Tackling the Problem of Bacterial Contamination

James P. AuBuchon, MD
E. Elizabeth French Professor and Chair of Pathology
Professor of Medicine
Dartmouth-Hitchcock Medical Center
Lebanon, New Hampshire

The Evolution of Transfusion Risks

The Evolution of Transfusion Risks

Updated from: Goodnough LT e t al. NEJM 1999;341:126-7

Comparison of Recent Efforts

Pealer LN *et al. NEJM* 2003;349:1236-45. www.fda.gov/cber/inside/annrptpart3.htm

Comparison of Recent Efforts

HCV lookback

Cost: \$330⁺ million

Benefit: ≈ 2,200 patients from 10 yrs

Bacterial testing

Benefit: Avoidance of 100-300 deaths/yr

U.S. Bacterial Contamination Estimates

Based on Johns Hopkins' Data

Post-transfusion sepsis Fatalities

Plt Conc 402/million 62/million

SDP 75/million 14/million

For US (50% apheresis): >100 deaths/year

Recognition of magnitude of problem

But we've never seen a case here....

```
1°C temperature rise + chills/rigors Unit (aliquot) culture Patient blood culture
```

Recognition of magnitude of problem

But we've never seen a case here....

```
3584 platelet transfusions
```

```
1°C temperature rise + chills/rigors → 27% risk of contamination 2°C temperature rise → 42% risk of contamination
```

37 reactions meeting criteria 10 cases of bacteremia 4 cases of sepsis

Recognition of magnitude of problem Acceptance of responsibility and technology

Recognition of magnitude of problem

Acceptance of responsibility and technology

Recognition of magnitude of problem Acceptance of responsibility and technology

Recognition of magnitude of problem Acceptance of responsibility and technology

Implementation through accreditation requirements

CAP: December, 2002

AABB: March, 2004

Impediments to Success

Impediments to Success

Alternatives for Success

Seven Day Platelets

Efficacy: Accepted

Safety: Enormous study

Impediments to Success

= No prestorage pooling!

Each unit must be cultured

- Expense
- Workload
- Efficacy

Alternatives for Success

Documenting Sensitivity

Documenting Sensitivity

Units found on Day 1 culture:

Units found on later culture:

Total contamination rate:

3.3/10,000

0.8/10,000

4.1/10,000

80% detected by routine culture

Without culturing, how many would have been detected??

Cost-Savings Through Systems Change

Cooper L et al. Transfusion 1999;39:119-20S. AuBuchon JP et al. Transfusion 2002;42:855-61. Sullivan MT et al. Transfusion 2002;42:1253-60.

Progress Through Partnership

- -Focus on big picture: recipient safety
- -Accept reasonable inferences
- -Learn from others' experiences

GOALS: Every unit tested by a sensitive technique

Smallest disruption to logistics

Pre-storage pooling

Storage to 7 days