Estimating the Prevalence of Donor-Exclusion Factors in the United States

Advisory Committee on Blood Safety And Availability (ACBSA) August 22,2007

> William Riley, PhD Associate Dean School of Public Health University of Minnesota

Jeffrey McCullough, M.D. American Red Cross Chair Transfusion Medicine; Director Institute for Engineering in Medicine Laboratory Medicine and Pathology University of Minnesota

AGENDA

- Review Model.
- Present Findings.
- Methods.
- Implications.
- Discussion.

BACKGROUND

 Current method for estimating eligible blood donors using only age as the criteria factor for excluding donors poorly reflects effect of known factors that cause donor deferrals.

Model

- Identified and prioritized the 31 main deferral factors according to prevalence, corresponding to AABB Standards.
- Selected data bases for each deferral factor.
- Adjusted the prevalence data for age, duration of exclusion and co-morbidities.

METHODS

- 1. Identify and categorize donor exclusion factors: Permanent (n = 18); Long Term (n = 9); Short Term (n = 5)
- 2. Define measurement criteria for each factor.
- 3. Select an appropriate data base for each factor.
- 4. Determine the population prevalence for each exclusionary factor.
- 5. Adjust the prevalence for each factor by age and temporary deferral.
- 6. Estimate and adjust for overlapping conditions.

(Total population – Age exclusion) – (Total population – Age exclusion) x (Adjusted prevalence – overlap adjustment).

2.
$$(294 - 117) - ((294 - 117) * (0.478 - 0.1056)).$$

4. 177 – 66.

5. 111 million persons eligible to donate blood.

Total Eligible Donor Population Table 5. Comparison of Conventional Model and Exclusion-adjusted Estimating Eligible Blood Donors

	Conventional	Exclusion- Adjusted	
Method	Method	Method	
US Population	293,665,000	293,665,000	
Age Exclusion	116,816,803	116,816,803	
Exclusion Adjustment		65,858,269	
Eligible Blood Donors	176,848,197.00	110,989,928.44	
Percent Eligible	60.2	37.24	47.8 prevalence of age- eligible excluded individuals.
			10.56 percent of age- eligible donors with at least two exclusion factors.

Implications

- A more precise measure of blood donor collection rates is needed based on accurate estimate of eligible blood donors in a catchment area.
 - Conventional model is 81 units per 1000 eligible donors
 - This model suggests 129 units per 1000 eligible donors
- An extensive amount is known about donors; much less is known about the total pool of potential donors.
- Not known the extent that changes in eligible donors vary and contribute to the blood shortage.
- Strategies and policies should be developed based on more accurate understanding of donor population

Discussion

- An empirical model of eligible donors will supplement what is known about donors with respect to socio-demographic factors and motivation triggers.
 - Is the impact of donor exclusions increasing or decreasing over time?
 - What is the eligible donor pool size between regions?
- Model can better predict the impact of a major event that effects demand for blood, supply of blood donors, or both.
- The interaction between known donor profiles and the eligible donor pool is not know.
 - To what extent could the interaction constitute a "tapped out" donor pool?

Discussion (Cont)

- What is the relationship between the aging population and exclusionary factors with the donor pool <u>and</u> the demand for blood.
- What is the relationship between the exclusionary factors, new donor exclusions (including emerging infectious diseases) emergency response conditions with the donor pool and the demand for blood.
- To what extend would the increased demand for blood effect the diminishing pool of those who can supply blood.

Limitations

- Prevalence data bases were adopted and/or estimated.
- Co-morbidities are probability based rather than epidemiological derived.
- Some measurement criteria are arbitrary, and temporary exclusions are estimates

Questions and Discussion