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Abstract: Benthic surveys were conducted in the southern basin of Lake Michigan and throughout the lake to assess
trends in benthic populations, emphasizing recent changes in densities of the benthic amphipod Diporeia spp. and
dreissenid mussels. In the southern basin, Diporeia populations declined 89%, 91%, and 45% between 1993 and 2002
at sites <30, 31–50, and 51–90 m, respectively. Lakewide, the population declined 65% between 1994–1995 and 2000.
Over the same time period, dreissenid densities, particularly Dreissena bugensis, increased. Intensive studies at 45 m
sites in the southeastern region examined changes in lipid content, age structure, and benthic food inputs relative to the
hypothesis that food limitation was a factor in Diporeia’s disappearance. As Diporeia densities declined to zero,
length–weight remained unchanged, and lipid content generally increased. Recruitment still occurred, but the young did
not survive to become adults. Based on organic carbon, biogenic silica, and chlorophyll collected in sediment traps and
found in the upper sediments, pelagic inputs to the benthic region still occurred. Our field observations and laboratory
experiments did not disprove the hypothesis that food limitation from dreissenid filtering activities was the cause of the
decline, but direct relationships between the loss of Diporeia and indicators of food availability were difficult to establish.

Résumé : Nous avons inventorié le benthos dans le bassin sud du lac Michigan ainsi que dans le lac dans son en-
semble afin de déterminer les tendances dans les populations benthiques, en particulier les changements récents de
densité de l’amphipode benthique Diporeia spp. et des bivalves dreissénidés. Dans le bassin sud de 1993 à 2002, les
populations de Diporeia ont diminué respectivement de 89 %, 91 % et 45 % dans les sites situés à <30, 31–50 et 51–
90 m, respectivement. À l’échelle du lac, les populations ont diminué de 65 % entre 1994–1995 et 2000. Durant la
même période, les densités des dreissénidés, particulièrement de Dreissena bugensis, ont augmenté. Des études pous-
sées aux sites de 45 m ont évalué les changements du contenu lipidique, de la structure d’âge et des apports de nourri-
ture benthique en relation avec l’hypothèse voulant que la carence de nourriture soit un facteur dans la disparition de
Diporeia. Au moment où les densités de Diporeia déclinaient vers zéro, la relation longueur–masse est restée in-
changée et le contenu lipidique a en général augmenté. Il y avait encore du recrutement, mais les jeunes ne survivaient
pas jusqu’à l’âge adulte. D’après les mesures de carbone organique, de silice biogénique et de chlorophylle effectuées
dans les pièges à sédiments et dans les sédiments superficiels, il y avait encore des apports pélagiques vers la région
benthique. Nos observations de terrain et nos expériences de laboratoire ne permettent pas de rejeter l’hypothèse d’une
limitation alimentaire causée par les activités de filtration des dreissénidés comme cause du déclin, mais il est difficile
d’établir des liens directs entre la perte des Diporeia et les indicateurs de disponibilité de nourriture.

[Traduit par la Rédaction] Nalepa et al. 890

Introduction

The increased spread of aquatic invasive species has led to
the growing realization that these invaders, either individu-
ally or in concert, can change ecosystems at many levels of
organization (Simon and Townsend 2003). A striking exam-
ple is the Great Lakes ecosystem, where over the past 10–

15 years, species invasions have led to the loss of native
species, altered pathways of energy and nutrient flux
through food webs, and redefined fundamental understand-
ing of ecosystem function (Nalepa et al. 1996; Vanderploeg
et al. 2002; Hecky et al. 2004). When considering imposed
changes within the Great Lakes, perhaps the most large-
scale, and certainly the most equivocal, has been the disap-
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pearance of the deepwater amphipod Diporeia spp. Declines
in Diporeia populations have recently been documented in
all the lakes except Lake Superior, and large areas in south-
eastern Lake Michigan (Nalepa et al. 1998), outer Saginaw
Bay, Lake Huron (Nalepa et al. 2003), eastern Lake Erie
(Dermott and Kerec 1997), and Lake Ontario (Dermott
2001; Lozano et al. 2001) are now mostly devoid of this or-
ganism.

Diporeia are part of a deepwater fauna that inhabit cold,
proglaciated lakes, brackish estuaries, and coastal margins in
the holarctic region (Bousfield 1989). Prior to its decline,
Diporeia were the most abundant benthic macroinvertebrate
in the deeper regions of all the Great Lakes, comprising
>70% of all benthic biomass at depths greater than 30 m
(Cook and Johnson 1974; Nalepa 1989). Diporeia were also
present but less dominant in nearshore regions (<30 m) of
the open main basins and naturally absent from the shallow,
warm bays and basins (i.e., inner Green Bay, inner Saginaw
Bay, western and central Lake Erie). As an infaunal detriti-
vore, Diporeia burrow in the upper 2 cm of sediment and
feed mainly on organic material freshly settled from the
water column (i.e., mostly diatoms). Feeding rates reach a
seasonal maximum during and just after the spring diatom
bloom, and populations can consume a large portion of
energy inputs to the benthic region during this period
(Dermott and Corning 1988; Fitzgerald and Gardner 1993).
Diporeia, in turn, are fed upon by most fish species found in
the offshore waters of the Great Lakes, including slimy and
deepwater sculpin (Cottus cognatus and Myoxocephalus
thompsonii, respectively), alewife (Alosa pseudoharengus),
bloater (Coregonus hoyi), lake whitefish (Coregonus clupea-
formis), yellow perch (Perca flavescens), and rainbow smelt
(Osmerus mordax) (Anderson and Smith 1971; Scott and
Crossman 1973; Wells 1980). As such, it serves as an impor-
tant pathway by which energy fixed as primary production is
cycled to upper trophic levels.

Declines of Diporeia populations in the Great Lakes were
first noted in the early 1990s, and in all lake areas, these de-
clines were coincident with the introduction and spread of
the invading species Dreissena polymorpha (zebra mussel)
and Dreissena bugensis (quagga mussel). A common hy-
pothesis for the decline is that dreissenids are outcompeting
Diporeia for available food (Nalepa et al. 1998; Dermott
2001). Dreissenids filter-feed near the sediment surface, and
this hypothesis assumes that settling organic material is in-
tercepted by dreissenids before it reaches the upper sedi-
ments and becomes available to Diporeia. Deepwater
amphipods such as Diporeia (neararctic) and the closely re-
lated Monoporeia affinis (palearctic) are generally food-
limited, and both short- and long-term population trends
have been attributed to changes in pelagic food inputs to the
benthic region (Sarvala 1986; Johnson and Wiederholm
1992; Goedkoop and Johnson 2001). Yet despite the broad
negative response of Diporeia to Dreissena, there are incon-
sistencies when examining decline patterns relative to the
food-limitation hypothesis. For one, Diporeia populations
have disappeared from several areas in the Great Lakes that
were far-removed from dreissenid colonies and where poten-
tial food was still present in overlying waters and presumed
to be settling to the bottom (Dermott 2001; Nalepa et al.

2003). Also, Diporeia are still abundant in some areas de-
spite the presence of dreissenids (Dermott et al. 2005).

In this paper, we document recent spatial and temporal
trends of Diporeia populations in Lake Michigan relative to
expanding numbers of dreissenids. We also examine changes
in age structure, physiological well-being, and pelagic food
inputs during periods of population loss. These changes were
compared with similar observations made prior to the intro-
duction of dreissenids and Diporeia declines. Moreover, we
conducted laboratory experiments to provide insights into
our field observations and to further explore the food-
limitation hypothesis.

Materials and methods

Spatial and temporal trends in densities
To document long-term spatial and temporal trends in den-

sities of Diporeia and Dreissena in Lake Michigan, benthic
samples were collected over several time periods at sites lo-
cated in the southern basin and also at sites located through-
out the entire lake. In the southern basin, samples were
collected at 40 sites in 1998–2002 (Fig. 1). Bottom sub-
strates at the sites ranged from coarse sand and gravel to fine
silt, and depths ranged from 16 to 157 m. These 40 sites are
part of a long-term monitoring program of the total macro-
invertebrate community and have been sampled for 2 con-
secutive years every 5 years between 1980 and 1993 (Nalepa
1987; Nalepa et al. 1998). Consistent with this program,
samples were again collected at these sites in 1998–1999. In
2000–2002, samples were collected at the same 40 sites and
at 13 additional sites (A-4, C-2, C-45, F-2, F-3, G-45, K-2,
N-2, N-3, T-3, M-45, R-45, SAU-45; Fig. 1). Whereas data
from all 53 sites were used to better define spatial distribu-
tions of Diporeia and Dreissena in each of the 3 years, only
data from the original 40 sites were used when examining
temporal trends. Samples in 1998–1999 were collected in
spring (mid-May to early June), summer (late July to early
August), and fall (September to October), but in 2000–2002,
samples were collected only in fall. For analysis purposes,
sites were divided into four depth intervals: 16–30, 31–50,
51–90, and >90 m. These depth intervals are consistent with
prior characterization of depth–macroinvertebrate associations
in Lake Michigan (Nalepa 1987).

Densities of Diporeia and Dreissena were determined
throughout Lake Michigan by sampling at 158 sites in late
summer–fall 2000. Besides the 53 sites sampled in the
southern basin, an additional 105 sites were sampled in the
central and northern basins, Green Bay, and Grand Traverse
Bay. Many of these sites (42 of 105) were sampled previ-
ously in 1994–1995 (Nalepa et al. 2000).

Methods of collection and analysis were the same for all
sampling periods. Sediment samples were taken in triplicate
with a Ponar grab (area = 0.046 m2) at each site and washed
into an elutriation device fitted with a nitex sleeve with
0.5 mm openings. Retained material was immediately pre-
served in 5% buffered formalin containing Rose Bengal stain.
In the laboratory, all macrobenthic organisms in the 1998–
1999 samples were picked, counted, and sorted into major
taxonomic groups (Amphipoda, Oligochaeta, Chironomidae,
Dreissena, Sphaeriidae) under a low-power magnifier lamp
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(1.5×). Chironomidae densities were low as in previous years
and therefore not reported here. Only Diporeia and Dreissena
were enumerated in samples collected in 2000–2002.

For the southern basin, differences in densities of Dipo-
reia and Dreissena over the 1992–2002 period, as well as
differences in densities of Oligochaeta and Sphaeriidae over
the 1992–1999 period, were tested using a two-way analysis
of variance (ANOVA; year × depth interval) on individual
replicates. For the lakewide surveys in 1994–1995 and 2000,
density differences of Diporeia and Dreissena were tested
using a two-way ANOVA as above (period × depth interval).
Additionally, the lake was divided into south, central, and
north regions (Nalepa et al. 2000), and a two-way ANOVA
(year × region) was used to test differences separately within
each depth interval. For all ANOVAs in the southern basin
and lakewide surveys, the data were log-transformed (ln + 1)
to homogenize variances and post hoc multiple-range tests
(Tukey’s honestly significant difference (HSD)) were per-
formed using Bonferroni-adjusted p values.

Population age structure, physiological condition, and
physical variables

Soon after it became apparent that the Diporeia popula-
tion in the southern basin was declining (Nalepa et al. 1998),
we initiated a monthly sampling program in 1997 at four
sites in the southeastern portion of the lake to document
trends in age structure, lipid content, and length–weight and
also to document relative amounts of potential food settling
to the benthic region. The sites were located at 45 m water
depth off St. Joseph (H-22; 42°08.35N, 86°39.83W), Sauga-
tuck (SAU-45; 42°41.14N, 86°18.90W), Grand Haven
(H-31; 43°02.47N, 86°19.99W), and Muskegon (M-45;
43°11.27N, 86°25.78W) (Fig. 1). Based on sampling prior to
1997, we knew that the state of populations at these four
sites varied widely. The population had already disappeared
at H-22, was present but declining at SAU-45 and H-31, and
was still abundant at M-45. Both H-22 and H-31 were part
of our long-term monitoring program, and SAU-45 was lo-
cated near a long-term monitoring site of similar depth (B-2).
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Fig. 1. Sampling sites in southern Lake Michigan, USA (inset shows location in the Great Lakes area). Depth contours are 25, 50, and
100 m.



Samples for density estimates of Diporeia and Dreissena at
H-31 had also been collected one to four times per year in
1994, 1995, and 1996. In 1997 and 1998, Ponar samples at
all four sites were collected monthly from late March–April
to late October–November. After 1998, monthly sampling
continued at sites where Diporeia were still present and
lasted until it was no longer found.

Beginning in 1994 at H-31 and in 1997 at the other 45 m
sites, body lengths of Diporeia in each of the replicate sam-
ples were determined by first tracing individuals (body mid-
line) under 12× magnification using a camera lucida and
then measuring tracings with a digitizer (Quigley and Lang
1989). Measurements were made from the base of the ros-
trum to the tip of the telson. In replicates with high numbers
of individuals, animals were subsampled using a Folsom
plankton splitter, and lengths were determined on at least
75–100 animals. In addition, body lengths were determined
on animals in Ponar grabs collected monthly (April to No-
vember) at H-31 in 1986–1988. For these samples, all indi-
viduals in one replicate grab were measured. After lengths
were determined, animals were placed into three size catego-
ries: 0–3, 3–5, and >5 mm. At depths of about 45 m in the
Great Lakes, these sizes represent newly recruited young
(YOY), juveniles, and adults, respectively (Winnell and White
1984; Johnson 1988).

On each sampling date beginning in 1994, extra Ponar
grabs were taken at each site for the determination of Dipo-
reia lipid content and length–weight. Upon collection, entire
grab samples (animals, sediments, and overlying waters) were
placed into plastic bags and kept cool during transport back
to the laboratory. Within 24 h of collection, 20–25 juveniles
and adults were placed individually into preweighed mini-
test tubes (6 mm × 50 mm). For YOY, 5–10 individuals were
placed into each tube (3–5 replicates). Before animals were
placed into the tubes, individual body lengths were traced
and later measured. The animals were dried for 48 h (under
N2 at 50–60 °C) and then stored frozen under vacuum until
lipid extraction. Animals were reweighed just prior to lipid
extraction, and individual animal weights were used to de-
rive length – dry weight relationships. For YOY, mean length
and weight were used in derived relationships. Total lipids
were extracted using chloroform–methanol (2:1), quantified
gravimetrically, and reported as percent dry weight (Gardner
et al. 1985a). Differences in lipid content between years and
age classes were examined with a two-way ANOVA after
arcsine transformation.

Sediment traps were deployed at the 45 m sites to mea-
sure potential pelagic inputs to the benthic region. In 1997,
settling material was collected with a sequencing sediment
trap that consisted of a cylinder with a 20 cm opening and
8:1 aspect ratio (Muzzi and Eadie 2002). A bottom funnel
led to an attached array of twenty-three 60 mL bottles within
a rotating carousel. The carousal was programmed to rotate
so a new bottle collected every 9 days. Before deployment,
each bottle was filled with 30 mg mercuric chloride to pre-
vent microbial activity. The traps were deployed just below
the thermocline (30 m water depth) from March – early
April to October 1997 at SAU-45, H-31, and M-45. In 1998
and 1999, sediment traps consisted of a cylinder with an
opening of 10 cm and an aspect ratio of 5:1. The cylinder
had a funnel at the bottom connected to a 500 mL bottle that

had 20 mL chloroform as a preservative. Intercalibrations
showed these traps collected at the same rate as the sequenc-
ing traps deployed in 1997 (Muzzi and Eadie 2002). Traps
were deployed at all four 45 m sites in 1998 and at H-31 and
M-45 in 1999. Traps were retrieved and bottles replaced on
a monthly basis between March – early April and October.

After retrieval, collected material was poured through a
500 µm screen to remove benthos and large zooplankton and
then allowed to settle for at least 24 h before the supernatant
was decanted. The samples were then freeze-dried and kept
frozen until analysis. Total organic carbon (TOC) was ana-
lyzed with a Carlos Erba CHN elemental analyzer. Prior to
analysis, subsamples for TOC were treated with 2 mol·L–1

HCL, shaken for 24 h, and then dried at 60 °C to remove
mineral carbonates. Chlorophyll a (Chl) was determined ac-
cording to the method of Hansson (1988). Biogenic silica
(BiS) was determined by first using a wet alkaline method
for digestion and then measuring concentrations of SiO2
with an Alpkem FS3000 analyzer (Krausse et al. 1983).

During each monthly sampling in 1998, an extra Ponar
grab was collected at all four sites for determination of sedi-
ment TOC, BiS, and Chl. Monthly samples were also col-
lected at H-31 in 1999 and at M-45 in 1999–2002. The top
0–1 cm of sediment was scraped from the surface of grab
samples, freeze-dried, and analyzed as given above. Based on
dated sediment cores collected in 2001, sediment accumula-
tion rates at H-22 are about 1 cm·year–1 (J. Robbins, Great
Lakes Environmental Research Laboratory, 2205 Common-
wealth Boulevard, Ann Arbor, MI 48105, USA, unpublished
data); thus, the 0–1 cm layer provided a good characteriza-
tion of material deposited on an annual basis. Rates were
likely less at the other 45 m sites, and this layer would there-
fore represent at least several years of accumulation. Grain
size of sediment samples collected in 1998 was measured
with a laser particle counter. Differences between years for
individual constituents were tested with a one-way ANOVA,
with sampling dates as within-year replicates.

Material collected in sediment traps consisted of material
resuspended from the bottom by storm events and also of
autochthonous material settled from the water column. To
better define the latter source, a correction was made to cal-
culated flux rates. Concentrations of TOC, BiS, and Chl
measured for local surface sediment was subtracted from the
concentration in the trapped material. This value was then
multiplied by mass flux to produce an estimate of TOC, BiS,
and Chl delivered to the site from sources other than local
resuspension. Since not all sediment constituents were mea-
sured in 1997, corrections in that year were made based on
1998 values.

Laboratory experiments
Several laboratory experiments were conducted to provide

insights into potential causes for the population decline. All
experiments were conducted in a dark environmental cham-
ber set at 4 °C. Purposes of the first experiment were to de-
termine if sediments from a site where the population had
recently disappeared were acutely toxic to Diporeia and to
determine if these sediments had any nutritional value. Sedi-
ments were collected with a Ponar grab at two of the 45 m
sites (H-31 and M-45) on 10 May 2000. At the time, mean
densities of Diporeia were 0·m–2 and 6500·m–2 at the two
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sites, respectively. The top 1 cm of sediment from each site
was scraped from grab samples, placed into prerinsed glass
jars (500 mL), and kept cool. Experimental animals at M-45
were collected by placing entire grab samples into plastic
bags and kept at 4 °C until the experiments were initiated.

Within 24 h of collection, sediments from each site were
washed through a 0.5 mm screen to remove macro-
invertebrates, allowed to settle, and then placed into glass
scintillation vials (20 mL). Enough sediment was placed in
the vials to achieve a depth of 2 cm, which is similar to
Diporeia’s normal burrowing depth. Vials were filled with
filtered lake water (0.45 µm Millipore filter) that had been
collected from near bottom at M-45. There were four treat-
ments: filtered lake water only, medium sand, H-31 sedi-
ment, and M-45 sediment. The sand was prerinsed and
ashed at 550 °C for 1 h. All vials were placed into an
aquarium filled with filtered, aerated lake water and al-
lowed to stabilize for 24 h. After the stabilization period,
one animal (>5 mm) was placed into each vial, and the vial
was then covered with nitex screen (mesh opening 0.5 mm)
to prevent animals from escaping and yet allowing water
exchange to take place. As animals were placed into the
treatment vials, 28 animals were randomly selected and
frozen for later analysis of lipid content. On 21 May
(10 days), 30 May (19 days), 21 June (41 days), and 16 July
(66 days), at least 10 vials from each of the four treatments
were removed and the animal’s condition (live or dead) re-
corded. Lipid content of 5–10 living animals was measured
as given above. Based on the volume of sediment in the vi-
als (11.45 cm2) and typical ingestion rates (Dermott and
Corning 1988), experimental animals would have ingested
only a small fraction (<1%) of the provided sediment dur-
ing the 66-day experiment. The results were analyzed using
a two–way ANOVA (treatment × day) after arcsine trans-
formation. In the analysis, initial lipid content (day 0) for
each treatment was derived by randomly assigning lipid
content of the 28 pre-experimental animals to the treat-
ments (n = 7 per treatment).

The second experiment consisted of preference–avoidance
trials with sediments from H-31 and M-45. The purpose of
this experiment was to determine if Diporeia actively avoided
sediments from H-31, a site where populations had recently
disappeared. On 14 July 2000, sediments (0–1 cm) from
both sites were collected with a Ponar grab, placed into plas-
tic bags, and kept cool. Within 24 h of collection, sediments
were screened and placed into labeled Petri dishes (47 mm
diameter × 1.5 cm depth), with six dishes per site. Three
dishes from each site along with three dishes with ashed
sand (control) were randomly placed into each compartment
of a two-compartment aquarium containing filtered lake wa-
ter. Thus, there were duplicate trials, with each trial having
three replicates per treatment. After a 24 h stabilization pe-
riod, 100 Diporeia (collected at M-45) were placed into each
compartment. Dishes were carefully removed after 120 h,
sediments washed through a 500 µm mesh screen, and the
number of animals burrowed into each dish recorded. Differ-
ences among the three treatments were determined using a
one-way ANOVA followed by Tukey’s HSD. There were no
significant differences between the two trials for each treat-
ment (t test, df = 5, P > 0.05), so trial replicates were not
distinguished in the ANOVA (n = 6 for each treatment).

Results

Density trends of major taxa groups in the southern
basin, 1992–2002

Declines in Diporeia populations in the southern basin,
which were initially documented in 1992–1993 (Nalepa et
al. 1998), continued through 2002 (Table 1). Over the 1992–
2002 period, significant differences in Diporeia densities oc-
curred for years (F[6,1751] = 96.84, P = 0.0001), intervals
(F[3,1751] = 249.50, P = 0.0001), and year × interval interac-
tion (F[18,1751] = 11.95, P = 0.0001). Annual densities in
1998–2002 were not significantly different from each other
but were significantly lower than densities found in 1992
and 1993 (P < 0.05, Tukey’s HSD). Mean densities at the
<30, 31–50, and 51–90 m intervals decreased by 89.4%,
90.5%, and 44.6%, respectively, between 1992 and 2002.
Declines were more pronounced on the east side of the basin
than on the west side as lower densities, first observed in the
southeastern portion of the basin in 1992, extended farther
north and offshore over time (Fig. 2). By 2002, Diporeia
were rare or completely gone to depths of at least 50 m in an
area from near Chicago to Grand Haven. Of 23 sites sam-
pled in 2002 that were in less than 50 m water depth, Diporeia
were present only at Stations H-8, B-7, and EG-12, all on
the west side of the basin (densities 3155·m–2, 4091·m–2, and
3150·m–2, respectively). Although still present, densities at
these three sites in 2002 were lower than densities found in
1993 (declines of 46.2%, 46.2%, and 68.4%, respectively).

Whereas Diporeia continued to decline between 1992
and 2002, the dreissenid population became more wide-
spread and abundant (Table 1). Differences in densities of
Dreissena were significant for years (F[6,1751] = 13.43, P =
0.0001), intervals (F[3,1751] = 218.70, P = 0.0001), and
year × interval interaction (F[18,1751] = 6.08, P = 0.0001).
Over the 10-year period, dreissenids were mostly confined
to depths <50 m, and greatest increases occurred at the 31–
50 m interval. At this interval, mean densities of D. poly-
morpha increased from 7·m–2 in 1992 to 1112·m–2 in 2002.
The other dreissenid species, D. bugensis, was first col-
lected in the southern basin in 2001. By 2002, mean den-
sity at the 31–50 m interval had increased to 752·m–2

(Table 1). Mean density of the dreissenid population at the
three west-side sites where Diporeia were still present in
2002 (H-8, B-7, and EG-12; total of nine replicates) were
not significantly different from densities at the other 20
sites (total of 60 replicates) of similar depth (<50 m),
where Diporeia had disappeared (t test, df = 67, P = 0.98,
ln + 1 transformed).

Abundances of oligochaetes and sphaeriids in the southern
basin were documented only in 1992–1993 and 1998–1999
(Table 1). Differences in oligochaete densities were signifi-
cant for years (F[3,1403] = 2.99, P = 0.03), intervals
(F[3,1403] = 84.88, P = 0.0001), and year × interval inter-
action (F[9,1403] = 5.34, P = 0.0001). Densities in 1993 were
significantly lower than the other 3 years (P = 0.03, Tukey’s
HSD), but a consistent temporal trend over the entire 1992–
1999 period was not apparent at any of the four intervals
(Table 1). Sphaeriid densities were also significantly differ-
ent for years (F[3,1403] = 12.29, P = 0.0001), intervals
(F[3,1403] = 156.25, P = 0.0001), and year × interval inter-
action (F[9,1403] = 9.48, P = 0.0001). The general trend was
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for a decline in densities at the two shallowest depth inter-
vals over the period.

Lakewide density trends, 1994–1995 to 2000
Comparisons of lakewide densities in 1994–1995 and

2000 indicated that declines of Diporeia occurred not only
in the southern basin but also throughout the lake (Fig. 3).
Mean lakewide density was 65% lower in 2000 compared
with 1994–1995, and this difference was significant
(F[1,234] = 53.38, P = 0.0001). The decline occurred across
all depth intervals, as the year × interval interaction was
not significant (F[3,234] = 2.16, P = 0.09). Densities at the
<30, 31–50, 51–90, and >90 m intervals were 77.9%,
73.7%, 53.2%, and 51.6% lower, respectively (Table 2).
Further, the extent of the decline was greatest in the north-
ern region; the overall decline was 91.4% in the north com-
pared with 65.0% and 42.4% in the south and central
regions, respectively. While densities were lower in the
north in each of the four depth intervals, a regional differ-
ence was only significant at the >90 m interval (F[2,34] =
8.58, P = 0.001; Tukey’s HSD, P < 0.003). Lakewide den-
sities of Dreissena were significantly higher in 2000 com-
pared with 1994–1995 (F[1,236] = 38.04, P = 0.0001). At
sites <50 m, mean dreissenid densities were highest in the
northern region in both sampling periods, which may ex-
plain greater declines of Diporeia in this portion of the
lake.

Annual density trends, 45 m sites
From the long-term monitoring program, densities of

Diporeia were available for three of the 45 m sites (H-22,
SAU-45, and H-31) in 1980–1981 and 1986–1987, which
were the years just prior to the first report of Dreissena in
Lake Michigan (first reported in 1989; Marsden et al. (1993)).
Mean annual density of Diporeia by site and year ranged
from 5347 to 14 044·m–2 (Fig. 4). Beginning in 1992, the
population declined systematically, first at the southern-most
site (H-22) and later at the more northern sites. By fall 2002,
Diporeia had disappeared from all four sites (Figs. 4, 5).
Whereas Diporeia disappeared from each site within a 10-
year period, rates and patterns of decline were site-specific.
In 1992, densities at H-22 declined from 10 600·m–2 in spring
to 200·m–2 in fall, a 98% decline in just 6 months. Declines
to total loss were more gradual at the other 45 m sites, oc-
curring between 1994 and 1999 at H-31 and between 1997
and 2002 at M-45. Unlike populations at the other 45 m
sites, the population at M-45 recovered somewhat after ini-
tial declines were observed. Densities increased throughout
1999 and remained higher into spring 2000; however, densi-
ties decreased thereafter (Fig. 5). When considering all four
45 m sites, the period of time in which Diporeia declined
from densities of 5300–14 000·m–2 to <200·m–2 varied from
0.5 to 5 years.

The relationship between annual densities of Diporeia and
Dreissena was examined over the time period between just
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Year

Taxa 1992 1993 1998 1999 2000 2001 2002

16–30 m (n = 11)
Diporeia 2618±504 2698±543 236±212 130±125 207±205 223±223 287±287
Oligochaeta 1713±376 1647±434 2367±600 2085±624 — — —
Sphaeriidae 1381±384 535±123 340±247 309±142 — — —
Dreissena polymorpha 389±253 1929±1698 978±255 2056±1014 617±340 193±74 885±464
Dreissena bugensis 0±0 0±0 0±0 0±0 0±0 3±3 117±63

31–50 m (n = 12)
Diporeia 8710±759 7021±870 1957±883 892±450 1427±847 1364±798 665±395
Oligochaeta 4487±466 3166±330 4518±1146 6029±2219 — — —
Sphaeriidae 2273±303 1068±166 1434±294 707±162 — — —
Dreissena polymorpha 7±3 25±12 433±156 1059±414 865±555 1298±858 1112±755
Dreissena bugensis 0±0 0±0 0±0 0±0 0±0 5±5 752±495

51–90 m (n = 11)
Diporeia 6380±332 5352±373 4593±1007 2380±577 3503±1185 2991±992 2963±959
Oligochaeta 2042±135 1530±97 2245±412 1986±345 — — —
Sphaeriidae 801±153 384±72 660±100 578±94 — — —
Dreissena polymorpha 1±1 1±1 5±3 3±2 8±5 13±7 20±15
Dreissena bugensis 0±0 0±0 0±0 0±0 0±0 0±0 8±5

>90 m (n = 6)
Diporeia 3195±389 3226±515 4833±762 1794±249 2814±570 2608±392 3623±647
Oligochaeta 1179±151 1123±159 1009±176 1034±222 — — —
Sphaeriidae 113±30 98±36 197±99 154±84 — — —
Dreissena polymorpha 0±0 0±0 4±4 0±0 0±0 0±0 0±0
Dreissena bugensis 0±0 0±0 0±0 0±0 0±0 0±0 0±0

Note: Oligochaeta and Sphaeriidae were not sampled in 2000–2002. The number of sites (n) in each of the four depth intervals are shown in
parentheses.

Table 1. Mean (± standard error) densities (no.·m–2) of the major taxa found in southern Lake Michigan in 1992–2002.



prior to initial declines and total disappearance. Densities of
Diporeia and Dreissena were not well correlated at H-22;
the population at this site collapsed in 1992 and totally dis-
appeared by 1997, but Dreissena was not found at this site
until 2000 (Table 3). At H-31 the relationship between the
two taxa over the 1992–1999 period was not significant
(linear regression; R2 = 0.37, P = 0.11), but the residuals
indicated the presence of autocorrelation (Durbin-Watson D
statistic = 0.966). Further analysis with a 1-year time lag (t – 1)
in Dreissena densities provided a significant relationship
(R2 = 0.70, P = 0.02, Durbin-Watson D statistic = 1.97). The
relationship was improved when data from M-45 was in-
cluded (Fig. 6).

Recruitment and age classes, 45 m sites
Because of limited availability of seasonal, size frequency

data collected prior to declines at H-22 and SAU-45, mean-
ingful analysis of density trends in the various age classes
was only possible for populations at H-31 and M-45. As
noted, declines in population density at H-31 were initially
observed in 1994. Based on relative densities of YOY, juve-
niles, and adults, lower density in this year was a result of
poor recruitment. Mean annual density of YOY in 1994 was
only 215·m–2 (seasonal peak = 406·m–2) compared with a
range of 920–2438·m–2 (seasonal peak = 2411–4895·m–2) in
1986–1993. In contrast, mean densities of juveniles and adults
in 1994 were within the range found in 1986 to 1993 —
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Fig. 2. Mean density (no.·m–2 × 103) of Diporeia spp. in southern Lake Michigan. Small crosses denote sampling sites. (a) 1992,
(b) 1993, (c) 1998, (d) 1999, (e) 2000, (f) 2001, (g) 2002.



juvenile density was 3860·m–2 in 1994 compared with 2004–
4283·m–2 in 1986–1993, and adult density was 3588·m–2 in
1994 compared with 3462–7173·m–2 in 1986–1993. Con-
sidering Diporeia have a 2-year life cycle at this depth in
southeastern Lake Michigan (Winnell and White 1984), the
lack of recruitment in 1994 likely accounted for lower juve-
nile densities observed in 1995 (Fig. 7). Recruitment in
1995–1997 was generally similar to recruitment in 1986–
1993, as strong peaks in YOY occurred in 1995 (2438·m–2)
and 1997 (2640·m–2), and although we only sampled on one
date in 1996 (July), a relatively high density of YOY
(2202·m–2) indicated recruitment also occurred in that year.
Despite good recruitment, juvenile densities in these 3 years
remained lower than found in 1986–1994, indicating poor
YOY survival. Juvenile densities at H-31 subsequently col-
lapsed in 1997, declining from 3300·m–2 in early spring to
150·m–2 in late fall. Adult densities remained stable in 1997
but declined in 1998, most likely a result of the lack of juve-
niles the previous year.

At M-45, annual recruitment occurred between 1997 and
2002, and peaks in YOY densities ranged from 1200·m–2 to
4700·m–2 (Fig. 8). Yet despite recruitment, juvenile densities
generally declined each year, again indicating poor YOY
survival. The exception to this pattern occurred in 1999.

YOY survival was high in 1999 as evidenced by an increase
in juvenile densities throughout the year, peaking at 3500·m–2

in November; this accounted for the increase in population
density in that year (Fig. 5). Juveniles continued to grow and
survive through winter 2000 as evidenced by high adult den-
sity in spring 2000 (4000·m–2). Recruitment occurred in 2000,
but as in 1997 and 1998, these recruits did not survive to be-
come juveniles.

The number of eggs per gravid female was determined in
spring 2001 at M-45 to determine if brood size had declined
since the 1980s. In a 1981 study at a 42 m site in southeast-
ern Lake Michigan, Winnell and White (1984) found that
brood size ranged from 10 to 25 eggs per female and was
directly related to female size. Brood size in 2001 varied
from 21 to 32 eggs per gravid female (n = 7) and fit the
same functional relationship to female size as in 1981.

Lipid content and length–weight, 45 m sites
When densities at the 45 m sites were declining, lipid

content of juvenile and adult Diporeia tended to increase
(Fig. 9). Detailed analysis of trends between density and
lipid content were restricted to M-45, since densities at the
other 45 m sites were already declining prior to 1997. Be-
tween 1997 and 2001, there was a significant difference
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Fig. 3. Mean density (no.·m–2 × 103) of Diporeia spp. throughout Lake Michigan. Small crosses denote sampling sites. (a) 1994–1995,
(b) 2000.



between years (F[5,681] = 62.41, P = 0.0001), age classes
(F[2,681] = 10.62, P = 0.0001), and year × age class interac-
tion (F[13,681] = 10.60, P = 0.0001). Yearly means in 1999–
2001 were significantly higher than those in 1997–1998 (P =
0.0001, Tukey’s HSD), and lipid content in juveniles and
adults were significantly higher than those in YOY (P =
0.0001 Tukey’s HSD). When just considering juveniles and
adults, lipid levels increased from 21.6% ± 0.42% in 1997–
1998 to 28.7% ± 0.56% in 1999–2001. Similarly, as densi-
ties declined at H-31 between 1997 and 1999, mean adult
lipid content increased from 23.9% ± 0.6% in 1997 to
34.7% ± 2.1% in 1999. The relationship between lipid con-
tent and density can be put into a more long-term perspec-
tive by examining trends at H-31 beginning in the 1980s
(Fig. 4). Seasonal trends in lipid content of adult Diporeia
were measured at this site in 1984, 1986, 1988, and 1989
(Gardner et al. 1985b; Gauvin et al. 1989; Cavaletto et al.
1996). Mean annual lipid content in 1984–1989 varied from
26% to 32%. When density declines were first observed in
1994, mean lipid content was only 15%. As densities contin-
ued to decline after 1994, lipid content increased each suc-
cessive year until by 1998–1999 lipid values were as high as
found in the 1980s.

Lipid content in juveniles and adults generally peaked in
spring or summer and then declined in fall (Fig. 9). Seasonal
peaks in late spring – summer were consistent with the
premise that intensive feeding during the spring diatom
bloom results in the storage of energy as lipids (Gardner et
al. 1985b, 1990). To determine if seasonal peaks in 1997–

2001 were comparable with those found in 1984–1989 (adults
only), the seasonal maximum was divided by the early
spring minimum and the ratio was compared between the
two periods. For the 1997–2001 period, only those sites and
years in which adults were collected throughout the year
were included. The mean ratio was 1.31 ± 0.07 (n = 8) in
1997–2001 and 1.58 ± 0.28 (n = 4) in 1984–1989. Although
lower in the 1997–2001 period, the difference was not sig-
nificant (t test; P > 0.05).

In deepwater amphipods, weight per unit length generally
declines when animals are food-limited (Hill et al. 1992;
Lehtonen 1996). The relationship between lipid-free dry weight
(LFDW in mg) and length (L in mm) was defined by
LFDW = aLb and was determined annually for each 45 m
site over the 1994–2001 period (Table 4). All regressions
were significant (range of R2: 0.56–0.96). When LFDW for a
standard 5 mm animal was calculated, yearly trends were
not apparent (Table 4).

Sedimentation rates and sediment variables
Sediment traps, deployed at the 45 m sites in 1997–1999,

documented amounts of organic material settling to the bot-
tom that potentially served as a food source for Diporeia. In
general, there was a consistent primary peak of TOC, BiS,
and Chl in spring and a secondary peak in fall at each of the
sites (Fig. 10). Most relevant to Diporeia populations were
flux rates associated with the spring peaks; these peaks are
enriched in organic materials (diatoms) compared with peaks
in the fall (Scavia and Fahnenstiel 1987; Gardner et al.
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Diporeia Dreissena

Lake region 1994–1995 2000 1994–1995 2000

<30 m
South (7,11) 3488±1842 207±205 414±132 617±340
Central (2,16) 2173±2852 1794±655 0±0 2541±848
North (9,20) 2897±1156 77±34 926±921 2025±594
Overall 3124±916 692±252 623±457 1871±399

31–50 m
South (6,20) 6306±1454 1194±561 48±42 589±338
Central (2,11) 10 477±4088 4702±1210 89±82 629±217
North (5,16) 4462±2150 100±39 528±528 2268±1353
Overall 6249±1243 1642±444 239±201 1170±489

51–90 m
South (20,15) 5285±423 2742±932 <1±<1 6±4
Central (5,19) 11 997±1189 4691±487 0±0 32±16
North (6,12) 6262±925 893±414 0±0 7±5
Overall 6550±570 3064±437 <1±<1 17±7

>90 m
South (9,6) 4466±335 2814±570 0±0 0±0
Central (9,6) 4443±627 2818±836 0±0 0±0
North (5,5) 5007±1567 754±459 0±0 0±0
Overall 4567±414 2209±429 0±0 0±0

Note: See Nalepa et al. (2000) for delineation of regions. Values in parenthesis are numbers of sites
sampled in 1994–1995 and 2000, respectively, within each depth interval and lake region. In 1994–
1995, all Dreissena were D. polymorpha; in 2000, 98.3% were D. polymorpha and 1.7% were D.
bugensis.

Table 2. Mean (± standard error) densities (no.·m–2) of Diporeia and Dreissena at four
depth intervals in Lake Michigan in three different regions in 1994–1995 and 2000.



1989). Over the 1997–1999 period, the magnitude of spring
peaks at H-31 and M-45 decreased for all constituents
(Fig. 10). In spring 1997, the spring average (March–May)
flux rates of TOC at these two sites were 434 and
461 mg·m–2·day–1, respectively, and flux rates of BiS were
1176 and 1199 mg·m–2·day–1, respectively. In contrast, spring
1999 flux rates of TOC were only 88 and 57 mg·m–2·day–1,
and flux rates of BiS were 181 and 45 mg·m–2·day–1, respec-
tively, for sites H-31 and M-45. Low flux rates in 1999 were
mostly related to quantitative changes in inputs, as nutrient
content of collected material was generally higher in 1999
than in previous years (Table 5). Further, mean annual C/N
ratio (weight) did not show a consistent trend at these two
sites over the same period; the ratio tended to increase at M-
45 but not at H-31. In 1998 when flux rates were measured
at all four 45 m sites, spring average flux rates of all constit-
uents increased on a spatial gradient from south to north, be-
ing lowest at H-22 and highest at M-45 (Fig. 10), while the
mean C/N ratio decreased along the same gradient (Table 5).

Sediment composition varied widely at the 45 m sites,
ranging from predominately silt at the southern-most site
(H-22) to sand at the northern-most site (M-45). The percent
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Fig. 4. Density (no.·m–2) of Diporeia spp. at three 45 m sites in
southeastern Lake Michigan, 1980–2002: (a) H-31, (b) SAU-45,
(c) H-22. The broken lines at H-31 give the lipid content (per-
cent dry weight) of Diporeia spp. at this site.

Fig. 5. Mean density (no.·m–2) of Diporeia spp. on each sam-
pling date at three 45 m sites in 1997–2002. Although not
shown, no Diporeia were collected at the other 45 m site (H-22)
during the sampling period. Error bars denote standard error.
�, SAU-45; �, H-31; �, M-45.

Station

Year H-22 SAU-45 H-31 M-45

1992 0±0 0±0 3±2 —
1993 0±0 0±0 14±9 —
1994 — — 39±14 —
1995 — — 50±16 —
1996 — — 143 —
1997 0±0 30±17 669±261 616±367
1998 0±0 966±897 2561±853 1044±525
1999 0±0 21 2581±209 2235±1075
2000 21 136 171 836±459
2001 0 0 5576 1046±646
2002 29 464 1699 835±376

Note: Standard errors depict variability between sampling dates.

Table 3. Mean (± standard error) density (no.·m–2) of Dreissena
at the 45 m sites in southeast Lake Michigan, 1992–2002.

Fig. 6. Relationship between mean annual density (no.·m–2) of
Diporeia spp. and Dreissena at H-31 (�) and M-45 (�).
Dreissena densities are given as a 1-year time lag (t – 1). Sam-
pling periods were 1992–1999 for H-31 and 1997–2002 for M-
45 (linear regression R2 = 0.59, P = 0.003, n = 12).



clay, silt, and sand was, respectively, 2.3%, 85.7%, and
12.0% at H-22; 1.9%, 53.2%, and 44.9% at SAU-45; 1.7%,
31.3%, and 67.0% at H-31; and 0.7%, 15.2%, and 84.1% at
M-45. Nutrient content of the upper 0–1 cm decreased from
south to north as grain size increased. In 1998 mean sedi-
ment concentrations of TOC, BiS, and Chl were 4-, 6-, and
3.5-times greater, respectively, at H-22 than at M-45 (Ta-
ble 5). Continued sampling at H-31 to 2000 and at M-45 to
2002 indicated nutrient content increased over levels found
in 1998. At H-31 there was a significant difference between
years (1998–2000) for BiS (F[2,11] = 4.406, P = 0.039), and
at M-45 there was a significant difference between years
(1998–2002) for TOC (F[4,29] = 12.43, P = 0.0001), BiS
(F[4,29] = 18.77, P = 0.0001), and CHl (F[4,29] = 11.122, P =
0.0001). The increase at M-45 was such that in 2002, con-
centrations of BiS and Chl were not significantly different
from values found at H-22 in 1998 (t test, df = 15, P = 0.239

for BiS; P = 0.79 for Chl). As nutrient content increased,
there was no apparent trend in the C/N ratio (Table 5).

Laboratory experiments
Mortality in the 66-day starvation experiments was low in

all four treatments. Of the 191 animals retrieved from fil-
tered lake water, ashed sand, H-31 sediments, and M-45 sed-
iments, only five were found dead during the entire
experimental period. Lipid content declined in all four treat-
ments during the experimental period (Table 6). Mean initial
lipid content was 31.8% on day 0, and final lipid content
ranged from 21.3% (H-31 sediment) to 25.2% (sand) on day
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Fig. 7. Density (no.·m–2) of three life stages of Diporeia spp. at
H-31 in 1986–1999: (a) young-of-year, (b) juveniles, (c) adults.

Fig. 8. Density (no.·m–2) of three life stages of Diporeia spp. at
M-45 in 1997–2001: (a) young-of-year, (b) juveniles, (c) adults.



66. There was a significant difference between dates
(F[4,109] = 6.46, P = 0.0001), but date × treatment interaction
was not significant (F[12,109] = 0.95, P = 0.50), indicating no
difference in treatment effects. On the date experiments
ended (16 July), mean lipid content of freshly collected
adults at M-45 was 27.4%. The greater lipid value of in situ
animals suggested access to nutritional material not avail-
able to laboratory animals.

In the preference–avoidance experiments, 95 of 100 and
92 of 100 animals were recovered in the two trials, respec-
tively. Mortality was minimal (only 6 of 187), and all living
animals were found burrowed in the substrate rather than
swimming in the overlying waters. Mean (± standard error,
SE) numbers of animals burrowed in sand, H-31 sediment,

and M-45 sediment were 0 ± 0, 14.5 ± 2.5, and 15.7 ± 3.5,
respectively. Numbers found in the two sediment treatments
were not significantly different, and numbers in both sedi-
ment treatments were significantly higher than numbers found
in the sand treatment (F[2,15] = 12.268, P = 0.001, Tukey’s
HSD). When sediments for these experiments were collected
(July 2000), the Diporeia population had already disap-
peared from H-31, but was still present at M-45. Given these
laboratory results, the disappearance from H-31 was not
likely due to animals actively avoiding the sediments per se.

Discussion

On a broad scale, the decline of Diporeia in Lake Michi-
gan in the 1990s was closely related to the expansion of
dreissenid populations within the lake. In the southern basin,
greatest declines occurred in the 30–50 m depth interval
where dressenid densities increased to the greatest extent.
Also, declines lakewide were most extensive in the northern
portion of the lake where dreissenid densities were higher
than in more southern portions. Yet on a local scale, incon-
sistencies were apparent. Whereas Diporeia and dreissenids
were negatively correlated at several sites, Diporeia re-
mained abundant at some sites despite the long-term pres-
ence of dreissenids, but yet declined rapidly at a site with no
dreissenids. Our field observations and laboratory experi-
ments failed to establish a clear, direct relationship between
the loss of Diporeia and indicators of food availability. From
our results, several questions pertinent to the food-limitation
hypothesis remain enigmatic. (i) Why did the Diporeia pop-
ulation collapse so completely in an area where there were
no mussels and where at least some pelagic food material
was still likely settling to the benthic region? (ii) Why did
lipid content, which is an indicator of energy reserves and
directly related to food availability, remain at high levels as
the population disappeared?

In areas where dreissenids were not present or found in
low numbers, such as at H-22, sediment traps should accu-
rately reflect pelagic inputs to the upper sediments. That is,
mussels at the sediment surface would not be intercepting
settling organic material prior to becoming available to
Diporeia feeding in the upper sediments. Diporeia at H-22
completely disappeared by 1997, yet based on trap flux rates
of TOC, BiS, and Chl in 1998, at least some organic mate-
rial was still settling to the bottom. Others have also docu-
mented a collapse of Diporeia populations in areas far
removed from Dreissena colonies and where potential food
was still found in the water column (Dermott 2001; Nalepa
et al. 2003). Dermott (2001) theorized that the remote loss
of Diporeia might be a function of their spatial distributions
relative to dreissenid beds and dominant current patterns.
Particulate organic material in water flowing over dreissenid
beds would be removed by mussel filtration and unavailable
to Diporeia located in areas downcurrent. In the Hudson
River, Strayer and Smith (2001) suggested that the upstream
removal of organic material by dense dreissenid colonies led
to the severe decline of microzooplankton in areas down-
stream with few mussels. This, in turn, led to the extirpation
of downstream Chaoborus populations, which relied on micro-
zooplankton as a food source. Even so, it is difficult to
reconcile how the remote removal of potential food by
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Fig. 9. Mean lipid content (percent dry weight) of young-of-year
(+ - - +), juvenile (� - - �), and adult (� — �) Diporeia spp. at
three 45 m sites in 1997–2001: (a) M-45, (b) H-31, (c) SAU- 45.



dreissenids in shallow, nearshore regions can so effectively
eliminate Diporeia populations from deeper depths in south-
eastern Lake Michigan. In this area of the lake, nearshore–
offshore transport of particulate material occurs mainly dur-
ing storm events in the spring (Eadie et al. 2002). Dreissenid
colonies can conceivably affect this transport process by re-
taining more organic matter in the nearshore zone, thus re-
ducing deposition in offshore areas (Hecky et al. 2004). The
role of nearshore transport compared with local pelagic in-
puts in supporting offshore Diporeia populations is unknown.
Yet if nearshore retention of organic material by dreissenids
was the reason for the total loss of Diporeia, then the popu-
lation at 45 m must have been far more nutritionally depend-
ent on inputs from the nearshore than pelagic inputs from
the immediate overlying waters. This seems unlikely, since
ingestion rates, assimilation rates, and lipid levels were
closely linked to water column productivity at 45 m in the
years prior to Dreissena (Fitzgerald and Gardner 1993;
Gardner et al. 1989). In terms of food quality, C/N ratios of
trap material and upper sediments at H-22 were 10–13, simi-
lar to the ratio of autochthonous matter produced by decom-
posed plankton (Wetzel 2001). Fresh algal material has a
ratio of 6.7 (Redfield ratio). Ratios at H-22 were generally
higher than ratios at the other 45 m sites, but below the
threshold known to affect growth and development of some
benthic detritivores (Soderstrom 1988; Dorgelo and Leo-
nards 2001). While densities of deepwater amphipods are a
function of fresh algal inputs (Johnson and Wiederholm
1992), the relationship between food quality and the survival
of the population remains unclear. However, Diporeia have
historically been the dominant benthic macroinvertebrate in
the deepest regions of the Great Lakes where benthic food
inputs are minimal and highly refractive. Further, the rapid
decline at H-22 was first observed after the spring period,
which is inconsistent with the food-limitation hypothesis,
since this is the period when food availability would be at a
seasonal maximum.

The disappearance of Diporeia at H-31 and M-45 was
more gradual (5 years) than at H-22 and well correlated to
an increase in the Dreissena population. Given this close
temporal association, food limitation may indeed have played
a major role in the loss of Diporeia at these sites. Yet flux
rates of constituents indicative of food inputs during the pe-
riod of initial declines were similar to rates reported prior to
Dreissena. For instance, the population at H-31 began to de-
cline in 1994 and collapsed in 1997 and 1998, while the
population at M-45 began to decline in 1997. In 1997 and
1998, average spring flux rates of TOC at these two sites
varied from 273 to 461 mg·m–2·day–1, which were compara-
ble with rates of 288 and 430 mg·m–2·day–1 found at H-31 in
1986 and 1990, respectively (B.J. Eadie, unpublished data).
Uncorrected mean spring flux rates of BiS in 1997–1998
were 433–1500 mg·m–2·day–1. These rates were generally
similar to or greater than an uncorrected mean spring flux
rate of 475 mg·m–2·day–1 found at H-31 in 1986 (Gardner et
al. 1989). Populations were already declining in 1999 when
far lower flux rates of all constituents were observed. Low
flux rates in 1999 were likely a result of an uncommon oc-
currence rather than the beginning of a trend. In most years,
water column Chl peaks in spring, but in 1999, the peak oc-
curred in early winter (B.J. Eadie, unpublished data). Thus,
we likely missed the spring diatom peak with our deploy-
ment in 1999. As noted, sediment traps do not reflect pe-
lagic inputs to the upper sediments in areas when Dreissena
densities are high. Dreissena densities were >500·m–2 in
1997 at H-31 when the Diporeia population collapsed, but
<50·m–2 in 1994 when initial declines were observed. Thus,
despite high pelagic inputs that were still likely present in
1994, even low densities of Dreissena had a negative impact
on Diporeia.

Our laboratory experiments indicated that sediments from
H-31 and M-45 did not have an adverse impact on Diporeia
per se. Mortality was not observed after a 66-day exposure,
and the sediments were not actively avoided. Interestingly,
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Year a b n R2 5 mm

SAU-45
1997 –4.497 (0.092) 2.484 (0.053) 195 0.919 0.61
1998 –4.880 (0.155) 2.660 (0.081) 73 0.939 0.55

H-31
1994 –2.374 (0.194) 1.227 (0.114) 94 0.558 0.67
1995 –4.332 (0.208) 2.138 (0.113) 60 0.861 0.41
1996 –3.946 (0.338) 1.910 (0.169) 43 0.756 0.42
1997 –4.900 (0.081) 2.705 (0.048) 208 0.939 0.58
1998 –4.499 (0.147) 2.472 (0.081) 149 0.865 0.59

M-45
1997 –4.838 (0.072) 2.666 (0.043) 172 0.957 0.58
1998 –5.086 (0.064) 2.732 (0.038) 205 0.962 0.50
1999 –4.803 (0.106) 2.679 (0.063) 107 0.946 0.61
2000 –5.222 (0.309) 2.833 (0.181) 97 0.721 0.52
2001 –4.975 (0.095) 2.678 (0.058) 116 0.950 0.51

Note: The relationship is defined by ln LFDW = a + b ln L, where LFDW is lipid-free dry weight
(mg), and L is body length (mm). Standard error is given in parentheses. n is the total number of ani-
mals analyzed. The lipid-free dry weight of a standard 5 mm animal is given.

Table 4. Relationship between lipid-free dry weight and length for Diporeia at each of the
45 m sampling sites in each year lipid content was measured.



whereas there was no mortality during the laboratory experi-
ments, the population of Diporeia at M-45 declined by 66%
over the same 66-day period (May to July). Thus, conditions
that led to the decline at M-45 were not duplicated in the
laboratory using sediments from the same site and animals
from the same population. This may imply that the popula-
tion was reacting negatively en masse to the physical depo-
sition of organic material in the spring. As noted, the rapid
decline at H-22 was similarly observed after the spring pe-
riod. Sediments from H-31 and M-45 were not acutely toxic
to Diporeia, the same result found for sediments from H-22
(Landrum et al. 2000).

If food limitation was the primary cause for the loss of
Diporeia, then the animals should show some physiological
signs of starvation before or during the period of population
loss. In deepwater amphipods, lipid levels are a good indica-
tor of food availability; levels increase just after the spring
diatom bloom when food is readily available and decline
during periods of low benthic food inputs in late summer
and winter (Gardner et al. 1985b; Hill et al. 1992; Lehtonen
1996). When the population began to decline at H-31 in
1994, mean annual lipid content was only 15%, and the

spring lipid peak was only 17%. These values indicate se-
vere starvation — similar levels were found in laboratory
animals starved for 120 days (Gauvin et al. 1989). Recruit-
ment was poor in 1994, which is consistent with the sugges-
tion that lipid values below 20% lead to reproductive failure
(Hill et al. 1992). As densities continued to decline after
1994, lipid content unexpectedly increased and annual re-
cruitment occurred. Possibly, lipid content increased because
declining densities led to more food for remaining organ-
isms. Yet if this were so, then poor YOY survival should not
have occurred, and the population should have stabilized at
some reduced level consistent with a diminished food sup-
ply. Further, the increase in dreissenids over this period would
have further reduced available food and resulted in lower
rather than higher lipid values. As Diporeia densities ap-
proached zero in 1999, lipid levels were over 30% and com-
parable with levels found at this site in the 1980s just after
the spring diatom bloom (Gardner et al. 1985b; Cavaletto et
al. 1996).

While the long-term decrease and then increase in lipid
content found at H-31 has not been previously documented
in field populations, such a pattern was found in animals
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Fig. 10. Flux rates for chlorophyll a (Chl a), total organic carbon (TOC), and biogenic silica (BiS) at the 45 m sites in 1997–1999:
(a) M-45, (b) H-31, (c) SAU-45, (d) H-22. Rates were derived from material collected in sediment traps placed at 30 depth in the
water column. The input from local resuspension was corrected for by subtracting local surface sediment concentrations from trap
concentrations, then multiplying by the mass flux. Shaded areas indicate unstratified periods.



starved in the laboratory (Gauvin et al. 1989). In these ex-
periments, lipid content declined from 30% to 12% after
120 days and then increased to 18% after 191 days. The in-
crease was attributed to the selective catabolism of non-lipid
material (tissue components) after storage lipids were uti-
lized. Weight-specific lipid content may thus increase even
though absolute lipid content and total weight may decrease.
This possibility seems to be refuted by the consistency in
non-lipid weight (relative to length) at the 45 m sites over
the time period when lipids increased. Further, absolute lipid
content remained stable or actually increased during this pe-
riod (Fig. 11). Under some circumstances, an increase in
lipid content may reflect an interference with lipid degrada-
tion or lipid transport processes (Giesy et al. 1988). Accu-
mulated lipids would thus remain unutilized as an energy
source during periods of low food availability. The decline
in lipid content and lack of mortality during the 66-day

food-deprivation experiments indicated, however, that the
animals were still able to utilize lipid material as an energy
source. The increase and relatively high lipid content at the
45 m sites as populations disappeared suggests that
biochemical–physiological changes were occurring in the
animals, but the cause and meaning of such changes remain
unresolved.

When Diporeia were declining, adult fecundity (eggs per
brood) was similar to that found in the 1980s when abun-
dances were high. Except in 1994, these young developed
and were recruited into the population. Population declines
after 1994 occurred because the YOY were not surviving to
become juveniles; that is, annual peaks in YOY were gener-
ally not followed by increased numbers of juveniles. Even-
tually, declines in adults resulted from reduced numbers of
juveniles rather than adult-specific mortality. Because of
higher metabolic and growth rates, YOY are more sensitive
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TOC (mg·g–1) BiS (mg·g–1) Chl (µg·g–1) C/N ratio

Year Trap Sediment Trap Sediment Trap Sediment Trap Sediment

M-45
1997 41.7±3.0 3.3±0.2 120.5±11.8 — — — 8.1±0.1 7.5±0.1
1998 47.8±8.7 4.7±0.3 70.5±23.5 2.6±0.3 24.7±5.9 1.1±0.2 9.3±0.7 7.7±0.4
1999 80.2±22.3 4.9±0.4 74.3±9.8 3.1±0.5 42.4±5.5 1.7±0.2 13.7±2.7 8.8±0.7
2000 — 5.0±0.3 — 2.1±0.6 — 0.8±0.2 — 8.5±0.3
2001 — 6.9±0.7 — 7.4±1.1 — 2.6±0.3 — 7.3±0.2
2002 — 9.0±0.6 — 10.5±1.0 — 3.2±0.4 — 9.2±0.2

H-31
1997 37.2±2.7 6.7±0.1 108.6±11.8 — — — 7.6±0.2 9.0±0.6
1998 35.5±7.4 7.9±0.8 87.2±31.1 4.2±0.8 19.2±6.8 2.1±0.3 9.0±0.5 9.3±1.2
1999 73.2±19.1 7.1±1.4 114.9±17.0 5.8±1.3 31.0±8.1 1.6±0.1 7.7±0.3 10.3±1.3
2000 — 10.0±0.3 — 8.9±0.8 — 2.3±0.3 — 9.2±0.3

SAU-45
1997 — — — — — — 7.7±0.1 —
1998 34.7±2.9 11.7±1.5 85.8±7.9 4.6±0.8 11.5±3.5 2.7±0.5 11.5±1.0 9.1±0.8
1999 50.0±14.2 — 45.5±16.4 — — — — —

H-22
1997 — — — — — — — —
1998 63.1±22.6 20.4±1.9 30.8±3.4 12.0±0.8 16.3±6.4 3.3±0.4 12.8±1.4 10.2±1.0
1999 — — — — — — — —

Note: Trap material was collected at 30 m water depth.

Table 5. Mean (± standard error) annual concentrations of total organic carbon (TOC), biogenic silica (BiS), chlorophyll (Chl), and
C/N ratio (weight) in material collected in sedimentation traps and upper sediments (0–1 cm) at the 45 m sites.

Experimental treatment

Sediment

Day In situ Lake water Sand H-31 M-45

0 (12 May) 31.8±1.8 31.8±4.6 32.6±3.2 33.1±4.1 29.9±2.6
10 (21 May) — 24.4±3.6 23.4±1.8 36.4±2.3 28.1±2.4
19 (30 May) — 26.1±1.2 23.9±4.9 27.4±1.3 24.3±3.1
27 (7 June) 27.4±3.3 — — — —
41 (21 June) — 28.1±4.0 25.8±2.4 27.4±3.7 26.5±2.5
66 (16 July) 27.1±1.8 22.5±7.0 25.2±2.6 21.3±2.2 22.7±1.5

Note: In situ values were from animals collected at M-45 on the indicated dates.

Table 6. Mean (± standard error) lipid content (percent dry weight) of Diporeia exposed to
various experimental treatments for a period of 66 days.



to declines in food levels than adults. In laboratory experi-
ments assessing food competition between YOY and adults,
YOY mortality was high at low to medium food regimes,
whereas adults were not affected (Hill 1992; Wenngren and
Olafsson 2002). Annual fluctuations in Monoporeia densi-
ties have been attributed to high mortality of YOY because
of intraspecific competition for food with adults (Johnson
and Wiederholm 1989; Sarvala 1986). Initial declines of ju-
veniles relative to adults at the 45 m sites suggest that food
limitation may indeed be a cause of the population decline,
at least at these sites. Inconsistent with this premise is that
lipid content of juveniles remained high and displayed spring
peaks even as numbers decreased.

Nutrient content of the sediments (TOC, BiS, Chl) in-
creased during the study period. Most likely, these increases
were a result of dreissenid filtering activities rather than a
result of reduced utilization by declining Diporeia popula-
tions. BiS associated with diatom frustules remains unchanged
when consumed by pelagic or benthic grazers, and thus any
sediment increase must reflect increased accumulation from
the water column. Dreissenids effectively filter fine particu-
late material from the water column that otherwise would
not easily settle; unassimilated material is then deposited in
the form of mussel feces and pseudofeces. A 4- to 8-fold in-
crease in sediment concentration of TOC in nearshore Lake

Erie after dreissenid colonization was attributed to the accu-
mulation of mussel biodeposits (Howell et al. 1996).

If food limitation was the cause of declines in Diporeia,
then dreissenid biodeposits must not be available as a nutri-
tion source. Either biodeposits are too refractive to sustain
Diporeia, or biodeposits are somehow having a negative
impact. In laboratory microcosms, Diporeia survival was re-
duced by 25% when exposed to mussel pseudofeces for
90 days (Dermott et al. 2005), so perhaps there is a direct
negative response. In contrast, oligochaete densities remained
stable between 1993 and 1999, which may reflect an ability
to utilize this material as a food source. Whether oligo-
chaetes will persist at these densities remains unclear. In
Lake Ontario, where the dreissenid expansion occurred ear-
lier than in Lake Michigan, oligochaete densities have re-
cently declined (Lozano et al. 2001).

Although the loss of Diporeia in the Great Lakes has been
extensive since Dreissena became established, these two taxa
do seem to coexist in some areas. In the Finger Lakes, New
York, Diporeia abundances have not decreased despite an in-
crease in dreissenids over the same time period (Dermott et
al. 2005). In Lake Michigan, Diporeia continue to be present
(although in reduced numbers) at a site <30 m on the west-
ern side of the southern basin despite the presence of
dreissenids. Upwellings are more frequent on the west side
(Plattner et al. 2006), which create conditions of lower tem-
perature and higher productivity that are favorable to
Diporeia. Lower temperatures associated with upwelling
cannot entirely explain the continued presence of Diporeia
at this shallow, west-side site — populations on the east side
disappeared at depths below the thermocline (>30 m) where
temperatures were as consistently cold as shallow areas on
the west side subject to upwellings. The persistence of Di-
poreia at this site may be temporary, but it does further illus-
trate the inconsistency associated with temporal and spatial
patterns of decline.

Similar to declines of Diporeia in the Great Lakes, the re-
lated deepwater amphipod Monoporeia is also declining in
the Baltic Sea (Perus and Bonsdorff 2004). Interestingly, cir-
cumstances associated with Monoporeia’s decline, as well as
uncertainties of potential causes, closely parallel those for
Diporeia. The decline of Monoporeia in most areas was tem-
porally coincident with the invasion of the Baltic by the
polycheate Marenzellaria viridis (Perus and Bonsdorff 2004).
This polychaete is a detritivore and believed to be competing
directly with Monoporeia for available food resources. Yet
the decline in Monoporeia was greater in offshore areas
(>30 m) than in nearshore areas, even though densities of
Marenzellaria were greater in the latter (Cederwall et al.
1999). Low oxygen levels have been suggested as the reason
for the decline in offshore waters, but others suggest it is
food limitation (Cederwall et al. 1999; Kotta and Olafsson
2003). Also, in some parts of the Baltic, the collapse of
Monoporeia occurred prior to the establishment of Maren-
zellaria (B. Sundelin, Department of Applied Environmental
Science, Stockholm University, SE-106 91 Stockholm, Swe-
den, personal communication).

The decline of Diporeia in Lake Michigan, first observed
in 1992, continued through 2002. This decline represents a
major loss of energy to upper trophic levels. For example,
most fish in Lake Michigan are found at depths <90 m
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Fig. 11. Mean (± standard error) lipid content (mg) of juvenile
(� - - �) and adult (� — �) Diporeia spp. at (a) M-45 and
(b) H-31 over the period of declining densities at both sites.



(Wells 1968). In 1994–1995, mean dry weight biomass (B)
of Diporeia at depths <90 m was 4.8 g·m–2 (Nalepa et al.
2000). Lakewide production (P) at <90 m was thus calcu-
lated as 7.7 g·m–2 (assuming P = B × T 2/10 (Johnson and
Brinkhurst 1971) and a mean temperature (T) of 4 °C). Fur-
ther assuming that differences in size frequencies and
lengths–weights of the Diporeia population were minimal
between 1994–1995 and 2000, the amount of secondary pro-
duction lost to fish over this period was 5.1 g·m–2. While
this represents a substantial loss, the decline of Diporeia has
other implications to the fish community besides the loss of
a major producer of secondary biomass. Diporeia have a
higher lipid content and therefore more calories than most
other invertebrate prey items. So even if fish switch to other
prey, fish bioenergetics will still likely be affected. As evi-
dence, condition and growth of lake whitefish have declined
since the loss of Diporeia even though alternate prey have
been found in their stomachs (Pothoven et al. 2001; Hoyle et
al. 2003). A decrease in energy density and (or) lipid content
of fish species that serve as prey for the larger piscivores,
such as alewife and sculpin, have been attributed to the
decline of Diporeia (Madenjian et al. 2003; Hondorp et al.
2005). The recent introduction and expansion of quagga
mussels into deeper regions of Lake Michigan will likely
lead to further declines in Diporeia and, hence, further im-
pacts on fish populations.

In summary, features of declining Diporeia populations in
Lake Michigan were highly variable. Depending on the site,
declines in abundances were rapid and apparent in all age
classes, or declines were more extended and mostly a result
of poor juvenile survival. The former suggests mass mortal-
ity in response to perhaps a dreissenid toxic agent, whereas
the latter suggests possible food limitation from dreissenid
filtering activities. Our quantitative and limited qualitative
measures of benthic food inputs, along with observed changes
in physiological well-being and laboratory mortality–
avoidance experiments, failed to provide conclusive evidence
of a cause. Inconsistencies apparent in our results may imply
a multitude of causative factors whose relative importance
may vary depending on specific environmental conditions. If
food limitation is the sole cause, then a nutritional problem
not evident from our measures of gross food inputs or physio-
logical well-being is a possibility. Given this, detailed studies
of cellular or biochemical indicators may prove worthwhile.
For instance, profiles of essential fatty acids (Brett and Mul-
ler-Navarra 1997) or functional protein groups (Lopez et al.
2001) in areas with declining and stable populations may
show differences specific to nutritional deficiencies or to
disease–defense mechanisms. Populations from areas subject
to upwelling–downwelling and high–low sedimentation would
be of particular interest. By better understanding reasons for
Diporeia’s decline relative to increased numbers of
dreissenids, we may better predict the eventual extent and
ultimate consequences of the population loss.
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