE)

Light-trap
CPUE
(SE)

Plankton net
density

(SE)

Light-trap
CPUE
(SE)

Plankton net
density

(SE)

Light-trap
CPUE
(SE)

Pushnet
density

(SE)

Light-trap
CPUE
(SE)

  Carangidae RA

    Unidentified
    (jack)

0.35
0.19

0.10
0.06

†
†

0.40
0.26

0.02
0.02

    Caranx spp.
    (jack spp.)

0.02
0.02

†
†

0.08
0.05

0.64
0.26

    Caranx crysos
    (blue runner)

2.03
0.89

0.17
0.04

0.89
0.30

0.07
0.02

0.11
0.03

    Caranx hippos/latus
    (crevalle/horse-eye
jack)

2.72
0.69

0.09
0.02

0.26
0.16

0.07
0.02

2.49
2.25

0.21
0.08

0.09
0.04

†
†

    Chloroscombrus
chrysurus
    (Atlantic bumper)

0.38
0.16

0.01
0.01

0.65
0.20

0.01
0.01

27.64
10.19

0.08
0.03

0.28
0.15

0.05
0.02

    Decapterus punctatus
    (round scad)

0.02
0.02

0.01
†

0.02
0.01

0.02
0.02

0.02
0.01

    Elagatis bipinjulata
    (rainbow runner)

0.13
0.08

†
†

    Oligoplites saurus
    (leatherjack)

0.08
0.06

0.45
0.34

0.02
†

†
†

    Selar
crumenopthalmus
    (bigeye scad)

0.07
0.06

0.23
0.10

0.01
0.01

    Selene spp.
    (moonfish/lookdown
spp.)

0.56
0.56

    Selene vomer
    (lookdown)

0.16
0.16

0.03
0.02

†
†

    Selene setapinnis
    (Atlantic moonfish)

†
†

    Seriola spp. 
    (jack spp.)

0.22
0.12

†
†

0.02
0.02

†
†

    Seriola
dumerili/rivoliana
    (greater
amberjack/almaco jack)

0.01
†

    Seriola fasciata
    (lesser amberjack)

†
†

    Trachinotus carolinus 
    (Florida pompano)

†
†

0.01
0.01

    Trachinotus
falcatus/goodei
    (permit/palometa)

0.01
0.01

    Trachurus lathami 0.14 0.01 0.09 0.03 0.02 0.04
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Green Canyon Grand Isle South Timbalier Belle Pass

Taxa Ecology Plankton net
density

(SE)

Light-trap
CPUE
(SE)

Plankton net
density

(SE)

Light-trap
CPUE
(SE)

Plankton net
density

(SE)

Light-trap
CPUE
(SE)

Pushnet
density

(SE)

Light-trap
CPUE
(SE)

    (rough scad) 0.08 0.01 0.05 0.01 0.02 0.02

  Lutjanidae RA

    Unidentified
    (snapper)

0.03
0.03

†
†

0.08
0.04

†
†

0.16
0.16

    Lutjanus spp.
    (snapper spp.)

0.15
0.09

†
†

0.35
0.12

0.01
0.01

0.56
0.42

†
†

    Lutjanus griseus
    (gray snapper)

0.03
0.01

    Lutjanus synagris
    (lane snapper)

0.07
0.02

0.01
†

    Lutjanus
apodus/vivanus
    (schoolmaster/silk
snapper)

0.01
†

    Lutjanus campechanus
    (red snapper)

0.01
0.01

0.01
0.01

0.01
0.01

0.56
0.56

0.01
0.01

    Pristipomoides
aquilonaris
    (wenchman)

1.25
0.56

    Rhomboplites
aurorubens
    (vermilion snapper)

0.03
0.03

0.39
0.17

0.09
0.02

0.03
0.02

  Haemulidae RA

    Unidentified
    (grunt)

0.56
0.56

†
†

  Sparidae RA

    Unidentified
    (porgy)

0.02
0.02

0.02
0.02

0.01
†

0.13
0.13

0.02
0.01

    Sparidae Type B
    (porgy sp.)

0.02
0.01

    Calamus spp. 
   (porgy spp.)

†
†

0.09
0.09

    Lagodon rhomboides
    (pinfish)

0.24
0.16

  Mullidae RA

    Unidentified
    (goatfish)

†
†

0.13
0.07

0.02
0.01

†
†

    Mullus auratus
    (red goatfish)

†
†

0.02
0.01

    Pseudupeneus
maculatus

0.02
0.01
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Green Canyon Grand Isle South Timbalier Belle Pass

Taxa Ecology Plankton net
density

(SE)

Light-trap
CPUE
(SE)

Plankton net
density

(SE)

Light-trap
CPUE
(SE)

Plankton net
density

(SE)

Light-trap
CPUE
(SE)

Pushnet
density

(SE)

Light-trap
CPUE
(SE)

    (spotted goatfish)

    Upeneus parvus 
    (dwarf goatfish)

0.13
0.03

0.01
0.01

  Ephippidae RA

    Chaetodipterus faber
    (Atlantic spadefish)

0.03
0.02

0.79
0.36

0.05
0.02

  Chaetodontidae RD

    Unidentified
    (butterflyfish)

0.02
0.02

0.01
0.01

  Pomacentridae RD

    Unidentified
    (damselfish)

0.01
0.01

    Abudefduf saxatilis 
    (sergeant major)

0.01
0.01

0.03
0.02

    Abudefduf taurus
    (night sergeant)

†
†

    Chromis spp.
    (chromis spp.)

0.15
0.15

0.15
0.04

    Pomacentrus spp.
    (damselfish spp.)

0.07
0.03

0.06
0.03

0.17
0.05

0.01
0.01

  Sphyraenidae RA

    Sphyraena borealis 
    (northern sennet)

†
†

0.01
0.01

    Sphyraena guachancho
    (guaguanche)

0.32
0.27

0.01
0.01

0.94
0.31

0.01
†

  Labridae RD

    Unidentified
    (wrasse)

0.10
0.08

†
†

0.01
0.01

0.01
†

  Scaridae RD

    Unidentified
    (parrotfish)

7.33
2.11

0.03
0.01

0.02
0.02

    Sparisoma spp.
    (parrotfish spp.)

0.01
†

  Opisthognathidae RA

    Unidentified
    (jawfish)

0.47
0.17

0.23
0.07

    Opisthognathus spp.
    (jawfish spp.)

0.03
0.03

    Opisthognathus 0.03 0.01
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Taxa Ecology Plankton net
density

(SE)

Light-trap
CPUE
(SE)

Plankton net
density

(SE)

Light-trap
CPUE
(SE)

Plankton net
density

(SE)

Light-trap
CPUE
(SE)

Pushnet
density

(SE)

Light-trap
CPUE
(SE)

aurifrons
    (yellowhead jawfish)

0.03 0.01

    Opisthognathus
lonchurus
    (moustache jawfish)

0.05
0.05

  Blenniidae RA

    Unidentified
    (blenny)

0.55
0.34

0.08
0.05

3.02
2.05

0.26
0.07

2.36
0.83

0.07
0.02

0.03
0.02

0.02
0.01

    Chasmodes spp.
    (striped/Florida
blenny)

†
†

    Hypleuorchilus
bermudensis
    (barred blenny)

†
†

    Hypsoblennius spp.
    (blenny spp.)

†
†

    Hypsoblennius
hentz/ionthas
    (feather/freckled
blenny)

0.61
0.19

 0.16
0.16

0.25
0.08

1.95
0.45

1.04
0.27

    Hypsoblennius invemar
    (tessellated blenny)

0.03
0.03

†
†

0.02
0.02

3.35
0.64

0.56
0.56

0.20
0.07

    Ophioblennius
atlanticus
    (redlip blenny)

0.44
0.32

0.01
†

0.22
0.22

    Parablennius
marmoreus
    (seaweed blenny)

0.01
0.01

3.01
0.40

0.19
0.19

0.01
0.01

    Scartella cristata
    (molly miller)

0.34
0.08

0.03
0.02

   
Scartella/Hypleurochilus
    (blenny spp.)

0.14
0.08

0.42
0.08

1.74
1.18

0.28
0.12

  Gobiidae RA

    Unidentified
    (goby) 

6.73
1.75

0.20
0.14

8.18
0.96

0.09
0.02

27.7
11.7

0.10
0.03

0.81
0.23

0.03
0.01

    Bathygobius soporator
   (frillfin goby)

0.01
†

    Evorthodus
lyricus/Gobionellus
     boleosoma
    (lyre goby/darter goby)

0.01
†

    Bollmannia communis
    (ragged goby)

†
†
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Taxa Ecology Plankton net
density

(SE)

Light-trap
CPUE
(SE)

Plankton net
density

(SE)

Light-trap
CPUE
(SE)

Plankton net
density

(SE)

Light-trap
CPUE
(SE)

Pushnet
density

(SE)

Light-trap
CPUE
(SE)

    Gobionellus oceanicus
    (highfin goby)

0.01
0.01

†
†

    Gobiosoma spp.
    (goby spp.)

1.48
0.43

0.26
0.18

    Gobiosoma bosc
    (naked goby)

46.88
7.88

0.59
0.16

    Microgobius spp.
    (goby spp.)

4.17
1.30

0.04
0.03

  Scombridae RA

    Unidentified
    (mackerel)

1.42
0.72

0.01
0.01

0.26
0.15

0.05
0.03

0.23
0.17

0.01
†

    Acanthocybium
solandri
    (wahoo)

0.03
0.03

    Auxis spp.
    (mackerel spp.)

1.26
0.33

0.19
0.05

4.00
1.25

0.34
0.07

0.09
0.05

    Euthynnus alletteratus
    (little tunny)

0.47
0.17

0.07
0.02

4.33
0.74

1.29
0.23

0.43
0.25

0.51
0.18

    Katsuwonus pelamis
    (skipjack tuna)

0.03
0.02

0.03
0.01

    Scomber japonicus
    (chub mackeral)

0.01
0.01

    Scomberomorus spp.
    (mackerel spp.)

0.01
†

    Scomberomorus
cavalla
    (king mackerel)

0.06
0.05

0.02
0.01

0.10
0.04

0.13
0.04

4.97
2.91

0.06
0.02

    Scomberomorus
maculatus
    (Spanish mackerel)

0.51
0.28

0.01
†

0.28
0.12

0.07
0.02

6.05
1.94

0.33
0.07

†
†

    Thunnus spp.
    (tuna spp.)

0.07
0.07

0.01
0.01

†
†

    Thunnus thynnus
    (bluefin tuna)

0.11
0.07

†
†

Tetraodontiformes

  Balistidae RA

    Unidentified
    (leatherjacket)

0.01
0.01

†
†

    Monacanthus hispidus
    (planehead filefish)

†
†
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Table 5.11. Schoener's Index of Niche Overlap for all sampling sites. Values range from 0-1 and
include taxa (at least to the level of genus) from all gears used at each site.  Values
in parentheses represent indices calculated with the most dominant taxa removed
from each site. (BP) Belle Pass, (ST) South Timbalier, (GI) Grand Isle, (GC) Green
Canyon, (WC71D) West Cameron 71D, (WC352) West Cameron 352

GC 18 GI 94 ST 54 BP WC 71D WC 352

GC 18 1 . . . . .

GI 94 0.32 (0.29)a 1 . . . .

ST 54 0.53 (0.35)a 0.15 (0.45) 1 . . .

BP 0.07 (0.15)a 0.07 (0.09) 0.02 (0.25) 1 . .

WC 71D 0.52 (0.31)b 0.32 (0.29)b 0.17 (0.17)b 0.01 (0.06)b 1 .

WC 352 0.06 (0.13)d 0.16 (0.06)c 0.01 (0.12)c 0.03 (0.04)c ‡ 1

a indices computed with April-August samples only
b indices calculated with July samples only
c indices calculated with April, May and August samples only
d index calculated with November, February, April, May and August samples only
‡ no seasonal overlap in sampling efforts between WC 352 and WC 71D

(0.53) were GC 18 (shelf slope) and ST 54 (inner shelf) followed by GC 18 and WC 71D (inner
shelf/coastal) with a comparative value of 0.52. These relative similarities in taxonomic
compositions changed when the single, dominant taxon from each site were removed from
theanalyses. In many cases, the similarity indices were more reasonable for adjacent sites: GI 94
(mid-shelf) and ST 54 (0.45); GI 94 and GC 18 (0.29); and ST 54 and Belle Pass jetty (0.25). In
other instances, although similarities were dramatically reduced, the values were still relatively high
for sites that were distant from each other or represented large depth differences: ST 54 and GC 18
(0.35); WC 71D and GC 18 (0.31); and WC 71D and GI 94 (0.29). 

The diversity data, however, were much more similar along the transect of the three platforms and
the jetty. There was no significant difference in the diversity of the net samples (passive plankton
net or pushnet) between the sites (platforms or Belle Pass; "=0.05; Figure 5.3). The light-trap
samples at GC 18 had significantly lower mean Shannon-Weiner diversity index values, while GI
94 had significantly higher mean diversity values than the other locations (Tukey’s Studentized
Range test, "=0.05; Figure 5.3). The diversity of light-trap collections at the two more coastal sites,
ST 54 and Belle Pass, were intermediate and not significantly different from one another.

Environmental Variables and Larval Abundances

At GC 18, salinity and temperature were the most useful environmental parameters measured in
describing trends in larval and juvenile fish abundances. For plankton net collections, densities of
Cynoscion arenarius, Scomberomorus maculatus, and Symphurus spp. were negatively associated
with the first environmental canonical variate, which was primarily influenced by salinity (Table
5.12). Densities of Auxis spp., Caranx crysos, C. hippos/latus, Pristipomoides aquilonaris, and
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Figure 5.3. Mean Shannon-Weiner diversity indices (with standard error bars) for plankton net
(GC 18, GI 94, and ST 54) or pushnet (Belle Pass) collections (upper panel) and
light-trap collections (lower panel) from each sampling site. The same letter above
each bar indicates no significant difference between the sites based on Tukey’s
Studentized Range ("=0.05). Different letters indicate significant differences.
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Table 5.12. Results of a canonical correlation analysis on log-transformed plankton net densities
(15 most  dominant taxa) and environmental variables for Green Canyon 18.
Loadings in bold under statistically significant canonical variates V1 and V2 explain
at least 15% of the variation (interset correlation of 0.387) for that taxon. Loadings
in bold under the environmental canonical variates W1 and W2 indicate the most
influential environmental variables.

Canonical Correlation Likelihood Ratio Approximate F Pr > F

1     0.750369 0.26739839 2.8134 0.0001

2     0.502430 0.61197053 1.3766 0.0680

Taxa Correlations between plankton net densities and their
canonical variates

V1 V2

Ariomma spp. 0.1426 -0.0114

Auxis spp. 0.0857  0.5186

Bregmaceros cantori 0.1748 -0.1150

Caranx crysos 0.2340  0.6215

Caranx hippos/latus 0.1016  0.6166

Citharichthys spilopterus 0.1724 -0.4127

Cyclothone braueri 0.1817 -0.1283

Cynoscion arenarius -0.7049  0.1691

Lepophidium spp. 0.0850  0.0303

Mugil cephalus 0.2068 -0.4356

Peprilus burti 0.1115 -0.2048

Pristipomoides aquilonaris 0.1901  0.4764

Sciaenops ocellatus 0.0597  0.4175

Scomberomorus maculatus -0.7415  0.0507

Symphurus spp. -0.7149 -0.0638

Environmental Variables Correlations between environmental variables and
their canonical variates

W1 W2

Zooplankton Biomass -0.3742  0.1562

Suspended Solids  0.0640 -0.2760

Salinity  0.9829 -0.1659

Temperature -0.5120  0.8549
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Sciaenops ocellatus were positively associated with the second environmental canonical variate,
which was marginally significant (p=0.068) and primarily influenced by temperature. Densities of
Citharichthys spilopterus and Mugil cephalus were negatively associated with the second
environmental variate. For the dominant taxa collected with light-traps, six taxa, primarily benthic species
such as Saurida brasiliensis, Microdesmus longipinnis, Syacium spp., and Symphurus spp., were
positively associated with the first environmental variate, which was negatively correlated with salinity
and positively correlated with macrozooplankton biomass (Table 5.13). Five taxa, comprised mostly of
pelagic taxa (i.e., Auxis spp., C. crysos, C. hippos/latus, and Eucinostomus spp.) were positively
associated with the second environmental variate, which was primarily explained by temperature.

At GI 94, temperature contributed substantially to our model in describing trends in larval and juvenile
fish abundances. For plankton net collections, densities of Euthynnus alletteratus and Symphurus spp.
were positively associated with the first environmental variate, which was positively correlated with
temperature and negatively correlated with salinity, while Synodus foetens was inversely correlated with
this variate (Table 5.14). The second environmental variate was explained primarily by salinity, and was
positively associated with the scombrids Auxis spp. and E. alletteratus. For dominant taxa collected with
light-traps, abundances of the blenny Parablennius marmoreus and the lizardfishes S. foetens and S. poeyi
were positively associated with the first environmental variate, which was positively correlated with
salinity and negatively correlated with temperature (Table 5.15). A third lizardfish species, Saurida
brasiliensis, and E. alletteratus were negatively associated with the first environmental variate. Synodus
foetens was also negatively associated with the second environmental variate, which was correlated with
low macrozooplankton biomass. The third environmental canonical variate was only marginally
significant (p=0.067) and was positively correlated with macrozooplankton biomass. Abundances of
Caranx crysos, Pomacentrus spp., S. foetens, and S. poeyi were positively associated with this
environmental variate.

At ST 54, the seasonal variables temperature and salinity were again the most correlated with the
environmental canonical variates. For plankton net collections, densities of the pelagic species
Chloroscombrus chrysurus and Scomberomorus maculatus were positively associated with the first
environmental variate, which were marginally significant (p=0.0552) and positively influenced by
salinity and temperature (Table 5.16). Bregmaceros cantori and Etropus crossotus were negatively
associated with the first environmental variate. For light-trap collections, abundances of the carangids
Caranx crysos and C. chrysurus were positively associated with the first environmental variate, which
was positively correlated with temperature and salinity (Table 5.17). Cynoscion arenarius and S.
maculatus were negatively associated with the first environmental variate. A second environmental
canonical variate was marginally significant (p=0.0708) and was also influenced by salinity. Abundances
of Cynoscion arenarius were positively associated with the second environmental variate and Saurida
brasiliensis was negatively associated with the second environmental variate. 

At Belle Pass, temperature and salinity, were still influential environmental variable, but turbidity and
dissolved oxygen were also important in our models. For pushnet collections, three common coastal taxa
(Dormitator maculatus, Gobiesox strumosus, and Hypsoblennius hentz/ionthas) were negatively
associated with the first canonical variate, which was explained primarily by temperature (Table 5.18).
A second environmental variate was positively correlated with dissolved oxygen and negatively
correlated with turbidity. Abundances of Citharichthys spp., Cynoscion arenarius, Cynoscion nebulosus,



246

Table 5.13. Results of a canonical correlation analysis on log-transformed light-trap CPUEs (18
most  dominant taxa) and environmental variables for Green Canyon 18. Loadings
in bold under statistically significant canonical variates V1 and V2 explain at least
15% of the variation for that taxon. Loadings in bold under the environmental
canonical variates W1 and W2 indicate the most influential environmental variables.

Canonical Correlation Likelihood Ratio Approximate F Pr > F

1     0.566445 0.50304207 3.1136 0.0001

2     0.413382 0.74070398 1.8532 0.0004

Taxa Correlations between light-trap CPUEs and their
canonical variates

V1 V2

Auxis spp. -0.3640  0.5669

Bregmaceros cantori -0.0579 -0.0234

Caranx crysos -0.1666  0.6483

Caranx hippos/latus -0.1349  0.3970

Cyclothone braueri  0.2205  0.1095

Cynoscion arenarius  0.2667  0.1967

Eucinostomus spp. -0.1460  0.3976

Euthynnus alletteratus  0.4647  0.3416

Gobiesox strumosus  0.1569  0.0549

Holocentrus spp. -0.3507  0.4954

Microdesmus longipinnis  0.3868  0.1855

Mugil cephalus -0.1229 -0.3138

Peprilus burti -0.1153 -0.0422

Pomacentrus spp.  0.5047  0.2425

Saurida brasiliensis  0.4637  0.2239

Syacium spp.  0.4087  0.2510

Symphurus spp.  0.5289  0.2751

Trachinocephalus myops -0.2060  0.2437

Environmental Variables Correlations between environmental variables
and their canonical variates

W1 W2

Zooplankton Biomass  0.5991  0.3731

Suspended Solids -0.1026 -0.2868

Salinity -0.8725 -0.4174

Temperature  0.3657  0.9057
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Table 5.14. Results of a canonical correlation analysis on log-transformed plankton net densities
(15 most  dominant taxa) and environmental variables for Grand Isle 94. Loadings
in bold under statistically significant canonical variates V1 and V2 explain at least
15% of the variation for that taxon. Loadings in bold under the environmental
variates W1 and W2  indicate the most influential physical variables.

Canonical Correlation Likelihood Ratio Approximate F Pr > F

1     0.588892 0.50402811 3.8641 0.0001

2     0.406611 0.77162236 2.0014 0.0002

Taxa Correlations between plankton net densities
and their canonical variates

V1 V2

Auxis spp.  0.0642  0.5517

Bregmaceros cantori  0.0074  0.0583

Caranx crysos  0.3272  0.0475

Chloroscombrus chrysurus  0.3167 -0.2754

Cynoscion arenarius  0.2667 -0.1755

Etropus crossotus -0.1902  0.1164

Euthynnus alletteratus  0.5109  0.5440

Microdesmus lanceolatus -0.1983  0.3366

Peprilus paru  0.2351  0.0501

Saurida brasiliensis  0.1278  0.0595

Sphraena guachancho  0.3473  0.1880

Syacium spp.  0.2955 -0.0865

Symphurus spp.  0.7408 -0.1918

Synodus foetens -0.5515 -0.3527

Synodus poeyi -0.1838  0.0322

Environmental Variables Correlations between environmental variables
and their canonical variates

W1 W2

Zooplankton Biomass  0.0176 -0.3841

Suspended Solids -0.2643  0.0480

Salinity -0.7272  0.6783

Temperature  0.9987  0.0063
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Table 5.15. Results of a canonical correlation analysis on log-transformed light-trap CPUEs (16
most  dominant taxa) and environmental variables for Grand Isle 94. Loadings in
bold under statistically significant canonical variates V1, V2, and V3 explain at least
15% of the variation for that taxon. Loadings in bold under environmental variates
W1, W2, and W3 indicate the most influential environmental variables.

Canonical Correlation Likelihood Ratio Approximate F Pr > F

1     0.727366 0.36024110 8.2854 0.0001

2     0.407126 0.76494371 2.8369 0.0001

3     0.250076 0.91692543 1.4435 0.0647

Taxa Correlations between light-trap CPUEs and their canonical variates

V1 V2 V3

Auxis spp.  0.3411  0.3626  0.0228

Bregmaceros cantori -0.1958 -0.0774 -0.0539

Caranx crysos -0.2602 -0.0894  0.4223

Caranx hippos/latus  0.3000 -0.2098 -0.1797

Chromis spp.  0.1613  0.3585  0.2160

Euthynnus alletteratus -0.4596 -0.0891  0.2976

Hypsoblennius hentz/ionthas  0.2219  0.2988  0.3527

Hypsoblennius invemar  0.2575  0.2320  0.2696

Parablennius marmoreus  0.7294  0.0392  0.1578

Pomacentrus spp. -0.0228  0.3720  0.4550

Rhomboplites aurorubens -0.1795  0.0404  0.1092

Saurida brasiliensis -0.4268 -0.3509  0.0881

Scartella/Hypleurochilus  0.3028  0.2477  0.1846

Symphurus spp. -0.2566  0.0372  0.1930

Synodus foetens  0.4688 -0.5865  0.4341

Synodus poeyi  0.4316  0.0227  0.5475

Environmental Variables Correlations between environmental variables and their canonical variates

W1 W2 W3

Zooplankton Biomass -0.2046 -0.5927 0.7534

Suspended Solids 0.2965 0.0269 0.1712

Salinity 0.8998 0.3507 0.2520

Temperature -0.9412 0.3281 -0.0758
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Table 5.16.  Results of a canonical correlation analysis on log-transformed plankton net densities
(15 most  dominant taxa) and environmental variables for South Timbalier 54.
Loadings in bold under the statistically significant canonical variate V1 explain at
least 15% of the variation for that taxon. Loadings in bold under environmental
variate W1 indicate the most influential environmental variables.

Canonical Correlation Likelihood Ratio Approximate F Pr > F

1     0.695653 0.29159946 1.3663 0.0552

Taxa Correlations between plankton net densities
and their canonical variates

V1

Bregmaceros cantori -0.4343

Caranx hippos/latus  0.0448

Chaetodipterus faber -0.2547

Chloroscombrus chrysurus  0.7188

Cynoscion arenarius  0.3017

Etropus crossotus -0.5026

Menticirrhus spp. -0.1820

Microdesmus lanceolatus  0.2774

Ophidion nocomis/selenops -0.2217

Peprilus burti -0.1917

Peprilus paru  0.3096

Scartella/Hypleurochilus -0.1934

Scomberomorus cavalla  0.1881

Scomberomorus maculatus  0.4750

Symphurus spp. -0.0072

Environmental Variables Correlations between environmental variables
and their canonical variates

W1

Zooplankton Biomass  0.1809

Suspended Solids  0.4344

Salinity  0.9623

Temperature  0.7410



250

Table 5.17. Results of a canonical correlation analysis on log-transformed light-trap CPUEs (16
most  dominant taxa) and environmental variables for South Timbalier 54. Loadings
under statistically significant canonical variates V1 and V2 explain at least 15% of
the variation for that taxon. Loadings in bold under environmental canonical variates
W1 and W2 indicate the most influential environmental variables.

Canonical Correlation Likelihood Ratio Approximate F Pr > F

1     0.667016 0.38618143 2.6350 0.0001

2     0.472763 0.69571078 1.3486 0.0708

Taxa Correlations between light-trap CPUEs and
their canonical variates

V1 V2

Caranx crysos  0.4844  0.1927

Chloroscombrus chrysurus  0.3888  0.3043

Cynoscion arenarius -0.4716  0.4499

Etropus crossotus -0.1215 -0.2264

Euthynnus alletteratus  0.1801  0.0141

Gobiesox strumosus -0.3192  0.3644

Hypsoblennius hentz/ionthas -0.2699  0.0054

Hypsoblennius invemar -0.1376 -0.2595

Peprilus burti -0.3591  0.1883

Saurida brasiliensis -0.1630 -0.4101

Scartella/Hypleurochilus -0.1226 -0.1717

Scomberomorus cavalla  0.2114 -0.0868

Scomberomorus maculatus -0.4006 -0.1659

Sphoeroides parvus -0.0846 -0.1286

Synodus foetens -0.3693 -0.2336

Trachinocephalus myops -0.1217 -0.1479

Environmental Variables Correlations between environmental variables
and their canonical variates

W1 W2

Zooplankton Biomass  0.3169  0.1424

Suspended Solids  0.2328 -0.2829

Salinity  0.7209  0.6438

Temperature  0.9880 -0.1033
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Table 5.18. Results of a canonical correlation analysis on log-transformed pushnet densities (15
most  dominant taxa) and environmental variables for Belle Pass jetty.  Loadings in
bold under the statistically significant canonical variates V1, V2, and V3 explain at
least 15% of the variation for that taxon.  Loadings in bold under environmental
variates W1, W2, and W3 indicate the most influential environmental variables.

Canonical Correlation Likelihood Ratio Approximate F Pr > F

1     0.746141 0.12473748 3.3677 0.0001

2     0.709788 0.28140077 2.6115 0.0001

3     0.553340 0.56711076 1.5750 0.0201

Taxa Correlations between pushnet densities and their canonical variates

V1 V2 V3

Bairdiella chrysoura -0.1343  0.3102 -0.1418

Citharichthys spp. -0.0063  0.6759  0.0738

Cynoscion arenarius  0.2336  0.7453  0.3118

Cynoscion nebulosus  0.1423  0.4605  0.1065

Dormitator maculatus -0.6133  0.2318 -0.2055

Gobiesox strumosus -0.7488  0.2128 -0.1829

Gobionellus oceanicus  0.2488  0.2903  0.0099

Gobiosoma bosc -0.3128  0.5788  0.0476

Gobiosoma spp. -0.2878 -0.1962 -0.4318

Hypsoblennius hentz/ionthas -0.3878 -0.1485  0.0130

Membras martinica -0.2631 -0.3167  0.7042

Microgobius spp.  0.2499 -0.3423 -0.2313

Sciaenops ocellatus  0.2969  0.3477  0.2035

Symphurus spp. -0.1966  0.2238  0.2620

Synodus foetens -0.1768  0.3649 -0.2772

Environmental Variables Correlations between environmental variables and their canonical variates

W1 W2 W3

Temperature  0.9097  0.1977 -0.1327

Salinity  0.0587 -0.0616  0.9812

Dissolved Oxygen -0.0430  0.8447 -0.5265

Turbidity  0.3061 -0.5865 -0.4929
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Table 5.19. Results of a canonical correlation analysis on log-transformed light-trap CPUEs (15
most  dominant taxa) and environmental variables for Belle Pass jetty. Loadings in
bold under the statistically significant variate V1 explain at least 15% of the variation
for that taxon. Loadings in bold under environmental canonical variate W1 indicate
the most influential physical variables.

Canonical Correlation Likelihood Ratio Approximate F Pr > F

1     0.679900     0.33598275 1.56599 0.0032

Taxa Correlations between light-trap CPUEs and
their canonical variates

V1

Bairdiella chrysoura  0.2172

Chloroscombrus chrysurus  0.1320

Citharichthys spp. -0.1391

Cynoscion arenarius -0.2046

Dormitator maculatus -0.1928

Gobiesox strumosus -0.8280

Gobionellus oceanicus  0.1573

Gobiosoma bosc -0.1403

Gobiosoma spp. -0.1859

Hypsoblennius hentz/ionthas -0.6848

Membras martinica  0.2208

Microdesmus longipinnis  0.0841

Sphoeroides parvus -0.6076

Symphurus spp.  0.0819

Synodus foetens -0.0705

Environmental Variables Correlations between environmental variables
and their canonical variates

W1

Temperature 0.7618

Salinity 0.1838

Dissolved Oxygen -0.2384

Turbidity 0.4234
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and Gobiosoma bosc were positively associated with the second canonical variate. Abundances of
Gobiosoma spp. were negatively associated with the third environmental variate, which was
positively correlated with salinity, while Membras martinica was positively associated with this
variate. For light-trap collections, three taxa (i. e., G. strumosus, H. hentz/ionthas, and Sphoeroides
parvus) were negatively associated with the first canonical variate, which was positively correlated
with temperature, and to a lesser extent, turbidity (Table 5.19).

DISCUSSION

Overall, reef-dependent taxa (e.g., chaetodontids, pomacentrids, labrids, and scarids) were relatively
rare (Table 5.10). Pomacentrids and chaetodontids were collected only at the shelf slope and mid-
shelf sites, while labrids and scarids were also collected at the inshore sites. Our total of 67 families
collected at oil and gas platforms throughout the course of this study is comparable with previously
published surveys from the GOM (61 families, Ditty et al. 1988; 74 families, Richards et al. 1984),
but is generally less than surveys that included more tropical waters (85 families, McGowan 1985;
91 families, Limouzy-Paris et al. 1994; 96 families, Richards 1984; 100 families, Richards et al.
1993). While reef-dependent fish were uncommon, reef-associated fish (e.g., carangids, scombrids,
blenniids) were much more common and many times represented a significant component of the
community assemblage at each site.

Ichthyoplankton Community Assemblage at GC 18

The ichthyoplankton community at GC 18 (230 m depth on the shelf slope, Gallaway’s outer shelf
of > 60 m) was dominated by coastal pelagic species, particularly engraulids and clupeids which
accounted for 33% and 25% of the total catch by both gear types, respectively (Table 5.6).
Opisthonema oglinum was the dominant species in the mid-to-late summer months, while
unidentified engraulids peaked in November. Engraulis eurystole was also relatively common
throughout the summer and early fall. Another pelagic species, Mugil cephalus, was relatively
common in the fall-winter months and peaked in November. Larvae of M. cephalus are most
commonly found over the outer to mid-shelf (Ditty and Shaw 1996), so their presence at our outer
shelf sampling station is not surprising. Though the adults are common on the continental shelf and
coastally (Hoese and Moore 1977), M. cephalus was not collected at the mid- or inner-shelf
platforms. This is primarily a result of our shortened sampling efforts (April-August or September)
at the other platforms, which did not encompass their spawning season (October through March;
Leard et al. 1995), so its relative larval abundance at these platforms is unknown. The carangids
Caranx crysos and C. hippos/latus were relatively common, and though they are usually considered
pelagic species, they are often associated with platform structures (Table 5.4).

Some of the more abundant demersal taxa included the flatfish Citharichthys spilopterus, Symphurus
spp., and Syacium spp., as well as the sciaenid Sciaenops ocellatus and bregmacerotid Bregmaceros
cantori. While not unique to this site, the mesopelagic species, Cyclothone braueri, was common
in subsurface net collections, and myctophids were present in subsurface light-trap collections.
Though not abundant, other outer shelf species of note include Diplophos taenia, Chlorophthalamus
agassizi, Scopelarchoides spp., Paralepis atlantica, and Lestrolepis intermedia. While the adults
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are seldom observed, the planktonic nature of the early life history stages of these mesopelagic taxa
made them a significant component of the outer shelf ichthyoplankton assemblage at GC 18.

The most dominant reef-associated fishes at GC 18 were unidentified gobiids. Second in abundance
were serranids, most of which were from the poorly known subfamily Anthiinae. Anthiine adults
are residents of rocky reefs on the outer shelf and are not usually found on shallow, inshore reefs
(Thresher 1984). Other serranids included Epinephelus spp. and Mycteroperca spp. Lutjanids were
also fairly common among the reef fish taxa, primarily Pristipomoides aquilonaris, one of the most
common residents of mid- and outer-shelf reefs (Hoese and Moore 1977). Other noteworthy taxa
included unidentified blennies, Holocentrus spp., (reef-associated) and Pomacentrus spp. (reef-
dependent).

The relatively low abundance of reef fish larvae and juveniles compared to pelagic species at our
outer platform site is in contrast to the adult community described by Gallaway (1981). However,
the studies cited in Gallaway’s (1981) synthesis were primarily visual surveys interested in adult
fishes associated with the natural and artificial structures, and not necessarily taxa in the surrounding
water column. Pelagic species, therefore, may have been underestimated in those previous studies.
Also, reef fish communities are limited, in part, by the supply of pelagic larvae, usually from
upstream sources rather than the resident populations (Sponaugle and Cowen 1996; Victor 1986).
Reefs and platforms located on the shelf slope would theoretically have significantly fewer upstream
sources of potential recruits than those on the mid-shelf, where other natural hard-bottom or reef
habitats may be more abundant, or where the density of platforms is orders of magnitude greater.
Therefore, the extremely remote location of GC 18 (shelf slope) is probably the limiting factor with
regards to the pool of available larvae to be sampled.

Ichthyoplankton Community Assemblage at GI 94

At GI 94 (60 m depth, Gallaway’s mid-shelf of 20-60 m), pelagic species dominated the catches as
well, but there appeared to be a taxonomic shift in dominance. Clupeiforms again dominated the
collections, but engraulids became more prominent in abundance (57%) than clupeids (9%).
Unidentified engraulids were the most abundant pelagic taxa in the plankton nets, and Engraulis
eurystole were very common in light-trap collections (Table 5.7). Opisthonema oglinum, which was
the most dominant clupeid at GC 18, ranked third in overall abundance. Caranx crysos and C.
hippos/latus were not as dominant at this site as they were at GC 18, but as a family, the carangids
had more species richness at GI 94. Oligoplites saurus, Seriola dumerili/rivoliana, S. fasciata,
Trachinotus carolinus, and T. falcatus/goodei were all present at GI 94, but absent at GC 18.
Similarly, Rachycentron canadum, although not very common, were also collected at GI 94 and not
at GC 18. As with the carangids, R. canadum is also considered to be a reef-associated species. 

Second in abundance to the pelagic forms at GI 94 were demersal taxa, particularly synodontids
which comprised 14.7% of the total catch and were approximately equal to the total catch of all
perciform fishes combined (15.1%). Unidentified synodontids, Saurida brasiliensis, Synodus
foetens, and Synodus poeyi were very common in the late spring and summer months. Like the
carangids, this group was more species rich at GI 94, with seven taxa identified to species as
compared to three at GC 18. Other common demersal taxa included Symphurus spp., Syacium spp.,
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and Bregmaceros cantori. Mesopelagic species were not as speciose and abundant as those at GC
18, but some were collected, including Cyclothone braueri, Vinciguerria nimbaria, and Lestrolepis
intermedia.

Overall, there was greater taxonomic richness among reef fish at GI 94 than GC 18. By far the most
dominant reef-associated fish taxa at GI 94 were blenniids, particularly Parablennius marmoreus
and Hypsoblennius invemar. These fishes are perhaps one of the most common taxa affiliated with
oil and gas platforms, but are probably underestimated in visual surveys due to their small size,
cryptic coloration, and tendency to hide in attached barnacle shells. Some blenniids have been found
to be rather unusual compared to other common reef-associated taxa in that they have demersal eggs
and pelagic, yet fairly competent larvae that appear to be able to feed immediately and are attracted
to light (Thresher 1984). If the same early life history attributes are true for the blennies collected
at our platform sites, then these traits may combine to form a mechanism by which these taxa are
retained and concentrated around platform structures. Other reef taxa that hatch from demersal eggs
and have demonstrated photopositive behavior include gobies and pomacentrids, although these
larvae are not as competent upon hatching (Thresher 1984). At GI 94, unidentified gobiids and
pomacentrids, primarily Chromis spp. and Pomacentrus spp., ranked next in abundance. Unique to
this site was the collection of opisthognathids in surface waters (plankton nets as well as surface and
off-platform light-traps) during the spring-early summer. Adult Opisthognathus aurifrons are
reported to be tropical (south Florida, Bahamas, northern South America) and rarely collected on
the mid-to-outer shelf (Hoese and Moore 1977; Robins et al. 1986). Adult O. lonchurus are also
reported to inhabit the northeast GOM as well as tropical waters (Robins et al. 1986). The presence
of these larvae reinforces the notion that oil and gas platforms may play a role in extending the
ranges of more tropical forms that would otherwise be habitat limited in the northcentral GOM. 

Other taxonomic differences in reef-associated fish composition were observed between GI 94 (mid-
shelf) and GC 18 (outer shelf). At GI 94, lutjanids were also relatively common, with Rhomboplites
aurorubens the dominant species, followed by Lutjanus spp. While Pristipomoides aquilonaris was
the primary lutjanid at GC 18, none were collected at this mid-shelf site. With regards to serranids,
the dominant group was serraniines (e.g., Diplectrum spp., Centropristis spp., and Serranus spp.),
while relatively few anthiines were collected. Also noteworthy was the relatively high abundance
of mullids collected at GI 94 (only one individual was collected at GC 18), particularly Upeneus
parvus, a common species on the mid-to-inner shelf (Hoese and Moore 1977). 

Ichthyoplankton Community Assemblage at ST 54

At ST 54, clupeiform fishes (mostly clupeids) overwhelmed the plankton net and light-trap
collections, and comprised 97% of the total catch (all gears combined). The dominant clupeid was
Opisthonema oglinum, which alone comprised 94% of the total catch (Table 5.8). Harengula
jaguana, though present at GI 94, were more prominent at ST 54. This trend of increasing
dominance of clupeiform fishes continued as our sampling efforts moved inshore. In general, it is
difficult to discuss the abundances of the other taxa except in very relative terms, since no families
of fishes (with the exception of clupeids and engraulids) comprised over 1% of the total catch.
Among pelagic fishes, the reef-associated carangids and scombrids were relatively abundant,
particularly Caranx hippos/latus, Euthynnus alletteratus, and Scomberomorus maculatus.
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Similar to GI 94, the second most abundant group of fishes at ST 54 was composed of demersal
species. However, unlike GI 94 where synodontids dominated, sciaenids were the most dominant
family, primarily Cynoscion arenarius, which was collected throughout the sampling season. Not
only did the number of sciaenids increase, but the number of their taxa increased as well, from three
at GI 94 to five at ST 54. Cynoscion arenarius dominated the plankton net catches, but synodontids,
primarily Synodus foetens, dominated the light-trap collections. Synodontids were not as prominent
at ST 54 as they were at GI 94, and the number of taxa decreased from 7 to 4. Other demersal taxa
collected included unidentified myctophiforms, Trichiurus lepturus, Symphurus spp., and Etropus
crossotus. 

The most abundant reef/structure-associated fishes were blenniids and gobiids. Unlike GI 94,
Parablennius marmoreus was relatively uncommon. The dominant species at ST 54 were
Scartella/Hypleurochilus spp., Hypsoblennius hentz/ionthas, and H. invemar. Difficulties in
identification prevent us from confidently separating H. hentz from H. ionthas and Scartella spp.
from Hypleurochilus spp., but all of these taxa are common in nearshore areas and hard-bottomed
habitats, such as oyster reefs and pilings (Hoese and Moore 1977). In general, at ST 54, reef fish,
although not abundant, were relatively well represented in terms of number of taxa, rivaling that of
GI 94. However, other than blenniids and gobiids, abundances of other reef fish were very low (less
than a total of 10 individuals collected per taxa) but included Rhomboplites aurorubens and
unidentified pomacentrids, serranids, and ephippids. 

The low reef fish abundances are not surprising, particularly for the more tropical taxa such as
haemulids, labrids, and scarids. The adults of these taxa are more typical of the outer shelf
assemblages (Table 5.4). Similarly with regards to reef fish larvae and juveniles, this trend of
decreasing taxonomic richness towards the more inshore environments is supported somewhat by
our study, particularly with regards to scarids (Tables 5.6–5.8). Even though an inner shelf platform
would be downstream from potentially more offshore sources of larvae and recruits, perhaps the
relatively greater distances involved necessitating extended pelagic larval durations and the
potentially less favorable inshore environmental conditions result in increased mortality (Leis 1991).

Ichthyoplankton Community Assemblage at the Belle Pass Jetties

The jetty at Belle Pass, though different in its structural complexity, vertical height, and
hydrodynamics shared at least one similarity with the platforms in that it was also dominated by
clupeiform fishes (74% of total catch). The taxonomic composition of this group was different,
however, in that engraulids, particularly Anchoa mitchilli, dominated catches (Table 5.9). The trend
of increasing numbers of Harengula jaguana and Brevoortia patronus as the sampling sites moved
progressively inshore continued as well. Another difference was the relatively high abundance of
a different pelagic group, the atherinids, particularly Membras martinica, a common coastal pelagic
species. 

By far the most dominant demersal species was Cynoscion arenarius, and in general, the number
of sciaenid taxa increased from the platform sites. Bairdiella chrysoura was also relatively common.
Micropogonias undulatus, Sciaenops ocellatus, Pogonias chromis, and C. nebulosus were all
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collected as well, none of which were collected at ST 54 and GI 94, although some M. undulatus
and S. ocellatus were collected at GC 18. The jetty site also commonly had the predominantly
estuarine species, Gobiesox stromosus. The ophichthid eels were most abundant at Belle Pass where
they were also the most speciose taxonomic group, with Myrophis punctatus being the dominant
species. The flatfish Citharichthys spp. and Symphurus spp. were also very common.

The reef/structure-associated fish group was dominated by small, estuarine/coastal species, primarily
Gobiosoma bosc, which comprised 75% of the gobiids collected. This species is very common in
coastal areas of the northern GOM, and the adults are typically found in association with weeds and
oyster beds in protected bays and estuaries (Hoese and Moore 1977; Robins et al. 1986). The second
most abundant gobiid was Gobionellus oceanicus (formerly Gobionellus hastatus) which comprised
14% of the total catch. Adults of this species are common in estuaries but are also found in deeper
waters (22-40 m) on the shelf (Hoese and Moore 1977). Other common gobiid taxa were
Microgobius spp. and Gobiosoma spp. Based on the dominance of estuarine species collected at
Belle Pass within this family, it is likely that the individuals in these two genera are also estuarine
forms, even though these genera contain tropical forms as well. Taxa from a related group, the
eleotrids, were also relatively common in our jetty samples. Blenniids were also a very common
group, particularly Hypsoblennius hentz/ionthas and Scartella spp. Other reef or structure-associated
fish taxa collected at Belle Pass include labrids, ephippids, scarids, and sparids. 

Lutjanus griseus and L. synagris juveniles, though not abundant, were also collected at Belle Pass.
Lutjanus griseus juveniles are more common along the western GOM and Florida coasts where they
are collected in their preferred habitat, relatively high salinity seagrass beds (Pattillo et al. 1997).
However, they have been reported (although less frequently) in association with other structures,
such as pilings, jetties and rocks (Starck 1971). Young L. synagris are also present in coastal areas
(Hoese and Moore 1977). The presence of these species at the jetty is noteworthy because it
indicates that coastal, artificial structures even in relatively low salinity environments may play a
role as nursery areas in absence of other structurally-complex habitats, such as grassbeds in more
high-salinity, oligotrophic estuaries. Many species of reef fish do not settle directly onto reefs but
utilize other coastal habitats as nursery grounds prior to moving to offshore reefs. While habitats
such as high-salinity seagrass beds are important to many reef related species (Connolly 1994), other
structurally-complex habitats have been identified as nurseries (Ferrell and Bell 1991; Bennett 1989;
Ross and Moser 1995). Seagrass beds are often the most common form of shelter available in certain
settlement areas, but experimental evidence suggests that presettlement larvae of a number of
different species select any structurally-complex habitat at the time of settlement (Bell et al. 1987).
Due to the overwhelming influence of the Mississippi River and its distributaries, Louisiana
estuarine and coastal areas are generally low salinity (18-25 ppt at Belle Pass during the course of
this study), turbid, and lacking in seagrass beds and naturally-occurring hard substrate habitats
(except for oyster reefs). Therefore, the role of the artificial habitats such as jetties and breakwaters
may be more important as islands of refuge for individuals that would otherwise be lost to unsuitable
habitat and, therefore, mortality.
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Taxonomic Similarity Between Sites

In an effort to examine the relative similarity in taxonomic assemblages between the different sites
(including the pilot study sites WC 71D and WC 352) we computed Schoener’s Index of Niche
Overlap for each site. Since all sites sampled during this study were heavily dominated by a single
taxon, for the sake of this discussion we will compare only the similarity values calculated after the
dominant taxa were removed. In general, the index values indicate that the sites were not very
similar, with the highest similarity value between any two sites being 0.45 for GI 94 and ST 54
(mid- and inner shelf). This is not unexpected, since we purposely chose sampling sites in different
depth zones across the shelf where there should be some faunal transitions (Gallaway et al. 1980;
Gallaway 1981), and indeed there were in many instances. The Belle Pass jetty, which was heavily
influenced by the presence of estuarine and coastal pelagic taxa, was very different from the mid-
shelf (GI 94) and outer shelf (GC 18) platforms, where mesopelagic and tropical taxa were
influential. Similarity indices for GI 94 displayed the expected cross-shelf transitional pattern, with
the highest similarity values being for the adjacent sites, ST 54 and GC 18, followed by Belle Pass.
The highest similarity index for GC 18, however, was with ST 54, the inner-shelf platform, whereas
we might have expected GC 18 to most similar to GI 94. This somewhat unexpected result is
probably due to the large number of reef taxa collected at GI 94 that were unique to that site (Table
5.7). Reef fish taxa such as Chromis spp., Abudefduf taurus, Mullus auratus, Ophioblennius
atlantica, Pseudopeneus maculatus, Opisthognathus aurifrons, and Opisthognathus lonchurus were
collected only at the GI 94 platform. Other taxa (ephippids and scarids) were collected at GC 18 and
ST 54, but not at GI 94. 

The more westerly pilot study sampling sites (Figure 5.2) were also included in these analyses and
yielded interesting results. WC 352 (20 m depth) was the least similar to any of the other sites with
values ranging from 0.04-0.13 (April, May, and August samples only; Table 5.11). Within
Gallaway’s three depth zones, we would have expected this site to be relatively similar to ST 54
(approximately 20 m) in taxonomic composition. Between these two sites, 25 taxa were collected
only at WC 352, including relatively large numbers of Archosargus probatocephalus, Cypselurus
cyanopterus, Microdesmus longipinnis, and Kyphosis spp., whereas 41 taxa were collected only at
ST54, including large numbers of Cynoscion arenarius, Scomberomorus maculatus, Harengula
jaguana, and Peprilus burti. While all of these fishes are common inner shelf taxa, it would appear
that the WC 352 site was influenced much more by its proximity to the Flower Gardens and the
influence of the Mexican-Texas Current, which flows from Mexican waters northward along the
Texas coast and seasonally progresses up along the western coast of Louisiana (Cochrane and Kelly
1986) and may be an additional source of reef or hard-substrate oriented fishes. Differences in local
current and temperature regimes, as well as the timing of spawning events between different
populations of the same species along the coast may have also resulted in the observed differences.

Interestingly, WC 71D (12 m) was most similar (0.31) to GC 18 (shelf slope) and least similar to
ST 54 and Belle Pass (0.17 and 0.06, respectively; Table 5.11). This comparison, however, is
confounded by July being the only month used for comparisons and by multiple light-trap designs
being deployed at WC 71D. The dominant taxa at WC 71D were Opisthonema oglinum and Anchoa
spp. (41% and 12% of total catch, respectively). These taxa were also dominant at GC 18 during
July, where O. oglinum and Anchoa spp. comprised 34% and 19% of the total catch for July,
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respectively, resulting in a relatively high similarity index (0.52) between the two sites initially.
However, this value decreased considerably once O. oglinum was removed from the analysis (0.31).
The dominance by Anchoa mitchilli at Belle Pass (91% of total catch for July) and by other coastal
taxa (Euthynnus alletteratus, Parexocoetus brachypterus, and Mentichirrus spp.) at ST 54 (55% of
total catch for July) resulted in very small similarity indices between these sites and WC 71D.
Differences between the WC stations (352 and 71D) and Belle Pass and ST 54 indicate that
taxonomic assemblages may differ longitudinally along the coast as well as with depth, and point
out the need for replicate platform sampling within each depth zone from different geographic areas.
Ongoing efforts east of the Mississippi Delta may help resolve these issues and give us a more
complete picture of ichthyoplankton assemblages associated with artificial structures across the
northcentral GOM. 

While using a similarity index to characterize assemblages helps to synthesize large amounts of
information, the analyses are confounded by several problems that can make the results difficult to
interpret. First, the index is highly influenced by large numbers of individuals of a single taxon and
confidence intervals can be quite large (Ricklefs and Lau 1980). This is why we chose to discuss the
values from the analyses without the most dominant taxa from each site, which helped to identify
trends that may have otherwise been overwhelmed in the complete data set. Secondly, in any com-
parison between two sites, we chose only to use samples from each data set where the seasonality
overlapped in sampling efforts so that the same species pool would theoretically be available for col-
lection. However, at times this led to large disparities in sampling effort between sites within a com-
parison. For example, only April, May, and August, samples were used to compare WC 352 (n=57,
once monthly sampling) and GI 94 (n=331, twice monthly sampling plus the extra May lunar mini-
study samples). Finally, taxa utilized in the analyses were limited by our ability to identify the many
larval and juvenile forms collected over the course of the study. Since we were trying to analyze the
taxonomic assemblage at the lowest level possible, we were forced to eliminate large numbers of
fish that could not be identified to genus. Overall, however, we feel the index provides a good idea
of the similarity in community assemblages between sites, but it should only be discussed in relative
terms.

Taxonomic Diversity Between Sites

The mean diversity indices for the plankton net collections taken at the platform sites and the
pushnet collections taken at Belle Pass were not significantly different from each other, ranging
from 0.73-0.83 (Figure 5.3). They were, however, slightly higher than those for the light-trap
collections, with the exception of GI 94. In general, observed statistical differences in Shannon-
Weiner diversity indices between sites were limited to light-trap collections. The similarity between
the light-trap diversity indices for ST 54 and Belle Pass is not surprising, since both sites were
dominated by large numbers of photopositive clupeiform fishes, which also lowered their diversity
indices. Light-trap collections were significantly more diverse at GI 94, a result of being less
dominated by clupeiform fishes than ST 54 and Belle Pass, and of collecting more taxa, particularly
reef fish species, than GC 18. In general, taxonomic richness in light-traps was highest at GI 94,
with 90 taxa identified to genus as compared to 65 taxa at ST 54, the platform with the second
highest number of taxa. Inshore (particularly estuarine) areas are generally characterized as having
lower diversity than adjacent shelf waters and are dominated by a few highly abundant taxa
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(Nybakken 1988). This pattern is generally attributed to the fluctuating nature of the nearshore
environment, particularly with regards to salinity and temperature, and the lack of physiological
specializations needed to deal with this estuarine environmental variability (Nybakken 1988). This,
in part, may explain the relatively low diversity indices for ST 54 and Belle Pass, the two inshore
sites. In contrast, species richness and abundance is generally relatively low on the outer shelf, due
to the homogeneity of the bottom substrate (Bond 1996). As previously discussed, topographical
relief is disjunct throughout the northcentral GOM (especially west of the Delta) and the sea floor
is basically dominated by expanses of mud and silt. Again, this homogeneity and the previously
discussed lack of a large amount of upstream supply of larvae may in part explain the low taxonomic
diversity observed in the light-trap collections at GC 18.

Several studies have investigated differences in taxonomic richness between different gear types,
although few, if any, actually calculated taxonomic diversity indices as a comparison. Choat et al.
(1993) collected individuals from more families with a bongo net (63 families), a lighted-seine net
(37 families), neuston net (31 families), Tucker trawl (29 families), and a purse seine (25 families)
than they did with a light-trap (20 families) in a gear comparison study off Lizard Island, northern
Great Barrier Reef, Australia. In the Gulf of California, more reef fish larvae and juveniles from
different families were collected with a diver-steered plankton net (43 families) than with a light-
trap (31 families; Brogan 1994). In Onslow Bay, North Carolina, more fish larvae and juveniles
from different families were collected with a neuston net (24 families) than with either of the two
light-trap designs employed (18 and 21 families; Hernandez and Lindquist 1999) in a study. In each
of these studies, the authors concluded that the taxonomic assemblage collected in their respective
studies was very method-dependent, and the same appears to be true in our study (Hernandez and
Shaw this volume).

Environmental Variables and Larval Abundances

Canonical correlation analyses were used to determine the relationship between the dominant taxa
collected at our sampling sites and measured environmental/biological parameters, i.e., temperature,
salinity, turbidity, dissolved oxygen, and macrozooplankton biomass. At all of our sampling sites,
temperature and salinity appeared to explain most of the variation in larval abundances in our
models for the dominant taxa. This is not surprising as these physical variables change seasonally,
and to some extent across the shelf, as does the availability of larval assemblages. Occasionally, both
temperature and salinity were important factors within a single environmental canonical variate,
which is probably a reflection of seasonality, i.e., in the northern GOM as temperatures increase
during the late spring and into the months of summer and early fall, salinities tend to increase as
well, due to decreased Mississippi/Atchafalaya River runoff and increased evaporation.

Many of these relationships (based primarily on the seasonal variables temperature and salinity)
were consistent with known information on the seasonal occurrences of the different species. For
example at GC 18, where we were able to sample nearly year-round, Mugil cephalus was found to
be negatively associated with temperature in plankton net samples, which is consistent with their
peak periods of abundance (December-February) in the northern GOM (Table 5.12; Ditty et al.
1988). Other species collected in plankton nets at GC 18 were positively associated with temperature
and represent taxa with peak larval abundances in the spring and summer months, such as Auxis spp.
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(May-September), Caranx crysos (June-August), and C. hippos/latus (April-August; Ditty et al.
1988). Relationships between seasonal variables (temperature and salinity) and larval peaks in
abundance were observed at all sites. For example, positive relationships between abundances and
temperature and salinity were found for species with summer peaks in larval abundance, such as
Auxis spp. (May-September) at GI 94 (Table 5.14) and Chloroscombrus chrysurus (June-September)
and Scomberomorus maculatus (August-September) at ST 54 (Table 5.16). Negative relationships
for species with spring or winter peaks were found as well, such as previously mentioned Mugil
cephalus at GC 18 (Table 5.12) and Gobiesox strumosus (March-May) at Belle Pass (Table 5.18).

While seasonality seems to be an important factor, trends in larval abundances could also reflect the
environmental optima and preferences of some species. Membras martinica, for example, is found
primarily in more saline areas along the coast, as well as offshore areas (Hoese and Moore 1977).
At Belle Pass, pushnet densities for this species were positively associated with salinity (Table 5.18).
Larval and juvenile Caranx crysos prefer warmer, more saline waters (Patillo et al. 1997), and
this species was often positively associated with temperature and salinity in our study (Tables
5.12–5.13 and 5.17).

Differences among relationships at the same site between plankton net and light-trap collections
may be a reflection of biases towards different life history stages, since the plankton nets collected
primarily younger, less competent larvae while light-traps collected larger larvae and juveniles.
At ST 54, for example, net collections of Scomberomorus maculatus were positively associated with
temperature and salinity (Table 5.16), while light-trap collections were negatively associated
with these variables (Table 5.17). These associations are consistent with the known early life history
preferences for this species, as larval S. maculatus require relatively higher temperatures
and salinities than juveniles, which are generally more eurythermal and euryhaline (Patillo et al.
1997).

Dissolved oxygen and turbidity were also important variables at Belle Pass for some species,
but little is known about these requirements or preferences for the early life history stages of many
fishes. Some species which were very photopositive (i.e., Gobiesox strumosus and Hypsoblennius
hentz/ionthas) were also negatively associated with turbidity in our light-trap samples, possibly
because of decreased light-trap efficiency in highly turbid waters. Macrozooplankton biomass
was influential at GC 18 (Table 5.13) and GI 94 (Table 5.15), but only in light-trap collections. This
result is not surprising as light-traps tended to collect larger, more competent postlarvae and
juveniles which would be more likely to be affected by this macrozooplankton prey availability than
smaller, less competent larvae. All significant taxa were positively associated with zooplankton
biomass, and included larval forms such as Euthynnus alletteratus, Saurida brasiliensis, and
Synodus foetens, which have well-developed mouths and teeth at small sizes and are able to feed on
zooplankton.

While canonical correlation analyses were useful in characterizing the environmental correlates for
some species, results for others were confounding. At ST 54, for example, Cynoscion arenarius was
negatively associated with the first environmental variate and positively associated with the second
environmental variate, both of which were positively correlated with salinity. In many instances, our
models did not explain a large amount of the variation (15%) for many species. One possible reason
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for some of these discrepancies is that spawning seasons and periods of larval abundances for many
species occurred throughout our entire sampling season for many species, particularly at GI 94, ST
54, and Belle Pass, where we sampled only from April-September. This is the case for species such
as Citharichthys spp., Citharichthys spilopterus, Cynoscion nebulosus and others (Ditty et al. 1988).
For other species, particularly small fishes with little economic value such as many of the
lizardfishes (Synodus foetens, S. poeyi, Saurida brasiliensis) and blennies (Hypsoblennius
hentz/ionthas, H. invemar, and Scartella/Hypleurochilus), little information is available on peak
occurrences of these taxa across the shelf. In this respect, our study provides an important
contribution to the life history information on these taxa across the shelf. 

CONCLUSIONS

In many respects, the community assemblages represented in our across-shelf sampling efforts are
similar to the adult communities summarized in Gallaway et al. (1980) and Gallaway (1981). For
example, while we did not collect individuals from as many reef-dependent families (i.e., no
pomacanthids or acanthurids; Table 5.4), the reef-dependent taxa that were collected were primarily
associated with platforms further offshore (pomacentrids and chaetodontids). Also, inner-shelf, reef-
associated taxa reported for the adult assemblages, such as carangids and ephippids were present at
our inner-shelf platform, as well as our other sampling sites. However, several taxa reported from
the adult communities as being common primarily further offshore (mid-shelf and shelf slope), such
as serranids, lutjanids, labrids, scarids, and blennies were collected at our inshore sites, ST 54 and/or
the Belle Pass jetties. These results are not surprising, since many reef-associated taxa utilize
estuarine and nearshore environments as nursery areas. In the case of the blenniids, several of the
taxa collected in our study are common in estuarine and coastal environments and probably do not
reflect the presence of more reef-like, tropical taxa. 

This study represents the first comprehensive look at the ichthyoplankton assemblages associated
with oil and gas platforms in the northern GOM and is also a first (yet preliminary) attempt at
comparing such assemblages across different depth zones and geographical regions. It is apparent
that a diverse recently spawned larvae, postlarval, and juvenile fish community can be captured in
the waters within and near platforms (Hernandez and Shaw this volume) and these structures may
therefore be important to reef-associated and -dependent fish. Though many taxa were represented
in our collections, it is difficult to discern the reasons why some fish were present at the artificial
structures. Some, like the clupeiforms, are extremely abundant, very photopositive, and may be
behaviorally attracted to such structures with a large, consistent light-field. Other taxa like blennies
are reef/structure-dependent, and may be attracted to the numerous habitats created by the biofouling
community (e.g., barnacles) on the platform legs and cross-members, as well as the associated
zooplankton food resources. Pelagic species, like carangids and scombrids, have more generalized
habitat requirements, but may also be attracted to the structure (reef-associated) or to concentrations
of zooplankton and forage fish that are inhabiting the platform and immediately surrounding waters.
For whatever reason, based on the results from this study the oil and gas platforms serve a
potentially important function as a hard-substrate habitat, and could therefore lead to increased
production.



263

Our efforts are ongoing, as we are attempting to characterize the ichthyoplankton community at two
other sites, Santa Fe-Snyder Main Pass (MP) 259A and Murphy’s Viosca Knoll (VK) 203 (Figure
5.2). These platforms lie east of the Mississippi River Delta, enabling us to broaden our observations
on a geographic (longitudinal) scale. Also, MP 259A (130 m depth) and VK 203 (30 m depth) gives
us an offshore and mid-shelf replicate for further comparisons with the sites already sampled (Figure
5.2). Additionally, settlement traps are being deployed at VK 203 in an attempt to address questions
concerning size at settlement, habitat selection, and recruitment dynamics. The additional
information from platforms east of the Delta will enable us to develop a larger, more geographically
meaningful and comprehensive characterization of the ichthyoplankton from continental shelf waters
of the northern GOM.
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ABSTRACT

The red snapper Lutjanus campechanus is a potentially large and long-lived species which can
achieve ages approaching 60 years and weights of over 22 kg. In the northern Gulf of Mexico, oil
and gas platforms provide the preponderance of both vertical relief and hard substrate habitat for red
snapper and other reef associated fishes. In July 1998, we collected morphometric data and sagittal
otoliths from 300 red snapper randomly selected from among the mortalities manifested subsequent
to the explosive removal of an obsolete gas platform. Ages estimated from counts of otolith annuli
ranged from one to nine years among these specimens. The virtual absence of age-one red snapper
(0.68%) and the preponderance of age-two red snapper (53%) at the platform demonstrates that red
snapper recruit to platforms sometime during their second year. Truncation of the age distribution
results from natural mortality, fishing mortality, and emigration to other habitats after several years
of residency. Assuming this population to be typical, the age distributions of the commercial and
recreational harvests suggest that oil and gas platforms serve as essential habitats for younger red
snapper. Conversely, platforms may make red snapper at ages four, five, and six  year more
vulnerable to fishing mortality as they are perhaps being harvested in proportions greater than their
numbers in the population at large.

The management of the red snapper Lutjanus campechanus in the Gulf of Mexico (GOM) remains
among the more problematic issues facing fishery managers of the region. Both the commercial and
recreational red snapper fisheries are limited by size limits, creel or trip limits, seasonal closures,
and quotas as formulated by the Gulf of Mexico Fisheries Management Council (GMFMC) in
response to reports of overfishing (Schirripa and Legault 1999). Shrimp trawlers have also been
required to install bycatch reduction devices in their nets to curtail mortality among juvenile red
snapper. The intent of these regulations is both to achieve a 20 percent spawning potential ratio and
to allow populations to recover. Thus, reliable characterizations of the age and length structure of
red snapper populations in the GOM is essential to monitor year class strength, to conduct stock
assessments, and to demonstrate population recovery.

Since 1995 we have collected otoliths and morphometric data of red snapper landed in the
commercial harvest of the northern GOM off Louisiana. From these materials and data we have been
able to characterize the age and size structure of this harvest (Wilson et al. 1998). However,
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legitimate questions have been raised as to whether the age and size structure of the commercial
catch is truly representative of the red snapper population as a whole. The regulations applied to the
fishery and the very nature of the fishery itself are the source of these questions. For the past few
years, the minimum legal size for red snapper in the GOM commercial fishery has been 381 mm (15
inches) total length. Furthermore, red snapper commercial fishermen have been allowed a Gulf-wide
quota of 2,114 metric tons (4.65 million lb) two-thirds of which is allocated to a winter season
beginning in February and one-third to an autumn season beginning in September or October.
Additionally, both the winter and autumn seasons have been open to red snapper harvest only for
the first 15 days (pre-1999) or ten days (1999-2000) of each successive month until the quota is
achieved. A trip limit of 0.91 metric ton (2000 lb) for holders of federally issued reef fish permits
and the modest number of available fishing days has resulted in a “derby” fishery that necessitates
maximum catch in a minimum of time. 

To compete in this derby fishery, many red snapper fishermen have concentrated their efforts at the
numerous offshore oil and gas platforms of the northern GOM, particularly those closest to port.
These easily located structures can hold large numbers of red snapper (Continental Shelf Associates
1982; Putt 1982; Stanley and Wilson 1990; Stanley 1994). The usual routine (called “rig hopping”)
involves test fishing at successive platforms until a large and readily caught population of red
snapper is found. Under the appropriate conditions and with some good fortune, a single trip may
last less than one day. 

As part of a continuing investigation into the stock structure of red snapper in the GOM, we also
sampled the 1999 recreational harvest of the species from waters off Louisiana. The recreational
fishery at this time was also restricted by regulations promulgated by the GMFMC. A Gulf-wide
harvest of 2,032 metric tons (4.47 million lb) was allowed during an open season which began on
1 January 1999 and which would close when the quota was achieved or on 31 October, whichever
was earlier. A daily creel limit of four red snapper over 406 mm (16 inches) total length was also
mandated. As in the commercial fishery, recreational fishermen target the populations of red snapper
associated with oil and gas platforms and also employ the rig hopping technique to maximize catch
per effort. 

Given the nature of the red snapper fisheries in the northern GOM, it is highly unlikely that the age
and size structure of either harvest is representative of the entire population. Rather, it more certainly
reflects the age and size distribution of only those red snapper that are both associated with oil and
gas platforms and legal for fishermen to retain. Thus, the patterns of recruitment to and emigration
from oil and gas platforms would also affect the size and age structures of the harvests. We have
speculated that red snapper recruit to platforms at age one or two, occupy these habitats for a few
years, and then emigrate to other habitats. Older, larger red snapper may avoid platforms and
gravitate to other structure such as shipwrecks, sea-bottom depressions or lumps, and natural reefs.
However, there are few fishery-independent studies that have allowed characterization of age and
size of red snapper associated with oil and gas platforms.

Herein we report the fishery-dependent age and length distributions of the 1998 red snapper
commercial and summer 1999 recreational harvests from the northern GOM off Louisiana and those
of a fishery-independent “snapshot” of red snapper randomly sampled among the mortalities
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resulting from the July 1998 explosive removal of an obsolete offshore gas platform. Our objectives
were to infer important red snapper life history information from these data, such as age and size
at recruitment to oil and gas platforms and the possibility of emigration away from the platforms to
alternative habitats by older individuals later in life. 

METHODS

Red snapper from the 1998 winter and autumn commercial harvests were randomly sampled as they
were landed at two wholesale facilities: USA Fish in Leeville, Lafourche Parish, LA, during
February and March, and at USA Fish in Cameron, Cameron Parish, LA, in October. The vessels
that fish red snapper are generally manned by a captain and two crew. The heavily weighted fishing
lines, which may have 20 or more baited hooks, are deployed vertically from manual, electric, or
hydraulic “bandit” reels, four of which may be in use at any time. Snapper fishermen are
understandably jealous of their catch localities; we asked for little specific catch information.
However, we could infer that most trips took them from 50 to 80 km offshore. 

Red snapper from the recreational catch were sampled sporadically from 18 April to 18 August 1999
at a charter boat dock in Port Fourchon, Lafourche Parish, LA. Through April and May the
recreational fishery operated under a 381 mm minimum size; however, after 4 June and until the
quota was estimated to have been achieved on 29 August, a 457 mm (18 inches) minimum size was
enforced. The four vessels from which fish were obtained specialize in day trips lasting 10-12 hours.
Given their maximum speed of approximately 12 knots, the vessels seldom venture more than 50
km off the coast. The platforms visited are situated in waters of 30-45 m depth; the usual angling
gear is a stout fiberglass pole and a 4-0 reel with a 50 pound monofilament line. Single hooks baited
with whole or cut fish are used exclusively.

To minimize hazards to navigation in the GOM, Coast Guard regulations mandate that offshore oil
and gas platforms be removed once they have ceased production. A fishery-independent population
of red snapper was randomly sampled from among the fish mortalities produced after the explosive
removal of an obsolete oil platform located in Block 209 of the Ship Shoal oil and gas lease planning
area (approx. 185 km SW of New Orleans, LA) on 30 July 1998. The four-pile platform measured
6.1 X 7.6 m at the water’s surface and 12.2 X 13.7 m at the bottom. Water depth at the site was 32
m; thus, the volume of water enclosed by the platform was approximately 3,100 m3. Following
detonation of plastic explosives placed at 5 m below substrate level in all four piles and in the lone
well conductor, all floating fishes were collected by personnel from the National Marine Fisheries
Service (NMFS) Galveston Laboratory. A representative sample of fishes that had sunk to the
bottom was also retrieved by NMFS SCUBA divers.

Fork length (FL) in mm and both sagittal otoliths were taken from all specimens. Otoliths were
prepared and sectioned for aging analyses as described in Beckman et al. (1988). Counts of
increments (opaque zones) were accomplished by reading along the medial surface of the transverse
section ventral to the sulcus; increments were often inconsistent in other regions of the otolith
section. The appearance of the otolith margin was also coded as either opaque or transparent
(Beckman et al. 1988; Beckman et al. 1990, 1991). Age estimates of red snapper were based on
otolith opaque increment counts and adjusted to accommodate early or late annulus formation.
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Opaque increments in red snapper otoliths have been demonstrated to be annual in their formation
by Manooch and Potts (1997) and Wilson and Nieland (in press). Based on previous studies of red
snapper reproduction (Render 1995), we assigned a uniform hatching date of 1 July. To compensate
for the various times of the year when the specimens were taken, all ages were rounded to the nearer
integer or, in other words, to the age at the previous or at the following hatching date, whichever was
closer. Fork lengths were converted to total lengths (TL) with the equation TL = 1.073 (FL) +3.56
(linear regression, df = 1,015, P<0.001, r2=0.999). The Komolgorov-Smirnov test was used to test
for differences among distributions of TL and age ("=0.05). 

RESULTS

The sampling of 1,109 red snapper from the commercial harvest yielded 1,109 TL measurements
and 1,095 age estimates. Our efforts from the recreational harvest resulted in 666 individuals
sampled; age and TL are available for 646 and 663 of these, respectively. The recovery of fish
mortalities from the Ship Shoal 209 detonation produced 1,005 total specimens dominated by red
snapper, gray snapper L. griseus, lane snapper L. synagris, sheepshead Archosargus
probatocephalus, and Atlantic spadefish Chaetodipterus faber (pers. comm., Gregg Gitschlag,
National Marine Fisheries Service, Galveston, TX). Three hundred TL and 295 age estimates were
obtained from a random sampling of 300 of the 373 red snapper mortalities.

Fishery-Dependent Data

Among red snapper sampled from the commercial catch, TL ranged from 352 to 883 mm (Figure
5.4) with a mean of 510 mm. Modal TL was 425 mm, and 50% of the specimens were less than 475
mm. Ages estimated for these specimens ranged from 1.3 to 48.7 years; however, the vast majority
(93%) of these individuals were age three to six (Figure 5.5) and only six specimens were older than
10 years. Total lengths of the red snapper from the recreational harvest varied from 374 to 983 mm
(Figure 5.4); mean TL, modal TL, and median TL were 558 mm, 475 mm, and 500 mm,
respectively. Ages among the recreational catch ranged from 1.90 to 37.06 years with a mean age
of 4.50 years. Individuals of ages three to six comprised 92% of the sample population (Figure 5.5).

Fishery-Independent Data

Total lengths and age estimates among the red snapper sampled from the Ship Shoal 209 population
evidence radically and statistically different distributions from those seen in the commercial and
recreational catches (Figure 5.4, Figure 5.5). In addition to having both a lesser minimum (255 mm)
and a lesser maximum (791 mm) TL, the TL distribution is distinctly bimodal with a hint of a third
mode at larger size (Figure 5.4). The distribution of ages (1.1-9.1 years) is also severely truncated
and includes a large proportion (53%) of age-two individuals which are not present in the
commercial or recreational landings (Figure 5.5). A plot of TL at age for the Ship Shoal red snapper
population (Figure 5.6) indicates that the first two major TL modes (275-375 mm and 400-500 mm)
are composed largely of individuals at age two years and age three years, respectively. The third
minor mode (635-750 mm) is comprised of red snapper of age four to six years.
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Figure 5.4. Total length frequency histograms for red snapper Lutjanus campechanus from the
northern Gulf of Mexico: (top) 1,109 specimens from the commercial harvest of
1998; (middle) 663 specimens from the recreational harvest, April-August 1999; and
(bottom) 300 specimens from among mortalities subsequent to the explosive removal
of an oil and gas platform located in Ship Shoal Block 209, July 1998. The stippled
area indicates those TL below the 381 mm (15 inch) TL minimum size which applied
to the commercial fishery through out 1998 and to the recreational fishery through
3 June 1999. The hatched area delimits the 457 mm (18 inch) TL minimum under
which the recreational fishery operated from 4 June to 29 August 1999.
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Figure 5.5. Age frequency histograms for red snapper Lutjanus campechanus from the Northern
Gulf of Mexico: (top) 1,095 specimens from the commercial harvest of 1998;
(middle) 646 specimens from the recreational harvest, April-August 1999; and
(bottom) 295 specimens from among mortalities subsequent to the explosive removal
of an oil and gas platform located in Ship Shoal Block 209, July 1998. 
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Figure 5.6. Scattergram of total length (mm) at age (yr) for 295 red snapper Lutjanus
campechanus sampled from the mortalities subsequent to the explosive removal of
an oil and gas platform located in Ship Shoal Block 209, July 1998.

DISCUSSION

Analysis of the fishery-independent red snapper data gathered from the Ship Shoal 209 detonation
must be tempered with the recognition that it is indeed a chronological “snapshot” of the red snapper
population. Previous reports of red snapper populations associated with oil and gas platforms have
shown conclusively that numbers can vary significantly among seasons (Putt 1982; Stanley 1994).
Red snapper are also known to stratify by size at different depths around platforms; further, larger
individuals are less obligate in their association to platforms than are smaller individuals (Render
1995). Thus, we must assume that red snapper of all sizes and at all depths would be similarly
susceptible to explosive-induced mortality and that mortality is 100% in the near vicinity of the
platform.

The fishery-independent sampling of fishes at Ship Shoal 209 reveals a relatively large population
of red snapper. Fully 37% of the fish mortalities recovered after the explosive detonation were red
snapper. Other fishery-independent surveys of fishes around oil and gas platforms have reported red
snapper populations consisting of 8-52% (Stanley 1994) and 2-4% (Putt 1982) of the total fishes
inhabiting platforms. However, 79% of the Ship Shoal 209 red snapper would have been unavailable
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for harvest due to the minimum length regulation enforced Gulf-wide. This is amply reflected in the
virtual absence of individuals < 375 mm TL in both the recreational and commercial data sets.

The Ship Shoal 209 red snapper population is also relatively homogeneous in both age and length
distribution. The individuals within the first two large modes of the TL distribution make up 92%
of the total 300 individuals sampled. Further, individuals of age # three years totaled 90% of all red
snapper sampled. This homogeneity is reflected neither in the age nor in the TL distribution of the
commercial catch. Along the size spectrum of platforms in the GOM, the Ship Shoal 209 platform
ranks at the lower end of this distribution. In a hydroacoustic study of the fish population around a
much larger platform (45 m X 20 m; 19,800 m3 volume), Stanley (1994) reported the red snapper
population varying from 1,200 to 8,200 individuals. One could speculate that among such numbers,
older and larger red snapper might be present in appreciable numbers. Commercial and recreational
fishing effort at such structures could provide for the diversity of ages and lengths seen in the
fishery-dependent data.

The truncation of the red snapper size and length distributions at Ship Shoal 209 might also reflect
the life history of red snapper. Juvenile red snapper are known to inhabit shallow water areas devoid
of large structures where they are vulnerable to capture in trawls. This behavior is illustrated in
fishery-independent trawl data from the GOM, specifically the Fall Groundfish Survey and the
Summer SEAMAP Survey, in which the great majority of red snapper captured are age zero and one
(Schirripa and Legault 1999). It has been hypothesized that the disappearance of age-one red snap-
per from the trawl data represents migration to structures such as oil and gas platforms which
presumably provide refuge from large predators (Render 1995). It might also be postulated that oil
and gas platforms, in the absence of other hard-bottom habitats, are essential habitat for young red
snapper. Both the paucity of individuals of age zero and one and the bounty of age-two and -three
individuals at Ship Shoal 209 assuredly support these hypotheses. The drastic decrease in numbers
of individuals of age > three may represent emigration away from the structure to alternative
habitats, removal from the population through fishing activities and natural mortality, or reduced
recruitment among those cohorts.

The fishery-independent data from Ship Shoal 209 also provide verification of size at age for young
red snapper in the northern GOM. Within the first TL mode (275-375 mm) illustrated in Figure 5.4,
90% of the 150 individuals contained therein are age two. The second mode (400-500 mm FL) in
Figure 5.4 is comprised of 89% (92 of 103) age-three individuals. Such fidelity in the age at size
relations for age two and age three could prove useful in two instances. Red snapper ranging from
275 to 500 mm TL can be aged with relative confidence simply from their length; time consuming
and costly removal, sectioning, and reading of otoliths becomes unnecessary. Further, age
determined from length could be used to confirm age estimates derived from counts of otolith
increments.

Management of the red snapper in the GOM is predicated in part on estimates of relative cohort
strength at age one derived from the fishery-independent trawl surveys mentioned above (Schirripa
and Legault 1999) and on fishery-dependent data such as that reported herein. However, due to the
virtual ubiquity of age zero and one individuals in the trawl catch and to the minimum total length
regulations enforced within both the commercial and recreational fisheries, there is little information
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on which to gauge cohort strength at age two. Over the past few years, the National Marine Fisheries
Service has undertaken periodic assessment of the effects of explosive platform removal on the
associated fish populations at select sites in the GOM. Such efforts apparently afford the sole
opportunity to monitor red snapper cohort strength at age two and to bridge the data gap between
existing data sources. They also prove to be crucial in our understanding of red snapper recruitment
to and emigration from reefs and other structures such as oil and gas platforms.  Continuation of this
program would positively impact the current and future management of red snapper and help assure
the future of the species in the GOM
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THE ATTRACTION OF AGE-0 RED SNAPPER, LUTJANUS CAMPECHANUS, TO
ARTIFICIALLY PLACED SHELL PLOTS AROUND GAS PLATFORMS,

A POSSIBLE SOLUTION TO BYCATCH MORTALITY

Stephen T. Szedlmayer
Marine Fish Laboratory

Department of Fisheries and Allied Aquacultures
Auburn University

ABSTRACT

In 1998 and 1999, we built 30 4m{+2} reefs of shell and 30 4m{+2} reefs of shell/concrete blocks
at depths of 17 to 21 m, in the Gulf of Mexico, 14 to 25 km south of Dauphin Island, Alabama. Each
year there were 3 sites, 20 reefs each, placed at 20 m intervals. Sites 1 and 2 were centered around
gas platforms. Total mean counts for all red snapper, Lutjanus campechanus, were significantly
different between reef types and years: 14 fish/block, 19 fish/shell in 1998; 20 fish/block, 22
fish/shell in 1999 (P < 0.05). Separated into age-0 and age-1 year classes, few age-0 red snapper
were observed in July, while age-1 were common. In August 1998, age-0 red snapper reached counts
up to 113 fish/reef and 216 fish/reef in August 1999. In 1998, age-0 fish were significantly more
abundant on shell reefs, but in 1999 age-0 fish showed no significant differences between reef types.
In 1998 and 1999, age-1 fish were significantly more abundant on block reefs. In 1998, fish were
significantly more abundant at Site 1, but in 1999 fish were significantly more abundant at Site 2.
These results suggest that artificial shell reefs may attract young red snapper away from areas of
intensive trawl fishing, e.g., gas platforms, thus enhancing survival.
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A COMPREHENSIVE SURVEY OF FISHES OF SOUTHWEST FLORIDA

George H. Burgess
Florida Museum of Natural History

University of Florida

Franklin F. Snelson, Jr.
Department of Biology

University of Central Florida

David B. Snyder
Continental Shelf Associates

Jupiter, FL

ABSTRACT

Since 1975, we have sampled the ichthyofaunal community of southwest Florida. A wide variety
of habitats were sampled with diverse gear types. This material is vouchered at the Florida Museum
of Natural History (FLMNH). Additional comprehensive fish collections from the state of Florida
recently were transferred to the FLMNH, including the renowned University of Miami holdings and
those of Florida Atlantic University, University of Central Florida, and University of West Florida.
These materials, added to the already extensive collections held at FLMNH, which contains the
former Tropical Atlantic Biological Laboratory and Florida State University collections, constitute
the most complete specimen-based data source on past and present distribution of fishes in Florida
waters. We are in the process of assembling, verifying, and quantifying this database of all fishes
found in brackish and marine waters of the southeastern Gulf of Mexico, Florida Bay, Florida Keys,
and Dry Tortugas at depths to 350 fathoms.

The database currently documents more than 4000 stations spanning a period of 50 years. We have
verified the presence of 1031 fish species in 177 families in the study region, including species not
previously reported from United States continental waters. We plan to continue to verify identi-
fications of existing materials and to update the database as new materials become available.
Eventually we will incorporate data from specimens housed in other museums as well as reliable
literature reports. The database will be incorporated into a GIS system for plotting distributions
relative to habitat type or environmental features. These data will allow a detailed analysis of the
biodiversity and distribution of all fishes in the region and will provide important information for
resource managers and governmental decision-makers. The data also will be converted to an archive
searchable from the web. Unlike most traditional survey results, specimen-supported data represent
a unique resource in that species identification is always verifiable and vouchered specimens
continually provide a rich source of historic life history and ecological information.
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SMALL PELAGICS IN THE GULF OF MEXICO: A DESCRIPTION OF THE
ABUNDANCE, GEOGRAPHIC DISTRIBUTION, SIZE, AND DEPTH

DISTRIBUTION OF MAJOR PELAGIC SPECIES

Jason S. Link
Terry A. Henwood

Christopher T. Gledhill
National Marine Fisheries Service
Southeast Fisheries Science Center

ABSTRACT

In the 1980s, the National Marine Fisheries Service (NMFS) initiated a program to assess the
distribution and abundance of small, “coastal pelagic” fish within the Gulf of Mexico (GOM),
particularly those species whose range extends beyond the coverage of historical groundfish and
shrimp surveys. Many of the species comprising this pelagic species complex, such as butterfishes
(Stromateidae), herrings (Clupeidae), scads (Carangidae), and squids (Cephalopoda) were identified
as potentially underutilized species. After examining gear and techniques to capture fast-swimming,
schooling species in waters out to over 150 fathoms (278 m), standardized methods were developed.
The pelagic survey cruises spanned the entire GOM and were conducted from 1988 to 1996. Here
we present an analysis of the distribution, abundance, geographic range, catch frequency, and size
composition of the most common species collected during these surveys. This study sampled 911
stations, with mean catch rates of 11,910.8 individuals hr-1and 600.0 kg hr-1.. The top five organisms
collected in this study were gulf butterfish (Peprilus burti), round herring (Etrumeus teres),
longspine porgy (Stenotomus caprinus), rough scad (Trachurus lathami), and long-finned squid
(Loligo sp.). Species composition varied with geographic location in the GOM; as expected, the
eastern Gulf fish community was different from that of the western Gulf. These species are
significant components of the groundfish and shrimp fishery bycatch, but their distributions extend
beyond the range of the fishery into deeper offshore waters. Length frequency analysis demonstrated
that, in general, larger fish occurred in deeper waters. This finding suggests that deeper offshore
waters may serve as a refugia, especially for mature individuals. We briefly discuss the role of these
species in the fisheries of the GOM.

INTRODUCTION

In the early 1980s, the NMFS initiated a program to investigate the abundance and distribution of
a Gulf of Mexico species complex referred to as coastal pelagics. Interest in these species was
prompted by ichthyoplankton survey abundance estimates which suggested that annual potential
yield of these pelagic species in the GOM could exceed 5 million metric tons (Christmas et al. 1985,
Flandorfer & Skupien 1980, Houde 1977a, 1977b, 1977c). Many of the species comprising this
coastal pelagic complex, such as butterfishes (Stromateidae), herrings (Clupeidae), scads
(Carangidae), and squids (Cephalopoda), were identified as potentially underutilized species. The
distributional range of many of these species was suspected to extend well beyond the geographical
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boundaries of the commercial shrimping grounds where most of NMFS trawling efforts were
concentrated. Thus, specific effort was focused at surveying this pelagic species complex.

Early efforts in this program centered around the development of fishing gear effective at capturing
these pelagic species. The use of standard shrimp/groundfish trawling gear and techniques (12.3 m
headrope length trawls towed at 3 kts over depths ranging from 9 to 95 m) was believed to be
inappropriate for capturing the schooling, fast-swimming pelagics. Trawling gear ranging in size
from 12.3 to 104.6 m headrope length (both bottom and midwater) was tested over the course of this
program. By the late 1980s, gear specialists had determined that large, high-opening trawls offered
the best potential for capturing these fish in deeper waters (Gledhill 1989, Reese 1993).

We provide a description of the major taxonomic groups comprising this pelagic species complex.
Our goal was to extend information on major species beyond the range historically surveyed for the
shrimp/groundfish community to deeper waters and to the eastern GOM where very little trawl
information exists. Because nearshore pelagics play a major role in the GOM fishery (e.g.
Brevoortia patronus , NMFS 1996), we wanted to examine the geographic and depth distribution,
abundance, and size of these species that may be considered as under-utilized resources, especially
since they comprise an important part of the GOM ecosystem. 

MATERIALS & METHODS

Trawling was done with a 27.5 m small pelagics trawl and a 37.5 m Shuman trawl from the NOAA
vessel Chapman. The small pelagics trawl measured 27.5 m on the headrope, had a mesh size from
20 cm at the front leading down to 5 cm at the cod end, had a fish funnel preceding the cod end, a
cod end containing a 0.4 to 2.2 cm mesh liner (varied by cruise), and was fished with 4.5 m2 “W”
doors. The Shuman trawl measured 37.5 m on the headrope, had a mesh size from 80 cm at the front
to 3 cm at the cod end, had a fish funnel preceding the cod end, a cod end containing a 0.4 to 2.0 cm
liner (varied by cruise), and was fished with 4.0 m2 “Super V” doors.

Sampling designs were either stratified random, two dimensional systematic or systematic random,
spanned the entire GOM, and are discussed in greater detail elsewhere (Gledhill 1989, Reese 1993;
Table 6.1). Most trawls were approximately 30 minute tows, and total catch per unit effort was
standardized to one hour. The minimum and maximum station depths were 10 and 420 m
respectively. Only those trawls that were conducted during daylight hours and were on the bottom
were used in this study. Echograms from acoustic surveys have demonstrated that this species
complex forms compact schools proximal to bottom during daylight whereas they scatter throughout
the water column at night (Gledhill 1989, Reese 1993). Cruises associated with the pelagics program
that were related to gear development or that were directed sampling were also omitted from this
analysis. A comparison between the two types of gear was conducted with paired trawls in 1991.
The stations (26 pairs; Gledhill, unpubl. data) which compared the two gear exhibited no significant
differences in catch rates. Therefore, we do not distinguish between gear types in this analysis.

Once on board, the entire trawl catch was weighed and then subsampled if the catch was greater than
150 kg. Subsamples (or the entire catch if less than 150 kg) were sorted, identified to the lowest
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Table 6.1. Summary of trawling effort for this study. Latitudes and longitudes are in degrees and
minutes North and West respectively. Gear size is the headrope length, in meters, of the
trawl. SysRdm=systematic random, 2DSys=two-dimensional systematic, StratRdm=
stratified random.

Year 88 89 90 91 92 93 94 95 96

Cruise 88-03 89-04 90-02,90-03 91-01 92-01 93-03 94-02 95-07 96-06

Months 3,4 8,9 3,4,5 1,2 3,4 3,4 3,4 10,11 10,11

Survey Design SysRdm StratRdm SysRdm,2DSys StratRdm SysRdm SysRdm SysRdm StratRdm StratRdm

Cruise 88-08 89-05 90-08 -- 92-06 93-07 -- -- --

Months 10,11 10,11 10,11 -- 10,11 10,11 -- -- --

Survey Design 2DSys SysRdm SysRdm -- SysRdm SysRdm -- -- --

Total # Stations 154 65 118 53 123 158 81 67 92

Max Latitude 30o59.46' 29o58.48' 30o59.90' 29o59.48' 30o59.84' 29o59.79' 30o59.60' 30o58.12' 29o59.48'

Min Latitude 27o00.09' 27o00.92' 27o00.15' 29o35.44' 27o00.45' 26o00.01' 27o00.00' 27o00.97' 26o00.41'

Max Longitude 96o59.95' 91o59.48' 94o58.92' 87o48.58' 93o56.85' 97o59.90' 91o58.50' 97o57.79' 97o59.11'

Min Longitude 83o00.09' 85o02.69' 85o01.73' 86o19.54' 82o00.30' 88o01.00' 83o00.40' 84o01.83' 84o00.26'

Gear Size 37.5 37.5 37.5 37.5,27.5 27.5,37.5 27.5,37.5 27.5 27.5 27.5

taxon feasible, enumerated, weighed, and measured to the nearest mm following standard NMFS
and South East Area Monitoring and Assessment Program (SEAMAP) protocols.

A total of 15 cruises were conducted from 1988 to 1996, primarily during spring and fall (Table 6.1).
These data are highly unbalanced both spatially and temporally (Table 6.1) due to fiscal constraints,
varying cruise objectives, temporal constraints, mechanical difficulties, and similar logistical
considerations. We present arithmetic means (+/- standard error) of catch per unit effort (number
hour-1) across depths and geographic zones. The GOM geographic zones, which roughly correspond
to SEAMAP faunal zones, were arbitrarily assigned along a longitudinal gradient to partition the
GOM from west to east, distinguishing the Texas Shelf, Louisiana shelf, Mississippi River region,
DeSoto Canyon region, and Florida Shelf. We also examined length frequency distributions (cm)
across depths and zones in the GOM.
 

RESULTS

There were 911 stations sampled in this study, with a mean total catch of 11,910.8 individuals hr-1

and 600.0 kg hr-1. In total, there were 493 taxa collected in this study. The top five most abundant
species in the small pelagic species complex were gulf butterfish (Peprilus burti), round herring
(Etrumeus teres), longspine porgy (Stenotomus caprinus), rough scad (Trachurus lathami), and
long-finned squid (Loligo sp.) (Table 6.2). The first 20 species accounted for more than 90% of the
individuals and more than 85% of the biomass collected during this program. Other clupeids,
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Table 6.2. Summary of mean CPUE (No./hr, kg/hr) of the major fish in the coastal pelagics
complex.

Mean % of Mean % of # %

Species Common Name No./hr Total Kg/hr Total Stations Frequency Rank

Peprilus burti Gulf Butterfish 2550.3 21.4 189.6 31.6 554 60.8 1

Etrumeus teres Round Herring 1852.8 15.6 38.16 6.4 348 38.2 2

Stenotomus caprinus Longspine Porgy 1554.0 13.0 64.32 10.7 473 51.9 3

Trachurus lathami Rough Scad 1369.2 11.5 76.10 12.7 618 67.8 4

Loligo sp. Longfin Squid 472.59 3.7 9.02 1.5 754 82.8 5

Steindachneria argenta Luminous Hake 385.81 3.2 4.71 0.79 94 10.3 6

Decapterus punctatus Round Scad 316.28 2.7 14.28 2.4 77 8.5 7

Trichiurus lepturus Atlantic Cutlassfish 315.05 2.6 21.84 3.6 347 38.1 8

Diaphus sp. Lanternfish 303.48 2.5 0.816 0.14 62 6.8 9

Chloroscombrus chrysurus Atlantic Bumper 287.98 2.4 17.66 2.9 131 14.4 10

Engraulis eurystole Silver Anchovy 272.45 2.3 0.549 0.092 14 1.5 11

Scomber japonicus Chub Mackerel 262.42 2.2 24.63 4.1 261 28.6 12

Sardinella aurita Spanish Sardine 224.24 1.9 9.26 1.5 43 4.7 13

Anchoa hepsetus Striped Anchovy 170.59 1.4 2.29 0.38 46 5.0 14

Micropogonias undulatus Atlantic Croaker 142.40 1.2 10.41 1.7 140 15.4 15

Parapenaeus sp. Shrimp 101.67 0.85 0.118 0.020 39 4.3 16

Polymixia lowei Beardfish 94.81 0.80 1.88 0.31 74 8.1 17

Lagodon rhomboides Pinfish 93.44 0.78 7.88 1.3 253 27.8 18

Pristipomoides aquilonaris Wenchman 92.17 0.77 11.70 1.9 399 43.8 19

Ariomma bondi Silver Rag 73.08 0.61 5.43 0.91 181 19.9 20

Upeneus parvus Dwarf Goatfish 70.11 0.59 2.40 0.40 242 26.6 21

Mullus auratus Red Goatfish 64.45 0.54 4.16 0.69 140 15.4 22

Trachypeneus sp. Shrimp 62.89 0.53 0.0858 0.014 16 1.8 23

Leiostomus xanthurus Spot 60.19 0.51 6.87 1.1 73 8 24

Macrorhampuhosus scolopax Longspine Snipefish 44.96 0.38 0.144 0.024 26 2.9 25

Anchoa mitchilli Bay Anchovy 40.13 0.34 0.230 0.038 11 1.21 26

Clupeidae Herrings 35.58 0.30 0.004 0.001 1 0.11 27

Saurida brasiliensis Largescale Lizardfish 34.70 0.29 0.608 0.101 100 10.98 28

Caridea Unclassified Shrimp 29.09 0.24 0.027 0.005 10 1.10 29
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Table 6.2. (continued)

Mean % of Mean % of # %

Species Common Name No./hr Total Kg/hr Total Stations Frequency Rank

Cynoscion arenarius Sand Seatrout 25.60 0.21 3.053 0.509 156 17.12 30

Unid. Fish - 23.48 0.20 0.006 0.001 5 0.55 31

Peprilus alepidotus Harvestfish 20.60 0.17 7.839 1.306 107 11.75 32

Lolliguncula brevis Breif Squid 18.44 0.15 0.099 0.016 26 2.85 33

Harengula jaguana Scaled Sardine 17.74 0.15 0.823 0.137 48 5.27 34

Synodus foetens Inshore Lizardfish 17.73 0.15 2.536 0.423 158 17.34 35

Abralia veranyi Abralia Squid 17.02 0.14 0.062 0.010 58 6.37 36

Opisthonema oglinum Atlantic Thread Herring 16.48 0.14 1.122 0.187 47 5.16 37

Maurolicus muelleri Atlantic Pearlside 15.55 0.13 0.025 0.004 23 2.52 38

Cynoscion nothus Silver Seatrout 14.58 0.12 1.180 0.197 66 7.24 39

Rhomboplites aurorubens Vermilion Snapper 14.27 0.12 1.628 0.271 85 9.33 40

carangids, scombrids, engraulids, sparids, sciaenids, and gadids were the major organisms
comprising this pelagic species complex. For more specific parameters of these major families, see
Appendix A.

Distribution in the Gulf 

Many of the major species were ubiquitous throughout the GOM. P. burti, E. teres, T. lathami,
Loligo sp., and S. japonicus all occurred in most regions of the Gulf (Figures 6.4–6.5; Table 6.3).
P. burti was most abundant in the central GOM, but was widspread throughout the entire Gulf
(Table 6.3, Figure 6.1). E. teres was most abundant in zones 1 and 4, but was also common across
the entire GOM (Table 6.3, Figure 6.2). T. lathami was similarly most abundant in the central GOM
and was widespread across the GOM (Table 6.3, Figure 6.3). Both Loligo sp. and S. japonicus
showed no major difference in abundance between regions in the GOM (Figure 6.4 and 6.5). The
frequency of occurrence of Loligo sp. was the highest of any species in this study (Table 6.2). Other
species that were widely distributed were Lagodon rhomboides and Leiostomus xanthu, among
others (Table 6.4).

S. caprinus, C. chrysurus, and E. eurystole occurred throughout the entire GOM but were more
abundant in the western Gulf than other regions (Figures 6.6–6.8). S. caprinus was abundant in all
regions except zone 5 (Table 6.3, Figure 6.6). C. chrysurus and E. eurystole were most abundant in
zones 1 and 2 (Figures 6.7 and 6.8). Other species that occurred most frequently in the western
GOM were Selene setapinnis, Peprilus alepidotus, and Pristipomoides aquilonaris, among others
(Table 6.4).
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Figure 6.1. The occurrence of Peprilus burti at the stations sampled in this study. Solid circles indicate presence of this species;
open circles indicate that a sample was taken but this squid was not present at that station. The zones (1-5) correspond
to regions of the GOM, from west to east, that have roughly geographic similarities and are to assist with synthesis
across the broad geographic scale of the GOM (c.f. Table 6.1). The solid line is the 100 m depth contour,
approximately denoting the continental shelf region.
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Figure 6.2. The occurrence of Etrumeus teres at the stations sampled in this study. Solid circles indicate presence of this species;
open circles indicate that a sample was taken but this squid was not present at that station. The zones (1-5) correspond
to regions of the GOM, from west to east, that have roughly geographic similarities and are to assist with synthesis
across the broad geographic scale of the GOM (c.f. Table 6.1). The solid line is the 100 m depth contour,
approximately denoting the continental shelf region.
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Figure 6.3. The occurrence of Trachurus lathami at the stations sampled in this study. Solid circles indicate presence of this
species; open circles indicate that a sample was taken but this squid was not present at that station. The zones (1-5)
correspond to regions of the GOM, from west to east, that have roughly geographic similarities and are to assist with
synthesis across the broad geographic scale of the GOM (c.f. Table 6.1). The solid line is the 100 m depth contour,
approximately denoting the continental shelf region.
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Figure 6.4. The occurrence of Loligo sp. at the stations sampled in this study. Solid circles indicate presence of this species; open
circles indicate that a sample was taken but this squid was not present at that station. The zones (1-5) correspond to
regions of the GOM, from west to east, that have roughly geographic similarities and are to assist with synthesis
across the broad geographic scale of the GOM (c.f. Table 6.1). The solid line is the 100 m depth contour,
approximately denoting the continental shelf region.



294

Figure 6.5. The occurrence of Scomber japonicus at the stations sampled in this study. Solid circles indicate presence of this
species; open circles indicate that a sample was taken but this squid was not present at that station. The zones (1-5)
correspond to regions of the GOM, from west to east, that have roughly geographic similarities and are to assist with
synthesis across the broad geographic scale of the GOM (c.f. Table 6.1). The solid line is the 100 m depth contour,
approximately denoting the continental shelf region.
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Table 6.3. Mean (+/- S.E.,in No. hr-1) of these species in each GOMEX zone. S.E.=std. error,
n=sample size.

Zone 1 2 3 4 5

n 171 180 244 265 51

P. burti 727.3 
(161.3)

2515.9 
(542.1)

3646.1 
(1003.8)

3213.2
 (594.6)

97.5
 (51.7)

E. teres 3047.5 
(1493.0)

642.3 
(254.4)

613.6
 (195.4)

3273.3
 (579.8)

667.4
 (323.5)

S. caprinus 1309.2
(270.60

1539.4
(215.2)

1698.3
(544.5)

1887.1
(470.9)

4.7
(1.8)

T. lathami 627.7 
(120.4)

833.5 
(185.0)

1256.8
 (303.9)

2433.9
 (486.5)

751.2
 (251.5)

Loligo sp. 435.52 
(50.557)

363.103 
(48.956)

375.03
 (56.968)

732.14 
(159.66)

101.49 
(20.137)

S. argenta 0.13
(0.13)

0.1
(0.07)

1407.2
(345.6)

30.5
(12.3)

0

D. punctatus 7.9 
(3.3)

4.3 
(3.2)

18.5
 (9.7)

197.2 
(92.1)

4494.9 
(2226.5)

T. lepturus 57.8
(23.0)

358.1
(77.6)

794.4
(161.1)

71.1
(35.6)

0

Diaphus sp. 2.3
(2.3)

2.0
(1.3)

129.7
(61.7)

671.7
(357.3)

0

C. crysurus 637.9 
(229.7)

466.8 
(242.3)

282.7
 (132.9)

1.0
 (0.4)

0

E. eurystole 11.3
(10.1)

1357.7
(1102.2)

7.7
(7.7)

0 0

S. japonicus 107.7
(40.4)

58.7
(44.3)

489.8
(192.5)

312.0
(99.2)

154.5
(63.8)

S. aurita 1.65 
(1.02)

1.86 
(1.11)

2.67 
(1.75)

260.8 
(214.4)

2625.5
 (1243.0)

A. hepsetus 6.9
(3.1)

56.0
(27.9)

590.6
(291.5)

0.06
(0.06)

0

M. undulatus 6.9
(3.2)

163.8
(85.3)

404.7
(116.1)

1.2
(0.7)

0
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Table 6.4. Species with the most biomass or most occurrences predominating in the different
regions.

Abundant Species Rarer Species

West GOM West GOM

Stenotomus caprinus
Chloroscombus chrysurus
Engraulis eurystole

Selene setapinnis
Pristipomoides aquilonaris
Upeneus parvus
Peprilus alepidotus
Lagocephalus laevigatus

Central GOM Central GOM

Steindachneria argentea
Trichiurus lepturus
Diaphus sp.
Anchoa hepsetus
Micropogonias undulatus
Polymixia lowei

Anchoa mitchilli
Caranx crysos
Lolliguncula brevis
Abralia veranyi
Cynoscion nothus
Cynoscion arenarius
Pontinus longispinis

Eastern GOM Eastern GOM

Decapturus punctatus
Sardinella aurita
Mullus auratus

Rhomboplites aurorubens
Saurida normani

Widespread Widespread

Etrumeus teres
Loligo sp.
Trachurus lathami
Peprilus burti
Scomber japonicus
Lagodon rhomboides
Leiostomus xanthu

Saurida brasilia
Maurolicus muelleri
Synodus foetens
Ariomma bondi
Synagrops bella
Synagrops spinosus
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Figure 6.6 The occurrence of Stenotomus caprinus at the stations sampled in this study. Solid circles indicate presence of this
species; open circles indicate that a sample was taken but this squid was not present at that station. The zones (1-5)
correspond to regions of the GOM, from west to east, that have roughly geographic similarities and are to assist with
synthesis across the broad geographic scale of the GOM (c.f. Table 6.1). The solid line is the 100 m depth contour,
approximately denoting the continental shelf region.
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Figure 6.7. The occurrence of Chloroscombrus chrysurus at the stations sampled in this study. Solid circles indicate presence of
this species; open circles indicate that a sample was taken but this squid was not present at that station. The zones (1-
5) correspond to regions of the GOM, from west to east, that have roughly geographic similarities and are to assist
with synthesis across the broad geographic scale of the GOM (c.f. Table 6.1). The solid line is the 100 m depth
contour, approximately denoting the continental shelf region.
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Figure 6.8. The occurrence of Engraulis eurystole at the stations sampled in this study. Solid circles indicate presence of this
species; open circles indicate that a sample was taken but this squid was not present at that station. The zones (1-5)
correspond to regions of the GOM, from west to east, that have roughly geographic similarities and are to assist with
synthesis across the broad geographic scale of the GOM (c.f. Table 6.1). The solid line is the 100 m depth contour,
approximately denoting the continental shelf region.
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D. punctatus and S. aurita were most common in the eastern GOM (Figures 6.9 and 6.10). Both had
their highest abundance in zone 5, with abundances there two to three orders of magnitude greater
than in the rest of the GOM (Table 6.3). Other species that occurred predominantly in the eastern
Gulf were Rhomboplites aurorubens and Saurida normani (Table 6.4).

 The remaining pelagics were most abundant in the central GOM (Figures 6.11–6.15). Diaphus sp.,
A. hepsetus, and S. argentea had a narrow distribution and were not observed in zones 1 and 5
(Figures 6.11–6.13). T. lepturus and M. undulatus similarly were not observed in zone 5, but did
have a broader distribution. All five of these species were most abundant in zone 3 (Table 6.3).
Many other species occurred predominately in the central GOM, including Caranx crysos,
Cynoscion nothus and Cynoscion arenarius (Table 6.4). This was the region with the greatest
biomass and number of fish in the GOM.

Depth Gradients in the Gulf

Loligo sp. and S. japonicus were unique organisms in that they exhibited no peak abundance at a
particular depth (Table 6.5). Both were common throughout the GOM, and occurred on either side
of the shelf slope with regularity (Figures 6.4 and 6.5). Synodus foetens also exhibited no distinct
depth preference (Table 6.6).

Practically all clupeids, all engraulids, most sparids, and most scianids were shallow-water species,
abundant at depths < 50 m (Table 6.5). Many of the species in this study were concentrated at these
depths (Table 6.6). However, some of these shallow water species also occurred at notable levels
of abundance out to depths of 150 m.

Three of the top four most abundant species in this study were most common beyond the range of
normal groundfish and shrimp surveys (Table 6.5). E. teres, P. burti, and T. lathami were most
abundant at depths of 100-200 m. The greatest number and biomass of all pelagics was concentrated
in the 100-150 m depth range.

Diaphus sp. and S. argentea were clearly deep-water species (Table 6.5). The greatest abundance
of each species was over 300 and 200 m respectively. The abundance of Diaphus sp. was two to
three orders of magnitude higher at depths > 200 m than at other depths. Both these species were
concentrated on the abyssal side of the continental slope (Figures 6.11 and 6.13). Other deep-water
species included Ariomma bondi, Illex sp., and Synagrops sp., among others (Table 6.6). Other than
these few examples, most species were rare beyond 200 m.

Length

Mean length for all species was 14 cm. The largest fish we sampled was rough scad (Table 6.7) but
many of the species were frequently less than 10 mm. Very few species averaged individual weights
> 100 g. Although abundant, most of these organisms were not large.

Several of the species were only sampled at depths < 100 m (Table 6.5) and exhibited no notable
change in size across depth (Figures 6.16–6.20). S. aurita (Figure 6.16), C. chrysurus  (Figure 6.17)
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Figure 6.9. The occurrence of Decapterus punctatus at the stations sampled in this study. Solid circles indicate presence of this
species; open circles indicate that a sample was taken but this squid was not present at that station. The zones (1-5)
correspond to regions of the GOM, from west to east, that have roughly geographic similarities and are to assist with
synthesis across the broad geographic scale of the GOM (c.f. Table 6.1). The solid line is the 100 m depth contour,
approximately denoting the continental shelf region.
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Figure 6.10. The occurrence of Sardinella aurita at the stations sampled in this study. Solid circles indicate presence of this
species; open circles indicate that a sample was taken but this squid was not present at that station. The zones (1-
5) correspond to regions of the GOM, from west to east, that have roughly geographic similarities and are to assist
with synthesis across the broad geographic scale of the GOM (c.f. Table 6.1). The solid line is the 100 m depth
contour, approximately denoting the continental shelf region.
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Figure 6.11. The occurrence of Diaphus sp. at the stations sampled in this study. Solid circles indicate presence of this species;
open circles indicate that a sample was taken but this squid was not present at that station. The zones (1-5)
correspond to regions of the GOM, from west to east, that have roughly geographic similarities and are to assist
with synthesis across the broad geographic scale of the GOM (c.f. Table 6.1). The solid line is the 100 m depth
contour, approximately denoting the continental shelf region.
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Figure 6.12. The occurrence of Anchoa hepsetus at the stations sampled in this study. Solid circles indicate presence of this
species; open circles indicate that a sample was taken but this squid was not present at that station. The zones (1-
5) correspond to regions of the GOM, from west to east, that have roughly geographic similarities and are to assist
with synthesis across the broad geographic scale of the GOM (c.f. Table 6.1). The solid line is the 100 m depth
contour, approximately denoting the continental shelf region.
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Figure 6.13. The occurrence of Steindachneria argenta at the stations sampled in this study. Solid circles indicate presence of
this species; open circles indicate that a sample was taken but this squid was not present at that station. The zones
(1-5) correspond to regions of the GOM, from west to east, that have roughly geographic similarities and are to
assist with synthesis across the broad geographic scale of the GOM (c.f. Table 6.1). The solid line is the 100 m
depth contour, approximately denoting the continental shelf region.
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Figure 6.14. The occurrence of Trichiurus lepturus at the stations sampled in this study. Solid circles indicate presence of this
species; open circles indicate that a sample was taken but this squid was not present at that station. The zones (1-
5) correspond to regions of the GOM, from west to east, that have roughly geographic similarities and are to assist
with synthesis across the broad geographic scale of the GOM (c.f. Table 6.1). The solid line is the 100 m depth
contour, approximately denoting the continental shelf region.
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Figure 6.15. The occurrence of Micropogonias undulatus at the stations sampled in this study. Solid circles indicate presence
of this species; open circles indicate that a sample was taken but this squid was not present at that station. The
zones (1-5) correspond to regions of the GOM, from west to east, that have roughly geographic similarities and
are to assist with synthesis across the broad geographic scale of the GOM (c.f. Table 6.1). The solid line is the 100
m depth contour, approximately denoting the continental shelf region.
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Table 6.5. Mean catch (+/- S.E., in No. hr-1) of squid across depth (m) strata. S.E.=standard error,
n=sample size.

Depth 0-50 50-100 100-150 150-200 200-250 250-300 300+

n 216 249 183 118 72 54 19

P. burti 1033.5 
(311.4)

2001.0
 (376.9)

7701.5 
(1495.4)

1518.3
 (358.2)

180.0 
(82.7)

6.8 
(3.4)

0

E. teres 642.2 
(202.6)

1972.6 
(1014.9)

4190.5
 (767.7)

2341.0
 (731.6)

206.6 
(140.8)

0.778 
(0.604)

0

S. caprinus 2996.9 
(648.9)

2015.7
 (298.4)

1405.1
 (566.1)

78.8
 (55.3)

0.05
  (0.05)

0 0

T. lathami 441.7 
(134.1)

1326.0
 (321.1)

3345.18
 (664.5)

1455.7 
(270.0)

509.4 
(193.4)

17.7 
(7.9)

10.8
 (10.7)

Loligo sp. 676.86 
(170.33)

376.80 
(56.087)

334.81 
(91.654)

598.19 
(137.45)

670.24 
(89.814)

179.83 
(48.443)

35.789 
(15.261)

S. argenta 0.5 
(0.5)

103.6 
(50.8)

420.0
 (176.0)

827.7
 (385.4)

1723.7
(880.2)

396.2
(100.7)

290.6
(113.5)

D. punctatus 1169.8 
(540.3)

142.3 
(79.6)

0.12
 (0.12)

0 0 0 0

T. lepturus 168.2 
(44.3)

658.0 
(136.8)

237.2
 (70.2)

260.5
 (169.3)

141.3
(121.5)

46.4
(21.7)

0.74
(0.51)

Diaphus sp. 0.35 
(0.35)

18.7
 (18.7)

2.5
 (1.7)

23.8
 (22.5)

166.6
(112.0)

2162.2
(1642.1)

3877.4
(1653.2)

C. crysurus 941.0 
(281.5)

237.2 
(107.6)

0.13 
(0.08)

0 0 0 0

E. eurystole 1111.1 
(918.1)

32.9
 (32.2)

0 0 0 0 0

S. japonicus 173.0 
(140.9)

101.7
 (39.2)

548.1 
(194.4)

234.7 
(115.9)

313.6 476.1
(396.0)

4.8
(4.0)

S. aurita 937.5 
(397.5)

7.14
 (3.49)

0.033
 (0.328)

0 0 0 0

A. hepsetus 702.5 
(329.3)

14.7
 (11.1)

0 0 0 0 0

M. undulatus 243.8 
(98.6)

223.1
 (86.8)

117.6
 (63.5)

0 0 0 0
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Table 6.6. Species with biomass or occurrence predominant at the different depths. Shallow <100m,
Mid-Depth=100-200m, Deep>200m, Widespread=all depths.

Abundant Species Rarer Species

Shallow Shallow

Stenotomus caprinus
Decapterus punctatus
Trichiurus lepturus
Chloroscombus chrysurus
Engraulis eurystole
Sardinella aurita
Anchoa hepsetus
Micropogonias undulatus
Leiostomus xanthu
Lagodon rhomboides

Lolliguncula brevis
Upeneus sp.
Upeneus parvus
Mullus auratu
Saurida brasilia
Lagocephalus laevigatus
all Clupeids
all Engrualids
most Sparids
most Scianids

Mid-Depth Mid-Depth

Etrumeus teres
Peprilus burti
Trachurus lathami

Abralia veranyi
Saurida normani
Pristipomoides aquilonaris

Deep Deep

Steindacneria argentea
Diaphus sp.
Polymixia lowei

Illex sp.
Ariomma bondi
Synagrops bella
Synagrops spinosus
Mauolicus muelleri
Pontinus longispinis

Widespread Widespread

Loligo sp.
Scomber japonicus

Synodus foetens
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Table 6.7. Mean length (cm) and weight (g) of major pelagic species.

Species Comman Name Mean Length
(cm)

Min
Length

Max
Length

Mean Wt.
(g)

Peprilus burti Gulf Butterfish 14.1 2.0 26.6 74

Etrumeus teres Round Herring 13.2 2.3 51.2 21

Stenotomus caprinus Longspine Porgy 12.0 0.2 20.8 41

Trachurus lathami Rough Scad 15.3 0.4 75.8 56

Loligo sp. Longfin Squid 7.3 6.0 37.2 20

Steindachneria argenta Luminous Hake 14.4 1.2 30.5 12

Decapterus punctatus Round Scad 14.8 4.8 21.9 45

Trichiurus lepturus Atlantic Cutlassfish 16.7 2.0 53.1 69

Diaphus sp. Lanternfish 5.4 2.3 8.9 2

Chloroscombrus chrysurus Atlantic Bumper 14.3 1.6 31.8 61

Engraulis eurystole Silver Anchovy 6.9 2.1 12.4 2

Scomber japonicus Chub Mackerel 20.0 3.0 35.0 94

Sardinella aurita Spanish Sardine 14.7 8.8 22.0 41

Anchoa hepsetus Striped Anchovy 11.3 4.1 17.8 13

Micropogonias undulatus Atlantic Croaker 18.6 1.6 50.5 73

Parapenaeus sp. Shrimp - - - <1

Polymixia lowei Beardfish 11.3 6.5 42..5 20

Lagodon rhomboides Pinfish 16.0 9.1 46.5 84

Pristipomoides aquilonaris Wenchman 16.3 0.2 29.8 127

Ariomma bondi Silver Rag 16.4 5.3 21.3 74

Upeneus parvus Dwarf Goatfish 12.0 2.6 24.0 34

Mullus auratus Red Goatfish 15.2 2.8 28.5 65

Trachypeneus sp. Shrimp - - - <1

Leiostomus xanthurus Spot 19.9 11.1 30.0 114

Macrorhampuhosus scolopax Longspine Snipefish 10.4 6.5 14.5 3

Anchoa mitchilli Bay Anchovy 5.5 3.6 8.3 6

Clupeidae Herrings - - - -

Saurida brasiliensis Largescale Lizardfish 8.5 0.7 39.5 24

Caridea Unclassified Shrimp - - - <1

Cynoscion arenarius Sand Seatrout 22.7 6.6 40.9 119
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Figure 6.16. Length frequency distribution of S. aurita across the depth strata in this study. Depth
zones are represented as the midpoint of the strata (e.g. 25 is 0-50 m, 75 is 50-100
m, etc).

Table 6.7. (continued)

Species Comman Name Mean Length
(cm)

Min
Length

Max
Length

Mean Wt.
(g)

Unid. Fish - - - - -

Peprilus alepidotus Harvestfish 14.8 2.5 20.0 381

Lolliguncula brevis Breif Squid 3.6 1.2 18.5 5

Harengula jaguana Scaled Sardine 13.3 6.7 20.3 46

Synodus foetens Inshore Lizardfish 24.9 5.3 44.6 158

Abralia veranyi Abralia Squid 3.4 0.9 13.6 4

Opisthonema oglinum Atlantic Thread Herring 15.8 3.4 29.8 68

Maurolicus muelleri Atlantic Pearlside 4.6 2.8 5.8 2

Cynoscion nothus Silver Seatrout 20.2 7.2 41.4 81

Rhomboplites aurorubens Vermilion Snapper 17.9 0.2 33.5 114
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Figure 6.17. Length frequency distribution of C. chrysurus across the depth strata in this study.
Depth zones are represented as the midpoint of the strata (e.g. 25 is 0-50 m, 75 is 50-
100 m, etc.).

Figure 6.18. Length frequency distribution of D. punctatus across the depth strata in this study.
Depth zones are represented as the midpoint of the strata (e.g. 25 is 0-50 m, 75 is 50-
100 m, etc.).
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Figure 6.19. Length frequency distribution of A. hepsetus across the depth strata in this study.
Depth zones are represented as the midpoint of the strata (e.g. 25 is 0-50 m, 75 is 50-
100 m, etc.).

Figure 6.20. Length frequency distribution of E. eurystole across the depth strata in this study.
Depth zones are represented as the midpoint of the strata (e.g. 25 is 0-50 m, 75 is 50-
100 m, etc.).
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and D. punctatus (Figure 6.18) showed a bimodal length distribution at shallower depths (< 50 m),
but only a unimodal distribution (no smaller mode) at 50-100 m. A. hepsetus (Figure 6.19) and E.
eurystole (Figure 6.20) exhibited effectively a unimodal distribution.Diaphus sp., S. caprinus, and
Loligo sp. were present at a wide range of depths (Table 6.5), but showed no differences in size
across depth (Figures 6.21–6.23). All three species were unimodal, but Loligo sp. did have a broad
size distribution.

P. burti was also present at a wide range of depths, but showed a subtle increase in size at greater
depths (Figure 6.24). Similarly, M. undulatus, E. teres, T. lepturus, T. lathami, S. japonicus, and S.
argentea (Figures 6.25–6.30) showed notable increases in length at greater depths. P. burti, M.
undulatus, and E. teres were unimodal, whereas the remaining four species were bimodal, with the
smaller mode generally more frequent at shallower depths.

DISCUSSION

Many of these pelagic species are broadly distributed across numerous ecosystems (e.g. Costa &
Fernandes 1993, Crawford and de Villiers 1984, Dawe et al. 1990, Grant 1981, Haimovici et al.
1996, Haimovici et al. 1994, Novikov 1986, Pierce & Guerra 1994, Reintjes 1980, Rountree 1990,
Scoles et al. 1998, Whitaker 1980,Whitehead 1985, Xu & Chiu 1995). In fact, several of these
species are cosmopolitan, with broad distributions across the Caribbean Sea, Mediterranean Sea,
northern and southern Pacific, northern and southern Atlantic, and Indian Ocean. Thus, it is not
surprising that several of these species (e.g. T. lathami, S. japonicus, E. teres, Loligo sp., etc.) are
widely distributed in the GOM. These results generally concur with prior studies of GOM pelagics
(e.g. Geoghegan and Chittenden 1982, Gledhill 1989, Hixon 1980, Houde 1977a, 1977b, 1977c,
Murphy and Chittenden 1991, Nakumrua 1980, Reintjes 1980, Salcedo-Vargas 1991, Shaw and
Drullinger 1990, Voss and Brackoniecki 1985). The pelagic fish and squid assemblage across the
different regions of the Gulf are very similar, distinguished only by a few species that inhabit certain
locations or depths of the Gulf.

Why are some species centered in the eastern or western Gulf? We readily admit that our sampling
may have missed the occurrence of some species, particularly in the eastern GOM, due to low
sample sizes or seasonal migrations. Given that possibility, we assert that the most prominent
patterns observed for some of these organisms are likely more than artifact due to the persistent
occurrence of certain species in certain regions year after year across multiple seasons. For instance,
C. chrysurus is not present east of the DeSoto Canyon region (zone 4). Conversely, although present,
S. aurita is not abundant west of the DeSoto Canyon region. Similar examples exist for other species
(e.g. E. eurystole in the western Gulf and D. punctatus in the eastern Gulf; Table 6.4). Therefore,
the Mississippi River/Mobile Bay physio-chemical environment appears to be a distinct biological
barrier for some of these species. For example, salinity tolerances for clupeid larvae such as H.
jaguana and O. oglinum are much lower than for S. aurita (Shaw & Drullinger 1990); hence we
rarely observe the latter two species far from the Mississippi River region. Additionally, Economidis
& Vogiatzis (1992) have documented a temperature induced fish kill of S. aurita in the
Mediterranean. Thus, the distribution of these clupeids may be a function of the lower salinities and
temperatures associated with the northern GOM. Other studies have demonstrated relationships
between environmental factors such as salinity, temperature, thermocline depth, frontal boundaries
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Figure 6.21. Length frequency distribution of Diaphus sp. across the depth strata in this study.
Depth zones are represented as the midpoint of the strata (e.g. 25 is 0-50 m, 75 is 50-
100 m, etc.).

Figure 6.22. Length frequency distribution of S. caprinus across the depth strata in this study.
Depth zones are represented as the midpoint of the strata (e.g. 25 is 0-50 m, 75 is 50-
100 m, etc.).
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Figure 6.23. Length frequency distribution of Loligo sp. across the depth strata in this study.
Depth zones are represented as the midpoint of the strata (e.g. 25 is 0-50 m, 75 is 50-
100 m, etc.).

Figure 6.24. Length frequency distribution of P. burti across the depth strata in this study. Depth
zones are represented as the midpoint of the strata (e.g. 25 is 0-50 m, 75 is 50-100
m, etc.).
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Figure 6.25. Length frequency distribution of M. undulatus across the depth strata in this study.
Depth zones are represented as the midpoint of the strata (e.g. 25 is 0-50 m, 75 is 50-
100 m, etc.).

Figure 6.26. Length frequency distribution of E. teres across the depth strata in this study. Depth
zones are represented as the midpoint of the strata (e.g. 25 is 0-50 m, 75 is 50-100
m, etc.).
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Figure 6.27. Length frequency distribution of T. lepturus across the depth strata in this study.
Depth zones are represented as the midpoint of the strata (e.g. 25 is 0-50 m, 75 is 50-
100 m, etc.).

Figure 6.28. Length frequency distribution of T. lathami across the depth strata in this study.
Depth zones are represented as the midpoint of the strata (e.g. 25 is 0-50 m, 75 is 50-
100 m, etc.).
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Figure 6.29. Length frequency distribution of S. japonicus across the depth strata in this study.
Depth zones are represented as the midpoint of the strata (e.g. 25 is 0-50 m, 75 is 50-
100 m, etc.).

Figure 6.30. Length frequency distribution of S. argentea across the depth strata in this study.
Depth zones are represented as the midpoint of the strata (e.g. 25 is 0-50 m, 75 is 50-
100 m, etc.).
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and oxygen with the distribution of many of the species in this study (e.g. Hendrix et al. 1981,
Herron et al. 1989, Holliday and Larsen 1979, Laughlin & Livingston 1982, Matthews & Allen
1993, Novikov 1986, Vecchione 1991). Additionally, why is the majority of pelagic biomass and
abundance concentrated near the Mississippi River delta? Very simply, the river plume and Loop
Current combine to focus primary and secondary production at this locale (reviewed in Lohrenz et
al. 1999). Several of the pelagic species are aggregated around these physical features and areas of
high productivity (sensu Herron et al. 1989, Holliday and Larsen 1979).

Many of these pelagic species are concentrated on the more productive continental shelf.
Collectively, the clupeids, engraulids, sparids, and scianids are generally shallow water species and,
with a few exceptions, are effectively not a member of the pelagic species complex deeper than 100
m in the GOM. When caught, these fish are abundant, especially at depths < 25 m. Thus, it is likely
that this group of fish is adequately sampled with the historical groundfish survey (SEFSC, MS
Labs, unpubl. data). However, size overlap between the two surveys may be different due to the lack
of deep water fishes collected in the groundfish survey and the larger size of E. teres at greater
depths. Additionally, schools of herrings, squids, anchovies, porgies and sardines are likely to be
captured more efficiently with the high opening (ca. 15 m) nets used in this study than the lower
profile (ca. 3 m) nets in the groundfish surveys. Thus the small pelagics survey can provide more
representative sampling of these stochastically distributed, schooling fish.

There are several deepwater and mid-depth species that are common in this pelagic community.
Diaphus sp., S. argentea, A. bondi, Illex sp., P. lowei, and M. muelleri are most abuandant at depths
> 200 m and characterize the deepwater pelagic assemblage in the GOM. More notably, E. teres,
P. burti, T. lathami, Loligo sp., S. japonicus and A. veranyi are most abundant at depths > 100 m.
Previous reports have documented similar depth distributions of these and similar species along the
continental shelf slope in the GOM and other ecosystems (e.g. Agafonova and Bukamin 1984, Bullis
et al. 1971, Costa & Fernandes 1993, Gartner et al. 1987, Haimovici & Perez, 1991, Haimovici et
al. 1994, Klima 1971, May and Blaber 1989, Vecchione 1987, Watanabe et al. 1999, Whitehead
1985). Because most of the pelagic community biomass occurs at depths beyond 100 m, these
species are likely missed in other surveys. The importance of the shelf-break pelagic community,
particularly in terms of alternate or potential fishery yields, Gulfwide fish production, and forage
base available for higher trophic levels is hence under appreciated.

Several species were larger at greater depths. Certainly some species do not extend beyond 100 m,
but even some of the shallow water species exhibited an increase in size with depth. It is likely that
these deeper waters serve as a refugia from nearshore predators, including human harvesting, for
larger individuals. It is probable that much of the spawning stock biomass for many of these species
resides in this refugia. It is unclear what the population-level ramifications will be for increased
removal of these offshore, deepwater organisms.

The organisms that did not exhibit any change in size either 1) had a limited depth range, 2) were
mixed species (e.g. Loligo sp., Diaphus sp.), or 3) had little separation between the size of different
year classes. The differences in Loligo size across depth may be the differences noted by Hixon
(1980) between the two species, with the larger L. pealei in deeper waters. Also, many of the
organisms in this study have broad spawning periods (e.g. Brodziak & Macy 1996, Houde 1977a,
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1977b, 1977c, Jereb & Ragonese 1995, Johnson & Vaught 1986, Pierce & Guerra 1994, Shaw &
Drullinger 1990). Such broad spawning periods produce year classes with a broad range of lengths.
Additionally, these species mature at relatively small sizes and young ages and often have short life
spans (e.g. Brodziak & Macy 1996, Hixon et al. 1981, Houde 1977a, Jereb & Ragonese 1995,
Martinez & Houde 1975, Reintjes 1980). These considerations might mask year class strengths and
produce length frequency distributions that are bi- or unimodal, which is what we observed for the
all of the species in this study. 

There are small, silverish, fusiform, pelagic species in every aquatic ecosystem on the planet. The
sheer abundance of these small pelagics makes them an important component of intermediate
trophic levels in every ecosystem. The mean length and low individual weight make these the major
forage base for many other species. Charismatic megafauna and commercially valuable piscivores
(e.g. numerous marine mammals, scombrids such as tunas and mackerels, coryphaenids, xiphids,
etc.) prey upon these fish and squid (e.g. Bello 1991, DeVane 1978, Gonzalez et al. 1994, Naughton
& Saloman 1981, 1984, Saloman & Naughton 1984, Vega-Candejas et al. 1994) . To better manage
organisms at higher trophic levels, understanding their feeding habits, habitat selection, and the
dynamics of their prey is useful. For example, the distribution of Illex roughly coincides with the
distribution of a major squid predator, the Risso’s dolphin (Grampus griseus; Baumgartner 1997).
Impacts to populations of these pelagics may have ramifications for marine mammals and larger
piscivores.

These small pelagics are primarily planktivores yet are also known to consume fish, larger
crustaceans, and cephalopods, (e.g. Chen et al. 1992, Henwood et al. 1978, Maurer & Bowman
1985, Modde & Ross 1983, Motta et al. 1993, Pierce et al. 1994, Rasero et al. 1996, Santos et al.
1998, Sheridan et al. 1984, Whitehead 1985). Therefore, the small pelagics play a major role in the
energy transfer of an ecosystem by providing a crucial linkage between lower and upper trophic
levels. Additionally, many of these species have notable, perhaps mutualistic relationships with
other organisms. For example, Lolliguncula has strong associations with menhaden and anchovies
in nearshore habitats (Matthews & Allen 1993, Laughlin & Livingston 1982, Pierce et al. 1994).
Lange & Waring (1992) have shown a strong association between Loligo pealei and butterfish.
Tolley (1987) has demonstrated an association between C. chrsurus, other carangids, other gadids,
other stromateids, and the jellyfish Aurelia aurita. It is unclear what the ecosystem level impacts
will be from a drastic change in the biomass and/or composition of the pelagic species complex in
the GOM. It is clear that given the ecological importance of these pelagics, a drastic impact on them
will also alter many other components of the ecosystem.

Prospects for a fishery on many of these under-utilized pelagic species remain (Christmas et al.
1985, Flandorfer & Skupien 1980, Gledhill 1989, Houde 1977a, 1977b, 1977c, Reese 1993,
Vecchione 1987). The advantages of such a fishery are short life cycles for many of these species,
their ubiquitous distributions, and their relatively consistent and high abundance. The disadvantages
of establishing a fishery for these species are the hit-or-miss nature of many of these schools, the
deeper set depths, processing the high number of bycatch (i.e. non-target) species, and the need to
establish or expand markets for many of these organisms. Cautions against initiating a widespread,
far-ranging, over-captilized fishery for these pelagics include alteration of stock structure by
removing adults/spawners in the deeper refugia and removing food for higher trophic level fish,
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birds and mammals. Certainly further information will be required for standard stock assessment
parameters and estimates of these pelagic species; however, it is clear that a large amount of pelagic
biomass needs to be considered in the management of GOM fisheries.
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APPENDIX A

PARAMETERS OF MAJOR PELAGIC FAMILIES

Stromateidae

Peprilus burti, the gulf butterfish, averaged 2,550.3 (+/- 340.3 S.E.) individuals hr-1, comprising
21.4% of the total catch by number and 31.6% of the total catch by weigth. P. burti was the most
abundant fish of all species collected in this study, and was found at 60.8% (554) of the stations
sampled. Average weight of this organism was 0.07 kg, with an average length of 14.1 cm (range
from <1 to 27).

Peprilus alepidotus, the harvestfish, averaged 20.6 (+/- 5.2 S.E.) individuals hr-1, comprising 0.17%
by number and 1.3% by weight of the total catch, ranked as the 32nd most abundant organism in this
study. P. alepidotus was found at 11.7% (107) of the stations sampled. Average weight of this
organism was 0.38 kg, with an average length of 14.8 cm (range from 3 to 20).

As a group, stomateids comprised approximately 22% of the total number and 33% of the total
weight of fish caught during this study. They were by far the most dominant and one of the more
ubiquitous fish of the pelagic species complex.

Clupeidae

Etrumeus teres, the round herring, averaged 1,852.8 (+/- 337.5 S.E.) individuals hr-1, comprising
15.5% of the total catch by number and 6.4% of the total catch by weight. E. teres was the second
most abundant fish of all species collected in this study, and is found at 38.2% (348) of the stations
sampled. Average weight of this organism was 0.02 kg, with an average length of 13.2 cm (range
from 2.3 to 51.2 cm).
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Sardinella aurita, the Spanish sardine, averaged 224.2 (+/- 95.0 S.E.) individuals hr-1, comprising
1.9% by number and 1.5% by weight of the total catch, ranked as the 13th most abundant organism
in this study. S. aurita was caught at 4.7% (43) of the stations in this study. Average weight and
length of this organism were 0.04 kg and 14.7 mm respectively (range from 8.8 to 22 cm).

Harengula jaguana, the scaled sardine, averaged 17.7 (+/- 7.7 S.E.) individuals hr-1, comprising
0.15% by number and 0.14% by weight of the total catch, ranked as the 34th most abundant organism
in this study. H. jaguana was found at 5.3% (48) of the stations in this study. Average weight and
length of this organism were 0.046 kg and 13.4 cm respectively (range from 6.7 to 20.3 cm).

Opisthonema oglinum, the Atlantic thread herring, averaged 16.5 (+/- 6.4 S.E.) individuals hr-1,
comprising 0.14% by number and 0.19% by weight of the total catch in this study, ranking 37th in
abundance. O. oglinum was found at 5.2% (47) of the stations in this study. Average weight and
length of this organism were 0.068 kg and 15.8 cm respectively (range from 3.4 to 29.8 cm).

Other species of clupeids observed in this study but of negligible abundance in these trawls were
Alosa alabamae (25 stations), A. mediocris (1 station), A. crysochlorus (1 station), Brevoortia
patronus (15 stations), and unidentified clupeids (1 station). These smaller clupeids are an excellent
example of the limitations of the mesh size used in this study and the difficulty of trying to assess
fish with “hit-or-miss” abundance and schooling behavior. As a group, clupeids comprised
approximately 18% of the total number and 8% of the total weight of fish caught during this study.
Next to the stromateids, clupeids were the most abundant group in this study.

Sparidae

Stenotomus caprinus, the longspine porgy, averaged 1,554 (+/- 210.9 S.E.) individuals hr-1,
comprising 13.0% of the total catch by number and 10.7% of the total catch by weight. S. caprinus
was the third most abundant organism of all species collected in this study, and was found at 52%
(473) of the stations sampled. Average weight of this organism was 0.04 kg, with an average length
of 12.0 cm (range <1 to 21 cm).

Lagodon rhomboides, the pinfish, averaged 93.4 (+/- 23.2 S.E.) individuals hr-1, comprising 0.78%
by number and 1.3% by weight of the total catch, ranked as the 18th most abundant organism in this
study. L. rhomboides was caught at 27.8% (253) of the stations in this study. Average weight and
length of this organism were 0.08 kg and 160 mm respectively (range from 9 to 47 cm).

Pagrus pagrus, the red porgy, averaged 3.7 (+/- 1.4 S.E.) individuals hr-1, comprising 0.03% by
number and 0.13% by weight of the total catch, ranked as the 77th most abundant organism in this
study. P. pagrus was caught at 5.7% (52) of the stations in this study. Average weight and length
of this organism were 0.20 kg and 223 mm respectively (range from 11 to 47 cm).

Other species of sparids observed in this study but of negligible abundance were Calamus nodosus
(10 stations), C. prorid (5 stations), Archosargus probatocephalus (5 stations), Calumus sp. (4
stations) C. leucosteus (4 stations) and C. bajonado (1 station). As a group, sparids comprised
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approximately 15% of the total number of organisms caught during this study, ranking 4th in total
abundance. 

Carangidae

Trachurus lathami, the rough scad, averaged 1369.2 (+/- 170.8 S.E.) individuals hr-1, comprising
11.5% of the total catch by number and 12.7% of the total catch by weight. T. lathami was the fourth
most abundant organism of all species collected in this study, and was found at 67.8% (618) of the
stations sampled. Next to Loligo, this was the most ubiquitous species in the Gulf. Average weight
of this organism was 0.06 kg, with an average length of 15.3 cm (range <1 to 76 cm).

Decapterus punctatus, the round scad, averaged 316.3 (+/- 130.8 S.E.) individuals hr-1, comprising
2.7% of the total catch by number and 2.4% of the total catch by weight. D. punctatus ranked as the
7th most abundant organism of all species collected in this study, and was found at 8.5 (77) of the
stations sampled. Average weight of this organism was 0.05 kg, with an average length of 14.8 cm
(range 5 to 22 cm).

Chloroscombus chrysurus, the Atlantic bumper, averaged 288.0 (+/- 73.9 S.E.) individuals hr-1,
comprising 2.4% of the total catch by number and 2.9% of the total catch by weight. C. chrysurus
ranked as the 10th most abundant organism of all species collected in this study, and was found at
14.4% (131) of the stations sampled. Average weight of this organism was 0.06 kg, with an average
length of 14.4 cm (range 2 to 32 cm).

Selar crumenopthalmus, the bigeye scad, averaged 7.49 (+/- 1.21 S.E.) individuals hr-1, comprising
0.06% of the total catch by number and 0.18% of the total catch by weight. S. crumenophthalmus
ranked as the 55th most abundant organism of all species collected in this study, and was found at
13.6 (124) of the stations sampled. Average weight of this organism was 0.14 kg, with an average
length of 19.1 cm (range 2 to 30 cm).

Caranx crysos, the blue runner, averaged 5.14 (+/- 2.46 S.E.) individuals hr-1, comprising 0.04% of
the total catch by number and 0.15% of the total catch by weight. C. crysos ranked as the 68th most
abundant organism of all species collected in this study, and was found at 6.5% (59) of the stations
sampled. Average weight of this organism was 0.17 kg, with an average length of 21.1 cm (range
8 to 40 cm).

Selene setapinnis, the Atlantic moonfish, averaged 4.80 (+/- 1.68 S.E.) individuals hr-1, comprising
0.04% of the total catch by number and 0.07% of the total catch by weight. S. setapinnis ranked as
the 70th most abundant organism of all species collected in this study, and was found at 8.8% (80)
of the stations sampled. Average weight of this organism was 0.09 kg, with an average length of
14.5 cm (range 2 to 28 cm).

Other species of carangids observed in this study but of negligible abundance were Selene vomer
(21 stations), Trachinotus carolinus (20 stations), Seriola dumerili (29 stations), Decapterus tabl
(9 stations), Alectic ciliaris (6 stations), Caranx hippos (5 stations), Seriola fasciata (1 station),
Seriola rivoliana (3 stations), Uraspis secunda (4 stations), and Hemicaranx amblyrhynchus (1
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station). As a group, carangids comprised approximately 17% of the total number of organisms
caught during this study, ranking 3rd in total abundance. 

Cephalopoda

Loligo sp., both pealei and plei, averaged 473 (+/- 51.1 S.E.) individuals hr-1, comprising 4.0% of
the total catch by number and 1.5% of the total catch by weight. Loligo was the fifth most abundant
organism of all species collected in this study, and is ubiquitous in the GOM, found at 83% (754)
of the stations sampled. Average weight of this organism was 0.02 kg, with an average length of 7.3
cm (range 0.6 to 37.2 cm).

Lolliguncula brevis averaged 18.5 (+/- 6.9 S.E.) individuals hr-1, comprising 1.5% by number and
0.16% by weight of the total catch, ranked as the 33rd most abundant organism in this study.
Lolliguncula was found at only 3.1% (28) of the stations in this study. Average weight and length
of this organism were 0.005 kg and 3.6 cm respectively (range 1.2 to 18.5 cm).

Abralia veranyi averaged 17.0 (+/- 5.9 S.E.) individuals hr-1, comprising 0.14% by number and
0.01% by weight of the total catch, ranked as the 36th most abundant organism in this study. Abralia
was found at 6.4% (58) of the stations in this study. Average weight and length of this organism
were 0.004 kg and 3.4 cm respectively (range 0. 9 to 13.6 cm).

Illex sp., both coindetii and illecebrosus, averaged 6.7 (+/- 2.3 S.E.) individuals hr-1, comprising
0.056% by number and 0.15% by weight of the total catch in this study, ranked 57th in abundance.
Illex was found at 9.8 % (89) of the stations in this study. Average weight and length of this
organism were 0.14 kg and 13.9 cm respectively (range 3.9 to 29.2 cm).

Other species of squid observed in this study but of negligible abundance were Ornithoteuthis sp.
(antillarum; 9 stations), Rossia sp. (5 stations), Semirossia sp. (tenera, equalis; 2 stations), and
Cranchia sp. (scabra; 13 stations). Other cephalopods (i.e. Octopoda) were found at 6 stations. As
a group, squids comprised approximately 6% of the total number of organisms caught during this
study, ranking 5th in total abundance. 

Gadidae

Steindachneria argenta, the luminous hake, averaged 385.8 (+/- 94.7 S.E.) individuals hr-1,
comprising 3.2% by number and 0.8% by weight of the total catch in this study, ranking number 6th

in abundance. S. argenta was found at 10.3 % (94) of the stations in this study. Average weight and
length of this organism were 0.01 kg and 14.5 cm respectively (range 1.2 to 31 cm).

Other gadids observed in this study but of negligible abundance were Urophycis cirrata (35
stations), U. floridana (37 stations), U. regia (3 stations), Merluccius albidus (14), and Laemonema
sp. (1 station).
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Trichiuridae

Trichiurus lepturus, the Atlantic cutlassfish, averaged 313.1 (+/- 48.2 S.E.) individuals hr-1,
comprising 2.6% by number and 3.6% by weight of the total catch in this study, ranking number 8th

in abundance. T. lepturus was found at 38.1 % (347) of the stations in this study. Average weight
and length of this organism were 0.07 kg and 16.7 cm respectively (range 2 to53 cm).

Other trichiurids observed in this study but of negligible abundance were Benthodesmus tenuis (19
stations), Lepidopus sp. (12 stations), and Evoxymetopon taenia (3 stations).

Myctophidae

Diaphus sp., lanternfish, averaged 303.5 (+/- 105.6 S.E.) individuals hr-1, comprising 2.5% by
number and 0.14% by weight of the total catch in this study, ranking number 9th in abundance.
Diaphus sp. was found at 6.8 % (62) of the stations in this study. Average weight and length of this
organism were 0.002 kg and 5.4 cm respectively (range 2.3 to 8.9 cm).

Maurolicus muelleri, the Atlantic pearlside, averaged 15.6 (+/- 6.8 S.E.) individuals hr-1, comprising
0.13% by number and 0.004% by weight of the total catch in this study, ranking number 38th in
abundance. M. muelleri was found at 2.5 % (23) of the stations in this study. Average weight and
length of this organism were 0.002 kg and 4.7 cm respectively (range 2.8 to 5.8 cm).

Other, unidentified myctophids (10 stations) were observed in this study but were of negligible
abundance and biomass. 

Engraulidae

Engraulis eurystole, the silver anchovy, averaged 272.5 (+/- 218.0 S.E.) individuals hr-1, comprising
2.3% of the total catch by number and 0.09% of the total catch by weight. E. eurystole ranked as the
11th most abundant organism of all species collected in this study, and was found at 1.5% (14) of the
stations sampled. Average weight of this organism was 0.002 kg, with an average length of 6.9 cm
(range 2.1 to 21.3 cm).

Anchoa hepsetus, the striped anchovy, averaged 170.6 (+/- 78.6 S.E.) individuals hr-1, comprising
1.4% of the total catch by number and 0.4% of the total catch by weight. A. hepsetus ranked as the
14th most abundant organism of all species collected in this study, and was found at 5.0% (46) of the
stations sampled. Average weight of this organism was 0.01 kg, with an average length of 11.3 cm
(range 4.1 to 17.8 cm).

Anchoa mitchilli, the bay anchovy, averaged 40.1 (+/- 22.8 S.E.) individuals hr-1, comprising 0.3%
of the total catch by number and 0.04% of the total catch by weight. A. mitchilli ranked as the 26th

most abundant organism of all species collected in this study, and was found at 1.2% (11) of the
stations sampled. Average weight of this organism was 0.006 kg, with an average length of 5.5 cm
(range 3.6 to 8.3 cm).
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Other engraulids observed in this study but of negligible abundance were Anchoa nasuta (7
stations), A. lyolepis (1 station) and A. lamprotaenia (1 station). 

Scombridae

Scomber japonicus, the chub mackerel, averaged 262.4 (+/- 60.5 S.E.) individuals hr-1, comprising
2.2% of the total catch by number and 4.1% of the total catch by weight. S. japonicus ranked as the
12th most abundant organism of all species collected in this study, and was found at 28.6% (261) of
the stations sampled. Average weight of this organism was 0.09 kg, with an average length of 20.1
cm (range 3.0 to 35.0 cm).

Other scombrids observed in this study but of negligible abundance were Scombermorus maculatus
(101 stations), S. cavalla (108 stations), Sarda sarda (15 stations), Euthynnus allettenatus (3
stations) and Auxis thazard (3 stations).

Scianidae

Micropogonias undulatus, the Atlantic croaker, averaged 142.4 (+/- 35.8 S.E.) individuals hr-1,
comprising 1.2% of the total catch by number and 1.7% of the total catch by weight. M. undulatus
ranked as the 15th most abundant organism of all species collected in this study, and was found at
15.4% (140) of the stations sampled. Average weight of this organism was 0.07 kg, with an average
length of 18.6 cm (range 1.6 to 50.5 cm).

Leiostomus xanthurus, the spot, averaged 60.2 (+/- 20.6 S.E.) individuals hr-1, comprising 0.5% of
the total catch by number and 1.1% of the total catch by weight. L, xanthurus ranked as the 24th most
abundant organism of all species collected in this study, and was found at 8% (73) of the stations
sampled. Average weight of this organism was 0.11 kg, with an average length of 19.9 cm (range
11.1 to 30.0 cm).

Cynoscion arenarius, the sand seatrout, averaged 25.6 (+/- 5.7 S.E.) individuals hr-1, comprising
0.2% of the total catch by number and 0.5% of the total catch by weight. C. arenarius ranked as the
30th most abundant organism of all species collected in this study, and was found at 17.1% (156) of
the stations sampled. Average weight of this organism was 0.12 kg, with an average length of 22.8
cm (range 6.6 to 40.9 cm).

Cynoscion nothus, the silver seatrout, averaged 14.6 (+/- 3.1 S.E.) individuals hr-1, comprising 0.1%
of the total catch by number and 0.2% of the total catch by weight. C. nothus was the 39th most
abundant organism of all species collected in this study, and was found at 7.2% (66) of the stations
sampled. Average weight of this organism was 0.08 kg, with an average length of 20.2 cm (range
7.2 to 41.4 cm).

Other scianids observed in this study but of negligible abundance were Equetus umbrosus (36
stations), E. lanceolatus (8 stations), E. acuminatus (3 stations), Larimus fasciatus (5 stations),
Menticirrhus americanus (9 stations), M. saxatilis (2 stations) Sciaenops ocellatus (5 stations),
Stellifer lanceolatus (3 stations) and Pogonias cromis (6 stations).
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DISTRIBUTION OF RED SNAPPER LARVAE IN THE
NORTHERN GULF OF MEXICO, 1982-1994

D. M. Drass
J. Lyczkowski-Shultz

P. J. Bond
National Marine Fisheries Service

Pascagoula, MS

ABSTRACT

The red snapper, Lutjanus campechanus, supports important commercial and recreational fisheries
in the Gulf of Mexico (GOM) where stock is managed by size limits and quotas in federal waters.
The National Marine Fisheries Service, Mississippi Laboratories has been investigating the use of
larval fish abundance indices in stock assessments for a number of managed species, including red
snapper.  Reliable estimates of abundance and analyses of occurrence data depend on accurate
identifications to the species level.  Identification of snapper larvae remains problematic despite
recent descriptions of larval stages, yet it is now possible to consistently identify red snapper larvae
$ 3.5 mm.  We have recently examined over 10,000 snapper larvae collected during Southeast Area
Monitoring and Assessment Program (SEAMAP) resource surveys and present here a subset of
those results for the area between Brownsville, TX to Mobile Bay, AL.
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RED SNAPPER DISCARDS IN TEXAS COASTAL WATERS: A FISHERY
DEPENDENT ONBOARD SURVEY OF RECREATIONAL

HEADBOAT DISCARDS AND LANDINGS

Barbara A. Dorf
Texas Parks & Wildlife

Coastal Fisheries Division

ABSTRACT

Quantity and characteristics of red snapper (Lutjanus campechanus) recreational headboat discards
and landings from three Texas ports (Galveston, Port Aransas, and Port Isabel) were determined in
a fishery dependent study using NMFS-trained onboard observers during August and September
1999. Mean fishing depth during 54 trips (199 sets) was 40.2 m (range, 13.4 – 95.4 m) with 36.5%
of reels sampled. Red snapper less than the 1999 federal minimum size of 450 mm (18 inches) total
length made up 93.4% of the 3,863 snapper collected. Those less than the Texas state minimum size
of 375 mm (15 inches) made up 64.0% of the catch. When brought on board, 70.2% of snapper
appeared normal and 26.1% had protruding stomachs. Of the discarded red snapper, 60.6% were
released alive and swam down, 22.8% swam erratically, 15.2% floated, and 1.4% were discarded
dead. Fish released either dead or floating were caught at greater depths than fish which swam down
or erratically. Galveston had the largest discard:landing ratio (211:1) and smallest mean fish size
(0.7 kg, 343 mm). Port Aransas had the lowest discard:landing ratio (5.2:1) and largest mean fish
size (0.9 kg, 387 mm).

INTRODUCTION

Red snapper (Lutjanus campechanus) is one of the most economically important species in the Gulf
of Mexico reef-fish fishery. In order to manage this widely used resource, the Gulf of Mexico
Fishery Management Council implemented a Reef Fish Fishery Management Plan in 1984 to rebuild
declining reef fish stocks (GMFMC 1981). Recent management measures have been publicly
controversial; particularly regarding bycatch in the shrimp fishery, accuracy of stock assessments,
and possible under-reporting and inaccuracy of commercial and recreational catches. As a result,
an independent scientific assessment of red snapper status in the Gulf of Mexico, as well as a peer
review of all National Marine Fisheries Service (NMFS) stock assessments and fisheries statistics
was completed in 1997 (MRAG Americas 1997). Although supportive of the scientific evaluations,
data limitations were noted. 

One area of concern was monitoring the number and length frequency of discards. Another was the
accurate estimate of discard mortality rates, particularly in relation to depth of capture. In 1999, the
NMFS responded to the 1997 peer review and presented a research plan for red snapper in the Gulf
of Mexico. The plan addressed all phases of the reef-fish fishery, including the directed commercial
fishery, recreational charter boats, and headboats (MRAG Americas 1999). Onboard observers were
suggested as the best way to estimate discard. To estimate discard mortality rates, a “sink or swim”
approach was suggested in which onboard observers would note the short-term fate of discarded red
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snapper: whether or not the fish swam down out of sight. Another suggested method to determine
mortality rate involved releasing snapper into cages, then lowering them to depth. This method has
been used previously, although at relatively shallow depths (Gitschlag & Renaud 1994, Render &
Wilson 1994). 

Discard of red snapper caught in the recreational headboat fishery are usually due to: catch during
a seasonal closure while fishing for other species, smaller than minimum size, or number in excess
of legal bag limits. The amount and characteristics of this recreational bycatch are poorly
documented, as is its contribution to bycatch mortality in the Gulf of Mexico. Red snapper from
Texas headboats account for 80% of Texas recreational red snapper landings, 85% of Gulf of
Mexico headboat red snapper landings, and 25% of Gulfwide recreational red snapper landings
(Schirripa & Legault 1999). Awareness of the quantity and characteristics of recreational discards
from this important sector of the red snapper fishery can promote the development of improved
stock assessment and management strategies for the Gulf of Mexico.

The goal of this study was to determine the quantity, characteristics, and fate of red snapper from
the directed recreational headboat fishery along the Texas coast from a depth stratified perspective.
Specific objectives included placing NMFS trained observers on board recreational headboats from
three Texas ports (Galveston, Port Aransas, and Port Isabel) to determine the: 1) length, weight, and
condition of all snapper brought on board; 2) condition and short-term fate of all snapper discards;
3) fishery-specific and environmental parameters associated with all catches.

MATERIALS AND METHODS

Headboats were based in one of three Texas ports: Galveston, Port Aransas, and Port Isabel.
Sampling occurred during the months of August and early September 1999. Prior to closure of the
red snapper fishery in federal waters at the end of August, sampling occurred in federal and state
waters, continuing solely in state waters during September. Data were collected following protocols
described in MRAG Americas (1999), FC.1 Reef fish fishery observer program, and Gitschlag &
Renaud (1994). Methodology closely followed already existing NMFS methods to assure data
compatibility. Either one or two NMFS-trained observers were placed aboard all available headboat
trips departing from each of the three ports. 

Catch specific information was collected for each trip and set: date and time, latitude and longitude,
fishing depth (fathoms), bottom type, wave height (feet), fishing gear type (manual or electric reels),
number of fishers and reels, and hours fished. Biological data included length (mm) and weight (kg)
for both discards and landings, condition of snapper brought on board, hooking location, release
method, and discard fate. Catch per unit effort (CPUE) was calculated as: (“#Fish Caught” / “Set
Hours”) / “#Reels Sampled.” 

Condition of snapper when brought on board was categorized as: live – normal appearance, stomach
protruding, eyes protruding, combination of stomach & eyes protruding, dead on arrival, or not
determined. Hooking locations were divided into: maxilla, gill, esophagus, or other. Release
methods were described as: remove hook, cut leader, swim bladder punctured, combination of hook
removal and swim bladder puncture, or combination of cut leader and swim bladder puncture.
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Discard fate was recorded as: fish kept, discarded alive-swim down, erratic swimming, floating, or
discarded-dead. 

Because there were often more reels on an entire headboat than could be sampled effectively by one
or two observers, each boat was divided into sections as necessary. A trip-specific random table of
numbers was used to determine which boat section to sample during a set. Results represent all reels
sampled.

RESULTS AND DISCUSSION

Forty-eight trips were made aboard four recreational headboats from three Texas fishing ports
(Galveston, Port Aransas, and Port Isabel) during August 1999. Six trips were made aboard one
recreational headboat (Port Isabel) during September 1999 (Table 6.8). Data were collected during
32 days and 2 nights of observations. One hundred ninety-nine sets (170 in August & 29 in
September) were sampled at the locations shown in Figure 6.31.

Mean overall vessel length was 22 m, ranging from 17 to 24 m. All vessels had either fiberglass or
aluminum hulls. Engine power ranged from 700 to 2,120 horsepower, with a mean of 1,232
horsepower. Crew size (not including the captain) ranged from one to six individuals, with a mean
crew size of three. Reels were either manual or electric (although only the Port Aransas headboat
carried electric reels), with 73% of all reels manual.

Mean depth was 40.2 m (20.7 s.d.), ranging from 13.4 to 95.4 m (Figure 6.32). Mean fishing depth
was significantly different between ports in August (F = 220.132, n = 169, df = 2, p < 0.0001) with
the greatest mean depth from Port Aransas (66.0 m, 14.7 s.d.). Fishing depth was shallowest in
Galveston (mean 24.8 m, 6.3 s.d.), with intermediate August values from Port Isabel (mean 48.6 m,
11.9 s.d.). In September, the only samples collected were in state waters from Port Isabel (mean 21.5
m, 3.1 s.d.). Previous discard mortality studies have been carried out in waters shallower than those
commonly fished by Texas headboats. Render & Wilson (1994) carried out their study on a
Louisiana gas production platform in 21 m of water. Surface release studies by Gitschlag & Renaud
(1994) used fish collected at 21 – 40 m depths. Render & Wilson (1996) noted a general trend of
increasing mortality due to physiological stress of unvented snapper collected at depths up to 56 m.
The Texas coast and the greater depths where recreational snapper fishing occurs there are currently
underrepresented in management data collection efforts.

Table 6.8. Number of trips and sets sampled from Texas recreational headboats in August and
September 1999 by fishing port.

Galveston Port Aransas Port Isabel (Aug) Port Isabel (Sept) Total

Trips 20 13 15 6 54

Sets 74 50 46 29 199
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Figure 6.31. Location of Texas recreational headboat sets in August and September 1999.

The mean number of reels sampled per set was 9.8 (2.5 s.d.), with a range of 1 to 22 reels. This
mean constituted 36.5% of all reels in use (29.7% s.d). Fishing time per set varied from 0.2 to 4
hours with a mean of 0.9 hours (0.6 s.d). The majority of fishing occurred during daylight hours,
although there were 2 night fishing trips from Port Aransas. The majority of sets (62.3%) occurred
in 0 to 0.6 m seas, with 37.7% in 0.9 to 1.5 m seas. Most sets took place over rock bottom (55.6%),
with mud (14.8%), and coral (1.0%) comprising the remainder. Fishing often occurred near
hydrocarbon production platforms and over submerged structures such as wrecks.
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Figure 6.32. Fishing depth by port for recreational headboat sets in August and September
1999. A. Galveston; B. Port Aransas; C. Port Isabel (August); D. Port Isabel
(September).

Red Snapper Size Composition

A total of 3,863 red snapper were caught on hook-and-line during the study period. Of these, 3,828
were measured and ranged from 105 to 908 mm (4 to 36 inches) total length (TL) (Table 6.9). The
frequency distribution of snapper examined is shown in Figure 6.33. Mean total length was
significantly different between ports in August (F = 139.308, n = 2,925, df = 2, p < 0.0001). Overall,
snapper 350 – 375 mm (14 - 15-inch) TL comprised the largest proportion (18.1%) of individuals,
although Port Aransas had their largest proportion of snapper (22.8%) in the 375 – 400 mm (15 –
16-inch) TL size (Figure 6.3 3, Table 6.9). 
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Table 6.9. Frequency distribution (A. Total %; B. Cumulative %) for total length (mm) of red snapper
measured during Texas recreational headboat sets in August and September 1999.

A. Total %
From
(³≥≥≥≥)

To
(<)

Total
Count

Total
%

Galveston,
August
Count

Galveston,
August %

Port
Aransas,
August
Count

Port
Aransas,
August

%

Port Isabel,
August
Count

Port Isabel,
August

%

Port Isabel,
September

Count

Port Isabel,
September

 %

75 100 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

100 125 1 0.03 0 0.00 0 0.00 1 0.11 0 0.00

125 150 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

150 175 1 0.03 1 0.08 0 0.00 0 0.00 0 0.00

175 200 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

200 225 13 0.34 4 0.31 2 0.26 2 0.23 5 0.56

225 250 85 2.22 36 2.83 0 0.00 13 1.49 36 4.00

250 275 196 5.12 64 5.02 4 0.51 52 5.98 76 8.44

275 300 262 6.84 103 8.08 19 2.42 45 5.17 95 10.56

300 325 510 13.32 205 16.09 49 6.25 103 11.84 153 17.00

325 350 688 17.97 256 20.09 110 14.03 136 15.63 186 20.67

350 375 693 18.10 269 21.11 163 20.79 150 17.24 111 12.33

375 400 539 14.08 184 14.44 179 22.83 101 11.61 75 8.33

400 425 374 9.77 105 8.24 119 15.18 68 7.82 82 9.11

425 450 212 5.54 33 2.59 62 7.91 62 7.13 55 6.11

450 475 96 2.51 12 0.94 32 4.08 37 4.25 15 1.67

475 500 65 1.70 1 0.08 18 2.30 40 4.60 6 0.67

500 525 24 0.63 0 0.00 7 0.89 14 1.61 3 0.33

525 550 18 0.47 1 0.08 3 0.38 13 1.49 1 0.11

550 575 6 0.16 0 0.00 1 0.13 5 0.57 0 0.00

575 600 19 0.50 0 0.00 5 0.64 14 1.61 0 0.00

600 625 5 0.13 0 0.00 1 0.13 4 0.46 0 0.00

625 650 5 0.13 0 0.00 2 0.26 2 0.23 1 0.11

650 675 6 0.16 0 0.00 4 0.51 2 0.23 0 0.00

675 700 3 0.08 0 0.00 1 0.13 2 0.23 0 0.00

700 725 3 0.08 0 0.00 0 0.00 3 0.34 0 0.00

725 750 1 0.03 0 0.00 1 0.13 0 0.00 0 0.00

750 775 1 0.03 0 0.00 0 0.00 1 0.11 0 0.00

775 800 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

800 825 1 0.03 0 0.00 1 0.13 0 0.00 0 0.00

825 850 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

850 875 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

875 900 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

900 925 1 0.03 0 0.00 1 0.13 0 0.00 0 0.00

925 950 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

Total 3828 100.00 1274 100.00 784 100.00 870 100.00 900 100.00
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Table 6.9. (continued)

B. Cumulative %
From
($$$$=)

To
(####=)

Total
 Count

Total
%

Galveston,
August
Count

Galveston,
August

%

Port
Aransas,
August
Count

Port
Aransas,
August

%

Port
Isabel,
August
Count

Port
Isabel,
August

%

Port
Isabel,

 September
Count

Port
Isabel,

 September
%

75 100 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

100 125 1 0.03 0 0.00 0 0.00 1 0.11 0 0.00

125 150 1 0.03 0 0.00 0 0.00 1 0.11 0 0.00

150 175 2 0.05 1 0.08 0 0.00 1 0.11 0 0.00

175 200 2 0.05 1 0.08 0 0.00 1 0.11 0 0.00

200 225 15 0.39 5 0.39 2 0.26 3 0.34 5 0.56

225 250 100 2.61 41 3.22 2 0.26 16 1.84 41 4.56

250 275 296 7.73 105 8.24 6 0.77 68 7.82 117 13.00

275 300 558 14.58 208 16.33 25 3.19 113 12.99 212 23.56

300 325 1068 27.90 413 32.42 74 9.44 216 24.83 365 40.56

325 350 1756 45.87 669 52.51 184 23.47 352 40.46 551 61.22

350 375 2449 63.98 938 73.63 347 44.26 502 57.70 662 73.56

375 400 2988 78.06 1122 88.07 526 67.09 603 69.31 737 81.89

400 425 3362 87.83 1227 96.31 645 82.27 671 77.13 819 91.00

425 450 3574 93.36 1260 98.90 707 90.18 733 84.25 874 97.11

450 475 3670 95.87 1272 99.84 739 94.26 770 88.51 889 98.78

475 500 3735 97.57 1273 99.92 757 96.56 810 93.10 895 99.44

500 525 3759 98.20 1273 99.92 764 97.45 824 94.71 898 99.78

525 550 3777 98.67 1274 100.00 767 97.83 837 96.21 899 99.89

550 575 3783 98.82 1274 100.00 768 97.96 842 96.78 899 99.89

575 600 3802 99.32 1274 100.00 773 98.60 856 98.39 899 99.89

600 625 3807 99.45 1274 100.00 774 98.72 860 98.85 899 99.89

625 650 3812 99.58 1274 100.00 776 98.98 862 99.08 900 100.00

650 675 3818 99.74 1274 100.00 780 99.49 864 99.31 900 100.00

675 700 3821 99.82 1274 100.00 781 99.62 866 99.54 900 100.00

700 725 3824 99.90 1274 100.00 781 99.62 869 99.89 900 100.00

725 750 3825 99.92 1274 100.00 782 99.74 869 99.89 900 100.00

750 775 3826 99.95 1274 100.00 782 99.74 870 100.00 900 100.00

775 800 3826 99.95 1274 100.00 782 99.74 870 100.00 900 100.00

800 825 3827 99.97 1274 100.00 783 99.87 870 100.00 900 100.00

825 850 3827 99.97 1274 100.00 783 99.87 870 100.00 900 100.00

850 875 3827 99.97 1274 100.00 783 99.87 870 100.00 900 100.00

875 900 3827 99.97 1274 100.00 783 99.87 870 100.00 900 100.00

900 925 3828 100.00 1274 100.00 784 100.00 870 100.00 900 100.00

925 950 3828 100.00 1274 100.00 784 100.00 870 100.00 900 100.00

Total 3828 100.00 1274 100.00 784 100.00 870 100.00 900 100.00
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Figure 6.33. Size distribution of red snapper caught and measured during Texas recreational
headboat sets in August and September 1999. A. Summary; B. Galveston (August
only); C. Port Aransas (August only); D. Port Isabel (August); E. Port Isabel
(September).
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Red snapper < 450 mm (18 inches, federal minimum size at the time of this study) TL made up
93.4% of snapper caught. Those < 400 mm (16 inches, current federal minimum size) made up
78.1% of snapper caught. Snapper < 375 mm (15 inches, current state minimum size) constituted
64.0% of fish collected (Table 6.9). Port Isabel had the greatest proportion of snapper larger than
425 mm (17+ inches) in August samples, although Port Aransas had the largest proportion of 375
to <425 mm (15 to <17 inches) snapper (Table 6.10). There was no significant statistical relationship
between depth and total length of snapper caught in this survey for any port or all ports combined
(r2 = 0.092). 

Table 6.10. Percentage of red snapper measured greater than or equal to 450, 425, 400, and 375
mm (18, 17, 16, and 15 inches) total length caught during Texas recreational
headboat sets in August and September 1999.

Total Length
(mm) Summary Galveston % Port Aransas

%
Port Isabel
(Aug) %

Port Isabel
(Sep) %

450+ 6.6 1.1 9.8 15.8 2.9

425+ 12.2 3.7 17.7 22.9 9.0

400+ 21.9 11.9 32.9 30.7 18.1

375+ 36.0 26.4 55.7 42.3 26.4

N 3,828 1,274 784 870 900

Snapper collected in this study represent a greater size range than those of most previous studies,
reflecting size distribution differences among locations along the Gulf coast. In the surface release
study by Gitschlag & Renaud (1994), southeast of Galveston, Texas, 91% of their snapper were less
than 300 mm FL (324 mm TL; (Parrack 1986)). For their cage studies, tested snapper were # 430
mm FL (463 mm TL), with 35% of their snapper < 300 mm FL (324 mm TL), similar to the present
study where 28% of snapper were under 325 mm TL). Mortality tests by Render & Wilson (1996)
were conducted south of Cameron, Louisiana on fish less than 360 mm FL (388 mm TL). In the
present study, Port Aransas and Port Isabel (August) snapper $ 375+ mm TL accounted for 33% and
31% of the catch, respectively.
 

Red Snapper Hooking Location and Condition When Brought on Board

Hooking location was determined for 3,849 snapper: 91.8% were hooked in the maxilla, 6.2% in the
esophagus, 0.8% in the gill, and 1.3% in some other area of the body. Condition when brought on
board was determined for 3,844 snapper: 70.2% were normal in appearance, 26.1% had their
stomach protruding from their mouths, 2.8% had protruding eyes, 0.6% had both eyes and stomach
protruding, and 0.3% were brought on board dead. There were significant differences in mean depth
between conditions (F = 109.056, n = 3,840, df = 4, p < 0.0001), although there was no clear trend
evident (Figure 6.34, Table 6.11). Percent of snapper brought to the surface with stomach protrusion
was variable with depth and port, possibly a reflection of variable fish retrieval rates (manual vs. 
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Table 6.11. Mean depth (m) and frequency for condition (when brought on board) of red snapper
measured during Texas recreational headboat sets in August and September 1999.

Mean Depth (m) [% of catch]

Condition Summary
(n = 3,844)

Galveston
(n = 1,306)

Port Aransas
(n = 781)

Port Isabel,
Aug

(n = 872 )

Port Isabel,
Sep

(n = 901)
Normal 33.8 [70.2] 22.4 [71.1] 64.0 [64.0] 47.0 [46.4] 22.4 [97.1]

Stomach Protruding 43.1 [26.1] 26.9 [28.5] 59.8 [25.3] 50.5 [47.5] 29.1 [2.8]
Eyes Protruding 61.8 [2.8] -  65.7 [9.3] 54.6 [3.9] 25.6 [0.1]
Eyes & Stomach 58.3 [0.6] 34.7 [0.1] 71.3 [0.6] 56.0 [2.1] -

Dead 57.3 [0.3] 27.4 [0.3] 75.6 [0.8] 67.6 [0.1] -

electric reels) by headboat fishers. Gitschlag & Renaud (1994) found that 33% of their cage study
snapper were brought on board with everted stomachs, with 51% showing some sign of capture-
related stress. For their surface release study, stomach protrusion from the mouth was noted in 1%
of fish collected at 21-24 m depth, 56% at 27-30 m and 37-40 m depths. 

Red Snapper Release and Discard Fate

When snapper were discarded, 62.8% were released by removing the hook without puncturing the
swim bladder. The swim bladder was punctured along with hook removal for 36.2% of released
snapper. Discard fate was determined for 3,851 fish, and included 12.9% of the catch that was kept.
Of those that were discarded, 60.6% were released alive and swam down, 22.8% swam erratically,
15.2% floated, and 1.4% were discarded dead (Figure 6.35). There were significant differences in
mean depth between discard fates (F = 66.594, n = 3,353, df = 3, p < 0.0001). Fish released either
dead or floating were caught at greater depths than fish that swam down or swam erratically on
release (Figure 6.36, Table 6.12).

Schirripa & Legault (1999) summarized an observer program in the Gulf of Mexico commercial reef
fish fishery in 1995 that targeted several red snapper trips on handline vessels at similar depths to
the present study (mean 40 m, range 33 – 62 m) located off of Louisiana and east Texas.
Comparable amounts of red snapper were discarded dead (1.6%) and most discards were said to
have either stomachs or eyes protruding. Gitschlag & Renaud (1994) found higher proportions of
snapper swam down (99% at 21-24 m, 90% at 27-30 m, and 56% at 37-40 m) in a study based on
3 single day headboat trips. Researchers rather than headboat patrons caught snapper in their study,
and onboard handling procedures and fish retrieval rates (manual vs. electric reels) may account for
differences in swim down proportion on release. 

There were no significant differences in mean total length between discard fates, excluding those
kept (F = 1.361, n = 3,324, df = 3, p = 0.2527). The only clear trend was that all discard fates had
similar total length distributions except fish > 450 mm which were legally kept (Table 6.13, Figure
6.37). Gitschlag & Renaud (1994) also found that survival of caged fish was unrelated to size.
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Table 6.12. Mean depth (m) and frequency for discard fate of red snapper measured during
Texas recreational headboat sets in August and September 1999.

Mean Depth (m) [% of catch]

Discard Fate Summary
(n = 3,353)

Galveston
(n = 1,298)

Port Aransas
(n = 655)

Port Isabel,
Aug

(n = 731 )

Port Isabel,
Sep

(n = 669)
Swim Down 34.3 [60.6] 23.3 [57.9] 59.0 [72.8] 47.2 [33.9] 22.1 [83.0]

Erratic Swimming 34.8 [22.8]  24.1 [30.0] 60.8 [5.2] 49.4 [37.8] 23.0 [9.7]
Floating 46.3 [15.2] 24.4 [10.6] 72.4 [20.3] 49.9 [26.0] 23.1 [7.3]

Dead 47.9 [1.4] 26.1 [1.5] 73.0 [1.7] 57.3 [2.3] -

Table 6.13. Mean total length (mm) and frequency for discard fate of red snapper measured
during Texas recreational headboat sets in August and September 1999.

Mean Total Length (mm) [% of catch]

Discard Fate Summary
(n = 3,828)

Galveston
(n = 1,274)

Port Aransas
(n = 784)

Port Isabel,
Aug

(n = 870 )

Port Isabel,
Sep

(n = 900)
Swim Down 343 [52.6] 342 [57.7] 374 [61.1] 351 [28.4] 316 [61.6]

Erratic Swimming 344 [19.8] 345 [30.0] 366 [4.5] 349 [31.7] 305 [7.2]
Floating 348 [13.2] 339 [10.4] 364 [17.0] 352 [21.9] 314 [5.4]

Dead 339 [1.2] 330 [1.5] 350 [1.4] 342 [2.0] -
Kept 459 [12.9] 478 [0.5] 468 [16.1] 518 [15.3] 419 [25.4]

Several snapper were kept from Port Aransas in August that were smaller than 450 mm (18-inches).
These were harvested under a collecting permit for an ongoing research project. Catches from Port
Isabel in September reflected the smaller minimum size requirement for snapper caught in Texas
waters (380 mm, 15 inches) rather than the 450 mm (18-inch) federal minimum size. As a result,
Port Isabel kept a larger proportion of fish than other locations (Table 6.13).

It is likely that large proportions of the snapper that floated or swam erratically died from
physiological stress or were subject to predation soon after release. In addition, some of the snapper
that swam down on release probably died later as a result of gas bladder rupture or other
physiological damage, as summarized in Render & Wilson (1996). It is beyond the scope of this
study to draw such a conclusion, as no specific data were available on the long-term fate of the
released snapper. Survival rates from cage studies must be interpreted carefully when compared to
surface release studies. Cage studies eliminate predation risk and, by forcing submergence, may
enhance the survival of fish that would have otherwise remained at the surface either floating or
swimming erratically.
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Figure 6.37. Size and fate of red snapper caught and measured during Texas recreational headboat
sets in August and September 1999 by fishing port. A. Galveston; B. Port Aransas;
C. Port Isabel.
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Red Snapper Discards, Landings and CPUE (Catch per Unit Effort)

Overall, 87.1% of the red snapper catch was discarded (Table 6.14). By weight, discarded snapper
made up 75.2% of the catch (Table 6.15). Galveston had the largest discard:landing ratio (211:1),
the smallest mean weight per fish sampled (0.7 kg, 0.3 s.d.), and the smallest mean fish total length
(343 mm, 47.3 s.d.; 13.5 inches, 1.9 s.d) (Table 6.16). Port Aransas had the lowest discard:landing
ratio (5.2:1) along with the largest weight per fish (0.9 kg, 0.7 s.d.), and total length per fish (387
mm, 62.7 s.d.; 15.3 inches, 2.5 s.d.). Estimates of total discards per port are conservative because
of the need to subdivide the boat when the number of fishers was too large for two observers to man-
age efficiently. Data from the 1995 commercial red snapper hand line observer program (Schirripa
& Legault 1999) indicated that only 40.7% of red snapper were discarded, constituting 18.6% of the
snapper catch by weight. Fish approximately 375 mm (15 inches) or larger were retained.

Mean CPUE for red snapper was 2.8 fish per angler hour (2.19 s.d.). There were no significant
differences in CPUE between ports (p >0.0258). CPUE from the present study is higher than all
values reported in Schirripa & Legault (1999) for the Gulf of Mexico recreational fishery. Their
CPUE measure is derived exclusively from the Marine Recreational Fishery Statistics Survey
(MRFSS) and Texas Parks & Wildlife (TPW) harvest survey data. However, headboat sampling was
discontinued by the MRFSS in 1985, and TPW does not sample headboat landings. The NMFS
Headboat Survey, begun in 1985, includes Gulf of Mexico ports and estimates headboat landings.
Currently, there is no direct measure of discards included in the red snapper stock assessment.

Table 6.14. Discards and landings (numbers) of red snapper measured from Texas recreational
headboat sets in August and September 1999 by fishing port.

Galveston Port
Aransas

Port
Isabel
(Aug)

Port
Isabel
(Sept)

Total

Discards 1,268 658 730 668 3,324
Landings 6 126 133 229 494

Total 1,274 784 863 897 3,818
D:L 211.3 : 1 5.2 : 1 5.5 : 1 2.9 : 1 6.7 : 1

Table 6.15. Discards and landings (whole weight, kg) of red snapper measured from Texas
recreational headboat sets in August and September 1999 by fishing port. Number
in parentheses is the mean weight per fish sampled.

Galveston Port
Aransas

Port Isabel
(Aug)

Port Isabel
(Sept) Total

Discards 879 (0.69) 525 (0.80) 511 (0.69) 344 (0.51) 2,259 (0.68)
Landings 10 (1.69) 207 (1.64) 275 (2.07) 254 (1.11) 746 (1.51)

Total 889 (0.70) 732 (0.93) 786 (0.90) 598 (0.67) 3,005 (0.79)
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Table 6.16. Discards and landings (mean total length, mm) of red snapper measured from Texas
recreational headboat sets in August and September 1999 by fishing port. Number
in parentheses is the standard deviation of total length.

Galveston Port Aransas Port Isabel
(Aug)

Port Isabel
(Sept) Total

Discards 342 (46.5) 371 (39.6) 351 (52.4) 314.6 (37.1) 344 (48.4)
Landings 478 (23.8) 468 (91.9) 518 (66.6) 419 (31.6) 459 (74.2)

Total 343 (47.3) 387 (62.7) 376 (81.5) 341 (57.9) 359 (65.1)

This study is the first time that observers have been placed on board recreational headboats to
directly document the quantity and characteristics of red snapper discards and landings on the Texas
coast. Texas accounts for 85% of Gulf of Mexico headboat red snapper landings and 25% of
Gulfwide recreational red snapper landings (Schirripa & Legault 1999). If current minimum size
limits had been in effect during the time of this study the discard rate would still have been 78% in
federal waters (400 mm, 16 inch minimum size) and 64% in Texas state waters (375 mm, 15 inch
minimum size), much higher than that reported from the commercial fishery. Although limited in
duration, this study demonstrates the importance of discards to the Texas red snapper fishery as well
as to red snapper stock assessment in the Gulf of Mexico. It would be beneficial to continue,
optimize, and expand this type of study to cover the entire red snapper season in all areas of the Gulf
of Mexico where headboat sampling occurs.
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ABSTRACT

Stocking of artificially spawned fingerlings is an important component of the management program
for red drum in Texas waters. Gene-marking, using an uncommon allele of the dimeric esterase
locus, was employed to examine survival and quantify recruitment of stocked red drum to the total
estuarine population. Between 1993 and 1995 2,049,747 red drum fingerlings were stocked into East
Matagorda Bay, Texas. Of these, approximately 50% were heterozygous and 25% were homozygous
for an uncommon allele of the dimeric esterase locus. Subsequent electrophoretic examinations of
6,081 red drum collected between 1993 and 1997 in routine resource monitoring or in creel surveys
in this bay and in adjacent reaches of neighboring bays found no evidence of increases in the
frequency of the marker-allele in supplemented year-classes. Previous studies have shown
enhancement of red drum populations following stockings in Texas marine waters. Failure to
demonstrate enhancement in the current study may be related to specific conditions under which
stocking efforts were made; including physical conditions at time of stocking, quality of the stocked
cohort, and density of naturally spawned conspecifics.
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ABSTRACT

Tandemly repeated DNA simple sequence motif markers, or microsatellite loci, have become the
molecular genetic tool of choice in an increasingly diverse range of studies. Microsatellite DNA
markers offer the potential of high levels of allelic variation per locus, and perhaps a higher degree
of population resolution, even in species of conservation concern characterized by small effective
population sizes. The Gulf sturgeon ( Acipenser oxyrinchus desotoi) was designated as a threatened
species under the U.S. Endangered Species Act in 1991. Recent studies of mitochondrial DNA
variation suggested the presence of significant genetic differentiation in the form of at least four
regional or river-specific populations along the Gulf coast. To assess the utility of microsatellite
markers for delineating population structure in Gulf sturgeon, we determined multilocus (N=7)
microsatellite genotypes in over 220 fish from the Pearl, Yellow, Apalachicola, and Suwannee River
drainages. Significant allelic heterogeneity was observed among all drainage systems surveyed. A
maximum likelihood assignment test was used to identify population structure among Gulf sturgeon
populations. These analyses correctly assigned each fish to its respective drainage in greater than
90% of comparisons. These preliminary results indicate that variation in microsatellite DNA
variation can serve as a powerful discriminator of genetic stock structure among geographically
proximal rivers and that little gene exchange occurs among regional drainages (i.e., the presence of
strong homing fidelity). The results suggest the presence of at least four distinct management units
among the Gulf sturgeon surveyed.
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FISHERIES IMPACTS OF UNDERWATER EXPLOSIVES USED IN
PLATFORM SALVAGE IN THE GULF OF MEXICO

Gregg R. Gitschlag
National Marine Fisheries Service

Southeast Fisheries Center
Galveston, TX

Michael J. Schirripa
National Marine Fisheries Service

Northwest Fisheries Science Center
Newport, OR

Joseph E. Powers
National Marine Fisheries Service

Southeast Fisheries Center
Miami, FL

INTRODUCTION

As of 31 January 2000 there were 3,967 oil and gas structures1 in the Gulf of Mexico (GOM).
Federal regulations require removal of platforms within a year of lease termination. According to
data from the National Marine Fisheries Service (NMFS) Platform Removal Observer Program2  that
includes removals in both federal and state waters, from 1989–98 an annual average of 96 structures
were salvaged using explosives. For the same period, MMS data for federal waters indicate under-
water explosives were used in 64% of all removals (submerged wells not included in these data).
MMS regulations require removal of structures to a minimum depth of 5 m below the seafloor.3

Since forty- to fifty-pound explosive charges are commonly used to sever platform pilings, hundreds
of pounds of explosives, primarily Comp-B and C-4, are detonated at most offshore platforms.

Offshore platforms serve as excellent artificial reef habitat attracting a vast array of marine life
(Dugas et al. 1979; Hastings et al. 1976; Lewbel et al. 1987; Scarborough-Bull 1989; Sonnier et al.
1976; Stanley & Wilson 1990). The use of underwater explosives can severely impact fish and other
marine life during the removal process. Of special concern is the commercially and recreationally
important red snapper which is already severely overfished (Goodyear and Phares 1990; Goodyear
1996; Cowan 1998; Schirripa 1998).

This report describes the first comprehensive study to quantitatively assess fisheries impacts of the
explosive removal of offshore oil and gas structures. Mortality estimates from platform removals
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were calculated and used in stock assessment analyses to determine the relative importance of this
activity compared with other sources of mortality. The results of these analyses provide managers
with information needed to manage fisheries.

METHODS

Between August 1993 and May 1999 data were collected at nine of ten platforms studied to estimate
total fish mortality (Table 7.1, Figure 7.1). Prior to detonation of explosives fish were captured,
tagged and released alive. After explosives were detonated field personnel operating from inflatable
boats used dip nets to collect all dead fish that floated to the surface while divers manually sampled
dead fish that sank to the sea floor. Underwater sampling techniques included transect line surveys,
circular surveys, and sampling frames placed beneath the platform. To increase efficiency,
procedural modifications were made early in the study and only final sampling protocols are
described here (Figure 7.2). Twenty-four circular surveys measuring 6.7 m (22 ft) in diameter and
four 100 m (328 ft) transect lines were sampled. At one platform (WC172), 200 m (656 ft) transect
lines were surveyed. Divers collected discrete samples of dead fish in 25 m (82 ft) increments along
the transect lines. Sampling width was either 1 or 2 m (3 or 6 ft) on either side of the line depending
on underwater visibility. Sampling frames usually provided 20–30% coverage of the footprint area
under the platform. Generally, fish smaller than 8 mm total length were not sampled. Due to time
constraints and safety considerations, not all targeted samples were always collected.

Fish mortality was estimated by multiplying fish density (number of fish in sample divided by area
sampled) by total area for each region of interest (i.e. 0–25 m radius around the platform, 25–50 m,
50–75 m, etc.). Total estimated mortality at each platform was calculated by adding the estimated
fish mortalities at the surface, beneath the platform and in the open water around the platform to a
maximum distance of 100 m. Data from transect and circular surveys were combined to provide one
estimate of fish mortality in the open water area. Population size was estimated for individual
species using direct proportions of tagged to untagged fish present before and after detonation of
explosives:

Nb = Na X Ntb /Nta

Where Nb is the number of live fish present before blasting, Na is the number of dead fish collected
after blasting, Ntb is the number of fish tagged and released before blasting, and Nta is the number of
dead, tagged fish collected after blasting.

RESULTS

Fish < 8 cm TL (Total Length)

With the exception of this section, results describe only fish greater than or equal to 8 cm in total
length. This appeared to be the minimum size which divers routinely collected by hand. At one site
where a large number of very small fish were observed, all fish regardless of size were painstakingly
collected within a single 1.5 X 1.5 m frame on the sea floor beneath the platform. Specimens
included 117 vermilion snapper (Rhomboplites aurorubens), 6 round scad (Decapterus punctatus),
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Table 7.1. Estimated mortality and descriptive statistics by species and platform.

SPECIES

SM
I 23

W
D

 30

ST 146

SS 158

W
C

 172

W
C

 173

W
C

 181

SS 209

G
A

 288

Total

M
ean

Std error

Std dev

V
ar

95%
confidence
level

Almaco jack 29 0 1 0 0 0 0 0 0 30 3 3 10 92 7

Atlantic bumper 0 0 0 0 46 201 0 0 0 247 27 22 67 4471 51

Atlantic croaker 0 0 0 0 0 7 0 0 0 7 1 1 2 5 2

Atlantic spadefish 2069 631 698 1689 911 1068 2401 633 2774 12875 1431 275 824 679238 634

Atlantic thread herring 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

Belted sand bass 11 0 0 0 1 0 17 0 0 29 3 2 6 40 5

Bermuda chub 0 0 0 0 0 0 43 0 0 43 5 5 14 204 11

Black drum 0 19 6 0 2 14 0 0 3 44 5 2 7 48 5

Blue runner 611 33 1592 1069 219 0 684 13 646 4867 541 181 542 294154 417

Bluespotted searobin 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

Chub mackerel 0 0 0 0 0 0 0 0 4 4 0 0 1 2 1

Cocoa damselfish 0 0 0 0 0 0 4 0 0 4 0 0 1 2 1

Crevalle jack 0 0 0 0 5 0 0 0 0 5 1 1 2 2 1

Cubbyu  0 0 0 0 0 0 0 66 66 7 7 22 487 17

Gag 6 6 2 0 0 0 0 0 0 14 2 1 3 7 2

Gray triggerfish 144 1 16 116 13 0 22 43 44 399 44 17 52 2685 40

Great barracuda 5 0 0 0 0 0 0 0 0 5 1 1 2 2 1

Guaguanche 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

Gulf toadfish 0 0 0 0 0 0 0 0 24 24 3 3 8 63 6

Hardhead catfish 0 6 0 0 4 397 0 0 0 407 45 44 132 17466 101

Harvest fish 0 0 0 0 0 5 0 00 0 5 1 1 2 2 1

Ladyfish 0 3 0 0 0 0 0 0 0 3 0 0 1 1 1

Lane snapper 34 0 60 0 1 0 0 193 82 371 41 22 65 4197 50

Leopard toadfish 53 0 0 0 0 0 0 0 0 53 6 6 18 317 14

Lookdown 0 3 0 0 0 0 0 0 0 3 0 0 1 1 1

Mangrove snapper 63 364 240 44 1 1 0 324 64 1100 122 49 146 21322 112

Molly miller 0 0 0 0 0 0 4 0 0 4 0 0 1 2 1

Mullet 0 22 0 0 0 0 0 0 0 22 2 2 7 54 6

Ocean triggerfish 0 0 2 0 0 0 0 0 0 2 0 0 1 0 1

Pigfish 23 0 0 0 3 0 0 0 31 57 6 4 12 141  

Pinfish 0 0 0 0 0 3 0 0 17 20 2 2 6 33 4

Planehead filefish 44 0 0 0 0 0 0 0 0 44 5 5 15 213 11

Red drum 0 0 0 35 0 0 0 0 19 54 6 4 12 156 10
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SPECIES

SM
I 23

W
D

 30

ST 146

SS 158

W
C

 172

W
C

 173

W
C

 181

SS 209

G
A

 288

Total

M
ean

Std error

Std dev

V
ar

95%
confidence
level

Red snapper 1193 24 298 296 498 709 709 418 487 4632 515 111 332 110174 255

Remora 0 0 0 0 13 0 0 0 0 13 1 1 4 19 3

Rock hind 0 0 9 0 0 0 7 0 5 22 2 1 4 14 3

Scaled sardine 0 0 0 0 8 0 0 0 0 8 1 1 3 7 2

Scamp 3 0 0 0 0 0 0 0 0 3 0 0 1 1 1

Schoolmaster 9 0 0 0 0 0 0 0 0 9 1 1 3 9 2

Scrawled filefish 0 0 0 0 0 0 4 0 0 4 0 0 1 2 1

Sergeant major 0 0 0 0 5 16 0 0 0 21 2 2 5 30 4

Sharksucker 0 0 0 0 0 3 0 0 0 3 0 0 1 1 1

Sheepshead 330 1007 120 395 457 386 968 61 370 4094 455 110 329 108436 253

Silk snapper 0 0 0 39 0 0 0 0 0 39 4 4 13 166 10

Silver trout 0 0 140 0 1 0 0 0 0 141 16 16 47 2173 36

Spanish sardine 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

Speckled trout 0 3 0 0 0 0 0 0 0 3 0 0 1 1 1

Tomtate 0 0 0 0 0 0 0 0 464 464 52 52 155 23929 119

Unknown damselfish 0 0 0 0 0 0 0 0 16 16 2 2 5 30 4

Unknown eel 0 0 0 0 0 0 0 27 0 27 3 3 9 81 7

Unknown soapfish 0 0 1 0 0 0 0 0 38 39 4 4 13 161 10

Unknown 0 6 0 0 0 0 0 46 0 52 6 5 15 231 12

Whitespotted soapfish 23 0 3 0 4 0 10 5 53 97 11 6 17 302 13

Yellow chub 1 0 0 0 0 0 0 2 5 8 1 1 2 3 1

Yellowtail snapper 6 0 0 0 0 0 0 0 0 6 1 1 2 4 2

Total 4657 2128 3188 3682 2193 2812 4874 1765 5216 30513 3390 429 1288 1658640 990

2 lane snapper (Lutjanus synagris), and 2 scaled sardine (Harengula pensacolae). Mortality of
vermilion snapper measuring < 8 cm TL within the footprint area of this platform was estimated at
approximately 5,900. Estimated mortality of all small fish in the footprint area alone exceeded 6,200
compared with a total estimated mortality (footprint area plus 100 m radius) of approximately 4,900
for fish measuring >8 cm.

Estimated Mortality

Total estimated finfish mortality per platform ranged from 1,765–5,216 with a mean of 3,390,
standard error 429, and 95% confidence level of 990. Four species including Atlantic spadefish
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Figure 7.1. Map of study sites. Dark circles represent platforms where fish mortality was estimated from samples collected at
the sea surface and bottom. The white circle represents a platform where only sea surface sampling was conducted.



362

Figure 7.2. Schematic of sampling design showing transect lines, circular surveys, and sampling
area under platform.

(Chaetodipterus faber), blue runner (Caranx fusus), red snapper (Lutjanus campechanus), and
sheepshead (Archosargus probatocephalus) accounted for 86% of total estimated mortality (Table
7.2). Mean estimated mortality per platform was 1,431 for Atlantic spadefish, 541 for blue runner,
515 for red snapper, and 455 for sheepshead. Range in estimated mortality by platform was
631–2,774 for Atlantic spadefish, 0–1,592 for blue runner, 24–1,193 for red snapper, and 61–1,007
for sheepshead.

Fish mortality resulting from the use of underwater explosives may be affected by many factors
including but not limited to water depth (<20 m vs >20 m), platform location (<=92o vs >92o),
platform age (<25 year vs >25 year), season (spring vs summer), surface temperature (<30oC vs
>=30oC), surface salinity (<=26 ppt vs >26 ppt), and platform size. Statistical analysis of estimated
mortality by each of these parameters indicated no significant difference from the null hypothesis
for each of the top four impacted species. One exception was the depth analysis for sheepshead
which was marginally significant with a P value of 0.05. Longitude was used as an index of platform
location, and platform size was indexed using the volume of water enclosed within the boundary of
the platform.
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Table 7.2. Estimated mortality of the five most impacted species.

SPECIES
Total estimated

mortality
% of total estimated

mortality

Atlantic spadefish 12875 42

Blue runner 4867 16

Red snapper 4632 15

Sheepshead 4094 13

Total 86

Population Estimates and Mortality Rates

Pre-detonation population estimates were calculated whenever a minimum of 10 individuals of a
given species were tagged and released. The maximum number of tags released for a single species
at a single platform was 502 for Atlantic spadefish. In most tag/recapture experiments using
conventional techniques, recapture rates of 2–5% are anticipated. Recovery rates as high as 73%
(Table 7.3) attest to the effectiveness of sampling with explosives. Red snapper estimates at 7
platforms ranged from 503–1,943 with a mean of 905 and standard error of 196 (Table 7.4). Atlantic
spadefish estimates at three platforms ranged from 1,432–1,782 with a mean of 1,564 and standard
error of 110. The blue runner population was estimated at 558 at one platform.

Mortality rates (estimated mortality divided by population estimate) were determined for species
and platforms where pre-detonation population estimates were calculated (Table 7.5). Rates for red
snapper varied from 59–88% with a mean of 71% and standard error of 4. Atlantic spadefish rates
ranged from 72–135% with a mean of 108% and standard error of 19 while one rate of 123% was
calculated for blue runner.

Fish Density Around Platforms

Density of fish collected along transect line surveys from eight platforms were analyzed using the
two sample t-test. There was a significant difference (P=0.000) in fish density (log(density + 1)
transformed) for samples collected at 0–25 m (0.027 fish/m3) and 25–50 m (0.002 fish/m3) distances
from platforms. A significant difference (P=0.003) was also found using data from circular surveys
collected at 0–6.7 m and 18.3–25.0 m from the platform. Fish density was higher closer to the
platform (0.051 fish/m3 vs 0.007 fish/m3). Fish density for transect data collected between 50–75
m and 75–100 m from platforms averaged 0.001 and 0.000 fish/m3.
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Table 7.3. Recapture rates (100 x number of tags recovered/number of tags released) for tag-
recapture study.

Platform

SPECIES SMI 23 ST 146 SS 158 WC 172 WC 173 WC 181 SS 209 GA 288

Almaco jack 25

Atlantic spadefish 13 72 34

Blue runner 29

Gray triggerfish 24 13 30

Red snapper 41 49 73 19 20 62 44

Table 7.4. Population estimates by species and platform.

Platform

SPECIES

SM
I 23

ST 146

SS 158

W
C

 172

W
C

 173

W
C

 181

SS 209

G
A

 288

M
ean

Std
error

Std
dev

V
ar

95%
confidence

Almaco jack 28 28 0

Atlantic spadefish 1432 1477 1782 1564 110 190 36258 473

Blue runner 558 558

Gray triggerfish 129 93 63 95 19 33 1092 82

Red snapper 1943 503 597 1091 1048 601 553 905 196 517 267546 478

Table 7.5. Mortality rates (100 x estimated mortality / population estimate) by species and platform.

Platform

SPECIES

SM
I 23

ST 146

SS 158

W
C

 172

W
C

 173

W
C

 181

SS 209

G
A

 288

M
ean

Std
error

Std
dev

V
ar

95%
confidence

Almaco jack 104 104 0

Atlantic spadefish 118 72 135 108 19 32 1044 80

Blue runner 123 123

Gray triggerfish 112 125 68 102 17 30 874 73

Red snapper 61 59 83 65 68 70 88 71 4 11 121 10
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Comparison of Estimated Mortality and Size of Positively and Negatively Buoyant Fish

There was no consistent relationship between the number of red snapper carcasses collected at the
surface and the estimated number of red snapper that sank to the sea floor after detonations (Table
7.6). Results for all fish species combined were also highly variable. Paired t-test of log transformed
ratios of positively (floating) to negatively buoyant (sinking) fish showed a significant difference
between red snapper and all species combined. More red snapper floated to the surface than sank
at four of eight study sites compared with only two of nine for all fish species combined. Ratios of
floating to sinking red snapper ranged from 0.03–6.74 per platform while the range for all species
combined was 0.03–1.47. Extremely low values indicate that few fish floated to the surface. A ratio
of 0.03 means that an estimated 33 times more fish sank to the sea floor than floated to the surface.
Results indicate that more fish generally sink than float and that actual total fish mortality may be
considerably more than what is observed at the surface.

GLM analysis of red snapper length by factors of platform and buoyancy showed a significant
difference (P=0.00) for both factors and interaction. Mann-Whitney tests used to compare length of
floating vs. sinking red snapper at each platform showed mixed results. A significant difference
(P<0.05) in total length of positively vs. negatively buoyant fish was found at four platforms, but
no difference was apparent at four other platforms (Table 7.7). Mean total length was larger for
positively buoyant fish at all platforms except one in 15 m of water where negatively buoyant fish
were significantly larger. Difference between mean lengths of positively and negatively buoyant red
snapper was 2.6 cm (36.7–34.1 cm).

Estimating Red Snapper Impacts Across the U.S. Gulf of Mexico
Using Stock Assessment Techniques

Since results did not show a consistently significant difference between length of positively and
negatively buoyant fish at individual platforms and since the overall difference in mean length of
positively and negatively buoyant fish was small (2.6 cm), it should be acceptable to utilize
historical data from the NMFS Platform Removal Observer Program2, which is only available for
positively buoyant fish, to enhance the present data set with additional red snapper lengths. This
contributed an additional 13,527 red snapper lengths for a total of 16,510 collected at 116 explosive
structure removals.

Opportunistic surface collections made by the NMFS Platform Removal Observer Program lend
support to the concept of fewer red snapper mortalities at single pile caissons than at multi-leg
platforms which are more structurally complex. Consequently, a moderately high estimate of fish
mortality was obtained by assuming red snapper mortality at all structure types was the same as that
found in the present study. Since no red snapper were collected in the Observer Program at depths
less than 7 m, structures shallower than this were assumed to have no red snapper mortality.

Analysis of the combined data set (present study plus NMFS data) using GLM single factor analysis
and Tukey-Kramer studentized range test for paired comparisons indicated red snapper collected
at platforms in 20–30 m were larger than those at platforms in shallower and greater depths.
Consequently, all length records were sorted into two depth zones (7–20 m and >30 m vs. 20–30 m)
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Table 7.6. Comparison of red snapper mortalities collected at the surface (floaters) with estimated
mortality from the sea floor (sinkers).

 Platform Floaters Sinkers Total
Ratio

floater/sinker
Percent

floater/total Depth (m)

 WC 172 417 81 498 5.15 84 15

 WC 173 120 589 709 0.20 17 15

 SS 158 10 286 296 0.03 3 17

 WC 181 73 636 709 0.11 10 18

 GA 288 202 285 487 0.71 41 23

 SMI 23 714 479 1193 1.49 60 25

 ST 146 238 58 296 4.10 80 28

 SS 209 364 54 418 6.74 87 32

 Total 2138 2468 4606 46

Table 7.7. Comparison of total length of positively (floater) and negatively (sinker) buoyant red
snapper by platform.

 Platform
Mean TL
floaters N floater

Mean TL
sinker N sinker

Mann-
Whitney P Depth (m)

 WC 172 34.1 416 40.1 17 0.06 15

 WC 173 44.4 120 43.1 83 0.45 15

 SS 158 56.8 10 45.7 23 0.01 17

 WC 181 49.6 73 30.9 138 0 18

 GA 288 31.5 202 25.1 42 0 23

 SMI 23 33.1 714 29.3 81 0.01 25

 ST 146 44.7 238 40.2 5 0.4 28

 SS 209 38.5 361 38 9 0.68 32

as were counts of explosive structure removals. Estimated annual red snapper mortality per structure
(515) was multiplied by the ten year (1989–98) average annual number of explosive structure
removals in each depth zone (from NMFS Platform Removal Observer Program data) to yield an
estimate of red snapper mortality for each depth zone. Since stock assessment analysis requires a
length for each fish record, red snapper lengths in each depth zone were expanded by replication to
construct a data set with the number of records equal to the mortality estimate. To establish an upper
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limit for impact assessment, this expanded data set was doubled to yield an estimated mortality of
82,400 and used in stock assessment analysis to determine the effect of mortality due to explosive
structure removal on the overall red snapper stock. Despite natural variation in the data and possibly
higher mortality at depths greater than study depths, doubling the moderately high estimate is
expected to provide a value that far exceeds the actual mortality.

Length frequencies of red snapper were converted to age frequencies using Table 7.7.1 of Schirripa
and Legault (1999), the most recent red snapper stock assessment analysis. The additional mortality
at age (1989–98) implied by the doubled estimate was added to each year of the annual fishing
induced mortality at age estimated from other sources: commercial, recreational, discard mortality
and bycatch. The stock assessment analysis in Schirripa and Legault (1999) was then repeated using
the mortality at age including explosive platform mortality for each year, 1989–98.

Impacts on Red Snapper

Results of the refitting of the red snapper assessment including platform removal estimate (arbitrary
doubling of the moderately high estimate of mortality) were compared to the base case assessment
from Schirripa and Legault (1999; Figure 7.3). The impact of including platform removal data was
that abundance estimates were almost indistinguishable from the original assessment (Figure 7.3).
The differences were well within the statistical estimation variances for the original assessment.
Note that these results are for double the estimated number of fish mortalities at explosive structure
removals. Actual impacts are likely to be less.

Impacts on Gag and Red Drum

Of the species encountered in these field studies, in addition to red snapper, only gag and red drum
have stock assessments conducted on them by the NMFS. Annual estimated mortality of gag at
explosive platform removals (using the same assumptions made in the red snapper analysis) was 256
fish per year. Comparison with results from the most recent gag stock assessment (Schirripa and
Legault 1997) indicates this represents 0.04% of the average annual mortality from other sources.
Current methods of assessment would not detect such small changes in magnitude. The annual
estimated mortality of red drum at explosive structure removals (using the same assumptions made
in the red snapper analysis) was 961 fish per year. Comparison with results from the most recent red
drum stock assessment (Porch 2000) show this was 0.03% of the average annual mortality from
other sources. Such a small change is indistinguishable using current methods of assessment. 

Assessing Future Impacts on Red Snapper (1999–2023)

Unlike data from the NMFS Platform Removal Observer Program2, the MMS data set1 did not
include subsea wells, flare piles or any removals that occurred in state waters. These two data sets
were used in conjunction with Pulsipher et al.’s (in press) forecast of future platform removals to
assess future impacts on red snapper. If explosives continue to be used at approximately 64% of all
removals, then fish populations at 119 platforms and caissons (0.64 x 186 predicted annual platform
removals) will be impacted annually. As of 31 January 2000, 8.8% (351 of 3,967) of structures
present in the GOM were in depths less than about 7 m. Reducing the 119 predicted explosive
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Figure 7.3. Red snapper assessment results, including platform removals, using Data Set E
(represents arbitrary doubling of moderate to high estimate of red snapper mortality
at platforms) compared to base case assessment (base). The left column gives
numbers at selected ages by year; the right column gives numbers at age for selected
years.
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removals by this factor yields 109. From 1989–98 NMFS recorded an additional 126 removals in
depths >7 m including submerged wells and flare piles in federal waters and structures of all types
in state waters. This represents 10.8% (126/1172) of all removals (explosive and non-explosive) in
the 1989–98 MMS data base. Assuming that this ratio remains constant in the future, the total
number of explosive structure removals predicted annually will increase by an additional 20 (0.108
x 186) to provide a total of 129 (109 + 20) annual explosive structure removals in depths >7 m. This
moderately high estimate based on all structure types having the same mortality of red snapper
yields a projected annual mortality at explosive structure removals of 66,435 red snapper. This is
considerably less than the 82,400 representing double the average annual estimate for 1989–98.
Consequently, the impact of a projected increase in average annual explosive structure removals is
not expected to be distinguishable from benchmarks assuming other influencing factors remain
constant and removal forecasts are accurate.

DISCUSSION

One obvious finding from this study is the lack of significant difference in estimated mortality as
a function of test parameters including depth, longitude, surface temperature and salinity. This was
due to a variation in fish abundance between platforms, small sample size in some cells, and a
generally narrow range observed for test parameters. For example, there was general consistency
in platform complexity (except for one platform) and a fairly narrow range in depth, surface salinity
and surface temperature. Estimated mortality of fish at a given platform within study depths from
14–28 m ranged from approximately 2,000–5,000 for fish measuring greater than 8 cm TL. In
general, failure to detect a significant difference in various parameters tested in this study does not
indicate that these factors may not affect fish distribution. It does indicate that parameter values
encountered during the study were not dissimilar enough to cause differences in fish distribution
given the small number of platforms studied. For at least some parameters, when a sufficient change
occurs in values beyond the ranges found in this study, fish assemblages and resulting fishery
impacts will undoubtedly change. For example, species distribution in general has been reported to
change as fish move from shallower to deeper water in relation to changing seasons and
temperatures (Bradley and Bryan 1974; Hastings et al. 1976)  

SUMMARY

The most severely impacted fish species in terms of highest numbers of estimated mortalities were
Atlantic spadefish, blue runner, red snapper, and sheepshead. These four species accounted for 86%
of estimated mortality. Of all species collected, the NMFS conducts stock assessments on only three:
red snapper, gag and red drum. For red snapper, even when the mortality estimate was doubled,
impacts were estimated to be small, well within the variation of our current assessments, and would
not alter current determinations of status or current management recovery strategies. Similarly,
current methods of assessment would not detect the even smaller changes in magnitude of gag and
red drum. In general, results indicated no significant difference in estimated mortality of red snapper
by depth, longitude, platform age, season, surface salinity, and surface temperature in the study area
(14–32 m) during May to September. Future impacts to the red snapper stock were predicted based
on forecasts of future structure removals reported by Pulsipher et al. (in press). Estimates of future
mortality were less than the doubled value of current red snapper mortality at explosive structure



370

removals and within the variation of our current assessments. Given the assumptions used in these
forecasts, predicted future mortality would not alter current determinations of status or current
management recovery strategies.
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FISH AND EPIFAUNAL COMMUNITY OBSERVATIONS AT AN ARTIFICIAL REEF
NEAR A NATURAL CORAL REEF: NINETEEN YEARS AT PLATFORM HIGH

ISLAND A389-A, FROM BARE STEEL TO CORAL HABITAT

Gregory S. Boland
Minerals Management Service
Gulf of Mexico OCS Region

ABSTRACT

Since its installation 1 October 1981, the platform High Island A389-A has progressed from a bare
steel structure in 125 m of water to a climax bluewater artificial reef community including a number
of hermatypic coral species. The platform is located approximately one nautical mile from the edge
of the well-developed coral reef at the East Flower Garden Bank, Gulf of Mexico. Since 1981, it was
expected this structure would eventually be a site for successful colonization by coral larvae from
the nearby Flower Garden Banks. The platform was surveyed as part of a multidisciplinary National
Marine Fisheries/EPA-funded study over four seasons between October 1981 and October 1982,
beginning just three weeks after installation. Both qualitative and semi-quantitative observations of
fish species and attached epifaunal community are presented from those early surveys. Additional
observations have been obtained periodically between 1982 and 1999. Hermatypic corals were first
observed on the platform by the author and others in November 1990, although their size indicated
that settlement had occurred more than one year previously. The continued development of new
coral colonies and associated thriving reef fish populations has significance for the functionality of
oil and gas structures as artificial reefs and diverse coral habitats. Early observations of fish taxa of
various age classes allows some important statements regarding artificial reef recruitment and
attraction issues. 

INTRODUCTION

Oil and gas platforms in the Gulf of Mexico comprise a substantial artificial reef complex of close
to 4000 structures extending from shallow areas of the shelf into deep continental slope waters. Both
epifauna and fish assemblages at structure depths of less than 30 m have been described since the
early 1970s (Hastings et al. 1976; Gallaway et al. 1981; Gallaway and Lewbel 1982; Putt 1982;
Continental Shelf Associates 1982; Bull and Kendall 1994; Stanley and Wilson 1996; 2000), but in
the past two decades, only a few platforms in the bluewater zone described by Gallaway and Lewbel
(1982) have been investigated (bluewater is defined as water depths deeper than 60 m). This report
describes summaries of opportunistic observations of both fish and fouling community
recruitment/succession at a newly installed bluewater platform near a natural coral reef (the Flower
Garden Banks) in Federal lease block High Island A389. 

During 1981 and 1982, the HI A389-A platform was utilized as a sampling station for a National
Marine Fisheries/EPA-funded study, “Ecological Effects of Energy Development on Reef Fish of
the Flower Garden Banks (Boland et al. 1983), beginning just 3 weeks after platform installation.
These observations are unique due to the timing of the first sampling and repeated observations over
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4 Ownership of the platform and the HI A389 lease was transferred briefly to Vastar in 1998 (now part of British
Petroleum) and later to W&T Offshore, who is the current operator.

both the short- and long-term. Both qualitative and semi-quantitative observations of fish and
attached epifaunal (fouling) community are presented from early surveys in 1981 and 1982.
Additional observations were obtained periodically between 1982 and 1999. Additional observations
include the first record of scleractinian corals on a platform adjacent to the Flower Garden Banks
and subsequent observations of the growth and additional occurrences of corals on this structure.

MATERIAL AND METHODS

Study Site

The platform structure of HI A389-A (owned by Mobile Exploration and Production U.S. Inc. until
19984) lies in 125 m of water at 27° 54' 02'' North, 93° 34' 38'' West, 191 Km SSE of Galveston,
Texas. Gallaway and Lewbel (1982) defined this distance from shore and water depth as
“bluewater.” The structure lies only 1 nmi southeast of the coral reef zone of the East Flower Garden
Bank (EFGB), now a part of the Flower Garden Banks National Marine Sanctuary. The platform
consists of eight primary support legs (four on each side), with the three shallowest underwater
horizontal support members at 9, 24, and 37 m including typical smaller diameter supplementary
diagonal support structures between. Two principal boat bumper/landing areas were situated in the
center section of each side with 14 small, vertical supports extending approximately 2–3 m above
and below the water line. Using blueprints, the surface area provided by all major platform legs and
supports from the surface to a depth of 37 m was approximately 8,255 m2. The majority of small-
scale structure-associated fish habitat was created by well casings and support collars or guides
located at the horizontal support levels, particularly at 9 and 37 m of depth. The outside dimensions
at horizontal levels were as follows: 19.8 X 44.0 m at 9 m depth; 23.6 X 48.0 m at 24 m depth; and
27.8 X 51.6 m at 37 m depth.

Surveys

Underwater observations were made using SCUBA during a variety of research projects and also
during other opportunities available to the author. The original four surveys and semi-quantitative
census efforts were obtained as a supplemental part of a separate larger Environmental Protection
Agency-funded study to National Marine Fisheries Service, “Ecological Effects of Energy
Development on Reef Fish of the Flower Garden Banks” to LGL Ecological Research Associates
Inc. (LGL), Bryan, Texas (Boland et al. 1983). Surveys were performed on the following dates
followed by the elapsed number of days after platform installation: Survey 1, 21 October 1981/21
days; Survey 2, 29 April 1982/211 days; Survey 3, 4 August 1982/308 days; and Survey 4, 24
October 1982/389. One additional fish survey reported here, Survey 5, was performed on 5 October
1992, 4020 days after original platform installation. All observations were made during daylight
hours. Additional visits to the platform were made by the author throughout the remaining 1990s,
but underwater time was limited and did not permit fish census efforts. However, after 1990,
observations of hermatypic corals were always a primary objective. 
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Underwater tasks required during the original study (Surveys 1–4) did not permit typical quantitative
diver fish census methods. During the five principal survey periods described above, platform
fouling and fish community surveys were performed as part of other field sampling objectives. Best
estimates of total numbers of fish were determined for the area inside and in very close proximity
of the platform and between the surface and 37 m. These estimates were based on a variety of
circumstances. As opposed to short transect line or volumetric methods, the option was chosen to
attempt to observe the entire structure during each survey and estimate the number of fish for each
observed taxa for the entire structure. Water clarity was generally in excess of 30 m. In the case of
highly mobile pelagic species, it was sometimes evident that the same group of individuals was
moving around the platform (same size individuals, numbers, etc.). In this circumstance, the
estimated total number took into account this judgement and the appearance that the same group of
individuals had been seen more than once. In other instances, for the same pelagic species groups,
it seemed that observations were separate and appeared to be unique individuals. Of course, this was
not a certainty, and as a compromise, a range of estimated numbers was recorded. Total numbers
of reef-associated species were somewhat more reliable due to the limited habitat area provided by
the junctions of platform legs, cross members, and well casing support structures. However, some
of these more cryptic species are also more difficult to observe. Although the effectiveness of a
single diver is limited, it is believed the same level of confidence for estimating total numbers was
similar for all surveys. There is no intention to imply that these semi-quantitative survey results are
highly accurate and it is recognized that many weaknesses are implicit in the methods. However,
specific observations made were significant in context of the time and place. 

Very little diving or remote video census work close to the platform was performed below the 37
m depth during the LGL study (Boland et al. 1983) due both to restrictions of diving depths and
difficulty in maneuvering the camera frame close to platform legs. Some additional observations are
reported from remote video deployments and some deeper diving opportunities after 1982.

RESULTS

The first underwater reconnaissance dive and survey on the partially completed structure was made
by diving scientists (including the author) with the consulting firm, LGL, on 21 October 1981, about
three weeks after its installation. At that time, there were no permanent above-water modules or su-
perstructure and only three well casings had been installed underwater (Figure 7.4). During this first
cruise, only nine species of fish were observed between the surface and 37 m of depth (Table 7.8).
Five of these species were jacks, considered to be wandering, pelagic species. The larger adults of
crevalle (Caranx hippos), almaco (Seriola rivoliana), and amberjacks (Seriola dumerili), may have
been recruited from the nearby East Flower Garden Bank. The other two jack taxa (Blue runner,
Caranx crysos, and a large numbers of unidentified Carangidae) were juveniles and could have been
recruited from the passing water mass. Three of the remaining four species observed during Survey
1 were also small juveniles, and included a single sergeant major (Abudefduf saxatilis), two small
blue tang (Acanthurus coeruleus), and about 200 small gray triggerfish (Balistes capriscus) esti-
mated to range between 100 and 120 mm long (Figure 7.5). The sergeant major observation was the
first reported for the Flower Garden Banks area (Boland et al. 1983). A single greater barracuda
(Sphyraena barracuda) was also observed. The fouling community at this time was virtually non-
existent. The platform structure had obviously never been in seawater for an extended period
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Figure 7.4. Appearance of Mobile High Island A389-A platform on 21 October 1981.

Figure 7.5. Juvenile gray triggerfish recruited to the platform prior to Survey 1.
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Table 7.8. Species list and estimated abundance above 37 m depth at platform HI A389-A. All
observations by diver except as noted for grouper from remote video. All adult except
as noted.

Survey Number and Date
Platform age since installation (days)
Species*

1) 21 Oct
1981

2) 29-30
Apr 1982

3) 4-5 Aug
1982

4) 24-29
Oct 1982

5) 2-6 Oct
1992 

21 211 308 389 4,020
Silky shark ( Carcharhinus falciformis )
Frogfish ( Antennarius spp.)
Squirrelfish ( Holocentrus rufus )
Longjaw squirrelfish ( H. ascensionis )
Rock hind ( Epinephelus adscensionis )
Warsaw grouper ( Epinephelus nigritus )
Grouper ( Mycteroperca spp.)
Yellowmouth grouper ( M. interstitialis )
Creole-fish ( Paranthias furcifer )
Blue runner ( Caranx crysos )
Crevalle jack ( Caranx hippos )
Horse-eye jack ( Caranx latus )
Bar jack ( Caranx ruber )
Rainbow runner ( Elagatis bipinnulata )
Greater amberjack ( Seriola dumerili )
Almaco jack ( Seriola rivoliana )
Rough scad ( Trachurus lathami )
Unidentified Carangidae
Yellow goatfish ( Mulloidichthys martinicus )
Chub ( Kyphosus spp.)
Reef butterflyfish ( Chaetodon sedentarius )
Angelfish ( Holacanthis spp.)
Blue angelfish ( Holacanthis bermudensis )
Sergeant major ( Abudefduf saxatilis )
Brown chromis ( Chromis multilineatus )
Bicolor damselfish ( Stegastes partitus ) ) 
Damselfish ( Stegastes spp.)
Redspotted hawkfish ( Amblycirrhitus pinos )
Spotfin hogfish ( Bodianus pulchellus )
Spanish hogfish ( Bodianus rufus) 
Unidentified wrasse ( Halichoeres spp.)
Bluehead ( Thalassoma bifasciatum )
Greenblotch parrotfish ( Sparisoma automarium ) 
Redband parrotfish ( Sparisoma aurofrenatum )
Great barracuda ( Sphyraena barracuda )
Unidentified goby (Family Gobiidae)
Seaweed blenny ( Blennius marmoreus )
Crested blenny ( Hypleurochilus geminatus )
Tesselated blenny ( Hypsoblennius invemar )
Blue tang ( Acanthurus coeruleus )
Surgeonfish/doctorfish ( Acanthurus spp.)
Scrawled filefish ( Aluterus scriptus )
Orangespotted filefish ( Cantherhines pullus )
Whitespotted filefish ( C. macrocerus)
Grey triggerfish ( Balistes capriscus )
Ocean triggerfish ( Canthidermis sufflamen )
Porcupinefish ( Diodon histrix )
Sharpnose puffer ( Canthigaster rostrata )

20-30 (juv.)
10

6
40-50

2 K-3 K juv?

1 (juv.)

1

2 (juv.)

200 (juv.)

1

6 (video)

1 (juv.)
50 sm

50

1
10
50

10-20
100-200

14

6

3
3

10-20 (juv.)

2

20
1
3

1
3

20-30
6

3

1
1

10-15

6-10
2 (juv.)

400-500 sm

6

20-30
10-20

3

1

5

6

30
10-20

6

3
5 (juv.)

1

2

40-50
6

3

1

20-30
1 (video)

20-40
3 (juv.)

500
100 (juv.)
25 (juv.)

3-6
10

20

4-10
4-6

3 (juv.)

20-30
10-20

3
3-6
1
3

1

1
50

3
1
3

20-30
30-50

1
2

8

3

100+

20-50

100-500
50+

100-150
20-30
20-30

1000+

10
100+

1K+ few juv

50-100

100’s
8-12

10-30

100

100-500
20-50

50-100

3
2

2 

 Total number of taxa 9 24 23 32 22 
*Common names from AFS (1991); sm = small; juv. = juvenile, year class 0 or 1
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previous to its transportation and installation at the edge of the EFGB. The only obvious epifauna
seen were a few scattered patches of an unidentified feathery white hydroid down to 18 m of depth
and green filamentous algae present near the surface. The vast majority of the submerged structure
surface area was coated in orange rust with black anoxic corrosion occurring in many areas below
the superficial rust layer (Figure 7.6). 

The second sampling dives (Survey 2) on the platform were made on 29 and 30 April 1982. Total
dive time was 82 minutes. The structure had been in place for a total of about 211 days at that time.
Drilling for the first well had begun on 26 April, three days previous to the dives. The most striking
change to the platform community was the almost complete cover of the legs and cross-members
by fouling organisms. Although the fouling mat was quite thin in most places, it was dramatically
different from the bright orange rust layer that had covered most all the structure surfaces on the
previous survey (Figure 7.7). The number of fish species observed almost tripled with 24 species
represented as compared to nine species before (Table 7.8). Eighteen of these were new species not
observed during Survey 1. Two of the juvenile jack species and the blue tang observed previously
were not re-sighted. Number of barracuda had increased to 20 individuals; both crevalle and
amberjack were represented by approximately 50 individuals each.

An estimated 20–30 moderate-sized (200–250 mm) gray triggerfish were observed during Survey
2, suggesting survivors from the 200 smaller juveniles that had been seen during Survey 1
approximately 26 weeks before. Several tropical species were first observed during Survey 2
including about 50 small creole-fish (Paranthias furcifer), the dominant species on the Flower
Gardens coral reefs reported by Boland et al. 1983) and some representatives of the bicolor
damselfish (Stegastes partitus), an unknown wrasse, 10–20 juvenile spotfin hogfish (Bodianus
pulchellus), two species of filefish (scrawled filefish (Aluterus scriptus) and orangespotted filefish,
Cantherhines pullus), sharpnose puffer (Canthigaster rostrata), an unknown goby, and the seaweed
blenny (Blennius marmoreus). The first grouper species (above 37 m) was also observed during
Survey 2, a single yellowmouth grouper (M. interstitialis).

The fouling community at this time was dominated in some areas by thick mats of filamentous algae
and hydroids, both of which were teaming with several species of amphipods. Large, unidentified
nudibranchs (3–5 cm long) were also seen grazing through these thick mats. These nudibranchs were
never observed after this survey. In other areas, large patches of colonial tunicates dominated the
fouling mat. Near the surface, several of the boat bumpers had become heavily encrusted with
gooseneck barnacles. A single small colony of the octocoral, Telesto riisei was observed at a depth
of 12 m.

Other motile invertebrates were also observed during Survey 2. Two species of sea urchins were
present, small Diadema antillarum and Arbacia punctulata. Fireworms, (Hermodice carunculata),
were abundant at both the 8-m and 37-m levels of horizontal supports. Two crab species were
observed at 37 m, one an unknown xanthid crab, and the arrow crab (Stenorhynchus seticornis),
represented by several individuals. Three small spiny lobsters (Panulirus argus) were seen inside
a well collar surrounding a well casing at the 37-m depth level. One was very small with an
estimated carapace length of about 5 cm.
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Figure 7.6. Typical appearance of platform structure three weeks after installation.

Figure 7.7. Similar location as Figure 7.6 photographed during Survey 2, seven months (211
days) after installation with now noticeable epifaunal community development
evident.
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Survey dives were again made on 4 and 5 August 1982 (Survey 3). Total dive time was 93 minutes.
The platform had been on site for about 308 days at that time. During this survey, fewer fish species
were observed than in April 1982, but the total number of individuals seen had generally increased
(higher abundance, lower diversity) (Table 7.8). Of 23 total taxa, 14 species were also observed
during Survey 2. Eight new species were observed during Survey 3 including the longjaw
squirrelfish (Holocentrus ascensionis), tessellated blennies (Hypsoblennius invemar), and numerous
tropical reef species, namely the reef butterflyfish (Chaetodon sedentarius), surgeon/doctor fish
(Acanthurus spp), yellow goatfish (Mulloidichthys martinicus), and rock hinds (Epinephelus
adscensionis) (Figure 7.8). Juvenile blue tang were also observed again after being first observed
during Survey 1 and absent during Survey 2. A single squirrelfish (Holocentrus rufus) was seen for
the first time at 8 m of depth.
 
The most notable change in the fish community during Survey 3 was the dramatic increase in the
creole-fish population. A best estimate of their numbers to the depth of the 37-m horizontal structure
level was between 400 and 500 individuals. All of these fish were relatively small. Specimens
collected at the platform for a histopathology work unit of the larger study averaged 124 mm and
ranged in size from 85–142 mm in fork length (N = 41) compared to lengths twice that size for
specimens collected from the Flower Garden Banks upper coral reefs (mean = 208 mm, range
105–292 mm, N = 323) (Boland et al. 1983).

The fouling community during Survey 3 was becoming dominated by bivalve mollusks. The thick
hydroid and algal mats were much reduced in comparison to the previous spring survey. The
dominant bivalve occurring on the platform in August 1982 was the Atlantic pearl oyster (Pinctada
radiata). Acorn barnacles (Megabalanus antillensis), though sparse, were prevalent from about 10
m to the surface. Many barnacles had reached approximately 3–4 cm in basal diameter, and the few
which had died provided excellent habitat cavities for the newly recruited tessellated blennies and
the increased numbers of seaweed blennies. Gooseneck barnacles (Lepas sp.) remained abundant
near the surface but were not nearly as thick on boat bumper surfaces as they had been in April.
Encrusting bryozoan patches had increased dramatically in size, and one red species had developed
delicate branches extending several centimeters above the basal part of the colony. 

Motile invertebrates observed included red-banded coral shrimp, (probably Stenopus hispidus)
hiding inside well collars at both 8- and 37-m depths. Arrow crabs and fireworms were again
observed. Spiny lobsters were seen in the same well collar where they had been seen during Survey
2 (Figure 7.9) at the 37-m level. At this time, there were at least six individuals present, and all were
significantly larger than observed during Survey 2, 97 days earlier suggesting residency and growth
of the former.

The final observational survey of the LGL study platform as part of the FGB study Boland et al.
(1983) was made on 24 October, 1982 (Survey 4), some 389 days after its installation. Both the fish
and fouling communities had become surprisingly well established after little more than a year of
colonization beginning from a bare steel structure. The number of fish species observed had
increased to thirty-two (Table 7.8). Six new species were noted during Survey 4, and 17 species
were common to both Surveys 3 and 4. New species included a frogfish (Antennarius spp.), juvenile
angelfish (Holacanthus spp.), brown chromis (Chromis multilineatus), red-spotted hawkfish
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Figure 7.8. Diverse fish community around well casing area at horizontal cross member level,
Survey 3, ten months (308 days) after installation.

Figure 7.9. Small spiny lobster at Figure 7.8 site, Survey 3, ten months (308 days) after
installation.
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(Amblycirrhitus pinos), red band parrotfish (Sparisoma aurofrenatum), and one additional blenny
species, the crested blenny (Hypleurochilus geminatus). Several species had increased substantially
in numbers, including the sergeant major which had been represented by five individuals during
Survey 3 as compared to between 20 and 30 individuals on Survey 4. Small groupers (Mycteroperca
spp.) increased from around 6–10 fish to between 20 and 40 individuals. 

Creole-fish remained the numerically dominant species, maintaining a similar population from
Survey 3 to Survey 4 of approximately 500 individuals. Creole-fish appeared to be significantly
larger during Survey 4 as compared to Survey 3. Fish collected for the larger study at this time
suggests these observations were correct. Fork lengths of 23 fish collected at the platform during
Survey 4 ranged from 140–181 mm, having a mean length of 153 mm. This compares to a mean
length of 124 mm for the 41 fish collected during Survey 3 (Boland et al. 1983).

The fouling community had become quite diverse and it was impossible to describe all its
components within the limited time of the few dives made on the platform. In general, the fouling
community had become well established. Many species on the platform were observed for the first
time during this survey. Atlantic pearl oysters had become larger and more numerous (Figure 7.10),
especially on the top surfaces of the horizontal cross members. Numerous rock snails, Thais
haemastoma, and winged oysters, Pteria colymbus, were also seen. The octocoral, Telesto riisei that
had been limited to a single occurrence at 12 m during Surveys 2 and 3 was observed in small
patches at six other locations ranging in depth between about 5 and 16 m. The general fouling mat
consisted primarily of algae, bryozoan, and hydroids of several species. Two taxa of leafy algae
abundant on the Flower Garden Banks (Lobophora and Dictyota) were prevalent on the surfaces of
horizontal supports at both 9- and 37-m depths. Acorn barnacles had become larger and were now
distributed to a maximum depth of about 37 m (Figure 7.11). Encrusting sponge colonies that had
not been previously observed were well established, and in some areas were as large as 30 cm in
diameter. 

One additional fish survey is included in this report performed 2–6 October 1992, 4020 days after
original platform installation and almost ten years after the first survey in 1982. Total effort utilized
to obtain this Survey 5 data included nine dives and 331 minutes of dive time. A total of 22 fish taxa
were observed. Seven species were observed that were not previously seen in 1981/82, all of which
are common species on the Flower Garden Banks. These included the horse-eye jack (Caranx latus),
blue angelfish (Holacanthis bermudensis) (Figure 7.12), Spanish hogfish (Bodianus pulchellus),
bluehead (Thalassoma bifasciatum), whitespotted filefish (Cantherhines macrocerus), greenblotch
parrotfish (Sparisoma automarium), and porcupinefish (Diodon histrix). As opposed to the creole-
fish reported as the dominant taxa in 1982, the damselfish, Stegastes spp. had become the dominant
reef-associated taxa, estimated as 1000+ in numbers above the 37 m depth level. Several Stegastes
species could not be reliably separated during this survey and were combined under one genus name.

The platform fouling community in 1992 was dramatically different than 10 years earlier. The
overall community had become dominated by massive sponges (Figure 7.12). Towards the surface,
shallower than about 5 m, the fouling community included high relief barnacle mollusk clusters,
similar to platforms in shallower areas of the continental shelf (Figure 7.13). The fouling community
had apparently reached a climax state that has persisted through more recent observations through
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Figure 7.10. Atlantic pearl oyster (Pinctada radiata) with attached anemones during Survey 4, 13
months (389 days) after installation.

Figure 7.11. Acorn barnacles (Megabalanus antillensis) with attached anemones during Survey
4, 13 months (389 days) after installation.
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Figure 7.12. Well-developed fouling community on HI A389-A during Survey 5 in October 1992
(4,020 days after installation). Numerous taxa of massive sponges dominating the
community at depth of 20.

Figure 7.13. Well-developed fouling community on HI A389-A during Survey 5 in October 1992
(4,020 days after installation). High-relief mollusk and barnacle community at depths
above 5 m.
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1999. A detailed description of the highly complex and diverse fouling community is beyond the
scope of this report. A limited investigation of just the sponges was a substantial undertaking and
is published as a technical report and graduate degree thesis (Adams 1996).

Additional Observations

Scleractinian corals: Scleractinian reef-building (hermatypic) corals were expected, but not
observed between 1981 and 1982 during the LGL studies at HI A389-A ending only 13 months after
the platform was installed (Boland et al. 1983). Opportunities were not available to make
observations at the platform again until 1990, several years after Survey 4 in October1982. The
author and others made two dives on HI A389-A on 11 November 1990. Four species of corals were
documented including Madracis decatis, M. asperula, Porites astreoides and Diploria strigosa. ).
These observations were reported in Bright et al. (1991). A single colony of P. astreoides (brooder)
and a small colony of D. strigosa (broadcaster) were notable as they ranked as second and fifth in
dominance of coral cover at the FGB (Gittings et al. 1992; Dokken et al. 1999). The P. astreoides
colony was a substantial size having settled at least several years earlier. Figure 7.14 illustrates the
Porites colony in June 1992, only eight months after its first sighting at a depth of 9 m on a
horizontal cross member. The first Diploria colony observed on HI A389-A at a depth of 23 m was
much smaller, measuring about 6 cm in diameter but certainly had settled more than one year
previous. A number of D. strigosa and the large Porites were followed over the years whenever
opportunities were available. One additional image of the Porites is shown in Figure 7.15 taken in
August of 1995. Measurements were taken at this time showing the dimensions of the colony to be
about 42 by 38 cm. An additional colony of P astreoides was located a short distance away
measuring 11.5 by 14 cm indicating probable successful reproduction of the original adjacent
colony. The same colony of D. strigosa is shown in both Figure 7.16 and Figure 7.17. This particular
colony was not the same as the first observed in 1990, but its size shown in 1995, measuring 16 by
19 cm indicates it could have been a similar size (about 6 cm diameter) as the originally sighted
colony five years previous (theoretical growth rate of 1–1.3 cm in radius per year not unreasonable).
Figure 7.17 depicting the same colony in August 1998, shows substantial growth over the three
years. The diameter was measured in 1998 as approximately 23 cm representing a growth of
between 4–7 cm over three years. 

Observations below 37 meters: Although not a principal subject of this report, a number of other
observations have been made by the author by remote video methods and using SCUBA below the
37-m horizontal structure support on the platform. In Boland et al. (1983), limited observations were
made with a remote stereo-video apparatus deployed from a research vessel tied to the platform
during the LGL study. Boland et al. (1983) reported that below a 40-m depth, fouling organisms
were very sparse. Only a few fish species were reported, most not closely associated with the
platform substrate. These included amberjack, rainbow runner, greater barracuda, and chub. One
species was more remarkable. Large warsaw groupers were recorded on the remote video system
during Surveys 2 and 4. A total of six individuals were seen during Survey 2 just above the interface
of a highly turbid nepheloid layer at a depth of around 90 m. The LGL video system allowed
measurement using paired, parallel cameras and a twin stereo-monitor system. Three of the fish
allowed length measurement while oriented perpendicular to the cameras and had fork lengths of
810, 877 and 919 mm. A single warsaw grouper was observed during the Survey 4 cruise and was
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Figure 7.14. Colony of Porites astreoides documented from horizontal support at depth of 9 m,
June 1992.

Figure 7.15. The same colony of Porites astreoides as in Figure 7.14, taken August 1995, colony
measuring 42 by 38 cm with mortality in center approximately 8 by 6 cm. Pipe
diameter is 35.5 cm.
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Figure 7.16. Colony of Diploria strigosa at depth of 15.5 m. Photographed August 1995 when the
coral measured 19 by 16 cm.

Figure 7.17. The same colony of Diploria strigosa as in Figure 7.16. Photographed August 1998.
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Figure 7.18. View of 53-m horizontal support and descending diagonal on HI A389-A platform
from depth of 58 m. Note high relief of fouling community.

also sighted just above the turbid water layer at a depth of 90 m. This grouper was also measured
using the stereo video system and had a fork length of 1314 mm.

During a research opportunity in 1992, a number of deep SCUBA dives were performed by the
author at HI A389-A allowing first hand observations of platform substrate as deep as 57 m. Limited
time did not allow any comprehensive fish or fouling community descriptions, but it was clear that
the conditions reported from 1982 were much different in 1992. The next horizontal support below
the 37-m level is located at 53 m. Figure 7.18 illustrates the relatively high-relief fouling community
on all structural supports to a depth of 58 m. Although observation time was very limited, structure-
associated reef fish were very abundant. Both of these observations are in contrast to the limited
fouling community development and very few fish seen on remote video in 1982. No attempt will
be made here to provide a comprehensive description or comparison of the fish community at this
depth, but one species, the yellowtail reeffish (Chromis enchrysurus), appeared to be the dominant
species represented by many individuals along every meter of all horizontal structure supports at a
depth of 53 m.
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DISCUSSION

It should again be noted that the fish census data in this report is semi-quantitative at best, and
affected by limited, single-diver observations. A general bias has also been reported in the literature
due to the presence of divers during fish surveys. Mean density of fish declined around platforms
by 41–77 percent when SCUBA divers were present during surveys as estimated by dual-beam
hydroacoustics (Stanley and Wilson 1995). One significant difference with the data reported here
is that virtually all observations were obtained inside the platform structure in contrast to the
hydoracousitc data collected only on the outside of structures by Stanley and Wilson (1995).

Results from most investigations of platform fish assemblages have been difficult to compare due
to problems with limited visibility, lack of standardized methods, diver avoidance or other sampling
gear bias. Any discussion of these results is also limited by the lack of rigorous census techniques
and inconsistent methodologies; however, the observations reported here still represent unique
contributions describing long-term platform recruitment occurring at a Gulf of Mexico bluewater
platform. Faunal studies of bluewater platforms in the Gulf have been and continue to be rare. The
most notable aspect of the surveys reported here was the opportunity to periodically observe the
colonization of a new structure over an extended period. The initial observations are significant due
to the known date of installation and the fact that the structure was essentially new at that time. For
many encrusting forms, a general indication of succession/recruitment was observed, at least for new
substrates. Some insight can also be added to the ongoing debate about the production or attraction
function of artificial reefs. The proximity of the platform to a thriving coral reef is also a unique
situation, particularly for the United States. 

After more than 13 months of recolonization in October 1982, the HI A389-A platform remained
very different than the adjacent coral reef or other habitats on the EFGB. The dominant invertebrates
on the reef, the reef-building corals, had not yet been observed on the platform. Coral recruits would
have been very small after less than one year of development and could have easily been
overlooked. Some large invertebrates were common to both habitats, but there were many
exceptions. Notably, the lobster population on the platform (spiny lobster, Panulirus argus) was not
the same species commonly seen on the coral reef at that time (spotted lobster, Panulirus guttatus).
The majority of the 48 fish species recorded on the platform also occur on the Flower Gardens, but
some did not. Several species were observed on the platform in 1981 or 1982 which had not been
previously reported in the literature of the Flower Garden Banks at that time. These included the
sergeant major, an unidentified frogfish, and three species of blenny, the seaweed, crested, and
newly described tesellated blenny. Overall, the proximity of the HI A389-A platform to the EFGB
seems to have had a limited effect on its attached epifaunal community composition through the
1982 observations. The community at this platform was basically the same as other blue water
platforms well removed from any bank (Gallaway and Lewbel 1982).

In 1990, after nine years of development, the substantially different fouling community on HI A389-
A remained unlike any reef habitats at the EFG. The general nature of the community had reached
what appeared to be a climax community at this time and has not changed drastically since (through
1999). The visual community dominant taxa had become sponges, but mollusks were probably the
biomass dominant, although no biomass samples were taken and there is no data to confirm this
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statement. Gallaway and Lewbel (1982) also reported that bluewater platform fouling community
biomass is generally dominated by mollusks. 

Although Adams (1996) concluded that the variety of sponges found on HI A389-A were similar
to coral reef systems in general, their diversity and dominance are not characteristic of the Flower
Garden Banks coral reef habitat and are higher in abundance than on coral reefs in general. The plat-
form structure provides many different types of reef environment allowing the recruitment and
development of a very diverse sponge community not found on the FGB. Adams (1996) reported
three dominant species; below a depth of 25 m the spherical species Stelletta kallitetilla was the
dominant, at mid depths between 12.5 to 24.5 m, Tedania ignis dominated, and shallower than 12
m, Desmacella melorata dominated. Overall, these three species comprised nearly half of all sub-
strate area for the platform to a depth of 37 m (Adams 1996). Interestingly, Adams (1996) reported
that several common species on the Flower Garden banks did not occur on the platform, including
the large vase sponge Xestospongia muta and the prominent bright orange sponge Agelas spp.

The number of fish taxa observed in five surveys totaled 48, comparable to other bluewater platform
surveys. Rooker et al. (1997) observed a total number of 43 species above 24 m during diurnal
surveys of 54 ten-meter transects at HI A389-A. The Reef Environmental Education Foundation
database (REEF, http://www.reef.org) documents a total of 52 surveys performed at the HI A389-A
platform in recent years. Using the “expert” category (test results demonstrating a high level of
visual identification expertise) the number of taxa reported totaled 53. While the data in this report
cannot be directly compared to any rigorous quantitative census techniques, the total number of taxa
compares favorably to these other efforts.

The relevance of fish survey data in this report derives from the early timing of the initial observa-
tions and repeated surveys during the first year after platform installation. Adult fish observed in or
near the structure a short period after installation were not recruited as juveniles. The first survey,
three weeks after platform installation, demonstrated that adult taxa are recruited from surrounding
areas. Pelagic Carangidae are examples, but the large warsaw groupers, optically measured around
one meter in length, represent very mature reef-associated fish attracted to the platform.

Many observations represent evidence of species recruited as juvenile or very young individuals to
this new habitat. The gray triggerfish observed during Survey 1 are the best example (Figure 7.5).
There is no assurance that juveniles recruited to the platform would not have otherwise ended up
at the EFGB, however, gray triggerfish are very rare on the EFGB but are common on offshore
platforms. Other small individuals were observed during the first survey including a sergeant major
and blue tang. Creole-fish, the numerical dominant on the FGB reported by Boland et al. (1983),
were first seen at a platform age of seven months. Some examples of early recruits, and later
observations of similar numbers but larger individuals, suggest that these groups of smaller fish
remained residents. This is speculation as there was no tagging or other methodology employed to
identify specific individuals. The appearance of large numbers of adult creole-fish on the platform
during Survey 4 could represent recruitment from the nearby EFGB, however, this species is also
reported in high numbers at other bluewater platforms well removed from natural habitat and was
the dominant species at the platform GC 18, (Stanley and Wilson 2000). 
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Other general observations by the author at HI A389-A (annually between 1993–1998) indicate
extreme variation in both seasonal and annual fish abundance for some species. As one example,
more than one hundred silky sharks (Carcharhinus falciformis) were observed swimming in circles
around the outside of HI A389-A in November of 1990 in contrast to only a single individual
observed during all 5 surveys. These large numbers of silky sharks are not frequently seen. Similar
to the FGB, the abundance of many species may vary substantially from one day to the next. This
is particularly true for pelagic taxa such as the jacks. One notable additional observation not
presented in the results section was a sergeant major tending a substantial egg mass on a horizontal
projection of a platform leg in 1995.

CONCLUSIONS

The overall conclusion of this report is that this new platform structure installed in 1981, in
relatively deep water adjacent to the EFGB, was colonized by a diverse community of epibiota and
fishes where none existed before. Much of the development of the platform community, particularly
the biofouling component, appears to be largely independent of its proximity to the Flower Garden
Banks. Other significant conclusions include:

Early observations at a newly installed “bluewater” platform demonstrate that adult, sub-adult and
juvenile fish are recruited or attracted to a structure within a time frame of less than three weeks, and
perhaps in a matter of days after installation.

Direct observations demonstrated attraction of adult fish to the platform, but also recruitment and
apparent growth of some reef fish species. One taxa, the sergeant major (Abudefduf saxatilis), was
unarguably producing new biomass by nesting on the platform.

Fouling community development is quite rapid but continues through a variety of phases or
succession, until a “climax” community is reached with very high rugosity and other structural
complexity to a depth of more than 60 m. 

Although a nearly complete cover of pioneer fouling taxa was present after seven months, the
sponge-dominated community structure at HI A389-A took many years and probably close to ten
years to become fully established.

Virtually all fish species recorded on the platform have also been recorded on the Flower Garden
Banks. Notable exceptions are the lack of tessellated blenny observations and the lack of any record
of sergeant majors on the FGB prior to the earliest platform surveys.

Hermatypic corals were first observed on HI A-389A in November 1990, nine years after
installation. Two dominant species on the FGB, Diploria strigosa and Porites astreoides, have
continued to grow. 

The brooding coral species Porites astreoides has apparently reproduced successfully after
recruitment to the platform and expanded its colonization on HI A-389A. The numerous colonies
of D. strigosa (broadcast spawner) now growing on the platform are also likely contributing viable
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larvae into the Gulf of Mexico. Direct observation of these coral heads during an annual mass
spawning event could confirm the potential of artificial reef propagation of hermatypic corals. Most
of the numerous older bluewater platforms located downcurrent of the Flower Garden Banks should
also harbor developing colonies of reef-building corals.
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FISH ASSEMBLAGES AROUND OIL AND GAS PLATFORMS IN THE
NORTHEASTERN GULF OF MEXICO: DEVELOPING A SURVEY DESIGN.

Kevin R. Rademacher
Jeffery H. Render1
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ABSTRACT

A pilot survey was conducted in 1995 by the National Marine Fisheries Service, Mississippi
Laboratories (NMFS, ML) to develop a survey design for assessing fishes associated with the
offshore oil and gas platforms in the Gulf of Mexico (GOM). Eight platforms of various sizes,
configurations and depths were sampled with a pan and tilt video camera, stationary video cameras,
and a remotely operated vehicle (ROV). Differences in fish species observed and their abundance
measured by the different gear types were evaluated to determine an optimal sampling design for
large-scale surveys. 

Forty-four taxa from 19 families were observed over all platforms and all gears. The ten most
frequently observed species were: blue runner, Caranx crysos; Atlantic spadefish, Chaetodipterus
faber; gray (mangrove) snapper, Lutjanus griseus; sheepshead, Archosargus probatocephalus; red
snapper, Lutjanus campechanus; great barracuda, Sphyraena barracuda; lookdown, Selene vomer;
the scad complex, Decapterus spp. and/or Trachurus sp.; gray triggerfish, Balistes capriscus; and
blue angelfish, Holacanthus bermudensis. More taxa were observed within the confines of the
platforms and in close proximity to the platforms than were observed away from the platforms.
Camera orientation was important in detecting some species, e.g., groupers were only observed
within the confines of the platforms. The number of taxa observed did not vary with depth or among
platforms, but there were differences in fish density with depth and among platforms. More red
snappers were seen at depths > 25 m, while more gray snappers were found at depths < 20 m. Total
fish densities were lower at platforms with barnacles as the dominant attached fauna and higher at
platforms with higher relief epifauna (octocorals, sponges and bryozoans). Red snapper densities
were higher at platforms with higher relief epifauna and gray snapper densities were higher at
barnacle-dominated platforms. There was no difference observed in fish density with platform age
nor any relationship between platform age and attached faunal types. 

INTRODUCTION

Oil and gas platforms act as de facto artificial reefs, are a major destination for many commercial
and recreational fishermen (Hastings et al. 1976; Gallaway 1984; Witzig 1986; Reggio 1987;
Stanley and Wilson 1988, 1989; Render and Wilson 1994; Kasprizak 1998), and contribute to
available habitat for reef fishes in the northwestern and northern GOM (Gallaway and Lewbel 1982;
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Gallaway 1984; Render and Wilson 1994; Kasprizak 1998). There is controversy over the effect of
platforms and artificial reefs in general on reef fish populations. Do artificial reefs increase
productivity or just redistribute the available resources to known locations, making them easier for
capture (Stone et al. 1979; Bohnsack and Sutherland 1985; Bohnsack 1989; Grossman et al. 1997;
Borotone 1998)? As this debate continues, there is a need to assess fish populations on artificial
reefs and incorporate the assessment with those obtained from natural habitats for the overall
management of the reef fishes in the GOM.

In late April 1995, the Southeast Area Monitoring and Assessment Program (SEAMAP) Reef Fish
Work Group sponsored a workshop on oil and gas platforms in the GOM. Presentations at the work-
shop provided useful information regarding data needs for conducting fisheries assessments and
measuring physical processes around platforms and the types of gear required to sample these plat-
forms. Additionally, group discussions were held after the presentations to formulate recom-
mendations for developing a sampling methodology for oil and gas platforms (SEAMAP 1995).

Specific recommendations from the SEAMAP workshop were as follows: 

1) Separate the study area into three zones: coastal, from the shore out to 22 m; offshore, from
23 m to 80 m, and blue water, > 80 m. 

2) Conduct acoustic sampling: including mobile shipboard acoustic passes around a platform,
stationary acoustic sampling around a platform and mobile ROV acoustic passes at depth.

3) Sample visually: including video data collection from an ROV at set depth strata and from
a four-camera array for static visuals at set depth strata.

4) Sample with hook and line to collect hard parts for age, growth and reproductive studies.

5) Sample for plankton in and around platforms.

6) Measure standard hydrographic parameters, including current speed and direction, light
transmissivity and photosynthetically active radiation (PAR). 

Currently, reef fish assessment models used for management are based on landings data from
commercial and recreational fisheries. These models are calibrated using data from NMFS fisheries
independent surveys, e.g., NMFS summer and fall groundfish survey by-catch data (NMFS 1999).
Data from NMFS shark and snapper long-line surveys  and the reef fish trap-video survey from
shelf-edge banks could provide additional tuning variables. Missing, however, is fishery independent
data from surveys of oil and gas platforms.

Sample allocation must be determined to develop a broad-scale survey design that effectively asses-
ses fish populations associated with oil and gas structures in the GOM. Should there be more intense
sampling of individual structures with fewer structures sampled or more structures sampled less
intensively? Determination of sample allocation requires estimates of within-platform and between-
platform variability. Survey development also includes selection of methods to measure fish
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abundance associated with platforms. At the SEAMAP workshop’s conclusion, the NMFS ML or-
ganized a pilot study to determine the effectiveness of selected workshop recommendations and to
answer questions about development of a survey design to sample fishes associated with platforms.

The objectives of this pilot study were

1) to determine whether a small vessel can safely maneuver around and tie up to a structure and
deploy the required gear for sampling,

2) to determine the best gear or combination of gears for sampling fishes associated with
platforms, and

3) to obtain preliminary estimates of fish abundance and distribution by depth, location on the
structure (inside vs. outside) and by platform type.

Most studies involving fish associated with oil and gas platforms in the GOM have been conducted
in the northwestern Gulf, because most oil and gas platforms are located off Louisiana and Texas
(Sonnier et al. 1976; Gallaway 1980; Gallaway and Lewbel 1982; Gallaway 1984; Putt 1984; Witzig
1986; Reggio 1987; Stanley and Wilson 1989, 1990 a and b; Render and Wilson 1994; Stanley 1994;
Scarborough-Bull and Kendall 1994; Render 1995; Stanley and Wilson 1996; Gitschlag et al. 1997;
Rooker et al. 1997; Kasprizak 1998; Stanley and Wilson 1998). The platforms studied for this pilot
survey, conducted in August and October 1995, were located east of the Mississippi River and
represent the first attempt to develop broad-scale oil and gas platform survey protocols, as well as
one of the few studies of platforms in the eastern Gulf.

METHODS

Acoustic, video and fishing experiments were conducted around eight oil platforms on the
Mississippi-Alabama continental shelf (MS/AL shelf) (Table 7.9 and Figure 7.19). Only the video
data from this study are presented here. The platforms varied in structural complexity from a one-
pile well to large multiple-pile structures. Two platforms were located in 50 – 55 m of water, four
at 30 –  39 m , and two were at 20 – 29 m.

The research platform used for this pilot study was the R/V Caretta, a 17.7-m single screw steel hull
shrimp boat. We were able to operate the various camera systems in close proximity to the
platforms; however, tides, sea state, currents, and wind played a factor in the Caretta’s ability to tie-
off and remain tied to platforms. Typically the Caretta was tied-off, stern-to, on the down-current
side of the structure and remained so during the experiments. We were forced to move from two
platforms during the course of the study due to strong tides and currents. 

Water parameter data were collected using a Seabird CTD water profiler to measure depth, water
temperature, salinity and light transmissivity. Currents near the substrate can re-suspend and
transport sediments in the water column, thereby reducing the visibility in the layer of re-suspended
sediments. This layer of the water column has been termed the nepheloid layer (Rezak et al. 1983;
McCave 1986; Dennis and Bright 1988; Brooks 1991). Data from the transmissivity sensor was used
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Table 7.9. Location, depth and date sampled, of each oil and gas platform surveyed on the MS/AL
shelf during the 1995 pilot study. Platform name abbreviations: MP = Main Pass, CA =
Chandeleur Area and VK = Viosca Knoll.

Platform # and name Rig depth (m) Latitude Longitude Date Sampled

1) MP-132-C 52.4 29° 23.50' N 88° 38.75' W 8/8/1995

2) MP-108-2 21.6 29° 32.71' N 88° 39.10' W 8/9,10 & 15/95

3) MP-111-well 1 28.9 29° 30.95' N 88° 39.19' W 8/16/95

4) MP-202-A 50.6 29° 29.94' N 88° 27.05' W 8/17/1995

5) CA-38-A 35.7 29° 44.07' N 88° 28.90' W 8/18/95

6) VK-203-B 36.9 29° 47.23' N 88° 20.94' W 8/18 & 19/95

7) VK-203-A 37.8 29° 46.89' N 88° 20.01' W 8/19/95

8) VK-69 31.1 29° 55.57' N 88° 28.72' W 10/26/1995

to determine the depth of the nepheloid layer. Determination of the nepheloid layer allowed efficient
use of survey time and video tapes because taping was not done in the nepheloid layer.

The video gear included a Pan and Tilt camera system (P&T), a Deep Ocean Engineering2 Phantom
remotely operated vehicle (ROV) and a Four-Camera Array (4-C). The P&T consisted of a black
and white camera mounted on a pan and tilt mechanism housed inside a 1.2 m X 1.2 m angle-iron
cage. The camera had a 0.3 lux, 12.5 mm lens with a 65° viewing angle. The sides of the cage were
labeled A-D, and a fin on one corner prevented spinning at depth. The ROV had a 10 lux, 9 mm lens
color camera with a 56° viewing angle. The 4-C array used four, 3 lux Hi 8 mm Sony color cameras
housed in Amphibico Dive Buddy III housings with a 72.5° viewing angle. The four stationary
cameras were placed orthogonally to each other, providing a nearly 360° view. 

Three video experiments were conducted to examine both within-platform and between-platform
variability. Quadrant-at-depth was the first experiment conducted. The P&T and the 4-C array gear
were used to determine fish abundance at depth. The P&T was used at the first seven platforms and
the 4-C was used at the last platform sampled (Figure 7.19). The differences between the two video
gears were

1) the 4-C array records in four directions (quadrants) simultaneously while the P&T records
only one quadrant at a time by rotation of the camera;
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Figure 7.19. Location of eight platforms sampled on MS/AL shelf during a pilot study on fish
assemblages associated with oil and gas platforms in 1995. Platform number and
name were as follows: 1 ( MP-132-c), 2 (MP-108-2), 3 (MP-111 well 1), 4 ( MP-
202-A), 5 (CA –38-A), 6(VK-203-B), 7 (VK-203-A), 8 (VK-69). Platform name
abbreviations: MP = Main Pass, CA = Chandeleur Area and VK = Viosca Knoll.
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2) the 4-C array used cameras that provided a higher quality picture; and

3) the P&T camera has a lower lux rating than the Hi 8 mm cameras on the 4-C array. The P&T
was deployed to 6.1 m below the surface for the first sample depth.

The P&T camera recorded for 2.5 minutes in each quadrant at each depth. The camera was rotated
approximately 90° before recording the next quadrant. The total time recorded for each depth was
10 minutes. The P&T cage was then lowered to the next sample depth, about 6.1 m deeper, and the
process repeated until the water column was covered, or the visibility was reduced to less than 1 m.
The 4-C array was the only gear deployed at platform eight (Figure 7.19) and the only platform
sampled in October. The array was tied off to the Caretta so that one camera was pointed at the
platform and could not spin during the experiment. The 4-C array sampled every 6.1 m, recording
between 40 - 45 minutes per depth. 

A second experiment was conducted using Aimed Video (AV) in conjunction with a Fisheries
Acoustic System (FAS). The transducer for the FAS was deployed over the side of the Caretta
opposite the side that the P&T video system was being deployed. The P&T camera was aimed to
view the area that was insonified at 6.1 m intervals. The camera was generally positioned so that it
was aimed to view along the side of the structure, usually between 2 – 7 m from the structure. At
times, the view also included a platform leg or the edge of a leg.

In the third video experiment, the ROV was deployed and maneuvered down a platform leg. Since
the ROV was maneuvered closer ( 0-1.5 m) to the legs and cross-members of a platform than the
stationary cameras, it was stopped every 3 m to pan in and out of the platform and up and down the
leg. Being this close to the leg or cross-member, the ROV camera was viewing a smaller portion of
the leg at any time than the stationary video gears were. This procedure continued until the bottom
of the leg or the nepheloid layer was reached. Once the ROV entered the nepheloid layer, depending
upon the visibility and darkness level at depth, the external light was turned on. After viewing along
one leg, the ROV was maneuvered to the next leg. ROV operations varied from platform to
platform. Usually, between 27 and 43 minutes of video were collected, depending upon bottom
depth, currents at depth, turbidity and complexity of the structure. We viewed between one and two
legs and one and two cross-members at each platform sampled. Actual depths sampled for each
platform are given in Table 7.10.

Sampling volume of each camera system was determined to estimate the density of fishes associated
with oil and gas platforms. In 1994, NMFS ML scientists conducted several experiments at different
depths and differing light transmissivities to determine the viewing distance of cameras (Gledhill
and Lyczkowski-Shultz 1994). These experiments determined that at a transmissivity of 75% or
higher, large fish (6") can be identified at least 5 m from the camera and small fishes (<6") can be
identified from 3-4 m. Additionally, Rydene and Kimmel (unpublished manuscript 1994) concluded
that underwater video cameras ‘accurately’ view for a distance of up to 5 m. A conservative estimate
for the distance viewed was 5 m, and the camera’s viewing angle was used to calculate the volume
of the conical area sampled for each camera. The P&T camera has a viewing angle of 65°, thereby
allowing it to view an estimated 53.1 m3. The cameras on the 4-C array had a 72.5° viewing angle,
giving each camera an estimated 70.4 m3 of area viewed. The ROV camera had a viewing angle of
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Table 7.10. Video sampling effort by depth at eight oil and gas platforms surveyed during 1995
on the MS/AL shelf. Platform name abbreviations: MP = Main Pass, CA =
Chandeleur Area and VK = Viosca Knoll.

Platform #
and name

Pan & Tilt
depth (m)

Aimed Video
depth (m)

ROV
depth (m)

4-Camera
depth (m)

1) MP-132-C 9.1,15.2, 24.4 - 6.1, 15.2, 24.4,
52.4

-

2) MP-108-2 3, 6.1, 9.1,
12.2, 15.2,
18.3, 21.3

4.5, 9.1, 13.7,
18.3

6.1, 9.1, 12.2,
15.2, 18.3, 21.6, 

-

3) MP-111-w1 6.1, 12.2, 18.3,
24.4

6.1, 12.2, 18.3,
24.4

- -

4) MP-202-A 6.1, 12.2, 18.3,
24.4, 30.5

6.1, 12.2, 18.3,
24.4, 30.5

6.1, 9.1, 12.2,
15.2, 18.3, 21.3,
24.4, 30.5, 33.5,
50.6

5) CA-38-A 6.1, 12.2, 18.3,
21.3, 24.4

3, 9.1, 15.2,
21.3

3, 6.1, 9.1, 12.2,
15.2, 18.3, 21.3,
24.4, 27.4, 30.5,
35.7

-

6) VK-203-B 6.1, 12.2, 18.3,
24.4

6.1, 12.2, 18.3,
24.4

3, 6.1, 9.1, 12.2, 
15.2, 18.3, 21.3,
24.4, 27.4, 30.5,
35.7, 36.9

-

7) VK-203-A 6.1, 12.2, 18.3,
24.4

6.1, 12.2, 18.3,
24.4

6.1, 9.1, 12.2, 
15.2, 18.3, 21.3,
24.4, 27.4, 30.5,
35.7, 37.8

-

8) VK-69 - - - 6.1, 12.2, 18.3,
24.4
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56°, making the volume viewed approximately 37 m3 (Table 7.11). Fish density estimates recorded
on video were standardized to 100 m3 for comparing the different video gears. 

Table 7.11. Sampling volume of video cameras used to survey oil and gas platforms on the
MS/AL shelf, during 1995.

Video gear
Camera’s
Viewing
Angle

Distance
Viewed

(m)

Volume
Sampled

(m3)

Pan & Tilt Camera 65 5 53.1

4 - Camera Array 72.5 5 70.4/camera

ROV 56 5 37.0

ANALYSIS

The P&T quadrant-at-depth experiment produced 10 minutes of video for each depth sampled on
a platform with 2.5 minutes per quadrant. The 4-C array taped 40-45 minutes of video for each depth
at platform 8, but only the first 10 minutes of video were used for analysis. Thirty 1-second
randomly selected ‘snapshots’ were selected from the video tapes recorded at each depth from the
P&T system and 4-C array, and all fish were identified to the lowest possible taxonomic level and
counted. The AV experiment initially collected video footage for forty minutes at depth and later
for twenty minutes at each depth. Only the first ten minutes of video for each depth at a platform
were used for analyses. Data collected using the ROV were not used to obtain density estimates but
were used in assemblage structure comparisons using presence/ absence of taxa. The density
estimates could not be determined because the viewing volume was not consistent during ROV
operations for this study. This problem was caused by parts of the platform structure (legs, cross-
members, pipping, etc.) being within the volume viewed during ROV operations, thereby subtracting
an unknown amount of area from the volume viewed. 

RESULTS

Video data collected from the eight platforms by the P&T quadrant-at-depth, AV, and the 4-C
experiments resulted in three-, four- or five-depth strata covered by each gear type. Depth strata
sampled for each experiment varied with platform depth and the presence of a nepheloid layer
(Table 7.10). Varying currents and tides prevented completion of some experiments at any particular
platform. Additionally, stationary video data were not collected at depths within a detected
nepheloid layer. The experiments using the P&T system were all conducted during August. The
P&T quadrant-at-depth experiments were conducted at the first seven platforms. The AV experiment
was conducted at the second through the seventh platform. The 4-C array was the only gear used at
the last platform sampled, which was also the only platform sampled in October. The ROV collected
data from more defined depth strata and sampled deeper than the other video gear, since it sampled
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Figure 7.20. Water column transmissivity for the eight oil and gas platforms surveyed on the
MS/AL shelf during 1995.

at 3 m intervals and had an external light source. The ROV was not used at platform 3 due to strong
currents. CTD data were collected from the first seven platforms. 

Transmissivity profiles plotted from CTD profiles at each platform indicated that nepheloid layer
depth and thickness varied among platforms (Figure 7.20). An actual profile from platform number
four shows a typical transmissivity trace observed during this study on the MS/AL shelf. The trace
shows that from the surface to about 45 m transmissivities are greater than 80%, with a sudden drop
at 47 m marking the top of the nepheloid layer (Figure 7.21). All platforms had mean
transmissivities above the nepheloid layer ranging from 84% - 97% and were generally greater than
94% (Figure 7.20), while transmissivities in the nepheloid layer, when present, were more variable
ranging from 35% - 86%. Thickness of the nepheloid layer ranged from approximately 1 - 12 m. The
nepheloid layer at platform 2, while present, was very slight (above 75%) and not very thick (about
1 m), still providing visibility above the minimum needed for density estimates. The CTD was not
available for use during the sampling of platform 8, the northern-most platform that was sampled
in October. However, the video footage did not detect a discernable nepheloid layer for the entire
water column.
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Figure 7.21. Transmissometer profile from platform 4 (MP-202-A) during a pilot study of oil and
gas platforms on the MS/AL shelf in 1995.

A total of 19 families represented by 44 taxa were observed from video tapes recorded during this
study (Tables 4 and 5). Observed taxa included those associated with natural reefs as well as
artificial reefs such as oil and gas platforms (Sonnier et al. 1976; Gallaway 1980; Lukens 1981;
Stanley and Wilson 1990a; Scarborough-Bull and Kendall 1994; Gitschlag et al. 1997; Rooker et
al. 1997). The ten most frequently observed taxa were Atlantic spadefish, Chaetodipterus faber; blue
runner, Caranx crysos; gray (mangrove) snapper, Lutjanus griseus; sheepshead, Archosargus
probatocephalus; red snapper, Lutjanus campechanus; the scad complex, Decapterus spp. and/or
Trachurus sp.; crevalle jack, Caranx hippos; lookdown, Selene vomer; great barracuda, Sphyraena



403

Table 7.12. Families observed in all video samples combined from oil and gas platform pilot
study on the MS/AL shelf during 1995.

Scientific Name Common Name

Serranidae
Pomatomidae
Rachycentridae
Carangidae
Lutjanidae
Haemulidae
Sparidae
Sciaenidae
Kyphosidae 
Ephippidae
Chaetodontidae
Pomacanthidae
Pomacentridae
Sphyraenidae
Labridae
Blennidae
Acanthuridae
Scombridae
Balistidae

Groupers and Sea basses
Bluefish
Cobia
Jacks
Snappers
Grunts
Porgies
Drums
Sea chubs
Spadefishes
Butterflyfishes
Angelfishes
Damselfishes
Barracudas
Wrasses
Combtooth blennies
Surgeonfishes
Mackerels and Tunas
Triggerfishes

barracuda; and gray triggerfish, Balistes capriscus (Table 7.13). Six species common to all four sets
of video gear were: Atlantic spadefish, blue runner, gray snapper, sheepshead, red snapper, and gray
triggerfish. The ROV viewed farther into the confines of each platform and closer to the platform
structure, which allowed detection of more cryptic, smaller, and more reef-associated species than
any of the other video gear. More taxa (34) were observed on the video from the ROV than any
other video gear (Figure 7.22). Twenty-four taxa were observed with the P&T, 14 taxa with the AV
and 11 taxa with the 4-C array. The number of taxa observed inside the confines of a platform (ROV
data) by depth were compared to the number seen outside (P&T, AV & 4-C data) the platform by
depth. While there were more taxa observed within the platform structure, there was no relationship
between the number of taxa and depth (Figure 7.23).

Density estimates for all taxa, jacks, snappers and groupers were compared from AV, P&T and the
4-C observations (Figures 7.24 and 7.25). The highest mean densities for all taxa were observed with
the AV (34.8 fish/100m3) and the lowest with the 4-C (1.1 fish/100m3). The large difference in mean
density between the AV and the other gears was due to the high concentrations of jacks (carangids)
that schooled around the platform margins and accounted for most of the fish observed. The P&T
and 4-C were viewed in all four directions while the AV observed the water column near the
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Table 7.13. Percent occurrence of all taxa observed at eight oil and gas platforms with all video
gears from a pilot study on the MS/AL shelf in 1995 (n = 138, were n = number of
all video frames sampled from P&T, AV, 4-C and ROV).

Common Name Scientific Name % Occurrence % Standard Error

Blue runner Caranx crysos 60.870 4.170

Atlantic spadefish Chaetodipterus faber 49.275 4.271

Gray (mangrove) snapper Lutjanus griseus 43.478 4.235

Sheepshead Archosargus probatocephalus 42.029 4.217

Red snapper Lutjanus campechanus 20.290 3.436

Great barracuda Sphyraena barracuda 18.841 3.341

Lookdown Selene vomer 18.116 33.291

Scad complex Decapterus spp. &/or Trachurus sp. 16.667 3.184

Gray triggerfish Balistes capriscus 11.594 2.735

Blue angelfish Holacanthus bermudensis 10.145 2.580

Sargent major Abudefduf saxatilis 10.145 2.580

Crevalle jack Caranx hippos 9.420 2.496

Scamp Mycteroperca phenax 8.696 2.407

Blenny Blenniidae 6.522 2.109

Damselfish Pomacentrus spp. 5.072 1.875

Grouper Mycteroperca spp. 4.348 1.742

Sea chub Kyphosus spp. 4.348 1.742

Whitespotted soapfish Rypticus maculatus 4.348 1.742

Gag Mycteroperca microlepis 3.623 1.597

Bluefish Pomatomus saltatrix 2.899 1.433

Reef butterflyfish Chaetodon sedentarius 2.899 1.433

Cubbyu Equetus umbrosus 2.899 1.433

Cobia Rachycentron canadum 2.174 1.246

Blackbar drum Equetus iwamotoi 2.174 1.246

Damselfishes Pomacentridae 2.174 1.246

Wrasse Halichoeres spp. 1.449 1.021

Amberjack Seriola spp. 1.449 1.021

Surgeonfish Acanthurus spp. 1.449 1.02

Horse-eye jack Caranx latus 1.449 1.021

Bar jack Caranx ruber 1.449 1.021

Spotfin butterflyfish Chaetodon ocellatus 1.449 1.021

Butterflyfish Chaetodon spp. 1.449 1.021

Rainbow runner Elagatis bipinnulata 1.449 1.021

Molly miller Scartella cristata 1.449 1.021

Spotfin hogfish Bodianus pulchellus 0.725 0.725

Creole-fish Paranthias furcifer 0.725 0.725

Graysby Cephalopholis cruentatus 0.725 0.725

Bank butterflyfish Chaetodon aya 0.725 0.725

Rock hind Epinephelus adscensionis 0.725 0.725

Little tunny Euthynnus alletteratus 0.725 0.725
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Figure 7.22. Number of taxa observed by each gear from pilot study of oil and gas platforms on
the MS/AL shelf in 1995. (n = number of video samples. Number of rigs where gear
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406

Fi
gu

re
 7

.2
3.

N
um

be
r o

f t
ax

a 
ob

se
rv

ed
 w

ith
in

 e
ac

h 
pl

at
fo

rm
 a

nd
 o

ut
si

de
 e

ac
h 

pl
at

fo
rm

 fr
om

 p
ilo

t s
tu

dy
 o

f o
il 

an
d 

ga
s p

la
tfo

rm
s

on
 M

S/
A

L 
sh

el
f i

n 
19

95
. T

he
 d

ro
p 

vi
de

o 
ge

ar
s d

id
 n

ot
 sa

m
pl

e 
be

lo
w

 th
e 

ne
ph

el
oi

d 
la

ye
r, 

th
er

ef
or

e 
th

e 
gr

ap
h 

do
es

no
t e

xc
ee

d 
35

 m
.



407

Figure 7.25. Mean density of selected taxa recorded by the Pan & Tilt and 4-Camera Array video
gears during a pilot study of oil and gas platforms on the MS/AL shelf in 1995.
Numbers in and above histogram are mean number of fish/100 m3 (n = number of
video samples taken by each gear at the number of rigs indicated).

Figure 7.24. Mean density of selected taxa recorded by the Aimed Video gear during a pilot study
of oil and gas platforms on the MS/AL shelf in 1995. Numbers in and above
histogram are mean number of fish/100 m3 (n = number of video samples taken at the
six rigs sampled with the AV).

n = 28
6 rigs

n = 37
7 rigs

n = 20
1 rig
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platform margins where the jacks were always in view. The density of snappers and groupers
estimated by each video gear were similar.

Differences in total fish density were observed at different depths. There appeared to be a positive
trend with depth; however, this trend was influenced by a single high density of fish observed at 30
m (Figure 7.26). Red and gray snappers also differed in depth distribution (Figures 7.27 and 7.28)
on these eight platforms during this study. More red snapper were observed at depths > 25 m and
typically, they were recorded on the videos at depths > 15 m. Gray snapper were observed more fre-
quently at depths < 20 m, although they were present at all depths. Red snapper were observed to
move away from the confines of the structure while gray snapper did not often range far from it.

Since differences in overall fish density among platforms were observed (Figure 7.29), the
relationship between fish density and the age of the platform and between fish density and the type
of fauna attached to each platform were examined. No significant differences in total fish density
by gear with age of a platform were found using a two-way analysis of variance. Testing was also
done for red and gray snapper, scamp, gray triggerfish, blue runner and scad with no differences
found for them as well. There were differences in fish density with attached faunal type, for all taxa
and some individual taxa. Attached fauna was classified into two groups using the video data:
platforms with > 50% of the surface area covered by barnacles and platforms with > 50% of the
surface area covered by other epifauna (octocorals, gorgonians, sponges and bryozoans). The mean
density of fish was lower at platforms dominated by barnacles (Figure 7.30). Gray snapper densities
were higher at platforms dominated by barnacles and red snapper densities were higher at platforms
dominated by other faunal types (Figure 7.31). There was no obvious relationship from a one-way
analysis of variance, testing whether faunal type varied with platform age. 

DISCUSSION

Our pilot study was designed to evaluate the efficiency of various types of video gear and
methodologies in assessing fish populations on oil and gas platforms. Within-platform and
between-platform variability in fish assemblage composition, vertical distribution and abundance
were examined to develop an optimal broad-scale survey design.

Within-platform variability was examined by three different video gears in four different
configurations. The P&T and 4-C gears looked into the platform, along the margins of the platform,
and away from the platform. The 4-C array viewed in all four directions simultaneously, had a
greater viewing angle, and produced a higher quality image; it was, therefore, considered to be the
best video gear for sampling along platform margins. The P&T and 4-C did not record images far
enough into the confines of the platform to pick up cryptic and smaller species; therefore, the ROV
was used to view these taxa. The AV taped only along the margins of the platforms in one direction
allowing observation of fishes that occurred in close proximity to the platforms, especially those
taxa that circle the platforms, such as carangids. High concentrations of fishes have been detected
in close proximity to platforms using acoustical arrays (Stanley and Wilson 1990b). Survey cameras
need to examine within the confines of the platform and along its margins. Although similar taxa
were found at each platform, more taxa were seen inside the platform structure than outside. Our
limited pilot study indicated that camera orientation was critical for accurate counts of snappers and
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Figure 7.26. Mean density of all fish observed at each depth for P&T, AV and 4-C video gears
combined, during a pilot study of oil and gas platforms on the MS/AL shelf in 1995.
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Figure 7.27. Mean density of red snapper by depth for the P&T, AV and 4-C video gears
combined, during a pilot study of oil and gas platforms on the MS/AL shelf in 1995.
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Figure 7.28. Mean density of gray snapper by depth for the P&T, AV and 4-C video gears
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during a pilot study on the MS/AL shelf in 1995. Mean fish density estimates from
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n = 85

Figure 7.30. Mean density of total fish versus dominant attached epifauna from eight oil and gas
platforms surveyed during a pilot study on the MS/AL shelf in 1995. Numbers in and
above histogram are mean number of fish/100 m3.

Figure 7.31. Mean densities of snappers versus dominant attached epifauna from eight oil and gas
platforms surveyed during a pilot study on the MS/AL shelf in 1995. Numbers in and
above histogram are mean number of fish/100 m3.

n = 85
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groupers. More groupers were observed within and in very close proximity to the platform than
away from the platform. Few groupers were observed during our study; therefore, no broad
conclusions can be made concerning their association with oil and gas platforms. More red snapper
were observed outside the platforms than within, while gray snapper were observed more frequently
inside the platforms than outside. No difference in the number of species present with depth was
observed. Although we observed differences in the abundance of red and gray snapper with depth,
we cannot make any general inferences regarding their depth distributions on all platforms in the
GOM without a larger scale study. Render (1995) noted differences in the depth distributions of
juvenile and adult red snapper from video observations on a single platform. Stanley and Wilson
(1996), using acoustical arrays around oil and gas platforms, noted that total fish density also varied
with depth. The presence of a nepheloid layer limits the ability to view fishes over the entire vertical
extent of platforms and makes it difficult to draw conclusions about the depth distributions of fishes
on platforms from video. 

In general, all the platforms studied had similar taxa around them. The assemblages seen on these
eight platforms east of the Mississippi River were similar in composition to species assemblages on
oil and gas platforms west of the Mississippi River (Sonnier et al. 1976; Gallaway 1980; Stanley and
Wilson 1990a; Gitschlag et al. 1997; Rooker et al. 1997). There were significant differences in mean
fish density among platforms depending on the type of fauna attached to the platform. Total mean
fish densities were lower at platforms dominated by barnacles than at platforms dominated by other
epifauna. Additionally, red snapper densities were higher at platforms where the dominant fauna was
higher-relief growths and gray snapper densities were higher at platforms dominated by barnacles,
i.e., lower-relief growth. This difference may be due to the preferred prey items, habitat, or
differences in the behavior of these two species. While both species seem to be opportunistic
generalists in their feeding behavior, it appears that red snapper feed more frequently on fish than
do gray snapper (Parrish 1987). Starck (1970) characterized the feeding habitat of gray snapper as
being mixed low-relief bottom type and not adjacent flat areas. This is similar to the barnacle-
dominated platforms seen in this survey. Red snapper are known to feed away from reef areas and
platforms on the soft-bottom areas adjacent to these habitats as well as possibly off-bottom (Moseley
1966; Bradley and Bryan 1975; Gallaway 1980). Since they may feed off-bottom, red snapper may
also feed on or in very close proximity to the platforms to some degree, as seen by the high catch
rates of red snapper on platforms by recreational fishers (Stanley and Wilson 1990a). While there
may be many possibilities that would explain these observed differences between the distribution
of red and gray snapper on platforms with attached epifauna, this information needs to be known
and taken into consideration for a survey design of oil and gas platforms. Just as stock assessment
models use the natural history of a harvested species during analyses (NMFS 1999), the
development of resource surveys needs this same understanding of the target species to provide a
scientifically accurate index of abundance. Variance components for sample allocation were not
adequately addressed with this limited study, but we did learn that a survey will probably not be able
to take just a single ‘snapshot’ of a platform for assessing snappers and groupers.

The interface between the clearer surface waters and the bottom nepheloid layer as seen from video
footage is dynamic, undulating at depth, potentially from subsurface currents. The thickness and
mean transmissivity readings within the nepheloid layer can vary greatly, as observed from our
study, even in a small geographic area and over a short time frame. These results and observations
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are similar to findings from the Mississippi-Alabama Continental Shelf Ecosystem Study (Brooks
1991). Dennis and Bright (1988) stated that the bottom nepheloid layer is the most important
environmental factor in determining the composition of fish assemblages and linked it to low species
richness on natural hard banks in the northwestern GOM. 

RECOMMENDATIONS

 Additional data from platforms located both east and west of the Mississippi River and distributed
across the continental shelf is required before a final survey design can be developed. Differences
in fish assemblages associated with platform size, platform age, side of platform, and attached
epifauna need to be better examined. Nearest neighbors (other oil platforms and shelf–edge banks)
should also be considered as factors that may account for the variability in fish density among
platforms. Acoustic studies indicate that estimates of total fish abundance on a platform are highly
variable from month to month and seasonally (Stanley 1994; Stanley and Wilson 1996, 1998). There
may also be seasonality in the presence of the nepheloid layer in this area and currents may have an
effect on its presence, thickness, and density as well (Brooks 1991). Therefore, the time of year may
also influence the fish assemblages observed on platforms. Another consideration in survey timing
is the time when key resource species (snappers and groupers) recruit to the fishery.

Our pilot study did not adequately describe differences in fish densities inside the confines of the
platform versus densities outside the platform, since the gear we used did not quantitatively sample
within platform structure. We propose that densities of fish inside the platforms be estimated with
the ROV, the 4-C array, and SCUBA divers in any new survey. A SCUBA census should be
included in any follow-up study, since they are routinely used to sample natural and artificial reefs
(Brock 1954; Hastings et al. 1976; Ogden and Ebersole 1981; Sale and Douglas 1981; Brock 1982;
Kimmel 1985; Bohnsack and Bannerot 1986; Parker 1990; Bull and Kendall 1994; Rooker, et al.
2000), and since divers can get inside the structure with ease. Both point-count census and transect
methods can be evaluated, and the best method for platforms can be used. However, there are
limitations to SCUBA including depth, bottom time, and logistical considerations that may not make
it an effective tool for a large-scale survey. Fish avoidance of divers may also be problematic
(Stanley 1984) and needs to be investigated further. However, the data collected by divers is
immediate. Video tapes take longer to process but can be archived for later review and confirmation
of fish identifications.

A method to quantify the ROV data must be developed so that this gear can be compared to the
stationary video gears or divers for density estimates in determining the best gear or combination
of gears to be used for sampling. There are at least two methods for calculating volumetric densities
from the ROV video. One method would hold the ROV stationary at a set depth for a period of time,
imitating the stationary video gears. Submersibles have been used to conduct point-count censussing
of fishes on natural hard bottoms (Shipp et al. 1986). The other method is a transect method.
Submersibles have been used in the past to conduct transects over natural reef areas (Parker and
Ross 1986) as well as oil platforms (Love et al. 2000). Both of these methods may be effective and
necessary to calculate total densities for a platform with an ROV. Putt (1984) also suggested using
ROVs in a three-dimensional sampling strategy with observations at both fixed positions and along
horizontal transects at several depths on a platform. Whatever method chosen would require that the
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ROV be outfitted with a pair of lasers at a known distance apart to help maintain the desired distance
away from the structure and to obtain fish lengths. This adjustment would help correct the area
viewed for volumetric density estimates. Fish avoidance by ROV/submersibles needs to be
considered in regards to their use to examine fish abundance around platforms (Stanley 1984, Parker
and Ross 1986, Shipp et al. 1986).

While we only presented the results of the video experiments from this small pilot study, an
effective assessment of the fishes associated with oil and gas platforms will most likely involve
some combination of visual, acoustic, and fishing assessment gears and techniques. A combination
of gears and techniques is required due to the vertical nature of oil and gas platforms and the
presence of nepheloid layers over most of the north central and northwestern GOM (Rezak et al.
1983). More work needs to be done with all of these gears and techniques around oil and gas
structures; in addition, we need to study further ways of using the data gathered during oil and gas
platform surveys in population assessment models. 
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INTRODUCTION

Since the first petroleum platform was placed off the Louisiana coast in 1948, the largest artificial
reef complex in the world was started. To date, approximately 4,000 petroleum platforms are
scattered across the outer continental shelf of the northern Gulf of Mexico (GOM), with the vast
majority off the coasts of Louisiana and Texas. It is hypothesized that artificial reefs and platforms
improve and/or diversify habitat, increase resources, modify the assemblages of organisms in the
region or concentrate existing resources. The placement of these defacto reefs has undoubtedly
impacted the regional marine community although little information is available. Only recently have
assessment methods been developed to test these and other hypotheses concerning artificial reefs.

Scientific investigations of fish assemblages at petroleum platforms did not start until the mid 1970s.
They consisted of visual surveys conducted by SCUBA divers, remotely operated underwater
vehicles (ROV) and stationary cameras; the majority of these projects were short term, often only
“snapshots” of the fishes at each site (Shinn 1974, Sonnier et al. 1976; Gallaway et al. 1981;
Continental Shelf Associates 1982; Gallaway and Lewbel 1982; Putt 1982). The results of this early
research provided insights into structure-associated assemblages including variations in abundance
and species composition with platform, water depth, and time of the year. However, results have
been difficult to compare because of problems with limited visibility, gear bias, diver avoidance, and
a lack of standardized survey methodology. Although visual surveys are the method of choice to
survey natural and artificial reefs (Bortone and Kimmel 1991), the presence of SCUBA divers can
bias the density and possibly species composition of fishes at the site (Sale and Douglas 1981; Brock
1982; Bohnsack and Bannerot 1986; Stanley and Wilson 1995). 

In response to the difficulty in assessing the fisheries resources associated with petroleum platforms
and the biases inherent in visual surveys, Gerlotto et al. (1989) demonstrated that towed
hydroacoustics could be used to measure fish density near petroleum platforms off Cameroon. We
later utilized complimentary sampling methods of visual surveys and quantitative dual beam
hydroacoustic surveys to document the assemblage of fishes associated with petroleum platforms
in the northern GOM (Wilson and Stanley 1991; Stanley and Wilson 1995, 1996, 1997, 2000).
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Despite the range of methodologies, investigators found that fish abundance and species
composition change dramatically with proximity to platform, location, and time of year (Sonnier
1976; Continental Shelf Associates 1982; Gallaway and Lewbel 1982; Putt 1982; Stanley and
Wilson 1996; 1997). Gerlotto et al. (1989) found that fish densities were 5 to 50 times higher
immediately adjacent to a platform than 50 m away. Stanley and Wilson (1996, 1997, 2000) reported
the near field area of influence of a platform on the continental shelf to be 16-20 m away from the
platform. Fish densities within 20 m of a platform were 3 to 60 times higher than at greater distances
and densities observed at distances greater than 50 m were comparable to background levels of the
open waters of the northern GOM (Stanley and Wilson 1996, 1997, 2000). Long-term studies
reported that fish populations at petroleum platforms were highly variable over time. Putt (1982)
observed fluctuations of a factor of two from month to month in density, while Stanley and Wilson
(1996, 1997, 2000) reported that monthly and seasonal abundances change by up to a factor of five.

Based on these previous research efforts, we know that significant numbers of fishes are found at
these sites, although they do not exhibit a large species diversity and do not appear to have a high
site fidelity. Since many of the common species at platforms are highly sought after by commercial
and recreational users and a large number of platforms exist in the region, it is hypothesized that
platforms have considerable importance to regional fisheries. Despite this hypothesis of the
importance of platforms on the regional fish assemblages, quantifiable censuses of fish assemblages
were not possible until the combined use of dual beam hydroacoustics to enumerate the fishes at
these sites and visual surveys with a remotely-operated underwater vehicle (ROV) to determine
species composition were applied. While the results from previous research provided insights into
the species composition and abundance at platforms, the results were not comparable nor were they
quantifiable. To measure the impact of the presence of platforms on the fisheries resources a
standardized quantifiable methodology must be used. 

The specific objectives of this research were to

1) Measure and compare the species composition, biomass and size frequency distribution of
fish associated with three petroleum structures.

2) Determine the effect of temporal, physical and chemical variables on species composition,
biomass and size distribution of fish associated with platforms.

3) Define the spatial near field influence of each platform on the abundance of fish. 

METHODS

Site Descriptions

Research trips were conducted quarterly (August 1994 to April 1997) to petroleum platforms Grand
Isle 94 (GI94) (located at 28o31.33 N and 90o05.52 W, water depth 60 m, installed 1975, operated
by Mobil USA Inc.) and Green Canyon 18 (GC18) (located 27o56.48' N and 91o02.28' W, water
depth 219 m, installed in 1988, operated by Mobil USA Inc.) and quarterly (August 1995 and April
1997) to South Timbalier 54 G (ST54) (located 28o50.01'N and 90o22.40' W, water depth 22m,
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installed 1956, operated by Exxon USA Inc.). The platforms were selected to approximate a transect
extending from the central portion off coastal Louisiana to a distance of 179 km.. Extraction and
production of natural gas and crude oil occurred at each site during research trips. Three reserach
trips were not completed during the project: the spring 1995 surveys to GC18 and GI94 and the fall
1996 survey to ST54.

Three arrays of stationary dual beam hydroacoustic equipment developed through our past research
were used to determine the density of fishes associated with the study sites (Wilson and Stanley
1991; Stanley and Wilson 1995, 1996, 1997,1998, 2000). Arrays 1 and 2 (Figure 7.32) were
designed to measure in situ target strength distribution and density of fishes immediately adjacent
to each side of the platform. Array 1 consisted of four upward-oriented transducers (120 kHz)
suspended approximately 25 m below the surface (at ST 54 they were placed on the bottom), one
on each side of the platform. The upward-facing transducers provided acoustic coverage from the
a depth of 10-15 m to the surface (Figure 7.32). Array 2 consisted of four downward-oriented
transducers (120 kHz) placed approximately 3 m below the surface, one on each side of the
platform. The downward-facing transducers provided acoustic coverage from a depth of 10 m to
within 1-5 m of the substrate depending on the site. The use of four transducers (both upward and
downward orientations) enables the calculation of density throughout the water column on all sides
of the platform. 

Array 3 was designed to estimate the near-field density of fishes associated with the structure and
consisted of four horizontally aligned dual beam transducers (120 kHz) deployed off each side of
the platform at depth of 12 m (Figure 7.33). This arrangement enables relative fish density estimates
to a distance of approximately 80 m from the platform and determination of the near-field area of
influence of each site. 

Total fish abundance estimates at each site were calculated by determining the near-field area of
influence of the platform, then multiplying mean density values for sample and platform side in
number of fish/m3 by the volume of water on each side of the platform. Fish density in the center
of the platform was calculated by averaging the density estimates of the four sides of the platform.
Fish abundance in the center of the platform was calculated by multiplying the estimated fish density
at the center by the volume of water in the center of the platform. After estimates of the number of
fish were made on each side and center of the structure by strata, these estimates were summed to
calculate the total number of fishes at a site.

Horizontal and vertical acoustic samplings were conducted over three consecutive 24-hour intervals
for each month’s sampling trip; two hours of hydroacoustic data were collected encompassing four
periods (dawn, noon, dusk and midnight) over each 24-hour interval. Hydroacoustic data were
collected sequentially from each of the transducers in five-minute intervals for each trip. 

Acoustic data were collected using a Biosonics model ES2000 scientific echosounder/multiplexer-
equalizer. The source levels ranged from 218.5 to 220.5 dB re µPa at 1 m depending on the
transducer. The 20 log R system gains ranged from -156.4 to -146.8 dB re V µPa and the 40-log R
system gains ranged from -168.9 to -165.8 dB re V µPa varying with transducer. Sampling rate
ranged from 2 pings s-1 to 10 pings s-1 depending on array and sampling depth. Pulse width was
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Figure 7.32. Schematic view of stationary hydroacoustic transducer deployment to measure in situ
target strength and density of fishes throughout the water column on each side of the
platform for the three study sites.
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Figure 7.33. Schematic view of stationary hydroacoustic transducer deployment to measure
horizontal relative density of fishes associated with petroleum platforms.

0.4 ms. Received signals were adjusted for spreading loss by applying a 40 log R time varied gain,
digitized and recorded on digital audio tape (DAT). Reference voltages (approximately 5 V AC)
were recorded on each DAT tape and used to calibrate the acoustic system prior to echo integration
and target strength analyses. During data collection, background noise levels were measured and did
not exceed 40 mV. The voltage threshold used in later analyses was 100 mV corresponding to a
minimum detectable target strength of -56 dB, or a fish of 2.5 cm total length according to Love
(1971).

Digitized hydroacoustic data were processed by a Biosonics model 281 dual-beam processor. Target
strengths and an average backscattering cross section (F) for each depth strata were estimated using
Biosonics TS software, and density estimates were calculated using Biosonics Crunch software with
F for each sample and depth strata. Fish densities were calculated for 5 to 20 m depth vertical
intervals for Array 1 and 2 depending on site. 

Visual point count surveys were performed on each sampling expedition on the downcurrent side
of the platform using a Hydrobotics Orpheus, Benthos MiniRover, or Deep Ocean Engineering HD2
ROV. Visual surveys were performed on nektonic fishes freely swimming within the area of
influence of the platform. Cryptic fishes were not included in the visual surveys since they could not
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be assessed in the acoustic surveys. Visual surveys done with ROVs were recorded on videocassette
and the point counts performed later identifying individual fish to the lowest taxonomic level.
Estimates of percent species composition for each strata corresponding to the acoustic strata were
calculated from the visual point counts. To estimate the number of fishes by species at each site by
depth strata, the percent species composition data was applied to the quantitative acoustic estimates
of total abundance and confidence intervals for each strata from every sampling trip.

Environmental data consisting of temperature (+/- 0.1 oC), salinity (+/- 0.1 ppt) and dissolved
oxygen (+/- 0.5 ppm) were measured with a Seabird SBE 19 meter. Current speed (+/- 0.1 m/s) and
direction (+/- 1 degree) were measured an Interocean S4 meter during each hydroacoustic data
collection period through the entire water column at each site. 

Data Analysis

Fish density data (number of fish@m-3) from echo integration analysis contained a large number of
zero values, similar to catch data from traditional fisheries sampling techniques (Pennington 1983;
1985; Shaw et al. 1985; Stanley and Wilson 1995; 1996; 1997; 2000). Therefore, hydroacoustic
density data were transformed by log(density + 1) to approximate the normal distribution. 

Two vectors describing current speed and direction to the east-west and north-south were calculated
(Pond and Pickard 1982). Currents from the east and north were scaled to positive values; west and
south currents were scaled to negative values. This scaling provided two vectors which represented
current speed and direction in later analyses.

Randomized block ANOVAs (SAS Institute 1986) were performed for each site with horizontal
log(density + 1) of density data on distance from the platform, time of day (TOD), quarter, year and
their interactions, blocking on side of the platform to examine differences due to these variables.
Tukey’s studentized range tests (Ott 1982) were used to compare the means of significant variables
for horizontal analyses. Statistical tests were reported as significant at the alpha < 0.01 level.
 
Separate randomized block ANOVAs using SAS (1986) GLM procedures were performed with
vertical target strength data and log (density + 1) of vertical density data for each site on depth, time
of day, quarter, year, temperature, dissolved oxygen level, east and north current vectors, squared
east and squared north current vectors and their interactions, blocking on side of the platform to
examine differences due to these variables. Tukey’s studentized range tests (Ott 1982) were used
to compare the means of significant variables for vertical and horizontal analyses. Tests were
reported as significant at the alpha < 0.01 level. 

The total abundance estimates at the platform were calculated by determining the near-field area of
influence of the platform, then multiplying mean density values (number of fish@m-3) for each month
and platform side by the volume of water on each side of the platform. Fish density in the center of
the platform, not measured with acoustics due to interference by structural members, was assumed
to be the average of the density estimates of the four sides of the platform. Fish abundance in the
center of the platform was calculated by multiplying the estimated fish density of the center by the
volume of water in the center of the platform. 
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RESULTS

South Timbalier 54

Vertical Density Distribution: Densities of fishes at the ST54 production platform (water depth 22
m) were highly variable over the study period ranging from 0 to over 5.2 fish/m3. A RBD ANOVA
with platform side as a block was used to examine differences in density due to year, season, time
of day, current vectors, temperature, dissolved oxygen, depth, and selected interactions. Density
varied significantly with season, time of day, depth, platform side, east current vector, north squared
current vector, salinity, dissolved oxygen, and the time of day * depth interaction (Table 7.14). 
 
Temporal differences in fish density were detected between season, time of day and the interaction
of season(time of day (Table 7.14, Figure 7.34). Fish density was highest in 1995 and 1997
(although only one research trip occurred in 1997) indicating annual variation in the fish density at
the site (Table 7.14). Seasonally, fish densities were significantly higher in the fall than in all other
seasons, and lowest densities were found in the spring and summer (Figure 7.35). No overall trend
of fish densities with season and time of day could be detected over the entire study period, but
overall fish densities were significantly higher at midnight than at all other times (Figure 7.36). 

Spatially, fish density varied with platform side, depth and the interactions of depth*time of day and
depth*season. Significantly higher densities were found on the north side of the platform than at all
others (Figure 7.37). With respect to depth, densities were significantly higher in the upper 10 m of
the water column than at all other depth strata, although an increase in density from 20-22 m was
observed when dissolved oxygen levels were greater than 3 ppm (Figure 7.37). While the interaction
of depth*time of day was significant (Table 7.14) in the overall model, examination of fish density
by depth with time of day did not reveal an overall trend with exception of higher fish densities in
the upper 10 m regardless of time of day. The interaction of depth*season was also significant, and
examination of density values by depth for each season revealed significantly lower densities in the
spring and summer from 20-22 m than in the fall and winter. This difference is likely due to the low
oxygen conditions found near the bottom during these periods. 

Environmental conditions also impacted density based on results from the RBD ANOVA (Table
7.14). Fish density was significantly affected by temperature, dissolved oxygen, east current vector
and the north current vector squared (Table 7.14). Fish density decreased slightly with temperature
although this decrease is not consistent, as the highest observed densities were from fall and winter
when temperatures were lowest. A direct relationship between dissolved oxygen and density existed;
highest densities were found at high levels of dissolved oxygen. During the summer 1996 sample,
a hypoxic event was noted, and dissolved oxygen levels were <1 ppm below 15 m. Along with these
low dissolved oxygen levels, fish density was essentially zero from 15-22 m, but higher than average
densities were detected from 0-10 m. The relationship between current speed and fish density, while
significant (Table 7.14), was difficult to interpret. Fish density generally increased with increasing
current speed although the maximum current speeds observed were 43 cm/s. Since the mean current
speed was 11.3 cm/s, most of the speeds observed were likely not high enough to influence the
behavior of the fishes, as the mean size of the fishes was sufficient to negate the influence of low
observed currents.
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Table 7.14. RBD ANOVA (block on platform side) results of vertical log fish density log (fish
density/m3) with platform side, year, season, time of day, depth, current vectors,
temperature, salinity, dissolved oxygen, and selected interactions at the ST54
petroleum platform.

Source DF SS MS F Prob > F

Model 308 129.00907430 0.41886063 14.09 0.0001

Error 1596 47.44809218 0.02972938

Corrected Total 1904 176.45716648

R-Square C.V. Root MSE LDENSITY Mean

0.731107 87.90991 0.1724221 0.1961350

Variables DF Type III SS Mean Square F Value Pr > F

Side 3 14.78826719 4.92942240 165.81 0.0001

Year 1 0.01226440 0.01226440 0.41 0.5208

Season 3 2.36471052 0.78823684 26.51 0.0001

Diel 3 1.48166178 0.49388726 16.61 0.0001

Depth 4 1.64875440 0.41218860 13.86 0.0001

Temperature 1 0.50166204 0.50166204 16.87 0.0001

Dissolved oxygen 1 0.56616923 0.56616923 19.04 0.0001

Salinity 1 0.02415845 0.02415845 0.81 0.3675

North vector 1 0.17789554 0.17789554 5.98 0.0145

East vector 1 1.28431015 1.28431015 43.20 0.0001

North squared vector 1 0.19835984 0.19835984 6.67 0.0099

East squared vector 1 0.08600079 0.08600079 2.89 0.0892

North * East 1 0.00384716 0.00384716 0.13 0.7191

Season * Diel 9 3.89885440 0.43320604 14.57 0.0001

Diel * Depth 12 4.65341619 0.38778468 13.04 0.0001

Season * Depth 12 8.31623532 0.69301961 23.31 0.0001
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Figure 7.34. Mean fish density (number of fish/m3) by year at Green Canyon 18 (GC18) and
Grand Isle 94 (GI94) from July 1994 to March 1997 and South Timbalier (ST54)
from August 1995 to February 1997.

Figure 7.35. Mean fish density (number of fish/m3) by season at Green Canyon 18 (GC18) and
Grand Isle 94 (GI94) from July 1994 to March 1997 and South Timbalier 54 (ST54)
from August 1995 to February 1997.
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Figure 7.36. Mean fish density (number of fish/m 3) by time of day from Green Canyon 18
(GC18) and Grand Isle 94 (GI94) from July 1994 to March 1997 and South
Timbalier 54 (ST54) from August 1995 to February 1997. 

Figure 7.37. Mean fish density (number of fish/m 3) by platform side from Green Canyon 18
(GC18) and Grand Isle 94 (GI94) from July 1994 to March 1997 and South
Timbalier 54 (ST54) from August 1995 to February 1997.
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Horizontal Density Distribution: Horizontal density of fishes varied temporally and spatially at the
platform. Spatially, horizontal fish density varied with side of the platform and distance from the
platform (Table 7.15). Fish densities were significantly higher in the 2-10 and 10-18m strata than
all others (Figure 7.38). At distances from 18-82 m, fish densities were at only half of those nearer
to the platform (Figure 7.38). Temporally, horizontal fish density varied significantly between years,
seasons, and time of day, reinforcing the temporal variation observed with the vertically oriented
transducer arrays (Table 7.15). Annual variation in horizontal density revealed highest horizontal
density in 1995 and lowest in 1997, while seasonally highest densities were found in the fall with
all other seasons not being significantly different (Table 7.15). Within a 24-hour period,
significantly higher densities were found at noon, while all other times were not significantly
different (Table 7.15). 

Horizontal fish densities were used to measure the near-field area of influence of the platform. Based
on the decrease in fish density with distance from the platform, the near-field area of influence was
estimated at 18 m (Table 7.15, Figure 7.38). Beyond 18 m, fish densities dropped off significantly,
and fish densities were not significantly different from 18 to 84 m (Figure 7.38). 

Table 7.15. RBD ANOVA (block on platform side) results of horizontal log relative fish density
(log (fish density/m3) with platform side, year, season, time of day, distance from the
platform, and selected interactions at the ST54 petroleum platform.

Source DF SS MS F Prob > F

Model 591 67.26231465 0.11381102 32.41 0.0001

Error 4828 16.95542871 0.00351189

Corrected Total 5419 84.21774337

R-Square C.V. Root MSE LDENSITY Mean

0.798672 104.4581 0.0592612 0.0567321

Variables DF Type III SS Mean Square F Value Pr > F

Side 3 1.93480553 0.64493518 183.64 0.0001

Year 2 0.55152158 0.27576079 78.52 0.0001

Season 3 16.74014333 5.58004778 1588.90 0.0001

Diel 3 3.26312963 1.08770988 309.72 0.0001

Distance 3 2.04846570 0.22760730 64.81 0.0001

Season * Diel 9 7.20927947 0.80103105 228.09 0.0001

Diel * Distance 27 0.93008887 0.03444774 9.81 0.0001

Season * Distance 27 3.16415321 0.11719086 33.37 0.0001

Side * Season * Diel * Distance 508 34.03828042 0.06700449 19.08 0.0001
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Figure 7.38. Mean relative fish density (number of fish/m 3) by distance from the platform at
Green Canyon 18 (GC18) and Grand Isle 94 (GI94) from July 1994 to March 1997
and South Timbalier 54 (ST54) from August 1995 to February 1997.

Estimated Number of Fish and Species Composition: Examination of visual survey results revealed
interesting and consistent trends in species composition with respect to depth, season, and the
dominance of a few species over the sample period (Table 7.16). A total of sixteen species were
detected by the ROV during visual surveys, but six species including Atlantic spadefish, bluefish,
blue runner, mangrove snapper, red snapper and sheepshead consistently comprised over 95% of
the fishes enumerated at the site (Table 7.16). Less commonly observed species included seasonal
migrants detected in warmer periods; barracuda, Bermuda chub, cobia and tarpon and species found
during cooler water periods; Florida pompano and red drum (Table 7.16).

During all surveys, planktivores were numerically dominant and the most common species observed
were Atlantic spadefish and blue runners (Table 7.16). These species typically constituted over 55%
of the fishes surveyed (Table 7.16), and either species was the most numerically dominant
depending on season. Blue runners were generally more abundant in the warmer surveys with the
exception of the summer of 1996 when they were absent from the survey (Table 7.16). 

Depth also played an important role in the distribution of species at ST54; consistent trends were
observed with respect to the presence of species and depth (Table 7.16). Examination of the depth
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Table 7.16. Mean estimated number of fish by species and mean number enumerated and percent
species composition by depth strata at South Timbalier 54 for all research trips from
July 1995 to March 1997 from hydroacoustic and visual point count surveys.

Species Summer 95 Fall 95 Winter 96 Spring 96 Summer 96 Winter 96 Mean

Atlantic
Spadefish

35.4
2880.3±377.2

34.7
13305±2611.6

43.4
3796.5±617.3

27.6
1963.4±189.5

21.5
1976.5±258.9

27.5
8327.2±1320.1

33.6
5018.6±482.2

Barracuda 0.2
8.2±1.8

- -
-

- - - 0.0
5.7±0.4

Bermuda
Chub

- - - 
-

- 0.2
9.0±0.9

- 0.0
1.1±0.1

Bluefish 0.2
10.2±2.2

- 13.2
804.1±102.3

0.6
31.8±3.3

- - 2.4
381±32.3

Bluerunner 42.6
2536.9±412.1

19.9
6946.2±1360

1.1
82.1±14.7

6.6
427.0±29.3

- 22.7
6220.5±32.7

20.6
2688.7±274.8

Cobia 0.1
8.3±0.6

0.3
44.9±10.2

0.2
45.0 ± 21.3

0.1
5.1±1.0

0.3
18.0±1.7

0.2
18.0±2.9

0.2
17.4±1.9

Florida
Pompano

- - 1.6
142.6±18.6

- - - 0.3
36.0±2.8

Gray
Triggerfish

0.6
34.7±8.2

0.1
27.4±4.8

0.1
22.9±5.2

0.8
69.9±14.7

0.3
18.0±1.7

- 0.3
35.7±3.6

Jack
Crevalle

0.2
20.4±2.5

0.4
123.7±23.3

1.1
74.5±10.9

0.3
17.8±1.7

- 0.9
203.9±29.5

0.5
67.8±6.2

Lookdown 0.8
56.3±6.8

0.4
78.6±20.7

0.1
11.1±4.5

4.1
240.3±18.9

- 0.4
30.8±5.9

0.7
95.8±9.1

Mangrove
Snapper

1.1
52.8±8.4

13.6
3937.6±787.7

1.1
89.2±12.3

39.9
2411.6±321.2

49.1
2957.4±322.1

13.4
4108.5±531.0

13.1
1774.5±159.2

Red
Snapper

3.9
124.6±29.4

15.5
2560.7±392.2

14.6
1240.9±383.8

1.5
268.1±61.1

3.1
2000.5±228.7

17.9
1832.4±281.9

10.8
995.3±140.5

Red Drum - 0.1
6.4±1.1

- - - 0.4
-

0.1
6.4±1.2

Rockhind 0.1
10.2±2.4

0.1
47.2±7.3

- - - - 0.0
5.2±0.4

Sheepshead 14.8
1404.5±139.7

14.8
4831.1±921.6

23.5
1790.2±377.5

18.4
1828.6±370.6

25.3
754.7±205.9

13.7
4329.9±661.7

17.2
2326.2±229.6

Tarpon 0.0
3.0±0.3

0.1
21.8±3.4

0.1
-

- - 0.5
24.5±4.0

0.1
16.0±1.5

TOTAL 7159.2±992.7 28553.1±6141.3 8052.5±1566.1 7269.4±1013.9 9568.2±1316.5 18121.6±2818.1 13471.9±1346.7

distribution of the six most abundant species showed that Atlantic spadefish and bluefish were found
in the upper water column; mangrove snapper and sheepshead were found throughout the water
column but were most common at mid-depth; red snapper were most abundant in the lower 7 m of
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Figure 7.39. Mean fish density (number of fish/m3) by depth at Grand Isle 94 (GI94) from July
1994 to March 1997 and South Timbalier 54 (ST54) from August 1995 to February
1997.

the water column, and only blue runner were found evenly throughout the water column (Table
7.16). Trends in depth distribution of the less common species show that barracuda, Florida
pompano and red drum were most common near the bottom while cobia, gray triggerfish, jack
crevelle, lookdown, and tarpon were observed throughout the water column (Table 7.16). 

Seasonal trends in species composition and depth distribution were also observed at ST54. During
the winter sampling trips, bluefish abundance was highest and they were found at mid-depth; blue
runners were uncommon; although overall Atlantic spadefish abundance did not change, they were
found throughout the water column in contrast to their abundance near the surface during other
sampling periods (Table 7.16). During warmer sampling periods, blue runner and mangrove snapper
were more common and generally found in the upper water column (Table 7.16). 

Extrapolating the species composition estimates with the acoustic abundance data for each depth
strata provided estimates of individual species abundance throughout the water column (Table 7.16,
Figure 7.39). By species, Atlantic spadefish or blue runners were the most abundant fish at ST54
with the exception of the spring and summer 1996 samples when mangrove snapper abundance was
slightly higher (Table 7.16). Three- to five-fold fluctuations in abundance for individual species
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were detected between samples (Table 7.16). The species exhibiting the largest change over the
sample period was mangrove snapper, with abundances changing from approximately 80 individuals
in the summer of 1995 to approximately 4,000 in the fall, then dropping to an estimated 90 fish in
the winter of 1996 and increasing to 2,900 in the spring of 1996 (Table 7.16). Large fluctuations in
abundance by species over longer time periods were observed; an example was the presence of over
2,400 bluefish in the winter 1996 sample while at other times of the year this species was absent
(Table 7.16).

The mean abundance, with 95% confidence intervals, of fishes at ST54 by sample was variable with
a low of 7,159 (+/- 993) fish at in the summer of 1995 and a high of 28,553 (+/- 6,141) fish in the
fall of 1995 (Table 7.16). Averaged over all, the sample periods there were 13,472 (+/- 1,347) fish
at the site (Table 7.16). By depth, 58% of the fishes were found in the upper 10 m of the water
column with the lowest abundance of fish found adjacent to the substrate (Figure 7.39).

Grand Isle 94

Vertical Density Distribution: Densities of fishes at the GI94 production platform (60 m depth) were
variable over the study period ranging from 0 to over 1.1 fish/m3. A RBD ANOVA with platform
side as a block was used to examine differences in density due to year, season, time of day, current
vectors, temperature, dissolved oxygen, depth, and selected interactions. Density varied significantly
with year, season, time of day, depth, platform side, north current vector, east squared current vector,
dissolved oxygen, and temperature (Table 7.17). 

Temporal differences in fish density were detected between year, season, and time of day (Table
7.17). Fish density was significantly different over all years examined with significantly higher
densities observed in 1997 than in all other years, although only one research trip occurred in 1997
(Figure 7.34). The lowest annual densities were found in 1996 with 1994 and 1995 having
significantly higher annual densities (Figure 7.34, Table 7.17). Seasonally, fish densities were
significantly higher in the winterfollowed by fall, then spring, and lowest in the summer (Figure
7.35, Table 7.17). Mean densities in the winter and fall were on average five to ten times higher than
in the spring and summer (Figure 7.35). While fish densities varied with time of day and were
significantly different (Table 7.17), the differences were much smaller than with any other temporal
variable examined (Figure 7.36). Highest densities were found at dawn and significantly lower
densities were detected at dusk; otherwise, densities were not significantly different (Figure 7.36).

Spatially, fish density varied with platform side and depth (Table 7.17). Significantly higher
densities were found on the north and west side than on the others (Figure 7.37). Lowest densities
were found on the east side of the platform (Table 7.17). Densities varied significantly with depth,
with lowest densities found from 5-20 m and highest near the surface and bottom (Figure 7.39).
Significantly higher densities were found immediately above the bottom (water depth 50-55 m) than
at all other depth strata (Figure 7.39). Other regions of high densities included 0-5 m and 40-60 m
(Figure 7.39).
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Table 7.17. RBD ANOVA (block on platform side) results of vertical log fish density
(log(number of fish/m3) with platform side, year, season, time of day, depth, current
vectors, temperature, salinity, dissolved oxygen, and selected interactions at the GI94
petroleum platform.

Source DF SS MS F Prob > F

Model 719 658.51165 0.91587 9.51 0.0001

Error 7210 694.42089 0.09631

Corrected Total 7929 1352.93255

R-Square C.V. Root MSE LDENSITY Mean

0.486729 94.61222 0.3103 0.3280

Variables DF Type III SS Mean Square F Value Pr > F

Side 3 34.43292 11.47764 119.17 0.0001

Year 3 1.11 0.37 12.17 0.0001

Season 3 88.32148 29.44049 305.67 0.0001

Diel 3 1.45685 0.48562 5.04 0.0017

Depth 11 20.22683 1.83880 19.09 0.0001

Temperature 1 3.53954 3.53954 36.75 0.0001

Dissolved oxygen 1 4.91742 4.91742 51.06 0.0001

Salinity 1 0.00003 0.00003 0.00 0.9849

North vector 1 1.32898 1.32898 13.80 0.0002

East vector 1 0.23100 0.23100 2.40 0.1215

North squared vector 1 0.42743 0.42743 4.44 0.0352

East squared vector 1 1.98548 1.98548 20.61 0.0001

North * East 1 0.10200 0.10200 1.06 0.3035

Diel * Depth 33 4.48975 0.13605 1.41 0.0590

Side * Season * Diel * Depth 658 226.51339 0.34425 3.57 0.0001

Results from the RBD ANOVA of environmental variables showed significant impact on fish
density due to temperature, dissolved oxygen, north current vector and the east current vector
squared (Table 7.17). Fish density decreased slightly with temperature although this finding is in
conflict to the highest observed overall densities, which occurred in the fall and winter when
temperatures are the lowest (Figure 7.35) and highest observed densities from 40-60 m where
temperatures were generally lowest (Figure 7.39). A positive relationship was detected between
dissolved oxygen and density as density increased with increasing dissolved oxygen levels although
hypoxic conditions were not observed at GI94. The lowest dissolved oxygen levels were found were
4.4 ppm during the fall 1994 survey. The ANOVA results indicated a positive relationship between
current speed and fish density (Table 7.17). While the relationship showed an increase in density
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with decreasing current speed, less than 5% of the current observations exceeded 20 cm/s, with
mean current speed of 10.0 cm/s and the maximum observed current speed was 39.6 cm/s. Because
of the low number of high current speed observations it is more plausible that the high densities
observed at low current speeds were due to depth; the highest densities were found from 40-60 m
where current speeds were typically the lowest (Figure 7.39). Due to the relatively large size of the
fishes observed at the site, it is probable that the current speeds observed were not great enough to
influence the behavior of the fishes. 

Horizontal Density Distribution: Horizontal density of fishes varied temporally and spatially at the
platform (Table 7.18). Spatially,horizontal fish density varied with side of the platform and distance
from the platform while temporal variation was observed with year and season (Table 7.18). The
interactions of time of day, and distance from the platform, season and time of day and time of day
and distance from the site were also significant (Table 7.18). The spatial relationship of horizontal
density differing with side of the platform reinforced a similar relationship observed in the
significant change in fish density between sides also observed in the vertical density distributions
(Figure 7.38, Table 7.18). With respect to side, the horizontal results were similar to the vertical
density results. Highest densities were found on the north, west, and south sides for both transducer
arrays (Figure 7.37, Table 7.18). 

Table 7.18. RBD ANOVA (block on platform side) results of horizontal relative log fish density
(log(number of fish/m3) with platform side, year, season, time of day, distance from
the platform, and selected interactions at the GI94 petroleum platform.

Source DF SS MS F Prob > F

Model 612 186.43939327 0.30463953 11.84 0.0001

Error 8327 214.25821327 0.02573054

Corrected Total 8939 400.69760654

R-Square C.V. Root MSE LDENSITY Mean

0.465287 175.7350 0.1604074 0.0912780

Variables DF Type III SS Mean Square F Value Pr > F

Side 3 13.25275329 4.41758443 171.69 0.0001

Year 3 17.72176044 5.90725348 229.58 0.0001

Season 3 17.15944638 5.71981546 222.30 0.0001

Diel 3 0.28291537 0.09430512 3.67 0.0118

Distance 9 6.20883438 0.68987049 26.81 0.0001

Season * Diel 9 3.42185811 0.38020646 14.78 0.0001

Diel * Depth 27 2.01761618 0.07472653 2.90 0.0001

Season * Depth 27 9.13703402 0.33840867 13.15 0.0001

Side * Season * Diel * Distance 528 84.63035253 0.16028476 6.23 0.0001
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The close association of fishes with platforms observed at shallower depths was not observed at
GI94 (Figure 7.39). Relative fish density was significantly higher from 0-58 m away from the site
than at all other distances examined (Figure 7.38). Lowest observed densities were at distances
greater than 58 m from the site and beyond 58 m fish densities were similar to those acoustically
measured in the open waters of the northen GOM (Figure 7.38). 
 
Temporally, variation in relative density was found with year and season. Again, the temporal
horizontal density results were similar to the vertical results with significantly higher densities found
in 1997 and 1995 as compared to 1994 and 1996 (Table 7.18, Figure 7.34). With respect to season
highest densities were found in the winter and fall for densities measured with both horizontal and
vertical transducer arrays (Table 7.18, Figure 7.36). The significant interaction terms of distance,
and season, time of day and distance and season and time of day emphasize the variability in the
density of fishes associated with the site. 

Horizontal fish densities were used to measure the near-field area of influence of the platform. The
highest horizontal densities measurements were from 0-18 m, but these densities were not signifi-
cantly higher than those from 18-58 m (Figure 7.38). Despite measurement of high relative densities
from 18 to 58 m at GI94, we estimated the near-field area of influence at 18 m. While the relation-
ship of fish density with distance from the site was difficult to resolve, we feel that a conservative
area of influence of 18 m best reflects a true population size of fishes at the site (Table 7.18, Figure
7.38). Increased water clarity and pelagic species composition at GI94 likely increased distance the
fishes ranged from the site. However, based on the visual data from the ROV, 18 m best reflects the
distance fishes typically ranged from the site based on the visual observation. Beyond 58 m relative
fish densities measured at GI94 decreased dramatically to levels found at other sites (Figure 7.38).

Estimated Number of Fish and Species Composition: Examination of visual survey results
demonstrated interesting trends in species composition with respect to depth, season, and the
dominance of one species over the sample period (Table 7.19). A total of twenty-four species were
detected by the ROV during visual surveys, but one species, blue runner, comprised on average 87%
of all observed fishes (Table 7.19). By grouping blue runners with the next five most abundant
species, horseeye jack, red snapper, mangrove snapper gray triggerfish, and barracuda, over 95%
of the fishes observed at the site were accounted for (Table 7.19). 

Seasonality in the abundance of fishes was detected at GI94 with cobia, red snapper, almaco jack
and amberjack more common in the spring and summer than during cooler periods (Table 7.19).
During fall and winter we found an increase in the abundance of barracuda and blue runner (Table
7.19). Blue runners exhibited the most dramatic seasonality. Few were found during summer
samples when they constituted <30% of the fishes observed, however during fall, winter, and spring
samples, blue runners were the dominant fish observed and composed 71% to 94% of the fishes
found at the site (Table 7.19). While most other species were found at a relatively narrow depth
range, blue runners were found throughout the water column, although they were slightly more
abundant near the surface. Fishes with higher abundance from mid-depth to the bottom included
greater amberjack, red snapper and scamp. Surface-oriented species included bar jack, Bermuda
chub and rainbow runner while species found throughout the water column included almaco jack,
barracuda, gray triggerfish, horseeye jack, jack crevelle, and mangrove snapper.
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Table 7.19. Mean estimated number of fish by species and mean number enumerated and percent species composition

by depth strata at Grand Isle 94 for all research trips from July 1994 to March 1997 from hydroacoustic and
visual point count surveys.

 Species Summer 94 Fall 94 Winter 95 Summer 95 Fall 95 Winter 96 Spring 96 Summer 96 Fall 96 Winter 97 Mean

Almaco Jack 0.1
7.7±1.6

0.2
55.8±7.9

0.1
58.5±5.2

1.4
119.0±16.4

0.5
219.8±35.2

0.2
43.4±3.6

0.0
0.0±0.0

0.6
27.7±8.3

0.2
87.9±14.1

0.1
67.0±4.7

0.2
57.9±3.6

Atlantic
Spadefish

- - 0.0
0.0±0.0

- - 0.5
108.5±8.9

0.1
2.38±0.7

- 0.6
263.8±42.3

- 0.1
29.0±1.8

Greater
Amberjack

4.3
331.7±69.0

5.4
1507.0±214.6

0.1
58.5±5.2

0.7
59.5±8.2

0.8
351.7±56.4

3.0
651.0±53.4

0.7
16.7±5.2

0.6
27.7±8.3

2.4
1055.1±169.1

0.6
402.2±28.2

1.0
289.5±18.1

Bar Jack 0.8
61.7±12.8

0.4
111.6±15.9

0.1
58.5±5.2

2.1
178.5±24.5

- - - - - - 0.1
29.0±1.8

Barracuda 0.6
46.3±9.6

3.9
1088.4±155.0

0.4
234.0±20.7

1.1
93.5±12.9

2.9
1274.9±204.3

0.6
130.2±10.7

0.2
4.8±1.5

1.5
69.4±20.9

4.6
2022.3±324.0

1.0
670.2±47.0

1.0
289.5±18.1

Bermuda
Chub

3.8
293.1±61.0

8.1
2260.5±322

0.1
58.5±5.2

- 1.2
527.6±84.5

0.2
43.4±3.6

0.1
2.4±0.7

1.5
69.4±20.9

- 0.7
469.2±32.9

0.7
202.7±12.6

Bigeye - - 0.0
0.0±0.0

- - - - - - - 0.0
0.0±0.0

Black
Grouper

- - 0.0
0.0±0.0

- - - - - - - 0.0
0.0±0.0

Bluerunner 44.9
3463.2±720.4

27.6
7702.6±1097.0

94.3
55161.5±4879.3

79.5
6757.4±929.1

71.0
3121.3±5001.5

85.0
18446.2±1512.8

94.2
2242.0±697.6

71.9
3324.5±999.5

71.9
31609.0±5064.9

93.0
62334.8±4367.4

87.0
25188.4±1571.2

Cobia 0.1
7.7±1.6

- - - - - 0.0
0.0±0.0

0.2
9.2±2.8

- - 0.0
0.0±0.0

Coney
Grouper

- - - - - - - - - - -

Creolefish 0.1
7.7±1.6

1.7
474.4±67.6

0.0
0.0±0.0

2.1
178.5±24.5

0.1
44.0±7.0

0.0
0.0±0.0

- ` 0.2
87.9±14.1

0.1
67.0±4.7

0.1
29.0±1.8

Gag - - - - - - - - - 0.0
0.0±0.0

0.0
0.0±0.0
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 Species Summer 94 Fall 94 Winter 95 Summer 95 Fall 95 Winter 96 Spring 96 Summer 96 Fall 96 Winter 97 Mean

Gray
Triggerfish

2.2
169.7±35.3

12.0
3349.0±477.0

1.7
994.4±88.0

6.1
518.5±71.3

0.5
219.8±35.2

0.4
86.8±7.1

0.1
2.4±0.7

0.2
9.2±2.8

1.0
439.6±70.4

0.1
67.0±4.7

1.0
289.5±18.1

Horseye
Jack

0.2
15.4±3.2

9.0
2511.7±357.7

- 0.2
17.0±2.3

13.4
5891.0±943.9

2.9
629.3±51.6

3.1
73.8±23.0

7.9
365.3±109.8

11.9
5231.5±838.3

1.4
938.4±65.7

3.0
868.6±54.2

Jack
Crevalle

1.6
123.4±25.7

7.3
2037.3±290.2

- 0.9
76.5±10.5

0.8
351.7±56.4

0.2
43.4±3.6

0.2
4.8±1.5

8.3
383.8±115.4

2.5
1099.1±176.1

0.2
134.1±9.4

0.7
202.7±12.6

Lookdown 4.1
316.2±65.8

- 0.8
468.0±41.4

- 1.1
483.6±77.5

- 0.4
9.5±3.0

2.3
106.3±32.0

- - 0.6
173.7±10.8

Mangrove
Snapper

3.1
239.1±49.7

4.5
1255.9±178.9

0.5
292.5±25.9

1.4
119.0±16.4

2.4
1055.1±169.1

0.3
65.1±5.3

0.2
4.8±1.5

4.4
203.4±61.2

1.7
747.4±119.8

1.3
871.3±61.0

1.1
318.5±19.9

Ocean
Triggerfish

- - - 0.9
76.5±10.5

- - - - - - 0.0
0.0±0.0

Rainbow
Runner

- - 0.0
0.0±0.0

- 0.1
44.0±7.0

0.1
21.7±1.8

- - - - 0.0
0.0±0.0

Red
Snapper

33.2
2560.8±532.7

15.8
4409.5±628.0

1.1
643.5±56.9

3.4
289.0±39.7

4.7
2066.2±331.1

4.9
1063.4±87.2

0.3
7.1±2.2

0.2
9.2±2.8

2.7
1187.0±190.2

1.4
938.4±65.7

3.0
868.6±54.2

Scamp 0.8
61.7±12.8

4.1
1144.2±163.0

0.5
292.5±25.9

0.2
17.0±2.3

0.6
263.8±42.3

1.6
347.2±28.5

0.1
2.4±0.7

0.1
4.6±1.4

0.3
131.9±21.1

0.1
67.0±4.7

0.5
144.8±9.0

Vermillion
Snapper

- - 0.2
117.0±10.3.00

- - - - - - - 0.0
0.0±0.0

Yellowfin
Grouper

- - 0.0
0.0±0.0

- - - - - - - 0.0
0.0±0.0

TOTAL 7713.2±160.4 27908.0±3974.7 58495.8±5174.2 8499.9±1168.7 43962.5±7044.3 21701.4±1779.8 2380.0±740.5 4623.8±225.2 43962.5±7044.3 67026.7±4696.1 28952.2±1806.0
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Figure 7.40. Estimated number of fishes for each quarterly sample period at Green Canyon 18
(GC18) and Grand Isle 94 (GI94) from July 1994 to March 1997 and South
Timbalier (ST54) from August 1995 to February 1997.

Extrapolating the species composition estimates with the acoustic abundance data for each depth
strata provided estimates of individual species abundance throughout the water column (Table 7.19).
The total number of fish at the GI94 ranged from a low of 2,380 (+/- 740, 95% confidence interval,
Table 7.19, Figure 7.40) during the spring 1996 sample period to a high of 67,027 (+/- 4,696, Table
7.19, Figure 7.40) during the winter 1997 period with a mean of 28,952 (+/- 1,806) fishes averaged
over all the sample periods. The seven most abundant species (highest to lowest) were blue runner,
red snapper, horseeye jack, mangrove snapper, greater amberjack, barracuda, and grey triggerfish
(Table 7.19). Blue runner dominated the number of fishes observed at the site with an average of
25,188 (+/- 1,571, 95% confidence interval). Their abundance was highly variable with a low of
2,242 (+/- 698) observed in the spring 1996 sample (Table 7.19) to a high of 62,335 (+/-4,367) from
the winter 1997 sample (Table 7.19). The estimated number of blue runner was also variable with
a five- to six-fold change in abundance observed from the fall of 1994 to spring 1995 (Table 7.19).
Generally, their abundance would peak in fall or winter and then drop during other surveys (Table
7.19).
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The abundance of greater amberjack, horseeye jack, mangrove snapper, and red snapper was
typically highest in fall and winter and lower during spring and summer samples (Table 7.19),
although the second highest number of red snapper observed over the study period was found during
the summer 1994 research trip. Significant changes in the abundance of other individual species
were also noted. Three- to five-fold differences in estimated abundance between sample periods
were common for greater amberjack, horseeye jack, mangrove snapper, and red snapper (Table
7.19). 

Green Canyon 18

Vertical Density Distribution: Densities of fishes at the GC18 production platform (water depth 219
m) were variable over the study period ranging from 0 to over 1.44 fish/m3. A RBD ANOVA with
platform side as a block was used to examine for differences in density due to year, season, time of
day, current vectors, temperature, dissolved oxygen, depth, and selected interactions. Density varied
significantly with platform side, season, depth, north current vector squared, and the interactions of
time of day and depth and season and depth (Table 7.20).

The only significant temporal differences in fish density were detected with season and the
interaction between depth and time of day (Table 7.20). Seasonally, fish densities were significantly
higher in the winter and summer than the fall and spring (Figure 7.35, Table 7.20). Mean densities
in the winter and summer were on average two to five times higher than in the spring and fall
(Figure 7.35). Other differences observed in temporal variables examined (e.g., year and time of
day) were not significant (Figures 3 and 5, Table 7.20). 

Spatially, fish density varied with platform side and depth (Table 7.20). Significantly higher
densities were found on the west side of the platform than at all others, and densities were not
significantly different on the north and south sides (Figure 7.37). Densities on the east side were five
to eight times lower than those on other sides of the platform (Table 7.20, Figure 7.37). The most
dramatic results of the research project was the relationship between fish density and depth at GC18.
A significant and spectacular drop in density with depth was observed at GC18 below 100 m (Table
7.20, Figure 7.41 ). Fish densities from 0-15 m were significantly higher than all other depth strata
and were 4 to 68 times higher than all other depths (Figure 7.41). Densities from 15 to 95 m were
not significantly different but were 3 to 12 times higher than depths from 115 to 210 m (Figure
7.41). From 115 to 210 m fish density was less than 0.002 fish/m3, essentially zero, and lower than
densities in the open waters of the GOM on the continental shelf (Figure 7.41). 

Environmental conditions did little to impact fish density at GC18 based on results from the RBD
ANOVA (Table 7.20). Fish density was significantly affected only by the north current vector
squared, although temperature and dissolved oxygen were close to significant with a probability of
a greater F of 0.0206 and 0.0283, respectively (Table 7.20). There was an inverse relationship
between fish density and north vector squared as fish density decreased slightly as north vector
squared increased. This decrease is likely due to observations from the summer 1995 sample when
relatively high-current speeds with a northerly component were found. The close to significant
relationship between density and temperature is likely correlated to the significant seasonal
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Table 7.20. RBD ANOVA (block on platform side) results of vertical log fish density
(log(number of fish/m3) with platform side, year, season, time of day, depth, current
vectors, temperature, salinity, dissolved oxygen, and selected interactions at the
GC18 petroleum platform.

Source DF SS MS F Prob > F

Model 90 2.0053289 0.0222814 20.93 0.0001

Error 5985 6.3729412 0.0010648

Corrected Total 6075 8.3782700

R-Square C.V. Root MSE LDENSITY Mean

0.476178 252.0003 0.0284 0.0113

Variables DF Type III SS Mean Square F Value Pr > F

Side 3 0.2220276 0.0740092 69.50 0.0001

Year 3 0.0115176 0.0382392 3.61 0.0128

Season 3 0.0352252 0.0117751 11.06 0.0001

Diel 3 0.0030421 0.0010140 1.25 0.2884

Depth 10 0.3454644 0.0354464 33.29 0.0001

Temperature 1 0.0051256 0.0051256 4.81 0.0283

Dissolved oxygen 1 0.0051131 0.0051131 5.37 0.0206

Salinity 1 0.0010461 0.0010461 0.98 0.3216

North vector 1 0.0011174 0.0011174 1.05 0.3057

East vector 1 0.0007499 0.0007499 0.07 0.4014

North squared vector 1 0.0079050 0.0079050  7.42 0.0065

East squared vector 1 0.0005933 0.0005933 0.56 0.4554

North * East 1 0.0035980 0.0035680 3.38 0.0661

Diel * Depth 30 0.1210778 0.0040359 3.79 0.0001

Season * Depth 30 0.3375548 0.0112518 10.57 0.0001

relationship documented earlier (Table 7.20, Figure 7.35) with highest densities found in the winter,
although this relationship is confounded by the low densities at depths where temperatures were
lowest (Figure 7.41). The observation of declining density with low dissolved oxygen levels is
probably due to the low fish densities observed below 95 m where dissolved oxygen levels were
lowest (Table 7.20, Figure 7.41). However, no hypoxic events where detected at GC18.
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Figure 7.41. Mean fish density (number of fish/m3) by depth at Green Canyon 18 from October
1994 to March 1997.

Horizontal Density Distribution: Horizontal density of fishes varied temporally and spatially at the
platform (Table 7.21). Spatially, horizontal fish density varied with side of the platform and distance
from the platform. Temporal variation was observed with season, time of day, and the interactions
of time of day and distance from the platform (Table 7.21). The differences in fish density with side
of the platform observed with the horizontally-oriented transducers reinforces the observed variation
in fish density with platform side from the vertically oriented arrays (Figure 7.37, Table 7.21). The
close spatial association of fishes with platforms at sites on the continental shelf (e.g., ST54) was
more evident at GC18 than GI94 (Figure 7.38). Fish density was significantly higher from 2-10 m
away from the site than at all other distances examined (Figure 7.38). Densities from 10-42 m were
not significantly different from each other, and lowest observed densities were from 50-82 m from
the site (Figure 7.38). 

Temporally, the variation in horizontal fish density found with respect to season is similar to the
variation in fish density with season observed from the vertical density arrays (Table 7.21). Diel
variation was observed in the horizontal density of fish with highest densities found at noon (Table
7.21). This was the only case during this research project where diel variation was observed, and
because it was not observed with the vertical transducer array, it is presumably due to off-site
behavior of fishes in the upper water column since the maximum deployment depth of the horizontal
transducers was 13 m and would not reflect behavior of fishes throughout the water column. 
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Table 7.21. RBD ANOVA (block on platform side) results of horizontal log relative fish density
(log(number of fish/m3) with platform side, year, season, time of day, distance from
the platform, and selected interactions at the GC18 petroleum platform.

Source DF SS MS F Prob > F

Model 1159 84.788167 0.073156 5.68 0.0001

Error 4870 62.705195 0.012876

Corrected Total 6029 147.493362

R-Square C.V. Root MSE LDENSITY Mean

0.574861 180.3045 0.1135 0.0629

Variables DF Type III SS Mean Square F Value Pr > F

Side 3 21.033569 7.011190 544.52 0.0001

Year 3 0.080941 0.026980 2.10 0.0986

Season 3 3.245408 1.081803 84.02 0.0001

Diel 3 1.460569 0.486856 37.81 0.0001

Depth 9 0.166086 0.018454 1.43 0.1676

Diel * Depth 27 1.195570 0.044280 3.44 0.0001

Year * Season 1 0.35030 0.035030 2.72 0.0991

Side * Year * Season * 
Diel * Depth

1110 50.150390 0.045181 3.51 0.0001

Horizontal densities were used to measure the near-field area of influence of the platform. Densities
were significantly higher within 10 m of the site, and while densities from 10-42 m were high, we
feel that a conservative area of influence of 10 m best reflects a true population size of the fishes at
the site (Table 7.21, Figure 7.38). Beyond 50 m the relative fish densities measured at GC18
decreased dramatically to levels found in the open shelf waters of the GOM (Figure 7.38).

Estimated Number of Fish and Species Composition: Examination of visual survey results revealed
a fairly stable species assemblage at the site with interesting and consistent trends in species
composition with respect to depth, season, and the dominance of a few species over the sample
period (Table 7.22). A total of eighteen species were detected by the ROV during visual surveys but
six species including creolefish, blue runner, Bermuda chub, almaco jack, amberjack, and barracuda
consistently comprised over 90% of the fishes enumerated at the site (Table 7.22). Other species
observed included bar jack, black jack, blackfin tuna, grey triggerfish, horseeye jack, lesser
amberjack, marbled grouper, ocean triggerfish, rainbow runner, scamp and yellowtail snapper. Due
to their scarcity, it is difficult to discern any seasonal patterns (Table 7.22). 

Creolefish was the most common species enumerated at GC18 ranging from a maximum of 67%
of the fishes detected in the summer of 1995 (Table 7.22) to a minimum of 40% in the winter of
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by depth strata at Green Canyon 18 for all research trips from August 1994 to March 1997 from
hydroacoustic and visual pointcount surveys.

 Species Summer 94 Fall 94 Winter 95 Summer 95 Fall 95 Winter 96 Spring 96 Summer 96 Fall 96 Winter 97 Mean

Almaco Jack 18.1
476.5±51.4

2.8
506.0±201

5.7
1069.7±222.9

3.8
308.7±226.1

5.0
1618.6±510.9

3.5
2383.3±691

6.2
2913.3±1321.4

2.9
119.7±58.2

8.3
275.6±63.8

6.0
6130.4±1424.4

5.7
2260.6±315.1

Bar Jack 5.5
111.9±77.6

4.8
249.4±106.8

6.4
809.2±138.4

0.9
176.6±23.1

2.0
163.3±33.7

1.6
146.4±25.3

0.2
3.5±1

0.5
60±10

0.3
75. ±1.1

0.3
47.5±7.8

2.0
231.1±17.8

Barracuda 2.9
676.1±86.5

2.0
707.9±218

6.1
554.9±112.1

1.2
334.3±37.5

2.4
176.1±38.9

2.8
252.8±44.3

3.3
102.6±36

1.6
397.3±67.5

6.8
699.9±186.1

4.8
652.4±133.3

3.2
403.0±29.0

Bermuda Chub 4.1
2165.5±206.9

2.8
2193.8±460.8

8.7
1335.3±202.4

4.9
2598±260.6

10.1
1104.4±172.6

11.4
955.2±178.7

6.0
182.3±60.9

4.3
1143.4±187.7

7.4
811±132.5

3.6
574.7±94.2

6.4
1156.3±67.1

Black Jack 0.1
-

2.7
135.8±59.7

0.4
42.5±9.5

0.3
7.4±3.4

0.4
32.2±7

- 0.2
34.7±12.9

0.3
8.2±2.5

2.4
121.1±40.6

0.3
25.7±8.5

0.4
37.4±4.5

Blackfin Tuna 8.6
-

- 5.1
705.1±182.2

- - - - - - - 1.2
196.4±26.5

Bluerunner 16.5
8981.9±858

- 4.7
193.7±59.3

15.4
3342.9±387.8

14.3
1311.7±244.2

22.0
1971.3±349.4

33.0
1056.6±388.4

37.3
4289±926.9

16.9
1850.6±302.3

30.9
3794.6±732.8

20.5
2462.3±182.0

Creolefish 31.7
2314.4±308.4

63.9
11424.3±3030.1

39.9
3715.3±885.3

67.3
5464.5±894.9

59.4
4559.9±1059.5

52.1
8034.1±1253.8

43.0
2608.8±965.6

44.8
6065.6±1202.4

45.4
4067.7±1080.2

44.5
6221.9±1319.8

50.2
4924.2±445.4

Gray Triggerfish 0.7
60.7±7.3

1.7
86.5±37.6

1.1
211.9±44.6

0.5
7.7±3.5

1.5
103.9±20

0.6
138.2±33.8

0.1
62.1±34.7

0.6
17.8±5.5

0.3
7.5±1.1

0.6
428.3±107.3

0.8
152±17

Greater Amberjack 7.6
1.4±0.6

12.2
471.6±248.4

7.5
2342.5±618

1.9
100.2±69.9

2.1
295.2±103.3

1.1
571.5±155.5

2.1
1020.9±513.5

4.2
483.3±330.4

6.2
368.2±133.7

2.6
2367.7±508.2

4.0
1052.1±145.2

Horseye Jack 4.0
145.4±66.2

4.6
625.3±186.1

8.6
702.7±139.3

2.9
780.2±84.8

1.6
83.2±19.1

1.1
92.6±16.7

5.4
188.9±70.8

2.3
350.7±78

2.1
253±67.2

5.7
798.4±155.8

3.7
392.5±31.3
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Table 7.22 (continued)

 Species Summer 94 Fall 94 Winter 95 Summer 95 Fall 95 Winter 96 Spring 96 Summer 96 Fall 96 Winter 97 Mean

Lesser Amberjack - - - - 0.3
21.8±3.3

- - - - - 0.1
8.6±0.9

Marbled Grouper - - - - - - - 0.0
1.2±0.4

- - 0.0
1.7±0.2

Ocean Triggerfish - - - - - 0.2
23.1±3.8

- 0.1
19.6±3.2

- - 0.1
12.2±0.7

Rainbow Runner 0.3
7.5±5.2

- 0.2
28.9±4.4

0.4
10.2±4.7

0.2
17.7±27.8

3.1
153.2±42.7

0.2
3.5±1

0.2
70.3±10.4

0.6
64.7±10.6

0.2
45.0±9.7

0.4
24.2±1.3

Scamp 0.1
-

1.4
122.4±30.8

3.4
494.2±123.5

0.4
41.2±31

0.7
705.5±38.3

0.5
231.3±61.1

0.4
143.9±63.4

0.7
19.1±5.9

3.0
136.1±42.9

0.5
26.4±4.3

0.9
185.9±26.8

Unidentified Grouper - - - - - -
43.9±10

- - -
36.7±16.6

-
654.1±149

0.0
78.3±13.1

Yellowtail Snapper - 1.1
421.1±104.5

2.0
182.7±35.5

- - - - - - - 0.5
40.4±1.6

TOTAL 14941.3±1668.1 16944.1±4683.8 12388.6±2777.4 13171.9±2027.3 10193.5±2278.6 14996±2866.1 8321.1±3469.6 13045.2±2889 8699.5±2078.7 21767.1±4655.1 13855.5±1324.1



448

1995 (Table 7.22); on average, they made up 50% of the fishes observed (Table 7.22). With respect
to depth, creolefish were concentrated in the mid- to upper-water column with approximately 90%
of the individuals found above 60 m (Table 7.22). Seasonally, no consistent trends in creolefish
abundance were found although their numbers tended to increase during fall and winter surveys
(Table 7.22). The next most common species detected was usually blue runner (Table 7.22) making
up an average of 20.5% of the fishes (Table 7.22). However, during the fall 1994, sample blue
runners were absent(Table 7.22) and during the winter 1995 survey, they made up less than 5% of
the fishes observed (Table 7.22). After creolefish and blue runner, no other species observed made
up more than 10% of the fishes at GC18. The next most commonly observed species were Bermuda
chub, almaco jack, greater amberjack, and barracuda (Table 7.22). While Bermuda chub typically
were the third most abundant species observed, there was a large amount of fluctuation in the fourth
through sixth positions (Table 7.22). Within these species it was difficult to discern any seasonal
patterns with the exception of barracuda, as their presence increased during cooler periods (Table
7.22). With respect to depth, barracuda and Bermuda chub were predominately found above 40 m
(Table 7.22). Almaco jack were found from the surface to 160 m but approximately 90% of these
fishes were found from 40 to 100 m (Table 7.22). Greater amberjack were almost exclusively found
from 40 to 100 m with few observed outside of this depth range (Table 7.22).

The ROV survey results below 100 m supported the acoustic findings with almost a complete lack
of fishes (a total of 38 fishes of 4 species) were observed in eleven surveys below 100 m. Almaco
jacks showed the widest depth range of any of the fishes observed at GC18, as they were common
from the surface to mid-depth and one of the few fishes found below 100 m. Typically, most species
exhibited a specific depth range and were less frequently found outside that range. Surface oriented
species included bar jack, barracuda, Bermuda chub, blue runner and horseeye jack. Species
common from 20 to 60 m included black jack, blackfin tuna, creolefish, grey triggerfish, rainbow
runner and yellowtail snapper. Species commonly found from 60 to 100 m were almaco jack, greater
amberjack and scamp, although, as previously mentioned, almaco jack had the widest depth range
of any of the observed species.
 
Extrapolating the acoustic abundance data using the species composition estimates for each depth
strata provided estimates of individual species abundance throughout the water column (Table 7.22).
The total number of fish at the site ranged from a low of 8,321 (+/- 3,470, 95% CI, Table 7.22)
during the spring 1996 sample to a high of 21,767 (+/- 4,655, Table 7.22) during the winter 1997
sample. Averaged over all sample periods 13,855 (+/- 1,206) fishes were found at GC18 and the six
most abundant species (highest to lowest) were creolefish, blue runner, Bermuda chub, almaco jack,
greater amberjack, and barracuda (Table 7.22). Creolefish dominated the observed fishes at the site.
An average of 4,924 (+/- 445) were estimated at GC18 over the study period, which was twice as
abundant as any other species on average (Table 7.22). The next most abundant species was blue
runner (Table 7.22). As with the other sites, the abundance of blue runner was variable over the
study period ranging from a high of 8,962 in the summer 1994 (Table 7.22) to a low of 0 during the
Fall 1994 survey (Table 7.22). After the initial variability during the summer and fall 1994 surveys,
blue runner abundance appeared to level off and the earlier heterogeneity decreased (Table 7.22).

Examination of the abundance of other dominant species over the study period showed large
changes in the abundance of amberjack, almaco jack and Bermuda chub between sample periods
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(Table 7.22). The only dominant species that did not undergo extreme changes in abundance over
time was barracuda; however a two-fold decrease in abundance was observed from spring 1996 to
summer 1996 samples (Table 7.22). With respect to a seasonal pattern in abundance, highest
numbers of amberjack and almaco jack were consistently found in the fall and winter surveys while
Bermuda chub estimates were highest during spring and summer surveys (Table 7.22). Barracuda
estimates, as pointed out earlier, were much more stable than the other dominant species, but their
abundance was typically higher in the cooler sampling periods (Table 7.22). 

South Timbalier 54

Target Strength Distribution: The target strengths of the fishes at the ST54 production platform were
variable over the study period and a RBD ANOVA with platform side as a block was used to test
for differences in target strength due to year, season, time of day, current vectors, temperature,
dissolved oxygen, depth, and selected interactions. Target strength varied significantly with season,
time of day, depth, platform side, temperature, east current vector, north current vector, north
squared current vector, east squared current vector, and the interaction terms (Table 7.23). 
 
Temporal differences in target strength were detected between season, time of day, and the
interaction of season and time of day (Table 7.23). Seasonally, target strengths were significantly
larger in summer, decreased in spring and winter and lowest in the fall (Table 7.24). Two groupings
of target strength with time of day were found with largest target strengths in the dawn and noon
samples and significantly smaller target strengths in dusk and midnight samples (Table 7.25). No
overall trend of target strength with season and time of day could be detected over the entire study
period. 

Spatially, target strength varied with platform side, depth, and the interactions of depth and time of
day and depth and season. Target strengths were significantly different on all sides of the platform
(Table 7.26). Significantly larger target strengths were found on the south side of the platform and
smallest on the west (Table 7.26). With respect to depth, target strengths were larger near the surface
and above the substrate than at mid-depth and immediately adjacent to the bottom (Table 7.27).
While the interactions of depth and time of day and season and depth were significant (Table 7.23),
no consistent trends were observed in these interactions. 

Environmental variables that significantly affected target strength included temperature, northeast
current vector, north squared, and east squared current vectors (Table 7.23). The relationship
between temperature and target strength showed a slight increase in target strengths as temperature
increased. Target strength also increased with north and east current vector and north and east
squared vectors suggesting that at high current speeds, larger fishes were more common. 

Grand Isle 94

Target Strength Distribution: Target strengths of fishes at the GI94 production platform were
variable over the study period and a RBD ANOVA with platform side as a block was used to
examine differences in target strength due to year, season, time of day, current vectors, temperature,
dissolved oxygen, depth, and selected interactions. Target strength varied significantly with year,
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Table 7.23. RBD ANOVA (block on platform side) results of vertical target strength (dB) with
platform side, year, season, time of day, depth, current vectors, temperature, salinity,
dissolved oxygen, and selected interactions at the ST54 petroleum platform.

Source DF SS MS F Prob > F

Model 206 56386.345015 273.720121 34.40 0.0001

Error 1198 9532.903189 7.957348

Corrected Total 1404 65919.248205

R-Square C.V. Root MSE MEANTS Mean

0.855385 -7.065331 2.8208772 -39.925621

Variables DF Type III SS Mean Square F Value Pr > F

Side 3 6671.413209 2223.804403 279.47 0.0001

Year 1 40.001821 40.001821 5.03 0.0251

Season 2 603.144775 301.572388 37.90 0.0001

Diel 3 367.667924 122.555975 15.40 0.0001

Depth 4 2717.156715 679.289179 85.37 0.0001

Temperature 1 136.785653 136.785653 17.19 0.0001

Dissolved oxygen 1 14.260933 14.260933 1.79 0.1809

Salinity 1 26.135930 26.135930 3.28 0.0702

North vector 1 386.735952 386.735952 48.60 0.0001

East vector 1 70.694892 70.694892 8.88 0.0029

North squared vector 1 203.938224 203.938224 25.63 0.0001

East squared vector 1 352.882525 352.882525 44.35 0.0001

North * East 1 14.301287 14.301287 1.80 0.1803

Season * Diel 6 841.199710 140.199952 17.62 0.0001

Diel * Depth 12 1487.257674 123.938140 15.58 0.0001

Season * Depth 7 2822.349465 403.192781 50.67 0.0001
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Table 7.24. Mean target strengths (dB), with Tukey’s studentized means test results by season
at South Timbalier 54.

Season Mean Target Strength Tukey’s Means Test

Summer -36.9 A

Spring -39.5 B

Winter -44.8 C

Fall -46.4 D

Table 7.25. Mean target strengths (dB) with Tukey’s studentized means test results by time of
day at South Timbalier 54.

Time of Day Mean Target Strength Tukey’s Means Test

Dawn -39.9 A

Noon -40.1 A

Midnight -42.1 B

Dusk -42.2 B

Table 7.26. Mean target strengths (dB) with Tukey’s studentized means test result by platform
side at South Timbalier 54.

Platform Side Mean Target Strength Tukey’s Means Test

South -38.5 A

East -40.9 B

North -41.6 C

West -43.2 D
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Table 7.27. Mean target strength (dB) with Tukey’s studentized means test by water depth (m)
at South Timbalier 54.

Depth (m) Mean Target Strength Tukey’s Means Test

5-10 -39.7 A

15-20 -39.8 A

0-5 -40.2 A

10-15 -42.3 B

20-22 -46.2 C

season, time of day, depth, platform side, north current vector, east squared current vector, north
current vector squared, north*east interaction, dissolved oxygen, temperature, season*time of day,
time of day*depth, and season*depth (Table 7.28).

Temporal differences in target strength were detected between year, season, time of day, the
interactions of season*time of day, time of day*depth, and season*depth (Table 7.28). Target
strength was significantly different between three of the four years examined with significantly
larger target strengths found in 1995 than all other years (Table 7.29). Target strengths from 1994
and 1996 were not significantly different from one another and the smallest target strengths were
found in 1997 (Table 7.29). Target strengths were also were significantly different with season
(Table 7.30). Largest target strengths were found in the winter, followed by the spring and summer
and smallest target strengths were found in fall (Table 7.30). While target strengths were
significantly different with time of day, the contrasts were much smaller than in any other temporal
variable examined (Table 7.31). Largest target strengths were found at midnight and dusk; dusk and
noon samples were not significantly different from each other, and noon and dawn samples were not
significantly different (Table 7.31). 

Spatially, fish density varied with platform side and depth (Table 7.28). Target strength varied
significantly on each side of the platform (Table 7.32). Largest target strengths were found on the
south side, followed by the west and north with smallest target strengths on the east side (Table
7.32). Target strength varied significantly with depth and the largest target strengths were found
from 40 to 60 m and from 0 to 5 m (Table 7.33). Intermediate target strengths were detected in the
middle of the water column from 5 to 35 m, while smallest target strengths were found from 15 to
25 m (Table 7.33). 

Environmental conditions also impacted target strengths based on results from the RBD ANOVA
(Table 7.28). Target strengths were significantly affected by temperature, dissolved oxygen, north
current vector, north squared, and east squared current vector (Table 7.28). Target strengths
decreased slightly with temperature indicating larger fishes were found during fall and winter.
Increases in dissolved oxygen, slightly increased target strengths. Target strengths increased with
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Table 7.28. RBD ANOVA (block on platform side) results of vertical target strength (dB) with
platform side, year, season, time of day, depth, current vectors, temperature, salinity,
dissolved oxygen, and selected interactions at the GI94 petroleum platform.

Source DF SS MS F Prob > F
Model 670 156624.55 233.77 19.54 0.0001

Error 6954 83185.95 11.96

Corrected Total 7624 239810.49

R-Square C.V. Root MSE MEANTS Mean
0.653118 -7.857822 3.4587 -37.015

Variables DF Type III SS Mean Square F Value Pr > F
Side 3 7030.663 2343.554 195.91 0.0001

Year 3 15542.064 5180.688 433.08 0.0001

Season 3 24760.063 8253.354 689.95 0.0001

Diel 3 385.026 128.342 10.73 0.0001

Depth 11 5357.266 487.024 40.71 0.0001

Temperature 1 6116.911 6116.911 511.35 0.0001

Dissolved oxygen 1 2419.286 2419.286 202.24 0.0001

Salinity 1 49.542 49.542 4.14 0.0419

North vector 1 377.012 377.012 31.52 0.0001

East vector 1 7.174 7.174 0.60 0.4387

North squared vector 1 491.833 491.833 41.12 0.0001

East squared vector 1 959.615 959.615 80.22 0.0001

North * East 1 453.694 453.694 37.93 0.0001

Season * Diel 9 801.514 89.057 7.44 0.0001

Diel * Depth 33 2909.926 88.180 7.37 0.0001

Season * Depth 31 6949.762 224.186 18.74 0.0001

Table 7.29. Mean target strength (dB) with Tukey’s studentized means test by year at Grand
Isle 94.

Year Mean Target Strength Tukey’s Means Test

1995 -34.7 A

1994 -36.4 B

1996 -36.9 B

1997 -39.4 C
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Table 7.30. Mean target strength (dB) with Tukey’s studentized means test by season at Grand
Isle 94.

Season Mean Target Strength Tukey’s Means Test

Winter -32.4 A

Spring -34.7 B

Summer -36.5 C

Fall -38.6 D

Table 7.31. Mean target strength (dB) with Tukey’s studentized means test by time of day at
Grand Isle 94.

Time of Day Mean Target Strength Tukey’s Means Test

Midnight -35.7 A

Dusk -36.0 B

Noon -36.1 B

Dawn -36.3 B

Table 7.32. Mean target strength (dB) with Tukey’s studentized means test by platform side at
Grand Isle 94.

Platform Side Mean Target Strength Tukey’s Means Test

South -34.3 A

West -35.3 B

North -36.7 C

East -37.6 D
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Table 7.33. Mean target strength (dB) with Tukey’s studentized means test by water depth (m)
at Grand Isle 94.

Depth (m) Mean Target Strength Tukey’s Means Test

50-55 -34.1 A

40-45 -34.6 A B

55-60 -34.9 B

0-5 -35.0 B

45-50 -35.2 B

5-10 -35.3 B C

10-15 -36.0 C D

35-40 -36.3 D E

30-35 -36.9 E F

25-30 -37.2 F

15-20 -38.0 G

20-25 -38.4 G

the north current vector but decreased with north and east squared current vectors. These results
show an increase in fish size with current speed; however, at excessive current speeds when currents
over 40 cm/s were common, it is likely that fish size increased along with density.

Green Canyon 18

Target Strength Distribution: Target strength of fishes at the GC18 production platform varied over
the study period and a RBD ANOVA with platform side as a block was used to examine for
differences in target strength due to year, season, time of day, current vectors, temperature, dissolved
oxygen, depth, and selected interactions. Target strength was significantly different with platform
side, time of day, depth, north current vector, north current vector squared, and the interaction of
time of day and depth (Table 7.34). 

Temporal differences in target strength at GC18 were found with time of day and the interaction of
time of day and depth (Table 7.34). Largest target strengths occurred at dawn, target strengths at
dusk and noon were not significantly different, and smallest target strengths were found at midnight
(Table 7.35). While the differences in target strengths were significant with respect to time of day
the difference in dB was 1.5 dB or approximately 3.5 cm based on estimated fish lengths (Love
1971). With interaction of time of day and depth, no consistent trends were found except that the
largest target strengths were found near the surface at all times. 

Spatially, target strength varied with platform side and depth (Table 7.36). Significantly larger target
strengths were found on the south side of the platform, with the west side second and the east and
north sides smallest and not significantly different from each other (Table 7.36). The target strength
differences between largest and smallest platform side at GC18 was the greatest observed at any of
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Table 7.34. RBD ANOVA (block on platform side) results of vertical target strength (dB) with
platform side, year, season, time of day, depth, current vectors, temperature, salinity,
dissolved oxygen, and selected interactions at the GC18 petroleum platform.

Source DF SS MS F Prob > F

Model 314 28349.978141 90.286555 12.56 0.0001

Error 3050 21933.357355 7.191265

Corrected Total 3364 50283.335496

R-Square C.V. Root MSE MEANTS Mean

0.563805 -5.393938 2.6816534 -35.716060

Variables DF Type III SS Mean Square F Value Pr > F

Side 3 7498.586156 2499.528719 347.58 0.0001

Year 3 13.604398 4.534799 0.63 0.5952

Season 3 46.340784 15.446928 2.15 0.0921

Diel 3 1059.419025 353.139675 49.11 0.0001

Depth 4 5300.963064 1325.240766 184.28 0.0001

Temperature 1 0.105401 0.105401 0.01 0.9036

Dissolved oxygen 1 0.000581 0.000581 0.00 0.9928

Salinity 1 0.464315 0.464315 0.06 0.7994

North vector 1 69.697543 69.697543 9.69 0.0019

East vector 1 14.455526 14.455526 2.01 0.1564

North squared vector 1 45.138318 45.138318 6.28 0.0123

East squared vector 1 0.069053 0.069053 0.01 0.9219

North * East 1 2.222840 2.222840 0.31 0.5783

Season * Diel 9 20.728956 2.303217 0.32 0.9687

Diel * Depth 12 531.820136 44.318345 6.16 0.0001

Season * Depth 12 92.638315 7.719860 1.07 0.3781

Table 7.35. Mean target strength (dB) with Tukey’s studentized means test by time of day at
Green Canyon 18.

Time of Day Mean Target Strength Tukey’s Means Test

Dawn -37.0 A

Dusk -37.5 B

Noon -37.8 B

Midnight -38.5 C
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Table 7.36. Mean target strength (dB) with Tukey’s studentized means test by platform side at
Green Canyon 18.

Platform Side Mean Target Strength Tukey’s Means Test

South -35.5 A

West -37.2 B

East -39.2 C

North -39.4 C

the sites and was 4 dB or approximately 12 cm based on estimated fish lengths (Love 1971). Target
strengths were significantly different at all depths examined, and the largest target strengths were
found near the surface (Table 7.37). No target strength data were found below 95 m, in agreement
with the low or zero estimated densities from the same region.

Table 7.37. Mean target strength (dB) with Tukey’s studentized means test by water depth (m)
at Green Canyon 18.

Depth
(m)

Mean Target Strength
Tukey’s Means Test

0-15 -35.5 A

55-75 -37.0 B

15-35 -37.7 C

75-95 -38.3 D

35-55 -39.9 E

Target strengths increased with the north current vector and north squared current vectors. These
results show an increase in fish size with current speed; however, currents speeds rarely exceeded
40 cm/s, and it is unlikely that currents of this scale would alter the size distribution of fishes. 

DISCUSSION

This study demonstrated the utility of merging hydroacoustics and visual survey techniques to study
the fish assemblages at petroleum platforms. The combination of these techniques enabled us to
measure the area of influence of these defacto artificial reefs, estimate abundance, size distribution
and species composition throughout the water column over extended time periods.
 
Our results demonstrate the variability in the abundance, size distribution, and species composition
of fishes associated with petroleum platforms. Our results were similar to earlier studies as
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variability in the abundance of fishes is typical at both natural and artificial reefs (Gallaway 1980,
De Martini et al. 1981, Gallaway et al. 1982, Putt 1982, Sale et al. 1984, Chang 1985, Shinn and
Wicklund 1989, Bohnsak et al. 1991, Doherty 1991, Sale 1991, Bull and Kendall 1994, Stanley and
Wilson 1996, 1997, 2000). The variability in density and the size distribution of fishes at petroleum
platforms in this project was linked to temporal, spatial, and environmental variables. 

Spatial variability was consistently observed at all study sites. Fish density and size distribution of
fishes varied significantly with depth, platform side, and distance from the platform at ST54, GI94
and GC18. These results were similar to results from our past research (Stanley and Wilson 1995,
1996, 1997, 2000), findings by Morgan (1996), Gerlotto (1989) and Valdermarsen (1979). During
mobile acoustic surveys of platforms sited as artificial reefs (Morgan 1996) and production
platforms near Cameroon (Gerlotto et al. 1989), densities within 50 m of the sites were three to 10
times higher than in nearby open water. The results of this study showed that the highest densities
of fishes were also observed within 50 m of all study sites; however, differences in the rate of
decline with distance were found between sites of different water depths. At the shallowest site,
ST54, the decline in fish density with distance was precipitous; at distances greater than 18 m, fish
densities were similar to that of the open waters of the northern GOM. Results from this study at
ST54 are similar to those of our earlier work at a site of similar water depth but geographically
separated by over 300 km (Stanley and Wilson 1995, 1996, 1997, 2000). At the deeper sites a drop
in fish density with distance from the site existed; however, fish density was higher to greater
distances from the platform. A decline in fish density with distance did exist at both GI94 and GC18
as after a distance of approximately 50 m density approached those found in the open waters of the
GOM.

The differences in the relationship of fish density with distance from site to site are likely due to the
change in species composition and water clarity between shallow and deeper sites. At deepwater
sites, the water clarity was much greater, allowing visually-oriented species the capacity to range
farther away from the site while maintaining visual contact. Also, carangids were one of the
dominant groups of fishes observed at the deeper sites. While these fishes associate with reefs, they
are pelagic animals and thus much more likely to range farther away from a site. Despite these
complications, hydroacoustics again illustrated its effectiveness in defining “area of influence” of
the platform defined as the effective size of the artificial reef to the fish assemblage. As we defined
it, the area of influence extended 10 m at GC18 and 18 m at GI94 and ST54 as fish densities within
these distances were significantly higher than densities at greater distances. While these figures may
lead to a conservative estimates of total abundance we feel that they more accurately reflect the true
abundance of fishes at the sites. 

The spatial variation observed with target strength and platform side revealed that target strengths
were greatest on the south side of each of the study sites. Otherwise no uniformity was detected with
target strength and platform side. Largest target strengths on the south side were also consistent with
our past research (Stanley and Wilson 1997); however, we are at a loss to explain the rationale for
larger fishes on one side of the platform. In an attempt to decipher the variation in fish density and
target strength with platform side, current speed and direction data were modeled with these
variables. While significant relationships were detected between density, target strength and current
vectors, they did little to clarify the relationships. With respect to target strength, there was a
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positive relationship at all sites with the north current vector. This relationship suggests that as
current speed from the north increased than target strength would increase. However, based on our
findings that the south side of the platform had significantly larger targets, one would expect a
negative relationship between target strength and north current vectors, indicating that larger targets
were found with southerly oriented currents. A more likely explanation of the larger target strengths
on the south side of the platform may be due to platform design and their influence on fish behavior.
That the most complex construction of structures is found at the north end, the well bay area,
suggests that this area may be a refuge for smaller fishes and explains the smaller target strengths
found on these sides. Past research has demonstrated a relationship between hole size and/or reef
complexity with fish size (Shulman 1984, Hixon and Beets 1989) and since the construction of
platforms on the south end is open with little shelter, larger fishes appear to be more common. 

The last spatial variable examined, and one of the primary questions to be addressed by the research,
was the effect of depth on the density and size distribution of fishes. Similar results with respect to
density and water depth were found for the two sites on the continental shelf, ST54 and GI94.
Highest densities were found adjacent to the surface and the bottom. These results were similar to
those of our earlier research (Stanley and Wilson 1995, 1996, 1997, 2000) and those of Chang
(1985), Shinn and Wicklund (1989) and Rooker et al. (1997). The most dramatic result of the project
was the change in density with depth at the site on the continental slope, GC18. A significant and
striking decrease in fish density with depth was found below 100 m, where only very low fish
densities were detected. Previous research supports these findings as species richness in the Pacific
was negatively correlated with depth, especially in tropical latitudes (Stevens 1996) and bottom
trawl data from the shelf break in the GOM (water depth > 110 m) documented the presence of 69
species; however, low abundances were found and few reef dependent species were captured
(Chittenden and Moore 1977). The concentration of fishes at GC18 near the surface is reflected in
the fact that 88% of the fishes were found in the upper 60 m of the water column. While near-surface
fish densities at GC18 were significantly higher than those below 60 m, the near surface densities
were only one-half to two-thirds of values found at sites on the continental shelf. The decrease is
likely due to the location of GC18 and its distance from the highly productive waters of the
Mississippi River. Both ST54 and GI94 are regularly influenced by the highly productive waters
from the Mississippi River as reflected in the lower surface salinities observed at these sites. The
high salinities observed at GC18 varied little from surface to the bottom, indicative of low-
productivity oceanic waters, and the oligotrophic conditions appear to be reflected in lower fish
densities even near the surface. 

Water depth also influenced the size distribution of fishes represented by low mean target strengths
at the shallowest site (ST54) and largest at the deepest site (GC18). Target strength also varied with
depth at each site. Significantly larger target strengths were found near the surface and then
generally decreased significantly with depth at each site. These results are different than our earlier
research where target strength was shown not to be significantly different with depth (Stanley and
Wilson 1996, 1997). The variation in size distribution with depth is likely due to the change in
species composition with depth detected at each site. 

The environmental variables influenced the density and target strength of fishes at the sites
examined but not to the extent of the spatial and temporal factors. Environmental variables,
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including temperature, dissolved oxygen, current speed and direction, had their greatest impact on
density and target strength at ST54 and least influence at GC18. The large impact at ST54 may be
due to the large variation in environmental variables observed at the site. Temperatures varied by
over 10 oC from summer to winter, and while a positive relationship exited between temperature and
density, the highest observed densities were found during cooler periods suggesting a bell shaped
relationship where an optima is reached at a middle value with lower density values at the extremes.
A similar relationship between temperature and density existed at GI94. Where a significant
relationship existed between temperature and target strength (ST54 and GI94), divergent results
were found. At ST54, a positive relationship existed between temperature and target strength. This
relationship may be due to the presence of larger migratory species during the summer, including
cobia and tarpon. At GI94, a negative relationship existed between target strength and temperature,
most likely because of the large influx of blue runner, a small carangid, during winter. 

Dissolved oxygen had a significant effect on density at ST54 and GI94 and target strength on GI94.
Due to the location of ST54, it is typically impacted by the hypoxic events common during the
warmer months off Louisiana coast (Rabalais et al. 1985). During sampling trips in early June and
late July of 1996, hypoxia was found at ST54. During June 1996, dissolved oxygen levels were less
than 1 ppm from 20 to 22 m, and in July the hypoxic zone was substantially larger as dissolved
oxygen levels were less than 0.5 ppm from 15 to 22 m. Not surprisingly, fish densities were zero in
these areas and an overall positive relationship existed between dissolved oxygen and density at
ST54. This relationship was reinforced during the winter when high dissolved oxygen levels were
present and densities were highest. An interesting observation during the hypoxic events at ST54
were the elevated fish densities found above the hypoxic layers. When overall fish abundance was
compared between hypoxic and oxic summer sample periods, no significant difference in abundance
was detected. This result suggests that a vertical compression of the fishes into the oxygenated water
column occurred with little or no migration away from the site. Dissolved oxygen also significantly
affected fish density and target strength at GI94. While hypoxia was not observed at GI94 a positive
relationship was found between dissolved oxygen and density. This observation may be due to the
highest densities observed in the winter when dissolved oxygen levels were highest. 

The relationships between current speed and direction with density and target strength were not
consistent and varied with site. At ST54, a positive correlation was found with current speed and
density while at GI94 and GC18, negative relationships were observed. Past research has found that
highest fish densities were up current of petroleum platforms (Continental Shelf Associates 1982,
Putt 1982), while Chang (1985) and Lindquest and Pietrafesea (1989) observed that fishes oriented
down current of artificial reefs. Our earlier research (Stanley and Wilson 1996, 1997) did not
identify a consistent relationship of fishes orienting up or down current of a petroleum platform and
it would appear that results from this project support the conclusion that no consistent relationship
existed between fish orientation and platform side. Since median current speeds ranged from 8 to
19 cm/s at all the sites, observed current speeds were not strong enough to influence the behavior
of nektonic fishes with respect up or down current aggregations (Baxter 1969). 

The temporal variation of density and target strength of fishes demonstrated the lack of consistent
response to these variables. The longest temporal scale variable examined was between years and
was only found to be significant at GI94 for both density and target strength. Highest densities were
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found in 1997 (although only one sampling trip occurred in 1997) and largest target strengths in
1995 at GI94. Seasonal differences in density and target strength were observed at all sites where
highest fish densities were found during cooler periods, specifically fall and winter. This finding is
similar to our earlier research (Stanley and Wilson 1996, 1997) but contrary to other research at
platforms and artificial reefs in the northern GOM (Gallaway 1980, Lukens 1981, Gallaway and
Lewbel 1982, Putt 1982). These differences as outlined in Stanley and Wilson (1997) are
presumably due to the differing sampling techniques between our research and others. Prior to our
use of hydroacoustics to assess abundance of fishes at petroleum platforms, only visual surveys were
performed. While visual surveys are effective in high-visibility conditions, they can be biased and
underestimate abundance in low visibility conditions (Bohnsak and Bannerot 1986, Charbonnel et
al. 1996). Since visibilities are generally poor during cooler periods in the northern GOM, it is
probable that the earlier visual surveys underestimated the abundance of fishes and did not
accurately reflect the total number of fishes at the sites. 

The seasonal variation in target strengths observed at ST54 and GI94 was not consistent. Largest
target strengths were found in the summer and smallest in the winter at ST54 while the reverse were
detected at GI94. The results from ST54 were similar to those of our earlier research and were
presumably due to the influx of large seasonal migrants such as cobia and tarpon in the summer.
Unlike our earlier research (Stanley and Wilson 1996, 1997) variation due to time of day was
observed at ST54 and GI94 in this study. At ST54, highest densities were found at midnight
indicating some attraction to the site may have occurred due to the presence of high-intensity
artificial lights at the site. At GI94 highest densities were found at dawn and lowest at noon and
dusk. It is difficult to explain our results with classic crepuscular activity of fishes observed at
natural and artificial reefs with highest densities during the day and lowest a night. On natural and
artificial reefs it is hypothesized that as light level decreases, the attraction to sites by fishes may
decrease due to a loss of visual acuity; also off-reef feeding at night is common and would cause a
decrease in abundance of fishes at night (Munz and MacFarland 1973, Hobson 1975, McFarland et
al, 1979, Heffman et al. 1982, Collins and Pettigrew 1988, Thorne et al. 1989). Target strengths
were largest at ST54 during dawn and noon samples while at GI94 the target strengths were largest
at midnight. The presence of high-intensity artificial lights at these sites may influence the behavior
of fishes at these sites and cause the changes from expected patterns common at natural and unlit
artificial reefs. 

Despite the range of depths of the sample sites, many species were common to all the sites. While
approximately 20 species were observed at a site over the study period, 6 species made up over 90%
of the fishes observed on any survey. The dominant six species by site (highest to lowest abundance)
were GC18: creolefish, blue runner, Bermuda chub, almaco jack, greater amberjack, and barracuda;
GI94: blue runner, horseeye jack, red snapper, mangrove snapper, gray triggerfish, and barracuda;
ST54: Atlantic spadefish, bluefish, blue runner, mangrove snapper, red snapper, and sheepshead.
The species observed during this project agreed with the past research in the northern GOM (Sonnier
et al. 1976; Gallaway 1980; Continental Shelf Associates 1982; Gallaway and Lewbel 1982; Putt
1982; Stanley and Wilson 1990, Rooker et al. 1997). Past research (Sonnier et al. 1976, Stanley and
Wilson 1990, Rooker et al. 1997) noted that over 35 species were associated with platforms in the
northern GOM, while we detected a total of 36 species over the three study sites. Despite the
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disparate methods and temporal differences, there is general agreement in the species composition
between this and past research indicating that platform assemblages are fairly predictable. 

A unique observation from this study was the presence of yellowtail snapper at GC18. It is a
common species on natural reefs in the Caribbean and southern GOM, but it has been rarely reported
on natural reefs and platforms in the northern GOM (Darnell et al. 1982). During research trips in
fall 1994, winter 1995 and spring 1995, yellowtail snapper were relatively common at GC18 but
were not observed on any subsequent surveys. This finding suggests these fishes either migrated
away or experienced significant natural mortality, became extinct at the site and did not recolonize.

The species observed at ST54 were very similar to those found at platforms of similar depth by Putt
(1982) and Stanley and Wilson (1996, 1997). An exception was the observation of tarpon at ST54,
a species not previously reported during any visual observation research at platforms. These fish are
targeted by anglers, however, and caught near petroleum platforms (Stanley and Wilson 1990,
1991). 

Seasonal migrations were common at each of the study sites. Since this research took place
throughout the year, we were able to document the seasonality alluded to by past research but not
well documented (Sonnier et al. 1976, Putt 1982, Rooker et al. 1997). Common seasonal migrations
observed in the winter included an increase in the abundance of Florida pompano and bluefish at
ST54; blue runner and barracuda at GI94 and GC18. Increased abundances during the summer
season included the tarpon and cobia at ST54, cobia, red snapper, greater amberjack, and almaco
jack at GI94, while no summer migrants were observed at GC18. 

Since only six species made up over 90% of individuals at each site on any survey, platform
assemblages could be characterized as not specious but as dominated by a few species. While the
species found at each site were somewhat unique and the dominant species at each site was different,
overlap of observed species existed between sites, especially adjacent sites. Previous researchers
have noted a zonation of the assemblage of fishes associated with platforms and have divided the
shelf waters of the northern GOM into three zones, coastal (water depth < 27 m), offshore (water
depth 27 to 64 m) and bluewater (water depth > 64 m) (Gallaway 1980, Gallaway et al. 1981,
Gallaway and Lewbel 1982). While our results generally agree with the outlined zonation, we feel
that there is a larger crossover between zones than previously described, especially seasonally.
These conclusions were also echoed by Rooker et al. (1997), during a survey of the platform High
Island A389. While Rooker et al. (1997) generally agreed with the zonation as defined by Gallaway
(1980) there are significant differences and considerable overlap with shallower sites, indicating that
it is problematic to define species composition only by depth. Comparison of our research with
species composition from the High Island A389 site (water depth 125 m) surveyed by Rooker et al.
(1997) found the overall species composition was most similar to GC18 (water depth 219 m)
including the dominance of creolefish. Rooker et al. (1997) documented the presence of a large
number of midwater carangids, but due to their study design and emphasis on cryptic reef fishes,
they were not directly enumerated.

Based on our research and examination of the results from past platform studies, there generally is
a keystone species that dominates the composition of fishes at a site, e.g., Atlantic spadefish at
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ST54, blue runner at GI4 and creolefish at GC18, but after the dominant species, overlap of species
existed between sites. Additionally, large fluctuations in abundance of species were common at all
the sites over the study period. Due to the apparent migration of many of the fishes common at
platforms in the northern GOM, and because of the range of depths and geographical location of
these sites, it is difficult to assign species to a certain zone. It may be more accurate to assign most
species to a platform assemblage grouping with a secondary category on depth. 

The trophic structure of the fishes at all three study sites was similar to results at natural reefs due
to the dominance of planktivorous omnivores (Shaffer and Rosen 1961, Smith and Tyler 1972,
Hobson 1974, 1992). However, while the trophic structure was similar between natural reefs and
platforms, the species composition of planktivores at natural reefs is different from those found at
platforms. At natural reefs, planktivorous Serranids, Chaetodontids, Pomacentrids, Holocentrids,
Priacanthids and Balistids typically dominate the taxa (Starck and Davis 1966, Randall 1967,
Hobson 1974, 1991), while at platforms, only a planktivorous serranid, creolefish, was found only
at GC18. At the other sites planktivores dominate but the species were Atlantic spadefish at ST54,
an Ephippid, and GI94 the dominant planktivore was blue runner, a Carangid. While the species
composition at platforms in the northern GOM is generally different from that of natural reefs, the
trophic structure is similar, as planktivores made 55 to 87% of the fishes observed at a site. This is
similar to the results from natural reefs as planktivores can make up to 98% of the fishes found at
natural reef (Hobson 1974, 1991, Sale et al. 1991). Another similarity between the trophic structure
natural reefs and petroleum platforms is the relatively small proportion of piscivores. At natural
reefs, piscivores make up 10 to 20% of the fishes at a site. This compares favorably with our results
as piscivorous Serranids, Lutjanids and Carangids made up 10 to 24% of the fishes observed. At the
trophic scale it would appear that the assemblage of fishes at petroleum platforms function similarly
to the community of fishes at natural reefs with respect to the dominance of planktivores and the
relative low numbers of piscivores. 

Comparison of our results with other petroleum platform studies from the northern GOM revealed
similarities and significant differences in density and abundance. Comparison of acoustically
derived estimates of density from our past research showed similar density values with those from
this project, especially at ST54 and GI94. Mean densities from our earlier work (Stanley and Wilson
1995, 1996, 1997) at a site in 24 m of water were 0.244 (+/- 0.062, 95% confidence interval)
fish@m-3, while mean densities found during this project were 0.333 (+/- 0.034) fish@m-3 at ST54,
0.496 (+/- 0.017) fish@m-3 at GI94 and 0.029 (+/- 0.003) fish@m-3 at GC18. With the exception of GC
18, these values are consistent with those from Putt (1982) for a platform in 22 m of water off the
Texas coast and an order of magnitude higher than the results of Continental Shelf Associates (1982)
from four platforms surveyed in June 1980. Both Putt (1982) and Continental Shelf Associates
(1982) used only visual surveys, Putt employed stationary cameras, and Continental Shelf
Associates used a ROV for visual surveys. While the densities from previous studies are comparable
to those estimated from our earlier and current research using hydroacoustics, the visual techniques
utilized are of limited value in low visibility by the authors’ admission; their conclusions are limited
to characterizations of fish populations under high-visibility conditions. The densities found at
platforms also are much higher than those from the open waters of the GOM. Morgan (1996)
acoustically measured fish densities at artificial reefs in water depths from 20 to 35 m on the
continental shelf off the Louisiana coast and found mean fish densities were approximately 0.01
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fish@m-3. Based on all the results to date, it is apparent that large concentrations of fishes are found
around these structures in the northern GOM but the debate continues as to the exact function of
these structures on whether they increase productivity or attract existing organisms. 
 
Total fish abundance estimates from the platforms in this project fall within the range of estimates
at platforms from our earlier research in the GOM but are higher than those derived by visual-only
surveys. Stanley and Wilson (1995, 1996, 1997) calculated that there were on average a total of
12,473 (+/- 6,522, 95% confidence interval) fishes at a site in 24m of water, while during this
project, estimates of the total number of fish per site were 13,472 (+/- 1,346) at ST54, 28,952 (+/-
1,806) at GI94 and 13,856 (+/- 1,324) at GC18. Visual survey estimates were consistently lower
than those derived using combined hydroacoustics and visual surveys. Putt (1982) estimated that
a platform in 22 m of water had an average of 1,924 fish from July through September while single
point count estimates by Continental Shelf Associates (1982) at four platforms off the Louisiana
coast found 283 to 3,955 fish associated with individual platforms, in water depths from 28 to 31
m. Rooker et al. (1997) performed visual surveys in the upper 24 m of a platform in 125 m of water
and estimated 3,586 fishes were found at the site; however, this number included many cryptic and
reef-associated fishes that we did not include in our results. Moreover, these numbers did not include
the large number of carangids and scombrids observed. The study by Rooker et al. (1997) would
appear to be the best visual estimate of fishes directly associated with a platform as water clarity was
not an issue, and their methodology was superior to that of earlier visual surveys. However, it is
apparent that due to the open construction of platforms, visual surveys alone underestimate the large
number of schooling species at these sites. Other differences may result from the larger near-field
area of influence measured in this study. Earlier researchers did not directly measure the near-field
area of influence and assumed it to be 5 m (Continental Shelf Associates 1982, Putt 1982). The near-
field area of influence measured at ST54 and GI94 was 18 m while at GC18 it was defined as 10 m.
The relationship between density and distance was well defined statistically at ST54 and GI94.
Densities within 18 m of the site were significantly higher than at all other distances measured. At
GC18 the relationship was not as well defined, but based on acoustic-derived density data and visual
observations, the fishes remained close to the structure; 10 m was chosen as the near-field area of
influence. Another possible explanation for the higher total fish abundance estimates from our
research than those of Putt (1982) and Continental Shelf Associates (1982) may be size of the
platform. Previous research (Rousenfell 1972, Ogawa et al. 1973, Grove and Sonu 1983; Rountree
1989; Stanley and Wilson 1990) indicated that fish abundance increased with increasing artificial
reef size. That ST54 and GI94 were larger than three of the four platforms compared in other studies
may explain some of the variation. Another likely explanation of the higher abundances detected
during our research is the utilization of dual-beam hydroacoustics which did not influence fish
behavior, was not limited by visibility, and could determine the area of influence of the reef. The
combination of these factors allows for more accurate assessments of the abundance of fishes at
these sites. 

One of the most interesting results of the project was the comparison of abundance between the
sites. GC18 was three to 10 times larger than the others, but the total abundance estimates were not
significantly different than those of the smallest site (ST54), while the abundance estimates from
GI94 were twice that of the other sites. Since structure size has been shown to affect fish density and
the observation of higher density and abundance at the mid-size platform, it would appear that an
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optimal reef size may exist. This is consistent with results from our earlier research (Stanley and
Wilson 1991). Previous studies have shown that fish abundance is directly correlated with reef size
to a maximum reef volume of 4,000 m3 (Ogawa et al. 1973) or 25,000 - 50,000 ft2 (Rousenfell
1972). While the platform with the highest abundance, GI94, is larger than the optima from a reef
volume perspective, due to the open construction of platforms, it is comparable to the optimal
surface areas estimate from Rousenfell (1972). The low abundances observed at GC18 are likely as
a result of its location and the water depth at the site. Fish abundance was essentially zero below 100
m and densities above 100 m were lower than the other sites. These two factors combined to produce
the low abundances observed at the site. Because of the location of GC18, it is not influenced by the
eutrophic waters on the continental shelf and the outflow from the Mississippi River. It is most
influenced by oligotrophic oceanic waters from the Caribbean. The combination of water depth and
oligotrophic conditions likely reduce the abundance of fishes at the GC18. 

The 4,000 petroleum platforms in the northern GOM, provide an estimated 12.1 km2 of additional
hard substrate (Stanley 1997) to a ecosystem that is dominated by a mud/sand substrate (Parker et
al. 1983). The total area of the Minerals Management Service (MMS) No Activity Zones (which
includes known natural reefs and hard-bottom areas on the continental shelf in the northern GOM)
is 292.81 km2 (Dr. Ann Bull, personal comm). The additional hard substrate provided by the
petroleum platforms acting as defacto artificial reefs increases the amount of hard-bottom habitat
by 4.1% from Destin, Fl to Brownsville, TX. Off Louisiana, the contribution is greater as the 3,600
platforms off the coast provide an estimated 10.9 km2. The total area of the seventeen MMS No
Activity Zones off the Louisiana coast is 104.5 km2. Based on these estimates, platforms increase
the hard bottom by 10.4%. The expansion of hard substrate habitat, especially habitat in the upper
water column, has undoubtedly changed the dynamics of energy flow and influenced the utilization
of marine resources, but it has proved difficult to quantify the impact of these structures. Since 1990,
over 90% of the commercial red snapper harvest has occurred off the Louisiana and Texas coasts
(Shirripa and Legault 1997), and while statistics do not exist on the percentage of red snapper caught
at petroleum platforms, it is assumed to be a significant portion. Additional support of the
importance of petroleum structures to fisheries was found in the highest published angler catch rates
at petroleum platforms (Stanley and Wilson 1990). Fishes important to recreational and commercial
fishing were common at the each of our study sites. 

In recognition of the benefits of artificial reefs to marine fisheries in the northern GOM, Louisiana
and Texas created artificial reef programs where retired petroleum platforms are the material of
choice (Wilson et al. 1986, Stephan et al. 1990). The standard deployment of these structures as
reefs involves placing the jacket on its side. However, this deployment minimizes vertical relief. If
a platform such as GC18 were deployed in this manner, it would extend approximately 80 m off the
bottom. Based on our results, a toppled deepwater artificial reef would be utilized by few fishes; a
structure sited in this manner would have limited value as an artificial reef. This project is the first
demonstrating the importance of vertical relief in maximizing the effectiveness of platforms as
artificial reefs, especially with respect to deep water environments. 

There are few assessments of the abundance of fishes at platforms in other areas of the world,
despite the fact that over 2,500 of these structures are found outside the GOM (Aabel et al. 1997).
Estimates of fish abundance at structures in the North Sea based on experimental netting and visual
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surveys with ROVs have revealed high abundances of platform associated fishes (Valdermarsen
1979, AUMS 1987, ICIT 1991, Cripps and Aabel 1995, Cripps et al. 1995, Aabel et al. 1997). Mean
density and abundance values were comparable to those from the northern GOM as 0.3 fish@m-3 were
detected by Cripps and Abel 1995 and total abundance estimates in the region range from 9,000 to
80,000 fishes varying with water depth, platform size and location (Valdermarsen 1979, AUMS
1987, ICIT 1991, Cripps and Aabel 1995, Cripps et al. 1995, Aabel et al. 1997). These results along
with those from the GOM and the west coast of Africa (Gerlotto et al. 1989) clearly demonstrate
that petroleum platforms are effective artificial reefs in a variety of climates and with various species
assemblages. 
 
This research confirms the variability of fish assemblages associated with petroleum platforms and
reinforces the need to sample on each side and throughout the water column to obtain an accurate
estimate of fish abundance. It also demonstrates the importance of petroleum platforms to the marine
environment of the northern GOM due to the high abundance of fishes found at the sites. Although
some variance was observed, 10,000 to 30,000 fishes were found at a site at any one time, and since
over 1,000 platforms are found in similar water depths, it is clear that these structures impact the
fisheries of the region. 

This study continues to demonstrate the utility of merging hydroacoustics and visual survey
techniques to study the assemblage of fishes associated with petroleum platforms. The combination
of these techniques allows for the measurement of the area of influence of these defacto artificial
reefs, estimates of abundance, size distribution and species composition throughout the water
column and over long time periods.
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There are approximately 5,500 oil and gas platforms (platforms) in the northern Gulf of Mexico
(GOM), most of which are off the Louisiana coast. Although there is some debate about the
significance of these “artificial reefs”, platforms have a total surface area estimated to be a fraction
(4%) of the 2800 km² of naturally occurring hard bottom found in the otherwise silty environment
of the northern Gulf (Parker et al. 1983; Stanley and Wilson 1990, 1991, 1997). However, platforms
constitute a larger percentage of the hard substrate off Louisiana due to the general absence of
natural hard substrate. It is safe to say that the oil and gas industry in the GOM has created the most
extensive de facto artificial reef system in the world.

Stanley and Wilson (1996, 1997, 1998, 2000) documented species compositions and abundances
of fishes at several platforms off Louisiana; they concluded that each standing platform seasonally
serves as critical habitat for 10,000-20,000 fishes, many of which are of recreational and commercial
importance. Undoubtedly, this new habitat has influenced fish populations in the GOM. Habitat
provided by petroleum platforms has likely affected processes such as energy (food) availability,
habitat, recruitment, competition, and predation (Menge and Sutherland 1987; Doherty and Williams
1988; Bohnsack et al. 1991; Stanley and Wilson 2000).

The concept of using oil and gas platforms as artificial reefs is generally held in high regard and is
strongly supported by recreational fishers and their respective organizations. However, the scientific
community still questions the real “habitat” value of artificial reefs in general, and the practical
value of retaining platforms as artificial reefs. There are many management oriented questions
involving the effect of water depth, geographic location, and general reef configuration; more
perplexing scientific questions concern attraction versus production and the comparison of artificial
reef fish communities to natural reef fish communities (Seaman and Jensen 2000). These and other
issues must be addressed to determine both the effectiveness of these structures as artificial reefs
and their impacts on the marine ecosystem in the region. 

The general practice for incorporating platforms into reef programs involves two options. The
Louisiana Artificial Reef Program (LARP) has configured many reef sites by laying a platform on
its side (by toppling in place or moving a platform from another location). More recently LARP has
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followed the Texas Artificial Reef Program by removing the upper 30 m portion of a platform to
comply with Coast Guard regulations (partial removal). Stanley and Wilson (1997) raised questions
about the habitat importance of vertical profile leading us to further examine the practice of partial
removal of platforms for reef site creation as opposed to the more common practice of toppling
(Stanley and Wilson 1997, 1998).

The proximity of the several artificial reef projects in similar water depth afforded us the opportunity
to compare several platform configurations to one another. Therefore the purpose of this study was
to compare the fish communities associated with three platform/artificial reef configurations. Reef
configurations included a production platform, toppled in place as an artificial reef (West Cameron
(WC) 617A), a nearby partially removed platform (HI A355), and an operating production platform
(HI A350). The goals of this study were to identify species composition at each site; to estimate the
fish density/biomass associated with each site; to determine the effects of platform side, depth, and
distance from each site on fish biomass . 

MATERIALS AND METHODS

This research project was designed to compare the fish resources associated with a standing platform
and two artificial reefs located in a similar geographic region in the northern GOM off the
Texas/Louisiana border (Figure 7.42). The standing platform, HI A350 (High Island), owned by
Shell Corporation, is located at 28o 1.130' north latitude and 93o27.512' west longitude. This eight
pile structure was installed in 1976 in 90 m of water. This standing platform occupies an area in the
water column measuring 90 m in height and has a 68m x 40m footprint.

The toppled platform, WC 617A, formerly owned by Mobil Corporation, is located at 28o 3.664'
north latitude and 93o 18.805' west longitude at a depth of 98 m. It was installed as an eight pile
structure in 1976. In July 1992, the upper deck was removed approximately 3 m above the waterline,
then the jacket was severed below the mudline with explosives, and the remaining structure was
toppled in place. This toppled platform occupies an area in the water column measuring 31 m in
height and has an 84 m x 60 m footprint.

The partially removed platform, HI A355, formerly owned by Occidental Petroleum, is located at
28o 2.491' north latitude and 93o 42.551' west longitude in 90 m water depth. It was installed as an
eight pile structure in 1978. In January 1996 it was partially removed mechanically cutting it at -27.5
m. The upper jacket was split vertically, and a four pile portion (½ of the upper portion) was placed
on the southeast side of the main structure. This partially removed platform occupies a volume in
the water column measuring 68m high and has a 60m x 40m footprint; the four pile section on the
south side measures 32 m high with a 24m x 18m footprint. 

Survey Designs

Dual beam hydroacoustic surveys (Stanley and Wilson 1997) were accomplished with a stationary
array of four transducers at the standing platform and with towfish mounted single transducer mobile
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Figure 7.42. Map of the sites surveyed in June 1999 and 2000.

surveys at the two reef sites. The standing platform was surveyed in June 1999 with stationary dual
beam hydroacoustic equipment developed during past research (Wilson and Stanley 1991; Stanley
and Wilson 1995, 1996, 1997,1998, in press). Sampling consisted of three downward-oriented
transducers (120 kHz) placed approximately 3 m below the surface, one on each side of the platform
except the west side due to an equipment failure as described in Stanley and Wilson (1998). The
downward facing transducers provided acoustic coverage from a depth of 5 m to within 1 m of the
substrate. The use of three transducers enabled the calculation of density throughout the water
column on three sides of the platform. Acoustic sampling consisted of two hour time blocks over
a 24 hour interval encompassing four periods (dawn, noon, dusk and midnight). Hydroacoustic data
were collected sequentially from each transducer in five minute intervals. 

A towed transducer was used to estimate the acoustic biomass, density, and size frequency
distribution of fishes associated with the two artificial reef sites. A 120 kHz downward oriented
transducer, mounted on a v-fin tow body was towed from the R/V Pelican (June 1999) and the M/V
Epic Mariner (June 2000). The towfish was held in place 5 m out from the hull and flown 3 m below
the surface at a speed of approximately 2 m/sec. The use of a towed downward oriented transducer
enabled the calculation of density and size distribution of fishes from a depth of 5 m to 1 m from
the bottom or within 1 m of the each structure. Data were georeferenced with a Garmin GPS III
global positioning system (GPS) and a Garmin GB 21 differential beacon receiver. The navigation
data stream, updated once per second, was incorporated into the acoustic data string and then stored
on a PC. 
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Mobile surveys at the two artificial reef sites consisted of alternating east-west then north south
transects over the target area. In June 1999, a total of 100 transects (50 east-west and 50 north-south)
occurred over each of the artificial reef sites. In June 2000, efforts were reduced to a total of 40
transects (20 east-west and 20 north-south) which produced the same statistical power as the 1999
survey. Transects were conducted out to a distance of 100m from each side of the artificial reef.
Each transect covered a linear distance of approximately 300 m, passing over the top of the artificial
reef site in the center of each transect. 

Acoustic data were collected with 120 kHz transducers which had been factory calibrated to a - 42
dB tungsten sphere and a Biosonics model DT5000 scientific echosounder/multiplexer. All data
were collected with source levels at 223 dB / Pa at 1 m. Sampling rate was 5 pings /sec with a pulse
width of 0.4 ms. Received signals were adjusted for spreading loss by applying a 40 log R time
varied gain, digitized and recorded on the computer hard drive. The data collection threshold was
-55 dB, corresponding to a minimum detection of a 2.5 cm fish (Love 1971).

Digitized hydroacoustic data were processed with Biosonics Visual Analyzer 4.02. Recent software
advances allowed simultaneous estimates of sigma (target strength) and mean volume backscatter
(reflected acoustic energy) for each depth strata. These parameters are used to estimate fish size and
fish density/m3. Ten meter depth strata were assigned for processing data from each site. Data files
were replayed through Visual Analyzer with the bottom tracking feature turned on; the bottom was
then manually inspected and adjusted to insure that neither the bottom and/or platform were included
in the analyzer window. Bottom correction was not necessary for the standing site as the transducers
were fixed and digitized to exclude the structure during the collection process.

The standing platform data were analyzed in 5 minute blocks for each side as in previous studies
(Stanley and Wilson 1997). Analyzer outputs for the standing platform included volume
backscatter/m3, fish density/m3, and mean target strength/m3. A Visual Basic program was used to
extract data of interest from analysis outputs and to compile the results into a site specific database
for statistical analysis (Stanley and Wilson 1997).

Mobile transects were analyzed at one second resolution (corresponding to a 2 meters linear
distance) to determine the volume backscatter/m3 and target strength/m3 within each depth stratum
along the transect. Analysis of each one second block of data provided location specific mean
volume back scatter. Individual target strength information was acquired by extracting ping specific
data which could be selectively output as a text file. A Visual Basic program was used to calculate
an average target strength for each target, by strata, and location.

Data Analysis

Fish density (number/m3) was calculated based on the volume backscatter (reflected acoustic
energy) of a known volume (cubic meter) of water divided by the average target strength (reported
as sigma) from that same volume of water. Density estimates are dependent upon accurate estimates
of the mean sigma of the targets within that same volume of water. Analysis of standing platform
data with Visual Analyzer version 4.02 produced useful density estimates. However, analysis of the
mobile data required refinement of TS for accurate density comparisons. The accuracy of target
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1Jim Dawson, BioSonics, Inc., personal communication.

strength increases with repeated acoustic hits on the same target (Jim Dawson, pers. com.1). Since
research operations were from a vessel moving at 2 m/s and transmitting acoustic pulses (pings) at
a rate of 4-5 pings per second, the chance of hitting a target multiple times was very low. In many
cases data processing resulted in a volume backscatter, but no sigma for that same volume of water.
In estimating fish densities for mobile surveys, a mean sigma (proxy sigma) was calculated for a 30
m linear distance by stratum. We assumed, that fish size was similar in the same stratum for 30
linear meters. If sigma was missing, but a volume backscatter volume was available, the proxy
sigma was substituted to estimate density. 

Statistical Analysis

Statistical analysis of these data included volume backscatter (reflected acoustic energy-volume
backscatter or SV) as a dependent variable. Volume backscatter is an exponential number provided
by the Biosonics Visual Analyzer and is a per “ping” average of acoustic energy/m3. For
regressional analysis and calculation of means, SV is converted into a “arithmetic form,” called
“Fish Energy,” with the relationship,

 Fish Energy = 10 sv/10 

where SV is volume backscatter (reflected acoustic energy) of a known volume of water (cubic
meter) “Fish Energy” should be considered to be an acoustic measurement of fish biomass as it is
based on the average acoustic reflectance/m3. The second dependent variable in our analysis was
density/m3, which was generated from the Visual Analyzer analysis for HI A350 and calculated for
the mobile surveys of two reef sites using the equation, 

10 SV/10 /10 TS/10 = fish/m3

where SV is the volume backscatter/m3 and TS is the mean sigma assigned (or the proxy sigma
discussed above). 

A randomized block analysis of variance (RBA) was used to examine the main effects of SV and
log transformed density (log10 (fish density + 1)) at HI A350 and TS at all sites as described by
Stanley and Wilson (1997). Class variables included time of day (time of day (TOD): dawn, noon,
dusk, midnight), platform side (north, south, east) ten meter depth strata (strata), and their
interactions. RBA’s were also used to examine the main effects of TS at all sites. Class variables for
TS RBA’s include TOD, strata, platform side, and all two-way interactions. Class variable for WC
617A and HI A355 include TOD, depth strata, reef side, horizontal 10 meter distance intervals away
from the reef structure (away), and all two-way interactions. Tukey's standardized range tests (Ott
1982) were used to compare the means of significant variables. Statistical tests were reported as
significant at the alpha < 0.01 level.
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Logistic Regression

Traditional parametric analyses were not used for analysis of mobile acoustic data due to the large
number of zero values and the problem of autocorrelation that occurs in mobile acoustic data
(Trexler and Travis 1993). Analysis consists of converting the dependent variable into a discrete
form (e.g. presence/absent, agree/disagree, etc). The regression model then assumes a binomial
distribution of errors (Trexler and Travis 1993, Garrison et al. 2000). A binomial logistic model was
constructed for each site using the presence or absence of "fish energy" to evaluate the probability,
or chance, of finding fish. This analysis was performed on the primary output of acoustic data
analysis which was reported in 1 second intervals. Class variables for the artificial reef sites included
orientation (over the platform, and north, south, east, and west sides), depth strata, away, TOD, year
(1999 or 2000), site (standing or toppled) and transect (ordinal transect number). 

The Statistical Analysis System (SAS 2000) includes a program called Proc Logistic that uses
logistic analysis . When run with the intercept option, it produces a Type III analysis of main effects,
which provides an estimate of the significance of class variables, based on a maximum likelihood
test (Chi Square test of significance p=0.01) that we used to compare class variables. When run
without the intercept, Proc Logistic provides an odds ratio estimate, which is the probability of
finding fish in a given class variable cell compared to another cell. 

Fish Abundance Estimation

Total fish abundance estimates at each site were calculated by determining a 20m near-field area of
influence of each reef site or platform, then multiplying mean density (#/m3) values by stratum and
side by the volume of water on each side of or over the platform (Stanley and Wilson 1998). Fish
density within the centers of each platform was not measured with acoustics due to interference by
structural members and was assumed to be the average of the density estimates of the four sides of
the platform; it was estimated by multiplying the estimated fish density of the center by the volume
of water in the center of the platform. 

VISUAL SURVEYS

Visual surveys were conducted with a Deep Ocean Engineering Phantom HD2 ROV with standard
visual census techniques and recording video on S-VHF tape (Bohnsack and Bannerot 1986).
Cryptic fishes were not included in the video surveys results since they could not be assessed in the
acoustic surveys. Point counts were conducted to identify individual fish to the lowest taxonomic
level. Results were expressed as percent composition by stratum at each site. 

During mobile surveys, an ROV was deployed from the research vessel anchored near each artificial
reef site. During the survey of HI A355, the ROV was flown down to the bottom, stopping every
10 m for approximately 1 minute. During the survey of WC 617A, the ROV was flown down to the
top of the artificial reef complex and then run along the south side, east side, west side, and over the
top of the toppled platform. Video surveys of HI A350 were conducted directly from the standing
platform. The ROV was flown from the surface to the bottom, stopping every 10 m for
approximately 5 minutes.
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Figure 7.43. Mean fish energy/m3 (antilog of volume backscattering) by depth stratum for HI
A350.  Error bars are 95% confidence intervals.

RESULTS

HI A350 Results (Standing Platform)

The stationary hydroacoustic survey of HI A350 was conducted in June 1999. A five-day trip was
made to the platform where acoustic data and ROV data were collected.

Volume Backscatter (SV), the measure of the amount of reflected acoustic energy, or fish biomass
/m3, varied with several of the modeled parameters based on RBAs. SV values ranged from 0.0 to
2.2 x 10-4 /m3; the mean value at HI A350 was 1.2 x 10-6 /m3. SV was affected by depth and time of
day and the interactions of side and depth. SV was highest at the surface and lowest near the bottom.
The upper two strata were statistically different from one another and both were significantly higher
than the remaining strata (3 - 8) (Figure 7.43). Fish biomass also varied significantly with TOD and
was highest at dusk followed by noon, morning, and midnight. 

Estimates of fish density were based on SV divided by the average target strength (TS) of the fish
in the same volume of water and in general followed SV patterns. Based on RBAs, estimated density
was affected by depth and TOD and their interactions. Estimated fish densities ranged from 0.0 to
0.7 fish/m3; the mean fish density at HI A350 was 0.015 ± .003 (mean ± std error) fish/m3. Densities
were highest in the upper part of the water column and generally decreased with depth (Figure 7.44).
Density also varied with time of day and was highest at dusk and lowest at midnight. 

Target Strength

Target strength (TS) is an acoustic measure of fish size which was used as a dependent variable to
test for relationships between fish size with TOD, orientation, and depth and their interactions. TS
ranged from -52.46 to -30.75 dB; the average TS at HI A350 was - 40.73 dB which is equivalent to
a 12.5 cm fish. Based on the RBAs, TS at the standing platform was affected by depth and time of
day. Fish were significantly larger near the surface and smaller near the bottom and were
significantly larger in the morning than at noon, dusk, and midnight.
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Figure 7.44. Estimated mean fish density (fish/m3) at depth for HI A350. Error bars are 95%
confidence intervals.

SPECIES COMPOSITION AND ABUNDANCE

The fish community at HI A350 was very similar to previous studies and consisted of pelagic
planktivores near the surface and reef-associated species near the bottom (Table 7.38). Bermuda
chub and blue runner were the most abundant species making up more than 50 percent of the fish
observed on the ROV survey; they were most common near the surface (Table 7.38). Creole-fish,
scamp, and red snapper also were fairly abundant and made up approximately one-third of the
species present. Red snapper and scamp were most numerous near the bottom and creole-fish were
most abundant at mid-depth (Table 7.38). 

Total fish abundance at HI A350 within a 20 m area of influence was estimated to be 7,100. Based
on the percent composition, there were approximately 2,100 blue runner, 1,000 bermuda chub, 1,000
creole fish, 500 scamp, and 400 red snapper. Although the numbers are not absolute, they provide
a relative scale of fish abundance.
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Table 7.38. Species common names and scientific names, numbers of individuals by stratum,
totals, and percent composition from visual point counts using video from a remotely
operated vehicle (ROV) from High Island A350, June 1999.

Common
 Name

Scientific
Name 0 m 10 m 20 m 30 m 40 m 50 m 60 m 70 m Totals

%
Comp

Almaco jack Seriola rivoliana 5 1 22 9 - 1 - - 38 3.6
Bermuda chub Kyphosus sectatrix 280 - - - - - - - 280 26.8
Bar jack Caranx ruber 1 - - - - - - - 1 0.1
Great
barracuda

Sphyraena barracuda 6 10 2 - - - - - 18 1.7

Blue angelfish Holacanthus
bermudensis

- 6 10 5 - - - - 21 2.0

Blue runner Caranx crysos 92 33 182 - - - - - 307 29.4
Blue tang Acanthurus coeruleus - 2 4 1 - - - - 7 0.7
Creole-fish Paranthias furcifer - - 94 53 - - - - 147 14.1
Crevalle jack Caranx hippos - 9 - - - - - - 9 0.9
French
angelfish

Pomacanthus paru - - 4 3 - - - - 7 0.7

Gag Mycteroperca
microlepis

- - 1 - - 1 - - 2 0.2

Greater
amberjack

Seriola dumerili - 2 4 4 2 8 1 - 21 2.0

Gray
triggerfish

Balistes capriscus 1 - 1 2 4 - - - 8 0.8

Rainbow
runner

Elagatis bipinnulata - - 11 - - - - - 11 1.0

Red snapper Lutjanus
campechanus

- - - - 11 50 - - 61 5.8

Rock beauty Holacanthus tricolor - - - 1 - - - - 1 0.1
Reef
butterflyfish

Chaetodon
sedentarius

- - - - 1 - - - 1 0.1

Scamp Mycteroperca phenax - - 2 17 7 37 10 - 73 7.0
Sergeant major Abudefduf saxatilis 6 1 7 - - - - - 14 1.3
Spanish
hogfish

Bodianus rufus - - 9 1 1 - - - 11 1.0

Squirrelfish Holocentrus
adscensionis

- - 3 - - - - - 8 0.8

WC 617A AND HI A355 RESULTS (TOPPLED AND
PARTIALLY REMOVED PLATFORMS)

Acoustic surveys of these sites (Figure 7.45) were tracked with differential GPS which was
incorporated into the acoustic database; resultant track lines over each site are shown in Figure 7.46.
The actual track lines are evidence that we were successful in keeping the vessel transects over the
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A.

B

Figure 7.45. Line drawings of WC 617A (toppled platform) and HI A355 (partially removed
platform with a small four leg section to the southwest).
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A.

B.

Figure 7.46. Plot of vessel track (dotted lines) over WC 617A (A) and HI A355 (B)  for
surveys conducted June 1999 and June 2000. Bathymetry contour show depths
at each reef site and indicate the platforms.  North is up in both figures.
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tops of the target sites. A plot of recorded bottom depth of repeated transects at each site resulted
in a detailed 3-dimensional outlines of the platform profile (Figure 7.47) and illustrates the precision
of positioning as well as current reef site bathymetry.

Acoustic data were used to determine fish presence based on SV, to estimate fish density/m3, and
to estimate fish size above, in proximity to, and away from the reef sites. One concern was that
transect number might lead to a decrease in fish density as multiple passes of the vessel over each
site might scare away fish. Including transect number (n=100) as a class variable in the logistics
regression for the 1999 data at both sites indicated a significant effect; however, there was no pattern
indicating a decrease or increase or change in the probability of finding fish with consecutive
transects. We concluded that there was no predictable change in the probability of fish occurring
during consecutive passes of the vessel, so all transects were combined for analysis. 

WC 617A (TOPPLED PLATFORM)

A binomial logistic model was constructed for WC 617A with presence/absence of SV (hence fish)
as the dependent variable with class variables, orientation, stratum, away, TOD, and year and all two
way interactions. All class variables were significant indicating that orientation, time of day, away,
and year influenced the probability of fish occurring. Two-way interactions were evaluated and
determined to be either insignificant or of no biological meaning, then were removed from the model
as they confounded class variable interpretation.

Odds ratio estimates produced in Proc Logistic calculated without an intercept provided insight into
the probability of finding fish varied within each class variable. From the analysis outputs it was
concluded that there was a difference between years as the chance of finding a fish in 1999 was
approximately 2.5 times that in 2000. In addition, there was no influence of orientation as the
probability of finding a fish was the same over and away from the platform. However, there was
higher mean biomass (measured as SV) over the platform than on the sides indicating that when fish
were present, there was greater biomass over the reef site than on any of its sides. Analysis also
indicated that fish occurred more frequently near the bottom along the sides of the platform.

The biological significance of these differences was best appreciated by plotting mean SV (fish
energy) and estimated fish density (+/- 95% confidence intervals) for each significant class variable.
The mean values plotted on these graphs are greatly influenced by the larger number of zero values,
but they allow for comparisons of trends. Mean SV was highest over the platform and declined with
distance from the 617A reef site (Figure 7.48a); mean SV varied with side (orientation), and was
lower on all sides than over the platform. Mean SV reached a minimum beyond 30 m away from
the platform, so we assigned a 20 meter area of influence of this site. Mean SV also varied with
depth and time of day as it tended to be higher near the bottom and higher at midnight.

Target Strength

The relationship between TS and associated class variables was modeled with RBD ANOVAs. TS
was affected by side, depth stratum, and TOD and all interactions. The meaningful part of this
analysis is that fish were, on average, larger over the platform and smallest on the south side. Fish
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A.

B.

Figure 7.47. Acoustic depth profiles of WC 617A and HI A355  based on a geo-referenced plot
of depth from the hydroacoustic survey conducted in June 1999 and 2000.
Outlines of both structures are evident based on bottom depth.
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Figure 7.48. Estimated mean fish energy /m3 (antilog of volume backscatter) at distance from
reef site for WC 617A (A) and HI A355 (B). Error bars are 95% confidence
intervals.
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size decreased with increased distance from the site (Figure 7.49a). Fish size also varied with depth
and targets tended to be larger near the surface and immediately above the structure. Average
acoustic size at WC 617A was - 46 dB (8.6 cm) and ranged from -62 to -26 dB (1.2 to 96 cm) (Love
1971). Target size changed with TOD, and fish were larger at dawn followed by midnight, dusk, and
noon.

Density Estimates

Fish density was calculated based on acoustic volume backscatter and TS (mean target strength/m3

or its proxy described in Materials and Methods). Plots of the mean density values provide actual
density estimates for comparison to earlier studies. Density over and away from WC 617A ranged
from 0 to 0.5 fish/m3 and the overall mean density of the site within 20 m was 0.0015 fish/m3. Mean
density decreased slightly beyond 30 meters and did not vary much. Mean density was slightly
higher over the platform compared to the east, west, north and south sides. Density also varied with
depth and was highest at the surface and immediately above the bottom (Figure 7.50a). Density
varied with time of day and was highest during midnight followed by dusk, noon and morning.
Although density did not vary much, it should be noted that SV was higher over WC 617A where
the fish were also larger.

Species Composition and Abundance

Species present at WC 617A were indicative of a reef-associated community. Seven species made
up 90% of the community (Table 7.39). Red snapper were the most abundant and made up over 45%
of the population followed by greater amberjack, Spanish hogfish, gray triggerfish, and creole-fish.

Total fish abundance at WC 617A within a 20 m area of influence was estimated at 2,700. There
were roughly 1,220 red snapper, and 405 amberjack, followed by 270 Spanish hogfish and 216 gray
triggerfish.

HI A355 (PARTIALLY REMOVED PLATFORM)

A binomial logistic model was constructed for HI A355 with presence/absence of SV (hence fish)
as the dependent variable with class variables orientation, stratum, away, time of day, year and all
two-way interactions. Based on a binomial logistic regression with SV as the dependent variable,
significant effects were found with orientation, away, time of day, and year. Two way interactions
were evaluated and determined to be either insignificant or of no biological meaning, so they were
removed from the model as they confounded the class variables interpretation.

Odds ratio estimates from Proc Logistic run without an intercept provided insight into the
probability of finding fish and then varied within each class variable. From the analysis outputs it
was concluded that there was a difference between years as the chance of finding a fish in 1999 was
roughly 1.3 times higher than that in 2000. A difference in orientation was also found with the
probability of a fish presence was highest on the south side. There was a slightly greater chance of
finding fish within 30 m rather than immediately over the platform. Analysis also indicated that fish
occurred more frequently near the bottom and closer to the platform.
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Figure 7.49. Estimated mean target strength (dB) at depth stratum for WC 617A (A) and HI
A355 (B).  Error bars are 95% confidence intervals.
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Figure 7.50. Estimated mean fish density (fish/m3) by depth stratum for WC 617A (A) and HI
A355 (B).  Error bars are 95% confidence intervals.
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Table 7.39. Species common names and scientific names along with numbers of individuals by
stratum, totals, and percent composition from visual point counts using video from
a remotely operated vehicle (ROV) from a toppled platform (West Cameron 617A)
June 1999.

Common
Name

Scientific
Name 0m 10m 20m 30m 40m 50m 60m 70m Totals

%
comp

Almaco jack Seriola rivoliana - - - - 1 9 4 - 14 7.4
Creole-fish Paranthias furcifer - - - - - - 9 - 9 4.8
Gag Mycteroperca microlepis - - - - - - 3 - 3 1.6
Greater amberjack Seriola dumerili - - - - 2 25 2 - 29 15.4
Gray triggerfish Balistes capriscus - - - - - 8 7 - 15 8.0
Red snapper Lutjanus campechanus - - - - 7 32 46 - 46 45.2
Reef butterflyfish Chaetodon sedentarius - - - - - - 1 - 1 0.5
Scamp Mycteroperca phenax - - - - - 6 6 - 12 6.4
Spanish hogfish Bodianus rufus - - - - - 6 14 - 20 10.6

The biological significance of these differences was best appreciated by plotting mean fish energy
and estimated fish density (with 95% confidence intervals) for each class variable. Mean fish energy
was highest over HI A355 and reached a minimum beyond 30 meters away from the platform; we
assigned a 20 meter area of influence to this site. Mean fish energy declined with distance from the
reef sites and was highest over the platform followed by south, west, east, and north. Mean fish
energy also varied with depth and time of day as it tended to be higher near the surface of the water
column and was higher in the morning.

Target Strength

The relationship between TS and associated class variables was modeled with RBD ANOVAs. TS
was affected by orientation, depth, TOD and all two way interactions. The meaningful part of this
analysis is that fish were, on average, larger over the platform and smallest on the south side. Mean
TS, within 20 meters of HI A355, was -48 dB (equivalent to a 6.7 cm fish); TS ranged from -62 to
-25 dB (1.2 to 108 cm) (Love 1971). Fish size decreased with increased distance from the site. Size
also varied with depth as targets tended to be larger near the surface and decreased in size toward
the bottom. Target size changed with TOD and was greatest in the morning followed by midnight,
dusk, and noon.

Density Estimates

Fish density was calculated based on acoustic volume backscatter and TS (mean target strength /m3

or its proxy value described in Materials and Methods). The results of the density estimates were
basically the same as SV in the previous section, but plots of the mean density values provide actual
density estimates for comparison to this and earlier studies. Density over and away from HI A355
ranged from 0 to 0.55 fish per cubic meter and averaged 0.002 fish per cubic meter within 20 meters
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of the platform. Mean density varied little with distance. Mean density was slightly higher on the
west side of the platform than the other sides, but there was little difference in mean density among
its four sides. Density also varied with depth and was highest 10 to 20 m above the bottom (Figure
7.50b). Highest density occurred at dusk when compared to noon, morning, and midnight even
though there was little difference among times of day.

Species Composition and Abundance

Species compositions in June 1999 and June 2000 are given in Table 7.40. During both surveys
greater amberjack were the most abundant species. In 1999 greater amberjack made up almost 60%
of the fish community compared to 30% in 2000. Red snapper were the second most abundant
species both years and ranged from 13% in 1999 to 27% in 2000 (Table 7.40).

Table 7.40. Species common names and scientific names along with numbers of individuals by
stratum, totals, and percent composition from visual point counts using video from
a remotely operated vehicle (ROV) from a partially removed platform (High Island
A355), June 1999 and 2000.

High Island A355 June 1999
Common Name Scientific Name 0m 10m 20m 30m 40m 50m 60m 70m Totals % comp

Almaco jack Seriola rivoliana - - - - - 17 - - 17 12.9
Blue angelfish Holacanthus bermudensis - - - - - 7 - - 7 5.3
Creole-fish Paranthias furcifer - - - - - 2 - - 2 1.5
Greater amberjack Seriola dumerili - - - - - 78 - - 78 59.1
Gray triggerfish Balistes capriscus - - - - - 3 - - 3 2.3
Red snapper Lutjanus campechanus - - - - - 17 - - 17 12.9
Scamp Mycteroperca phenax - - - - - 5 - - 5 3.8
Spanish hogfish Bodianus rufus - - - - - 3 - - 3 2.3
High Island A355 June 2000
Common Name Scientific Name 0m 10m 20m 30m 40m 50m 60m 70m Totals % comp

Almaco jack Seriola rivoliana - - 2 7 2 - 2 - 13 6.9
Blackfin tuna Thunnus atlanticus - - 9 - - - - - 9 4.8
Blue angelfish Holacanthus bermudensis - - - 2 5 1 2 1 11 5.9
Creole-fish Paranthias furcifer - - - 11 7 - - - 18 9.6
Crevalle jack Caranx hippos - - 2 1 - - - - 3 1.6
Greater amberjack Seriola dumerili - - - 1 6 22 17 10 56 29.9
Gray triggerfish Balistes capriscus - - - - - - 3 - 3 1.6
Ocean surgeon Acanthurus bahianus - - - 2 - - - - 2 1.1
Red snapper Lutjanus campechanus - - - - 3 12 28 7 50 26.7
Spanish hogfish Bodianus rufus - - - - 18 3 - - 21 11.2
Warsaw grouper Epinephelus nigritus - - - - - - 1 - 1 0.5
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Total fish abundance at HI A355 within a 20 m area of influence was estimated at 2,850 individuals.
The most abundant fishes at HI A355 were greater amberjack and red snapper . Averaging percent
species compositions for both years, we estimate there were approximately 1,200 greater amberjack
and 500 red snapper followed by 250 Spanish hogfish and 225 creole-fish.

DISCUSSION

This project again demonstrates the utility of dual beam hydroacoustics coupled with visual survey
techniques to study fish assemblages associated with standing platforms and artificial reefs. The
choice of survey sites, which are in close geographical proximity, provided us an opportunity to use
stationary and mobile acoustic survey methods to compare species composition, fish biomass, and
fish densities within and among a standing platform and two artificial reef configurations of retired
oil and gas platforms. Future refinements in the approach to stationary and mobile acoustic studies
will lead to even more accurate assessments of fish habitat. Furthermore, integration of results into
a GIS databases will enable improved management of these resources.

Our results provided direct evidence that fish densities and biomass around standing oil and gas
platforms are the highest per unit area of their artificial sites studied to date. We found fish density
around a standing platform to be greater than the two artificial reef sites. Fish were not only more
abundant around standing platforms, but also they were larger than those found in the open water
habitats. Our results are in support of the findings reported by Stanley and Wilson (2000), that when
a platform is converted into a artificial reef by toppling in place or by partial removal, it loses a
significant portion of the fish community. Most of this “lost” portion is pelagic planktivores such
as blue runner and Bermuda chub. 

Traditional parametric analyses were not used for analysis of mobile acoustic data, due to the large
number of zero values and the problem of autocorrelation that occurs in mobile surveys. The use of
logistic regression in ecological sampling was described by Trexler and Travis (2001) as a nonlinear
way of expressing ecological data. Logistic regression has been shown to be useful with data sets
that have a large number of zero values which are usually not normally distributed. For regression
analysis, the dependent variable was converted into a binomial array of presence/absence of acoustic
reflectance (fish measured as acoustic energy)/m3 to evaluate the probability or chance of finding
a fish in a given cell. The cell was a one second block (at 2m liner distance) of time divided into 10
m depth strata. Volume backscatter (SV) was used as a dependent variable in performing logistic
regression because SV is the mean measured amount of acoustic energy returned from each acoustic
ping, averaged for a cubic meter of water column. Stanley and Wilson (1997) used fish density
(number of fish/m³) as the dependent variable, but this value is very sensitive to cross-sectional
backscatter also known as sigma (fish size). Sigma accuracy increases with the number of times a
single target is pinged. In our mobile surveys, the chance of hitting a single target, numerous times,
was low. Due to the uncertainty of the accuracy of TS, the accuracy of density becomes uncertain.
This made SV a better proxy for fish presence, hence the primary dependent variable in our models.
If there was a statistically significant affect by a class variable indicated in the logistic regression
analysis, then the procedure was re-run using a no intercept option. The resultant Odds Ratio
Estimates provide a comparison of probabilities of fish occurring within that class variable. The
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effect of each class variable was visualized by plotting SV and estimated fish density by significant
class variables.

Many factors play an important role in determining fish biomass, density, and species composition
for any fish habitat; certainly oil and gas platforms are no exception. The standing platform, HI
A350, was characterized by the same type of community of fish that Wilson and Stanley (2000)
observed at other structures in similar water depths such as Grand Isle 94. Time of day and depth
stratum affected the fish community as had been reported previously (Stanley and Wilson 2000),
however the density patterns exhibited at different times of day do not follow a predictable pattern
and are likely site-specific. We continue to observe fish density and size being greater near the
surface than the bottom of standing oil and gas platforms. Our results revealed approximately 7,000
fish around HI A350, which is consistent with the estimates of fish communities reported by Stanley
and Wilson (2000, 1997) for platforms in similar water depths, where reports of 10,000 to 20,000
fish inhabiting each of the four oil and gas platforms studied. Species composition at HI 350 was
also similar to that reported by Stanley and Wilson (2000) and included important to recreational
and commercial species such as greater amberjack, red snapper, creole fish, trigger fish, and almaco
jack. Like the results reported herein, Stanley and Wilson (2000) also found a significant pelagic
planktivore community at these high vertical profile sites.

The mobile acoustic surveys of a toppled platform (WC617A) and a partially removed platform
(HIA355) were conducted in 1999 and in 2000. Previous acoustic studies at platforms, as in our
study of HI350 employed a stationary array of transducers. Hence data collection techniques were
different. However the acoustic data are averaged on a per ping basis so data at HI350 in this study
and previous studies by Stanley and Wilson (2000) and Stanley (1994) are comparable to the mobile
acoustic data. 

There was a general pattern at both reef sites of higher probabilities of finding fish in 1999 when
compared to the 2000 survey. We offer no explanation for the between year difference in these
results other than it supports Stanley and Wilson (1997) that fish densities vary seasonally.

Density at the two artificial reef sites ranged from 0 to 0.7 fish/m³. The partially removed platform
had a slightly higher mean fish density than the toppled platform; mean values (within 20m of each
site) of 0.002 vs. 0.0015 respectively. Both sites had highest fish densities near the bottom, which
is opposite the pattern reported at the standing platform. However, the partially removed platform,
HI A355, also had higher estimated densities near the surface resembling fish distribution at a
standing platform. There was little difference in species composition between the two reef
configurations. ROV surveys of HI A355 in June 1999 and in June 2000 indicated that red snapper
and amberjack were the two most abundant species both years, and together they made up over 70
percent of the fish community. Similarly, the survey of WC 617A, conducted in only June 1999,
indicated that greater amberjack, almaco jack, and red snapper were the most abundant species.
Species composition at the two reef sites were similar to species composition at the lower portion
of HI A350 and to previous studies by Stanley and Wilson (1997, 2000). It is of interest that the red
snapper and amberjack populations at the two reef sites were similar in number to the populations
estimated to be at the standing platform in similar water depths. These artificial reef sites, like their
platform predecessors, have significant fishing value since a majority of the species associated with
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these reef sites are targeted by commercial and recreational fisherman. When a standing platform
is converted into an artificial reef site, it appears that the pelagic planktivores which make up the
greatest biomass is lost; while recreational and commercially important species are retained.

Target strength data revealed information on the size distribution of fishes associated with all these
sites. In general, slightly larger fish are associated with a standing platform, particularly near the
middle water column, compared to a partially removed or toppled platforms, where they are larger
over the reef sites and near the surface (Stanley 1994). The larger species were shown to be pelagic
planktivores and piscivores by Stanley and Wilson (1997).

We found significant effects of orientation and distance with both artificial reefs. The probability
of finding a fish at WC 617A was highest over the platform and within 30 m of the reef; which is
similar to the survey of EI 366 done by Stanley and Wilson (Unpublished report). This is similar to
a reported 16 m area of influence by Stanley (1994) at platforms from 50-100m depths. Platforms
appear to have a finite reef effect that does not extend beyond visual range of the associated species.
The probability of finding a fish at HI A355 was highest around the sides of the platform and within
30 m of the structure, although fish biomass, and therefore density, were highest directly over the
reef site. Stanley and Wilson (Unpublished report) reported higher numbers of fish directly over
another artificial reef (EI 366), and reported the same high fish densities within 30 m of the artificial
reef. The difference in orientation (north, south, east, ands west) at HI A355 could be related to a
section of the jacket being placed roughly 30m away from the partially removed platform on the
southeast side. It is also possible that the small foot print of HI A355 confounded analysis. 

According to survey results from HI A355 and WC 617A, we estimate a loss of approximately 50-80
percent of the fish population when a standing platform is converted into an artificial reef site in 100
m of water. Each artificial reef site harbored approximately 2500 fishes compared to 7000 fishes
around the HI A350 and the 10,000- 20,000 reported by Stanley and Wilson 1998. This decline of
fish numbers was also observed during the survey of EI 313 and EI 367 done by Stanley and Wilson
(Unpublished report). Artificial reef configuration and orientation definitely influence the size of
and species composition of the associated fish community.

Acoustic surveys have been conducted at many artificial reef sites. As mentioned in the introduction,
Stanley and Wilson (2000) conducted a mobile acoustic survey of the Penrod drilling jack-up rig
at EI 313. Although their data were not published, they found approximately 7,000 fish around the
Penrod drilling jack-up rig in EI 313 (Stanley and Wilson 2000). The Penrod drilling rig was located
in shallower water (71.5 m) than these sites reported herein and had a more complex inner-structure
of decking and cross-member material; this more complex structure likely influenced fish
populations. For example, five sections of the Tenneco II platform were deployed off of southern
Florida, the solid deck portion of the platform did not contain the diversity and abundance of fishes
found on the grated surface section of the platform deployed 30m away (Seaman et. al. 1989). The
grating likely afforded more hiding places for small fishes, thereby increasing diversity of small
species and also food supply for predatory species. Also, openings in the grated surface would
permit access to the upper surface for animals living in protected areas under the deck (Seaman et
al 1989). It is likely that the greater number of fish around the Penrod drilling rig was due to the
different type of material such as decking and shallower water depths. Studies suggest that optimal
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artificial reef configurations exist, but vary, depending on the target species (Stanley and Wilson
1990).

Our results again emphasize the variability in abundance, size distribution, and species composition
of fishes associated with petroleum platforms, particularly those that have been configured as
artificial reefs. Results of previous studies have been well documented in earlier reports done by
Stanley (1994) and Stanley and Wilson (2000), and in general this variability is associated with both
temporal, spatial, and to some extent environmental variables. This research continues to support
the working hypothesis that platforms do make useful artificial reefs since they tend to support a
population of fish that can be 10 to over 1000 times greater in density than the adjacent sand and
mud bottom habitats. 

Completion of this research has provided quantitative data on the effect of vertical profile on fish
abundance, assessed the effectiveness of retired platforms sited as artificial reefs, and presented the
differences in abundance and species composition among sites. Since the reef sites are of similar age
and size, and are located within a radius of 48 km, comparison of the production platform and the
partial removal with the toppled platform has provided valuable insight into the effect of platform
configuration on the assemblage of fishes while minimizing confounding effects.

To date over 150 retired petroleum platforms from Texas to the Atlantic coast of Florida have been
converted to artificial reefs. A variety of removal techniques and placement configurations have
been employed in siting these reefs. While numerous qualitative studies documenting the
colonization and relative abundance of organisms associated with production platform have been
undertaken, it has proven difficult to conduct quantitative studies at artificial reefs; consequently,
little was known regarding the biotic communities associated with these artificial reefs.
Development of artificial reefs has been advocated by all levels of government and within the Reef
Fish Fishery Management Plan of the Gulf of Mexico Fishery Management Council (GMFMC
1989). Several research needs and goals have been outlined including the following: encouraging
general research on the effects of artificial reefs, improving the quantitative assessment techniques
used to describe artificial reef communities, monitoring biological changes at reef sites, assessing
the importance of fish attraction versus fish production, and quantifying the relationships between
reef fish production and habitat.
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ABSTRACT

The feeding habits of blue runner, Caranx crysos (Carangidae), were evaluated near offshore
petroleum platforms in the northern Gulf of Mexico (GOM). Fish and plankton samples were
collected at a mid-shelf platform located west of the Mississippi delta (Grand Isle 94B) from June
to August 1996 and at a mid-shelf platform (Main Pass 259A) located east of the delta from June
to September 1999. Meso- and macro-zooplankton comprised a large proportion of blue runner diets
at the two platforms. Decapod crustaceans, chaetognaths, amphipods, other invertebrates as well as
small fishes made up the majority of prey items. Variations in the diet over the sampling periods
may have been due to shifts in predator preference and prey availability. Stomach fullness revealed
that blue runner fed most intensely during night and pre-dawn hours with lower levels of feeding
during the day. Blue runner appeared to select for larger sized prey relative to size distributions
found in our plankton samples. Our hypotheses are that platforms are acting as large plankton
accumulators through hydrodynamic and illumination effects, which provide blue runner with food
and also extends foraging time.

INTRODUCTION

There are over 4,000 offshore petroleum platforms in the northern GOM (Stanley and Wilson 1996),
and the majority of the substrate off the coast of Louisiana and Texas consists of sand and silt
(Parker et al. 1983). The petroleum platforms in the same region have been estimated to provide
roughly 5,000 km2 of hard substratum (Kasprzak 1998), substantially increasing available reef-like
habitat. This large amount of vertical relief, termed vertical benthos, extends into the photic zone
and serves as a reef habitat for encrusting organisms and many fish species. The platforms in the
northern GOM have been described as the largest unplanned artificial reef complex in the world
(Stanley et al. 1998). High concentrations of fishes around these structures have stimulated attempts
to quantify the distribution and abundance of platform fish assemblages. Stanley and Wilson (1996,
1998, 2000) have utilized hydroacoustics to estimate densities and distributions of fishes associated
with platforms. These latter surveys confirmed the high densities of fishes and estimated that 10,000
to 30,000 fishes were associated with the manned platforms they examined.

Artificial reef design and management is centered on the often controversial “attraction versus
production” issue (e.g. Grossman et al. 1997; Lindberg 1997; Bohnsack et al. 1997). Do platforms
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merely attract fish from existing natural reefs to an area where they are susceptible to elevated
fishing pressure, or do the platforms serve as functional productive habitat capable of supporting
their high fish biomass? This issue remains an important question in evaluating the relationship
between platforms and fishes. While data exists on densities and distribution of platform-associated
fish, relatively little is known of how these populations are sustained. Understanding the trophic
ecology of platform associated fishes may help us to evaluate the degree to which platform
production is transferred to fish and to develop strategies for converting decommissioned platforms
into productive artificial reefs.

One of the most common pelagic fish species in the GOM is the blue runner, Caranx crysos. This
coastal pelagic species is found in the western Atlantic from Nova Scotia to Brazil (McKenney et
al. 1958), throughout the eastern Atlantic and Mediterranean and has recently been recorded in
British waters (Swaby et al.). This medium-sized fish (common to 350 mm fork length (FL)) may
be found singly or more commonly in large schools in open waters. Blue runner appear to be the
most abundant species in the surface waters around offshore platforms. Stanley and Wilson (2000)
reported that blue runner numerically constituted up to 94% of the fishes found at a mid-shelf
platform off Louisiana.

Blue runner are likely major dietary components of larger predatory fish associated with platforms
(e.g. barracudas, groupers, cobia and other large jacks) as well as predators that frequently visit
platforms (e.g. mackerals, billfish and tunas). Blue runner are likely important trophic links in
platform food webs; however, relatively little is known about the diets of blue runner themselves.
Some data exist on feeding habits of larval and juvenile blue runner, but accounts of adult feeding
habits are anecdotal. McKenney et al. (1958) and Schekter (1972) stated that blue runner less than
160 mm standard length (SL) were carnivorous plankton feeders feeding primarily on copepods.
Larger juveniles of the genus Caranx were noted to have larger organisms in the diets such as hy-
periid amphipods, pontellid copepods, and juvenile natantida. Randall (1967) recorded the stomach
contents of 17 mature (190-520mm FL) blue runner from reef habitats in the West Indies. All but
two of these had “small silvery schooling” fish in their stomachs, while two fish (222 and 250 mm
FL) reportedly contained 40% planktonic organisms with the remaining contents being fish. The
stomachs of two adult male blue runner (365 and 370mm SL), collected in Mississippi coastal
waters, were noted to contain anchovies and two mantis shrimp (Squilla empusa) (Christmas et al.
1974).

Observations of adult blue runner apparently feeding on zooplankton at night beneath a mid-shelf
petroleum platform were the motive for the research reported in this paper. Our research was
designed to quantify the diet of blue runner at mid-shelf petroleum platforms off the coast of
Louisiana. The objectives of our study were to (a) describe the food habits of and monthly
variability in the diet of C. crysos over the summer; (b) evaluate the diel periodicity in feeding; and
(c) compare sizes of prey in the diets of blue runner with size distributions of prey in the
environment.
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 METHODS

Study Sites

The diets of Caranx crysos were investigated at two offshore platforms located west and east of the
Mississippi delta. Grand Isle 94B (GI94B) (28.5267oN, 90.0983oW) is a mid-shelf platform located
west of the Mississippi River in 63 m of water. Samples were collected from Grand Isle 94B during
28-30 June, 28 July,  1 August, and 12-15 August 1996. Main Pass 259A (MP259A) (29.2833oN,
88.0333oW) is a mid-shelf platform located east of the Mississippi River standing in approximately
130 meters of water. Monthly sampling trips were made to Main Pass 259A during 11-14 June, 9-12
July and 24-27 September 1999. 

Fish Sampling

Each trip lasted approximately three days during which time fish were collected opportunistically
using hook and line with artificial lures. Mass, length, sex, and time of capture were recorded for
each fish. Blue runner were anesthetized in an ice bath, which also served to arrest digestion, and
then sacrificed by severing the spinal cord. Stomachs were removed by severing the esophagus and
the duodenum below the pyloric sphincter, injected with 95% ethanol, and stored in ethanol
preservative until they were transported to our laboratory.

Enumeration of Stomach Contents

Stomach contents were examined with a microscope and identified to the following taxonomic
categories: fish, decapod/stomatopod, hyperiid amphipods, chaetognaths, other invertebrates, and
unidentified material. The number of prey in each category were counted and wet masses recorded
to the nearest milligram. These parameters provided numerical and mass based estimations of the
contributions of each prey category to the diet. 

Plankton Sampling

A surface zooplankton sample was collected beneath MP259A using a passively fished 0.28 m2 ring
net equipped with a 333 mm mesh net and a General Oceanics Model 2030 flow meter. The net was
attached to a vertical monorail and mounted within a gimbaled frame fitted with a current vane so
that the mouth of the net faced the prevailing current. The net was fished for 30 minutes from 17:45-
18:15 hours on 12 June 1999. Plankton were preserved in 5% formalin for 24 hours before being
transferred to 95% ethanol. Samples were sorted and classified into the same groups as for the
dietary analysis.

Data Analysis

The Index of Relative Importance (IRI) was used to evaluate monthly variation in blue runner
feeding. Relative importance (IRI) (Pinkas et al. 1971; Cortes 1997) values were estimated for each
prey category (i) using

IRIi = (Ni + Gi) x Fi (1)
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Where Ni is the numerical proportion (%) of the ith prey category in the stomach, Gi is the
gravimetric proportion (%) of the ith prey item and Fi is the frequency of occurrence expressed as
the number of stomachs containing prey category (i) divided by the number of stomachs containing
at least one prey item of any category. Percent IRIs for each prey item were then converted to %IRI
using

%IRI = IRIi / ∑ IRI x 100 (2)

Size Selection

Size selection was evaluated from the Main Pass 259A platform during the June trip by comparing
zooplankton collected from surface currents to those found in blue runner stomachs. After
identification and enumeration, photographs were taken of all prey items and samples from the net
using a digital camera system. These were analyzed with image processing software (NIH Image
1.62) to determine zooplankton body lengths. Fragmentation of zooplankton in stomachs generally
precluded direct measurement of length. Certain body sections were more resistant to digestion, and
the relationship between the lengths of body parts and total length (Table 8.1) was used to estimate
their original dimensions. Zooplankton from the net sample were binned into 0.25 millimeter size
classes and compared with prey from the stomach of four fish collected within an hour of the net
sample. These distributions allowed a qualitative evaluation of the size-selection for prey of
different sizes.

Table 8.1. Regressions fitted for three prey categories commonly consumed by blue runner. These
relationships were used to reconstruct whole body lengths (B.L.) from characteristic
body sections of organisms taken from stomachs.

Taxa/Organism Body Section Equation R2

Hyperiid amphipods Eye depth (ED) B.L. = 2.353 x ED + 0.481 0.64

Lucifer spp. Eye Length (EL) B.L. = e1.523 x EL1.01 0.92

Small shrimp Carapace Length (CL) B.L. = e1.31 x CL0.63 0.75

Diel feeding periodicity was estimated using a stomach fullness index modified from Juanes and
Conover (1994). Stomach fullness was computed for each fish by dividing the wet weight of all prey
items in each stomach by the wet weight of the empty stomach. A gut fullness index was estimated
by dividing the fullness value for each fish by the maximum fullness value observed from all fish
collected at the particular platform sampled. It was not possible to capture blue runner from all hours
of the day on any single trip. A composite pattern of the daily feeding periodicity of blue runner was
developed by grouping all fish collected at each platform into two-hour time bins.
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RESULTS

The stomachs of 37 of 38 fish collected from Grand Isle 94B in 1996 contained prey items, while
79 of the 88 blue runner from Main Pass 259A in 1999 contained prey items. Blue runner ranged
in size from 255 Ð 445 mm FL at the Grand Isle platform and 165 Ð 499 mm FL at the Main Pass
platform. This size range indicates most were at or approaching sexual maturity (Goodwin and
Finucane 1985). Further, many fish contained developing or mature gonads.

Dietary analysis indicated a high degree of zooplanktivory in blue runner collected from both
platforms (Figure 8.1). Zooplankton constituted approximately 86% numerically of the identifiable
diet contents at Grand Isle 94B in 1996 and 94% numerically at Main Pass 259A in 1999.
Zooplankton were dominated by decapod and stomatopod crustaceans and chaetognaths. When diets
were evaluated on the basis of prey mass, zooplankton made up 15% of the diet at Grand Isle 94B
and 18% of the diet at Main Pass 259A. The large proportion of invertebrates at Main Pass 259A
was contributed primarily by cephalopods. The stomachs of fish from both platforms contained
unidentifiable amorphous tissue which constituted 33% and 8% of the overall diet at Grand Isle 94B
and Main Pass 259A, respectively.

The diets of blue runner changed over the course of the summer, based on shifts in their IRI values.
Adult and larval forms of decapod and stomatopod larvae were a substantial component of the diet
at Grand Isle 94B during June and July (Figure 8.2). In August, the IRI indicates that fish, primarily
Bregmaceros spp., replaced decapods and stomatopods in the diet. Chaetognaths and a variety of
hyperiid amphipods contributed to the diets of blue runner at Grand Isle 94B in June and declined
in importance over the summer. Fish and decapod/stomatopods were both important in the diets
during June at the Main Pass platform (Figure 8.2). Unlike the pattern observed at Grand Isle 94B,
decapods and stomatopods continued to predominate in the diet during July and September at Main
Pass 259A. Fish declined in importance over the summer, while other invertebrates (primarily
cephalopods) assumed greater importance during July.

Blue runner appear to feed at low levels throughout the day and exhibit a peak in feeding activity
in the pre-dawn and early morning hours (Figure 8.3). They are also capable of feeding after dark
at levels comparable to those observed during the day. The number of fish collected at Grand Isle
94B was insufficient to construct a complete picture of the feeding periodicity of blue runner. The
pattern at GI94B, however, was similar to that observed at Main Pass 259A where a larger number
of fish produced a better estimate of feeding periodicity. The nocturnal peak feeding at Grand Isle
94B was based on a single fish; however, the presence of a feeding pulse beginning sometime after
midnight and extending past dawn was supported by the data from Main Pass 259A (Figure 8.3).

Blue runner appear to preferentially select for large zooplankton and in some cases, the length of
prey exceeded the size ranges that were present in our net sample (Figures 8.4 and 8.5). The size
distributions of decapod prey in the stomach overlapped the upper end of the size distribution for
this group in the net and extended past the upper range collected by the net (Figure 8.4). Small
zooplankton such as crab megalopae and crab zoea were absent from or rare in stomach. Similarly,
blue runner appeared to consume the largest size fractions of hyperiid amphipods present in the net
and also foraged on amphipods larger than those collected in the net.
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Figure 8.1. Numerical proportion (upper row) and gravimetric proportion (bottom row) for the
prey items in the diets of blue runner from the two platforms sampled. The
proportions are pooled over the three trips to each of the platforms: June, July and
August 1996 (Grand Isle 94B) and June, July and September 1999 (Main Pass
259A).
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Figure 8.2. Monthly variation in Index of Relative Importance (IRI) for dominant prey taxa from
the two platforms.
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Figure 8.3. Stomach fullness values for blue runner collected over the summer at GI94B (top)
and MP259A (below). Fish were pooled over all months and binned into two hour
time blocks. The number of fish caught in hour block appears above the bars. Error
bars indicate ± 1 S.E. on the mean.
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Figure 8.4. Length frequency distributions for decapods taken from surface plankton net and
stomachs of concurrent captured blue runner (n=4) during June 1999.
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Figure 8.5. Length distributions of hyperiid amphipods collected from a surface plankton net and
from blue runner stomachs in June 1999 at Main Pass 259A.
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DISCUSSION

Zooplankton appear to comprise a large amount of the diets of blue runner during the summer
months. There appeared to be a seasonal shift in diet over the course of the study at both platforms
that may reflect changes in the abundance of prey, shifts in preference by blue runner, or both
phenomena. While the dietary patterns displayed by blue runner differed among the two sites, the
presence of relatively large zooplankton in the form of hyperiid amphipods, chaetognaths, decapods
and stomatopod larvae was a consistent feature. Blue runner are likely opportunistic feeders and the
shift towards the fish Bregmaceros spp. at Grand Isle 94B in August may have been a response to
a local increase in the abundance of favorable prey. 

The contribution of zooplankton to the diet may be underestimated due to the rapid digestion rates
of these organisms. Gut evacuation rates increase with temperature in temperate fish (Popova and
Sierra 1985; Buckel and Conover 1996). Increased digestion rates in the warm surface waters of the
Gulf may have rapidly rendered the zooplankton unidentifiable and caused an underestimate of their
gravimetric contribution to the diet. Haywood (1995) examined the digestion rates of penaeid
postlarvae by a small carangid Monocanthus chinensis and estimated that after 3 h, rapid digestion
could lead to a 33% underestimate in the number of postlarval prey in the stomach and a 75%
underestimate in their dry mass. Rapid digestion may also lead to underestimation of the nutritional
value of zooplankton prey in fish diets (Cortes 1997). Some fraction of the unidentifiable matter
from blue runner stomachs that could not be associated with either zooplankton or fish prey likely
came from zooplankton that were in advanced stages of digestion.

Blue runner appear to consume relatively larger zooplankton. We could not conduct a quantitative
evaluation of size-based electivity because many of the largest zooplankton that typically appeared
in blue runner stomachs were able to avoid our passively-fished net. Hyperiid amphipods and the
larger decapods are relatively strong swimmers and their absence from the net was likely due to
avoidance. Large chaetognaths were also common in both the stomachs and our net; however, they
were usually fragmented in the gut and we were not able to develop a reliable allometric regression
to reconstruct their intact lengths from fragments. Small zooplankton such as ostracods, pteropods
and copepods were present in the net samples but absent from stomachs, further suggesting that blue
runner were actively selecting for large prey. Given that our size selection data are based on a single
net and just four fishes, it is clear that further work using different sampling gear will be required
to address the issue of size selection more rigorously.

At both platforms there was evidence that blue runner feed during the night and begin their
maximum feeding activity after dark. This phenomenon is unusual and is probably apparent only
in the vicinity of illuminated petroleum platforms because blue runner are visual predators. Other
comparably-sized, zooplanktivorous visual predators such as Atlantic mackeral Scomber scombrus
reduce feeding rates with diminishing light intensity (Macy et al 1998). Most manned and the larger
satellite platforms in the GOM are equipped with large floodlights that illuminate the surrounding
waters. This artificial light field appears to permit blue runner to extend their feeding into the night,
since gut fullness values at night were comparable with those observed during the day. We did not
quantify the light field around platforms because we were restricted to the platforms; however, based
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on observations of fishing lures and other objects in the water, the illuminated volume of water is
likely restricted to the near-surface region and a radius of 50-100m around the platform.

The appearance of zooplankton in the diets of blue runner does not establish a trophic linkage
between the platform and the pelagic species. Most of the plankton in the diet were from
holoplanktonic or meroplanktonic groups. Hyperiid amphipods are known for their association with
gelatinous zooplankton (perhaps one of the keys), but not with fouling communities. Little is known
about the responses of amphipods and other zooplankton to the structure of a platform when they
encounter one in the pelagic zone. Comparisons of the catch per unit effort of hyperiid amphipods
in light traps placed beneath, and down-current from a large platform suggest that this group can
accumulate beneath the platform at night (Keenan et al. 1998).

While the predominant taxa in the diets of blue runner are not direct associates of platforms, there
may still be a connection between the platforms and the prevalence of zooplankton in the diets of
blue runner. Flotsam, Sargassum, and foam frequently accumulate beneath platforms. This
accumulation is probably due to a reduction in the current velocity and an increase in flow
complexity as the prevailing current interacts with the platform. Forristall (1996) measured the
degree of current blockage near the Bullwinkle (GC65) platform with acoustic Doppler current
profilers arranged in an outward looking horizontal plane at 18 m depth. His findings indicated that
the mean current velocity inside the platform structure could be about 80% that unimpacted up-
current velocity and that reductions were even lower directly behind dense conductor casings.
Decreases in current velocities coupled with an increase in eddy formation could allow zooplankton
to extend residence time beneath a platform, which would lead to an increase in the concentrations.

The lights of manned platforms may further increase zooplankton concentrations and enhance the
effect due to currents at night. Many zooplankton, such as amphipods, display positive phototaxis
and actively swim towards light. Light traps are commonly used as collection gear for animals
around platforms by colleagues (Ditty et al. 1998) and the same groups that predominate in blue
runner stomachs (decapods, hyperiid amphipods, chaetognaths and small fish) are the dominant
constituents of light trap samples. The combined influence of the artificial light field and the current
alterations may cause platforms to act as large, passive zooplankton accumulators. Thus the
platforms may provide blue runner with enhanced densities of prey and an opportunity to feed
continuously. Such conditions may explain how such large densities of blue runner can be sustained
by the waters around platforms.

To address these hypotheses, we are in the process of analyzing data from research cruises taken
during the summer of 2000. Plankton net tows from a vessel were used to evaluate the zooplankton
distribution on the up-current and down-current sides of different sized platforms. Hydroacoustics
were used to quantify the flow field around platforms and to examine patterns of backscatter from
zooplankton. If plankton are accumulating beneath the structure, we would expect to see lower
densities on the down-current side relative to open water densities. Blue runner were collected both
around platforms and in open waters away from platforms. The results from these studies will likely
provide more information on the trophic linkages between blue runner and zooplankton at offshore
platforms.
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ABSTRACT

While sampling ichthyoplankton associated with artificial structures across the continental shelf (3-
230 m depth) of the northern Gulf of Mexico (GOM), we compared passive, 60 cm diameter
plankton net and light-trap methodologies at three offshore petroleum platforms (continental shelf
slope, mid-shelf, and inner shelf) and a 1m x 1m plankton pushnet and a light-trap at a coastal jetty.
Clupeiform fishes dominated collections for all gears (59%-97% of the total catch for nets and light-
traps combined). Plankton nets collected more fish than light-traps at the shelf slope and inner
platforms (plankton net vs. light-trap: 1,404 vs. 659; 3,076 vs. 12,474; and 1,689 vs.1,193), and the
pushnet collected more fish than the light-trap (33,1477 vs. 849) at the jetty. Plankton nets collected
individuals from more families than light-traps at the shelf slope and mid-shelf platforms (plankton
net vs. light-trap: 43 vs. 35; 38 vs. 35; and 32 vs. 32), but only collected more taxa (genus level) than
light-traps at the shelf slope platform (plankton net vs. light-trap: 56 vs. 47; 75 vs. 78; and 50 vs.
56). At the jetty, the pushnet collected more families (39 vs. 19) and taxa (77 vs. 34) than the light-
trap. Results of Kolmogorov-Smirnov length-frequency comparisons of fish collected in plankton
nets vs. light-traps indicated light-traps generally overlapped the net’s smaller sizes, but also
collected significantly larger individuals. At the jetty, greater overlap in size distributions was
observed for comparisons of the pushnet and light-trap. Schoener’s Index of Niche Overlap values
for light-trap and plankton net samples indicated low similarity between gears at two platforms
(0.32-0.38), but higher similarity (0.63) at the inner shelf platform which was most dominated by
clupeiforms. At the jetty, pushnet and light-trap samples had relatively high taxonomic similarity
(0.61). Few significant differences were detected between Shannon-Weiner Diversity Indices for
platform light-trap and plankton net samples, while at the jetty, pushnet samples had significantly
higher diversity than light-trap samples. When significant differences in mean total densities and
mean total CPUEs were found between new vs. full moon phases, four out of five instances had
greater new moon catches. 

INTRODUCTION

Most marine fishes, particularly structure-associated or reef-dependent fishes, have a pelagic early
life history stage (Moser et al. 1984; Leis 1991). Previous studies have indicated that larval source,
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supply, recruitment, and settlement patterns can greatly influence the adult population dynamics of
reef fish on both natural (Victor 1983 1986; Sponaugle and Cowen 1996) and artificial reefs (Lukens
1981; Stephens et al. 1994). In response to the need for crucial information on reef fish early life
history stages, several methods have been developed to collect larval and juvenile fishes in a variety
of environments. Many reef fish juveniles are at some time associated with structurally-complex
habitats, either while in a nursery area (mangroves, seagrass meadows, oyster reefs) or on the reef
environment itself. While towed sampling gears are effective in open waters, these methods are
usually not suitable for shallow or structurally complex habitats (Brogan 1994).

Different methodologies have been developed to collect fish early life history stages in complex
environments including plankton pumps (Taggert and Legget 1984; Brander and Thompson 1989),
visual censuses (Kingsford and Choat 1989), moored channel nets (Keener et al. 1988; Shenker et
al. 1993), larval purse seines (Murphy and Clutter 1972; Choat et al. 1993), and diver-steered
plankton tows (Marliave 1986; Brogan 1994). Other methods have used light sources to aggregate
fish for collection and include lighted purse seines (Choat et al. 1993), light lift-nets (Dennis et al.
1991; Rooker et al. 1996) and light-traps of various designs (Doherty 1987; Thorrold 1992; Choat
et al. 1993; Brogan 1994; Sponaugle and Cowen 1996; Hernandez and Lindquist 1999; Hickford
and Schiel 1999; Reyns and Sponaugle 1999). All of these methods have different biases,
advantages, and disadvantages and should be chosen to best suit the environment being sampled and
the questions being addressed.

To date, few studies have investigated the ichthyoplankton assemblages associated with oil and gas
platforms in the northern Gulf, in part due to the difficulties in sampling within the complex, mostly
vertical infrastructure of the platforms. Although Gallaway (1998) calculated that oil and gas
platforms in the northern Gulf provided 11.7 km2 (or 4.0%) of the total “reef” habitat. The fact that
platforms represent vertical artificial substrate that extends from the bottom to the surface (photic
zone), regardless of location and depth, increases their significance (Parker et al. 1983). These and
other artificial structures (e.g., jetties, breakwaters) could represent significant habitats for reef fish,
since the northern Gulf is dominated by a mud/silt/sand bottom with little relief or hard-bottom
habitat. In our attempt to characterize the across-continental shelf ichthyoplankton communities
associated with artificial structures (three offshore oil and gas platforms and a coastal jetty) in the
northern Gulf, we used a variety of gear types to sample the widest range of taxa, size classes, and
cohorts available. This paper reports the results of gear comparisons between a passive plankton net
and light-trap used at the petroleum platforms, and between a bow-mounted, plankton pushnet and
light-trap (the same design) used at the coastal jetty. In our comparisons, we examined the taxa
collected by the different gears, the similarity and diversity of the catches, as well as the size
selectivities of the gears. Our findings will be useful to those designing similar sampling efforts for
larval and juvenile fishes in the vicinity of complex structures. 

STUDY SITES

Data collection and analyses focused on three oil and gas platforms in the northern Gulf and at a
low-salinity, coastal rock jetty environment, which provided a far-field, non-platform site end-
member that was equally complex structurally and represented another artificial reef-type, hard-
substrate habitat. Site selection for the three study platforms (west of the Mississippi River Delta)
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was based upon the work of Gallaway et al. (1980), Gallaway (1981), and Continental Shelf
Associates (1982) who reported that nekton communities around platforms could be categorized by
water depth in the northern Gulf. Three communities were characterized: a coastal assemblage
(water depths <27m), an offshore assemblage (water depths 27 to 64 m), and a bluewater/tropical
assemblage (water depths >64m). The platforms selected and the jetty site encompass all three
zones. Mobil’s Green Canyon (GC) 18, which lies in about 230 m of water on the shelf slope
(27°56'37"N, 91°01'45"W), was sampled monthly during new moon phases over a two to three night
period during July 1995-June 1996. Mobil’s Grand Isle (GI) 94B, which lies in approximately 60
m of water at mid-shelf (28°30'57"N, 90°07'23"W), was sampled twice monthly during new and full
moon phases over a three night period during April-August 1996. In addition, during May, extra
samples during the first quarter and third quarter moon phases were collected, but due to inclement
weather, full moon collections were cancelled. Exxon’s South Timbalier (ST) 54G, which lies in
approximately 20 m of water on the inner shelf (28°50'01"N, 90°25'00"W), was sampled twice
monthly during new and full moon periods in during April-September, 1997. The stone rubble jetties
(2-3 m depth) at the terminus of Belle Pass, a major shipping channel near Fourchon, Louisiana (N
29 03.90, W 90 13.80), were also sampled over a two-night period in 1997 simultaneously with the
sampling of ST 54.

METHODS

Sampling protocols are described in detail elsewhere (Hernandez et al. this volume). In general,
passive plankton nets (60-cm diameter; 333mm mesh dyed green) were used to collect ichthyoplank-
ton at the three platform sites, both at depth (10-20 m for 10-20 min, set and retrieved closed) and
near surface (1-2 m for 10-15 min) within the platform structure. Quatrefoil light-traps were de-
ployed for 10 minutes at depth and near surface within the platform structure, and in addition were
also floated downstream (approximately 20 m) from the platform for off-platform collections. Both
the subsurface and off-platform light-traps were deployed with the light off until the sampling depth/
location was reached, fished, and then retrieved with the light off. At Belle Pass, light-traps were
fished along the jetty walls, as well as a bow-mounted plankton pushnet (1 m x 1 m; 1000 :m mesh
net dyed green; 3-5 min samples). 

The quatrefoil light-trap (Figure 8.6) was modified from Floyd et al. (1984) and Secor et al. (1993).
The main modifications are as follows: acrylic tubes in the main body of the trap were enlarged to
15.24 cm (6") outer diameter; the collection assembly at the bottom of the trap was replaced with
short conical plankton-net (202 µm)and cod-end assembly; four vertical, stainless steel bars were
added to the corners of the trap for additional support; the light source was a Brinkman Starfire II
12-volt halogen fishing light (250,000 candlepower); for surface samples, power was supplied
through an umbilical cord by a 12-volt marine battery located on the lower deck of the platform; for
subsurface collections, either an umbilical cord connected to a 12-volt battery or a submersible
battery was used; the battery was made by placing a 7.0 amp/h rechargeable sealed lead battery in
a 1/4" thick PVC tube with a watertight connector on one end and a complimentary pig-tail on the
end of the cable supplying power to the light.

Due to the very large numbers of clupeiform (Clupeidae and Engraulidae) fishes collected,
particularly in light-trap samples, statistical analyses were run without these taxa, unless otherwise
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Figure 8.6. Specifications for the modified quatrefoil light-trap used in this study.
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noted. Clupeiform fishes are seldom the taxa of interest in studies of hard substrate habitats, i.e.,
(artificial) reefs, and their abundances tend to overwhelm the trends of other taxa (Choat et al.
1993). All ANOVA, Tukey’s Studentized Range Tests, and Student’s t-tests were run with SAS
version 6.12 (SAS 1989).

Studentized t-tests ("=0.05) were used to compare overall plankton net densities between locations
(subsurface and surface) within the GC 18, GI 94, and ST 54 sites. Light-trap CPUEs were
compared between locations (subsurface, surface, and off-platform) within each of the platform sites
using an ANOVA model with gear as a main effect. Tukey’s Studentized Range tests were used to
determine which light-trap collections were significantly different. Before testing, plankton net
densities were log transformed (log10(x+1)) to conform to normality and homogeneity of variances.
Analyses on light-trap CPUEs were run on ranked-transformed data.

Kolmogorov-Smirnov (K-S) length-frequency analyses ("=0.05) were performed for selected
species from GC 18, GI 94, ST 54, and Belle Pass to determine if there were any significant
differences between the size distribution of fish collected with light-traps vs. plankton nets (Sokal
and Rohlf 1981). Taxa from each platform site and Belle Pass were chosen for these analyses if at
least 10 individuals were collected by each gear type. All K-S analyses were performed using
SYSTAT version 4 (SPSS 1999). 

Lunar periodicity (full and new moon) was examined for plankton net and light-trap samples
collected at GI 94, ST 54, and Belle Pass using Student’s t-tests ("=0.05). An ANOVA model and
Tukey’s Studentized Range tests were used to analyze the densities and CPUEs of samples collected
in May of 1996 at GI 94 ( third quarter, new, and full moon periods). 

Schoener’s Index of Niche Overlap (Schoener 1970) was calculated for comparisons of fish
collections within the platform structure (surface net and surface light-trap) and farfield collections
(off-platform light-trap) and total net collections vs. total light-trap collections. This same gear
analysis was performed to compare the similarity of light-trap and pushnet collections at Belle Pass.
Only fish identified to at least the genus level were used in the analyses. Shannon-Weiner diversity
indices (Magurran 1988) were calculated for each sample collected at GC 18, GI 94, ST 54, and
Belle Pass. Differences in diversity between gear types at each site were analyzed with ANOVA
models using gear as a main effect. Post-ANOVA tests (Tukey’s Studentized Range, "=0.05) were
used to determine which gear types were significantly different. Only fish identified at least to the
level of genus were included in these analyses. Also, since the intent of the similarity and diversity
indices was to characterize the taxonomic assemblages sampled by each gear type, clupeiform fishes
were included in these analyses.

RESULTS

Overall Abundances

At GC 18, plankton nets and light-traps collected 1,404 and 659 fish, respectively, with a mean total
density of 74.6 fish/100m3 and a mean total CPUE of 2.1 fish/10 min (Table 8.2). Plankton nets
collected fish from more families than light-traps, 15 of which were exclusively collected with
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Table 8.2. Number of samples, total individuals, families, and taxa collected at each site with a
passive plankton net, light-trap, and plankton pushnet. Mean total densities (nets) or
CPUEs (light-traps) are also provided for each gear at each site. Values in parentheses
indicate the number of families or taxa (at least to genus level) unique to that gear type.

Gear Type
Number of

samples
Number
of fish

Mean Total Density
and CPUE

Number
of families

Number
of taxa

Green Canyon 18

 Passive Plankton Net 125 1,404 74.6 fish/100m3 43 (15) 56 (25)

 Light-trap 319 659 2.06 fish/10 min 35 (7) 47 (14)

Grand Isle 94

 Passive Plankton Net 329 3,076 69.6 fish/100m3 38 (6) 75 (26)

 Light-trap 474 12,474 26.2 fish/10 min 35 (3) 78 (27)

South Timbalier 54

 Passive Plankton Net 89 1,689 166.0 fish/100m3 32 (8) 50 (16)

 Light-trap 194 1,193 0.6 fish/10 min 32 (8) 56 (24)

Belle Pass Jetty

 Plankton Pushnet 149 33,147 136.7 fish/100m3 39 (20) 77 (44)

 Light-trap 148 849 4.6 fish/10 min 19 (0) 34 (3)

plankton nets. Light-traps collected fish from seven families which were not collected in plankton
nets. Plankton nets collected fish from 56 taxa (identified at least to genus level), 25 of which were
not collected with light-traps, while light-traps collected fish from 47 taxa with 14 being unique to
light-trap collections. Mean plankton net densities ranged from 3.3-318.0 fish/100 m3, while light-
trap CPUEs ranged from 0-12.2 fish /10 min (Figure 8.7). Sciaenops ocellatus, Caranx hippos/latus,
and Mugil cephalus were among the most common non-clupeiform fishes in the plankton net
collections (Table 8.3). Coastal pelagic taxa such as Auxis spp., Caranx crysos, and C. hippos/latus
were common in the surface and off-platform light-trap collections. 

At GI 94, plankton nets collected 3,076 fish while light-traps collected 12,474 fish, with a mean total
density of 69.6 fish/100 m3 and a mean total CPUE of 26.2 fish/10 min (Table 8.2). Plankton nets
collected individuals from more families than light-traps, but light-traps collected fish from more
different taxa than plankton nets. Twice as many unique families were collected by plankton nets,
while the number of unique taxa collected by each gear type was nearly identical. Mean plankton
net densities ranged from 16.6-201.0 fish/100 m3, while mean CPUEs ranged from 1.2-197.1 fish/10
min (Figure 8.8). Benthic taxa such as Symphurus spp. and Bregmaceros cantori were common in
plankton net collections, as well as coastal pelagic species such as Auxis spp. and Euthynnus
alletteratus (Table 8.3). Among the most common fishes collected in light-traps were synodontids
(primarily Synodus foetens and S. poeyi) and blenniids (primarily Hypsoblennius invemar and
Parablennius marmoreus). 



520

0
20
40
60
80

100
120
140
160
180
200

Ju
n 2

6-2
9

Aug
 25

-28

Sep
 24

-25

Oct 
23

-25

Nov
 21

-23

Ja
n-1

9

Feb
 17

-18

Apr 
15

-18

May
 17

-20

Ju
n 1

8-2
1

Sampling Dates

D
en

si
ty

 (f
is

h/
10

0 
m

3 )
Subsurface Net Surface Net

318.0

a.

0

1

2

3

4

5

6

7

Ju
n 2

6-2
9

Aug
 25

-28

Sep
 24

-25

Oct 
23

-25

Nov
 21

-23

Ja
n-1

9

Feb
 17

-18

Apr 
15

-18

May
 17

-20

Ju
n 1

8-2
1

Sampling Dates

C
PU

E 
(fi

sh
/1

0 
m

in
)

Subsurface LT Surface LT Off-platform LT

12.17

b.

Figure 8.7. Mean plankton net densities (a) and light-trap CPUEs (b) with standard errors for
each sampling trip at Green Canyon 18 (1995-96). Arrows above bars point toward
the off-scale mean for that gear. No subsurface plankton net samples were taken
during 26-29 June, 25-28 August, 24-25 September, or 15-18 April. No surface net,
surface light-trap, or subsurface light-trap samples were taken during 15-18 April.
No fish were present in subsurface light-trap samples (n=10) during 17-18 February.
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Table 8.3. Size ranges (SL in mm) and percent of the total catch by gear for dominant taxa (>1%)
collected by at least one gear type. Note the preponderance of recently-spawned larvae,
late stage postlarvae, or juveniles collected with both gears. Also note the overlap in
sampling efforts for GC 18 and GI 94, and ST 54 and Belle Pass.

Light-trap Plankton net

Taxon Size Range % Size Range %
Green Canyon 18 (July 1995-June 1996)

Cyclothone braueri 3.2-7.2 5.8 4.0-13.0 1.8

Saurida brasiliensis 3.2-9.8 5.8

Trachinocephalus myops 16.2-35.0 1.8

Bregmaceros cantori 1.5-6.7 2.0 1.3-6.8 4.5

Gobiesox strumosus 2.6-3.2 2.0

Holocentrus spp. 6.0-37.5 4.0

Caranx crysos 5.0-65.0 12.0 2.5-16.5 3.3

Caranx hippos/latus 3.0-54.0 6.4 2.0-32.0 10.9

Chloroscombrus chrysurus 1.9-7.0 1.6

Elagatis bipinnulata 2.0-3.5 1.3

Pristipomoides aquilonaris 2.3-40.0 3.9

Eucinostomus spp. 6.5-11.2 3.3

Cynoscion arenarius 2.5-4.5 1.1 2.0-4.4 6.9

Micropogonias undulatus 3.2-4.5 1.1

Sciaenops ocellatus 1.8-3.9 12.3

Pomacentrus spp. 9.0-19.3 4.7

Mugil cephalus 2.4-21.5 3.8 2.2-5.0 9.0

Microdesmus lanceolatus 2.0-11.0 1.5

Microdesmus longipinnis 2.4-4.9 1.8

Auxis spp. 3.3-59.0 13.3 2.2-10.5 7.6

Euthynnus alletteratus 6.2-87.0 5.1 3.0-12.0 2.5

Scomberomorus cavalla 3.0-4.5 1.3

Scomberomorus maculatus 2.0-10.1 2.1

Ariomma spp. 2.1-2.5 7.8

Peprilus burti 1.7-4.2 2.0 1.4-3.3 1.2

Citharichthys spilopterus 3.0-8.0 2.1
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Light-trap Plankton net

Taxon Size Range % Size Range %
Syacium spp. 3.5-6.5 2.7

Symphurus spp. 2.2-8.0 5.3 2.8-9.0 6.9

Grand Isle 94 (April-August 1996)

Saurida brasiliensis 4.5-55.0 7.9 2.7-22.5 6.2

Synodus foetens 6.0-43.0 30.6 4.2-22.5 1.8

Synodus poeyi 5.3-45.0 15.6 2.0-16.5 1.2

Bregmaceros cantori 2.0-29.0 3.0 2.0-15.5 16.6

Caranx crysos 2.5-15.0 2.1

Chloroscombrus chrysurus 2.1-16.5 1.5

Lutjanus spp. 3.0-5.5 1.0

Cynoscion arenarius 1.9-5.2 2.2

Sphyraena guachancho 2.6-7.3 2.7

Hypsoblennius hentz/ionthas 4.3-12.0 2.5

Hypsoblennius invemar 3.5-14.5 13.8

Parablennius marmoreus 4.4-23.7 12.3

Scartella/Hypleurochilus 3.6-12.5 1.7

Microdesmus lanceolatus 2.4-25.0 2.2

Auxis spp. 4.0-36.0 1.4 2.5-10.3 10.3

Euthynnus alletteratus 3.1-60.0 5.3 2.7-8.7 10.7

Etropus crossotus 2.5-9.0 2.6

Syacium spp. 2.1-8.5 3.0

Symphurus spp. 2.0-12.8 22.5

South Timbalier 54 (April-September 1997)

Saurida brasiliensis 26.4-43.0 1.2

Synodus foetens 9.0-44.5 38.9

Bregmaceros cantori 2.2-11.7 2.1

Caranx crysos 6.5-24.5 2.0

Caranx hippos/latus 5.5-35.0 3.8

Chloroscombrus chrysurus 2.1-16.5 1.5

Lutjanus spp. 3.0-5.5 1.0

Menticirrhus spp. 2.4-5.0 1.9
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Light-trap Plankton net

Taxon Size Range % Size Range %
Hypsoblennius hentz/ionthas 3.4-12.5 4.4

Hypsoblennius invemar 5.7-13.8 3.6

Scartella/Hypleurochilus 2.0-14.3 5.0

Microdesmus lanceolatus 3.2-20.8 1.3

Microdesmus spp. 2.0-3.3 1.3

Auxis spp. 4.9-25.0 1.7

Euthynnus alletteratus 7.0-22.5 9.1

Scomberomorus cavalla 3.5-20.0 1.1 2.4-4.2 2.9

Scomberomorus maculatus 2.5-40.5 6.0 1.9-10.2 4.4

Peprilus burti 3.5-22.0 1.9 2.1-12.0 1.0

Peprilus alepidotus 2.5-24.7 1.3 1.8-5.0 1.6

Etropus crossotus 2.8-12.7 1.1 3.0-13.1 2.1

Symphurus spp. 2.0-14.5 2.3

Sphoeroides spp. 6.7-16.0 1.6

Belle Pass (April-September 1997)

Synodus foetens 20.0-36.0 2.7

Gobiesox strumosus 7.5-10.1 8.7 4.1-10.6 1.1

Chloroscombrus chrysurus 2.1-16.5 1.5

Lutjanus spp. 3.0-5.5 1.0

Bairdiella chrysoura 2.9-5.1 2.2 2.4-125.0 2.1

Cynoscion arenarius 3.2-8.2 10.8 2.5-41.0 27.5

Hypsoblennius hentz/ionthas 8.3-12.0 19.1 5.1-13.5 1.7

Dormitator maculatus 7.2-10.7 2.2

Gobionellus oceanicus 11.0-13.5 2.0 7.5-35.0 6.9

Gobiosoma bosc 7.7-9.6 10.9 6.5-17.0 37.3

Gobiosoma spp. 4.2-7.6 5.0 4.7-8.1 1.3

Microgobius spp. 4.7-10.1 3.7

Citharichthys spp. 7.9-11.6 1.5 5.2-13.0 5.2

Symphurus spp. 7.3-42.0 4.5

Sphoeroides parvus 9.1-12.5 3.1
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Figure 8.8. Mean plankton net densities (a) and light-trap CPUEs (b) with standard errors for
each sampling trip at Grand Isle 94 (1996). Arrows above bars point toward the off-
scale mean for that gear.
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At ST 54, plankton nets and light-traps collected 1,689 and 1,193 fish, respectively, with a mean
total density of 166.0 fish/100 m3 and a mean total CPUE of 0.6 fish/10 min (Table 8.2). Due to
problems with the deploying the subsurface net at this site (Hernandez et al. this volume), the
plankton net catch is almost exclusively from the surface. Plankton nets and light-traps collected fish
from an equal number of families, but light-traps collected fish from more taxa, including unique
taxa, than plankton nets (Table 8.3). Mean plankton net densities ranged from 15.7-809.7 fish/100
m3, while mean CPUEs ranged from 0-18 fish/10 min (Figure 8.9). Cynoscion arenarius and
Chloroscombrus chrysurus were the most dominant taxa in plankton net samples (Table 8.3). Light-
trap collections were dominated by Synodus foetens and scombrids, particularly Euthynnus
alletteratus and Scomberomorus maculatus.

At Belle Pass, the pushnet and light-trap collected 33,147 and 849 fish, respectively, with a mean
total density of 136.7 fish/100m3 and a mean total CPUE of 4.6 fish/10 min (Table 8.2). The pushnet
collected fish from approximately twice as many families as the light-trap, including 20 unique
families. The same trend was evident in the number of taxa collected by each gear type. No fish
were collected from families unique to light-traps and only three unique taxa were collected with
light-traps. Mean pushnet densities ranged from 18.7-288.7 fish/100 m3, while mean CPUEs ranged
from 0-9.7 fish/10 min (Figure 8.10). Pushnet samples were dominated by gobiids, primarily
Gobiosoma bosc, and the sciaenid, Cynoscion arenarius (Table 8.3). Dominant taxa in light-trap
collections included Membras martinica, Hypsoblennius hentz/ionthas, Gobiosoma bosc, and
Cynoscion arenarius.

Within-Site Comparisons of Sampling Gears

No significant differences were detected in mean total plankton net densities between surface and
subsurface collections at GC 18 and GI 94 (Tukey’s Studentized Range Test, "=0.05), although
subsurface densities were generally higher (Figure 8.11). At ST 54, surface nets had significantly
higher mean total densities than subsurface nets. In contrast, light-trap collections from surface
waters (surface and off-platform light-traps) had significantly greater total CPUEs at all three
platforms (Figure 8.11). At GI 94, overall means by depth and location ranged from 0.7-3.2 fish/10
min, with means from surface and off-platform locations being significantly greater than the
subsurface mean (Tukey’s Studentized Range Test, "=0.05). At GI 94 overall light-trap CPUEs were
the greatest of the three platform sites and ranged from 6.5-58.2 fish/10 min with significant
differences detected between all light-trap depths/locations. At ST 54, overall mean CPUEs ranged
from 3.8-7.2 fish/10 min with the off-platform collections being the greatest followed by the mid-
platform surface then by subsurface collections.

Length-Frequency Analyses

Six taxa from GC 18 met the required criteria for K-S analyses involving the differences in size
frequency distributions between sampling gears (i.e., at least 10 specimens collected by each gear).
In all instances, differences between size distributions for the two gear types were found to be
statistically significant (K-S tests, p#0.05; Figure 8.12). In general, there was some size overlap in
all gear comparisons, although the degree of overlap and shapes of the size distributions differed.
For Auxis spp., Caranx crysos, and Mugil cephalus, the plankton net samples caught predominantly
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Figure 8.9. Mean plankton net densities (a) and light-trap CPUEs (b) with standard errors for
each sampling trip at South Timbalier 54 (1997). Arrows above bars point toward the
off-scale mean for that gear. Subsurface net samples were only taken during 7-8
April. No subsurface light-traps were taken during 5-8 May. No off-platform light-
trap samples were taken during 3-5 September. No fish were present in subsurface
light-trap samples (n=4) during 17-20 August.
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Figure 8.10. Mean pushnet densities (a) and light-trap CPUEs (b) with standard errors for each
sampling trip at Belle Pass (1997). No fish were present in light-trap samples during
19-21 July.
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Figure 8.12. Size distributions of fish collected with light-traps (shaded bars) and plankton nets
(open bars) at the Green Canyon site (1995-1996). Fish length-frequency
distributions were analyzed with Kolmogorov-Smirnov tests (p-values are
represented in the upper panel of each gear pairing along with each sample size).
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Figure 8.12. (continued)

smaller individuals, while the light-trap samples generally encompassed these smaller sizes as well
as larger larvae and juveniles. For C. hippos/latus and Euthynnus alletteratus there was less overlap
at the smaller sizes and modal size classes for the light-trap samples were generally near the larger
sizes. Only for Symphurus spp. was the modal length of light-trap samples smaller than that for net
collections (p#0.05).

At GI 94, 10 of the 11 taxa analyzed for differences between the two gear types’ size distributions
were highly significant (K-S tests, p#0.001; Figure 8.13). For Auxis spp., Caranx crysos, and
Synodus poeyi there was some overlap in size distributions between gears, with the plankton net
capturing smaller larvae, but modal sizes for light-trap samples were always larger. Size
distributions for Bregmaceros cantori, Scomberomorus cavalla, Synodus foetens, and Trichiurus
lepturus appeared to overlap much more at the smaller sizes, but in each instance the light-trap
samples encompassed a significantly broader range of size classes. Although significantly different,
size distributions for Rhomboplites aurorubens exhibited a similar bimodal distribution for each gear
type. For Scomberomorus maculatus there was no overlap at all in the sizes of larvae captured with
the two gears. With only one taxon, Saurida brasiliensis, were plankton nets able to better catch
small sizes, but also larger size classes as well. Only one dominant taxa, Symphurus spp., did not
exhibit a significant difference in size distribution between gears (p=0.385).

At ST 54 differences between the two gear types’ size distributions for five of the seven taxa ana-
lyzed were highly significant (K-S tests, p#0.01; Figure 8.14). In general, light-trap size-frequency
distributions for Peprilus burti, P. paru, and Scomberomorus maculatus encompassed that of the
plankton net distributions, but also included larger sizes. Little overlap in size distributions was
observed for Euthynnus alletteratus, with light-trap collections being much larger. Distributions for
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Figure 8.13. Size distributions of fish collected with light-traps (shaded bars) and plankton nets
(open bars) at the Grand Isle site (1996). Fish length-frequency distributions were
analyzed with Kolmogorov-Smirnov tests (p-values are represented in the upper
panel of each gear pairing along with each sample size).
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Figure 8.13. (continued)
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Figure 8.13. (continued)
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Figure 8.14. Size distributions of fish collected with light-traps (shaded bars) and plankton nets
(open bars) at the South Timbalier site (1997). Fish length-frequency distributions
were analyzed with Kolmogorov-Smirnov tests (p-values are represented in the
upper panel of each gear pairing along with each sample size).
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Figure 8.14. (continued)
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Etropus crossotus broadly overlapped but plankton nets collected a wider range of smaller size
classes more frequently. Two species, Bregmaceros cantori and Chloroscombrus chrysurus did not
exhibit a significant difference in size distributions between the two gear types (p=0.998 and
p=0.133, respectively).

In contrast to the platform sites, size distributions at the Belle Pass jetty for pushnet vs. light-trap
collections were significantly different (K-S tests, p<0.05) for only three of the 11 taxa analyzed
(Figure 8.15). There was a good degree of overlap in the size distributions for Gobiosoma spp. and
Hypsoblennius hentz/ionthas, but in each instance the pushnet samples collected larger individuals
with greater frequency. In contrast, the light-trap size distribution for Membras martinica had an
intermediate dominant mode. The other seven taxa analyzed did not have significant differences in
size distributions between gears.

By using multiple gears and methodologies, we were able to confirm the presence of a number of
taxa with a full range of life history stages, ranging from recently-spawned larvae to juveniles,
associated with the platforms. For example, at GC 18 the plankton net collected Euthynnus
alletteratus individuals within a smaller size range (3.0-12.0 mm) than the light-trap (6.2-87.0 mm).
If our plankton net collections were not supplemented with light-trap catches, we would have not
been able to confirm the presence of larger juveniles at this site. 

Lunar Periodicity

At GI 94 during new moon phases, mean total CPUEs for light-traps were significantly higher than
during full moons (Student’s t-test, p#0.0001; Figure 8.16), while mean plankton net densities had
the opposite trend (p#0.01). The special lunar study conducted at GI 94 which compared three lunar
phases (first quarter, new, and third quarter moon phases sampled in May 1996), however, yielded
no significant differences in mean light-trap CPUEs or mean plankton net densities between the
three phases (Tukey’s Studentized Range test, p#0.05; Figure 8.17). At ST 54 there were no
significant difference in CPUEs between new and full moon phases (p=0.5635; Figure 8.18), but
mean total density during new moon phases was significantly higher than full moons (p#0.05); both
results are in contrast to our findings at GI 94. At Belle Pass mean CPUEs and pushnet densities
were significantly higher during new moon periods (Student’s t-tests, p<0.0003 and p<0.0001,
respectively; Figure 8.19). Therefore, when significant lunar differences were found, four out of five
instances had greater new moon catches.

Similarity and Diversity of Ichthyoplankton Assemblages Within Sites

Schoener’s Index of Niche Overlap values range from 0 to 1 (no similarity to identical species
compositions). Within-site comparisons of gears and surface sampling locations indicated that off-
platform and surface light-trap collections were more similar to each other (0.45-0.76) than each was
to surface plankton net collections (0.27-0.71), although the disparity between the index gear
comparisons is smaller at ST 54 (0.59-0.71; Table 8.4). Overall, total light-trap collections were
relatively different from total plankton net samples at GC 18 and GI 94 (0.38 and 0.32), but much
more similar at ST 54 and Belle Pass (0.63 and 0.61), the two coastal sites.
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Figure 8.15. Size distributions of fish collected with light-traps (shaded bars) and a pushnet (open
bars) at the Bell Pass site (1997). Fish length frequency distributions were analyzed
with Kolmogorov-Smirnov tests (p-values are represented in the upper panel of each
gear pairing along with each sample size).
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Figure 8.15. (continued)



539

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86

Length (mm)

Fr
eq

ue
nc

y

n=132
p<0.001

Membras martinica

0

0.05

0.1

0.15

0.2

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86

Length (mm)

Fr
eq

ue
nc

y

n=204

0

0.1

0.2

0.3

0.4

0.5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

Length (mm)

Fr
eq

ue
nc

y

n=25
p=0.116

Sphoeroides parvus

0

0.05

0.1

0.15

0.2

0.25

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

Length (mm)

Fr
eq

ue
nc

y

n=87

0

0.05

0.1

0.15

0.2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Length (mm)

Fr
eq

ue
nc

y

n=21
p=0.134

Synodus foetens

0

0.02

0.04
0.06

0.08

0.1

0.12

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Length (mm)

Fr
eq

ue
nc

y

n=229

Figure 8.15. (continued)
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Figure 8.16. Mean plankton net density (a) and light-trap CPUE (b) with standard error bars for
each lunar phase sampled at Grand Isle 94 (Apr-Sep 1996). The p-values indicate
statistical significance from t-tests.
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Figure 8.17. Mean plankton net density (a) and light-trap CPUE (b) with standard error bars for
each lunar phase sampled in May 1996 at Grand Isle 94. The same letter above each
bar indicates no significant difference between the lunar phases based on Tukey’s
Studentized Range tests on ranked data ("=0.05).
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Figure 8.18. Mean plankton net density (a) and light-trap CPUE (b) with standard error bars for
each lunar phase sampled at South Timbalier 54 (Apr-Sep 1997). The p-values
represent statistical significance from t-tests.
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Figure 8.19. Mean pushnet density (a) and light-trap CPUE (b) with standard error bars for each
lunar phase sampled at Belle Pass (Apr-Sep 1997). The p-values represent statistical
significance from t-tests.
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Table 8.4. Schoener’s Index of Niche Overlap values for different surface gear and location
comparisons. (OL) off-platform light-trap, (SL) surface light-trap, (SN) surface net, (TL)
total light-traps, (TN) total nets.

OL vs. SL OL vs. SN SL vs. SN TL vs. TN

Green Canyon 18 0.53 0.32 0.31 0.38

Grand Isle 94 0.45 0.37 0.27 0.32

South Timbalier 54 0.76 0.71 0.59 0.63

Belle Pass 0.61 0.61‡

‡Calculation is the same as with SL vs. SN since only a surface pushnet and surface
light-trap were used.

There was little difference in the Shannon-Weiner diversity index values from gear and
depth/location samples collected at GC 18 and ST 54 (Figure 8.20). In both instances, only
subsurface light-trap samples had significantly lower diversity values than the other gear and
depth/location combinations ("=0.05). No clear pattern in diversity was discernable at the GI 94 site
other than surface net collections were significantly different from light-trap collections and that off
platform light-trap collections were different from net collections regardless of depth. At the Belle
Pass site, pushnet samples were significantly more diverse than the light-trap samples. 

DISCUSSION

Gear Selectivity

The most obvious trend observed during this study was the overwhelming presence of engraulids
and clupeids at all sites, even on the shelf slope site (Hernandez et al. this volume). Light-trap and
plankton net collections (total catch) were dominated by clupeiform fishes at GC 18 (59%), GI 94
(66%), ST 54 (97%), and Belle Pass (74%). The dominance of these taxa in our collections is not
unexpected, particularly considering the abundances of these fishes in the northern Gulf and the
sampling gears utilized. Clupeiform fishes are often among the most abundant in plankton surveys
of the northern Gulf and are present year-round in shelf waters (Ditty 1986; Ditty et al. 1988;
Finucane et al. 1979). Light-traps are selective sampling devices, and previous studies have
demonstrated that often the catches are dominated by a single taxonomic group (Brogan 1994; Choat
et al. 1993; Sponaugle and Cowen 1996; Thorrold 1992). Clupeiform fishes have been shown to be
particularly photopositive and have dominated the total catches in several studies utilizing light-
aggregating collection techniques (Brogan 1994; Choat et al. 1993; Dennis et al. 1989; Rooker et
al. 1996). The pushnet used in this study actively collects fish and was relatively large (1m x 1m).
It has also been shown to be an effective collector of clupeiforms in previous studies (Herke 1969;
Kriete and Loesch 1980; Raynie and Shaw 1994). While the light-trap collects fish based on taxon-
specific, photopositive behaviors, and the pushnet actively strains the water mass it samples, the
plankton nets in our platform study collected fish passively with tidal currents. Even so, it was also
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Figure 8.20. Mean Shannon-Weiner diversity indices (with standard error bars) for each gear type

and sampling location for each sampling site. The same letter above each bar
indicates no significant difference between the gear types/sampling locations based
on Tukey’s Studentized Range tests ("=0.05). Different letters indicate significant
differences.

very effective in sampling these fishes. This catchability was undoubtedly aided by our nocturnal
sampling design.

These three sampling techniques clearly displayed gear selectivity as evident by differences in
taxonomic richness between gear types (Table 8.2). Passive plankton nets collected fish from more
unique families than light-traps at GC 18 (15 vs. 7) and GI 94 (6 vs. 3), but not ST 54 (8 families
unique to each gear). At Belle Pass, the pushnet collected individuals from 20 unique families, as
well as fish from all families sampled by light-traps. Previous studies comparing light-traps and
plankton nets in marine waters have found similar results (i.e., light-traps collected fewer families
than plankton tows) with only a few instances where light-traps collected unique families. Brogan
(1994) collected 16 unique families with a diver-steered pushnet and only four unique families with
light-traps, but the latter four families, when combined, comprised a very small proportion (<0.08%)
of his total light-trap catch. Likewise, more unique families were collected with a neuston net (10)
than with light-traps (4) when fished simultaneously in Onslow Bay, North Carolina, but the unique
light-trap families comprising only 10% of the total light-trap catch (Hernandez and Lindquist
1999). These results are similar to ours, where unique light-trap families usually made up less than
1% of the total catch at each platform site. However, whereas the previously cited studies each
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collected only four unique families with their light-traps, we collected seven (GC 18) and eight (ST
54). Neither Choat et al. (1993) nor Hickford and Schiel (1999) reported any families in light-trap
samples that were not present in plankton net samples.

In addition, the large numbers of unique taxa (at least to genus level) collected by light-traps was
also surprising, since this gear is usually considered to be very taxon-specific, and therefore limited
in its sampling scope (Table 8.2). At the genus level, light-traps collected more unique taxa than
plankton nets at GI 94 (27 vs. 26) and ST 54 (24 vs. 16), but not at GC 18 (14 vs. 25). At Belle Pass,
however, the light-traps collected far fewer unique taxa (3) than did the pushnet (44). Such large
numbers of unique taxa have not been previously reported for light-traps in gear comparison studies.
Two studies reported data at the genus level, but found either that all taxa collected by light-traps
were collected by nets (Hickford and Schiel 1999), or that there were more unique taxa in the net
collections than light-trap collections (Hernandez and Lindquist 1999). In our study, light-traps
proved very useful in sampling available taxa that were not collected by plankton nets.

The diversity indices for the plankton net collections taken at the platform sites and the pushnet
collections taken at Belle Pass were not significantly different from each other, but were slightly
higher than those for the light-trap collections, with the exception of GI 94 (Figure 8.20). Several
studies have investigated differences in taxonomic richness between different gear types, although
few, if any, actually calculated taxonomic diversity indices as a comparison. Choat et al. (1993)
collected individuals from more families with a bongo net (63 families), a lighted-seine net (37
families), neuston net (31 families), Tucker trawl (29 families), and purse seine (25 families) than
with a light-trap (20 families) in a gear comparison study off Lizard Island, northern Great Barrier
Reef, Australia. In the Gulf of California, Brogan (1994) collected more reef fish larvae and
juveniles from different families with a diver-steered plankton net (43 families) than with a light-
trap (31 families). Hernandez and Lindquist (1999) collected more fish larvae and juveniles from
different families with a neuston net (24 families) than with either of the two light-trap designs
employed (18 and 21 families) in a study in Onslow Bay, North Carolina. In each of these studies,
the authors concluded that the taxonomic assemblage collected in their respective studies was very
method-dependent, and the same appears to be true in our study. 

Trends in taxon selectivity by gear were supported in the similarity indices between the gear types
within a given site (Table 8.4). At GC 18 and GI 94, there was greater similarity between the light-
trap samples, regardless of location, than there was between the surface light-trap collections (either
off platform or central location) and the surface net collections. Again, this indicates that the
behavioral or developmental responses of different fish taxa influence their susceptibility to different
sampling gears (Hernandez and Lindquist 1999). The trend was not as evident at ST 54, but this is
not surprising as 97% of the total catch by both gears was comprised of clupeiform fishes, which
are very susceptible to both gear types (Schoener’s Similarity Index for total light-trap vs. total net
collections = 0.63). There was also a relatively high similarity index value (0.61) for the pushnet vs.
light-trap comparison at Belle Pass. Again, this site was dominated by clupeiform fishes (74% of
total catch), and light-traps are effective in sampling these fishes.

Since the three sampling gears operate on different sampling principles, differences may be observed
not only between species, but also between different size classes of the same species. Of the 24
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length-frequency comparisons between passive plankton nets and light-traps involving the dominant
taxa, 21 exhibited statistically significant differences (Figures 7-9). In the instances where no
significant differences were found, the distributions either overlapped substantially (Symphurus spp.,
Figure 8.13 and Bregmaceros cantori, Figure 8.14) or suffered from too few individuals in the larger
size classes for a significant statistical difference to be found (Chloroscombrus chrysurus, Figure
8.14). In general, the light-trap was more effective in sampling larger size classes of the same
species at each location, depth, or site. In some cases, the light-trap collections did not encompass
a significant portion of the plankton net’s smaller sizes, but clearly excelled at capturing the larger
sizes. This was the case, for example, with Caranx crysos and Scomberomorus maculatus (Figure
8.13) and for Euthynnus alletteratus (Figures 7 and 9). In other instances, the light-trap collections
appeared to significantly overlap the smaller sizes of the net collections, but also augmented the
size-frequency distribution with much larger sizes, or in some cases, even additional cohorts, as was
the case for C. crysos (Figure 8.12) and S. cavalla (Figure 8.13). These results further illustrate the
benefits that multiple gear types can bring to ichthyoplankton studies by sampling a more complete
range of size classes, cohorts, ages, and life history stages (Brogan 1994; Choat et al. 1993;
Hernandez and Lindquist 1999). 

Previous studies have demonstrated that pushnets are effective in sampling larger juveniles and
small fishes as well, particularly in coastal areas (Herke 1969; Kriete and Loesch 1980; Raynie and
Shaw 1994). Herke (1969) used a pushnet in Louisiana tidal marshes to collect small estuarine
fishes, primarily in the 25-100 mm range, and emphasized the maneuverability of the gear and its
bow-mounting (free of propeller wash) as major advantages. Kriete and Loesch (1980) used a
different design to collect juvenile pelagic fishes in lower Chesapeake Bay and found the gear was
easy to deploy and able to fish in a controlled manner within shallow water (minimum depth of 1.2
m). These advantages were traits we considered for the edges of the jetty environment which is
structurally complex. We were able to maneuver the boat and pushnet very close to the shallow
slope of the rock wall with relative ease. In general, net avoidance is reduced with pushnets
compared to towed nets (Raynie and Shaw 1994), and we chose a large mesh size (1,000 mm) and
net opening (1 m x 1 m) to minimize the pressure wave in front of the net, minimize net clogging,
and collect larger larvae and postsettlement juveniles. As a result, many of the size distributions
sampled with the pushnet and light-trap at Belle Pass overlapped considerably (Figure 8.15). Only
three of the 11 species analyzed exhibited significant size differences between the gear types. In one
instance, the pushnet collections clearly had a larger size mode than the light-trap (Figure 8.15,
Gobiosoma spp.). While we were targeting the same size classes with the pushnet, its usefulness was
in sampling different taxa. The number of families (39) and taxa identified to the genus level (77)
was approximately double that of the light-traps (19 and 34, respectively), which generated a taxon
diversity for the pushnet collections that was significantly higher than that for the light-trap (Figure
8.20). Once again, multiple gear types allowed for the collection of a more complete representation
of the ichthyoplankton and juvenile communities at the jetty site as well.

Lunar Periodicity

We investigated lunar periodicities because there are many hypotheses on larval biology concerning
lunar reproductive patterns pertaining to propagule dispersal and predation rates that occur both at
the beginning (spawning) and end (settlement) of the planktonic phase (Robertson 1991). Many reef
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fish, for example, time their spawning events with different lunar cycles (Thresher 1984). Previous
studies have also documented higher rates of fish settlement during darker, new moon periods than
full moon periods (Victor 1986; Rooker et al. 1996), presumably a response to mortality associated
with visual predators. These patterns of spawning, transport, recruitment, and settlement in
association with the local physical oceanographic regime, often result in variable larval supply and
settlement patterns with distinct lunar periodicities. It should be noted, however, that in the northern
GOM tides are dominantly diurnal and their range in tidal height is not often in synchrony with the
phase of the moon (i.e., new and full moon maximum tide ranges vs. first quarter and third quarter
minimums); rather, the total range is in synchrony with the tropical and equatorial phases of the
moon’s elevation (i.e., Tropic of Cancer and/or Capricorn crossing maximum tidal ranges vs.
equatorial crossing minimums; McLellan 1965). In addition, we wanted to investigate the effects
on gear selectivity with respect to ambient light. Since light-traps rely on illumination in the
surrounding water mass to attract fish, then theoretically the contrast in trap-generated illumination
should be greater when there is less ambient light, such as during a new moon phase as opposed to
a full moon (all larval and postlarval supply/availability issues being equal). 

Few studies utilizing light-aggregating devices have addressed gear efficiency within the framework
of lunar periodicities in fish spawning, larval supply (transport) and settlement. Gregory and Powles
(1985) observed higher catches during new moon phases in a freshwater system but didn’t report
a statistical difference. Rooker et al. (1996) used a nightlight lift-net in nearshore habitats in Puerto
Rico and reported that new moon abundances of larval fish were four times higher than the next
most abundant phase (last quarter) during the summer months, and suggested that ambient light
intensities might have played a factor in gear efficiency. The competitive interaction of lunar vs.
light-trap illumination may have played a role in the collection of fish at Belle Pass where
significantly higher CPUEs were observed during new moons (Figure 8.19). Belle Pass pushnet
collections also had significantly more fish during new moons, possibly due to decreased visual
avoidance under lower ambient light conditions. It is difficult, however, to separate the effects of
ambient illumination and gear performance from the supply and/or settlement patterns of the fishes,
so lunar periodicity may still play a role in the occurrence of fishes at this site.

In addition, the situation at petroleum platforms may be equally difficult to discern since the
platforms have many bright lights throughout the structure to illuminate the work areas at night and
to aid ship navigation, which may in effect be attracting fish to the structure (i.e., we are fishing a
light-trap within a giant “light-trap”). We tried to address this issue by sampling away from the
structure (i.e., 20 m downstream), but even these off-platform light-trap collections could still be
within the “halo influence” of the platform’s light field. Still, when significant differences in mean
total densities and mean total CPUEs were found between new vs. full moon phases, four out of five
instances had greater new moon catches (Figure 8.16). The analysis of the May samples at GI 94
taken over three lunar phases was disappointing, however, since it showed very little difference
between the lunar phases for both gears (Figure 8.17). Although these platform results on lunar
periodicity are less than conclusive, there may be several explanations for the lack of a consistently
strong pattern. First of all, the previously mentioned potential competitive interference of large
ambient light-fields may sometimes override any lunar effect that would otherwise be present.
Secondly, some of the species may be responding differently to lunar cues. For example, some peak
recruitment events have also been linked to full moon periods (Johannes 1978; Robertson et al.
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1988). In addition, the light-traps generally caught more larger sized (and presumably older, more
competent) larvae, whereas plankton net collections were dominated by smaller sized larvae that
could have been displaying different behavioral capabilities. Finally, it is possible that the
abundances of these fish are related to more localized factors such as water mass supply, particularly
at the mid- and inner shelf sites where the coastal current regime can dynamically affect salinity,
temperature, and food patchiness, and where the geographical concentration of upstream platforms
is greatest when compared to the relative isolated shelf slope site.

CONCLUSIONS

In summary, both the light-trap and the passive plankton net were effective in collecting fish larvae
and juveniles within the complex infrastructure of the oil and gas platforms sampled in the north
central GOM. Surprisingly, the light-trap collected individuals from a wide range of taxa, including
many unique taxa that were not collected with the plankton net. As in previous studies, the light-trap
generally collected larger individuals (postflexion larvae and juveniles) than the plankton net but
also performed very well at the smaller sizes. Pushnet collections from Belle Pass were more
taxonomically rich and diverse than light-trap collections, and the pushnet was equally effective in
capturing large individuals as the light-trap. The use of multiple gear types in ichthyoplankton
studies is becoming more common and, in some instances, provides the researcher with a more
complete view of larval fish assemblages. For example, the combination of sampling gears at the
platforms allowed for the collection of a wider range of taxa, size classes, and cohorts (life stages)
than either gear would have provided individually. This enabled us to confirm the presence of both
recently-spawned larvae and larger, near-settlement size postlarvae and juveniles at our sampling
sites. 

At the Belle Pass jetties, however, the pushnet collections contained many more families and taxa
than the light-trap collections, including nearly all of the taxa collected by that gear type, as well as
the same size ranges. In this coastal tidal pass, the light-trap was not as useful as a supplemental gear
type. The differences in the relative performance of the gear types in different habitats stresses the
need for the development of sampling strategies specific to each environment sampled.
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ABSTRACT

Examination of 3560 ichthyoplankton samples taken during 15 years of annual Southeast Area
Monitoring and Assessement Program (SEAMAP) resource surveys in the U.S. Gulf of Mexico
(GOM), 1982 to 1996, yielded 208 holocentrid, 524 priacanthid, 6606 labrid and 2609 scarid larvae.
Larvae were found more frequently and in higher abundances over the continental shelf of the
eastern Gulf where most reef fish habitat exists. Labrid and scarid larvae were consistently
associated with higher salinity and clearer water on the mid to outer shelf during all seasons.
Increased river discharge in 1993 appears to have limited labrid and scarid larvae to the outer shelf
of the western Gulf, as compared to their more widespread distribution over the shelf in 1992 when
river discharge was near mean levels. A more unexpected result was the consistent and frequent
occurrence of labrid and scarid larvae in open Gulf waters in numbers comparable to abundances
observed at shelf locations. Abundances of labrid and scarid larvae plotted over dynamic sea surface
height measured from satellite imagery in winter and spring of 1993 revealed their apparent
relationship with open Gulf hydrography. In the western Gulf, the highest abundances of labrid and
scarid larvae were associated with the frontal boundary of a Loop Current anticyclone. In the eastern
Gulf, labrid and scarid larvae were found in higher abundances along the frontal boundaries of the
Loop Current (LC), LC/cyclonic eddy confluences and within the interior of the LC. The consistent
occurrence and relative abundance of labrid and scarid larvae in the open Gulf implies that an
exchange and transport of larvae may occur among reefs systems throughout the GOM and from
upstream sources such as the Caribbean Sea. 

INTRODUCTION

The GOM is best known for the richness and productivity of its salt marshes, estuaries, and broad
continental shelf, especially west of the Mississippi River. Yet areas of natural hardbottom, and the
diverse reef fauna that they support occur throughout the Gulf. Additionally, in the northwestern and
north-central Gulf the presence of offshore oil and gas production structures and the placement of
artificial reefs has increased the amount of hard substrate and available reef habitat(Gallaway 1984;
Kasprizak 1998). 

The biota associated with natural and artificial reef habitat is a mix of western Atlantic temperate
and insular tropical species, which becomes increasingly tropical in the more offshore areas (Dennis
and Bright 1988). The tropical nature of these reef communities in the north-central and western
Gulf is dependent upon; geological characteristics of the substrate; regional and local hydrography;
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winter temperature minimum; riverine influence on salinity and turbidity; depth of substrate; and
depth and thickness of the nepheloid layer (Smith 1976 and Rezak et al. 1990).

The majority of adult reef fishes are sedentary and have an obligate (dependent) relationship with
their habitat. This relationship concentrates them to relatively small areas of suitable habitat. Since
the adult phase of most species are sedentary, populations of reef fishes are established and
maintained by the continuous settlement of pelagic larvae to reef habitat (Sale and Ferrell 1988; Leis
1991). 

Sale (1991) and Cowen and Sponaugle (1997) have noted that there is little information on the
planktonic and early life stages of reef fishes. Although there have been numerous ichthyoplankton
studies from the broad range of marine habitats found in the Gulf of Mexico (Richards et al. 1993),
none have focused on the larvae of reef fishes on a Gulf-wide basis. Ichthyoplankton samples have
been collected since 1982 during Southeast Area Monitoring and Assessment Program (SEAMAP)
ichthyoplankton surveys of the GOM (SEAMAP 2000). Data from these collections on the
distribution and abundance of the larvae of 4 obligate reef fish families: Holocentridae
(squirrelfishes); Priacanthidae (bigeyes); Labridae (wrasses); and Scaridae (parrotfishes) are
summarized. We present data that reveal apparent relationships between larval reef fish distributions
and hydrography in the northwestern and open GOM. 

MATERIALS AND METHODS

Data were taken during four annual SEAMAP surveys: Summer Groundfish, Fall Plankton and Fall
Groundfish in continental shelf waters; and Spring Plankton in the open GOM (Figure 8.21, Table
8.5). Stations are 30 to 60 nautical miles apart in a fixed grid, and sampled at all times of day or
night. Additionally, Oregon II Cruise 203, a marine mammals/plankton survey conducted only in
January and February of 1993 was examined to investigate possible larval associations with
hydrographic features in the open Gulf (Table 8.5). Plankton collections from this cruise were taken
every 10 nm along a transect between the shortest route to the next day’s starting position during
nighttime hours. Larvae for all cruises were captured in oblique tows from near bottom to surface
using a 61-cm bongo net with 0.333 mm mesh nets following standardized SEAMAP collection
procedures (SEAMAP 2000). 

Surface measurements of salinity and turbidity were taken with a SEABIRD SBE25 conductivity
temperature depth (CTD) profiler. Surface salinity contours were generated from the data for the
1992, 1993 and 1994 Summer Groundfish, Fall Plankton and Fall Groundfish cruises. Surface
turbidity (water clarity) contours were generated from data for the Summer and Fall Groundfish
cruises in 1992 and 1993. Contour plots were generated by Surfer® 6 using a Kriging function with
a linear variogram. Labrid and scarid distributions were plotted over the composite salinity and
transmissivity contours to examine possible relationships. TOPEX/ERS1 merged dynamic sea
surface height plots were obtained from the GOM historical data server at the Colorado Center for
Astrodynamics Research:  http://www-ccar.colorado.edu/~realtime/gom-historical_vel/
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Figure 8.21. Southeast Area Monitoring and Assessment Program (SEAMAP) survey areas sampled during Summer Groundfish,
Fall Plankton, Fall Groundfish and Spring Plankton cruises. 
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Table 8.5. SEAMAP surveys sampling effort. Western Gulf of Mexico (West), Texas-Louisiana
Shelf (TX-LA), Mississippi-Alabama Shelf (MS-AL), Florida Shelf (FL) and Eastern
Gulf of Mexico (East). (*) Indicates area not sampled.

Number of samples by area

Survey Time Frame Years West TX-LA MS-AL FL East Total

Summer Groundfish (SG) June-July 1982-96 * 330 39 * * 369

Fall Plankton (FP) Aug.-Oct. 1986-94,
1996

* 507 84 551 * 1142

Fall Groundfish (FG) Oct.-Nov. 1986-95 * 607 95 * * 702

Spring Plankton (SP) April-June 1982-84,
1986-96

511 * * * 836 1,347

Winter Plankton (WP) Jan.-Feb. 1993 * * * * * 102

Labrid and scarid abundances were plotted over sea surface height to examine possible relationships.
Abundance data was subsetted into 30 day periods and plotted over the sea surface height map
corresponding to the mid point of the 30 day sampling period. 

Larvae from SEAMAP collections were sorted and identified by the Polish Sorting and
Identification Laboratory in Szczecin, Poland. Species descriptions of larval development for
tropical reef fishes is lacking but most are identifiable to the family level (Leis and Rennis 1983;
Richards 1985). The families; Holocentridae, Priacanthidae, Labridae and Scaridae were chosen for
this study because they are obligate reef species with pelagic larvae. These larvae are
morphologically distinct from other larvae thus minimizing misidentifications, at least to the family
level. Many species within the families Holocentridae, Priacanthidae and Labridae are known to
have protracted larval stages that could be entrained and transported in ocean currents and eddies.
Although little is known of the ontogeny of the family Scaridae, it is likely that some scarids also
have protracted larval periods similar to the closely related to labrids ( Leis and Rennis 1983). 

RESULTS

Examination of 3560 bongo net samples yielded 208 holocentrid, 524 priacanthid, 6606 labrid and
2609 scarid larvae from annual SEAMAP resource surveys in the GOM, 1982 to 1996 (Table 8.5).
Presence and absence plots generated for each survey depict the pelagic habitat of these families
throughout the GOM (Figure 8.22 through Figure 8.25). Distinct annual and regional differences in
the occurrence and abundance of these larvae were revealed among five regions: TX-LA, MS-AL
and FL shelves, and the western and eastern open GOM. Ranges in percent frequency of occurrence
and abundances show similar annual and regional patterns, therefore only plots of frequency of
occurrence are presented. 
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Figure 8.22. Occurrence of holocentrid, priacanthid, labrid and scarid larvae taken during the 1982 to 1996 Summer Groundfish
Surveys. Filled circles (C) indicate positive catches of larvae; plus signs (+) indicate zero catch.
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Figure 8.23. Occurrence of holocentrid, priacanthid, labrid and scarid larvae taken during the 1986 to 1994 and 1996 Fall
Plankton Surveys. Filled circles (C) indicate positive catches of larvae; plus signs (+) indicate zero catch.
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Figure 8.24. Occurrence of holocentrid, priacanthid, labrid and scarid larvae taken during the 1986 to 1995 Fall Groundfish
Surveys. Filled circles (C) indicate positive catches of larvae; plus signs (+) indicate zero catch.
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Figure 8.25. Occurrence of holocentrid, priacanthid, labrid and scarid larvae taken during the 1982 to 84 and 1986 to 1996
Spring Plankton Surveys. Filled circles (C) indicate positive catches of larvae; plus signs (+) indicate zero catch.
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The Summer Groundfish surveys (15 years) took samples from Mobile, AL to Brownsville, TX on
the continental between 10 and 110 m generaly in the months of June and July (Figure 8.26).
Holocentrids were taken in only 3 years on the TX-LA shelf, and were never collected on the MS-
AL shelf. Annual frequency of occurrence (FO) ranged from 0 to 2%; and annual abundance ranged
from 0 to 0.13 larvae/10 m2 on the TX-LA shelf. Priacanthids were collected in 12 years on the TX-
LA shelf and only 1 year on the MS-AL shelf. Annual FO ranged from 0 to 7% on the TX-LA shelf,
and 0 to 8% on the MS-AL shelf. Annual abundance ranged from 0 to 0.27 larvae/10 m2 on the TX-
LA shelf and 0.30 larvae/10 m2 on the MS-AL shelf. Labrids were collected during 14 years on the
TX-LA shelf and 12 years on the MS-AL shelf. Annual FO ranged from 0 to 29% on the TX-LA
shelf and 0 to 100% on the MS-AL shelf. Annual abundance ranged from 0 to 0.13 larvae/10 m2 on
the TX-LA shelf, and 0 to 91.30 larvae/10 m2 on the MS-AL shelf. Scarids were collected during
3 years on the TX-LA shelf and 1 year on the MS-AL shelf. Annual FO ranged from 0 to 4% on the
TX-LA shelf and 0 to 8% on the MS-AL shelf. Annual abundance ranged from 0 to 0.48 larvae/10
m2 on the TX-LA shelf, and 0 to 1.50 larvae/10 m2 on the MS-AL shelf.

The Fall Plankton surveys (11 years) took samples throughout the GOM over the continental shelf
from 10 to 200 m generally in the month of September (Figure 8.27). Holocentrids were collected
during 4 years on the TX-LA shelf, never on the MS-AL shelf, and 8 years on the Florida (FL) shelf.
Annual FO ranged from 0 to 8% on the TX-LA shelf and from 0 to 10% on the FL shelf (Figure
8.27). Annual abundance ranged from 0 to 0.42 larvae/10 m2 on the TX-LA shelf and from 0 to 1.21
larvae/10 m2 on the FL shelf. Priacanthids were collected during 9 years on the TX-LA shelf, 2 years
on the MS-AL shelf, and 8 years on the FL shelf. Annual FO ranged from 0 to 15% on the TX-LA,
0 to 14% on the MS-AL and 4 to 42% on the FL shelf. Annual abundance ranged from 0 to 0.80 ,
0 to 1.63 and 0.18 to 8.5 larvae/10 m2 repsectively for the TX-LA, MS-AL and FL shelves. Labrids
were collected every year on the TX-LA, MS-AL, and FL shelves. Annual FO ranged from 4 to
16%, 22 to 83% and 47 to 83% on the TX-LA, MS-AL and FL shelves respectively. Annual abun-
dance ranged from 0.22 to 3.72, 2.91 to 38.10 and 4.57 to 44.25 larvae/10 m2 on the TX-LA, MS-AL
and FL shelves respectively. Scarids were collected during 9 years on the TX-LA shelf, 3 years on
the MS-AL shelf, and all 10 years on the FL shelf. Annual FO ranged from 0 to 11%, 0 to 25% and
10 to 50% on the TX-LA, MS-AL and FL shelves respectively. Annual abundances ranged from 0
to 4.67, 0 to 3.13 and 1.42 to 14.97 larvae/10 m2 on the TX-LA, MS-AL and FL shelves.

The Fall Groundfish surveys (9 years) took samples from Mobile, AL to Brownsville, TX on the
continental between 10 and 110 m generally in the months of October and November (Figure 8.28).
Holocentrids were never collected on the TX-LA or MS-AL shelves. Priacanthids were collected
during 4 years on the TX-LA shelf, and 1 year on the MS-AL shelf. Annual FO ranged from 0 to
6% on the TX-LA shelf, and from 0 to 20% on the MS-AL shelf. Annual abundance ranged from
0 to 0.29 larvae/10 m2 on the TX-LA shelf, and 0 to 0.87 larvae/10 m2 on the MS-AL shelf. Labrids
were collected during 8 years on the TX-LA shelf, and 6 years on the MS-AL shelf. Annual FO
ranged from 0 to 11% on the TX-LA shelf and 0 to 33% on the MS-AL shelf. Annual abundance
ranged from 0 to 2.51 larvae/10 m2 on the TX-LA shelf, and 0 to 5.37 larvae/10 m2 on the MS-AL
shelf. Scarids were collected during 7 years on the TX-LA shelf, and 2 years on the MS-AL shelf.
Annual FO ranged from 0 to 13% on the TX-LA and 0 to 20% on the MS-AL shelf. Annual
abundances ranged from 0 to 1.27 larvae/10 m2 on the TX-LA shelf, and 0 to 1.46 larvae/10 m2 on
the MS-AL shelf. 
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Figure 8.26. Annual frequency of occurrence (%) of holocentrid, priacanthid, labrid and scarid larvae by year and area for the
1982 to 1996 Summer Groundfish Surveys.
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Figure 8.27. Annual frequency of occurrence (%) of holocentrid, priacanthid, labrid and scarid larvae by year and area for the
1986 to 1994 and 1996 Fall Plankton Surveys.
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Figure 8.28. Annual frequency of occurrence (%) of holocentrid, priacanthid, labrid and scarid larvae by year and area for the
1986 to 1995 Fall Groundfish Surveys.
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The Spring Plankton surveys (14 years) took samples throughout the open GOM generally from
April to June (Figure 8.29). Holocentrids were collected during 6 years in the western and all 14
years in the eastern Gulf (Figure 8.29). Annual FO ranges from 0 to 7% in the west, and 0 to 18%
in the east. Annual abundance ranged from 0 to 0.73 larvae/10 m2 in the west and 0 to 4.42 larvae/10
m2 in the east. Priacanthids were collected during 9 years in the western, and all 14 years the eastern
Gulf. Annual FO ranges from 0 to 11% in the west, and 2 to 18% in the east. Annual abundance
ranged from 0 to 0.61 larvae/10 m2 in the west, and 0.08 to 2.42 larvae/10 m2 in the east. Labrids
were collected during 11 years in the western and all 14 years in the eastern Gulf. Annual FO ranged
from 0 to 29% in the west and 15 to 57% in the east. Annual abundance ranged from 0 to 7.08
larvae/10 m2 in the west, and 5.22 to 13.58 larvae/10 m2 in the east. Scarids were collected during
13 years in the western and all 14 years in eastern Gulf. Annual FO ranged from 0 to 40% in the
west and 15 to 50% in the east. Annual abundance ranged from 0 to 2.56 larvae/10 m2 in the west,
and 2.72 to 22.66 larvae/10 m2 in the east.

Observations over the entire time series were combined in order to get a clearer picture of regional
differences in distribution (Figure 8.30). Overall FO and abundance of all four taxa of reef fishes
was highest on the FL shelf. Labrid occurrence and abundance on the MS-AL shelf were comparable
to observations on the FL shelf, but were low on the TX-LA shelf. The FO and abundance of
holocentrids, priacanthids and scarids was extremely low on the TX-LA and MS-AL shelves.
Distinct differences were also seen in open waters between the western and eastern GOM. Overall
FO and abundance of all four taxa of reef fishes were higher in the eastern than the western GOM
(Figure 8.30). The frequency of occurrence and abundance on the FL shelf and in the eastern gulf
were often greater by an order of magnitude than the TX-LA, MS-AL shelves and the western Gulf.
The frequency of occurrence and abundances of all families were similar in continental shelf and
open ocean waters for both the western and eastern GOM.

Seasonality of larval reef fish occurrence could not be fully evaluated because of uneven regional
sampling over the seasons. However, during the six month time period from early June to late
November labrids decreased in frequency of occurrence and abundance on both the TX-LA and MS-
AL shelves, while scarids generally increased.
 
Labrid and scarid distributions were plotted over contoured surface salinity and water clarity
(transmissivity) in order to examine relationships with shelf hydrography (Figure 8.31 and Figure
8.32). A salinity contour of 30 was used to delineate the westward and offshore extent of lower
salinity shelf waters for 1992-1994 Summer Groundfish, Fall Plankton and Fall Groundfish surveys.
Larvae were consistently associated with higher salinity (>30) water on the shelf during all surveys.
The westward and offshore extent of lower salinity (<30) was most variable during Summer
Groundfish surveys, and less so during Fall Plankton and Fall Groundfish surveys. A salinity of 30
generally defined the inshore limit of labrid and scarid occurrence. Turbidity of 60% was used to
delineate the onshore extent of offshore waters for the 1992 and 1993 Summer and Fall Groundfish
surveys. The onshore extension of clear offshore water was variable in both years and both surveys.
However, the presence of larval labrids and scarids was consistently associated with the clearer
offshore waters.
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Figure 8.29. Annual frequency of occurrence (%) of holocentrid, priacanthid, labrid and scarid larvae by year and area for the
1982 to 1984 and 1986 to 1996 Spring Plankton Surveys.
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Figure 8.31. Occurrence of labrid and scarid larvae in relation to surface salinity for the 1992 to 1994 Summer Groundfish, Fall
Plankton and Fall Groundfish surveys. Solid black line delineates a salinity of 30. Filled circles (C) indicate positive
catches of larvae; plus signs (+) indicate zero catch.
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Figure 8.32. Occurrence of labrid and scarid larvae in relation to surface transmissivity for the 1992 to 1993 Summer and Fall
Groundfish surveys. Solid black line delineates a transmissivity of 60%. Filled circles (C) indicate positive catches
of larvae; plus signs (+) indicate zero catch.
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Abundances of labrid and scarid from larvae were plotted over dynamic sea surface height in order
to examine relationships with open GOM hydrography. A single 30 day sampling period was
examine from Oregon II Cruise 203 (Figure 8.33). The dominant features in the survey area were
an anticyclone (Eddy “V”)/cyclone (WC) eddy pair centered at 26.5o N, 960 W and a second anti-
cyclone (EA)/cyclone (EC) pair near 26.5O N, 88O W. Labrid and scarid larvae were seldom taken
at stations along the 200 m iso-bath, but were taken frequently at deeper water stations. Larvae were
found more frequently and in higher abundances along the periphery of the anticyclonic eddy in the
western gulf and in the confluence of the EA/EC eddy pair off the mouth of the Mississippi River.

Two 30 day sampling periods were examined from the 1993 Spring Plankton survey (Figure 8.34
and Figure 8.35). The dominant feature in the western GOM was the Eddy “V”/WC pair off the
Texas coast. Dominant features in the eastern GOM survey area were the northern extension of the
Loop Current (LC), a cyclonic eddy (EC1) centered at 28o N and 88o W and a cyclonic eddy (EC2)
along the eastern margin of the LC. In the western GOM labrid and scarid larvae were found more
frequently and in higher abundances along the northern edge of the anticyclonic eddy or within the
confluence of the Eddy “V”/WC pair. In the eastern GOM, labrid and scarid larver were more
frequently found in higher abundances along the frontal boundaries of the LC and cyclonic eddies
or within the confluence of these features.

DISCUSSION

Reef habitat between 18 m and 91 m in the U.S. GOM has been estimated to be 38% of the shelf
area between Pensacola and Key West, Florida and 5% of the shelf between Pensacola, Florida and
the Rio Grande River (Parker et al. 1983). The occurrence and abundance of larval reef fishes in the
families Holocentridae, Priacanthidae, Labridae and Scaridae taken during SEAMAP surveys
reflected this pattern in GOM reef habitat. These larvae were taken throughout the SEAMAP survey
area over continental shelf waters but occurred more frequently and in higher numbers in the eastern
than in the western GOM where more reef fish habitat exists. 

Distinct regional differences in the occurrence and abundance of these larvae were revealed among
the Texas-Louisiana, Mississippi-Alabama and Florida continental shelves. Annual occurrence of
larval holocentrids and priacanthids in the western GOM was highly variable compared to the
occurrence of labrids and scarids in the same region. Although holocentrid and priacanthid larvae
were never as abundant as labrid and scarid larvae, larvae of all four families consistently occurred
in higher numbers in the eastern than in the western GOM. Labrid and scarid larvae occurred 4 to6
more frequently, and were 3 to 10 more abundant in the eastern than in the western GOM. 

Riverine influence on salinity and turbidity has been identified as an important biological control
with regard to establishing and maintaining adult reef fish communities (Smith 1976; Rezak et al.
1990). The inflow of fresh water predominantly from the Atchafalaya, Mississippi and Mobile River
drainages significantly alters salinity and turbidity gradients over the continental shelf of the
northwestern and north-central GOM. This was illustrated in the summer of 1993 when discharge
from the Atchafalaya and Mississippi Rivers reached a 100 flood stage. In contrast, river discharge
in 1992 was near historical means (Arcement et al. 1992; Dantin et al. 1993 and Nowlin et al.
1998a). Increased river discharge in 1993 appears to have confined labrid and scarid larvae to the
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Figure 8.33. Distribution and abundance of labrid and scarid larvae during Oregon II, Cruise 203 in relation to sear surface
height. Black vectors are relative geostrophic currents. Dominant features are labeled: Eddy “V”, western cyclone
(WC), western anticyclone (WA), eastern anticylcone (EA), eastern cyclone (EC) and the Loop Current (LC).
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Figure 8.34. Distribution and abundance of labrid and scarid larvae in relation to sea surface height during the Spring Plankton
survey from April 19 to May 19, 1993. White vectors represent relative geostrophic currents. Dominant fearures
are labeled: Eddy “V”, western cyclone (WC), western anticyclone (WA), eastern cyclones one and two (EC1 and
EC2) and the Loop Current (LC).
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Figure 8.35. Distribution and abundance of labrid and scarid larvae in relation to sea surface height during the Spring Plankton
survey from May 20 to June 19, 1993. White vectors represent relative geostrophic currents. Dominant features are
labeled: Eddy “V”, western cyclone (WC), western anticyclone (WA), eastern cyclones one and two (EC1 and EC2)
and the Loop Current (LC).
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outer shelf as compared to their more widespread distribution on the shelf in 1992. Labrid and scarid
larvae were consistently associated with higher salinity and clearer water on the mid to outer shelf
during all seasons. Salinity and turbidity distributions are useful indicators to delineate outer shelf
and oceanic water masses on the shelf, and therefore the pelagic habitat of larval labrid and scarids.

The Loop Current (LC) is the major driving force of circulation in the open GOM. Large
anticyclonic (clockwise rotation) eddies detach from the LC, migrate westward across the Gulf
where they eventually end up in the westerm GOM and decay (Vukovic and Crissman 1986,
Hamilton 1992). Associated with these large LC eddies are smaller anticyclonic and cyclonic
(counter-clockwise rotation) eddies and rings which form by the degradation of larger eddies,
interaction with other eddies and/or the continental slope and shelf (Vukovich and Crissman 1986;
Vidal et al. 1992; Hamilton 1992).

An unexpected result of our examination of the SEAMAP ichthyoplankton data was the consistent
and frequent occurrence of labrid and scarid larvae in open GOM waters. These larvae were found
in numbers comparable to abundances observed at continental shelf locations. Winter and spring
SEAMAP plankton sampling coincided with two episodic intrusions by LC “Eddy V” on the Texas
shelf in January and May of 1993 (Nowlin et al. 1998a; Nowlin et al. 1998b). The highest
abundances of labrid and scarid larvae captured during the winter and spring SEAMAP surveys in
1993 were associated with the frontal boundary of Eddy “V.” Eddy “V” and its associated cyclonic
ring persisted off the south Texas shelf and slope from December through the summer of 1993 and
was well studied by the oceanographic community (Berger et al. 1996; Sahl et al. 1997; Nowlin et
al. 1998a; Nowlin et al. 1998b and Hamilton et al. 1999). The May intrusion of Eddy “V”
transported Texas/Mexico shelf waters offshore in the convergence of a cyclone (WC)/anti-cyclone
(WA) ring pair located near 23° N and 96° W (Figure 8.35). Shelf water was wrapped around the
southeastern quadrant of the cyclone and was transported onto the Texas shelf by the convergence
of the cyclone and Eddie “V” (Sahl et al. 1997). The water mass then rotated around the northern
portion of Eddy “V” and was transported offshore across the shelf slope break on the eastern side
of the eddy. The January episode was not as well studied, but the eddy system was in a similar
configuration (Figure 8.33). Reef fish larvae may have been transported on or off the shelf in a
‘conveyor-belt’ fashion by these geostrophic flows or larvae may have been entrained in the eddy
depending on their location within the eddy system.
 
Eddies in the western GOM also drive shelf edge currents and affect shelf waters through exchanges
of mass, energy, and water properties. (Nowlin et al. 1998a). Interaction of counter-rotating eddies
is the major mechanism for water exchange between the shelf and slope (Berger et al. 1996). Nowlin
et al. (1998a) also state that eddies episodically impact the inner shelf, and during such episodes the
exchange between the shelf and open Gulf is substantial. This exchange could be a mechanism for
the transport and/or retention of larvae spawned on reefs located on the mid and outer continental
shelf. Entrainment within an eddy could keep larvae on or near the shelf. Hamilton et al. (1999)
found that the mean rotational period for LC eddies in the northwestern GOM was 10 to 11 days.
A broad survey of 25 reef families indicated that pelagic larval duration of most ranged between 20
to 60 days (Richards and Lindeman 1987). Therefore, entrainment and subsequent transport along
the eddy periphery could result in the return of at least some larvae to shelf edge reefs as they reach
settlement stage.
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The transient nature and infrequent occurrence of some reef fishes in the northwester GOM may be
caused by unpredictable and variable recruitment from outside the region (Dennis & Bright 1988).
In winter months of 1993, labrid and scarid larvae were rarely taken at stations along the shelf edge
but were frequently taken at stations along open GOM transects. The configuration of the EA/EC
eddy pair located southeast of the Mississippi River between 89° and 87° W longitude resulted in
westward flowing currents (Figure 8.33). Most labrid and scarid larvae were collected at stations
within this westward flow and may have eventually recruited to reefs in the western GOM.

Labrid and scarid larvae were also associated with the LC and cyclonic eddies in the eastern GOM
in the spring of 1993. Larvae were taken at the majority of stations and were found in higher
abundances along the frontal boundaries of the LC and LC/cylconic eddy confluences. Higher
abundances of labrids and scarids were also found within the interior of the LC than at stations
outside the eddy system. 

Labrid and scarid abundances were higher in conjunction with the LC, anticyclonic and cyclonic
eddies, and associated frontal boundaries than elsewhere in the open GOM. This may be related to
increased productivty at the fronts. Cyclonic eddies may lead to high productivity due to the
increased upward nutrient flux along their periphery (Biggs 1992; Biggs and Muller-Karger 1994).
Recently, Wormuth et al. (2000) found zooplanton and micronekton biomass to be higher in
cyclones that in anticyclones, and highest or intermediate in the confluence of an
anticyclonic/cyclonic eddy pair. Lamkin (1997) also found plankton biomass and larval abundance
to be larger in the confluence of the LC and cyclones. Additionally, nutrient rich shelf water may
be entrained by these features, thereby enhancing local production. Biggs and Muller-Karger (1994)
observed the the entrainment and seaward transport of high productivity shelf water up to 200 km
offshore by eddy pair confluences, and hypothesized enhanced fisheries production in these areas.
Similar conditions also exist in the northern GOM with the occasional entrainment of high
productivity shelf and Mississippi River plume water by the LC (Muller-Karger et al. 1991). 

The LC and associated eddies and rings exert a coherent and dynamic influence not only in the open
GOM but on the continental shelf and slope as well. The consistent occurrence and relative
abundance of labrid and scarid larvae in the open GOM implies that reef fish larvae produced on
distant reefs such as the Florida Keys and the Caribbean Sea could supply recruits to reefs in the
northwestern GOM. The probable mechanism of this apparent advection and transport is the Loop
Current and its westward tending system of eddies and rings. Entrainment of larvae produced on
GOM reefs in the Florida Keys, the Flower Gardens in the northwestern Gulf, and off south Texas
and Mexico could also be entrained in Gulf eddies that have arrived in the western Gulf. Locally
produced larvae entrained in eddy systems in the southeastern Gulf (off Florida) or the northwestern
Gulf (off Texas) could lead to either retention and local recruitment or advection to the open Gulf.
Survival and return to favorable habitats may still be possible for reef fish larvae advected offshore
depending on species-specific duration of the precompetent stage and the position of larvae relative
to circulation of the eddy or ring. 

We undertook this examination of the SEAMAP ichthyoplankton database in an attempt to identify
patterns in larval reef fish production and potential ‘sources and sinks’ of recruits to GOM reefs.
Initial data summaries have shown that the larvae of at least two major groups of reef fishes, the
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wrasses and parrotfishes, may regularly or episodically be transported across the Gulf and become
available as recruits to northern Gulf reefs. Differences between Caribbean and northern GOM reefs
in species composition of labrids and scarids may yield insights into the origin of reef fish larvae
found in the open GOM . We will, therefore, reexamine and attempt species-level identification of
labrid and scarid larvae in these SEAMAP collections. Otolith analysis and age determination of
archived specimens will also be undertaken. Together these new data may yield a less ambiguous
depiction of the source and fate of reef fish larvae. Finally, we plan to utilize Geographic
Informations Systems to examine the SEAMAP time series in relation to hydrographic features in
the open GOM; and determine if a significant statistical relation exist between reef larvae, the Loop
Current, eddies, rings and fronts. 
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REEFS: STANDING, TOPPLED, AND PARTIALLY REMOVED
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ABSTRACT

Artificial reefs have been embraced as a management tool by a wide range of user groups
(recreational and commercial fishers, recreational divers, and environmental advocacy
organizations), and federal and state resource mangers. While these groups view artificial reefs
positively, little information exists on associated nekton assemblages, particularly at deepwater
artificial reefs.

The purpose of this project is to measure and compare the species composition, abundance and size
frequency distribution of fishes associated with a toppled platform, a partially removed platform and
a standing production platform in the Northern Gulf. Comparison of acoustically derived fish
densities at the artificial reef sites and the open waters of the GOM will answer this question using
a Biosonics model DT5000 scientific echosounder/multiplexer-equalizer and a remotely operated
underwater vehicle for visual census techniques.

Fish density around the standing platform (HI350) varied with both depth and side. We found lowest
densities near the bottom and adjacent to the platform where mean fish density was 0.0001 fish per
cubic meter (FPCM) and highest densities near the surface at .05 fish per cubic meters. Fish
densities around partial removed platform (HI 355) were roughly 2-3 orders of magnitude higher
over the top of the platform. Mean fish density over HI355 was 0.26 fish/m3. Densities around the
toppled platform (WC617), produced similar results to HI355, except that the density at WC 617
was roughly ½ that of HI355. 

We conclude that fish abundance around oil and gas platforms is much higher than adjacent soft
bottom sediment. The platforms provide critical habitat for many important commercial and
recreational species for Louisiana citizens. Our general impression remains that standing platforms
are the most desirable configuration. We continue to support partial removal in water depths greater
than 200 feet and toppling in place in shallower depths.
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The use of oil and gas platforms (platforms) as artificial reefs has been well established. As
mentioned in Wilson et al. (this publication), the basis for this practice is the common user group
knowledge that platforms support superior recreational fishing. This public perception has been
supported through scientific investigations. However, there is little data to suggest that the reef
configurations employed to date are as productive as natural reefs. Stanley and Wilson (1997)
suggested that both toppled and partially removed platforms may not be as productive as standing
platforms or as natural reef systems. The fisheries value of the various artificial reef configurations
needs further investigation with emphasis on their comparison to natural reefs.

The largest natural reef in the northern GOM is the Flower Garden Banks. This complex is
composed of coral reefs that have grown up on top of natural geological formations known as salt
domes. Although fishermen have known about the Flower Garden Banks since the late 1800s, it was
not until 1936 that the banks were officially discovered by the U.S. Coast and Geodetic Survey
during surveys in the GOM to map pinnacles. In 1961 Dr. Thomas E. Pulley documented that the
Flower Gardens were viable coral communities (Elvers and Hill 1985). After nearly two decades
of effort the Flower Garden Banks were designated a marine sanctuary in 1992 (Gittings and
Hickerson 1998). Although several fisheries surveys have been conducted around these geological
features, few scientific investigations have considered a holistic account of the fish population and
fish density beyond the cryptic reef fishes.

To date the most extensive survey of fish assemblages on the Flower Garden Banks was conducted
by LGL Ecological Research Associates during a period from 1980 to 1982. The report (Boland et
al. 1983), funded by the National Marine Fisheries Service, was based on 357 hours of video data
recorded at 1 minute intervals which were used to estimate standing stock of 16 reef fish taxa. The
investigators reported characteristic fish assemblages zoned primarily by depth and/or habitat types
delineated as upper coral reef, algal-nodule sponge zone, shallow drowned reef, deep drowned reef,
and soft bottom. Investigators also estimated species abundance; for example, they estimated that
the population size for creole-fish Paranthias furcifer ranged from 400,000 to 993,948, red snapper
Lutjanus campechanus from 4,000 to 20,000, and groupers Mycteroperca spp. from 20,000 to
47,000 at the Flower Garden Banks.

Biotic zonation of the West Flower Garden Bank (WFGB) was first described by Bright et al. (1974)
who were followed by previous other investigators. They reported on the major biotic elements of
the bank and provided a quantitative baseline assessment of the reef community. They utilized
divers, towed video systems, and manned submersibles to collect seventy days of data during 17
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cruises between July 1970 and December 1972. Their report included a thorough catalog of fauna.
Bright and C.W. Cashman (1974) reported that 101 fish species were found at the WFGB.

Dennis and Bright later reported three distinct reef fish assemblages at the WFGB (1988) in
association with three major biotic zones (coral reef, algal-sponge, and drowned reef). Species
composition was similar to outer slope Carribean reefs, but the WFGB exhibited much lower
diversity (253 primary species reported at Caribbean reefs versus 84 found at the WFGB). Cluster
analysis of fish assemblages yielded three depth zonations with a distinct species composition in
each of the three zones. Dennis and Bright (1988) reported twenty-eight fish species in the upper
zone (<45m), 45 species in the middle zone (45-85m), and 20 species in the lower zone (>85m).
Rooker et al. (1997) compared fish species richness between the WFGB and a nearby oil platform
(High Island A389A), a marked difference. They reported 54 species and 39 species, respectively,
at the WFGB and HI A389A. Rooker et al. (1997) reported that midwater pelagics such as carangids
and scombrids accounted for over 50% of all taxa enumerated at the platform; 50% of the observed
total fish population at the WFGB was composed of species in the family Pomacentridae.

The proximity of the several artificial reef projects to the natural coral formations of the Flower
Gardens afforded us the opportunity to compare these fish communities to that of a neighboring
natural system. The goals of this study were to identify species composition; and to estimate the fish
density/biomass at the WFGB. We intended to describe the fish community associated with the
WFGB and to compare it to previous studies of fish communities conducted at nearby platforms and
reefs. Reef configurations targeted for comparison included a production platform toppled in place
as a deep water artificial reef (West Cameron (WC) 617A), a nearby partially removed platform (HI
A355), and an operating production platform(HI A350); these are described elsewhere in this
publication (Wilson et al., this publication). 

MATERIALS AND METHODS

The WFGB is located approximately 173 km southeast of Galveston, Texas, on the edge of the outer
continental shelf at 27/ 52.4' north latitude and 93/ 48.8' west longitude (Figure 8.36). The WFGB
was created by the uplift of a salt dome of Jurassic, Louann origin. (Rezak 1981, as in Dokken et
al. 1999). It represents the largest charted calcareous bank in the northwestern GOM and (Bright et
al. 1985 as in Dokken et al. 1999) and the northernmost coral reef on the continental shelf of North
America (Bright et al. 1984 as in Dokken et al. 1999). The living coral cap varies in depth from
approximately 18 to 36 meters. (Rezak et al. 1985 as n Dokken et al. 1999). The major features of
the 137 km² WFGB are three crests aligned along an east-west axis. The middle crest rises from a
depth of 100 –150 meters to within 18 meters of the surface and supports a coral reef community.
(Rezak et al. 1985 as in Dokken et al. 1999).

A towed 120 kHz transducer was used to estimate the density and size frequency distribution of
fishes associated with the two artificial reef sites. The downward oriented transducer was towed
from the starboard hip of the research vessel R/V Pelican (June 1999) or the M/V Epic Mariner
(June 2000). The towfish was held in place 5 m out from the hull with a telescoping mast and flown
3 m below the surface at approximately 2 m/sec. The use of a towed downward oriented transducer
enabled the calculation of density and size distribution of fishes from a depth of 5 m to 1 m from
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Figure 8.36. Map of the sites surveyed in June 1999 and 2000.
the bottom. Navigational data were collected with g a Garmin GPS III global positioning system
(GPS) with a Garmin GB 21 differential beacon receiver. The navigation data stream, which updated
once per second, was incorporated into the acoustic data string and then saved on laptop computer.
In order to optimize the navigation accuracy, the antenna for the GPS was mounted directly above
the tow body, thus allowing the data to be processed in a two meter horizontal resolution that was
posted to a GIS database.

The mobile survey of WFGB consisted of twenty-seven transects spaced 500 meters apart running
along the long axis of the WFGB, from northeast to southwest. Transect lines were planned to begin
and end near the outer boundaries of the Marine Sanctuary along the 120 m depth curve. This design
allowed an open water control area to be surveyed at the beginning and ending of every transect line.
The lines varied in length from 2.5 kilometers to 13.5 kilometers. Data were collected along these
transects continuously over a 29 hour period 21-23 June 2000. For analysis purposes, the WFGB
was separated into three biological community “terraces” based on water depth and specified as
upper (20-50 meters), middle (80- 100 meters), and lower (> 100 meters) (Bright and Boland 1985).
A high resolution multi-beam side scan survey assisted the determination of the terraces (Gardner
et al. 1998). These geological terraces have been related to distinct biological zonations (Dennis and
Bright 1998). 
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Acoustic data were collected with a Biosonics model DT5000 scientific echosounder/multiplexer.
All data were collected with a 120 kHz transducer which had been factory calibrated to a - 42 dB
tungsten sphere. Source levels were 223 dB / Pa at 1 m. Sampling rate was 5 pings /sec with a pulse
width of 0.4 ms. Received signals were adjusted for spreading loss by applying a 40 log R time
varied gain, digitized and recorded on the computer hard drive and later transferred to CD digital
media. The data collection threshold was -55 dB, corresponding to a minimum detection of a 2.5 cm
fish (Love 1971).

Digitized hydroacoustic data were processed with a Biosonics’ Visual Analyzer 4.02. Recent
advances in the software allowed simultaneous estimates of sigma (target strength) and mean
volume backscatter (reflected acoustic energy) for each depth strata. These parameters are used to
estimate fish density/m3 and fish size. Ten meter depth strata were assigned for processing all data.
Data files were replayed through Visual Analyzer with the bottom tracking feature turned on; the
bottom was then manually inspected and adjusted to insure that the bottom was not included in the
analyzer window.

Mobile transects were analyzed at one second resolution (@ 2 meters linear distance) to determine
the volume backscatter and target strength/m3 within each depth stratum along each transect.
Analysis of each one second block of data provided geographic position and mean volume back
scatter. Individual target strength information was acquired by extracting ping specific data, which
could be selectively output as a text file. A Visual Basic program was used to calculate an average
target strength for each target, by strata, and location.

Processing of acoustic data yields several parameters of interest. Fish density is calculated based on
the volume backscatter (reflected acoustic energy) of a known volume (cubic meter) of water
divided by the average target strength (TS reported as sigma) from that same volume of water.
Density is reported as density/m3 in this study. Density estimates are dependent upon accurate
estimates of the mean sigma of the targets within that same volume of water. The accuracy of target
strength increases with repeated acoustic hits on the same target (Jim Dawson, Biosonics Inc, pers
com). Given that research operations were from a vessel moving at 4 knots and transmitting acoustic
pulses (pings) at a rate of 5 pings per second, the chance of hitting a target multiple times was very
low. In many cases data processing resulted in a volume backscatter, but no sigma for that same
volume of water. A mean sigma (proxy sigma) was calculated for a 30 m linear distance by stratum,
and used as a proxy for target strength to calculate density. The assumption, in this case, was that
fish size was similar in the same stratum for 30 linear meters. If sigma was missing, but a volume
backscatter volume was available, the proxy sigma was substituted to estimate density. 

Statistical analysis of these data included as volume backscatter (SV), a proxy for fish biomass, as
a dependent variable in our analysis. Volume backscatter is an exponential number provided by the
Biosonics Visual Analyzer and is a per ping average of energy/m3. For regressional analysis and
calculation of means, SV is converted into a “arithmetic form”, called “Fish Energy”, with the
relationship,

 Fish Energy = 10 sv/10, 
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where SV is volume backscatter (reflected acoustic energy) of a known volume of water (cubic
meter)

The use of volume backscattering avoided the uncertainty of target strength error in density
calculations. “Fish Energy” should be considered to be an acoustic measurement of fish biomass as
it is based on the average acoustic reflectance/m3. The second dependent variable in our analysis was
density/m3, which was calculated with the equation, 

10 SV/10 /10 TS/10 = fish/m3

where SV is the volume backscatter/m3 and TS is the mean target size assigned (or the proxy sigma
discussed above). 

A randomized block analysis of variance was used to examine the main effects of TS as described
by Stanley and Wilson (1997). Due to the larger number of zero values in the mobile survey, logistic
regression was used to analyze the mobile data (Trexler and Travis 2001). 

Logistic Regression

Traditional parametric analysis was not used for analysis of mobile acoustic data given the large
number of zero values for SV and the problem of autocorrelation that occurs in mobile acoustic data.
A binomial logistic model was constructed using the presence or absence of “fish energy” to
evaluate the probability, or chance, of finding fish. This analysis was performed on the primary
output of acoustic data analysis which was reported in 1 second intervals. Class variables for the
WFGB were depth or terrace, stratum, and time of day (TOD). 

The use of logistic regression in ecological sampling was described by Trexler and Travis (2001).
It has been shown to be useful with data that have a large proportion of zero values when error is
usually not normally distributed. In most cases analysis consists of converting the dependent
variable into a discrete form (e.g. presence/absent, agree/disagree, etc). The regression model then
assumes a binomial distribution of errors (Trexler and Travis 2001, Garrison et al. 2000). 

The Statistical Analysis System (SAS 2000) includes a program called Proc Logistic that runs a
logistic analysis . When run with the intercept option, it produces a Type III analysis of main effects,
which provides an estimate of the significance of class variables, based on a maximum likelihood
test (Chi Square test of significance p = 0.01) that is used for comparing within class variables.
When run without an intercept, Proc Logistic provides an odds ratio estimate, which is the
probability of the dependent variable being above zero in a given class variable cell compared to
another cell. The output also includes percent concordance, which is the percent of the time that the
model correctly predicts the outcome. 

Visual Surveys

Visual surveys were conducted with a Deep Ocean Engineering Phantom HD2 ROV with standard
visual census techniques and recording video on S-VHS tape. (Bohnsack and Bannerot 1986).
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Cryptic fishes (fish length < 10 cm) were not included in the video surveys results since they could
not be assessed in the acoustic surveys. Point counts were conducted to identify individual fish to
the lowest taxonomic level. Results and data were expressed as percent composition by stratum at
each site. 

During mobile surveys the ROV was deployed from the M/V Epic Mariner. Video data from the
WFGB were collected along random transects designed to represent the three major terrace regions
and geologic features located throughout the WFGB. The ROV was flown to the bottom where it
traveled at a speed of 1 knot for 45 minutes along a transect through each of the three major terraces.

RESULTS

The acoustic survey of the West Flower Garden Bank provided valuable insight into the fish
community associated with this unique natural bottom habitat. Twenty-seven survey lines covering
a linear distance ranging from 2.5 to13.5 km were sufficient to cover the WFGB at 500 m intervals.
The survey took 29 hours to cover approximately 160 km of survey lines (Figure 8.37). Survey lines
were generally parallel, but variable sea state, wind and currents caused some slight variations from
the intended track lines. In addition to challenging environmental conditions we also experienced
an equipment malfunction with the transducer cable that caused a corruption of the data collected
along one of the transects over the eastern edge of the upper terrace. 

Analysis of the acoustic data produced some very interesting results reflecting topography, fish
community composition, and general geology. Figure 8.38A is an echogram showing a transition
from the middle to the upper terrace. Figure 8.38B is an enlargement of the area indicated in Figure
38A which shows a dense fish community just above the bottom. The acoustic system, not only
provided quantification of the fish community, but also both provided insight about geological
properties of the bottom (Figure 8.39A) and location natural gas seeps as in Figure 8.39B. Visual
analysis of the echograms would the flat sandy sections of bottom as smooth with high energy
returns and the coral features were equally easy to identify by shape and slightly lower energy
returns. For the purpose of analysis we divided WFGB into three terraces; upper = 20 – 50 m,
middle = 51 – 80 m, lower = 81 – 100 m. Depths greater than 100 m were considered to be open
water in our analysis. 

A binomial logistic regression with the presence/absence of SV as the dependent variable was used
to model the relationship between fish presence and class variables: Terrace, time of day, and
stratum (Table 8.6). All class variables were significant. Using logistic procedures without an
intercept provided insight into the relative differences within the class variables. The chance of
encountering a fish was highest over the upper terrace and lowest over open water. Stratum and
TOD were not significantly different in the variables, but were significant in the model. Illustrations
of the change in acoustic energy with depth can be seen in the horizontal volume backscatter (sum
of mean SV) throughout the water column. Figure 8.40 shows the horizontal backscatter (HSV) to
be highest over the upper terrace and middle terrace areas. When corrected for depth, (HSV/water
depth) as in Figure 8.41, is clear that the highest fish biomass occurs in the shallowest areas. Based
on logistic regression (without intercept), there was a 35 to 100 times greater chance of finding fish
over the upper terrace than over the middle or lower terraces. 
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Figure 8.37. Recorded track lines of the WFGB hydroacoustic survey conducted in June 2000.
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A.

B.

Figure 8.38. Echogram of WFGB survey conducted June 2000. (A). Screen image includes dB
color scale on left and depth on the right side; red box highlights an area of high
acoustic reflectance presumed to be fish and plankton. (B). Magnified image of a
gentle slope onto the upper Terrace (@40m); arrows highlight fish targets.
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A.

B.

Figure 8.39. Echograms from June 2000 hydroacoustic survey of the WFGB. (A) Linear changes
in reflectance illustrate the value of hydroacoustics in characterizing bottom type.
(B) Large areas of low reflectance on the bottom are thought to be gas seeps on the
lower terrace.
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Table 8.6. Logistic analysis results of fish energy (antilog of volume backscatter) with class
variables terrace level (Terrace), depth stratum (Stratum), and time of day (TOD) at
WFGB.

The Logistic Procedure

    Type III Analysis of Effects               

Effect DF Wald Chi-
Square

Pr > ChiSq

TERRACE 3 5778        <.0001

Stratum 9 4852        <.0001

TOD 3 122        <.0001

Stratum*TOD 27 9329        <.0001

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate Standard Error Chi-Square Pr > ChiSq

Intercept 1 -3.82 1.49 6.56      0.0104

TERRACE 1 1 0.39 0.01 1313.54      <.0001

TERRACE 2 1 0.66 0.01 3116.01      <.0001

TERRACE 3 1 0.18 0.01 273.18 <.0001

Mean fish energy was an order of magnitude higher over the upper terrace compared to the middle
and lower terrace and over open water (Figure 8.42). Fish energy also varied with TOD as energy
over the WFGB was an order of magnitude lower at noon that at other times of day. 

Estimated fish density ranged from 0 to 0 .005 fish/m3 over the WFGB. When broken down by ter-
race, fish densities were highest over the upper terrace (Figure 8.42) just above the bottom at a depth
of about 30 meters and just above the bottom of the middle terrace at a depth of about 70 meters.
Similarly, densities on the lower terrace peaked just above the bottom at a depth of 90 meters but
were almost an order of magnitude less than the highest densities observed on the upper terrace.

Using RBD ANOVA to model the effect of class variables on fish size, fish size varied with terrace
and depth and their interactions. Fish were significantly larger over the upper terrace and near the
surface (Figure 8.43). Mean fish size over the WFGB was - 47dB (6.7 cm), and ranged from -65 to
-25 dB (1 to 108 cm) (Love 1971).
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Figure 8.40. An image of the relative horizontal acoustic reflectance over a bathymetry outline
of the WFGB. These data are not corrected for depth as HSV is the sum of energy
from the surface to the bottom.

Figure 8.41. An image weighted by depth of the relative horizontal acoustic reflectance over
a bathymetry outline of the WFGB. Data are corrected for depth (HSV/depth in
meters).
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Figure 8.42. Estimated density of fish (fish/m3) over the West Flower Garden Bank based on
a dual beam hydroacoustic survey conducted in June 2000. Error bars are 95%
confidence intervals.

Figure 8.43. Mean target strength (dB) by Terrace over the West Flower Garden Bank based
on a dual beam hydroacoustic survey conducted in June 2000. Error bars are
95% confidence intervals.
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Species Composition and Abundance

The fish community at the WFGB was very diverse and reflected that of a typical coral reef
community. Creole-fish and Bermuda chub were the most abundant species present followed by
great barracuda and black durgon (Table 8.7). The ROV survey results likely represent only a small
cross-section of the total species present because we did not include cryptic species in the visual
survey.

Fish abundance at the WFGB was estimated around 2,500,000 (Table 8.8). The most abundant fishes
at the WFGB were Bermuda chub and creole-fish . There was roughly 630,000 bermuda chub and
485,000 creole-fish followed by 261,000 great barracuda 130,000 and black durgon.

DISCUSSION

This project again demonstrates the utility of dual beam hydroacoustics coupled with visual survey
techniques to study fish assemblages. The close geographical proximity of several previously
studied platforms, two artificial reef sites, and the WFGB provided us an opportunity to compare
stationary and mobile acoustic survey methods and to compare species composition, fish biomass,
and fish densities within and between platforms, artificial reefs, and a natural reef. Dual beam
hydroacoustics coupled with video surveys provide an efficient tool that is both economical and
environmentally friendly for assessing fisheries resources at these sites. 

Given the large number of zero values and the problem of autocorrelation that occurs in mobile
surveys Traditional parametric analyses were not used for analysis of mobile acoustic data. The use
of logistic regression in ecological sampling was described by Trexler and Travis (2001) as a
nonlinear way of expressing ecological data. Logistic regression has been shown to be useful with
data sets that have a large number of zero values which are usually not normally distributed. For
regression analysis, the dependent variable was converted into a binomial array of presence/absence
of acoustic reflectance (fish measured as acoustic energy)/m3 to evaluate the probability or chance
of finding a fish in a given cell. Each cell was defined as a one second block of time divided into
10 m depth strata. One second of time equals 2m of linear distance. Volume backscatter (SV) was
used as a dependent variable in performing logistic regression because SV is the mean measured
amount of acoustic energy returned from each acoustic ping, averaged for a cubic meter of water
column. Stanley and Wilson (1997) used fish density (#/m³) as the dependent variable, but this value
is very sensitive to crossectional backscatter also known as sigma (fish size). Sigma accuracy
increases with the number of times a single target is pinged which works well for the standing
platform survey where the transducer is stationary. During the WFGB survey the transducer was
towed along at 2m/sec which significantly reduced the chance of pinging a single target several
times in a row. 

Due to the uncertainty of the accuracy of TS, the accuracy of density becomes uncertain. This made
SV a better proxy for fish presence, hence the dependent variable in our models. If there was a
statistically significant affect by a class variable indicated in the logistic regression analysis, then
the procedure was re-run using a no intercept option. The resultant Odds Ratio Estimates provide



594

Table 8.7. Species common names and scientific names along with numbers of individuals by
stratum, totals, and percent composition from visual point counts using video from a
remotely operated vehicle (ROV) from the West Flower Garden Banks, June 2000.

West Flower Garden Banks June 2000

Common
Name

Scientific
Name 0 m 10 m 20 m 30 m 40 m 50 m 60 m 70 m 80m 90 m Totals %

Almaco jack Seriola rivoliana - - - - - - 2 - - - 2 1.1

Bermuda chub Kyphosus sectatrix - 56 1 - - - - - - - 57 32.0

Bar jack Caranx ruber - 1 1 - - - - - - - 2 1.1

Great Barracuda Sphyraena barracuda - 22 - - - - - - - - 22 12.4

Black durgon Melichthys niger - - 11 - - - - - - - 11 6.2

Black jack Caranx lugubris - 1 - - - - - - - - 1 0.6

Bluehead Thalassoma
bifasciatum

- - 1 - - - - - - - 1 0.6

Blue runner Caranx crysos - - - 8 - - - - - - 8 4.5

Blue tang Acanthurus
coeruleus

- - - 4 - - - - - - 4 2.2

Cocoa damselfish Pomacentrus
variabilis

- - 3 - - - - - 1 - 4 2.2

Creole-fish Paranthias furcifer - - 38 - - - - - - 3 41 23.0

Dog snapper Lutjanus jocu - - 1 - - - - - - - 1 0.6

French angelfish Pomacanthus paru - - - - 2 - - - - - 2 1.1

Grey triggerfish Balistes capriscus - - - - 1 - - - - - 1 0.6

King mackerel Scomberomorus
cavalla

- - - - - - - - 1 - 1 0.6

Knobbed porgy Calamus nodosus - - - - 1 - - - - - 1 0.6

Ocean triggerfish Balistes vetula - 1 - - - - - - - - 1 0.6

Bank butterflyfish Chaetodon aya - - - - - - - - - 6 6 3.4

Scamp Mycteroperca
phenax

- - - - - - 2 - - - 2 1.1

Short bigeye Pristigenys alta - - - - - - - - 1 4 5 2.8

Spanish hogfish Bodianus rufus - - - 1 - - - - - - 1 0.6

Squirrelfish Holocentrus
adscensionis 

- - - - - - - - - 2 2 1.1

Trumpetfish Aulostomus
maculatus

- - - - 1 - - - - - 1 0.6
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a comparison of probabilities of fish occurring within that class variable. The effect of each class
variable was visualized by plotting SV and estimated fish density by significant class variables.

Our survey of the WFGB affords the first direct acoustic comparison of fish communities between
natural reefs and artificial reefs in the same geographic region. The utilization of hydroacoustics for
this survey allowed data collection around the clock with a minimal use of labor resources thus
allowing the completion of the survey in a relatively short amount of time. The non-invasive manner
of the sonar system enabled comprehensive data of the fisheries population with the least
environmental impact. We recognize some that the absolute estimates of fish numbers are likely
skewed due to the uncertainty of target strength estimates. However these data do provide a basis
for comparisons between the two types of habitats. The highest densities were found over the upper
terrace of the WFGB where they were two to three orders of magnitude greater than the middle or
lower terraces. The fish size was also larger over the upper terrace and smallest over the open water
areas of the WFGB. It is now clear that the fish densities around a standing platform, and the
resultant artificial reef configurations of toppled in place or partially removed platforms, are greater
than that nearby WFGB habitat on a per unit area basis. The WFGB supports well over 2 million
fish that can be detected by acoustics, this fish biomass appears to be rivaled by the fish populations
of some 150 platforms in water depths ranging from 100 to 300 m water depth based on our survey
of HI 350 and the previous surveys.

Not only are we interested in comparing the natural reef to an artificial reef but we also wished to
compare our results to previous studies of the WFGB. The most extensive study of the fish
community and WFGB was conducted by Boland et al. (1983). Boland et al. (1983) utilized divers
and video surveys to document species composition at the both Flower Garden Banks. Most of their
efforts were focused on the more cryptic reef species near the bottom. Of great interest is that our
estimates of the fish populations at WFGB are along the same order of magnitude as those reported
in Boland et al. (1983). For example, Boland et al. (1983) reported from 400,000 - 900,000 creole-
fish on the WFGB. We estimate that there was 23% of 2,500,000, or 575,000 creole-fish at the time
of our survey. Note that these studies were nearly 20 years apart. Given the techniques used by
Boland et al. (1983), they identified more than twice the number of species that we found as they
included the numerous cryptic reef species. We found 8 of the 16 primary species reported by
Boland et al. (1983) from the WFGB of these 16, seven were cryptic and not targeted in our study.

Fish populations near reefs, both natural and artificial, are highly variable over time and space, and
these variations in abundance are the result of many factors which include, but are not limited to,
competition, seasonality, physical perturbation, ontogenetic changes, predation, recruitment,
emigration and immigration (Sale 1990; Bohnsak et al. 1991; Sale 1991). Reefs are thought to be
nonequilibrial systems with their occupants constantly changing (Sale 1991) thus population
estimates often vary by an order of magnitude over monthly surveys (Sale 1990; Bohnsak et al.
1991; Sale1991; Stanley 1994) and are equally divergent over spacial scales. A reef’s size, structure,
depth, and location all play an important role in the heavily disputed attraction verses production
issue and are also important in determining fish densities at artificial reef sites and natural reefs. 

This research continues to support the working hypothesis that platforms do make useful artificial
reefs since they tend to support a population of fish that can be 10 to over 1000 times greater in
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density than the adjacent sand and mud bottom habitats and are equal to or even exceed that of the
limited coral reef habitat in the Gulf of Mexico. Densities of fishes away from platforms, the lower
terrace of the WFGB, and open water range from 0 to 0.0001 FPCM and adjacent to standing
platforms and over reef sites range from 0 to 10 FPCM depending upon site.
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ABSTRACT

Secondary productivity of two platform artificial reefs was examined seasonally. The study
examined seasonal differences and annual secondary productivity of epifaunal elements associated
with the fouling community, known to be specific to the diets of selected reef fishes. Examination
of the fouling community using cohort-size analysis revealed the annual amphipod production of
3-4 cohorts per species/yr-1. Seasonal variations in amphipod density were striking, ranging from
600 to nearly 12,680 individuals/m2. Densities were correlated with water temperature and depth.

Mean standing stock in mgDW/m2 was used as a measure of productivity and also varied
significantly depending on season and species. Mean standing stock ranged from 16.33 to 1024.6
mgDW/m2. Annual production ranged between 64 and 4100 mgDWAm-2Ayr-1 .

This study has implications for the placement of platform structures for the purpose of productivity
enhancement. It is clear that secondary productivity from the platform structures is significant and
does supplement the diets of reef dependent finfish. 

INTRODUCTION

There is little debate as to the ability of artificial reef to increase productivity of sessile invertebrate
organisms. Several authors (Smith et al. 1979; Gallaway and Lewbell 1982; Jessee et al.; 1985; Bull
1990) have noted and/or described the diverse assemblages of organisms associated with artificial
reef fouling communities, however none have examined the secondary productivity of these
communities. An examination of productivity of fouling community organisms contributing to the
diets of fishes is critical to defining the potential contribution of these reef systems to fish stocks.

The idea that platform reefs increase fouling community biomass in an area is one that generates
little argument. The amount of energy production contributing to or potentially contributing to the
diets of fishes is a point of contention. It is the purpose of this research to characterize composition
and estimate the biomass and energy content of the fouling community potentially contributing to
the diets of selected fishes on platform reefs in the western Gulf of Mexico.
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This research has identified those elements of the fouling community that comprise a sizeable
portion of the diet of selected reef-dependent fishes and determined the annual production and
energy levels of these elements.

METHODS

Data pertaining to fouling community composition was collected quarterly for seven quarters from
the EB165A platform. Company down-sizing and unmanning of the HI389A by Mobil Exploration
and Production precluded continued sampling at the platform, consequently only five quarterly
samples were collected from this site.

Fouling-community development was quantitatively assessed seasonally using photographic transect
techniques. Photographic transects, as described by Liddell and Ohlhorst (1991), were taken using
a Nikonos V underwater camera and 28mm Nikonos lens mounted on a frame that supports twin
Nikonos SB 102 strobes. Attached to the camera is a steel rod holding a standard of measure and
an electronic depth meter. The standard of measure and depth meter are clearly visible in each
image. This device ensures each image is taken at a predetermined distance from the substrate. The
standard of measure allows for calibrating image size while the depth meter provides a record of
depth for each image. All photo transects were shot using Fujichrome 100 slide film at a fixed
distance of 0.4 m from the substrate. This system produces color transparency images of
approximately 0.20 m2 of platform substrate. Vertical transects followed the platform structure from
the surface to a depth of 53 m. A photograph was taken approximately every 1.5 m. Transparencies
were projected at a size ratio of 1:1 onto a screen marked with 25 randomly located points. The
image superimposed on each point was identified to the lowest possible taxon and recorded. Images
that were difficult to identify when projected were examined under a stereoscopic microscope. This
technique improves resolution and often aids in identification of the organism in question. A total
of 533 (369 for HI389A and 164 for EB165A) transparencies were analyzed providing 13,325 data
points.

A diversity index was computed for every transparency at each depth on each transect using the
Shannon Diversity Index (Shannon 1948). The diversity of each depth across all transects was
subjected to Analysis of Variance (ANOVA) procedures to determine significant differences in
fouling community diversity along the depth gradient. Tukey’s Mean Separation Test was used to
determine differences in mean species diversity between depth zones.

Rugosity measurements (linear measurements of the relief created by fouling community organisms)
were taken at 2.86 m intervals for all depths from the surface to 53 m. Rugosity was determined by
measuring the relief created by the fouling community organisms between two points set 1m apart.
A mean rugosity was calculated for each 2.86 m depth increment. Rugosity for each increment is
defined as:

R = Σ 3(X+1) -1
3
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These data were analyzed to determine species diversity, density, richness and evenness of the
sessile fouling community. These data were also used to identify zones of significantly differing
diversity of cryptic fauna within the sessile fouling-community.

Standing stock of benthic invertebrates within the fouling-community was quantitatively assessed
seasonally by examination of biomass samples. Samples were taken every 3 m from a depth of 53
m to the surface at both HI389A and EB165A. Sampling at HI389A was conducted from February
1995 through March 1996. Sampling at EB165A was conducted from September 1995 through July
1997. Seventy-two, 100 cm2 samples of the fouling community were scraped from the EB165A
platform and forty-seven, 100 cm2 samples were collected from the HI 389A platform.

All samples were scraped from the steel structure and placed into plastic bags. On the surface,
samples were drained of most of the seawater and preserved in a 45% isopropyl alcohol solution for
later examination in the laboratory. Light and water temperature were recorded using Light-Tab
recording light meters and Hobo-Temp thermisters (Onset Instruments Corporation 1995)

In the laboratory, samples were rinsed in tap water and decanted through a 0.4 mm sieve. Samples
were then sorted under a dissecting microscope to remove remaining non-sessile organisms.
Invertebrate organisms were identified and divided into prey organisms and non-selected organisms
through comparison to data obtained from analysis of reef fish stomach contents. An additional 27
samples, 12 from HI389A and 15 from EB165A, were collected and frozen for caloric analysis of
cryptic fouling community diet organisms. Prey organisms were identified, enumerated and
measured to the nearest 0.5 mm. All samples were dried at 60o C until a stable weight was obtained.

Population levels per m2 for prey organisms were extrapolated from counts obtained from the
samples. Annual production estimates were calculated using the cohort biomass increment method
(Crisp 1971). This method requires that the number of cohorts be established by size frequency
analysis and that each cohort be analyzed separately. Total production (mgDW •m-2 •yr-1) is
estimated as the sum of production values calculated separately for each cohort based on growth
increments over the life of the cohort such as:

P = Σ fi wi Gi )t

where n = the number of size classes;
fi= the mean number of individuals in the size class i for the period )t,
wi= the mean weight of individuals of size class i and 
Gi= the weight specific growth rate of individuals of the size class i in period )t.

Caloric values of diet elements were determined from direct calorimetry or by comparison to
published caloric values when available. Direct calorimetry employed the use of a Phillipson
Microbomb Calorimeter. Available energy was determined by multiplying the sum of production
estimates (gDW Am-2 Ayr-1) by the caloric value (kcal/gDW) for each prey organism.
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RESULTS

Secondary Productivity of Sessile Fouling Community

Four sessile fouling community organisms were found to comprise more than 1% of the diets of any
of the reef fish examined. The bivalves Isognomon bicolor and Pteria colymbus as well as the
barnacles Balanus amphitrite and Balanus reticulata were found in the stomachs of the gray
triggerfish Balistes capriscus. Densities of Isognomon bicolor ranged from 1014 to 4112
individuals/m2 (mean=2931). Using an ash weight of 10.5% of dry weight and a caloric value of
4.24 kcal/gDW (calculated from Dauvin and Johncourt 1989) we have calculated a standing stock
energy value for I. bicolor of 7692.1 kcal/m2. Pteria colymbus densities were 0.4 /m2 and standing
stock energy values were 11.1 kcal/m2.

For the barnacles Balanus amphitrite and Balanus reticulata, densities were estimated at 312 and
114 individuals/m2, respectively. Using a measured ash weight of 8.8% dry weight and a caloric
value of 4.39 kcal/gDW, we estimate standing stock energy values to be 3661.7 kcal/m2 for B.
amphritite and 1340.7 kcal/m2 for B. reticulata..

Secondary Productivity of the Motile Fouling Community

Several species of amphipods were the only organisms among the motile fouling community fauna
to show significant variation in population densities and standing stock levels. Most species
displayed increasing densities throughout the spring and early summer, reaching maximum
population densities by late summer. Densities generally displayed a distinct correlation with water
temperature, with greatest population densities occurring near maximum or minimum annual water
temperatures dependent on species (Figure 9.1, Figure 9.2, and Figure 9.3).

Production Estimates for Amphipods

Length frequency analysis of amphipods suggests that, in all species, several generations are
produced during the year. For Gammarus sp. the life span is approximately 3-4 months during
warmer months and between 4 and 6 months during colder periods. Gammariideans exhibit three
generations per year with one each during the spring and summer then a fall generation that
overwinters. Spring and summer cohorts display rapid growth and experience heavy mortality. The
cool-water generation is longer-lived, but slow growing. 

Population levels also exhibited a negative correlation with depth. Population levels for Gammarus
sp. were greatest within 5m of the surface and decreased with increasing depth to 30m. Population
levels of this amphipod ranged from 390–12,680 individuals/m2 with a mean of 5887 individuals/m2

(sd 1268). Population levels were greatest during late spring when more than one cohort was
present. Population levels were lowest during late winter-early spring, when a single cohort at the
end of its life span was present.
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Figure 9.1. Relationship between temperature and standing stock for the amphipods
Gammarus sp. and Corophium sp. at EB165A and HI389A.
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Figure 9.3. Relationship between temperature and standing stock for the amphipod Caprella
equlibris at EB165A and HI389A.

Mean standing stock was 372.85 mgDW/m2, and total annual production was estimated at 38,791.3
mgDW •m-2 •yr-1 or 38.79 gDW •m-2 •yr-1. Caloric content for this species ranged between 3.6 and
4.12 with a mean value of 3.87 kcal/g (Table 9.1).

There were 3 distinct cohorts of Corophium sp. observed in samples. This species has a life span of
3-4 months during the warmer months and 4-5 months during colder months. Densities ranged from
600–11,010 individuals/m2 with a mean 4082 individuals/m2 (sd 1417). Greatest numbers occurred
during late summer when the spring and summer cohorts were both present. Lowest numbers were
observed during late winter prior to the appearance of the spring cohort. A fall cohort that apparently
over-winters appears between mid October and early November.

This species displayed a disposition for horizontal structure with population levels being
significantly greater on horizontal substrate of the reef structure above 10m depth. Mean standing
stock was estimated to be 222.8 mgDW/m2 (sd 89.4). Three cohorts per year are produced with two
fast growing cohorts appearing in the late spring and another in late summer. A slower growing,
longer-lived, over-wintering cohort appearing in late fall. Estimated annual production of
Corophium sp. was 5467.9 mgDW •m-2 •yr-1. Population levels of Corophium sp. varied
significantly between summer sampling periods. During the summer of 1996 population levels were
estimated to be 552 individuals/m2, while summer 1997 levels were estimated at 187 individuals/m2

(Table 9.2). Corophium biglovia displayed a density range of 183–1425 individuals/m2 (mean 785,
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Table 9.1. Cohort Statistics for the amphipod Gammarus sp. at HI389A from March 1995-August
1995.  Production estimated using biomass increment method (Crisp 1974).

Cohort 1
Date

 
Days Length

(mm)
SD Estimated

Density
Mean

mgDW
Estimated
mgDW/m2

Growth
Rate

Production

 15-Mar 2 0.4 4,760 0.006 28.5  
7-Apr 23 3.5 0.7 3,240 0.162 524.8 5.70 2,992.64 

30-Apr 23 4 0.5 2,250 0.197 443.25 1.28 567.00 
9-May 10 4.12 1.1 2,600 0.217 712.4 6.57 3,704.85 

28-May 19 4.91 0.6 390 0.346 182.9 8.63 1,165.15 
 Total 75 8,429.64 

Cohort 2
Date

 
Days Length

(mm)
SD Estimated

Density
Mean

mgDW
Estimated
mgDW/m2

Growth
Rate

Production
 

 9-May 10 0.75 0.25 12,680 0.006 76.08  
28-May 19 1.25 0.5 10,500 0.015 157.5 0.49 76.71 
16-Jun 18 1.7 1.1 9,150 0.036 329.4 0.75 247.66 
7-Jul 21 2.3 1.8 7,900 0.071 560.9 14.14 7,930.28 

3-Aug 27 2.9 2.6 5,400 0.132 712.8 1.89 1,352.93 
 Total 95 9,607.59

Table 9.2. Cohort Statistics for the amphipod Corophium sp. at EB165A, September 1996-July
1997.  Production estimated using biomass increment method (Crisp 1974).

Cohort 1
Date

 
Days Length

(mm)
SD Estimated

Density
Mean

mgDW
Estimated
mgDW/m2

Growth
Rate

Production

25-Sep 0.75 0.2 3,475 0.0047 16.3
15-Oct 21 1.9 0.25 2,340 0.041 95.9 1.45 139.52
21-Oct 6 2.1 0.5 2,247 0.055 123.6 1.96 242.92
20-Dec 61 3.25 0.5 1,257 0.157 197.3 1.41 277.54
7-Feb 49 3.75 0.5 600 0.214 128.4 0.98 125.76

Total 137 785.74

Cohort 2
Date Days Length

(mm)
SD Estimated

Density
Mean

mgDW
Estimated
mgDW/m2

Growth
Rate

Production
 

15-Mar 36 0.5 0.25 11,010 0.0003 3.3
23-Apr 39 1.75 0.25 9,820 0.051 500.1 1.10 550.67
17-Jul 85 4.25 0.25 1,912 0.376 718.0 3.21 2,308.94

Total 160 2,859.61
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sd 164). Mean standing stock was estimated to be 33 mgDW/m2 (sd 9.2). C. biglovia is estimated
to produce 3-4 cohorts each year with one each in spring, summer and fall and a slow growing over-
wintering cohort in the winter. Estimated annual production for this species was the lowest of all
amphipod diet elements at 534.4 mgDW •m-2 •yr-1 (Table 9.3).

Populations of the amphipod Corophium louisiana ranged from 2395–5725 individuals/m2 with a
mean of 4189 (sd 498). Mean standing stock was estimated to be 570.1 mgDW/m2 (sd 132.7). Three
cohorts are produced yearly. Annual production is estimated at 4379.3 mgDW •m-2 •yr-1. This
species displayed a significant difference in population levels within fall sampling periods. Fall 1995
population levels were estimated at 443 individuals/m2 while population levels during the fall 1996
sampling period were estimated to be 213 individuals/m2 (Table 9.4).

Two species of Corophium displayed a positive correlation in standing stock levels with
temperature. Corophium sp. and Corophium biglovia standing stock levels and populations were
greatest during summer and fall sampling periods. Corophium sp. ranged from 3.3 mgDW/m2 in the
spring of 1996, immediately after mean low water temperature to 718 mgDW/m2 during the summer
of that same year, immediately prior to mean maximum water temperature. Corophium biglovia
standing stocks ranged from 7.5 mgDW/m2 during the spring of 1996 to 110 mgDW/m2 immediately
following mean maximum water temperature. Corophium louisiana displayed a negative correlation
with water temperature with standing stocks being greatest during the period of mean minimum
water temperature.

Caprella equlibris, the largest of platform amphipods, had a density range of 612–1,746
individuals/m2 (mean 1105, sd 139). Mean standing stock was estimated to be 775.1 mgDW/m2 (sd
165.0). This large, longer-lived species produces 3 cohorts/yr1. Estimated annual production is
39,927.8 mgDW •m-2 •yr-1 or 39.98 gDW •m-2 •yr-1. Caprella equlibrus displayed a significant
negative correlation with temperature with the greatest numbers being present prior to minimum
annual water temperatures (Table 9.5).

Total production for the five species was estimated at 89,100.7 mgDW •m-2 •yr-1 or 89.1 gDW •m-2

•yr-1. No significant difference in caloric content was determined between the five species of
amphipods except in the case of gravid females. Mean kcal/g of non-gravid amphipods was 4.31
(N= 11, sd 0.74). Annual amphipod production was determined to be 384.38 kcal •m-2 •yr-1. Caloric
content of gravid female amphipods were not determined due to small sample size.

DISCUSSION

Although similarities existed between the types and species of sessile fouling community organisms,
the degree of development was very different. Both rugosity and diversity were greater at the
HI389A platform mainly due to the presence and numbers of large bodied sponges. The lower
diversity and lack of development of large sponges at the EB165A platform may be due to relatively
strong currents. No data exists on water currents at these two platforms, however on several
occasions, underwater work at EB165A had to be halted or postponed due to the dangers associated
with working in strong currents. It is likely that these strong currents have an adverse effect in the
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Table 9.3. Cohort Statistics for the amphipod Corophium biglovia at EB165A, September 1996-
April 1997. Production estimated using biomass increment method (Crisp 1974).

Cohort 1
Date

 
Days Length

(mm)
SD Estimated

Density
Mean

mgDW
Estimated
mgDW/m2

Growth
Rate

Production

25-Sep 2.50 0.25 745 0.065 48.40

15-Oct 21 2.75 0.50 314 0.109 34.20 1.78 60.83

21-Oct 6 2.75 0.50 345 0.118 40.70 1.26 51.44

20-Dec 61 3.25 0.50 183 0.161 29.50 0.59 17.47

Total 88 129.74

Cohort 2
Date Days Length

(mm)
SD Estimated

Density
Mean

mgDW
Estimated
mgDW/m2

Growth
Rate

Production
 

20-Dec 61 0.50 0.25 1,425 0.003 4.27 0.04 0.18

7-Feb 49 0.75 0.25 1,250 0.006 7.50 0.05 0.39

15-Mar 36 1.25 0.50 1,075 0.014 15.05 0.02 0.28

23-Apr 39 2.50 0.50 950 0.089 84.55 1.62 136.71

Total 185 137.56

Table 9.4. Cohort Statistics for the amphipod Corophium louisiana from EB65A, October 1996-
April 1997. Production  estimated using biomass increment method (Crisp 1974).

Cohort 1
Date

 
Days Length

(mm)
SD Estimated

Density
Mean

mgDW
Estimated
mgDW/m2

Growth
Rate

Production

21-Oct 6 1.00 0.5 3,215 0.008 25.7

20-Dec 61 2.00 1.0 5,000 0.143 710.0 1.86 1,330.86

7- Feb. 49 3.25 1.0 4,700 0.218 1,024.6 1.29 1,320.45

Total 116 2651.31

Cohort 2
Date Days Length

(mm)
SD Estimated

Density
Mean

mgDW
Estimated
mgDW/m2

Growth
Rate

Production
 

7-Feb 49 1.00 0.5 5725 0.091 520.9

15-Mar 36 2.75 1.0 4100 0.150 615.0 0.14 84.73

23-Apr 39 3.50 1.5 2395 0.219 524.5 1.49 780.26

Total 124 864.99



611

Table 9.5. Cohort Statistics for the amphipod Caprella equlibris at EB165A, September1996-April
1997. Production estimated using biomass increment method (Crisp 1974).

Cohort 1
Date

 
Days Length

(mm)
SD Estimated

Density
Mean

mgDW
Estimated
mgDW/m2

Growth
Rate

Production

 25-Sep 6.5 1.5 1,407 0.49 689.4

15-Oct 21 7.0 1.7 1,312 0.57 747.8 3.23 2,416.76

21-Oct 6 8.8 1.5 1,586 0.62 1221.2 28.08 27,611.58

20-Dec 61 12.5 1.8 1,746 0.98 1711.1 2.89 4,954.31

7-Feb 49 14.0 2.8 685 1.09 746.65 1.89 1,411.29

 Total 137 36,393.94

Cohort 2
Date

 
Days Length

(mm)
SD Estimated

Density
Mean

mgDW
Estimated
mgDW/m2

Growth
Rate

Production
 

 20-Dec 61 4.2 0.75 1,012 0.38 384.6

7-Feb 49 5.9 1.2 867 0.47 407.5 1.55 630.18

15-Mar 36 8.2 2.75 612 0.67 410.0 0.47 191.51

23-Apr 39 10.0 2.5 723 0.87 629.0 4.31 2,712.23

 Total 185 3,533.92

degree of development of the sessile fouling community. Population levels of certain diet elements
within the sessile fouling community were affected by the presence of sponges as well. Certain
species of encrusting sponges, mainly Neofibularia nolitangere display seasonal growth patterns.
During warmer months this species would encrust large areas of the structure effectively choking
out low relief members of the community such as barnacles and small bivalves. During cooler
months this species would disintegrate leaving large patches of substrate exposed. These areas
would generally be recolonized by faster growing elements such as hydroids, which would then be
displaced if the sponge colony regenerated during the next warming period. Consequently, the
original community of slow growing bivalves and barnacles would be permanently displaced.

The species composition of the sessile fouling community has a direct effect on the production of
certain cryptic faunal diet elements. No amphipods were found in scraping samples that contained
greater than 80% siliceous sponges. Presumably the lack of amphipods in this type of sponge can
be explained by the presence of silicone spicules that give the sponge its structural strength. These
spicules can become lodged between the plates of the carapace of crustaceans causing irritation and
possibly death (Personal observation).

Diversity among the platform’s sessile fouling community is also affected by the configuration of
the structural supports. In both platform communities a significant decrease in diversity was
observed at the level of horizontal supporting structures. Significantly differing diversity was
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observed approximately 1m above and below the horizontal supports. This reduction occurred at
23m at EB165A and 36.5m at HI389A. The decrease in diversity at these horizontal members is
presumed to be caused by grazing animals associated with the horizontal structure. It is important
to note however, that the diversity of motile invertebrates increased at the horizontal members.
These areas are important to small motile and semi-motile animals as they provide protection from
currents and collect detritus and other food materials as the settle out of the water column (Gallaway
and Lewbell 1982; Bull and Kendall 1994).

Annual production for the three species of Corophium at the platforms ranged from 0.53 gDW •m-2

•yr-1 (C. biglovia) to 5.5 gDW •m-2 •yr-1 (Corophium sp). These estimates are somewhat lower than
production estimates from published studies. Franz and Tanacredi (1992) estimated annual rates of
secondary production of the amphipod Ampelisca abdita (12 -22 gDW •m-2 •yr-1) for Jamaica Bay,
New York, suggesting these levels are higher than most other marine amphipods. Mossman (1978)
and Moller and Rosenberg (1982) estimated the secondary production of the amphipod Corophium
volutator to be 13.4 gDW •m-2 •yr-1, while Birklund (1977) estimated secondary production of
Corophium insidiosum to be 8-60 gDW •m-2 •yr-1. Although these published estimates are higher,
it should be noted that these were monotypic populations from temperate waters.

All three Corophium species on the platforms are benthic, facultative, tube-dwelling amphipods that
showed a distinct preference for horizontal structure. This is likely related to the difficulty associated
with maintaining a hold on vertical surfaces. Generally Corophium tubes are constructed of fine-
grained sediments bound together by mucus in a hollow tube shape. The tubes are not cemented to
the substrate, but instead, are buried in fine-grained sediments. On platform artificial reefs, these
sediments are generally only found on horizontal structures protected from waves, surge and current.

The lack of suitable habitat i.e., protected, horizontal structure in shallow water covered with fine
grained sediment, make platform artificial reefs a marginal habitat for tube dwelling amphipods.

Conversely, high diversity fouling communities appear to be suitable for the development of other
species of amphipods. Gammarus sp. produced an estimated 38.79 gDW •m-2 •yr-1, while Caprella
equlibris produced an estimated 39.98 gDW •m-2 •yr-1. High levels of production in both species
were common in areas with a moderate to high diversity of fouling community organisms other than
sponges.

Weather conditions and company scheduling negated sampling during the winter of 1995-1996.
Consequently, maximum population levels of winter spawning amphipods i.e. Caprella equlibris
and Corophium louisiana, were based on a single sampling period. We therefore expect error in
these estimates to be higher than for other species in this study.

Two species of amphipods, Corophium sp. and Corophium louisiana displayed significant
differences within a sampling period between years. During the summer of 1996, population levels
of Corophium sp. were nearly three times the estimated levels for that species during the summer
of 1997. Sampling during the summer quarter of 1996 occurred during late August while the
summer 1997 sampling was conducted during mid July. Likewise population levels for Corophium



613

louisiana during the fall of 1995 were twice that of the fall 1996 sample. In this example, sampling
occurred three weeks later in 1995 than in 1996. We suspect that the increased population levels
were evidence of the presence of two or more cohorts during the period. 
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An obsolete oil production platform, located in 58 m water depths in High Island A- 532, 12 nautical
miles west of Stetson Bank, was converted into an artificial reef in 1997. The upper 27 m of the
structure was mechanically cut off and placed on the sea floor, next to the undisturbed lower section
of the rig. During “pre-construction” biological monitoring, divers observed a thin white encrusting
ascidian colonizing most of the structure below the water line. Divers confirmed that between 1998
and 2000 this ascidian colonized the majority of both portions of the structure from 27 m to below
42 meter depths. Divers have recently observed this same species colonizing other platforms, within
12 nautical miles of this reef site.

Samples of this ascidian were collected and compared to other species found in the Gulf of Mexico
(GOM) and the Pacific. The High Island A-532 Reef’s species was identified by ascidian expert, Dr.
Gretchen Lambert, as Didemnum perlucidum, in the family Didemnidae. This ascidian forms a thin
tunic layer over the colony, less than 1 mm thick, and appears white due to the aster-like spicules
in the tunic. This species of ascidian can colonize structures through sexual reproduction of gametes
and settlement of larvae or through asexual budding of itself. It appears to settle or grow over other
encrusting organisms such as sponges, corals, bryozoans, hydroids, and mollusks.

Monitoring stations on the structure have been set up at this reef site to determine how quickly
Didemnum perlucidum colonizes and what other factors may influence its growth and/or
reproduction. First-quarter observations show that this ascidian can completely re-colonize 100 cm
surfaces that were cleared of all attached organisms. This monitoring study is still in progress, and
environmental as well as seasonal factors are being considered.

INTRODUCTION

There have been few zoogeographical studies of the distribution of ascidians in the GOM. Less than
25 ascidian species have previously been documented for the GOM by Van Name (1945), Rabalais
(1975), and Plough (1978). These benthic encrusting species are not readily observed, unless they
can be differentiated from other epifauna attached to both artificial substrates and natural hard-
bottom communities. They provide competition for corals, sponges, and other invertebrates and
appear to be an important component of hard-bottom communities (Rabalais 1975, Monniot and
Monniot 1991, and Bak et al. 1996). Rabalais (1975) described 15 new ascidian species forming a
dense mat covering the polychaete tube cases of Physllochaetopterus socialis at Seven and One-Half
Fathom banks on the south coast of Texas. She also described additional species observed on jetty
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complexes along the Texas coast, in the bays, and on oil production platforms offshore of Port Aran-
sas, Texas. These 21 previously documented species are from three zoogeographical regions: Texas
Transitional Zone (after Van Name 1945, 1954, and Millar 1971); Caribbean Transitional or Caro-
linian Zone (after Hedgepeth 1953, and Williams 1951); and West Indian or Eastern American Trop-
ical Zone (after Valentine 1963). Although many biological surveys on oil and gas platforms and
natural banks have been done in the offshore waters of this third zone (Dokken et al. 2000, Bright
1985), little information exists on new ascidian species found in the GOM over the past 20 years.

As the range and numbers of oil and gas platform installations have grown since 1945, there has also
been an increase in the available hard-bottom substrate for benthic encrusting organisms in the
GOM. In addition to the numbers of platforms installed, there has also been an increase in the
numbers of platforms removed, towed to shore, reinstalled at other locations, or converted into
artificial reefs (Dauterive per. comm. and MMS database). These platforms provide the perfect
vector for transferring epifauna from one location to another. They also provide available substrate
for settlement of new species passing through the water currents or from ships releasing ballast
water on their way through fairways to major ports (Coles et al. 1999). 

This paper documents observations of a new colonial species, identified as Didemnum perlucidum,
in the Didemnidae family in the GOM. Its origins are unknown at present, but it appears to have
been introduced in the GOM, and is currently dominating a state artificial reef site 74 nautical miles
offshore. Samples of this species were compared with pacific species, collected by Scott Godwin
(Bishop Museum of Natural History), and verified by Dr. Gretchen Lambert (University of
Washington). A full description of this species may be found in Monniot (1983) and Monniot and
Monniot (1987, 1995). These authors have documented its presence in the Caribbean West Indian
Oceans in Guadelope; and from the Pacific Ocean in Micronesia and Papau-New Guinea. This
species has also been documented in the harbor areas near the Hawaiian Islands (Godwin and
Lambert per. comm. 2000). The introduction of this ascidian species in the GOM meets the criteria
for a non-indigenous species described by Chapman (1988) as a “new appearance in a local region,
in association with human mechanisms of dispersal, or in association with other introduced species,
restricted to artificial or disturbed habitat, and from widespread, disjunct geographic ranges.”
Species not demonstratably introduced or native to previously known geographic ranges are
considered to be crytogenic species.

This colonial ascidian was first observed to be covering the entire surface area of an eight-leg (pile)
structure from the water surface interface down to at least 42 m water depth and beyond. Divers
completed a pre-artificial reef construction survey in May 1997 and found a thin white encrusting
organism to be dominating and smothering previously established epifauna. Divers conducted a
post-construction survey 14 months later in August 1998, after the top portion of the jacket was cut
off at 27 m and placed on the bottom next to the standing portion of the jacket to create two reef
structures. They also found this ascidian covering both structures from 27 m down to at least 40 m
and beyond. The upper portion of the original jacket, including 15 m of bare metal previously not
exposed to sea-water, was also covered with the ascidian in that time period. Divers conducted
another post-monitoring survey in September 1999, and found that this organism was so effective
in maintaining dominance that it had covered nearly all living and attached encrusting organisms,
preventing them from normal nutrient uptake and respiration.



616

However, the continued dominance of this colonial ascidian at a Texas artificial reef over the past
three years has piqued the interest and concern of state and federal agencies. Its ability to out-
compete native species may be a potential concern if it is transferred to other artificial reefs, either
through currents or by direct movement of surrounding platforms to other areas in the GOM. This
study is a preliminary account of what monitoring protocols have been implemented to estimate the
growth and settlement rates of this species. Further investigation into the factors controlling this
ascidian’s continued dominance and further documentation of its invasion of surrounding artificial
reefs are in progress.

SPECIES DESCRIPTION

A key feature of this species is that it appears to be white due to the white aster-like spicules
embedded in its translucent tunic, covering the entire colony. There appears to be some color
variation, however, when it is in a growth mode. Then, it appears to be a yellow to gray color due
to the lack of spicules on the surface of the tunic. Each zooid adult has four rows of branchial sacs,
with seven to eight stigmata in each row, similar to other Didemnids in the GOM. Each zooid in the
colony has a six-star shaped, oral siphon, where water is pumped from the external environment to
their branchial sacs for respiration and nutrient uptake. Each zooid adult also has a broad cloacal
aperture, that exposes its branchial sacs to the colony’s common areas, where waste is released
through a common exterior siphon.

Each zooid adult is hermaphroditic, and can produce male gametes through a single testis with eight
coiled sperm ducts and oocytes from a single ovary. These gametes are released to the common
areas where fertilization occurs. The tadpole-like larvae are stored in these common areas until they
are mature and ready to be released to the water column. These colonial ascidians can also reproduce
and extend the growth of their colony through asexual reproduction, or budding of their mid-section.
Each colonial unit consists of a “system” of zooids, which share a large exterior siphon, the most
notable morphological feature of each colonial unit. Cloacal canals, which appear as dark
meandering lines in this species, connect the individuals in these colonies to common areas and
exterior siphons.

STUDY SITE

The study site is located 74 nautical miles offshore of Freeport, Texas, in OSC leasing block High
Island A-532 at 28° 05' 56.551"N Latitude, and 94° 30' 43.377"W Longitude. This artificial reef
structure is standing in 58 m of water. In 1997, this obsolete eight-leg jacket structure was converted
into an artificial reef. The upper 27 m of this artificial reef structure was mechanically cut off and
placed on the sea floor, next to the undisturbed lower section of the rig to create two reef structures.
Figure 9.4 shows the location of the High Island A-532 reef and its relative distance from shore and
other Texas Parks and Wildlife artificial reefs. This artificial reef site is also located 12 nautical
miles west of Stetson Bank, a natural hard bottom community, under the protection of the NOAA
Flower Garden Bank National Marine Sanctuary Program. We have also identified this species at
other artificial reef sites within a 12-mile radius of the study site. 
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Figure 9.4. Artificial Reef Study Site. High Island A-532.
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METHODS

In May 2000, divers established two growth-monitoring areas—stations 1 and 3 (see Figure 9.5).
Plastic cable ties (1.5 cm wide) were installed approximately 100 cm apart on two 61 cm diameter
horizontal cross-members of the structure. A digital video camera (Sony TRV900) inside a Stingray
II Light in Motion Underwater Housing was used to record the apparent growth at each station
before and after each sampling effort. Four different colored (10 cm) plastic cable ties were installed
through the end markers to denote north, east, south and west geographic quadrants, to account for
any differences from currents flowing past the rounded surfaces of each station. Four square plastic
station markers (6.4 cm2 ) were also established on a middle cable tie in the center of each quadrant,
at approximately 50 cm from upper and lower end markers as a reference point for digital video
records. All ascidian growth or settlement between these end markers was removed. Established
colonies above and below these scraped areas remain undisturbed so that any growth into scraped
areas could be measured over time.

In August 2000, the apparent growth of these undisturbed colonies was recorded using the pre-
viously described digital video camera. Digital images were transferred with  an AUTOCAD 14.0
program, used for measuring the distance these colonies had grown from the top and bottom edges
of each station. Figure 9.6 shows the digital images of the upper 50 cm of all five monitoring sta-
tions. Only station 5 shows 100 cover because it was left undisturbed. Ten measurements were
drawn on each image in AUTOCAD in each quadrant, starting at the top edge and working down
to the center marker. Ten measurements were also recorded in each quadrant starting at the bottom
edges of each marked area, working up to the center marker. These measurements taken of upper
and lower apparent growth in each quadrant, were compared with each other and between stations.

In August 2000, two additional monitoring stations (see Figure 9.5 for stations 2 and 4 reference
locations) were also set up on other horizontal cross members. These stations were marked using
the same procedures previously established for marking monitoring stations. A control station was
also established and marked with cable ties, 100 cm apart (see Figure 9.5 for station 5 reference
location). This control station will remain undisturbed for the remainder of this study to monitor
continued dominance of this ascidian on the structure. Once video images were recorded, divers
removed all epifauna and ascidian growth from stations 1 through 4.

In addition to scraping these monitoring stations, temperature gauges (OnSet Computers) were
attached to the top of each monitoring station. A YSI-6600-M (Yellow Springs Instruments) multi-
parameter data sonde, calibrated to record temperature, salinity, pH, dissolved oxygen, turbidity, and
total chlorophyll was installed on an outer vertical leg near station 4. This YSI-6600-M data sonde
will be replaced every three months to transfer water quality data from the study site and to
determine if there are any distinguishing hydrographic features at the 27 meter sampling depth.

In September 2000, the apparent growth at all four stations was recorded using the same digital
video camera previously described. Digital images were transferred into an AUTOCAD 14.0
program for measuring the distance these colonies had grown from the top and bottom edges at each
station. The same procedures were used to measure each quadrant to compare upper and lower
apparent growth at each geographic quadrant and between stations.
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Figure 9.6. Digital images of upper 50 cm of stations 1 through 5.



621

In October 2000, digital video images from each station at each quadrant were recorded using the
same procedures previously discussed. These images will be transferred into AUTOCAD for
measurement of growth in the near future. Monitoring apparent growth at this study site will
continue on a quarterly basis, until an established pattern has been established. Plans to establish
ascidian larval settlement traps at each station to distinguish settlement versus growth rates are also
being explored. Other biotic factors as well as environmental and hydrological factors will be
evaluated for influences on apparent growth at this study site. Additional stations may also be
installed in the future at platforms in the area to evaluate this ascidian’s growth at other locations.

RESULTS

Three months after the first removal of all growth and encrusting organisms at stations 1 and 3, the
first growth data was recorded. This time period occurred between 11 May and 8 August 2000.
Figures 9.7 and 9.8 show a comparison of the upper and lower growth averages of ten measurements
taken in each quadrant at station 1 and 3 over this time period. Each lightly shaded upper area of the
cylinders in these figures indicates an average of 10 measurements of apparent growth of the colony
down from the undisturbed upper part of the monitoring station in each quadrant. Each dark shaded
area of the cylinders in these figures indicates the average of 10 measurements of apparent growth
of the colony up from the undisturbed lower part of the monitoring station in each quadrant. The
white portion of each cylinder, labeled “other,” denotes data that contains both discontinuous
patches of colonial ascidians and unsettled areas between upper and lower growth areas. These
discontinuous patches of ascidians cannot be specifically identified at this time as growth from the
upper or lower undisturbed colonies, or from settlement of new larvae. These discontinuous patches
have been treated as “other growth” rather than as non-growth areas on this figure and all subsequent
figures.

Figure 9.7 shows that average growth between quadrants ranging between 11.4 cm (west) and 31.9
cm (south) occurred in the upper portion of station 1. Figure 9.7 also shows that average growth
between quadrants ranged between 26.9 cm (south) and 36.1 cm (west) occurred in the lower portion
of station 1.

Figure 9.8 shows that average growth between quadrants ranging between 31.5 cm (west) and 57.1
cm growth (north) occurred in the upper portion of station 3. Figure 9.8 also shows that average
growth between quadrants ranging between 28.8 cm (south) and 43.7 cm (west) occurred in the
lower portion of station 3.

The averages of 10 measurements in each quadrant is somewhat misleading because these averages
conceal the irregular growth rate of the entire colony as it migrates either up or down the station leg.
Figure 9.9 shows that the upper portion of the colony (solid line) grew up to 73.0 cm in some areas
of the south quadrant, but had areas of zero growth in the west quadrant over this same time period.
Figure 9.9 also shows that there were some areas in the lower portion (dotted line) of the west
quadrant that grew up to 76.0 cm and less than 20.0 cm growth in the south quadrant over this same
time period.
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Figure 9.7. Average growth measured at station 1 from 5/11/00 - 8/8/00. Comparison shows
upper and lower growth at monitoring station. X-axis indicates cm of growth over
time. Y-axis indicates four quadrants where measured on each station.
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Figure 9.8. Average growth measured at station 3 from 5/11/00 - 8/8/00.  Comparison shows
upper and lower growth at monitoring station. X-axis indicates cm of growth over
time. Y-axis indicates four quadrants where measured on each station.
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Figure 9.9. Summary of growth measurements taken at station 1 from 5/11/00 - 8/8/00.
Comparison shows ten measurements of upper and lower growth at monitoring
station. X -axis indicates cm of growth over time. Y-axis indicates four quadrants
where measured on each station.

Figure 9.10 shows that the upper portion of the colony on station 3 (solid line) grew up to 62.7 cm
on the east quadrant and 62.8 cm on the west quadrants in the first three-month time period. Figure
9.10 also shows that the lower portion of the colony on the west side of station 3 (dotted line) grew
63.4 cm, while the other quadrants did not exceed 40 cm of growth in that same time period.

A comparison of Figures 9.7 through 9.10 indicates that there is a difference between stations 1 and
3; there are also differences between quadrants measured. Station 3 appears to have had the greatest
growth over the first three-month period, however, with nearly uniform growth and no specific
quadrant affected by other spatial or environmental parameters. In some cases, there were areas
where the colony grew over itself, and it was difficult to distinguish growth from settlement on this
column.

In September, one month after the second removal of all growth and encrusting organisms at stations
1 and 3 and first removal of all growth at stations 2 and 4, growth data was recorded and evaluated
as previously discussed. This time period occurred between 8 August and 13 September 2000.
Figures 9.11 through 9.14 show a comparison of the upper and lower averages of apparent growth
measurements taken at each quadrant at stations 1 through 4 over this one-month time period.

Figure 9.11 shows that average growth on the upper portion (lighter shaded areas) of station 1
ranged between 4.4 cm in the west quadrant and 18.4 cm in the north quadrant. Figure 9.11 also
shows that average growth on the lower portion (darker shaded areas) of station 1 ranged between
5.3 cm in the south quadrant and 18.0 cm in the east quadrant.
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Figure 9.10. Summary of growth measurements taken at station 3 from 5/11/00 - 8/8/00.
Comparison shows ten measurements of upper and lower growth at monitoring
station. X -axis indicates cm of growth over time. Y-axis indicates four quadrants
where measured on each station.
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Figure 9.11. Average growth measured at station 1 from 8/8/00 – 9/13/00. Comparison shows
upper and lower growth at monitoring station. X-axis indicates cm of growth over
time. Y-axis indicates four quadrants where measured on each station.
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Figure 9.12. Average growth measured at station 2 from 8/8/00 – 9/13/00. Comparison shows
upper and lower growth at monitoring station. X-axis indicates cm of growth over
time. Y-axis indicates four quadrants where measured on each station.

Figure 9.12 shows that average growth on the upper portion (lighter shaded areas) of station 2
ranged between 7.0 cm in the south quadrant and 17.7 cm in the north quadrant. Figure 9.12 also
shows that average growth on the lower portion (darker shaded areas) of station 2 ranged between
8.3 cm in the south quadrant and 17.3 cm in the north quadrant.

Figure 9.13 shows that average growth in the upper portion (lighter shaded areas) of station 3 ranged
between 6.5 cm in west quadrant and 16.7 cm in east quadrant. Figure 9.13 also shows that average
growth on the lower portion (darker shaded areas) of station 3 between quadrants ranged between
18.6 cm in west quadrant and 20.1 cm in east quadrant. All growth measurements at station 3
appeared to be nearly uniform between upper and lower sampling areas.

Figure 9.14 shows that average growth in the upper portion (lighter shaded areas) of station 4 ranged
between 4.2 cm in the north quadrant and 19.3 cm in the south quadrant. Figure 9.14 also shows that
average growth in the lower portion (darker shaded areas) of station 4 ranged between zero growth
in the north quadrant and 13.0 cm in the south and west quadrants. There was less growth in all four
quadrants of station 4 compared to the other three stations. There may be some other factors
influencing growth at this station, which is discussed below.
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Figure 9.13. Average growth measured at station 3 from 8/8/00 – 9/13/00. Comparison shows
upper and lower growth at monitoring station. X-axis indicates cm of growth over
time. Y-axis indicates four quadrants where measured on each station.
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Figure 9.14. Average growth measured at station 4 from 8/8/00 – 9/13/00. Comparison shows
upper and lower growth at monitoring station. X-axis indicates cm of growth over
time. Y-axis indicates four quadrants where measured on each station.
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DISCUSSION

Although this preliminary interpretation of the data collected to date only reflects two sampling
efforts and is incomplete, there are some indications of the growth rate over time of this species at
these four sampling stations set up between May and August 2000. The greatest amount of growth
occurred over the three-month time period at stations 1 and 3. These results would be expected in
the GOM between May and August, however, as water temperatures are highest during summer
months and provide the most favorable environment for growth.

Further investigation into the actual location of each sampling station, however, appears to be
causing some variation in the growth measured in each quadrant. Review of the location of each
station shows that the larger diameter outer legs (91 cm in diameter) of the structure may be
influencing growth rates on the quadrant nearest to this interference in current flow or available
sunlight. Figure 9.3 shows that station 1 is situated on the inside horizontal cross-member near the
outer vertical leg on the west side of the reef structure. Any restriction or increase in the current
velocity flowing between the outer vertical leg and the inner horizontal cross-member where
station 1 is situated may be magnified on the west quadrant. A review of the station 1 data from
both sampling periods shows that there was less growth on the west and the south quadrants, which
may or may not be attributed to influences from the outer vertical leg on the west side of the
structure.

Station 3 is located somewhat further away from the influences of the outer vertical leg on the east
side of the structure. Almost uniform growth or over-growth of the colonies occurred at station 3
(Figure 9.4) during the first three-month time period. A review of the data evaluated after the one-
month time period between August and September at station 1 (Figure 9.11) and 3 (Figure 9.13)
shows that these same trends continued.

Stations 2 and 4 are also situated in locations where the outer larger diameter (91 cm) legs of this
eight-leg reef structure might be causing some variation in the growth measured in some quadrants.
Growth on the south side of station 2 was less than growth in other quadrants and may be influenced
by the larger diameter vertical leg on the south-east side of the reef. A comparison of all stations
showed that the least growth occurred at station 4. There was almost no growth in the first month
at station 4 in the north and east quadrants, which may be influenced by the larger diameter vertical
leg on the north-east side of the reef structure. However, the slower growth rate at station 4 may also
be influenced by other variables that we have not explored at this time.

SUMMARY

Average growth on the High Island A-532 Reef appears to be between 20 and 70 cm in
all quadrants, from both upper and lower monitoring areas at stations 1 and 3 during the initial
three-month sampling period. There was between 5 and 20 cm growth in each quadrant at these two
stations during the following one-month sampling period. Average growth at station 2 was
comparable to growth at stations 1 and 3. Station 4 had the least growth of all the stations.
No change in cover or dominance was observed at the control station over the one-month sampling
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period. Monitoring will continue at these five stations over the next year. Further interpretation of
these data, and future data collected at this reef site will be reported as it becomes available.
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*This abstract is provided although the presentation was canceled.

REEF BALLSTM: HOW COMBINING DESIGNED REEFS WITH OIL
SUPERSTRUCTURES USED AS ARTIFICIAL REEFS CAN HELP THE

OVERALL REEF SYSTEM TO BETTER MIMIC NATURAL REEF SYSTEMS*

Todd Ryan Barber
President, Reef Ball Development Group, Ltd.

Chairman, Reef Ball Foundation, Inc.

ABSTRACT

Reef Balls are state of the art designed artificial reefs used primarily to restore ailing reefs or to
create new reefs for ecological enhancement, fishing, scuba diving, and many other specific end use
goals. Reef Balls have been used in over 1,000 projects worldwide with over 100,000 Reef Balls
deployed and functioning as reef ecosystems. Reef Balls are the most widely used designed artificial
reef system in the world. When combined with higher profile structures, especially superstructures
such as oil platforms and rigs used as artificial reefs, the resulting reef can be turned to more closely
match natural reefs. Reef Balls have been used in the Arabian Gulf and Asia by several oil
companies to help in this regard. Although Reef Balls have been widely used in the Gulf of Mexico,
they have yet to be combined with Oil superstructures to gain the same advantages.

Reef Balls are not artificial reefs, but rather are a new category of reef enhancement called,
“Designed Reefs.” Designing modules to specifically match goals and expectations of scientists, reef
managers and reef builders is afforded by the flexibility of Reef Balls allowing high profile
structures to be augmented to produce, rather than just attract fish. Therefore, when compared to
building an artificial reef from only an oil structure, it is possible to define the expected goals of the
combination of structures and designed materials to best meet specific objectives. In the past, many
reefs were built simply “to improve the marine environment” under the assumption that because fish
and other forms of life were present that the reefs were performing a positive function. Increasingly,
reefs are built for very specific goals because the science of reef building is rapidly advancing. Even
when the goal is simply “to improve the marine environment” we now know an accepted criteria of
measurement is to gauge the species diversity and population densities of all life of nearby natural
reefs as compared to the constructed reefs. Designed reefs combined with larger profile materials
are useful tools to allow scientists, reef managers, and reef builders to achieve this goal. When used
in conjunction with oil rigs and other high profile structures, Reef Balls can effectively provide the
additional habitat required to service the large populations of fish that are attracted to high profile
structures without the associated reef biomass. This can lead to a reef that more closely mimics
natural reefs and therefore is more broadly accepted by scientists, politicians and the public.

Reef Balls are internationally patented and/or copyrighted technologies that allow nearly all natural
reef features to be mimicked. Variables which can be adjusted to meet natural conditions include:
1) stability, 2) void spacing, 3) hole sizing, 4) hole complexity, 5) surface texture, 6) surface
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chemical composition (i.e. ph, exposed aggregates, etc.), 6) bottom features, 7) subsidence variables,
8) overall weight, 9) size of units in both height and width, 10) interconnection of holes, 12) layout
or spacing on the sea floor, and 13) density of units and proportioning of sizing ratios, and many
other minor factors. In addition to being highly adaptable, Reef Balls are often the least expensive
alternative due to a technology that allows placement without expensive barges, tugs or cranes, high
surface area, and life expectancies of well over 500 years.
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RED SNAPPER SITE FIDELITY TO, AND SPEED OF MOVEMENT FROM,
ARTIFICIAL REEF SITES OFF ALABAMA IN THE NORTHERN GULF OF MEXICO

William F. Patterson
James H. Cowan
Robert L. Shipp

Department of Marine Sciences
University of South Alabama

ABSTRACT

A tagging study of red snapper Lutjanus campechanus was conducted in an extensive artificial reef
area in the northern Gulf of Mexico (GOM) to estimate their site fidelity to, and movement from,
individual reefs. A total of 2,932 red snapper was tagged with internal anchor tags during 28 tagging
trips made to nine artificial reef tagging sites from March 1995 to July 1998. Recaptures of tagged
fish were made on subsequent tagging trips by the authors (n = 235) and were reported by
recreational and commercial fishers (n = 359 through September 2000). Annual site fidelity of
tagged fish to individual reefs was estimated with non-linear decay models of the decline in
recaptures made at tagging sites over time; site fidelity estimates ranged from 21 to 26 % yr-1.
Unbiased estimates of distance and speed of movement were obtained with the delta method. Mean
distance of movement was 29.1 km and mean speed of movement was 73.9 m d-1. Results indicate
that red snapper demonstrate lower site fidelity to reef sites than previously reported. Low site
fidelity may explain spatial and temporal variability in red snapper biomass observed around
artificial reefs and has important implications for managers considering marine protected areas as
a means to increase red snapper spawning stock biomass. 

INTRODUCTION

Red snapper Lutjanus campechanus are large, piscivorous reef fish that occur as far north as Massa-
chusetts, but generally are found from North Carolina to the Yucatan Peninsula, including the waters
of the GOM but not the Caribbean Sea (Hoese and Moore 1998). Red snapper are valued as both
game and food fish throughout their range and are perhaps the most targeted fish in the U.S. GOM
(Minton and Health 1998; Stanley and Wilson 1989,1990). In the GOM, red snapper are managed
as a single stock that supports economically valuable commercial and recreational fisheries. The
stock is currently estimated to be overfished and has been managed since the early 1990s intensively
to rebuild spawning stock biomass. Despite overfished status, GOM red snapper total landings
averaged (± SE ) 3.96 x 103 metric tons (± 1.16)from 1995 to 1998 (Schirripa and Legault 1999).

Dating back to the 1800s, it appears that the historic center of GOM red snapper abundance was off
northwest Florida (Camber 1955; Collins 1885; Goodyear 1995; Stearns 1884). The early
commercial fishery followed a pattern of fishing down a given area and seeking new fishing grounds
(Collins 1885; Stearns 1883). By the 1950s about half of reported U.S. commercial landings were
taken from the Campeche Banks off Mexico (Camber 1955; Carpenter 1965; Goodyear 1995), a
trend which continued until Mexico closed the banks to the U.S. fleet in 1980 ( Goodyear 1995). The
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early development of the recreational fishery is not as well documented; however, by the 1950s a
significant charterboat fishery had developed in northwest Florida (reviewed in Goodyear 1995).
By the early 1970s, recreational fishers GOM-wide were making nearly 4 x 105 trips per year
targeting red snapper aboard private and chartered fishing boats (Nakamura 1976).

It appears from fisheries-dependent data that there are currently two centers of GOM red snapper
abundance, one in the northwestern GOM off southwest Louisiana (LA) and a second in the north
central GOM off Alabama and Mississippi (ALMS) (Goodyear 1995; Schirripa and Legault 1999).
From 1995 to 1998, the average percentage of total GOM commercial landings (± SE) from waters
off southwest LA was 56.5% (± 0.54) and the average percentage of total recreational landings from
waters off ALMS was 31.1% (± 3.08) (Schirripa and Legault 1999). (Note: Commercial landings
comprised 48% of total GOM landings from 1995 to 1998, while recreational landings comprised
52%.) What makes these two areas unusual as centers of reef fish production is that the seafloor of
both is composed mostly of sand and mud sediments (Curray 1960; Fisk and McFarlane 1955;
Luddick 1964; Parker et al. 1983). The most pronounced seafloor relief is associated with shelf-edge
reef pinnacles and hardground ledges (LA and ALMS), and salt-dome uplifts (LA only), but the
near-shore shelf is generally depauperate of natural reef substrate (Curray, 1960; Parker et al.
1983;Schroeder et al. 1995).

Most of the near-shore reef habitat off LA and ALMS is in the form of artificial reefs (Stanley and
Wilson 1990; Szedlmayer and Shipp 1994). Therefore, the red snapper fisheries in these areas are
prosecuted predominantly over artificial reefs (Minton and Health 1998; Stanley and Wilson
1990,1991; Szedlmayer and Shipp 1994). In the case of LA, over 3,000 offshore petroleum
platforms serve as de facto artificial reefs and have increased the near-shore habitat available to reef
fishes (Figure 9.15) (Bull and Kendal 1994; Gallaway 1984; Stanley and Wilson 1990, 1991).
Reggio (1987) estimated that 70% of LA recreational fishing trips farther than three miles from
shore targeted fishes at petroleum platforms. Stanley and Wilson (1990) reported the composition
of catches made at petroleum platforms off LA shifted from the late 1970s from one predominated
by drums (Family: Sciaenidae) to one predominated by red snapper.

Petroleum platforms are not as concentrated off ALMS as they are in the northwestern GOM (Figure
9.15), but the state of Alabama claims the largest artificial reef program in the U.S. (Minton and
Heath 1998). Off the coast of Alabama exists an area of over 3,100 km2 that has been designated for
artificial reef construction (Figure 9.16). It is estimated that over 20,000 artificial reefs have been
deployed off Alabama since the start of the program in 1953 (Minton and Heath 1998; Patterson
1999). Proponents of Alabama’s artificial reef program cite high catches of red snapper and a
profitable sport fishing industry as evidence of a successful and beneficial program (Minton and
Heath 1998; Shipp 1999); however, little research has focused on the effect of Alabama’s artificial
reefs on the population ecology of red snapper.

As part of a larger research program aimed at understanding the effect of artificial reefs on the
production and fisheries ecology of red snapper, we conducted a tagging study over artificial reefs
off Alabama. One objective of the study was to sample fixed artificial reef sites repeatedly over a
three-year period to estimate site fidelity of adult red snapper to individual reef sites. A second
objective was to test what factors significantly affected the distance and speed of fish movement
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Figure 9.15. Map of existing petroleum platforms in the U.S. Gulf of Mexico (source: U.S.
Department of Interior, Minerals Management Service, http://www.mms.org).

Figure 9.16. Map of artificial reef permit areas off the coast of Alabama in the northern Gulf of
Mexico.
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Figure 9.17. Map of the State of Alabama’s Hugh Swingle permit area for artificial reef
deployment with nine artificial reef sites over which red snapper were tagged.

away from reef sites. Results are discussed in the context of red snapper fisheries ecology and the
potential use of marine protected areas as a management tool.

METHODS

From March 1995 to July 1998, we tagged adult red snapper over artificial reef sites located in the
Hugh Swingle General Permit Area off the coast of Alabama. Reef sites (n = 9) were located
between 20 and 38 km south-southeast of Dauphin Island, Alabama (Figure 9.17). Reefs were
constructed of a variety of materials by a charterboat operator 18 months prior to the start of the
tagging study (Table 9.6). Reefs were deployed in a three-by-three grid, and each was designated
by a compass heading that denoted its orientation within the grid (Figure 9.17). Individual sites were
between 4 and 16 km apart and occupied similar depths within each row of the grid. Sites in the
northern, central and southern rows were in approximately 21 m, 27 m and 32 m of water,
respectively. 
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Table 9.6.  Composition and total volume of the nine artificial reef  tagging sites.

Site  Composition of Artificial Reef    Volume m 3 

 NW        5 modules of 3, 209-l plastic drums  3.27 

 N        5 modules of 3, 209-l gallon plastic drums  3.27 

 NE        20 newspaper vending machines  3.78

 W        25 newspaper vending machines  4.72

 C        25 newspaper vending machines  4.72

 E        24 newspaper vending machines  4.53

 SW        20 newspaper vending machines  3.78

 S         tractor  trailer bed welded into a triangle  23.45

 SE        15 washing machines  5.42

Our sampling platform was a charterboat that docked at Dauphin Island, Alabama. On each tagging
trip, we attempted to visit at least three reef sites. While over each site, red snapper were captured
with rod and reel and placed in holding tanks on deck. Each fish was measured (total length (TL)
mm) and then tagged by inserting an internal anchor tag through a small (< 5mm) incision made
with a scalpel in the abdominal cavity. Tags were yellow Floy FM-89 anchor tags and each was
marked with a tag number, the word “reward,” and a phone number for fishers to report tag
recoveries. We offered a $5 reward for each tag return, with a chance to win $500 in a drawing of
tag returners. Once tagged, red snapper were either released immediately overboard or transported
in holding tanks to other tagging sites for release. 

Tagged fish were recaptured at tagging sites on subsequent tagging trips and were recovered by
recreational and commercial fishers at sites other than tagging sites. Fish recaptured on tagging trips
were measured and released, and as much information as possible was obtained from fishers’
recoveries. Data from fishers’ recoveries included tag number, date of capture, and exact location
of capture (i.e., Loran C or GPS coordinates). TL at recapture also was obtained from fishers’
recoveries when it was possible to measure their carcasses.

Site Fidelity and Movement

To meet the assumption of independence, only data from terminal recaptures of fish recaptured more
than once were used in statistical analyses of site fidelity and movement. A priori, factors of interest
included TL at tagging, time at liberty, and transportation prior to release. An unplanned factor was
added to the study when two strong hurricanes passed near the tagging sites. The center of Hurricane
Opal with maximum winds of 200 km hr-1 passed within 40 km of the tagging sites on 4 October
1995, and the center of Hurricane Georges with maximum sustained winds of 150 km hr-1 passed
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within 50 km of the tagging sites on 28 September 1998. It became apparent that movement of fish
at liberty during the hurricanes was on a larger scale than fish not exposed to the storms. In
statistical analyses of site fidelity, models were computed with and without fish that were exposed
to hurricanes, and exposure to hurricanes was included as an independent variable to test the effect
of hurricanes on the distance and speed of red snapper movement.

Site fidelity was estimated for all recaptures made at tagging sites, recaptures that were not at liberty
during hurricanes, recaptures that were not transported prior to release, and recaptures that were not
at liberty during hurricanes or transported prior to release. To estimate site fidelity, first the decline
in recaptures made on tagging trips was estimated. Recaptures from all nine sites were grouped in
intervals of days at liberty based on the average time between visits to individual reefs. Because
there were fewer tagged fish available to be recaptured during each subsequent time interval, the
number of recaptures made during a given time interval was adjusted by dividing the number of
recaptures available by the total number of fish tagged. The decline in recaptures was estimated by
fitting the following non-linear decay model to the adjusted distribution of recaptures with PROC
NLIN in SAS (SAS, Inc. 1996):

Nt = Nie-Dt (1)  

where: Nt = adjusted number of recaptures made in interval t 
NI = estimated number of recaptures in the initial interval
D = instantaneous rate of decline in recaptures (d-1)
t = time (d)

The units of D were converted from d-1 to y-1 by multiplying by 365 d. The instantaneous rate of
decline in recaptures (D) is equal to the sum of total mortality (Z) and instantaneous emigration (Q).
Total mortality (Z) is the sum of natural mortality (M) and fishing mortality (F); however, we
assumed that no fishing mortality occurred at tagging sites (see discussion). Natural mortality (M)
was estimated following Royce (1972) and Hoenig (1983), assuming a maximum age for GOM red
snapper of 42 y (Szedlmayer and Shipp 1994). 

M = 4.6/(maximum age) (Royce 1972) (2)  

ln(M) = 1.44 - 0.982*ln(maximum age) (Hoenig 1983) (3)  

Having estimates of D and M, we solved for E by subtraction. Finally, annual site fidelity was
estimated with the following equation:

SF = e-(Q) (4)  

Distance of movement for fishers’ recoveries was estimated as the distance between release sites
and the Loran C or GPS coordinates where recoveries were made. Speed of movement was
estimated as distance divided by time at liberty. In this approach, we assumed that each fish moved
in a straight line from release site to recovery site and at a constant rate.
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There were many zeroes in the distance of movement data (i.e., terminal recaptures made at tagging
sites); therefore, the delta method was employed to obtain unbiased estimates of mean distance and
mean velocity of movement (Aitchison 1955; Pennington 1983). To test the effects of time at liberty,
TL at tagging, exposure to hurricanes, and transportation prior to release on distance of red snapper
movement, and to test the effects of TL at tagging, exposure to hurricanes, and transportation prior
to release on speed of movement, negative binomial regression models were computed with PROC
GENMOD in SAS (Hilbe 1994; SAS, Inc. 1996). Distance and speed models were built using a
forward stepwise approach in which regressions first were computed for each independent variable.
The single variable model with the lowest significant p-value (" = 0.05) was chosen as the base
model. Individual variables were added in order of significance, and improvement of fit was
assessed by testing if adding a variable significantly decreased the deviance of the model to which
it was added (Agresti 1990). The model building process was complete when either no more
significant variables were available to be added, or the addition of a variable did not significantly
improve the fit of the model to which it was added.

RESULTS

From March 1995 to July 1998, we made 28 tagging trips and tagged 2,932 adult red snapper (Table
9.7). Of these fish, 2,053 were released at their tagging sites and 879 were transported to other
tagging sites for release. Mean TL (± SE) of tagged fish was 335.1 mm (± 1.34) (Figure 9.18). From
the start of the project until June 1998, the minimum legal size for possession of GOM red snapper
for both commercial and recreational fisheries was 381 mm (15 inches) TL, but the size limit for the
recreational fishery was increased to 457 mm TL (18 inches) TL from June through August 1998.
Therefore, 80% of tagged fish (n = 2,366) were shorter than the legal size limit at the time of
tagging.

Five hundred ninety-four recaptures of 550 red snapper were made through September 2000. Forty-
two individuals were recaptured twice (23 second recaptures were made by fishers and 19 were
made on tagging trips) and one individual was recaptured three times (all three recaptures were
made on tagging trips). Of the 550 terminal recaptures, 264 fish were not at liberty during at least
one hurricane; mean time at liberty was 623 days for fish exposed to hurricanes and 341 days for
fish not exposed to hurricanes. Four hundred thirty-seven recaptures were not transported prior to
release, and 113 recaptures were transported prior to release. Two hundred fourteen fish were
recaptured on tagging trips, of which 191 recaptures were terminal recaptures. Three hundred fifty-
nine recoveries were reported by fishers (fishers’ return rate = 12.2%); however, recreational fishers
reported 354 recoveries (recreational return rate = 12.0%) and commercial fishers reported only five
(commercial return rate = 0.2%). Total Length at recapture was measured for all terminal recaptures
made on tagging trips and for 97 (27.0%) recaptures reported by fishers (Figure 9.19).

Site Fidelity and Movement

All non-linear decay models of the decline in recaptures over time were highly significant (p <
0.001; R2 > 0.97) (Figure 9.20). Estimated natural mortality from both the method of Royce (1972)
and of Hoenig (1983) was 0.11. Estimates of annual site fidelity ranged from 21 to 26% y-1 (Figure
9.20).
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Table 9.7. Dates of tagging trips, tagging sites samples, and number of red snapper tagged.

Date Tagging Sites Number
Tagged Date Tagging Sites Number

Tagged

22Mar 1995 C, SE 94 7 Aug 1996 SE, NE, N 86

3 May 1995 N, NE, NW, C 107 31 Oct 1996 C, W, NW, SW 189

20 Jun 1995 W, S, SW 153 1 Nov 1996 NE, E, SE 152

21 Jun 1995 E, SE, C 118 12 Dec 1996 N, C, S 150

29 Aug 1995 SE, E, NE 129 9 Dec 1996 NE, E SE 122

13 Sep 1995 NW, W, SW 100 26 Mar 1997 NW, N, NE 114

14 Sep 1995 N, C, S 112 27 Mar 1997 SW, S, C 117

30 Nov 1995 S, SE, NW, C 107 29 Apr 1997 NW, N, NE 42

12 Dec 1995 N, SW 73 18 Sep 1997 NW, N, NE, E 147

27 Feb 1996 SW, W, NW 42 23 Sep 1997 C, SE, S 65

22 Mar 1996 N, C, S 41 3 Nov 1997 NW, N, NE 136

29 Mar 1996 NE, SE, E 38 5 Nov 1997 W, SW, S, C 186

1 May 1996 S, SE, C 37 25 Feb 1998 NW, N, NE 147

12 Jun 1996 SW, S, W, N, C 50 20 July 1998 NW, N, NE 104

Location of recapture was reported for 252 (70%) recoveries reported by fishers. The farthest
distance an individual moved was 352 km (Figure 9.21), and the longest time at liberty was 1,501
d. Mean distance moved was 29.4 km (Figure 9.22a), and mean time at liberty was 409 d. Distance
of movement single variable negative binomial regressions were significant for exposure to
hurricanes (P2

d.f = 1 = 9,404.4; p < 0.001), time at liberty (P2
d.f = 1 = 25.1; p < 0.001) and TL at tagging

(P2
d.f = 1 = 6.3; p = 0.013), and not significant for transportation prior to release (P2

d.f = 1 = 0.21; p =
0.645). The variable time at liberty was added to the single variable regression model testing the
exposure to hurricanes’ effect and lack of fit for the model was not significant (P2

d.f = 443 = 426.0; p
= 0.711). The addition of time at liberty to the exposure to hurricanes model significantly decreased
the model’s deviance (P2

d.f = 1 = 37.1; p < 0.001). Total length at tagging then was added to the
model, but its addition increased the model’s deviance. Therefore, the final model included only
exposure to hurricanes and time at liberty effects:

Distance = e {-20.74 + 21.61*(Cane) + 23.99*(TAL) + ,} (5)  
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Figure 9.19. Distribution of total length at recapture of terminal recaptures at tagging sites (black
bars, n = 192) and measured terminal recaptures from fishers (gray bars, n = 97).

Figure 9.18. Distribution of total length at tagging of red snapper tagged in this study.
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Figure 9.21. Spatial distribution of recaptures reported by fishers (n = 251). Open circles
designate fish exposed to hurricanes (n = 147) and closed circles designate fish not
at liberty during hurricanes (n = 104).

Figure 9.20. Distribution of number of recaptures made on tagging trips over time and fitted non-
linear decay models for A. all terminal recaptures (n = 191), B. terminal recaptures
not at liberty during hurricanes (n = 149), C. terminal recaptures not transported
prior to release (n = 172), and D. terminal recaptures not at liberty during hurricanes
or transported prior to release (n = 139). Fitted lines follow the model Nt = NIe-Dt,
where D is the instantaneous rate of decline y-1 and t is time in y. All models were
highly significant (p < 0.001; R2 $0.97).
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Figure 9.22. Delta method estimates of mean distance and mean velocity of movement. Error bars
are standard error of the mean.
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Mean speed of movement was 73.9 m d-1 (Figure 9.22b). Speed of movement single variable
negative binomial regressions were significant for exposure to hurricanes (P2

d.f = 1 = 2,536.9; p <
0.001) and TL at tagging (P2

d.f=1 = 4.0; p = 0.047), and not significant for transportation prior to
release (P2

d.f = 1 = 2.7; p=0.102). The addition of TL at tagging to the exposure to hurricanes model
significantly increased the model’s deviance. Therefore, the final model included only the hurricane
effect:

Speed = e {-20.78 + 18.541*(Cane) + ,} (6)  

DISCUSSION

Authors of previous tagging studies of GOM red snapper generally concluded that adult red snapper
displayed strong site fidelity and limited movement (Beaumariage 1969; Fable 1980; Szedlmayer
and Shipp 1994; Szedlmayer 1997). Beaumariage (1969) and his colleagues tagged 1,126 red
snapper off northwest Florida (FL) in the 1960s and reported tag returns from 315 fish. Mean time
at liberty of reported recoveries was 113 d and most (90%) were made less than 5 km from release
sites; however, several fish moved over 100 km. Fable (1980) tagged 299 red snapper at petroleum
platforms off south Texas TX and reported 17 tag returns. He reported little movement away from
platforms, but maximum time at liberty was only 253 days. Szedlmayer and Shipp (1994) tagged
1,155 red snapper over artificial reefs off Alabama in the early 1990s. They recovered 146 tagged
fish, but were able to confirm location of recapture for only 37 returns. The greatest distance moved
was 32 km and the maximum time at liberty was 430 days; mean time at liberty for all recaptures
was 113 days. Szedlmayer (1997) released 26 red snapper that were tagged with ultrasonic
transmitters over artificial reefs off Alabama. He was able to detect transmitters up to 1.8 km, and
tracked movements of 19 fish for an average of 118 days before individuals were caught by fishers
(n = 14), lost from the study area (n = 5), or the study ended. Maximum observed movement was
740 m for a fish that was tracked for 71 days before it was lost from the study area. 

While many authors have reported high residence of red snapper on natural or artificial reefs, others
have reported temporal variability in red snapper abundance. Moseley (1966) observed fluctuations
in red snapper abundance on reefs off Texas and hypothesized that passing cold fronts effected
onshore-offshore migrations. Beaumariage and Bullock (1976) reported seasonal variability of fish
abundance off northwest Florida and suggested that fish migrated annually to summer forage
grounds. Stanley and Wilson (1997) estimated fish abundance monthly for one year with
hydroacoustics and video from a remotely operated vehicle at a petroleum platform off Louisiana,
and reported significant variability in red snapper numbers between months. 

Red snapper tagged in our study demonstrated relatively low site fidelity to artificial reefs off
Alabama. While this finding is consistent with studies that have reported temporal variability in red
snapper abundance on natural and artificial reefs (Beaumariage and Bullock 1976; Moseley 1966;
Stanley and Wilson 1997), it is contrary to the widely reported conclusion that red snapper display
strong site fidelity (Beaumariage 1969; Fable 1980; Szedlmayer and Shipp 1994; Szedlmayer 1997).
In our approach, we assumed that no fishing mortality took place at tagging sites. This assumption
was based on the fact that no recoveries were reported as being caught at Loran C or GPS
coordinates that matched those of tagging sites. If fishing mortality did occur at tagging sites, our
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estimates of site fidelity would be biased low. Estimated F of GOM red snapper ages 3-6 (the
approximate age distribution of recaptured fish, see Szedlmayer and Shipp (1994)) during 1995-
1998 was 0.36 (Schirripa and Legault 1999). If fishing mortality occurred at a similar rate at tagging
sites, estimated annual site fidelity would only increase from 25.3% to 33.2% y-1 for the model that
included all recaptures made at tagging sites. 

Too few individuals transported prior to release and/or exposed to hurricanes were recaptured at
tagging sites to model declines separately for these two factors. We attempted to account for the
effect of these factors on site fidelity by modeling the decline in recaptures with and without fish
transported prior to release and/or exposed to hurricanes. Estimated site fidelity increased slightly
when transported individuals were excluded, which agrees with the findings of Watterson et al.
(1998) and Patterson (1999) that transporting individuals increased their likelihood of movement.
We expected a similar result when individuals exposed to hurricanes were excluded; however,
estimated site fidelity actually decreased when fish exposed to hurricanes were omitted. This result
is due to the fact that more individuals exposed to hurricanes were recaptured at tagging sites during
the second and third time intervals than in the first, which resulted in a steeper function (i.e., a more
rapid decline in recaptures) when fish exposed to hurricanes were omitted. This may indicate that
some fish initially moved away from our reef sites following the storms but later returned.

There were two scales of movement observed for fish that moved away from tagging sites. Fish
exposed to hurricanes moved significantly farther than fish that were not. Time at liberty also
significantly affected the distance fish moved, and the fact that individuals exposed to hurricanes
were at liberty longer than those not exposed may partially explain their greater distances of
movement. However, hurricanes also significantly affected the speed at which recovered fish moved
to their site of recapture. Therefore, distance of movement for fish exposed to hurricanes was not
simply a function of greater time at liberty.

Goodyear (1995) reported that the rapid decline in fishers’ tag recoveries with time at liberty from
previous red snapper tagging studies indicated either high mortality or tag shedding, but in either
case, long-term observations of movement would not be possible. Mean time at liberty was longer
for reported recoveries in the present study than from previous studies, and movement also was on
a larger scale (Beaumariage 1969; Fable 1980; Szedlmayer and Shipp 1994; Szedlmayer 1997).
Furthermore, estimates of mean distance and speed of movement reported here are likely
conservative. Patterson (1999) reported a high rate of tag shedding for red snapper tagged during
the current study; therefore, fish movement may be underestimated because the longer fish were at
liberty, the lower the likelihood they would be recognized as tagged fish. Size limits and other
management regulations also may have caused underreporting by fishers of fish that moved away
from their release sites (Patterson 1999). 

Implications of Red Snapper Movement 

The perception that adult red snapper demonstrate high site fidelity to artificial reef sites has driven
the discussion of the effect of artificial reefs on red snapper fisheries ecology off Alabama.
Szedlmayer and Shipp (1994) concluded that artificial reef areas off Alabama increased production
of red snapper, rather than attracting fish from other areas, based on their findings that fish displayed
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a high degree of residence on artificial reefs, and that red snapper grew faster and had higher
abundances of juveniles off Alabama than other areas in the GOM. Their conclusion was tenable
given the state of knowledge about GOM red snapper when it was proposed, but recent studies do
not support it. Our results indicated that site fidelity of red snapper to artificial reefs was relatively
low and that movement increased with time at liberty. Patterson (1999) reported that growth of red
snapper captured off Alabama was similar to fish caught in the northwestern GOM. Gallaway et al.
(1999) reported that catch per unit effort and habitat suitability index values for nursery areas off
ALMS were similar to other areas in the GOM.

While it is possible that the creation of artificial reefs off Alabama and the deployment of petroleum
platforms as de facto artificial reefs in the northwest GOM have shifted the center of GOM red
snapper abundance from its historic center off the west coast of Florida (Stearns 1884; Collins 1885;
Camber 1955; Carpenter 1965; Goodyear 1995), to our knowledge no data exist to support the
contention that natural reef habitat currently limits GOM red snapper stock size (Cowan et al. 1999).
The likelihood that artificial reefs have increased production of red snapper in the northern GOM
is further diminished when one considers that this stock is currently estimated to be overfished
(Schirripa and Legault 1999) and that year class strength appears to be driven by natural and
anthropogenic (shrimp trawl bycatch) sources of mortality on juveniles, rather than by adult habitat
availability (Bohnsack 1989; Goodyear 1995; Cowan et al. 1999). An equally plausible explanation
of the role of northern GOM artificial reefs is that they serve as a net sink of red snapper production,
as the period of artificial reef creation off Alabama is coincident with the fishing down of the
northern GOM red snapper stock to the point where spawning potential ratio currently is estimated
to be less than 5% (Schirripa and Legault 1999). 

While the benefits of artificial reefs to fishing, such as aggregating fishes and increasing catch rates,
are well documented (Polovina 1991; Stone et al. 1991), few studies have shown conclusively that
artificial reefs increased production (but see Polovina and Sakai 1989; Butler and Herrnkind 1997).
Pitcher and Seaman (2000), however, proposed that artificial reefs deployed in no-take areas could
help mitigate overfishing and habitat degradation. Fisheries managers have begun to consider the
possibility of no-take marine reserves as a management tool in the GOM (Plan Development Team,
1990; Gulf of Mexico Fishery Management Council (GMFMC) 1999a). In fact, the GMFMC has
proposed creating two no-take marine reserves off the west coast of Florida to preserve and increase
the spawning stock biomass of gag Mycteroperca microlepis and other grouper species (GMFMC
1999b). Holland and Brazee (1993) demonstrated with simulation modeling that no-take marine
reserves could be implemented to increase spawning stock biomass of GOM red snapper. Estimates
of red snapper site fidelity and velocity of movement from this study will benefit decision-makers
faced with estimating the optimal size of marine reserves designed to maintain or increase red
snapper spawning stock biomass. 
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ABUNDANCE, AGE DISTRIBUTION, GROWTH RATE, AND MORTALITY
ESTIMATIONS FOR RED SNAPPER, LUTJANUS CAMPECHANUS,

AROUND GAS PLATFORMS AND OTHER ARTIFICIAL STRUCTURES
IN THE NORTHEAST GULF OF MEXICO 

Stephen T. Szedlmayer
Carol Furman
Dustin Moss
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Department of Fisheries and Allied Aquacultures

Auburn University

ABSTRACT

We estimated red snapper Lutjanus campechanus, abundance, age frequency, fecundity, and
mortality, through a fishery independent survey. We tested six capture methods: bandit rigs, gill
nets, fish trap, hook-and-line, drop net, and spear gun. After fishing, we used SCUBA visual counts
to estimate remaining red snapper. All captured fish were weighed, measured, otoliths removed and
ovaries weighed and preserved in Gilsons. We captured 1,147 red snapper at 28 different artificial
reefs. Mean + Sd abundance per reef = 86.3 + 69.4. Estimated population size off Alabama from 15
to 73 m depths = 1.3 million red snapper. Mean size = 279 + 59 mm SL, and mean age was two
years. We captured 442 females with 32 % mature. Spawning duration was 142 d, with peaks from
May through July. Batch fecundity = 83,870 eggs per fish, with annual fecundity = 2.9 million eggs
per fish. Fish trap was the best capture method and SCUBA visual survey was the best abundance
estimator. Females start maturing above 250 mm SL, and GSI peaked May to August. Total
mortality was high (Z = -2.0) over the year classes sampled. Growth rates were 140 mm TL per year.
Abundance estimates may be low, because we sampled only heavily fished reef sites, and future
efforts will be directed at “unpublished” reef sites.
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MOVEMENT, GROWTH AND SURVIVAL OF GRAY TRIGGERFISH, 
BALISTES CAPRISCUS, INHABITING ARTIFICIAL AND NATURAL

REEFS IN THE NORTH-CENTRAL GULF OF MEXICO

G. Walter Ingram, Jr.
Department of Marine Sciences
 University of South Alabama

Robert L. Shipp
Department of Marine Sciences
University of South Alabama

ABSTRACT

In the Gulf of Mexico (Gulf), the gray triggerfish (GTF) inhabits both natural and artificial reefs.
Due to high site fidelity of GTF, the goal of this study is to determine if GTF may be better managed
with respect to local demographics, including differences between GTF inhabiting natural versus
artificial reefs.

This study consists of two separate tagging projects conducted off the Alabama coast. The first
project (P1) was conducted between June 1995 and December 1997 over nine artificial reefs with
three reefs in each of three depth strata (20, 26, and 36 m). The second and currently ongoing project
(P2) began in October 1997 and is being conducted over a cluster of six natural reefs in 20 m of
water and a cluster of three natural reefs in 32 m of water.

Of the 201 GTF tagged during P1, 50 have been recaptured, with 31 recaptured at the site of release.
Also, of the 500 GTF tagged during P2, 65 have been recaptured, with 49 recaptured at the site of
release. The distribution of fork-length at tagging was significantly different (p<0.00001) between
P1 (0±s=347±57mm) and P2 (297±41mm), which may result from gear bias and/or differences
between reef habitats. Linear and von Bertalanffy growth parameters were estimated from combined
data from both projects (i.e., 0.14 mm/day and L4 =836 mm and K=0.0998, respectively). During
both projects, both magnitude of movement (P1: p=0.0000998; P2: p=0.050) and velocity (P1:
p=0.0002; P2: p=0.049) increased significantly in GTF at large during tropical cyclones. Also, a
trend of decreasing site fidelity with depth was found in both projects. With the majority of
recaptures occurring at the point of initial release, GTF seem to exhibit high site fidelity on both
artificial and natural reefs.
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RED SNAPPER (LUTJANUS CAMPECHANUS) DIET
ON ALABAMA ARTIFICIAL REEFS

Jessica R. McCawley
Robert L. Shipp

University of South Alabama/Dauphin Island Sea Lab

James H. Cowan, Jr.
Louisiana State University
Coastal Fisheries Institute

ABSTRACT

Red snapper, Lutjanus campechanus, is a highly exploited reef fish in the Gulf of Mexico (GOM)
snapper-grouper complex that occupies both natural hard bottom and artificial habitats throughout
its range. Despite its importance, relatively little is known about its habitat preferences and feeding
habits. Toward this end, I examined the size-specific diet of red snapper collected for gut content
analysis from artificial reefs in the north-central GOM off Alabama between May1999-April 2000.
Thirty-nine to 86 stomachs per month were removed and prey items identified to the lowest possible
taxonomic level. The relative contribution of prey items was determined using percent frequency
of occurrence, percent composition by number, percent composition by weight, and index of relative
importance (IRI). Results suggest that snapper selectively feed on organisms not associated with
reefs, such as mantis shrimp (16% by weight) and portunid crabs (27.3% by weight). Diet changes
seasonally with crabs being the most important in summer and fall (31.4-36.3% W), while mantis
shrimp are important in winter (33.3% W). Pelagic zooplankton are consumed heavily in the spring
(39.1% W). Diet also changes with snapper size, as red snapper get larger, more of their diet is made
up of demersal crustaceans. These diet data ultimately will be used in combination with a bioener-
getics budget to estimate prey demand of a red snapper population on Alabama artificial reefs.

INTRODUCTION

Red snapper, Lutjanus campechanus, is a highly exploited finfish in the GOM. It has been harvested
both commercially and recreationally since the late 1800s (Moseley 1966, Goodyear 1995, Schirripa
and Legault 1997). Thus, stocks declined throughout the GOM unitl the early 1990s (Szedlmayer
and Shipp 1994). Since then, regulations that have been put in place by the National Marine
Fisheries Service, including size and bag limits and total allowable catches, have helped the stock
begin to recover (Schirripa and Legault 1997, Patterson 1999). 

The recovery of the stock has also been attributed in part to an increase in structure in the form of
artificial reefs and oil and gas platforms. The Alabama shelf has the largest artificial reef program
in the nation with over 4000 km2 of reef permit area (Shipp 1999). Perhaps as many as 20,000 artifi-
cial reefs have been deployed off the Alabama coast (Patterson 1999); these structures support red
snapper and other reef associated species. However, the role that artificial reefs play in trophic dy-
namics is largely unknown; some have suggested that they may be energy sinks (Bortone 1998). 
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In addition, there has been a growing recognition that interacting species, such as those found on
artificial reefs, cannot be managed individually. This idea has led to the development of multispecies
ecosystem models, which has generated the need for more information about the food consumed by
communities of reef fish (Munro 1987, Bohnsack 1998). This study examines the role artificial reefs
may play in red snapper trophic dynamics, focusing on seasonal changes and changes with fish size.

METHODS

Monthly Sampling

Red snapper were collected by hook and line from artificial reefs in the northern GOM off the coast
of Alabama between May 1999 and April 2000. Most fish were caught by recreational fishermen
in the Hugh Swingle General Permit Area. However, some were collected in July 1999 and 2000
from local fishing tournaments. Knowing that red snapper are prone to regurgitation (Parrish 1987),
approximately 39 to 86 fish were collected per month to ensure a significant number of fish with full
stomachs. All snapper were weighed to the nearest 0.01kg, and their total length (TL) and fork
length (FL) determined to the nearest mm before their stomachs were removed. Stomachs were
severed at the esophagus and duodenum below the pyloric sphincter, slit to allow complete
preservation, and then preserved in 10% formalin for at least 48 hours.  They then were transferred
to 70% isopropyl alcohol until they could be sorted. Preserved stomachs were opened and contents
removed and sorted to the lowest possible taxonomic level. Prey items were then weighed by taxon
to the nearest 0.01g. Empty stomachs were either labeled as genuinely ‘empty’ or distended
according to the description of Treasurer (1988). 

Enumeration of Stomach Contents

The relative contribution of each of the prey items was determined using four methods: (1) percent
composition by weight, (2) percent composition by number, (3) percent frequency of occurrence,
and (4) index of relative importance. The index of relative importance (IRI) was determined using
the formula: IRI = (%N +%W) x %FO, where N = number, V = volume, and FO = frequency of
occurrence (Pinkas 1971, modified by Hacunda 1981). Percent IRI (% IRI) was also calculated by
dividing the IRI value for each prey category by the sum of the IRI values and multiplying by 100.
These indices were used to describe the overall diet, as well as to evaluate the diet on a seasonal
basis (summer= June, July, and August; fall= September, October, and November; winter=
December, January, and February; and spring= March, April, and May) as well as by red snapper
size class. Red snapper were divided into 5 size classes (200-299mm FL, 300-399mm FL, 400-
499mm FL, 500-599mm FL, and >600mm FL). The identifiable contents of all stomachs combined
were divided into 6 major prey categories; fish, crabs, adult mantis shrimp, penaeid shrimp, squid,
and an ‘other’category. The ‘other’category was further subdivided into pelagic zooplankton and
demersal/benthic associated species, with the exception of larval fish, which were included in the
fish category and crab megalopae and zoea, which were included in the crab category. The diet also
consisted of an ‘unidentified’ category, which was not used in some portions of the analysis because
IRI cannot be determined for this category. 
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RESULTS

Monthly Sampling

Stomach contents of 656 red snapper ranging from 207 to 913mm FL were examined. Of these, 268
stomachs contained identifiable prey (40.8%), 262 were empty (39.9%), 63 contained only bait
(9.6%), and 63 contained only unidentifiable prey (9.6%). Of the 262 stomachs classified as empty,
169 were considered ‘truly’ empty (65%) and 93 (35%) were considered distended or empty due to
regurgitation. 

The ‘unidentified’ prey category made up the largest proportion of the diet by %W. After exclusion
of the unidentified category, fish, pelagic zooplankton, and crab were the principal components of
red snapper diet when all stomachs were combined. However, no single group was largest by all
indices. Pelagic zooplankton were the largest category by % FO (39.3%) and % N (30.2%), whereas
fish was the largest category by % IRI (30.9%) and % W (28.7%). Unidentified fish, larval fish, fish
of the families Ophicthidae (shrimp eels), and Triglidae (sea robins) contributed largely to the fish
portion of the diet, whereas crabs of the family Portunidae and unidentified crabs were important
in the crab category. Pelagic zooplankton consisted primarily of larval mantis shrimp, amphipods,
and pteropods (Cavolinia sp.).  

Seasonal Diet

An examination of gut contents by season for all stomachs (%W) indicates that while fish were
present in red snapper diet in all seasons (comprising between 25-34% W), fish did not contribute
the greatest amount by weight in any season. The diet in summer and fall was comprised
predominately of crabs (31.4% W in summer and 36.3% W in fall). Winter diet was comprised
predominately of adult mantis shrimp (33.3% W) and spring of pelagic zooplankton (39.1% W).
Demersal crustaceans (crabs and adult mantis shrimp) were present in all seasons, comprising
approximately 50% by weight of the diet in summer, fall, and winter. During the spring, red snapper
fed on high numbers of pelagic zooplankton, which were present at some level in all seasons.
However, the numbers of pelagic zooplankton consumed appeared to be inversely related to
numbers of demersal crustaceans eaten by red snapper. 

Size Class

All stomachs were pooled for an examination of size class differences; the same 7 prey categories
as described above were used. Fish were present in the diet of all size classes of red snapper and
were the largest contributor to the diet of the 200-299mm (36.4% W) and the 500-599mm (40.2%
W) fish. The diet of 300-399mm fish was almost fairly equally proportioned among the prey
categories, however crab made up the largest portion of the diet (25.8% W). Crab was also the most
important prey item of >600mm snapper, making up 51.5% of the diet by % W. The diet of the 400-
499mm snapper was comprised primarily of pelagic zooplankton (35% W). There appears to be a
shift in diet with red snapper size. As snapper get larger they apparently eat more demersal
crustaceans and less pelagic zooplankton and fish.
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DISCUSSION

Our results show seasonal shifts in red snapper diet on Alabama artificial reefs. These findings are
similar to most other studies of red snapper diet including another off Alabama (Bailey 1995) (Table
9.8). However, Bradley and Bryan (1974) found fish to be the largest category in fall, winter, and
spring, but crabs contributed the most to the summer diet. Specifically in their study, spring was
comprised primarily of eels, mantis shrimp, and Sicyonia sp. (rock shrimp); summer was comprised
primarily of Callinectes danae and S. dorsalis; and winter was comprised primarily of eels. In this
study, eels (Ophicthids) were found in all seasons except fall, but they were never the largest
category by percent weight. In contrast, mantis shrimp contributed the largest percent by weight to
the diet of red snapper off Alabama in winter, and were lowest in spring. Parrish (1987), in his
literature review of snapper and grouper diet’s stated that the principal food groups of snapper in
most studies are fish and decapod crustaceans, which was consistent with the current study.
Anguilliform fishes, like the Ophicthids that we found, were common in the snapper diets he
examined. Parrish (1987) found crabs to be the second most abundant prey category, specifically
with Portunid and Calappid crabs mentioned in several reports, while shrimps and other crustaceans
(especially stomatopods) were the next largest diet category. He also stated that snappers often ate
large plankton, which were an important part of the diet for some Lutjanid species he reviewed,
specifically pteropods, which were found in our study to make up between 13-21% W of the diet
in spring and summer. Larval mantis shrimp, which were also found in the current study in large
amounts in all seasons (highest in summer and winter) are thought to form large swarms in tropical
waters (Morgan and Provenzano 1979). Randall (1967) found that they made up a considerable
portion of the diet of reef fishes in the West Indies.

Our results also show that diet shifts with the size of red snapper. Randall (1967) and Moseley
(1966) found that as snapper get larger their diet is made up of proportionally more fish and less
crustaceans. Our study found the opposite to be true. As red snapper got larger (>600mm), their diet
was increasingly comprised of benthic crustaceans and less fish. However, our results could be
attributable to the fact that many of our larger fish were collected in the summer when these
crustaceans are abundant. In 500-599mm red snapper, which we collected both in spring and
summer, fish did contribute largely to red snapper diet. It is also possible that the way in which we
treated our gut contents data could have contributed to observed differences between our study
results and those of previous studies. We treated each stomach as a replicate and found the
proportion of each of the prey items for that stomach (Bowen 1996), after which we computed a
mean and standard error for each season or red snapper size class across all replicates. Some of the
previous studies do not provide enough information for us to determine how their indices were
calculated, thus making direct comparisons impossible.

Many of the crustaceans we found in the diet are sand/mud inhabitants of the shelf. The Portunid
crabs (swimming crabs such as Portunus gibbesii) as well as the mantis shrimp (Squilla empusa)
inhabit mud or sand substrates (Williams 1984, Wenner and Wenner 1989, Manning and Heard
1997). Hildebrand (1954 cited in Williams 1984) found S. empusa to be the third most abundant
crustacean in the Gulf offshore trawl fishery only following Penaeus sp and Callinectes sp. On the
Alabama shelf, S. empusa can be collected year-round from mud bottom areas, and are the most
abundant stomatopod on the Alabama shelf (Rich Aronson, pers. comm.). Rouse (1970) (cited in
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Table 9.8. Literature review of some red snapper diet studies relevant to the present study.

Source
Location
of study Fish size

#
Stomachs
Examined
(# w/ food) Description of Results

Moseley 1966  712 (187)
Louisiana juvenile (28) 30% FO of crustaceans, another

sample had 60% Squilla (night
sample), unidentified fish made
up 27% of this sample

adult (46) 44% fish in one sample, 80% fish
and rest crustaceans in another

Texas juvenile (45) 41% crustaceans in one sample,
89% crustaceans in another

adult (68) Fish dominated the diet in all
samples (40-69%), crustaceans
were present in small numbers

Bradley and
Bryan 1974

Texas juvenile and
sub-adult

575 (258) Summer ate shrimp and crabs,
spring and winter ate squid.
Mantis shrimp made up portion of
diet in summer, winter had most
varied diet

adult 1139 (190) Primarily ate fish, but in fall and
winter ate more crustaceans. In
spring 13% of diet was tunicates.
Summer had largest variety and
winter the smallest variety

Bailey 1995 Alabama 330-691 mm
TL

98 Principal prey items in summer
were rock shrimp and crabs, also
ate some eels and unid. fish

Lee 1998 Alabama 10-280mm
SL

1652 (792) Halichoeres sp., Serranus sp. and
Centropristis sp.) and shrimp
(Lysmata sp. and Synalpheus sp.)
and squid. 

 Williams (1984)) stated that P. gibbesii was the most often collected Portunid in the GOM. Other
of the Portunids found in the stomachs, such as P. spinicarpus, P. ordwayii, and C. sapidus were
also cited by Williams (1984) as being found either on mud bottoms or a variety of bottoms, but not
on reefs. Most of the crustaceans we found in the stomachs are associated with mud bottom and are
abundant in the GOM. The same is true for many of the important fish prey species such as
Ophicthid fishes, sea robins, and cusk eels. 
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Thus, red snapper foraging does not appear to be directly associated with artificial reefs; they may
be gaining little nutritional support from the reefs. The prey species that are abundant on Alabama
artificial reefs, such as, sea basses, tomtates and other grunts (Andy Strelcheck, pers. comm.), were
not found in the diets of red snapper in this study, although they did eat in smaller numbers some
organisms that are associated with reef structure such as Syngnathids (pipe fish and sea horses) and
pinfish. Starck (1968) also lists species that have an affinity to reefs, such as lizardfish, gobies, and
wrasses, which would be expected in the diet, but these fish were not found in the stomachs of the
red snapper we sampled. Thus, we infer that red snapper are selectively or preferentially feeding on
non-reef habitat. 

Other studies of red snapper diet describe foraging habits that support this claim. Moseley (1966),
in a red snapper diet study off of Texas and Louisiana, found that red snapper do not always feed
on reef associated species. He stated that “Based on food habits, there seems to be no particular
reason why red snappers should congregate on reefs or rocky areas… .” Parrish (1987) states that
snapper probably remain within a few meters of the bottom because most of their prey needs to be
captured from the substrate. He classifies L. campechanus as an intermediate depth feeder, which
means they forage anywhere from relatively shallow water up to 100m. He states that such feeders
probably forage widely from shelter over soft bottom to gain food, or either forage by “patrolling
up to several meters off the bottom for nektonic prey as well as periodically foraging on substrate
for fully benthic prey.” Supporting this idea, this study found that snapper consumed some
organisms that reside higher in the water column, such as larval mantis shrimp, fish larvae,
amphipods, and pteropods, and other assorted pelagic zooplankton as well as mud associated
species. Davis and Birdsong (1973) describe coral reefs and other “habitat interfaces” as rich in
diversity saying they “represent ‘cross roads’ between foraging and refuge areas.” Artificial reefs
can be seen in much the same context, as snapper seem to supply their energetic demands from
habitats other than reefs. It is still unclear if red snapper are simply leaving a reef to forage on
nearby mud bottom, or if they are feeding during their transit between reefs, or both. In contrast, Lee
(1998) found snapper over artificial reefs ate reef associated prey, such as fish (Halichoeres sp.,
Serranus sp. and Centropristis sp.) and shrimp (Lysmata sp. and Synalpheus sp.) (although he
examined snapper smaller (10mm – 230mm standard length) than what we studied). Perhaps smaller
red snapper, such as the ones Lee (1998) examined, are more reef dependent than their larger
counterparts. 

The data from this diet study will be used along with information on red snapper diel feeding
patterns, and the caloric content of the prey species to present a complete picture of the foraging
habits of red snapper off of Alabama. That data then will be used along with information on growth
rates of snapper on artificial reefs as well as metabolism values in a bioenergetics model to obtain
a first order estimate of the prey demand of a red snapper population on a reef.
 

ACKNOWLEDGMENTS

This study was funded by a Mississippi-Alabama Sea Grant Fellowship and the Alabama
Department of Conservation, Marine Resources Division. Special thanks to Julie Prerost for her help
in identifying the invertebrates.  



659

REFERENCES

Bailey, H.K., IV. 1995. Potential interactive effects of habitat complexity and sub-adults on young
of the year red snapper (Lutjanus campechanus) behavior. M.S. Thesis. University of South
Alabama. 55pp.

Bohnsack, J.A. 1998. Application of marine reserves to reef fisheries management. Australian
Journal of Ecology. 23:208-304.

Bortone, S.A. 1998. Resolving the attraction-production dilemma in artificial reef research: Some
yeas and nays. Fisheries. 23(3):6-10.

Bowen, S.H. 1996. Quantitative Description of the Diet. In B.R. Murphy and D.W. Willis (eds).
Fisheries Techniques, 2nd edition. American Fisheries Socitey, Bethesda, Maryland. pp. 513-532.

Bradley, E. and C.E. Bryan. 1974. Life history and fishery of the red snapper (Lutjanus
campechanus) in the northwestern Gulf of Mexico: 1970-1974. Proceedings of the Gulf and
Caribbean Fisheries Institute. 27:77-106.

Davis, W.P. and R.S. Birdsong. 1973. Coral reef fishes which forage in the water column.
Helgolander wiss. Meeresunters. 24:292-306.

Goodyear, C.P. 1995. Red Snapper in U.S. waters of the Gulf of Mexico. National Marine Fisheries
Service, Southeast Fisheries Science Center, Miami Laboratory, Miami MIA-95/96-05.

Hacunda, J.S. 1981. Trophic relationships among demersal fishes in a coastal area of the Gulf of
Maine. Fishery Bulletin. 79:775-788.

Lee, J.D. 1998. Diet shifts of red snapper, Lutjanus campechanus, with changes in habitat and fish
size. M.S. thesis. Auburn University. 63pp.

Manning, R.B. and R.W. Heard. 1997. Stomatopod crustaceans from the Carolinas and Georgia,
Southeastern United States. Gulf Research Reports. 9(4):303-320.

Morgan, S.G. and A.J. Provenzano, Jr. 1979. Development of pelagic larvae and postlarvae of
Squilla empusa (Crustacea, Stomatopoda), with an assessment of larval characters within the
Squillidae. Fishery Bulletin. 77(1):61-90.

Moseley, F.N. 1966. Biology of the red snapper, Lutjanus aya Bloch, of the northwestern Gulf of
Mexico. Pub. Inst. Mar. Sci., TX. 11:90-101.

Munro, J.L. 1987. Workshop Synthesis and Directions for Future Research. in: J.J. Polovina and S.
Ralston, (eds.). Tropical Snappers and Groupers, Biology and Fisheries Management. Westview
Press.



660

Murawski, S.A. 1991. Can we manage our multispecies fisheries? Fisheries. 16(5):5-13.  

Parrish, J.D. 1987. The trophic biology of snappers and groupers. In: J.J. Polovina and S. Ralston
(eds.). Tropical Snappers and Groupers, Biology and Fisheries Management. Westview Press.

Patterson, W.F. 1999. Aspects of the population ecology of red snapper Lutjanus campechanus in
an artificial reef area off Alabama. Ph.D. Dissertation. University of South Alabama. 164pp.

Randall, J.E. 1967. Food habits of reef fishes of the West Indies. Studies in Tropical Oceanography.
(Miami) 5:665-847.

Schirripa, M.J. and C.M. Legualt. 1997. Status of the red snapper in U.S. waters of the Gulf of
Mexico. NOAA, NMFS, Southeast Fisheries Science Center, Miami Laboratory Contribution
MIA-97/98-05.

Shipp, R.L. 1999. The artificial reef debate: Are we asking the wrong questions? Gulf of Mexico
Science. 1:51-55.

Starck, W.A. 1968. A list of fishes of Alligator Reef, Florida with comments on the nature of the
Florida reef fish fauna. Undersea Biol. 1(1):5-40. 

Szedlmayer, S.T. and R.L. Shipp. 1994. Movement and growth of red snapper, Lutjanus
campechanus, from an artificial reef area in the northeastern Gulf of Mexico. Bull. Mar. Sci.
55:887-896. 

Treasurer, J.W. 1988. Measurement of regurgitation in feeding studies of predatory fishes. J. of Fish
Biology. 33:267-271.

Wenner, E.L. and C.A Wenner. 1989. Seasonal composition and abundance of decapod and
stomatopod crustaceans from coastal habitats, southeastern United States. Fishery Bulletin.
87:155-176.

Williams, A.B. 1984. Shrimps, Lobsters, and Crabs of the Atlantic Coast of the Eastern United
States, Miami to Florida. Smithsonian Institute Press, Washington, D.C.



661

INDEX TO AUTHORS

Allen, J. D. (Dan) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Arnold,  Peter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Baine, Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Baltz,  D. M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167, 169
Barber,  Todd Ryan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
Bates,  Thomas W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Beaver,  Carl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
Benfield,  Mark C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185, 499
Biggs, Douglas C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Blandon,  Ivonne R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
Boland,  Gregory S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 23, 372
Bond,  P.J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Bridger, Christopher J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Bull,  Ann Scarborough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Burgess,  George H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67, 284
Burks,  Carolyn M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Chesney,  E. J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167, 169
Childs,  Jeff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 65, 66
Childs,  Susan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
Coleman, Felicia C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109, 160
Colura,  Robert L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
Cope,  Joseph S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Costa-Pierce, Barry A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Cowan,  James H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633, 653
Culbertson,  Jan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92, 614
de Wit,  LeRay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Deming,  Jody . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 23
Ditty,  James G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Dokken,  Quenton R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182, 601
Dorf,  Barbara A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
Dougall, Dave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Drass,  D.M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Edwards,  Randy E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Embesi,  J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



662

Escobar-Briones,  Elva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 23
Farooqi,  Talat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Friel,  Chris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Furman,  Carol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
Gitschlag,  Gregg R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
Gledhill,  Christopher T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Goudey, Clifford . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Hammerschmdit,  P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Hanisko,  David S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
Harper, Jr., Donald E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
Henwood,  Terry A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Hernandez, Jr.,  Frank J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184, 185, 514
Hewitt IV,  John D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Hiett, Robert L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Hubbard,  Fain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 23
Hymel,  M. K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167, 169
Ingram, Jr., G. Walter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 652
Karel,  William J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
Kasprzak,  Richard A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 472
Keenan,  Sean F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
Kemmerer,  Andrew J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
King,  Tim L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Koenig,  Christopher C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109, 160
Kolok,  A. S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167, 169
Lagera,  Luis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Link,  Jason S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Lohse,  Angela . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 23
Lubinski,  Barbara A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Lukens,  Ronald R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Lyczkowski-Shultz,  Joanne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333, 554
McCawley,  Jessica R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653
McEachron,  Lawrence W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
McManus, Roger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Miller, Margaret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Miller,  Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472, 581
Milon, J. Walter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



663

Moss,  Dustin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
Mullin,  Keith D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Nieland,  David L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Patterson,  William F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
Peter,  D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Pierce,  Aaron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
Rademacher,  Kevin R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Render,  Jeffery H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Ressler,  Patrick H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Rowe,  Gilbert T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21, 23
Scanlon ,Kathryn M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109, 160
Schirripa,  Michael J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
Shaw,  Richard F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184, 185, 514
Shipp,  Robert L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101, 633, 652, 653
Side, Jon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Snelson, Jr., Franklin F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Snyder,  David B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67, 284
Stanley,  David R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 421, 472
Stickney, Robert R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Sulak,  Kenneth, J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Szedlmayer,  Stephen T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183, 283, 651
Tarr,  M. A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167, 169
Topolski,  Marek F. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Ward,  Rocky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
Weaver,  Doug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Wilson,  Charles A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 271, 421, 472, 580, 581
Wirgin,  Isaac I. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353



665

ATTENDEES

Allen, Dan 
Ecologist
Chevron USA Production Co.
935 Gravier St.
New Orleans, LA 70112
allj@chevron.com

Baine, Mark 
Int'l. Center for Island Tech.
Heriot-Watt University
The Old Academy, Stromness
Orkney Islands,  KW163AW
ioemspb@icit.civ.hw.ac.uk

Baltz, Donald M
Professor
LSU Coastal Fisheries Inst.
Baton Rouge, LA 70803
dbaltz@lsu.edu

Bass, William 

Bates, Thomas W

Becker, Gregory T
Principal Environ. Engineer
Becker Engineering Inc.
2386 South Dairy Ashford
Houston, TX 77077

Benfield, Mark 
Coastal Fisheries Inst.
LSU
Baton Rouge, LA 70803
mbenfie@lsu.edu

Benner, Lee 
Oceanographer
MMS
381 Elden St
Herndon, VA 20170
lee.benner@mms.gov

Bennett, Richard 
MMS
1201 Elmwood Prk Blvd
New Orleans, LA 70123

Biggs, Douglas C
Professor
Texas A&M University
Dept of Oceanography
College Station, TX 77843-3146
dbiggs@ocean.tamu.edu

Blandon, Ivonne R

Boatman, Mary 
MMS
1201 Elmwood Prk Blvd, MS 5433
New Orleans, LA 70123
mary.boatman@mms.gov

Boland, Greg 
Biologist
MMS
2164 Champions Dr
La Place, LA 70068
gregory.boland@mms.gov

Bradley, Marcus 
Research Associate
LUMCON
8124 Hwy 56
Chauvin, LA 70344
mbradley@lumcon.edu

Brewer, Gary 
Biologist
USGS  Bio. Resources
1700 Leetown Rd
Kearneysville, WV 25430
gary_brewer@usgs.gov



666

Bull, David 
Audubon Institute
1 Canal St
New Orleans, LA 70118
dlbull@compuserve.com

Burgess, George H

Burkhard, Elizabeth 
Marine Biologist
MMS
381 Elden St., MS 4041
Herndon, VA 20170
Elizabeth.Burkhard@mms.gov

Chesney, Edward 
Associate Professor
LUMCON
8124 Hwy 56
Chauvin, LA 70344
echesney@lumcon.edu

Chew, Dennis 
MMS
1201 Elmwood Prk Blvd
New Orleans, LA 70123

Childs, Susan 

Christopher, Joe 
Chief, Environmental Assessment Sec
MMS
1201 Elmwood Prk Blvd
New Orleans, LA 70123
joseph.christopher@mms.gov

Codina, Caron 
MMS
1201 Elmwood Prk Blvd
New Orleans, LA 70123
caron.codina@mms.gov

Contreras, Suzanne 
Marine Biologist
Texas General Land Office
P.O. Box 12873
Austin, TX 78711-2873
suzanne.contreras@glo.state.tx.us

Costa-Pierce, Barry A
Director
MS-AL Sea Grant Consortium
P.O. Box 7000
703 East Beach Drive
Ocean Springs, MS 39566-7000
b.costapierce@usm.edu

Crabtree, Roy 
Fishery Administrator
NOAA/NMFS, SE Regional Office
9721 Executive Ctr. Dr. North
St. Petersburg, FL 33702-2432
roy.crabtree@noaa.gov

Culbertson, Jan C
Artificial Reef Coordinator
Texas Parks & Wildlife
17629 El Camino Real #175
Houston, TX 77058
jan.culbertson@tpwd.state.tx.us

Current, Carole L
Physical Oceanograph er
MMS
1201 Elmwood Prk Blvd, MS 5433
New Orleans, LA 70123
carole.current@mms.gov

Dauterive, Les 
Sr. Environmental Scientist
MMS
1201 Elmwood Prk Blvd
New Orleans, LA 70123
lester.dauterive@mms.gov



667

David, Andrew 
NMFS
3500 Dellwood Beach Rd
Panama City, FL 32408
david@bio.fsu.edu

DeBose, Jennifer 
Research Assistant
Flower Garden Banks
National Marine Sanctuary
216 W 26th St  #104
Bryan, TX 77803
jennifer.debose@noaa.gov

Dennis, George 
Research Fishery Biologist
USGS
7920 NW 71st St
Gainesville, FL 32653
george_dennis@usgs.gov

Dokken, Quenton 
Texas A&M - Corpus Christi
Center for Coastal Studies
6300 Ocean Dr
Corpus Christi, TX 78412

Dorf, Barbara 
Natural Resource Specialist
Texas P&W Coastal Fisheries Div.
702 Navigation Circle
Rockport, TX 78382
barbara.dorf@tpwd.state.tx.us

Dorhauer III, Charles 
Bonnabel High School
4508 Laudun St
Metairie, LA 70006

Dorsett, Chris 
Program Director - Fisheries
Gulf Restoration Network
P.O. Box 2245
New Orleans, LA 70176
cdgrn@igc.org

Dougall, Dave 
HSE Mgr
AGIP Petroleum Co. Inc.
1201 Louisiana, Suite 3500
Houston, TX 77002
david.dougall@agippetroleum.agip.it

Dowdy, Danielle 
REEF Field Station of NWFL
2521 Maureen Ln
Meraux, LA 70075
reefnwfl@aol.com

Drass, D. M. 

Edwards, Randy E
USGS-BRD/JC
600 Fourth St. S.
St. Petersburg, FL 33701-4846
redwards@usgs.gov

Eve, Hammond 
MMS
1201 Elmwood Prk Blvd
New Orleans, LA 70123

Fagot, Caryl 
Staff Assistant, MMS
1201 Elmwood Prk Blvd
New Orleans, LA 70123
caryl.fagot@mms.gov

Fletcher, Kristen M
Director
MS-AL Sea Grant Legal Prgm.
518 Law Center
University, MS 38677
kfletch@olemiss.edu

Franks, Jim 
Fisheries Biologist
USM-Institute of Marine Sciences
P.O. Box 7000
Ocean Springs, MS 39566
jim.franks@usm.edu



668

Furman, Carol 
Research Associate
Auburn University
Marine Fish Laboratory
8300 State Hwy 104
Fairhope, AL 36532
cfurman@acesag.auburn.edu

Gallaway, Benny 
Ecological Research Assoc.
1410 Cavitt St
Bryan, TX 77801
cole_johnson@msn.com

Gitschlag, Gregg 
NOAA/NMFS
4700 Avenue U
Galveston, TX 77551
gregg.gitschlag@noaa.gov

Goeke, Gary 
Chief, Eastern Gulf Info. Office
MMS
41 N. Jefferson #300
Pensacola, FL 32501
ggoeke@networktel.net

Gregg, Kurtis 
Environmental Specialist
Florida Dept of Environ. Protection
3900 Commonwealth Blvd, MS 47
Tallahassee, FL 32399-3000
kurtis.gregg@dep.state.fl.us

Hanisko, David 
Research Fisheries Biologist
NMFS\Johnson Controls
3209 Frederic St.
Pascagoula, MS 39567
dhanisko@triton.pas.nmfs.gov

Harmon, David J
LSU Coastal Fisheries Inst.
CCEER Wetlands Bldg
Baton Rouge, LA 70803

Heath, James W

Hernandez, Frank J
Graduate Student
LSU Coastal Fisheries Inst.
CCEER Wetlands Bldg
Baton Rouge, LA 70803-7053
fhernan@lsu.edu

Hickerson, Emma 
Research Coordinator
Flower Garden Banks
National Marine Sanctuary
216 W 26th,  St  #104
Bryan, TX 77803
ema.hickerson@noaa.gov

Hiett, Robert 
Quan Tech, Inc.

Holder Jr., Samuel 
MMS
1201 Elmwood Prk Blvd
New Orleans, LA 70123
samuel_holder@mms.gov

Horst, Jerald 
Sea Grant Extension Prgm
1855 Ames Blvd
Marrero, LA 70072
jhorst@agctr.lsu.edu

Howe, Jeffrey 
Research Associate
Auburn Univ. Research Ctr.
4170 Commanders Drive
Mobile, AL 36615
jchowe132@aol.com

Ingram, Jr., G. Walter 
University of South Alabama
Dept of Marine Sciences
Mobile, AL 36688-0002
wingram@gulftel.com



669

Johnston, James B
Supervisory General Biologist
NWRC
700 Cajundome Blvd
Lafayette, LA 70506
jimmy_johnston@usgs.gov

Kasprzak, Rick 
LA DWF
P.O. Box 98000
Baton Rouge, LA 70898

Kay, Melissa 
Geoscience Specialist
LA DNR
UNO Box 1102
New Orleans, LA 70148
melissak@dnr.state.la.us

Keenan, Sean 
Grad Assist
LSU Coastal Fisheries Inst.
218 Wetlands Resource Bldg
Baton Rouge, LA 70803
skeenan@lsu.edu

Kemmerer, Andrew J
Director
Office of Habitat Conservation
1315 EW Hwy, Room 15147
Silver Spring, MD 20910
andy.kemmerer@noaa.gov

Kenny, Jan 
Offshore Coordinator
DEMEX
401 Whitney Ave, Suite 412
Gretna, LA 70056
demex-nola@msn.com

Kenny, John J
DEMEX
401 Whitney Ave  Suite 412
Gretna, LA 70056
demex_nola@usa.com

King, Tim L
USGS  Bio. Resources
Leetown Science Center
1700 Leetown Rd
Kearneysville, WV 25430
tim_king@usgs.gov

Koenig, Christopher C
Institute for Fishery Resource Ecology
Florida State Univ.
Dept of Biological Sciences
Tallahassee, FL 32306-1100
koenig@bio.fsu.edu

Landry, Connie 
Procurement Coordinator
MMS
1201 Elmwood Prk Blvd
New Orleans, LA 70123
connie.landry@mms.gov

Lang, William 
MMS
1201 Elmwood Prk Blvd
New Orleans, LA 70123

Lanich, Troy 
USCG
8930 Ocean Drive
Corpus Christi, TX 78419

Lee, J. Dobbs 
Logistics Manager
Barry A. Vittor & Assc. Inc.
8060 Cottage Hill Rd
Mobile, AL 36695
dlee@bvaenviro.com

Lindquist, David 
Research Associate
LSU Coastal Fisheries Inst.
204 Wetland Resources Bldg
Baton Rouge, LA 70803
davlind@aol.com



670

Link, Jason S
NOAA/NMFS
166 Water St
Woods Hole, MA 02543
Jason.Link@noaa.gov

Locke, Stephen 
Grad Student
UNO Estuarine Research Lab
Lakefront Campus
New Orleans, LA 70148
slocke@uno.edu

Lopez, John 
University of New Orleans
387 Carr Dr
Slidell, LA 70458

Lugo-Fernandez, Alexis 
MMS
1201 Elmwood Prk Blvd
New Orleans, LA 70123

Lukens, Ronald 
Gulf States Marine Fisheries Comm.
2404 Government Street
Ocean Springs, MS 39564
rlukens@gsmfc.org

Lyczkowski-Shultz, Joanne 
Research Fisheries Biologist
NMFS\Johnson Controls
3209 Frederic St.
Pascagoula, MS 39567
jshultz@triton.pas.nmfs.gov

Maher, Tom 
Environmental Specialist
Florida Fish & Wildlife Cons. Comm.
620 South Meridian St
Box MF-MFM
Tallahassee, FL 32399-1600
mahert@gfc.state.fl.us

Marano Briggs, Kay 
Fisheries Biologist
MMS
381 Elden Street, MS 4042
Herndon, VA 20170
kay.briggs@mms.gov

McCawley, Jessica 
Dauphin Island Sea Lab
101 Bienville Blvd.
Dauphin Island, AL 36258
jrmccawley@aol.com

McIlwain, Tom 
NOAA/NMFS
3209 Frederic St
Pascagoula, MS 39567
tom.mcllwain@noaa.gov

McManus, Roger 
Sr. Advisor for Oceans
MMS
1849 C Street NW, MS 6635
Washington, DC 20240

Meyer, Thomas 
Physical Scientist
MMS
1201 Elmwood Park Blvd
New Orleans, LA 70123-2394
tom.meyer@mms.gov

Miget, Russell J
Environmental Quality Specialist
Texas Sea Grant Program
6300 Ocean Dr  NRC 2800
Corpus Christi, TX 78412
rmiget@falcon.tamucc.edu

Miller, Mark W
Research Specialist
LSU Coastal Studies Inst.
3rd Floor Old Geology Bldg
Baton Rouge, LA 70803
mmill16@lsu.edu



671

Milon, J. Walter 

Moran, David 
Environmental Scientist
MMS
1201 Elmwood Prk Blvd
New Orleans, LA 70123

Morin, Michelle 
Geographer
MMS
1701 40th St
Kenner, LA 70065
michelle.morin@mms.gov

Nichols, Scott 
Director MS Labs
NMFS
P.O. Drawer 1207
Pascagoula, MS 39568-1207
scott.nichols@noaa.gov

Nieland, David L
Research Associate V
LSU Coastal Fisheries Inst.
CCEER Wetlands Bldg
Baton Rouge, LA 70803-7053
dniela@lsu.edu

O'Connell, Martin 
Post-Doctoral Researcher
University of New Orleans
Dept of Biological Sciences
New Orleans, LA 70148
moconnel@uno.edu

Osburn, Hal 
TPWD- Coastal Fisheries
4200 Smith School Rd
Austin, TX 78744
hal.osburn@tpwd.state.tx.us

Ouzts, Allyson 
Auburn University
13430 County Rd #1
Fairhope, AL 36532
acouzts@hotmail.com

Patterson, William 

Peter, D.

Peuler, Elizabeth 
Supervisor, Physical Sci Unit
MMS
1201 Elmwood Prk Blvd
New Orleans, LA 70123
elizabeth.peuler@mms.gov

Pierce, Aaron 
LSU
Dept of Oceanography and Coastal Studies
Baton Rouge, LA 70803
glis70@aol.com

Piko, Amy 
Auburn University
12 N. Jackson St, Apt B
Mobile, AL 36602
apiko@hotmail.com

Plunket, John 
Research Associate II
LSU Coastal Fisheries Inst.
204 Wetland Resources Bldg
Baton Rouge, LA 70803
jtplunket@aol.com

Rademacher, Kevin R
Research Fishery Biologist
National Marine Fisheries Service
P.O. Drawer 1207
Pascagoula, MS 39568-1207
krademac@triton.pas.nmfs.gov



672

Ray, James P
Equilon Enterprises LLC
3333 Highway 6 South
Houston, TX 77082-3101
jpray@equilon.com

Reggio, Jr., Villere 
Outdoor Recreation Planner
MMS
1201 Elmwood Prk Blvd
New Orleans, LA 70123
villere.reggio@mms.gov

Ressler, Patrick H
Graduate Assistant
Texas A&M University
Dept. of Oceanography
3146 TAMU
College Station, TX 77843-3146
pressler@ocean.tamu.edu

Rigaud, Christopher 
Grad Research Assist
Texas A&M University
6300 Ocean Dr
Corpus Christi, TX 78412
abysmalchris@hotmail.com

Roden, Carol 
NMFS
3209 Frederic St
Pascagoula, MS 39567
croden@triton.pas.nmfs.gov

Rogers, Robert 
MMS
1201 Elmwood Prk Blvd
New Orleans, LA 70123

Roscigno, Pat 
MMS
1201 Elmwood Prk Blvd
New Orleans, LA 70123

Rowe, Gil 
Professor
Texas A&M University
MS 3146 TAMU
College Station, TX 77843
growe@ocean.tamu.edu

Sammarco, Paul W
Professor
LUMCON
8124 Hwy 56
Chauvin, LA 70344
psammarco@lumcon.edu

Scanlon, Kathryn M
U.S. Geological Survey
384 Woods Hole Rd
Woods Hole, MA 02543
kscanlon@usgs.gov

Scarborough Bull, Ann 
U.S. Fish & Wildlife Service
2493 Portola Rd, Suite B
Ventura, CA 93003
ann_s_bull@r1.fws.gov

Schexnayder, Mark 
Marine Fisheries Agent
LSU Extension/Sea Grant
1855 Ames Blvd
Marrero, LA 70072
mschexnayder@agctr.lsu.edu

Shaw, Richard F
Director
LSU Coastal Fisheries Inst.
CCEER Wetlands Bldg
Baton Rouge, LA 70803-7053
rshaw@unix1.sncc.lsu.edu

Shipp, Robert 
University of South Alabama
Dept of Marine Sciences
Mobile, AL 36688-0002
rshipp@jaguar1.usouthal.edu



673

Snyder, David B
Marine Biologist
Continental Shelf Assoc. Inc.
759 Parkway Street
Jupiter, FL 33477
dsnyder@conshelf.com

Stanley, David 
Fisheries/Acoustic Specialist
Beak International
14 Abacus Rd
Brampton, ON L6T 5B7
dstanley@beak.com

Stanley, Louise 
26 Hammell
Tottenham,  L0G 1W0

Stead, Mark 
LUMCON
104 Dr. Hugh St Martin Drive
Chauvin, LA 70344
mstead@lsu.edu

Sulak, Ken 
Research Fish Biologist
U.S. Geological Project
Florida Caribbean Science Ctr.
7920 NW 71st St
Gainesville, FL 32653
ken-sulak@usgs.gov

Szedlmayer, Stephen T
Associate Professor
Auburn University
Marine Fish Laboratory
8300 State Hwy 104
Fairhope, AL 36532
sszedlma@acesag.auburn.edu

Taylor, Marilyn 
Auburn University
2200 East Bay Drive, #50
Daphne, AL 36526
mytmazz@aol.com

Tomeny, Steve 
P.O. Box 659
Golden Meadow, LA 70357

Topolski, Marek F
Research Assistant
Auburn University
Dept. of Fisheries
203 Swingle Hall

Auburn, AL 36849-5419
tpolmf@acesag.auburn.edu

Tsoflias, Sarah L
Physical Scientist
MMS
1201 Elmwood Prk Blvd
New Orleans, LA 70123
sarah.tsoflias

Turpin, Robert 
Chief
Escambia County Marine Resources
Pensacola, FL 32534

Vigil, Debra 
MMS
1201 Elmwood Prk Blvd, MS 5431
New Orleans, LA 70123
debra_vigil@mms.gov

Ward, Rocky 
Genetics Program Director
Texas Parks & Wildlife
HC02 Box 385
Palacios, TX 77465
rocky.ward@tpwd.state.tx.us

Wilson, Charles 
LSU Coastal Fisheries Inst.
Dept of Oceanography
Baton Rouge, LA 70803
cwilson@lsu.edu



 
The Department of the Interior Mission 
 
As the Nation's principal conservation agency, the Department of the Interior has responsibility 
for most of our nationally owned public lands and natural resources.  This includes fostering 
sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; 
preserving the environmental and cultural values of our national parks and historical places; 
and providing for the enjoyment of life through outdoor recreation. The Department assesses 
our energy and mineral resources and works to ensure that their development is in the best 
interests of all our people by encouraging stewardship and citizen participation in their care. 
The Department also has a major responsibility for American Indian reservation communities 
and for people who live in island territories under U.S. administration. 
 
 
 
The Minerals Management Service Mission 
 
As a bureau of the Department of the Interior, the Minerals Management Service's (MMS) 
primary responsibilities are to manage the mineral resources located on the Nation's Outer 
Continental Shelf (OCS), collect revenue from the Federal OCS and onshore Federal and Indian 
lands, and distribute those revenues. 
 
Moreover, in working to meet its responsibilities, the Offshore Minerals Management Program 
administers the OCS competitive leasing program and oversees the safe and environmentally 
sound exploration and production of our Nation's offshore natural gas, oil and other mineral 
resources.  The MMS Minerals Revenue Management meets its responsibilities by ensuring the 
efficient, timely and accurate collection and disbursement of revenue from mineral leasing and 
production due to Indian tribes and allottees, States and the U.S. Treasury. 
 
The MMS strives to fulfill its responsibilities through the general guiding principles of:  (1) being 
responsive to the public's concerns and interests by maintaining a dialogue with all potentially 
affected parties and (2) carrying out its programs with an emphasis on working to enhance the 
quality of life for all Americans by lending MMS assistance and expertise to economic  
development and environmental protection. 
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