
Malicious Data and Computer Security

W. Olin Sibert
 InterTrust Technologies Corporation

460 Oakmead Parkway
Sunnyvale, CA   94086

  osibert@intertrust.com

Abstract

Traditionally, computer security has focused on containing the effects of malicious users or mali-
cious programs. However, as programs become more complex, an additional threat arises: mali-
cious data. This threat arises because apparently benign programs can be made malicious, or
subverted, by introduction of an attacker’s data—data that is interpreted as instructions by the
program to perform activities that the computer’s operator would find undesirable. A variety of
software features, some intentional and some unwitting, combine to create a software environment
that is highly vulnerable to malicious data. This paper catalogs those features, discusses their
effects, and examines potential countermeasures. In general, the outlook is depressing: as the eco-
nomic incentives increase, these vulnerabilities are likely to be exploited more frequently; yet
effective countermeasures are costly and complex.

1.  Introduction

This paper addresses the increasing vulnerability of
computer systems, particularly personal computers
(PCs), to attacks based on malicious data: that is,
attacks employing information that appears to repre-
sent input for an application program such as a word
processor or spreadsheet, but that actually represents
instructions that will be carried out by the computer
without the knowledge or approval of the computer’s
operator. This vulnerability comes from two sources:
program features that intentionally treat data as
instructions and program flaws that allow data to act as
instructions despite the program designer’s intentions.

A system that has been subverted by such an attack is,
in effect, under the control of a malicious program.
Protection against such programs has been the focus of
traditional computer security measures: file access
control, user/supervisor state, etc. Such measures per-
mit a program’s activities to be contained to a limited
set of computer resources for which the program’s

operator is authorized. However, as computers (partic-
ularly PCs) are used more and more as extensions of
their operators (i.e., as agents), the scope of authoriza-
tion is greatly increased: a malicious program might,
for example, cause a financial transaction using elec-
tronic commerce software that is indistinguishable by
any automated means from a transaction the operator
would have authorized—except that there was no such
authorization. This increasing difficulty of identifying
which computer activities are permissible and which
are not increases the risk from all types of attacks.

The potential scope of malicious program activity in
the PC environment is enormous. On one end of the
spectrum are traditional “damage” attacks: virus prop-
agation, destruction of data, compromise of other sys-
tems on a network. Another familiar attack involves
disclosure: of passwords, of personal data, and so
forth; but also of non-computer data such as credit card
account numbers; see [1] and [2] for a detailed discus-
sion of such a scenario and of how the disclosed data
can be returned untraceably to the attacker. On the



other end of the spectrum are “agency” attacks, in
which a computer is made to perform actions of which
its operator is wholly unaware, such as electronic pur-
chases, transfers of “digital cash,” forged E-mail, and
so on.

The two types of vulnerability from malicious data—
intentional and unwitting—are quite different and
require different approaches to remedy. The unwitting
flaws can be fixed (although fixing them is rarely sim-
ple), but the intentional mechanisms represent a ten-
sion between a system designer’s desire to provide
features and a user’s need for safety.

Furthermore, it is fundamentally difficult to distin-
guish between data and programs. Although many of
the vulnerabilities discussed here rely on supplying
actual machine instructions to be executed by hard-
ware, others employ instructions that a program inten-
tionally interprets (such as the PostScript language).
Drawing a strict line between data and programs is not
sufficient.

Section 1 of this paper introduces the concepts and dis-
cusses some potential effects. Section 2 catalogs a
variety of intentional mechanisms that can be
exploited using malicious data; section 3 describes
unwitting mechanisms (i.e., flaws) with the same
effect. Finally, section 4 discusses some solution
approaches, of which disappointingly few seem to be
effective.

2.  Intentional Vulnerabilities

With the best of intentions, software developers are
responsible for blurring the distinctions between pro-
grams and data. Most of the mechanisms cataloged in
this section share a common characteristic: they pro-
vide a useful capability when used in a benign environ-
ment, but they were designed with little or no
consideration as to how they might be employed by a
hostile party (with the notable exception of Sun’s Java
language; also see section 4.2).

These mechanisms either permit arbitrary files to be
modified, or allow arbitrary programs to be executed,
or both. The fundamental property they share is an
assumption that the operations that are performed
should be performed just as if the user had entered

them directly at the keyboard: that is, they are executed
within a “user environment” that is shared by all other
activities the user performs. The difference is that
these packages perform the operations without the
user’s explicit consent, and often without the user’s
knowledge. Although some of these features are
undocumented, documentation is not the issue: it is
simply unreasonable to expect a user to scour a 500-
page manual looking for potential security risks before
using a program.

Some of the risks posed by these mechanisms can be
reduced or eliminated by isolation techniques or by
requiring user confirmation. Such solutions, however,
reduce the utility of the features and increase complex-
ity for the user. Always requesting a confirmation is
little better than never doing so: none but the most
paranoid of users will think about it before answering
“OK.”

2.1.  Examples

The following list identifies some of the intentional
risks posed by common computer systems and applica-
tions:

• PostScript file I/O primitives. The PostScript lan-
guage defines primitives for file I/O. These primi-
tives can be used in a PostScript document to
modify arbitrary files when the document is dis-
played; they extend PostScript’s flexibility as a
general-purpose programming language at rela-
tively little cost in language complexity, but greatly
increase its vulnerability to malicious data. Some
PostScript interpreters (e.g., Display PostScript,
GhostScript [3]) can disable these primitives (and
other non-imaging functions), but doing so is not
always simple and can also be seen as inhibiting
desired functions.

• Pathnames in archives. Arbitrary file pathnames
can be stored in common archive formats (i.e.,
using a maliciously modified tar or PKZIP pro-
gram) so that unpacking the archive potentially,
can overwrite arbitrary files.

• Application startup macros. Much “desktop pro-
ductivity” software, such as Lotus 1-2-3 and
Microsoft Word, provides the ability to run a
macro when a data file or document is first opened.



Often, the macro languages include file I/O primi-
tives or even permit execution of arbitrary com-
mands, thus enabling such a “document” to
perform arbitrary actions just because it is viewed.
Similar features are also present in older applica-
tions (for example, the UNIX troff document
processor has a request for executing a command
line while processing a document).

This problem has been understood theoretically for
a long time [4][5], but its first exploitations “in the
wild” occurred only recently: the Microsoft Word
“Concept” Virus [6]. When opened, any document
containing this virus modifies the user’s environ-
ment so that all future Microsoft Word documents
will carry it. It is possible to prevent the automatic
execution of start-up macros by pressing the SHIFT

key while selecting a document, or by disabling the
feature globally. Despite publicity, however, it
seems unlikely that most users will know how to
perform countermeasures, or that they will always
remember to do so.

• Automatic system actions. A variation on this
theme is the feature in certain operating systems
(such as “Autoplay” in Microsoft Windows 95),
that automatically invokes a program stored on a
CD-ROM or other media when the media is
inserted into a computer system. This feature may
be convenient for media that one trusts (perhaps
with a digital signature to provide proof of origin),
but it represents a major risk for arbitrary disks.
The “read-only” nature of the media is no protec-
tion: with the advent of inexpensive CD-ROM
writers, writable CD-ROM has become widely
used for data interchange.

• Executable Mail Attachments. Many modern
mail readers provide the ability to attach arbitrary
objects to a message—including executable pro-
grams. The obvious thing to do with such an
attachment is to select it, as one might select a doc-
ument attachment in order to view it. Although this
act is clearly a discretionary one by the user, it is
also a very natural one, and the system gives no
hint that it might be more dangerous than, say,
viewing an image file.

An early version of this attack was the
“CHRISTMA EXEC” virus that propagated on
IBM’s internal network in 1987 [5]. The mail sys-
tem did not facilitate this attack: rather, explicit

action was required to write out the file and run it,
but even so, users almost invariably followed the
instructions and did so without suspicion.

• Executable Web content. Some Web browsers
(e.g., Netscape Navigator, Sun’s HotJava,
Microsoft’s Internet Explorer) offer the capability
of downloading and executing parts of a web page
locally. In some cases (e.g., Java programs) the
local execution is strongly constrained for security
reasons and relatively safe; in others (e.g., Explorer
and downloaded OLE controls) there are no restric-
tions on the code being executed.

3.  Unwitting Vulnerabilities

The previous section dealt with purposeful software
features that provide an opportunity to introduce mali-
cious programs. On the one hand, it is unfortunate that
those features were designed with little attention to
risk; on the other hand, it is good that they can be iden-
tified, for it is possible to imagine countermeasures
that would contain them.

There is another class of attacks that does not have
those properties: attacks based on program flaws or
inadequate design. Here, the designers did not inten-
tionally create a problem; rather, by failing to provide
sufficiently robust software, they unintentionally
enabled the problem to occur.

Such unintended risks depend on the same basic prop-
erties as the intentional ones: programs run in a user
environment that is shared by other programs. To date,
the exploitations of these risks have involved primarily
multiuser systems, where the environment being
attacked is privileged. However, privilege is not neces-
sary for these attacks to be useful; they can introduce
malicious software into the environment of an unprivi-
leged user just as effectively.

3.1.  Examples

A few examples of these attacks include:

• The Morris Worm fingerd Attack. As
reported in [7], the “Morris Worm” delivered an
executable program over a network connection to



the fingerd program and, by overflowing an
internal buffer where the request was stored,
caused it to be executed.

This attack, part of the incident that brought the
Internet to a halt in 1988, relied on the presence of a
fixed-size buffer inside the fingerd program.
The request received from the network was read
into the buffer without a check on its length.
Because the request was larger than the buffer, it
would overwrite other data, including the return
address stored in the stack frame. By changing the
return address to designate a location within the
request string, the attack forced a transfer of control
to the attacker’s supplied program stored in the
request string. When executed, this small program
established a run-time environment and carried out
the rest of the attack. This attack was very sensitive
to initial conditions: it was developed only for one
widely-used operating system, and it depended on
the stack frame layout in the fingerd program,
the containing process environment, and so forth.
However, given the source code to the fingerd
program and a laboratory system on which to
experiment, it appears that the attack was engi-
neered with only a few days of effort.

This attack on the fingerd program was the first
widely demonstrated example of forcing an appli-
cation program with no intentional programmabil-
ity features to execute machine instructions
supplied by an attacker. It required only a modest
engineering effort to create, and it was wildly suc-
cessful. It breached internal security in multiuser
computer systems, which is not normally an issue
in personal computers, but it pointed the way for
similar attacks in different environments.

The Netscape Navigator attack. In late 1995, a
flurry of security problems with cryptography and
random number generation in Netscape’s Navigator
program was reported in the mainstream press.
Shortly afterward, some members of the “Cypher-
punks” group discovered a buffer overflow flaw in
the then-current version of Navigator. This attack is
notable because it is directed at a personal com-
puter program, where the objective is not to breach
multiuser security but to cause a personal computer
to act under control of malicious software. 

Following techniques similar to those used in
attacking the fingerd program, an over-length
host name in the HTML source of a Web page can

be made to overflow an internal buffer and cause an
attacker’s program to be executed. Although Navi-
gator’s parsing of the HTML language itself turned
out to be fairly robust, the routine that converted a
host name to an Internet address was found to have
a fixed-size buffer that could be overwritten by an
oversize fabricated host name, and this led to the
ability to cause Navigator to branch to an arbitrary
execution address.

• Overflow syslog buffer. Like fingerd, the
syslog program used for system logging in
UNIX systems was found in 1995 to be vulnerable
to buffer overflow[8]. The attack technique and the
objective (run a program in a privileged process—
in this case, sendmail) are essentially equivalent
to the fingerd attack. Although much attention
has been paid to eliminating such vulnerabilities in
the intervening seven years, the continual emer-
gence of examples suggests that it is very difficult
to eliminate the problem systematically.

3.2.  Scope of Vulnerability

These examples represent the tip of the iceberg. What
sort of programs are vulnerable to such attacks? Any
program that misbehaves when given bad input data is
a potential victim. If it crashes or dumps core when
given bad input, it can probably be made to misbehave
in a predictable manner, too. If a program’s internal
data structures can be damaged by invalid input, this
often indicates that its control flow can be affected as
well—potentially leading to the ability to execute
caller-supplied instructions.

Indeed, software developers typically make no claims
that any application programs are bulletproof when
faced with invalid input data, because such misbehav-
ior is seen only as an inconvenience to users—after all,
“garbage in, garbage out.” The risk that it would serve
as a way to introduce malicious software into the user
environment is rarely, if ever, considered.

Examples of such program misbehaviors include:

• The UNIX utility uncompress often dumps core
when processing invalid compressed input data.
The gunzip or PKUNZIP decompression utilities
may have similar problems.



• Programs that process complex data formats, such
as MPEG streams, Rich Text Format, or PostScript
may produce wildly incorrect output or misbehave
when given malformed input data, indicating that
their internal data structures have been damaged.

• Application software such as Microsoft Word or
Lotus 1-2-3 often fail catastrophically when given
a damaged input file, again likely indicating dam-
age to internal data structures.

• File import software (e.g., Microsoft Word reading
WordPerfect documents) often is even more fragile
than the software processing an application’s
native format, making it more likely to harbor vul-
nerabilities. This fragility may occur because these
parts of the software are less thoroughly tested,
because they are written by third parties, or perhaps
because the formats being converted are them-
selves undocumented.

Although none of these program behaviors is known to
the author to have been exploited, the possibility
clearly is present, and further investigation is war-
ranted. 

The basic problem is that increasingly complex and ill-
defined data semantics are difficult to process, so it is
no surprise that application software fails when pre-
sented with bogus input data. Software that responds
correctly to all incorrect input is far harder to create
than software that simply responds correctly to correct
input.

Application software development contrasts with the
design philosophy of network protocols, where a basic
assumption is that all possible bit sequences will be
encountered, so all must be handled reasonably. It is
partly for this reason that implementations of complex
network protocols often have a long development
period before they are truly robust.

3.3.  Exploitation Techniques

The known exploitations for invalid input data are
known primarily because they were used to breach sys-
tem integrity in multiuser systems. These attacks are
more difficult to construct than those that exploit
known software features. They require constructing
executable programs “by hand,” tailored to run in a

largely unknown environment. Although doing so is
awkward, it is by no means beyond the abilities of a
moderately sophisticated attacker.

The most fruitful exploitation technique seems to be
buffer overflow: provide more data than a program
expects, so that it will overwrite internal storage for
program variables or addresses, and the program will
misbehave in a deterministic—and possibly controlla-
ble—manner. Another technique involves providing
data with out-of-range values. Such inputs can cause
calculated branches to go to unintended destinations,
or can cause values to be stored outside of array
bounds. All these vulnerabilities offer the potential to
cause a transfer to the attacker’s supplied executable
code, from which point the attacker can do anything
that the attacked program can do.

It is important to note that malicious data representing
machine instructions does not require arbitrary binary
values. For example, the Intel 80x86 opcode set and
the MS-DOS executable file format permit a valid exe-
cutable program to be constructed entirely from print-
able ASCII characters. Such a program can perform
arbitrary actions when executed, yet it requires no spe-
cial transfer mechanism—it can be delivered as ordi-
nary unformatted E-mail. The first known example of
such a program1[9] contains a small executable header
that decodes the rest of the program text—transferred
in UNIX uuencode format—into a memory buffer,
then transfers to it.

Of course, a successful exploitation is quite difficult. It
is necessary first to understand how the program is
misbehaving, then to determine what input data will
create predictable misbehavior, then to craft input data
that contains an appropriate attacking program. The
analysis stages require an understanding of the soft-
ware that comes most readily from source code, but as
most personal computer applications are not distrib-
uted in source code form, techniques such as disassem-
bly and emulation are required. Experimentation plays
a critical role, also.

1. For example, when saved as a text file, the following five lines of
text (Copyright © 1994 by A. Padgett Peterson) form an executable
MS-DOS program that prints a short text message:

XP[@PPD]5‘P(f#(f((f?5!QP^P_u!2$=po}l=!!rZF*$*$ =0%GF%!!%PP$P$Ps-

%gmZ$rl6lW$rm6mWlVl6m=ldmAlv%fmvmB$Vm6lW$Vm6mWl6m6m=ld%ylVmqlJmq

lRmqlNmqlBlWl6m6l/m’l/m3mWl7m7mrm4mql:lXl7m7mAl2lYl1m6lZl6m2mPm&

mPl&%o%[$‘$U%^$\$\%bl&%Y$X%[%\$Z%Yl&$q%b%\$a%^l&%W$^%^$\%‘l&$p%‘

$a$a%^%‘l&$‘%[%‘%Yl&$p%b$\$\%b%Y$|l&$[%‘%W%Yl&%b$Xl&%z%z${l$pp



4.  Solutions

Solving the problems posed by unsafe or malicious
data requires fundamentally different techniques from
traditional computer security approaches, because the
objective is different. Traditional approaches focus on
isolation and protection of resources: that is, on pre-
venting activity whose nature is known in advance.
Protection from malicious data, on the other hand,
requires distinguishing among program activities that
are in accord with the operator’s intent and those that
the operator would not want to occur. This problem—
of divining the operator’s intent—seems unlikely to be
solved.

Addressing the malicious data problem seems instead
to require a return to fundamentals:

• Avoid building unsafe features into computer pro-
grams. This would reduce the incidence of “inten-
tional” problems. 

• Use programming techniques and languages that
encourage construction of robust programs. This
would reduce the frequency and severity of “unwit-
ting” vulnerabilities. 

Aside from these techniques—which would represent
a fundamental change in commercial software devel-
opment—there are relatively few external, system-
level techniques that offer much hope for improve-
ment. The problem of safe execution of mutually sus-
picious programs remains a difficult problem in
computer system design [10]. Even if such solutions
were readily available, it is unclear whether users
could be expected to exercise the necessary discipline
to protect themselves. After all, it is not unreasonable
to expect that computer systems, like other complex
appliances, should be safe to use without detailed
understanding of their internal operations.

4.1.  External Solutions

This section briefly discusses some of the solution
techniques that can be applied externally to contain or
reduce the effects of malicious data:

• System isolation. A computer system that is not
connected to a network and used for only one pur-
pose is unlikely to be vulnerable to malicious data,

and even if attacked, would not be able to do much
damage. This approach is, by default, what has pro-
tected most personal computers—but increasingly
these computers are networked and used for many
activities.

• Virtual machine environments. Suspect or
untested software can be run under control of a vir-
tual machine monitor; this approach in effect is the
same as running many isolated systems. As long as
the virtual machines remain isolated, this technique
contains the problem effectively, but as soon as
data is transferred among them, they become vul-
nerable. Maintaining the necessary isolation
requires a generally infeasible degree of discipline
on part of the operator. It is not reasonable to
expect personal computer operators to maintain a
constant state of suspicion.

• Automated filters. Known examples of malicious
data can be detected and filtered out. For example,
Secure Computing Corporation’s Sidewinder prod-
uct can analyze all traffic coming across a network
firewall and reject patterns that it recognizes as
malicious (such as virus-infected executables or
malformed HTML documents). Similarly, some
virus detection products are now capable of detect-
ing the known examples of the Microsoft Word
virus described in section 2.1.

• Capability-based operating systems. Capability
systems were a major focus of operating system
research in the 1970s [11]. In principle, such sys-
tems can safely contain the effects of malicious
data more effectively than virtual machine moni-
tors because they exercise control over resources at
a finer grain. However, capability systems have the
same drawback of requiring considerable disci-
pline to use effectively and also require special
hardware and/or programming techniques to use
effectively. Although a few capability-based sys-
tems were introduced in the 1980s (from compa-
nies such as BiiN, Intel [12], and Key Logic
[13][14]), these were not commercially successful,
and they are no longer actively marketed.

• Dynamic monitoring. The virus protection field
deals with some of the problems that can be caused
by malicious data. One of the techniques developed
for virus protection is dynamic monitoring of pro-
gram activity: pattern matching of program opera-



tions against acceptable types of operations [15]
(e.g., files to which a program is expected to write,
as opposed to those to which it should not). A user
can be presented with the opportunity to permit or
deny such actions.

• Digitally signed executables. Public-key cryptog-
raphy can be used to sign application software and
certify is as “safe” as judged by some certifier—
where one of the “safety” properties would be that
the application cannot be corrupted by malicious
data. This technique has been proposed as a way of
marking executable Web content as safe to use.
Unfortunately, it simply moves the burden of
assurance to a certifier without making the analysis
any more tractable; it also places an unreasonable
burden on users, who must decide which certifiers
are trustworthy. Because even major mass market
application software appears susceptible to mali-
cious data attacks, it is not clear what value this
type of certification technique could add.

4.2.  Internal Solutions

In the long term, internal solutions seem to offer more
hope for addressing these problems:

• Safe application design. Defense against inten-
tional mechanisms that permit malicious data to be
introduced requires that application designers pay
more attention to system safety. That is, they
should avoid features that introduce unconstrained
programmability into an application.

• Safer languages. The most important defense
against malicious data is programs that are more
resistant to it. An important part of this resistance
involves use of languages and environments that
are themselves robust, with bounds checking,
pointer validation, memory management, and so
forth. The Java language [16] is one such; others
(e.g., Ada and Python [17]) also have extensive
robustness features.

The Java language is particularly interesting
because of its program validation mechanism and
its utility for enforcing type safety rules to contain
features that could introduce intentional vulnerabil-
ities. Unfortunately, current versions of Java do not
live up to the promise of safe execution. Although
some of the problems reported in [18] and detailed

in [19] result from simple implementation problems
related to specific execution environments, two
design flaws have been reported that breach the
type safety of the language itself. The lack of a for-
mal basis for Java’s claimed type safety and secu-
rity properties is troubling.

• Non-von Neumann computer architectures. The
principal mechanism for unintentional malicious
data flaws is the ability to execute data: an attacker
supplies malicious instructions as data and causes a
branch to them. If instructions are clearly distin-
guished from data, the attack is much harder.
Unfortunately, the prevalent use of interpreters,
sometimes with multiple levels of interpretation,
makes this approach unworkable on a hardware
level.

• Sheer complexity of applications. One reason that
these attacks have not been more widely perpe-
trated is that they are difficult, because much appli-
cation software is not available in source code form
and is extremely complex. An attacker must under-
stand a great deal about a program’s internal opera-
tion to be able to fabricate malicious data that will
cause predictable types of misbehavior. Although
not a defense one would like to rely on, it has been
reasonably effective.

5.  Conclusions

The general outlook for malicious data as a computer
security problem is unclear. The potential vulnerabili-
ties are legion, but exploitation poses great practical
difficulties. Unfortunately, defense also poses great
difficulties, and as the economic incentive for creating
malicious software increases, it seems likely that
attackers will attempt to exploit these vulnerabilities.

The most effective technical solutions appear to
require pervasive change in the way that computer
software is built. The near-term alternatives all involve
giving up many of the “general-purpose tool” proper-
ties that make personal computers so effective in the
first place.



6.  References

[1] Garfinkel, Simson, “Program shows ease of
stealing credit card information,” San Jose Mer-
cury News, 29 January 1996

[2] Sibert, Olin, “Risks (and lack thereof) of typing
credit card numbers” Risks-Forum Digest, vol-
ume 17, issue 69, 7 February 1996, available by
anonymous FTP from ftp.sri.com in
/risks/17/risks-17.69 

[3] Computer Emergency Response Team, CERT
Advisory CA-95:10, 31 August 1995, available
by anonymous FTP from info.cert.org in
/pub/cert_advisories/CA-95:10.
ghostscript 

[4] Hoffmann, Lance J., Rogue Programs: Viruses,
Worms, and Trojan Horses, Van Nostrand Rein-
hold, 1990 

[5] Ferbrache, David, A Pathology of Computer
Viruses, Springer Verlag, 1992

[6] Computer Incident Advisory Capability United
States (Department of Energy), CIAC Alert G-
10a: Winword Macro Viruses, available from
http://ciac.llnl.gov/ciac/
bulletins/g-10a.shtml

[7] Eichin, Mark W., and Rochlis, Jon A., “With
Microscope and Tweezers: An Analysis of the
Internet Virus of November 1988,” in Proceed-
ings, 1989 IEEE Computer Society Symposium
on Security and Privacy page 326–343, 1–3
May 1989, Oakland, California

[8] Computer Emergency Response Team, CERT
Advisory CA-95:10, 19 October 1995, available
by anonymous FTP from info.cert.org
in /pub/cert_advisories/CA-95:13.
syslog.vul

[9] Peterson, A. Padgett, personal communication,
15 February 1996. Mr. Peterson reports, “I
described it in an internal Martin Marietta memo
on security threats presented in 1988 as ‘theoret-
ically possible’ but did not construct a working
prototype [until 1994].”

[10] Rotenberg, Leo J., Making Computers Keep
Secrets, Ph.D. Thesis, Massachusetts Institute of
Technology, 1973, published as MIT Project
MAC Technical Report TR-115, February 1974 

[11] Levy, H. M., Capability-based Computer Sys-
tems, Digital Press, Maynard, Massachusetts,
1984

[12] Organick, Eliott I., A Programmer’s View of the
Intel 432 System, McGraw-Hill, New York,
1985

[13] Hardy, Norman, “KeyKOS Architecture,” ACM
Operating Systems Review, Volume 19, Number
4, October 1985

[14] Rajunas, Susan, et al., “Security in KeyKOS,” in
Proceedings, 1986 IEEE Computer Society
Symposium on Security and Privacy, 7–9 April
1986, Oakland, California

[15] Pozzo, Maria, and Gray, Terrence, “Managing
Exposure to Potentially Malicious Programs,” in
Proceedings of 1986 National Computer Secu-
rity Conference, 15–18 September 1986,
National Bureau of Standards, Gaithersburg,
Maryland pages 75–80

[16] Sun Microsystems, Inc., Java Language Specifi-
cation, available as http://www.
javasoft.com/JDK-beta-2/psfiles/
javaspec.ps

[17] van Rossum, Guido, Python Reference Manual,
Dept. AA, CWI, P.O. Box 94079, 1090 GB
Amsterdam, The Netherlands, available as
http://www.python.org/doc/ref/
ref.html

[18] Computer Emergency Response Team, CERT
Advisory CA-96:07, 29 March 1996, available
by anonymous FTP from info.cert.org in
pub/cert_advisories/CA-96.07.
java_bytecode_verifier

[19] Dean, Drew; Felten, Edward; and Wallach, Dan,
“Java Security: From HotJava to Netscape and
Beyond,” in Proceedings, 1996 IEEE Computer
Society Symposium on Security and Privacy, 6–
8 May 1996, Oakland, California


